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1. INTRODUCTION

T H IIE problem of stability of dynamic systems arises
in a great variety of problems in physics and engineer-
ing.

If the parameters characterizing the system are
lumped at individual points, so that the system is de-
scribed by ordinary differential equations, then the
stability problem, as a rule, can be solved on the basis
of the linear approximation. For dynamic systems not
with lumped but with distributed parameters, the situa-
tion becomes much more complicated, since such
systems are described not by ordinary differential
equations but either by partial differential equations or
by integro-differential equations (these equations can
also be nonlinear). The characteristic frequencies,
which form a discrete spectrum for system with
lumped parameters, may form a continuous spectrum
for systems with distributed parameters. In this case
the superpositions of the characteristic solutions will
have the form not of sums but of integrals, the
asymptotic behavior of which with increasing time t
will not coincide, generally speaking, with the asymp-
totic behavior of the integrand. Therefore an investiga-
tion of the stability of systems with distributed
parameters turns out to be much more complicated
even in the linear approximation than an investigation
of the stability of systems with lumped parameters.

The purpose of the present review is to develop a
theory of stability of dynamic systems with distributed
parameters that depend neither on the time nor on the
coordinates, in the linear approximation.

We shall assume the dynamic system to be suffic-
iently extended. In this case the linearized equations
for the quantities u« = u a ( r , t), characterizing the
state of the system*, have solutions in the form of
plane waves

where k is the wave vector and ω the natural frequen-
cies of the system.

If the system is described by partial differential
equations, then there exists a definite relation between
the frequency ω and the wave vector k. This relation
is algebraic, i.e., there exists an equation

D(k, ω) = 0, (1.1)

where D(k, ω) is a certain polynomial. This equation
is called the dispersion equation.

If the initial equations describing the system are
integro-differential equations, then the frequency,
generally speaking, is not a definite function of the
wave vector. However, such a functional dependence
arises asymptotically at large values of t. Here again
we obtain the dispersion relation (1.1), where D(k, ω)
is no longer a polynomial but a certain transcendental
function. We shall henceforth confine ourselves to a
consideration of only algebraic dispersion equations*
and show that these equations make it possible to
clarify the character of the instability in the linear
approximation.

2. ABSOLUTE AND CONVECTIVE INSTABILITIES

If certain real values of the wave vector k corre-
spond to certain complex values of the frequency ω
with Im ω > 0, then a perturbation in the form of a
plane monochromatic wave exp | . i (kT - ort)J will in-
crease in time without limit, and the dynamic system
under consideration will be unstable.

Actually, small perturbations do not have the form
of individual plane monochromatic waves, but are wave
packets, i.e., superpositions of plane monochromatic
waves. On the other hand, the asymptotic behavior of
a wave packet can greatly differ from the behavior of
the individual waves. Namely, if the individual com-
ponents in a wave packet increase without limit in time,
then nonetheless the entire packet as a whole can re-
main bounded in a fixed point of space, since the per-
turbation can "drift" downstream. Therefore to
clarify the character of the instability of a dynamic
system it is necessary to solve the problem of the
development of the initial perturbation.

We assume that the state vector u = (ult u2, ,u n )
satisfies a system of partial differential equations with
constant coefficients:

It
2 ρ«*{4ϊ· w)u^x' 0 = 0 (o = l, 2 „), (2.1)

where ~Ραβ are certain polynomials in 8/dx and 3/9t
with constant coefficients. We should find the solutions

*The aggregate of these quantities will be called the vector of state
of the dynamic system.

"Transcendental dispersion equations are investigated in [ Μ •
*For simplicity we confine ourselves here to the one-dimensional

case; for an investigation of a many-dimensional case see [ 2 ] .
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of this system of equations, satisfying a rb i t ra ry initial
conditions u ^ x , 0), u 2 (x, 0 ) , . . . , u n ( x , 0).

If in a wave packet u(x, t) the perturbation at
χ = const and t — °° r e m a i n s bounded in spite of the
presence of components with Im ω > 0, (it usually
tends in this case to zero)

lim u(x, i) = 0,
=const

(2.2)

then one speaks of convective or drift instability.
On the other hand, if the perturbation u(x, t) in-

c r e a s e s without limit at fixed χ and t — «,

Jim u{x,t) = co, { 2 3 )

ar=const

then the instability is called absolute*.
Then, in an investigation of instability it suffices to

check on the existence of complex frequencies in the
dispers ion equation D(k, ω) = 0, and it is also neces-
sary to ascer ta in how the wave packet behaves at a
fixed point of space as t -—°°.

It is c lear that in the case of absolute instability the
existence of an equilibrium state u = 0 is impossible.
Indeed, the growth of random perturbations (which
always a r i s e , at least because of t h e r m a l fluctuations),
leads either to a t ransi t ion to a stable state or to a
destruction of the state under consideration. On the
other hand, in the case of convective instability the
equilibrium state u = 0 can exist . In this case there is
established in the system a stationary (i.e., t i m e -
independent) perturbation level, corresponding to
equilibrium t h e r m a l fluctuations at the input of the
sys tem.

If the system is unstable, then it can be used to
generate osci l lat ions. It can be stated that absolute
instability is necessary for the generation.

If the system has convective instability, then the
perturbation "dri f ts d o w n s t r e a m " ; this means that this
form of instability corresponds to amplification and not
to generation of oscil lations, in other words, sys tems
with convective instability can be amplif iers of oscil la-
t ions . It must be borne in mind, however, that sys tems
with convective instability can also be used to generate
osci l lat ions, if their input is coupled to their output;
this gives r i s e to feedback, and the " d r i f t i n g " per tur-
bation is re turned, i.e., that the instability in the sys-
tem acquires an absolute c h a r a c t e r .

In order to formulate c r i t e r i a of absolute and con-
vective instabil i t ies, let us f irst connect the vector of
state u a with the Green ' s function g(x, t) of Eqs . (2.1):

where L a ( 3 / 3 x , 9 / 9 t ) is a certain differential operator
connected by simple relat ions with the operators
P«j3 ( 9 / 9 x , 9 / 9 t ) , and the function g(x, t) satisfies the
differential equation

D{-i-L·· iJk)s(^ t) = 8(x)8(t),

where D is a polynomial relat ive to - i 3 / 9 x , i 9 / 9 t ,
D ( - i 3 / 9 x , i9/£>t) = d e t | Ρ α β ( 9 / 9 χ , 9 / a t ) | , which enters

*The concepts of absolute and convective instability were intro-
duced by Twiss [3] an by Landau and Lifshitz [4].

in the left side of the dispersion equation (1.1).
Taking the Laplace transform with respect to t ime

and the Four ier t ransform with respect to the coordi-
nate in the last equation, we obtain

*(*· * dk
D(k, ω)' (2.4)

where Ω is a straight line in the complex ω plane,
paral le l to the r e a l axis and passing above all the
singular points of the integrand.

We first integrate in (2.4) with respect to ω:

g(x,
2.1 J ZJ Da[k,is>a(k)\

— ao a^= 1

dk,

where Do> = 9 D/9w and the summation is carr ied out
over all the roots of the dispersion equation (1.1)
ω = « ^ ( k ) .

We put in this formula χ = 0 and replace in the inte-
grand the integration variable k by ωα:

)—4; Σ
» α ) , B j -

( 2 . 5 )

where Ω α is the contour described by the point ωα in
the complex plane when k runs along the rea l axis from
- » to +°°. (Since we a r e considering the case of insta-
bility, certain r e a l values of k correspond to Im ωα

> 0 . )
We now deform the integration contours Ω α by

dropping them downward: Im Ω α — - « . The integral
(2.5) is represented h e r e as a sum of t e r m s of the
form β χ ρ ( - ί ω β ί ) , where ωβ a r e the singular points of
the integrand. The singular points a r e usually the
branch points ωβ of the function k(oj).

If there is at least one branch point of the function
k = k(w) in the upper half-plane Im ωβ > 0 between
the contour Qa and the r e a l axis ωα, then we have
absolute instability. On the other hand, if there a r e no
branch points of the function k(w) for any value of a.
in the upper half-plane Im ωβ > 0, then the instability
is convect ive [ 5 ] .

Let us investigate by way of an example the disper-
sion equation

(ω — kv{) (bi — kuz) + m = 0,

t h e s o l u t i o n of w h i c h i s

If m > 0 a n d

( 2 . 6 )

then the frequency ω will be complex. One of the
values of ω has a positive imaginary part , meaning the
presence of instability. To ascer ta in the character of
this instability, we find the inverse function

j / ω
("I '- "ζ) ω ±

We s e e t h a t t h e funct ion k ( w ) h a s b r a n c h p o i n t s a t

= ι
—

If m > 0 and ν χ ν 2 > 0, then the branch points lie on
the r e a l axis, i .e., the instability is convective. Let us
show that at m > 0 and ViV2 < 0 one of the branch
points
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_
0)0

κ-* ι '

of the function k(a>) lies in the upper half-plane be-
tween the contour fla a n < l the real ω axis, i.e., at
m > 0 and VjV2 < 0 there is absolute instability. To
this end, we consider the contour Sllf define by
formula (2.6) and locate it in the upper half-plane of
ω.

Putting

we obtain an equation for that part of the contour itlt

which lies in the upper-half-plane

Since at the branch point ωα = a0 + i/30 we have

and 2 V | ViV21 < | Vi - v21 at νχν2 < 0, the branch point
ω0 lies between the contour Ωι and the real axis, i.e.,
there is absolute instability at m > 0 and ViV2 < 0.

In deriving the criterion for the absolute instability,
we have first integrated with respect to ω in (2.4). It
is possible to obtain another form of this criterion by
first integrating in (2.4) with respect to k. Using the
residue theorem, we obtain

i
2JT 7ώο f o r

g(X, t):
2 J Zi_
2π J ZiDh [*, (ω), ω

α ι

da f o r x<0,

( 2 . 7 )

where D k = 9D/9k and k r (a j) and k/(u>) a r e the roots
of the dispersion equation, which at Im ω — + °° lie
respectively in the upper or in the lower half-plane,

lmkr((j>)>0, Ι ΐ η ί ; 1 ( ω ) < 0 ( I m c u ^ » + o o ) .

W e s h a l l s a y t h a t t h e t e r m s k r (<«>) i n t h e u p p e r s u m

of ( 2 . 7 ) d e s c r i b e w a v e s p r o p a g a t i n g t o t h e r i g h t , a n d

t h e t e r m s k / ( u ) ) i n t h e l o w e r s u m d e s c r i b e w a v e s

p r o p a g a t i n g t o t h e l e f t .

T h e s i n g u l a r p o i n t s of t h e i n t e g r a n d of ( 2 . 7 ) c a n b e

o n l y b r a n c h p o i n t s of t h e f u n c t i o n k ( w ) . N o t a l l b r a n c h

p o i n t s o f k ( c o ) , h o w e v e r , c o n t r i b u t e t o t h e i n t e g r a l

( 2 . 7 ) . If t h e q u a n t i t i e s k a ( u > ) a n d k ^ w ) , w h i c h c o r r e -

s p o n d t o t w o w a v e s p r o p a g a t i n g i n t h e s a m e d i r e c t i o n ,

become equal at the branch point ω0, then (inasmuch
as in (2.7) we sum over r or over I) the point o>0 will
actually not be a branch point of the integrand. There-
fore the criterion for the absolute instability is that the
upper half-plane of ω, Im ω > 0, contain a branch
point of the function k(oi) at which two branches of
this function, corresponding to waves propagating in
opposite directions, coincide'6-1:

I n t h e o p p o s i t e c a s e t h e i n s t a b i l i t y w i l l b e c o n v e c t i v e .

L e t u s i n v e s t i g a t e , u s i n g t h i s f o r m u l a t i o n of t h e

c r i t e r i o n f o r a b s o l u t e o r c o n v e c t i v e i n s t a b i l i t y , t h e

t y p e of i n s t a b i l i t y of t h e s y s t e m c h a r a c t e r i z e d b y t h e

d i s p e r s i o n e q u a t i o n

(ω — to,)(iu — te,)+m = 0 (m>0),

which we have already considered above.

If Vi > 0 and v2 > 0, then the imaginary part of the
function

£ / ω \ _ ("! + "») "> ± Τ/("ι-ι>2)2°>2—iuiiyn

will be positive as Im ω — +°°. Therefore, at Vj > 0
and v2 > 0, both waves propagate to the right, and
consequently there will be no absolute instability, i.e.,
the instability will be convective.

On the other hand, if ViV2 < 0, then one of the waves
k(o)) propagates to the right, and the other to the left.
Then one of the branch points, namely

lies in the upper half-plane. Thus, when ViV2 < 0 we
deal with absolute instability.

As already indicated, in convective instability a
perturbation, while growing, drifts downstream at the
same time. If s is the "drift" velocity of the packet,
then obviously, in a reference frame moving with
velocity s, the perturbation will increase without limit,
i.e.,

lim u (st, t) = oo. (2.8)

In other words, convective instability becomes absolute
in this reference frame. The velocity s is equal toC 7 ]

(2.9)<iReo>(>0 \

where k0 is the value of the wave number at which

dim ω (k)
dk = 0

(ω and k are connected by the dispersion equation (1.1).
Expression (2.9) is a generalization of a well known
expression for the group velocity to include waves that
grow in time' 8 1 .

In the case of the simplest dispersion equation

(ω — to,) (ω — kv2) + m = 0

the drift velocity s is the ar i thmetic mean of the
velocities Vj and v 2 :

3 . A M P L I F I C A T I O N A N D N O N T R A N S M I S S I O N O F

O S C I L L A T I O N S

W e n o w p r o c e e d t o c o n s i d e r a m p l i f i c a t i o n of o s c i l l a -

t i o n s .

Obviously, the oscillations capable of being ampli-
fied are those for which Im k < 0 at real ω (the sys-
tem is assumed semi-infinite, χ > 0, the χ axis is
chosen such that the amplified waves move towards
increasing values of x).

The conditions Im k <0 with real ω do not by them-
selves suffice for amplification of the oscillations. To
verify this, let us consider a monochromatic wave
exp[i(kx - u>t)] propagating in a plane waveguide. In
this case the dispersion equation can be readily seen
to be

a? = kV + a\ (3.1)
where c is the speed of light and a = mrc/d (d is the
distance between the planes of the waveguide and η is
an integer). For | ω | < a, Eq. (3.1) has two imaginary
roots:
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(3.2)

The root ki(w) corresponds to a wave with an ampli-
tude that d e c r e a s e s exponentially at χ > 0

Ui — Αιexp I — — Y^a2 — ω2 — ί ω ί ) ,

a n d t h e r o o t k 2 ( w ) c o r r e s p o n d s t o a w a v e w i t h a n

e x p o n e n t i a l l y g r o w i n g a m p l i t u d e

u2 = A2exp (-i- VcP-ufi- ίωή .

In the region χ > 0 this wave would lead to an expo-
nentially growing oscillation energy, which is impossi-
ble, since in our problem there is no external energy
s o u r c e . Obviously, this solution corresponds actually
not to a growing wave moving in the positive χ d i r e c -
tion, but to a damped wave moving in the opposite
direct ion. If the energy source l ies in the plane χ = 0,
then the growing solution must be discarded. It can be
stated that in the present case , in spite of the fact that
Im k < 0, we have not amplification of the oscil lations,
but their nontransmiss ion*.

In our case, the situation is very simple, and a
clarification of the character of the propagating osci l-
lations at Im k < 0 entails no difficulty. There can
a r i s e , however, more complicated c a s e s , when it is
not so simple to differentiate between amplification and
nontransmiss ion. Such cases a r i s e whenever the sys-
tem contains external energy s o u r c e s . By way of an
example we present a system comprising a plasma and
a beam of charged par t ic le s . In this case the beam
supplies energy to the plasma continuously, and a
special analysis is necessary to determine the c h a r a c -
t e r of the propagating osci l lat ions.

Let us formulate mathematically the difference be-
tween amplification and nontransmission of oscil la-
t i o n s .

We denote by k^ = ]ίβ{ω) (0 = 1, 2 , . . . ,n) different
solutions of the dispers ion equation with respect to k.
It is c lear that the vector of state ( u ^ u 2 , . . . , u n ) of
the system can be represented in the form

ua(r, i)=-- I 2 δαβ(ω)e'V"'-1-"1"Λο, (3.3)
- « β = 1

w h e r e t h e c o e f f i c i e n t s b a ^ ( w ) a r e d e t e r m i n e d b y t h e

p e r t u r b a t i o n s u a ( 0 , t ) o n t h e b o u n d a r y o f t h e r e g i o n

χ = 0. The quantities u a ( 0 , t) can always be chosen
such that the vector of state at all instants of t ime
vanishes at χ < 0:

( ζ , ί) = 0, χ<0. ( 3 . 4 )

B y s o c h o o s i n g t h e b o u n d a r y p e r t u r b a t i o n o f t h e s t a t e

vector, we cause all the waves in the system to propa-
gate in a definite direction, namely in the positive χ
direct ion.

We now fix the value of β corresponding to Im k£
< 0 . Two cases can a r i s e h e r e : ei ther some of the
quantities b a ^ ( a = 1, 2 , . . . ,n) differ from z e r o , or
else they a r e all equal to z e r o . In the former case we
have amplification of a wave with wave number k = k^,

and in the latter case we have nontransmission of this
wave 1 · - " 1 .

Thus, the condition Im k£ < 0 is not sufficient for
a wave with wave number k = k£ to be amplified. It is
necessary also that this wave be contained in the wave
packet (3.3), which satisfies the condition (3.4).

To establish a cr i ter ion for amplification and non-
t ransmiss ion of oscil lations, we choose the quantities
u a ( x , t) in such a manner that all the waves propagate
in the positive χ direction, i .e., so as to satisfy the
condition (3.4).

The imaginary part of k(w) should then be positive
at Im ω —• +°° for waves moving to the r ight. On the
other hand, the condition for the spatial growth of the
waves has obviously the form Im k(a i ) < 0 (ω is r e a l ) .

Thus, for wave amplification it is necessary that
the imaginary part of the function k(u>) have opposite
signs for Im ω -~ + » and Im ω = 0. On the other hand,
if Im k(w) has the same sign for Im ω — +<» and
Im ω = 0 , then nontransmission of the oscillations
takes p l a c e t 6 ] .

Let us consider by way of an example a system with
a dispersion equation

(ω — kvf) (ω — kv2) -\-m = 0.

B y s o l v i n g t h i s e q u a t i o n w i t h r e s p e c t t o k, w e o b t a i n

, , .
lit 1UJ I

If v ^ m < 0, then any rea l value of ω corresponds
to a r e a l value of k. In this case there is t ransmiss ion
of the osci l lat ions. Indeed, as shown in Sec. 2, the
system is absolutely stable at m > 0 and ViV2 < 0.)

On the other hand, if ViV2m > 0, then for

'l — "2 I
ω <

2 V"i'V" ( 3 . 5 )

I "1 — "2 I

k becomes complex. If furthermore ViV2 < 0 and vx

+ v2 > 0, then for two waves with wave vectors kx(w)
and k 2 (w) we have at Im ω = 0 and Im ω — +°° the
inequalities

Im&,(co)>0.

S i n c e Im k l j 2 ( w ) d o e s n o t r e v e r s e s i g n o n g o i n g f r o m

Im ω = 0 to Im ω — +<*>, the system under considera-
tion does not t ransmit oscillations in the frequency in-
terval (3.5) in which Im k * 0.

If the inequalities

viv2m > 0, v, > 0, v2 > 0

a r e satisfied, then both waves with wave numbers
k^cu) and k 2 ( w ) h a v e positive imaginary parts as
Im ω — +°o. At Im ω = 0 we have the inequalities

ImA:1(oj)>0, Im/fc,(<a)<0.

Therefore the solution k ^ w ) corresponds to nontrans-
miss ion of the osci l lat ions, and the solution k2(o)) to
amplification of the osci l lat ions.

We note that the amplified perturbation satisfies the
causality condition

* T h e c o n c e p t s o f a m p l i f i c a t i o n a n d n o n t r a n s m i s s i o n ( r e f l e c t i o n ) o f

o s c i l l a t i o n s w e r e i n t r o d u c e d b y T w i s s [ 9 ] .

lim ua(x, t) = (3.6)
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This condition can be regarded as a definition of am-
pl i f icat ion [ 1 2 ' 1 3 ] . The condition (3.6) enables us to dis-
card waves moving to the left and replace by the same
token the boundary conditions (3.4).

To discard waves moving to the left, we can also use
one property of the Four ier-Laplace transformation

«a (*, P)=\ e-"1 dt±J e-ik'ua {x, t) dx,
Ό -oo

w h i c h f o l l o w s f r o m t h e b o u n d a r y c o n d i t i o n ( 3 . 4 ) a n d

f r o m t h e o b v i o u s c o n d i t i o n

i fu a (x, i )=0 ( 3 - 7)

F r o m these conditions it followsC 6 ' 1 4 ] that the F o u r i e r -
Laplace transformation u a ( k , p) should be an analytic
function of both variables at Im k < 0 and Re ρ > 0.

An essent ia l fact is that the wave packet as a whole
is amplified in space, i .e.,

Urn ujx, 4 - U o o . ( 3 - 8 )m ua (χ, -ί-\ = <
+0O ' S I

w h e r e s ' i s a c e r t a i n q u a n t i t y c h a r a c t e r i s t i c o f t h e

s y s t e m . N a m e l y ,

ι
/ d He k \

where ω 0 is the value of the frequency at which

(3.9)

dim* = 0.

The quantity s ' is a generalization of the group velocity
to the case of waves growing in space.

In the case of the dispers ion equation

(ω — kv,) (ω — kv2) + m = 0

s ' i s equal to the harmonic m e a n of the v e l o c i t i e s v :

and v 2 :

«' 2 Ι ΐ.·ι -*" ι>! Γ

S i n c e t h e a r i t h m e t i c m e a n i s l a r g e r t h a n t h e h a r m o n i c

m e a n w h e n vx > 0 a n d v 2 > 0 , t h e g r o u p v e l o c i t y of

w a v e t h a t g r o w i n t i m e e x c e e d s t h e g r o u p v e l o c i t y of

w a v e s t h a t g r o w i n s p a c e :

s>s'.

4 . S T U R R O C K ' S R U L E S

T h e p r a c t i c a l a p p l i c a t i o n of t h e w a v e i n s t a b i l i t y a n d

a m p l i f i c a t i o n c r i t e r i a f o r m u l a t e d i n t h e p r e c e d i n g s e c -

t i o n s e n t a i l s i n g e n e r a l g r e a t d i f f i c u l t i e s , s i n c e t h e

d e t e r m i n a t i o n of t h e b r a n c h p o i n t s o f t h e f u n c t i o n s i n

regions bounded by the rea l axes of the planes α>α and
the contours Ω α (which themselves must be deter-
mined) and the determination of the direction of propa-
gation of the waves a r e complicated and laborious
problems.

Considerable simplifications occur when the disper-
sion equation D(k, ω) = 0 is an algebraic equation with
r e a l coefficients, which breaks up in the region of
large values of | k | , o r , which is the s a m e , in the
regions of large values of | ω | , into a product of fac-
t o r s in the form ω - vk, where ν is a certain constant
different from z e r o . (This assumption corresponds to
the condition that the signal propagation velocity be

ω

<ζ>·—j^
Α

\

'J

f
ι

/

/

!

FIG. 1. Typical dispersion curves, a) Stability, transmission; b) sta-
bility, nontransmission; c) absolute instability, transmission; d) convec-
tive instability, amplification.

finite*.) For sys tems with a dispersion equation of
this kind, the location of the branch points, and conse-
quently also the character of the instability, can be
established from the general form of the curve r e p r e -
senting the dispersion equation in the (k, ω) plane.

Four typical dispersion curves a r e shown in Fig. 1.
Figures l a and lb correspond to stable sys tems, while
Figs , l c and l c to unstable s y s t e m s . The difference
between Figs . Id and Id lies in the fact that in the
former case the asymptotes of the dispersion curves
a r e inclined in different direct ions, and in the latter
case in the same direction. It can be shown that Fig.
l c corresponds to absolute instability and Fig. Id to
convective instability.

Thus, the instability will be absolute or convective,
depending on whether the asymptotes a r e inclined in
opposite directions or in the same direction (Sturrock's
f irst r u l e [ 1 2 ] ) .

Let us see now how to distinguish between amplifica-
tion and non-transmiss ion of the oscillations by means
of the dispersion curve.

Figures l a and lc correspond to t ransmiss ion of
oscil lations, while Figs, lb and Id correspond to either
amplification or nontransmiss ion of osci l lat ions. The
difference between Figs , lb and Id l ies in the fact that
in the former case the asymptotes a r e inclined in dif-
ferent direct ions, and in the latter in the same d i r e c -
tion. It can be shown that Fig. l b corresponds to non-
t ransmiss ion of oscillations and Fig. Id to amplifica-
tion of osci l lat ions.

*In other words, we assume in this section that the system of dif-
ferential equations (2.1) is of the hyperbolic type. We note that the cri-
teria obtained in the two preceding sections are valid for a broader class
of differential-equation systems, for which the Cauchy problem is cor-
rect [2], and in particular for systems of the parabolic type [1 5].
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FIG. 2. Dispersion curve of two-beam tube, a) Beam velocities paral-
lel; b) beam velocities antiparallel.

We note that in the case when the dispers ion equa-
tion is a polynomial of second degree

(ω— fa.·,) (ω — kvo) -fra = 0,

a l l four c a s e s s h o w n in F i g s , l a — d a r e r e a l i z e d .

F i g u r e l a c o r r e s p o n d s t o v x > 0, v 2 > 0, m < 0; F i g .

l b t o ViV2 < 0, m < 0; F i g . l c t o ViV2 < 0, m > 0; and

f inal ly , F i d . I d , t o V! > 0, v 2 > 0, m > 0 .

T h u s , if t h e a s y m p t o t e s of t h e d i s p e r s i o n c u r v e a r e

i n c l i n e d in d i f f e r e n t d i r e c t i o n s , t h e n n o n t r a n s m i s s i o n

of t h e o s c i l l a t i o n s t a k e s p l a c e , a n d if t h e a s y m p t o t e s

a r e i n c l i n e d in t h e s a m e d i r e c t i o n , t h e n a m p l i f i c a t i o n

of t h e o s c i l l a t i o n s t a k e s p l a c e ( S t u r r o c k ' s s e c o n d r u l e * ) ·

We s e e t h a t t h e s a m e d i s p e r s i o n c u r v e c a n c o r r e -

s p o n d t o both t h e i n s t a b i l i t y p r o b l e m a n d t o t h e w a v e -

a m p l i f i c a t i o n p r o b l e m , w h e r e a s if a b s o l u t e i n s t a b i l i t y

o b t a i n s , t h e n t h e r e i s a l s o t r a n s m i s s i o n of t h e o s c i l l a -

t i o n s . On t h e o t h e r h a n d if t h e s y s t e m i s c o n v e c t i v e l y

u n s t a b l e , t h e n it c a n a l s o b e u s e d t o ampl i fy o s c i l l a -

t i o n s . T h e p a r t i c u l a r p o s s i b i l i t y t h a t i s r e a l i z e d d e -

p e n d s , n a t u r a l l y , on t h e c o n c r e t e p h y s i c a l f o r m u l a t i o n

of t h e p r o b l e m .

L e t u s i l l u s t r a t e t h e f o r e g o i n g r u l e u s i n g a s a n

e x a m p l e a t w o - b e a m t u b e t l 8 ] , t h e d i s p e r s i o n e q u a t i o n

of which i s g iven by

(ω—(tu,)2 ^ (ω — ku2)''
= 1,

w h e r e

n 1 ) 2 a n d u 1 ) 2 a r e t h e d e n s i t i e s a n d v e l o c i t i e s o f t h e

p a r t i c l e s o f b o t h t y p e s , a n d m 1 ; 2 a r e t h e m a s s e s o f

t h e p a r t i c l e s . T h i s e q u a t i o n c o r r e s p o n d s t o t h e d i s -

p e r s i o n c u r v e s h o w n i n F i g . 2 a , i f t h e v e l o c i t i e s u ,

a n d u 2 h a v e t h e s a m e d i r e c t i o n , a n d t o t h e d i s p e r s i o n

c u r v e s h o w n i n F i g . 2 b i f t h e v e l o c i t i e s u x a n d u 2 a r e

o p p o s i t e l y d i r e c t e d . I t i s s e e n i m m e d i a t e l y f r o m t h e s e

f i g u r e s t h a t w h e n t h e s i g n s o f U ! a n d u 2 a r e t h e s a m e

t h e r e i s a n a m p l i f i c a t i o n b a n d a n d a b a n d o f c o n v e c t i v e

i n s t a b i l i t y , a n d w h e n t h e s i g n s o f U i a n d u 2 a r e o p p o -

s i t e t h e r e i s a n o n t r a n s m i s s i o n b a n d a n d a b a n d o f

a b s o l u t e i n s t a b i l i t y .

T h e u s e o f S t u r r o c k ' s r u l e s l e a d s t o d i f f i c u l t i e s i n

t h e c a s e w h e n t h e i n s t a b i l i t y b a n d s o r t h e b a n d s o f

a m p l i f i c a t i o n a n d n o n t r a n s m i s s i o n o v e r l a p . I n t h i s

c a s e i t i s n e c e s s a r y t o i n t r o d u c e i n t h e d i s p e r s i o n

•These rules w e r e o b t a i n e d b y S t u r r o c k [ 1 2 ] , b u t t h e p r o o f c o n -

ta ined i n a c c u r a c i e s , t h e e l i m i n a t i o n o f w h i c h w a s t h e sub ject o f [ " ] . A

heur is t ic der i va t ion o f S t u r r o c k ' s rules, c o n n e c t e d w i t h t h e c o n c e p t o f

character i s t ics , is g iven in [ " ] ( s e e a l s o [ 1 7 ] ) .

FIG. 3. Reduction of a dispersion equation to a second-order poly-
nomial, a) Small ξ; b) { = £01 c) £ = 1.

equation a certa in parameter ξ, variation of which
makes it possible to break up the polynomial D(k, ω)
into a product of l inear factors ω - Vjk - a j . For con-

c r e t e n e s s we shall assume that the value of the
parameter ξ = 1 corresponds to the initial equation,
and ξ = 0 corresponds to the breakdown of the poly-
nomial into factors .

Obviously, at ξ = 0, the dispers ion curve will be a
set of straight l ines. We shall assume that at each
point there intersect not m o r e than two straight lines
and that when ξ var ies in the interval 0 < ξ < 1 the
topological character of the dispersion curves remains
unchanged.

At smal l ξ, the instability (or amplification) bands
will lie near the points of intersection of the lines
ω - vjk - aj = 0 , into which the dispers ion curve

breaks up at ξ = 0. On the other hand, since it is a s -
sumed that the straight lines intersect pairwise, at
smal l values of ξ the dispersion curves should obvi-
ously be s imi lar to the curves shown in Fig. 1.

It can be shown that in the case of continuous in-
c r e a s e of the parameter ξ, the character of the insta-
bility cannot change. This makes it possible to deter-
mine the character of the instability of the initial d i s-
persion equation corresponding to the value of the
parameter ξ = 1.

Let us consider by way of an example the dispersion
equation

+ ^ ™ - = L (4.2)_J Έ.

(ω — kub)2 ' 0)2 — *2K>

w h i c h i n t h e c a s e

» < «,, "P < ub < vp τ / ΐ -r 5 (4.3)

c o r r e s p o n d s t o t h e d i s p e r s i o n c u r v e s h o w n i n F i g . 3 c .

We shall a s sume ω ρ to be variable and replace
ω ρ by ω ρ ξ :

ω 2 _ Α · 2 , , ! — ι · ( 4 . 4 )

At ξ = 0 Eq. (4.4) breaks up into four linear equations

ω — kub — ± at, ω =- ± kvp,

a n d t h e d i s p e r s i o n c u r v e d e g e n e r a t e s in to four s t r a i g h t

l i n e s .

At smal l ξ, the dispers ion curve has been the form
shown in Fig. 3a. As seen from this figure, the system
described by the dispersion equation (4.4) has at smal l
ξ a convective instability. (The convective-instability
bands correspond to the wave-number intervals (kg ,
k n ) and (lq, k j ) ; kjfl denotes the wave number cor-
responding to the point M.)
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If we solve the problem of amplifying oscil lations
in a system described by the dispers ion equation (4.4)
at smal l ξ, then it is seen directly from Fig. 3a that
t h e r e a r e two amplification bands in the frequency in-
terva l s (WA, <*>B) and (iOQ> ω ϋ)> a n c * also two non-
t r a n s m i s s i o n bands in the frequency intervals ( ω ρ ) .

With increasing ξ, the dispers ion curve (4.4) be-
comes deformed, but its topological character remains
unchanged. When the p a r a m e t e r ξ reaches the value

the tangent to one of the branches of the dispers ion
curve, passing through the origin, becomes horizontal
(see Fig. 3b). The two nontransmiss ion bands ( « E ,
α>κ) and ( O J L , ω ρ ) then merge into one band (U>E, mp).
It follows from the inequalities (4.3) that such a m e r g -
ing of the nontransmiss ion bands occurs at | 0 < 1.

With further increase of ξ, the dispers ion curve
a s s u m e s the form shown in Fig. 3c. Since the curves
in Figs . 3a, b , and c a r e topologically equivalent, the
conclusion drawn concerning the character of the in-
stability at smal l values of ξ remains valid a lso at
ξ = 1, i .e., for the initial dispers ion equation (4.2).

F r o m a comparison of F igs . 3a, b, and c we can
conclude that the initial system, described by the d i s-
persion equation (4.2), has convective instability in the
wave-number intervals (kG, k u ) and (kj, k j ) . In ad-
dition, the system under consideration has two ampli-
fication bands in the frequency intervals (U>A, ω β ) a n d

(ως;, w£>), and also a nontransmiss ion band (u>E> u j ) .

5. GLOBAL INSTABILITY

So far, in the investigation of the instability of
dynamic sys tems, we assumed them to extend to
infinity and disregarded therefore the presence of
boundaries . Yet the presence of a boundary can be
very important, owing to reflection of waves from it.
This can give r i s e to feedback between the " i n p u t " and
" o u t p u t " of the system, and as a resul t a convectively
unstable system can behave as if it were absolutely
unstable. An essential fact is that the effective abso-
lute instability of this kind (it is called global
instability*) will take place in the limiting case of in-
finitely extended sys tems, and this conclusion does not
depend on the concrete form of the boundary conditions.

In order to clarify the concept of global instability,
we r e c a l l that the natural oscil lations in bounded sys-
t e m s resul t from a superposition of waves traveling in
different d i rect ions . The frequencies of these waves
a r e d i sc re te , and the system will be stable in the case
when at least one of the frequencies has a positive
imaginary par t .

As already noted in Sec. 2, to distinguish between
waves traveling to the right and to the left it is neces-
sary to determine the sign of the imaginary part of the
function k ^ k(u>) at Im ω —• + » ; if in this case
Im k > 0, then the wave t rave ls to the right, and if
Im k < 0, then the wave t rave l s to the left. In accord
with this definition, we denote the wave numbers of the
waves travell ing to the right by k r ( ^ ) , and those

traveling to the left by k£(<*>). We note that these func-
tions a r e solutions of the dispers ion equation D(k, ω)
= 0 for an unbounded sys tem.

Let now ω r e p r e s e n t the natural frequency of the
bounded system and let min Im k r(u>) and max Im k;(w)
denote respectively the smal les t value of Im k for
waves travel ing to the r ight and the largest value of
Im k for waves traveling to the left. It is c lear that at
a finite value of ω the quantity min Im kr(w) need not
necessar i ly be positive, nor need max Im k/(w) be
negative.

To obtain an equation for the natural frequency ω,
we assume that on the left end of the system (x = - L )
there a r e excited all the waves with wave numbers
k r ( w ) and kj(w). Then only waves with wave numbers
k r ( w ) will move to the r ight. On reaching the r ight
end of the system (x = L), the largest amplitude at
large L will be possessed by the wave with the wave
number corresponding to the smal les t value of Im
Im k r ( w ) . If the amplitude of this wave was equal to
unity at χ = - L , then at χ = L its amplitude will be
equal to

exp 1 — 2L min Im kr (ω)].

When th is wave i s re f l ec ted, w a v e s with wave numbers
kj(c<>) wi l l be produced on the r ight end of the s y s t e m ,
and wi l l m o v e to the left. When the left end of the
s y s t e m ( x = - L ) i s reached, the l a r g e s t amplitude wi l l
be possessed by the wave with the wave number c o r r e -
sponding to m a x i m kj(w). Its amplitude at χ = - L will
be

T+ exp (— 2L min Im kr -f- 2L max Im kfi,

where T+ is the coefficient of t ransmiss ion of the wave
with min Im k r into the wave with max Im k; on the
right end of the sys tem. When the wave with max Im k/
is reflected from the left end of the system, a wave
with min Im k r is again produced and has at χ = - L
the amplitude

Γ+Γ- exp (— 1L min Im kT + 2L max Im k,),

where T- i s the coeff ic ient of t rans format ion of the
wave with m a x Im kj into a wave with min Im kr on
the left end of the s y s t e m .

We now let L go to infinity. Then the e x p r e s s i o n
written out for the amplitude of the wave at χ = - L
will differ from zero if the following condition is
satisfied

min Im kr (ω) = max Im kt (ω), (5.1)

T h e concept of global instability was introduced by Kulikovskii

which together with the dispers ion equation D(k, ω)
= 0 determines the natural frequencies of a sufficiently
long sys tem. They correspond to a certa in line (per-
haps non-connected) on the complex ω plane. We note
that in place of the spectrum of the natural oscil lations
we obtained a continuous line, since we have taken the
limit as L —- °°: each point of this line is the l imit point
of the d i screte natural frequencies a s L — °°.

If this line has points lying in the upper half-plane
(Im ω > 0), then the system will be globally unstable.

It can be shown that a system possessing absolute
instability will always be globally unstable. As to a
convectively unstable system, we shall presently show
that it can be either globally stable or globally unstable.
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By way of an example let us consider a system
whose dispers ion equation is

3ω2 —

This dispersion equation corresponds to two waves 1
and 2 with wave numbers

It i s e a s i l y s e e n t h a t t h e s y s t e m i n q u e s t i o n i s c o n -

vectively unstable. Indeed, putting Im ω — + <*>, we ob-
tain Im kj > 0 and Im k 2 > 0. Therefore both waves 1
and 2 propagate to the r ight, i .e., in this case there a r e
no branch points at which the wave numbers of the
waves moving in opposite directions become equal.

Let us a scer ta in now whether this system is
globally unstable.

Since both waves move to the right, no equation of
the type (5.1) is obtained in this c a s e , i.e., the system
is globally s table.

We now consider a second example. Let the disper-
sion equation be

(3ω2 — ia> (ω + k) = 0.

In t h i s c a s e t h r e e w a v e s 1, 2 , 3 a r e p r o d u c e d w i t h w a v e

n u m b e r s

Λι,2 = 2ω ± Vω 2 — 1, k3=—ω,.

W a v e s 1 and 2 m o v e t o t h e r i g h t and w a v e 3 t o t h e left .
It i s c l e a r t h a t t h e s y s t e m i s c o n v e c t i v e l y u n s t a b l e ,

s i n c e t h e w a v e n u m b e r s of t h e f i r s t two w a v e s do not
di f fer f r o m t h e w a v e n u m b e r s k i and k 2 c o n s i d e r e d in
t h e p r e c e d i n g e x a m p l e (the t h i r d w a v e d o e s not l e a d t o
i n s t a b i l i t y ) .

H o w e v e r , u n l i k e t h e p r e c e d i n g e x a m p l e , now t h e
s y s t e m wi l l b e g l o b a l l y u n s t a b l e , a n d t h e i n s t a b i l i t y i s
d u e t o t h e e x i s t e n c e of t h e t h i r d w a v e . T o ver i fy t h i s ,
w e def ine t h e n a t u r a l f r e q u e n c i e s in a c c o r d a n c e wi th
E q . ( 5 . 1 ) :

Im*:,, 2(ω) = Imfc3(<B). ( 5 2 )

Putting ω = a + ίβ, we obtain

and from (5.2) it follows that

az + 17β2 _ 1 = W - β 2 - 1 )M- 4α2β2. (5.3)

S q u a r i n g b o t h s i d e s of t h i s e q u a t i o n , w e o b t a i n t h e

equation of the line (5.2):

8 α 2 - 7 2 β 2 = 9. (5.4)

As follows from (5.3), the condition a2 + Π β2 > 1
should be satisfied (satisfaction of this condition c o r r e -
sponds to a positive sign in front of the radical) .

It is easily seen that the ellipse (5.4) lies entirely in
the region a2 + 17β2 ζ 1. This means that all the points
of the line (5.4) satisfy Eq. (5.2), and since part of the
ellipse (5.4) l ies in the upper half-plane (β > 0), the
system under consideration remains globally unstable.

Thus, a dynamic system having convective instabil-
ity can be either globally stable or globally unstable.
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