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1. INTRODUCTION

THE problem of stability of dynamic systems arises
in a great variety of problems in physics and engineer-
ing.

If the parameters characterizing the system are
lumped at individual points, so that the system is de-
scribed by ordinary differential equations, then the
stability problem, as a rule, can be solved on the basis
of the linear approximation. For dynamic systems not
with lumped but with distributed parameters, the situa-
tion becomes much more complicated, since such
systems are described not by ordinary differential
equations but either by partial differential equations or
by integro-differential equations (these equations can
also be nonlinear), The characteristic frequencies,
which form a discrete spectrum for system with
lumped parameters, may form a continuous spectrum
for systems with distributed parameters. In this case
the superpositions of the characteristic solutions will
have the form not of sums but of integrals, the
asymptotic behavior of which with increasing time t
will not coincide, generally speaking, with the asymp-
totic behavior of the integrand. Therefore an investiga-
tion of the stability of systems with distributed
parameters turns out to be much more complicated
even in the linear approximation than an investigation
of the stability of systems with lumped parameters.

The purpose of the present review is to develop a
theory of stability of dynamic systems with distributed
parameters that depend neither on the time nor on the
coordinates, in the linear approximation.

We shall assume the dynamic system to be suffic-
iently extended. In this case the linearized equations
for the quantities ug = ug(r, t), characterizing the
state of the system*, have solutions in the form of
plane waves

Ug = Aaei (kr—u)t),

where k is the wave vector and w the natural frequen-
cies of the system.

If the system is described by partial differential
equations, then there exists a definite relation between
the frequency w and the wave vector k. This relation
is algebraic, i.e., there exists an equation

*The aggregate of these quantities will be called the vector of state
of the dynamic system.

Dk, ©)=0, (1.1)
where D(k, w) is a certain polynomial. This equation
is called the dispersion equation.

If the initial equations describing the system are
integro-differential equations, then the frequency,
generally speaking, is not a definite function of the
wave vector. However, such a functional dependence
arises asymptotically at large values of t. Here again
we obtain the dispersion relation (1.1), where D(k, w)
is no longer a polynomial but a certain transcendental
function. We shall henceforth confine ourselves to a
consideration of only algebraic dispersion equations*
and show that these equations make it possible to
clarify the character of the instability in the linear
approximation.

2. ABSOLUTE AND CONVECTIVE INSTABILITIES

If certain real values of the wave vector k corre-
spond to certain complex values of the frequency w
with Im w > 0, then a perturbation in the form of a
plane monochromatic wave expli(k r — wt)] will in-
crease in time without limit, and the dynamic system
under consideration will be unstable.

Actually, small perturbations do not have the form
of individual plane monochromatic waves, but are wave
packets, i.e., superpositions of plane monochromatic
waves. On the other hand, the asymptotic behavior of
a wave packet can greatly differ from the behavior of
the individual waves. Namely, if the individual com-
ponents in a wave packet increase without limit in time,
then nonetheless the entire packet as a whole can re-
main bounded in a fixed point of space, since the per-
turbation can ‘‘drift’’ downstream. Therefore to
clarify the character of the instability of a dynamic
system it is necessary to solve the problem of the
development of the initial perturbation.

We assume that the state vector u = (u,, us,...,upn)
satisfies a system of partial differential equations with
constant coefficients:

z Pap (7‘1—, ait) ug(z, t)y=0 (a=1, 2, ..., n), (21)
B=1
where Pgg are certain polynomials in 8/8x and 8/9t
with constant coefficients. We should find the solutions

*Transcendental dispersion equations are investigated in ['].

*For simplicity we confine ourselves here to the one-dimensional
case; for an investigation of a many-dimensional case see [?].
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of this system of equations, satisfying arbitrary initial
conditions u,(x, 0), ux(x, 0),...,un(x, 0).

If in a wave packet u(x, t)the perturbation at
x = const and t —« remains bounded in spite of the
presence of components with Im w > 0, (it usually
tends in this case to zero)

lim u(z, t)=0,
Lm0

x=const

(2.2)

then one speaks of convective or drift instability.

On the other hand, if the perturbation u(x, t) in-
creases without limit at fixed x and t — =,

lim (e, 1)=co, (2.3)
x=const
then the instability is called absolute™®.

Then, in an investigation of instability it suffices to
check on the existence of complex frequencies in the
dispersion equation D(k, w) =0, and it is also neces-
sary to ascertain how the wave packet behaves at a
fixed point of space as t — <,

It is clear that in the case of absolute instability the
existence of an equilibrium state u =0 is impossible.
Indeed, the growth of random perturbations (which
always arise, at least because of thermal fluctuations),
leads either to a transition to a stable state or to a
destruction of the state under consideration. On the
other hand, in the case of convective instability the
equilibrium state u = 0 can exist. In this case there is
established in the system a stationary (i.e., time-
independent) perturbation level, corresponding to
equilibrium thermal fluctuations at the input of the
system.

If the system is unstable, then it can be used to
generate oscillations. It can be stated that absolute
instability is necessary for the generation.

If the system has convective instability, then the
perturbation ‘‘drifts downstream’’; this means that this
form of instability corresponds to amplification and not
to generation of oscillations, in other words, systems
with convective instability can be amplifiers of oscilla-
tions, It must be borne in mind, however, that systems
with convective instability can also be used to generate
oscillations, if their input is coupled to their output;
this gives rise to feedback, and the ‘‘drifting’’ pertur-
bation is returned, i.e., that the instability in the sys-
tem acquires an absolute character.

In order to formulate criteria of absolute and con-
vective instabilities, let us first connect the vector of

state u, with the Green’s function g(x, t) of Egs. (2.1):

ua(z’ t)—:'La. (%1 (%)g(l, t)y

where Lg(8/9x, 8/3t) is a certain differential operator
connected by simple relations with the operators
Pqapg(8/0x,8/8t), and the function g(x, t) satisfies the
differential equation

D(—i%, i%)g(z’ 1) =8(z) (1),
where D is a polynomial relative to ~id/8x, i9/9t,
D(-i8/0x, 18/8t) = det | Pap(2/0x, 3/8t)|, which enters

*The concepts of absolute and convective instability were intro-
duced by Twiss [?] an by Landau and Lifshitz [?].

in the left side of the dispersion equation (1.1).

Taking the Laplace transform with respect to time
and the Fourier transform with respect to the coordi-
nate in the last equation, we obtain

(2.4)

1 . v eihx gl
Z, 1) == o= —iot
8( ) 4n2 ie do 5 Dk, o)’

where § is a straight line in the complex w plane,
parallel to the real axis and passing above all the
singular points of the integrand.

We first integrate in (2.4) with respect to w:

©  n

g@ = —5 |

—o0

eikx~iu)a(h)l

2 Dy [k, 0g (k)] dk,
a=1

where Dy = 9D/3w and the summation is carried out
over all the roots of the dispersion equation (1.1)
w = U)a(k).

We put in this formula x = 0 and replace in the inte-
grand the integration variable k by wy:

T

2n . dog
o R Dy [% (0g), 0g] d_lg

—iw, ¢
e % dog

(2.5)

where Qg4 is the contour described by the point wg in
the complex plane when k runs along the real axis from
— o to +%, (Since we are considering the case of insta-
bility, certain real values of k correspond to Im wqy
>0.)

We now deform the integration contours Qg by
dropping them downward: Im 4 — — . The integral
(2.5) is represented here as a sum of terms of the
form exp(—int), where wg are the singular points of
the integrand. The singular points are usually the
branch points wg of the function k(w).

If there is at least one branch point of the function
k =k(w) in the upper half-plane Im wg > 0 between
the contour Q4 and the real axis wq, then we have
absolute instability. On the other hand, if there are no
branch points of the function k(w) for any value of «
in the upper half-plane Im wg > 0, then the instability
is convectivel®],

Let us investigate by way of an example the disper-
sion equation

(w—kvy) (0 —kvo)+m =0,
the solution of which is
(2.6)

@y, o (k) == % (vy-4-0a) b = {’_ l/(b—1— ry)2 k> —4m.

If m>0 and

then the frequency w will be complex. One of the
values of w has a positive imaginary part, meaning the
presence of instability. To ascertain the character of
this instability, we find the inverse function

2 (v -+ vg) @ = V(01— v3) 202 —dwyogm
((1)) = 2040, N
1V2

We see that the function k(w) has branch points at

®== =4 2 Voiogm Vg .
Vi—vp
If m>0and v,v,> 0, then the branch points lie on
the real axis, i.e., the instability is convective. Let us
show that at m > 0 and v,v, < 0 one of the branch
points
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2V v m i

@o= [vs—vp |

of the function k(w) lies in the upper half-plane be-
tween the contour Qg and the real w axis, i.e,, at
m >0 and v,v; < 0 there is absolute instability. To
this end, we consider the contour Q,, define by
formula (2.6) and locate it in the upper half-plane of
w.

Putting

o—a+p,

we obtain an equation for that part of the contour ,,
which lies in the upper half-plane

=1 (L5e) e —m

Since at the branch point w, = a, + iy we have

t=0, By=2plunln

and 2 V|v,ve| =|v; = va| at v,v, <0, the branch point
wy lies between the contour @, and the real axis, i.e.,
there is absolute instability at m > 0 and v,v, <0,

In deriving the criterion for the absolute instability,
we have first integrated with respect to w in (2.4). It
is possible to obtain another form of this criterion by
first integrating in (2.4) with respect to k. Using the
residue theorem, we obtain

vy —Uy
v‘—l»u

) o?—m?3.

:hr(m)x-—mt

2:[ “ th [#r (w), ®] do

o

for >0,

o

gz, )= (2.7)

1&1(m)x—tmt
S deo for =<0,

ZDk Lkz (0), @]

where Dk = 9D/9k and kr(w) and kj(w) are the roots
of the dispersion equation, which at Im w — +% lie
respectively in the upper or in the lower half-plane,

Imk, (0)) >0,

We shall say that the terms ky(w) in the upper sum
of (2.7) describe waves propagating to the right, and
the terms kj{w) in the lower sum describe waves
propagating to the left.

The singular points of the integrand of (2.7) can be
only branch points of the function k(w). Not all branch
points of k(w), however, contribute to the integral
(2.7). If the quantities k,(w) and kB(w), which corre-
spond to two waves propagating in the same direction,
become equal at the branch point w,, then (inasmuch
as in (2.7) we sum over r or over [)the point w, will
actually not be a branch point of the integrand. There-
fore the criterion for the absolute instability is that the
upper half-plane of w, Im w > 0, contain a branch
point of the function k(w) at which two branches of
this function, corresponding to waves propagating in
opposite d1rectlons coincide!®;

kr (CD) = kl ("’)'

In the opposite case the instability will be convective.

Let us investigate, using this formulation of the
criterion for absolute or convective instability, the
type of instability of the system characterized by the
dispersion equation

(0 —kv)(0—kv,) 4-m=0 (m>0),

Imk;(0) <0 (Imo— + oo).

which we have already considered above.
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If v; >0 and v, > 0, then the imaginary part of the
function

(11 v2) © + V{v1—02)% @ —dvgogm
2010,

k(o) =

will be positive as Im w — +«=, Therefore, at v, > 0
and v; > 0, both waves propagate to the right, and
consequently there will be no absolute instability, i.e.,
the instability will be convective.

On the other hand, if v,v; < 0, then one of the waves
k(w) propagates to the right, and the other to the left.
Then one of the branch points, namely

2V| Vi”zlm
[U1—Uz|
lies in the upper half-plane. Thus, when v,;v, < 0 we
deal with absolute instability.

As already indicated, in convective instability a
perturbation, while growing, drifts downstream at the
same time. If s is the ‘‘drift’’ velocity of the packet,
then obviously, in a reference frame moving with
velocity s, the perturbation will increase without limit,
i.e.,

limu (st, t)=oo.

t>oco

(2.8)

In other words, convective instability becomes absolute
in this reference frame. The velocity s is equal to!™

§= (giiki@)—)h=ko' (2.9)

where Kk, is the value of the wave number at which

d
Hept g
(w and k are connected by the dispersion equation (1.1).
Expression (2.9) is a generalization of a well known
expression for the group velocity to include waves that
grow in time!®
In the case of the simplest dispersion equation

(0 —kvy) (0—kvg) +m =0

the drift velocity s is the arithmetic mean of the
velocities v, and v,:

3——‘(01+V2)

3. AMPLIFICATION AND NONTRANSMISSION OF
OSCILLATIONS

We now proceed to consider amplification of oscilla-
tions.

Obviously, the oscillations capable of being ampli-
fied are those for which Im k < 0 at real w (the sys-
tem is assumed semi-infinite, x > 0, the x axis is
chosen such that the amplified waves move towards
increasing values of x).

The conditions Im k <0 with real w do not by them-
selves suffice for amplification of the oscillations. To
verify this, let us consider a monochromatic wave
expli (kx — wt)] propagating in a plane waveguide, In
this case the dispersion equation can be readily seen
to be

(3.1)

where ¢ is the speed of light and a = nrc/d (d is the
distance between the planes of the waveguide and n is
an integer). For |w| < a, Eq. (3.1) has two imaginary
roots:

02 = k22 + a?,
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ky(0)=—V @ =a,
b e

ky (o) = —Lc V@t — k.

The root k,(w) corresponds to a wave with an ampli-
tude that decreases exponentially at x > 0

u1:A,exp(——:—Va2—w2—icot) ,

and the root k;(w) corresponds to a wave with an
exponentially growing amplitude

Uy == Ay exp (% Va—wt— imt) .

In the region x > 0 this wave would lead to an expo-
nentially growing oscillation energy, which is impossi-
ble, since in our problem there is no external energy
source. Obviously, this solution corresponds actually
not to a growing wave moving in the positive x direc-
tion, but to a damped wave moving in the opposite
direction. If the energy source lies in the plane x =0,
then the growing solution must be discarded. It can be
stated that in the present case, in spite of the fact that
Im k < 0, we have not amplification of the oscillations,
but their nontransmission®*.

In our case, the situation is very simple, and a
clarification of the character of the propagating oscil-
lations at Im k < 0 entails no difficulty. There can
arise, however, more complicated cases, when it is
not so simple to differentiate between amplification and
nontransmission. Such cases arise whenever the sys-
tem contains external energy sources. By way of an
example we present a system comprising a plasma and
a beam of charged particles. In this case the beam
supplies energy to the plasma continuously, and a
special analysis is necessary to determine the charac-
ter of the propagating oscillations.

Let us formulate mathematically the difference be-
tween amplification and nontransmission of oscilla-
tions.

We denote by kg = kg(w) (B=1,2,...,n) different
solutions of the dispersion equation with respect to k.

It is clear that the vector of state (u,, us,...,up) of
the system can be represented in the form
Uy (2, t)= 5 Z baﬁ<w)eik5(w)x~imrdm’ (3.3)

S0 st

where the coefficients baﬁ(w) are determined by the
perturbations ug(0, t) on the boundary of the region
x = 0. The quantities uy(0, t) can always be chosen
such that the vector of state at all instants of time
vanishes at x < 0:

uy (z, t)y=0, z<0. (3.4)

By so choosing the boundary perturbation of the state
vector, we cause all the waves in the system to propa-
gate in a definite direction, namely in the positive x
direction.

We now fix the value of 8 corresponding to Im kg
< 0. Two cases can arise here: either some of the
quantities bgg(a =1, 2,...,n) differ from zero, or
else they are all equal to zero. In the former case we
have amplification of a wave with wave number k = kg,

*The concepts of amplification and nontransmission (reflection) of
oscillations were introduced by Twiss [°].

and in the latter case we have nontransmission of this
wavel® 1,

Thus, the condition Im kg <0 is not sufficient for
a wave with wave number k =kg to be amplified. It is
necessary also that this wave be contained in the wave
packet (3.3), which satisfies the condition (3.4).

To establish a criterion for amplification and non-
transmission of oscillations, we choose the quantities
ug(x, t) in such a manner that all the waves propagate
in the positive x direction, i.e., so as to satisfy the
condition (3.4).

The imaginary part of k(w) should then be positive
at Im w — +« for waves moving to the right. On the
other hand, the condition for the spatial growth of the
waves has obviously the form Im k(w) < 0 (w is real).

Thus, for wave amplification it is necessary that
the imaginary part of the function k (w) have opposite
signs for Im w — +% and Im w = 0. On the other hand,
if Im k(w) has the same sign for Im w — +% and
Im w =0, then nontransmission of the oscillations
takes place'®,

Let us consider by way of an example a system with
a dispersion equation

(0— kv (0 — kv, +m=0.

By solving this equation with respect to k, we obtain

ey (o) = L1t @ VO — 0o —Tpegm
2040,

Eon (@) == (v14-p2) 0— /{01~ vp)2 @E—Gvgwem

2 2v40, :

If vyvom < 0, then any real value of w corresponds
to a real value of k. In this case there is transmission
of the oscillations. Indeed, as shown in Sec. 2, the
system is absolutely stable at m >0 and v,v, <0.)

On the other hand, if v,vo,m > 0, then for

_ 2Vvwam 2V oyegm

|1 —ve| | vy —uvg |

<o (3.5)

k becomes complex. If furthermore v,v, <0 and v,
+ vz > 0, then for two waves with wave vectors k,(w)
and ky(w) we have at Im w =0 and Im w — += the
inequalities

Imk (0)<<0, Imk,(w)>0.

Since Im k, ,(w) does not reverse sign on going from
Im w =0 to Im w — +, the system under considera-
tion does not transmit oscillations in the frequency in-
terval (3.5) in which Im k = 0.

If the inequalities

vom >0, v;>0, v,>0

are satisfied, then both waves with wave numbers
k,(w) and ky(w) have positive imaginary parts as
Im w—~— +<, At Im w =0 we have the inequalities

Imk (0) >0, Imk,(0)<0.

Therefore the solution k;(w) corresponds to nontrans-
mission of the oscillations, and the solution k,(w) to
amplification of the oscillations.

We note that the amplified perturbation satisfies the
causality condition

lim u, (xz, t)=0.
X—>t00
t==const

(3.6)
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This condition can be regarded as a definition of am-
plification!'®**), The condition (3.6) enables us to dis-
card waves moving to the left and replace by the same
token the boundary conditions (3.4).
To discard waves moving to the left, we can also use
one property of the Fourier-Laplace transformation
ug (k, p)= ge“" dt% Y e %y, (z, 1) dr,
o s
which follows from the boundary condition (3.4) and
from the obvious condition

ue(z, )=0 if <. (3.7

From these conditions it follows[®'*] that the Fourier-
Laplace transformation ug(k, p) should be an analytic
function of both variables at Im k < 0 and Re p > 0.
An essential fact is that the wave packet as a whole
is amplified in space, i.e.,
lim u, (z, i,) =00, (3.8)
x—+-o0 s
where s’ is a certain quantity characteristic of the
system. Namely,

‘_ 1
(dRek

s
do )m:wo

’ (3.9)

where w, is the value of the frequency at which

dIimk
do =0

The quantity s’ is a generalization of the group velocity
to the case of waves growing in space.
In the case of the dispersion equation

(0 —Fkvy) (0—kvy) +-m=0

s’ is equal to the harmonic mean of the velocities v,
and v,:

1 171 1
=z (5t5)

Since the arithmetic mean is larger than the harmonic

mean when v, > 0 and v, > 0, the group velocity of

wave that grow in time exceeds the group velocity of
waves that grow in space:

’

§>s.

4. STURROCK’S RULES

The practical application of the wave instability and
amplification criteria formulated in the preceding sec-
tions entails in general great difficulties, since the
determination of the branch points of the functions in
regions bounded by the real axes of the planes wg and
the contours $2, (which themselves must be deter-
mined) and the determination of the direction of propa-
gation of the waves are complicated and laborious
problems.

Considerable simplifications occur when the disper-
sion equation D(k, w) = 0 is an algebraic equation with
real coefficients, which breaks up in the region of
large values of |k|, or, which is the same, in the
regions of large values of | w |, into a product of fac-
tors in the form w - vk, where v is a certain constant
different from zero. (This assumption corresponds to
the condition that the signal propagation velocity be

AKHIEZER and R. V. POLOVIN

™
@

p
G\
xn -
&
FS

c d

FIG. 1. Typical dispersion curves. a) Stability, transmission; b) sta-
bility, nontransmission; c) absolute instability, transmission; d) convec-
tive instability, amplification.

finite*.) For systems with a dispersion equation of
this kind, the location of the branch points, and conse-
quently also the character of the instability, can be
established from the general form of the curve repre-
senting the dispersion equation in the (k, w) plane.

Four typical dispersion curves are shown in Fig. 1.
Figures la and 1b correspond to stable systems, while
Figs. 1c and lc to unstable systems. The difference
between Figs,. 1d and 1d lies in the fact that in the
former case the asymptotes of the dispersion curves
are inclined in different directions, and in the latter
case in the same direction. It can be shown that Fig.
1c corresponds to absolute instability and Fig. 1d to
convective instability.

Thus, the instability will be absolute or convective,
depending on whether the asymptotes are inclined in
opposite directions or in the same direction (Sturrock’s
first rule!'?)),

Let us see now how to distinguish between amplifica-
tion and non-transmission of the oscillations by means
of the dispersion curve.

Figures 1a and lc correspond to transmission of
oscillations, while Figs. 1b and 1d correspond to either
amplification or nontransmission of oscillations. The
difference between Figs. 1b and 1d lies in the fact that
in the former case the asymptotes are inclined in dif-
ferent directions, and in the latter in the same direc-
tion. It can be shown that Fig. 1b corresponds to non-
transmission of oscillations and Fig. 1d to amplifica-
tion of oscillations.

*In other words, we assume in this section that the system of dif-
ferential equations (2.1) is of the hyperbolic type. We note that the cri-
teria obtained in the two preceding sections are valid for a broader class
of differential-equation systems, for which the Cauchy problem is cor-
rect [2], and in particular for systems of the parabolic type ['°}.
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a b
FIG. 2. Dispersion curve of two-beam tube. a) Beam velocities paral-
lel; b) beam velocities antiparallel. ’

We note that in the case when the dispersion equa-
tion is a polynomial of second degree

(@— kvy) (0 — kvg) - m =0,

all four cases shown in Figs. la—d are realized.
Figure la corresponds to v, > 0, v, > 0, m < 0; Fig.
1b to v,v2 <0, m <0; Fig. 1c to v,v. <0, m > 0; and
finally, Fid. 1d,to v, >0, v, >0, m > 0.

Thus, if the asymptotes of the dispersion curve are
inclined in different directions, then nontransmission
of the oscillations takes place, and if the asymptotes
are inclined in the same direction, then amplification
of the oscillations takes place (Sturrock’s second rule*)-

We see that the same dispersion curve can corre-
spond to both the instability problem and to the wave-
amplification problem, whereas if absolute instability
obtains, then there is also transmission of the oscilla-
tions. On the other hand if the system is convectively
unstable, then it can also be used to amplify oscilla-
tions. The particular possibility that is realized de-
pends, naturally, on the concrete physical formulation
of the problem,

Let us illustrate the foregoing rule using as an
example a two-beam tube[w], the dispersion equation
of which is given by

o} o
@—ka T @ kagz — b (4.1)
where
4men.
2 . M,z
®,2= my, 2

n,,», and u,,» are the densities and velocities of the
particles of both types, and m, ; are the masses of
the particles. This equation corresponds to the dis-
persion curve shown in Fig. 2a, if the velocities u,
and u, have the same direction, and to the dispersion
curve shown in Fig. 2b if the velocities u, and u, are
oppositely directed. It is seen immediately from these
figures that when the signs of u, and u, are the same
there is an amplification band and a band of convective
instability, and when the signs of u; and u, are oppo-
site there is a nontransmission band and a band of
absolute instability.

The use of Sturrock’s rules leads to difficulties in
the case when the instability bands or the bands of
amplification and nontransmission overlap, In this
case it is necessary to introduce in the dispersion

*These rules were obtained by Sturrock [!?], but the proof con-
tained inaccuracies, the elimination of which was the subject of [!¢]. A
heuristic derivation of Sturrock’s rules, connected with the concept of
characteristics, is given in [!!] (see also [1"]).

FIG. 3. Reduction of a dispersion equation to a second-order poly-
nomial. a) Small £;b) =%,;¢) E=1.

equation a certain parameter £, variation of which
makes it possible to break up the polynomial D(k, w)
into a product of linear factors w — v]-k - aj. For con-

creteness we shall assume that the value of the
parameter £ =1 corresponds to the initial equation,
and ¢ =0 corresponds to the breakdown of the poly-
nomial into factors.

Obviously, at £ =0, the dispersion curve will be a
set of straight lines. We shall assume that at each
point there intersect not more than two straight lines
and that when £ varies in the interval 0 < § <1 the
topological character of the dispersion curves remains
unchanged.

At small £, the instability (or amplification) bands
will lie near the points of intersection of the lines
w - ij - aj = 0, into which the dispersion curve
breaks up at £ = 0. On the other hand, since it is as-
sumed that the straight lines intersect pairwise, at
small values of £ the dispersion curves should obvi-
ously be similar to the curves shown in Fig. 1.

It can be shown that in the case of continuous in-
crease of the parameter £, the character of the insta-
bility cannot change. This makes it possible to deter-
mine the character of the instability of the initial dis-
persion equation corresponding to the value of the
parameter £ =1,

Let us consider by way of an example the dispersion
equation

2 2
og o o
2 k22
[} k Up

1, 4.2)

(o —Fkup)?

which in the case

2
Wp < Op, vp<Uy <<l 1/17‘ % (4.3)
»

corresponds to the dispersion curve shown in Fig. 3c.

We shall assume w; to be variable and replace

2 2
wp by wp.»;;
w? w2E
[ T
D — kup)Z + ©2—F2T 1.

(4.4)

At £ =0 Eq. (4.4) breaks up into four linear equations

©—kup == 4 o, O kvp,

and the dispersion curve degenerates into four straight
lines.

At small &, the dispersion curve has been the form
shown in Fig. 3a. As seen from this figure, the system
described by the dispersion equation (4.4) has at small
& a convective instability. (The convective-instability
bands correspond to the wave-number intervals (kg,
kyg) and (kp, kj); kM denotes the wave number cor-
responding to the point M.)
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If we solve the problem of amplifying oscillations
in a system described by the dispersion equation (4.4)
at small £, then it is seen directly from Fig. 3a that
there are two amplification bands in the frequency in-
tervals (wA, wB) and (wg, wp), and also two non-
transmission bands in the frequency intervals (wp).

With increasing £, the dispersion curve (4.4) be-
comes deformed, but its topological character remains
unchanged. When the parameter ¢ reaches the value

N o} v;
§0"Z%‘;E

the tangent to one of the branches of the dispersion
curve, passing through the origin, becomes horizontal
(see Fig. 3b). The two nontransmission bands (wg,
wg) and (w,, wr) then merge into one band (wE, WF).
It follows from the inequalities (4.3) that such a merg-
ing of the nontransmission bands occurs at £, < 1.

With further increase of £, the dispersion curve
assumes the form shown in Fig. 3c. Since the curves
in Figs. 3a, b, and ¢ are topologically equivalent, the
conclusion drawn concerning the character of the in-
stability at small values of £ remains valid also at
£ =1, i.e,, for the initial dispersion equation (4.2).

From a comparison of Figs. 3a, b, and ¢ we can
conclude that the initial system, described by the dis-
persion equation (4.2), has convective instability in the
wave-number intervals (kg, k) and (kp, ky). In ad-
dition, the system under consideration has two ampli-
fication bands in the frequency intervals (wa, wg) and
(we, wp), and also a nontransmission band (wE, wf).

5. GLOBAL INSTABILITY

So far, in the investigation of the instability of
dynamic systems, we assumed them to extend to
infinity and disregarded therefore the presence of
boundaries. Yet the presence of a boundary can be
very important, owing to reflection of waves from it.
This can give rise to feedback between the ‘‘input’’ and
‘‘output’’ of the system, and as a result a convectively
unstable system can behave as if it were absolutely
unstable. An essential fact is that the effective abso-
lute instability of this kind (it is called global
instability*) will take place in the limiting case of in-
finitely extended systems, and this conclusion does not
depend on the concrete form of the boundary conditions.

In order to clarify the concept of global instability,
we recall that the natural oscillations in bounded sys-
tems result from a superposition of waves traveling in
different directions. The frequencies of these waves
are discrete, and the system will be stable in the case
when at least one of the frequencies has a positive
imaginary part.

As already noted in Sec. 2, to distinguish between
waves traveling to the right and to the left it is neces-
sary to determine the sign of the imaginary part of the
function k = k(w) at Im w — +; if in this case
Im k > 0, then the wave travels to the right, and if
Im k < 0, then the wave travels to the left. In accord
with this definition, we denote the wave numbers of the
waves travelling to the right by ky(w), and those

*The concept of global instability was introduced by Kulikovskii
[19]'

traveling to the left by k;(w). We note that these func-
tions are solutions of the dispersion equation D(k, w)
=0 for an unbounded system.

Let now w represent the natural frequency of the
bounded system and let min Im ky(w) and max Im kj(w)
denote respectively the smallest value of Im k for
waves traveling to the right and the largest value of
Im k for waves traveling to the left. It is clear that at
a finite value of w the quantity min Im kp(w) need not
necessarily be positive, nor need max Im k;(w) be
negative.

To obtain an equation for the natural frequency w,
we assume that on the left end of the system (x = -L)
there are excited all the waves with wave numbers
kp(w) and kj(w). Then only waves with wave numbers
kp(w) will move to the right. On reaching the right
end of the system (x = L), the largest amplitude at
large L will be possessed by the wave with the wave
number corresponding to the smallest value of Im
Im kp(w). If the amplitude of this wave was equal to
unity at x = -L, then at x =L its amplitude will be
equal to

exp [ — 2L min Im &, (0)].

When this wave is reflected, waves with wave numbers
ki(w) will be produced on the right end of the system,
and will move to the left. When the left end of the
system (x = —L) is reached, the largest amplitude will
be possessed by the wave with the wave number corre-
sponding to max Im kz(w). Its amplitude at x = —-L will
be

T.exp(— 2L minIm k; 4 2L max Im k),

where T, is the coefficient of transmission of the wave
with min Im k, into the wave with max Im k; on the
right end of the system. When the wave with max Im k;
is reflected from the left end of the system, a wave
with min Im k; is again produced and has at x = -L
the amplitude

T,T_exp(— 2L minIm k, -+ 2L max Im k),

where T. is the coefficient of transformation of the
wave with max Im k; into a wave with min Im ky on
the left end of the system.

We now let L. go to infinity. Then the expression
written out for the amplitude of the wave at x = ~L,
will differ from zero if the following condition is
satisfied

min Im %, (0) = max Im k, (),

(5.1)

which together with the dispersion equation D(k, w)
= 0 determines the natural frequencies of a sufficiently
long system. They correspond to a certain line (per-
haps non-connected) on the complex w plane, We note
that in place of the spectrum of the natural oscillations
we obtained a continuous line, since we have taken the
limit as L — «: each point of this line is the limit point
of the discrete natural frequencies as L. — =,

If this line has points lying in the upper half-plane
(Im w > 0), then the system will be globally unstable.

It can be shown that a system possessing absolute
instability will always be globally unstable. As to a
convectively unstable system, we shall presenily show
that it can be either globally stable or globally unstable.
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By way of an example let us consider a system
whose dispersion equation is

302 — 4ok + A2+ 1-0.

This dispersion equation corresponds to two waves 1
and 2 with wave numbers

ky (@) =204V 0*1.

It is easily seen that the system in question is con-
vectively unstable. Indeed, putting Im w — +%, we ob-
tain Im k, > 0 and Im k; > 0. Therefore both waves 1
and 2 propagate to the right, i.e., in this case there are
no branch points at which the wave numbers of the
waves moving in opposite directions become equal.

Let us ascertain now whether this system is
globally unstable.

Since both waves move to the right, no equation of
the type {5.1) is obtained in this case, i.e,, the system
is globally stable.

We now consider a second example. Let the disper-
sion equation be

(B —4ek+ 2+ 1) (0L k) =0.

In this case three waves 1, 2, 3 are produced with wave
numbers

kyo=20xV =1, k=—o,.

Waves 1 and 2 move to the right and wave 3 to the left.

1t is clear that the system is convectively unstable,
since the wave numbers of the first two waves do not
differ from the wave numbers k; and k, considered in
the preceding example (the third wave does not lead to
instability).

However, unlike the preceding example, now the
system will be globally unstable, and the instability is
due to the existence of the third wave. To verify this,
we define the netural frequencies in accordance with
Eq. (5.1):

Im &y, » (0) = Im &3 (0). (5.2)
Putting w = @ +i8, we obtain
Imky,,=2p =}/ Vm@'(“l’ﬁz_” ,
and from (5.2) it follows that
a? 1702 — 1 =1 (aZ—B>— 1)? 4- 4a2p?. (5.3)

Squaring both sides of this equation, we obtain the

equation of the line (5.2):

8a2 7287 = 9. (5.4)

As follows from (5.3), the condition a®+178°=1
should be satisfied (satisfaction of this condition corre-
sponds to a positive sign in front of the radical).

It is easily seen that the ellipse (5.4) lies entirely in
the region a® + 178% = 1. This means that all the points
of the line (5.4) satisfy Eq. (5.2), and since part of the
ellipse (5.4) lies in the upper half-plane (8 > 0), the
system under consideration remains globally unstable.

Thus, a dynamic system having convective instabil-
ity can be either globally stable or globally unstable.
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