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INTRODUCTION

HOLOGRAPHY methods, based on the principles de-
veloped in the pioneering papers of D. G a b o r [ l 1 have by
now been extensively developed. The possibilities af-
forded by the use of holography for the neares t future
a r e being extensively discussed in the scientific l i te ra-
t u r e .

At the same t i m e , the monographs and reviews (see,
for exam pie [2~61) devoted to the physical principles and
to the application of holography concern actually only
holograms reg i s tered in the emulsion layers of ordi-
nary photographic m a t e r i a l s . It should be noted that
such " p l a n a r " holography does not differ at al l in
principle, from the point of view of the optics of image-
reproducing sys tems, from the traditionally known ap-
paratus (devices) such as lenses , diaphragms, and
flat diffraction grat ings .

In this sense, a hologram recorded in a certa in
light-sensitive volume (three-dimensional hologram)
is an example of a new physical instrument, which
makes it possible to r e g i s t e r all three components of
the wave vector .

The first to note the important role played by the
three-dimensional s t r u c t u r e of the record in the shap-
ing of the special propert ies of holograms was Yu. N.
Denisyuk [ 7 ] , who used an "opposing b e a m " scheme (the
reference beam is directed at approximately 180° to
the waves scat tered by the object). It should be empha-
sized that the use of this scheme ensures the manifes-
tation of new propert ies of holograms compared with
the hologram of E. Leith and J . Upatnieks [ 8 1 , even at a
smal l thickness of the emulsion layer .

The first attempt at a theoret ical analysis of certain
propert ies of holograms obtained in a three-dimen-
sional photosensitive medium was made by Van Heer-
den1-9-1, who also touched upon the question of the infor-
mation capacity of three-dimensional holograms.

By now, a definite volume of information has been
accumulated pointing to the important features of this
division of holography, which requi res special theoret i-
cal t rea tment , and also the great prospects afforded by
the use of three-dimensional holograms in a great
variety of fields.

The purpose of the present review is to develop
systematical ly the theory of the processes of image
recording and reconstruct ion and the main features
and possible pract ical applications of three-dimen-
sional holograms. We consider also from a unified
position the propert ies of planar holograms as the
limiting case of three-dimensional ones .

The main content of the ar t ic le is preceded by a
brief review of modern three-dimensional photosensi-
tive m a t e r i a l s .

Mater ia l s for Obtaining Three-dimensional Holograms

For convenience in the exposition that follows, it is
advantageous to use the following terminology: a holo-
gram will be called three-dimensional if its thickness
Ζ is comparable with its t r a n s v e r s e dimensions X and
Υ and is much larger than the wavelength λ of the
employed radiation; holograms for which λ/4 < Ζ < X
will be called intermediate and holograms with Ζ < λ/4
will be called planar. (A detailed justification for the
" t h r e e - d i m e n s i o n a l i t y " c r i t e r i a will be given below.)

To obtain holograms of the three-dimensional or
intermediate type, one uses either standard photo-
graphic m a t e r i a l s , such as Lippmann emulsions, or
photorecording media not customari ly used in op-
t i c s [ 1 0 ] .

The development of holography has called for im-
provement in thick-layer emulsions, f irst developed
by Lippmann (see, for e x a m p l e [ u ] ) . For holographic
purposes, one uses emulsions with a resolution that
reaches 5000 l ines/mm. The thickness of the emulsion
layer var ies from severa l microns to several dozen
m i c r o n s . These photographic mater ia l s a r e used for
the most part to obtain holograms by the method pro-
posed i n [ 7 ] . With the aid of these holograms it is pos-
sible to reconstruct an image in white light and to ob-
tain color p ic tures .

Besides emulsions for the recording of intermediate
holograms, photochromic and photopolymer films a r e
coming into u s e [ 1 2 ) 1 3 ] . These mater ia l s have definite
advantages, such as the possibility of visual observa-
tion of the reg is t rat ion process , the absence of d is tor-
tions connected with " w e t " processes of photographic
technology, e tc .
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Recording media that can be regarded more rigor-
ously as three-dimensional ones are photochromic
glasses, crystals with color centers, crystals having
nonlinear properties, etc.

Let us stop to discuss these materials in somewhat
greater detail. The use of photochromic glasses in
holography was reported in'·14"16·'. These are substances
that go over under the influence of light with a definite
spectral composition from the ground state to an ex-
cited state that differs from the former one in its ab-
sorption spectrum. Under the influence of other radia-
tion, the inverse transition»takes place. The number of
molecules executing the inverse transition is propor-
tional to the light intensity. These glasses can there-
fore be used to record holograms. Photochromic
glasses have so far relatively low resolution, for ex-
ample 100 lines/mmC l 4 ]. The effective thickness of the
holograms recorded in this photographic material
reaches several millimeters.

The first to advance the idea of using crystals with
color centers for the recording of holograms was Van
Heerden^9·'. A crystal in which a large number of color
centers was produced beforehand is placed in the path
of rays scattered by the object. This produces a definite
emission structure that represents the interference
pattern of the registered wave field. Colored crystals
of KBr [ 1 7 ) 1 8 ], KC1 [ 1 8 ], CaF2, and SrTiO3 with different
impurity contents'-1 9 1 were used in a number of investi-
gations. The KC1 and KBr crys ta l s a r e colored before-
hand with γ r a y s at a dose on the o r d e r of ΙΟ5—107

r a d . An ultraviolet radiation source is necessary to
color the crys ta l s C a F 2 and SrTiO 3 . A feature of
these mater ia l s is that they a r e sensitive only in a
spect ra l region within the l imits of the l ight-absorp-
tion band of the color c e n t e r s . Therefore the selection
of crys ta l s for producing holograms is dictated by the
spectra l c h a r a c t e r i s t i c s of the available l a s e r s . In
part icular , KC1 and KBr crys ta l s a r e suitable for p r o -
ducing holograms with helium-neon l a s e r s . Another
feature of colored crys ta l s is the limited storage t ime
of the holographic r e c o r d . In addition, reconstruct ion
of the image is accompanied by a rapid overal l d i s-
coloring of the crystal , leading to e r a s u r e of the holo-
g r a m . The resolution limit of these photographic
mater ia l s is high; for KC1, for example, a resolution
level on the order of 104 l ines/mm can be attained.
The effective recording thickness of the hologram ex-
ceeds 1 cm. The diffraction efficiency of such holo-
g r a m s amounts to a fraction of 1%.

Certain ferroelectr ic crys ta l s , such as LiNbO3,
Bi4Ti3Oi2, and others , make it possible to record phase
holograms as a resul t of an optically-induced inhomo-
geneity of the refractive index [ 2 0 " 2 3 ] . The inhomogeneity
of the refractive index depends on the intensity of the
incident light and can be conserved for a long time—up
to 100 hours in LiNbO3, or else vanish after a short
t ime interval following the turning off of the field, as
for example with holograms a r e recorded in Bi 4 Ti 3 Oi 2 .
The diffraction efficiency of such holograms can exceed
40%, and the resolution is on the order of 1600
l i n e s / m m [ 2 0 1 .

All m a t e r i a l s used for recording three-dimensional
holograms have in common the possibility of e r a s u r e
and repeated recording. These mater ia l s make it pos-

FIG. 1. Diagram showing the recording
and reconstruction of three-dimensional
holograms. H—hologram; Bj and Bq—two
points of the object at recording of the
hologram, at one of which it is possible to
place a light source during the reconstruc-
tion of the hologram; O' and O—origins of
coordinates for the object and hologram
points. A(x, y, z)—arbitrary point inside the
hologram.

sible to monitor the quality of the image during the
course of regis t rat ion of the wave front and the t ime
of information s torage.

On the whole, it can be stated that a limited number
of mater ia l s for three-dimensional holograms is avail-
able at present . Moreover, the existing mater ia l s a r e
more readily suitable for the study of three-dimen-
sional holograms and the corresponding schemes than
for extensive pract ical application.

Further r e s e a r c h on photorecording mater ia l s is
necessary to ensure utilization of the important proper-
t ies of three-dimensional holograms.

I. ELEMENTS OF THE THEORY

1. Introductory Remarks. Kinematic Approximation

For concreteness in the exposition that follows, we
s t a r t from the simplest scheme of recording and r e -
construction of three-dimensional holograms that ap-
pears in Fig. 1. The image is reconstructed as a resul t
of diffraction of the reconstruct ing beam by a certa in
three-dimensional s t ructure of the hologram, which
was produced during the recording p r o c e s s . We shall
show that for holograms lying in the far field, this
s t ructure can be regarded as a superposition of h a r -
monic distributions of the refractive index. Let the
object be an arb i t ra ry aggregate of coherently emitting
points U(x ' , y ') · The field Φ(χ, y) reg i s tered on the
hologram will be described by the formula

(1)

The modulus of the vector R drawn from any point of
the hologram to an a r b i t r a r y point of the object can be
expanded in a s e r i e s , since under the assumption made
Ro = VXQ + y2, + Ί?α is much larger than the dimensions
of the hologram and of the object. Therefore formula
(1) is rewri t ten as follows:

Φ = x , Ky) e
· 2π(ΚΓ) (2)

where r varies over the hologram and V(Kx, Ky),
apart from coefficients, is equal to U(KX|RO|X,
Ky | Ro Ι λ). From (2) we see that

(3)
where F[f] denotes the Fourier transform of the
function f.

Let us assume that the hologram is a square-law
detector. (No allowance is made for the nonlinearity,
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since it is immater ia l for the analysis of the main
propert ies of three-dimensional holograms). In such
a case the change Δη of the refractive index of the
recording medium is proportional to the square of the
wave f ield [ 7 ' :

Δ»-α|Φ|«, ( 4 )

where α is a proportionality coefficient and is usually
very smal l , so that Δη <£. n 0 . We now examine the
s t ructure of the recording in the hologram (Δη in a c -
cordance with formula (4)). Let the object consist of
two points:

Then

V(x', i/') = /

Ι Φ I2 = I h I2 + I h I2 "h fJie1- 2"<Kl-K2) + f'J^i- 2ΠΓ(Κ,-ΚΙ). (5)

The constant-phase surfaces, and consequently the
surfaces of constant Δη, a r e determined from the con-
dition

c = (r(K,-K2)); ( 6 )

The maximum is reached at an integer value of c.
The s t r u c t u r e of the recording in the hologram is a

harmonic distribution of Δ η . The surfaces Δη = c a r e
directed along the bisector of the angle ψ of the con-
vergence of the wave, and a r e arranged with a period
d = λ/2 sin (φ/2) (Fig. 2). Such an analysis enables us
to establish a deep analogy between the process of r e -
construction of a three-dimensional hologram and dif-
fraction of x- rays , e lec t rons , or neutrons by crystal
la t t ices* . It is therefore natural to use in the exposi-
tion that follows the main p r e m i s e s and terminology of
the theory of x-ray scat ter ing. It is known that there
a r e two approximations of this theory^ 2 8 1—kinematic
for imperfect crysta ls and dynamic for crysta ls close
to perfect. In the kinematic theory the following condi-
tions a r e assumed to be satisfied: the intensity of the
diffracted ray is negligibly smal l compared with the
incident one; the secondary scatter ing of the diffracted
r a y s can be neglected. Assuming that such conditions
a r e fulfilled in the reconstruct ion of three-dimensional
holograms, we can use integral t ransformations, just
as in the case of planar holograms t . The kinematic

FIG. 2. Hologram from two collimated
mutually-coherent monochromatic light
beams B! and B2 ["].

*The formal aspect of the analogy, for the case of planar holograms,
was traced in [24"27].

tThe kinematic approximation employs in fact the principle of
superposition of the operators of light scattering by the hologram, in-
stead of the principle of superposition of electromagnetic waves.

FIG. 3. Ewald's construction.
O-Origin in Fourier space; the cen-
ter of Ewald's sphere lies at the
point M, with 0 ^ = -Ko.

approximation was used perferentially by a number of
a u t h o r s 1 7 ' 1 8 ' 2 9 ' 3 0 ' 3 1 1 .

Thus, the resul t of recording the field from the
object U(x ' , y ') is a variation of the refractive index
of the hologram Δ η . If the hologram is illuminated by
a wave converging at the object point χό, yo, then dif-
fraction resu l t s in an image that is described, apart
from a constant, by the formula

U'{x\ y')= f \ (7)

Comparing formulas (2), (3), and (7), we note that the
hologram is recorded by a field corresponding to a
Four ier t ransform with respect to x ' and y', while
the reconstructed image is obtained as a resul t of a
three-dimensional Fourier transformation over the
volume of the hologram. In other words, the Bragg
condition should be satisfied in the reconstruction of
the image. In the part icular case of an object consist-
ing of two points, this condition takes the form

K - K 0 , - ± G ; (8)

here G = Ka - Κ 2 is the wave vector of one of the
waves of the Four ier transformation of the distribution
of the refractive index over the hologram (see (4)). We
now use a construction in Four ier space, known as
Ewald's construction (Fig. 3). The Four ier t ransform
of a harmonic distribution, at sufficiently large dimen-
sions of the hologram, will be the points H, which a r e
mutually inverted relative to the origin. Satisfaction
of the Bragg condition in this construction corresponds
to location of the point Η on a sphere of radius 1/λ.
We note that in the case under consideration, the r e -
constructed image is not a complete Four ier t r a n s -
form, since only one of the points Η can be located on
the Ewald s p h e r e . It is clear that in reconstruction of
an object consisting of many points, the Bragg condi-
tion should be satisfied simultaneously for a set of
elementary periodics—Gq = Ko - Kj, or the points
Hq—the nodes of the Four ier space—must fall s imul-
taneously on the Ewald's s p h e r e . The introduced con-
cepts suffice to car ry out geometrical analysis of the
main experimental s c h e m e s . However, in the analysis
of the intensities, the approximation in question cannot
give satisfactory r e s u l t s , since the formulas a r e de-
rived under the assumption of low diffraction efficiency.
A more r igorous construction of the theory of t h r e e -
dimensional holograms is possible in the dynamic ap-
proximation. As will be shown subsequently, this makes
it possible to establish certain new features of t h r e e -
dimensional holograms.

Inasmuch as the conclusions based on the kinematic
theory a r e of qualitative character , they a r e valid for
holograms with both phase and amplitude modulation.
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In the dynamic theory, the absorption is taken into ac-
count by introducing the complex vectors Κ and G,
which correspond to a complex dielectric constant of
the hologram. We shall consider below principally
phase holograms, which are of great practical interest,
since they make it possible to obtain a high diffraction
efficiency. A detailed solution of the problem of dif-
fraction of light by a three-dimensional dielectric
sinusoidal grating can be found in [ 5 2 > 3 2 ] .

2. Dynamic Approximation

The principles of the dynamic theory of diffraction
of electromagnetic waves by three-dimensional periodic
structures were developed by Ewald and Laue [ z 8 \ At
the present time, this theory is widely used to describe
the diffraction of x-rays, electrons, and neutrons in
nearly-perfect crystals. The need for developing a
similar theory in holography was first indicated in

in[32-35]_ T n e approximations of the dynamic theory
consist in the following; the dielectric constant η = η,,
+ Αη of the medium in which the hologram is recorded
is a scalar quantity, the variation Αη due to recording
of the hologram is small, so that Αη/η -C 1, and the
medium is a nonmagnetic dielectric, μ = 1. These as-
sumptions are satisfied in experiment with a high de-
gree of accuracy.

Under the foregoing assumptions, the induction D
at any point inside the hologram should satisfy the
equation

VzD + rotrot (D ^-) = -3i.u5L. /q\

We seek a solution of this equation for the simplest
hologram shown in Fig. 2. It follows from (4) and (5)
that in this case

η^ υ ι·<ί \ 2ιΐ * yi.\j j

A s s u m e t h a t a w a v e D o e x p [ 2 w i ( K o - r ) - i w t j p r o p a -

g a t e s i n a h o l o g r a m w i t h a d i e l e c t r i c - c o n s t a n t d i s t r i b u -

t i o n ( 1 0 ) . T h e n , a c c u r a t e t o t h e t e r m s A 1 > 2 , w e c a n

w r i t e

D = 2 Ome2"i<K°+mal'-<'ix
m=-l

(ID

If C is the polarization factor, we can substitute (11)
and (10) in (9) to get

2eoD0 = , £ > ! , 2EiD1 = DlA0 + CiAliD<), ( 1 2 )

where

2εο =

S o l v i n g t h i s s y s t e m o f e q u a t i o n s , w e o b t a i n

a n d
2ε,-Λ0

( 1 3 )

( 1 4 )

I t i s c o n v e n i e n t t o c o n t i n u e t h e a n a l y s i s b y c o n s t r u c t i n g

t h e d i s p e r s i o n s u r f a c e , w h i c h i s t h e g e o m e t r i c l o c u s o f

t h e p o i n t s s a t i s f y i n g E q . ( 1 4 ) , i n F o u r i e r s p a c e . W e

shall call these the wave points. The polarization fac-
tor is Ci = 1 if Do x Ki x Ko = 0, and Ci = cos φ if
Do · (Ki x Ko) = 0. For one of these states of polariza-
tion, the form of the planar cross section of the dis-

p e r s i o n s u r f a c e i s s h o w n i n F i g . 4 . T h e a s y m p t o t e s o n

t h i s f i g u r e a r e p a r t s o f c i r c u l a r a r c s w i t h r a d i i

| Κ | (1 + Ao/2). Since | Κ | = 1/λ ι/ηΊ, the arc segments
for the light waves can be represented in the scale of
the figure by straight lines. We note that the relative
amplitudes Do and Dq depend on the position of the
wave points relative to the diameter of the dispersion
surface. Thus, if the wave point lies on the diameter,
then €q = e0, 1 Kq | = | Ko I, and Dq = Do. If the wave
point is shifted, say, to the right, then the ratio Dq /D0

tends to zero. At a sufficiently large distance, i.e.,
deviation from the Bragg condition, only one wave Do

is retained (the single-wave case). We emphasize that
at a specified Do the solution of (12) is satisfied by two
wave points on different branches of the dispersion
surface. This means that even for one of the noted
polarization states there exist four waves Dj, Dq, Do,
and Dq with different wave-vector lengths. This
explains why the surface (14) is called the dispersion
surface*.

The point L on Fig. 4 is defined by the wave vectors
I Ko I = I Kq | = l/λ •frjl of the waves Do and D q in the
given medium prior to the recording of the hologram.
The position of the wave points relative to L deter-
mines the refractive index for each wave. For example,
for the waves corresponding to the lower branch of the
dispersion surface, the refractive index will be smaller
than the refractive index for the wave Do in the single-
wave case. This difference leads to an interesting phe-
nomenon when the refractive index of the medium be-
comes complex. Indeed, the absorption of the wave
corresponding to the wave point lying on the lower
branch of the dispersion surface will be smaller than
the average absorption. Applying similar reasoning to
the wave points on the upper branch, we shall see that
under definite conditions one pair of waves will be al-
most completely absorbed, whereas the other propa-

FIG. 4. Plane section of the dispersion surface of a hologram ob-
tained from two plane monochromatic beams with wave vectors Ko

and Kq (= K( in formulas (11)—(14)). M, and M2 are wave points.

*We point out the analogy between the behavior of an electromag-
netic wave in a three-dimensional hologram and the behavior of electrons
placed in a medium with a periodic potential. The energy-level splitting
on the boundary of the Brillouin zone corresponds to splitting of the
values of the wave vectors of the electromagnetic waves when the Bragg
condition is satisfied.
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ΓΡΜΙ

FIG. 5. Diagram of experiment for the observation of the Borrmann
effect. 1, 2—plane coherent waves used to record the hologram; 3-ro-
tating platform on which the hologram Η is mounted. Wave 2 was
masked out when the intensity of wave 1 was measured.

gates with anomalously low absorption. As a resul t ,
the wave emerging from the hologram will have a
higher intensity than in the single-wave c a s e . This ef-
fect was discovered by B o r r m a n n [ 3 e ] in a study of the
diffraction of x-rays by a perfect c rys ta l . Observation
of the Borrmann effect in holography was reported
i n t 3 1 > 3 5 ] . Figure 5 shows a diagram of the correspond-
ing experiment1-3 5^. The hologram was recorded in a
colored KBr crysta l from two plane waves (λ = 0.63 μ)
incident on the surface of the crys ta l at an approximate
angle 10° to each other. The intensity of beam 1, pass-
ing through the hologram, was measured as a function
of the angle of rotation of the hologram on the platform.
It turned out that the Bragg position corresponds to the
maximum intensity of the t ransmit ted beam (Fig. 6).

This resul t demonstrates convincingly the need for
developing a dynamic approximation of diffraction
theory for three-dimensional holograms.

We now consider a m o r e complicated case , when the
hologram is recorded from an object consisting of a
d i scre te set of emitting points:

If a wave D o exp[2jriKoT - iwt] propagates in such a
hologram, then there should exist in the steady-state
oscillation reg ime, besides this wave, also an infinite
set of waves D j ^ m with wave vectors K j ; q ) m = Ko

+ mGj ; q. However, if Αη/η1 <ξί 1, just as in the case
of the s implest holograms, al l D m for | m | > 1 will
always be negligibly smal l compared with D o and
Dj q ι · We can therefore as sume that there exists in-
side the hologram a wave that should be sought in the
form

D ^ D / ! * ( V H " ' ( 1 6 >

where Kj =K0 + Gl and Gj = Gj ;q. Substituting (15) and
(16) in (9) we obtain an equation for the field amplitudes

2ε,Οί= Σ A, jDjCt ,; (17)

a part icular c a s e of th is equation i s (12). Starting from
the s a m e a s s u m p t i o n s , we can obtain an equation for
the wave f ield, when the ho logram i s produced by an
object const itut ing a continuous a g g r e g a t e of emitt ing
points :

2ε£> (Κ) = j A (K, K') D (K') C (Κ, Κ') dK'. (18)

F r o m (17) it fo l lows that in the F o u r i e r s p a c e of the
hologram there exists a many-sheeted dispersion sur-
face (N sheets for Ν points of the object), which de-
t e r m i n e s the wave vectors and amplitudes of a l l N2

waves for each of the considered states of polarization.
The t ransi t ion from a d i screte to a continuous aggre-
gate of points on the object re su l t s in coalescence of
part of the branches of the dispers ion surface in the
Four ier space of the corresponding hologram, and in
formation of zones of allowed values of the wave
v e c t o r s .

Let u s find an e x p r e s s i o n for the wave field ins ide the
hologram during the r e c o n s t r u c t i o n . F r o m (3), (4), and
(10) it fo l lows that in th is c a s e the re la t i ve var iat ion of
the dielectr ic constant Αη/η1 is equal to

N-1N-1
Σ Σ

(15)

h e r e

Vii

/
SOr

80

70

60-60'50'40' 3D' № 10' Ο 10' 20'30'40' 50'60'
Δα'

FIG. 6. The Borrmann effect. Δα'-deviation of the angle between
wave 1 and the plane of the hologram during the reconstruction, from
the value of this angle during the recording of the hologram. I—intensity
in arbitrary units.

Π. GEOMETRY OF RECONSTRUCTION AND INTEN-
SITY OF RECONSTRUCTED IMAGE. ROLE OF
REFERENCE BEAM

In this chapter we consider some consequences of
the developed theory. We have seen (formula (15)) that
for an object consisting of Ν points the s t ructure of
the hologram can be represented by a set of (N 2 - N)/2
elementary sinusoidal distributions of the refractive
index Δ η .

L e t u s examine the features of the distr ibution of
the nodes in the Four ier s p a c e of the h o l o g r a m . T h e r e
a r e N2 - Ν nodes not lying in the origin, whose posi-
tions can be determined by the simple construction
shown in Fig. 7 for the case Ν = 3. In Four ie r space,
the ends of all the vectors G; = Kj - Kq( = Gj n) lie on
spheres of radius l/λ. Obviously, on each of these
spheres there a r e Ν points Hj5q, with q = const and
j varying from 0 to Ν - 1, if the reconstruct ing wave
has a wave vector Kq. On the other hand, if the r e -
construction is c a r r i e d out by the wave -Kj , then the
Bragg condition is satisfied for the harmonics G j ^ ,
j = const. In other words, when the hologram is
illuminated by a wave from any point of the object, al l
the waves taking part in the recording of the hologram
a r e reconstructed, and if they were constructed by
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FIG. 7. Construction of nodes
in Fourier space for a hologram
of an object consisting of three
points. Points Mq-centers of
Ewald spheres, on each of which
lie three points Hj> q; O-origin.
The spheres are drawn from the
points Mo and M,.

FIG. 9. a) Photograph of reconstructed image of points. The recon-
struction was by waves from points that are more distinctly represented
in the photograph, b) Photograph of image of triangular contour recon-
structed by a wave from a point lying at the vertex of the triangle.

means of a wave converging towards one of the points
of the object, a real image is reconstructed.

The character of the reasoning remains unchanged
if the object is a continuous aggregate of luminous
points. This is the case of a continuous distribution of
nodes in Fourier space. It is described by the auto-
correlation function of the distribution of the amplitudes
and phases of the wave on the surface of the object
(Fig. 8). To reconstruct the image of the object it is
necessary that the reconstructing wave correspond to
one of the waves that took part in the recording of the
hologram. The position of the image of the object rela-
tive to the hologram does not depend on which wave
was used for the reconstruction. Thus, it is immaterial
how many waves take part in the reconstruction of the
image.

To illustrate the foregoing, Fig. 9 shows photo-
graphs of images reconstructed from holograms by
one and by several object points. In recording the
holograms, no preferential reference beam was used.

We note that a three-dimensional hologram is an
example of a square-law detector, which yields infor-
mation not only on the wave amplitudes but also on the
phases relative to any of them.

The dynamic approximation of the theory makes it
possible to estimate the intensities of the waves in the
reconstruction of the image. We shall use Eqs. (17)
for the case of a hologram of an object consisting of Ν
points. It is easily seen that in the general case the
amplitudes of the reconstructed waves differ from the
amplitudes of the corresponding waves used in record-
ing the hologram. Only when the condition D//Do

FIG. 8. Example of Fourier
image of a hologram of a contin-
uous object-a luminous band
emitting coherent waves in the
interval from Kt to K3 (shaded
figure). Solid lines MiM0M5 and
M2M3M4-centers of Ewald
spheres corresponding to recon-
structing waves that reconstruct
virtual and real images of the ob-
ject.

<§C 1/N is satisfied for arbitrary I is it possible to
write approximately

(19)

i.e., the amplitude of the reconstructed wave is pro-
portional to the amplitude of the corresponding wave
used in recording the hologram if all the £/ are equal
(e/ is determined from the boundary conditions and
from the equation of the dispersion surface).

It is obvious that any wave from among those taking
part in the recording of the hologram can be used as
the reconstructing wave Do. On the other hand, any
object point can be regarded as the source of the refer-
ence recording wave for all the remaining waves
emerging from the object. Thus, in the kinematic-
theory approximation, there is no need for a special
reference-beam for the reconstruction of the image of
an object when a three-dimensional hologram is used.

Within the framework of the dynamic approximation,
it is necessary to consider specially the case when one
of the object points is outstanding in brightness. In
this case one can assume that all the A/j = 0 if I and
j do not pertain to the bright wave. For simplicity, we
denote the index pertaining to the bright wave by zero,
A0,q by A.q, and Aq j0 by Aq. It is easy to show that to
reconstruct the undistorted image it is necessary to
have &l = ti'. In this case we obtain from (17)

Afii
r(2e0-4>),

(26Q — A0)2

(20)

(21)

Thus, from the point of view of the dynamic theory,
for a correct reproduction of the distribution of the

FIG. 10. Diagram illustrating the blurring of the image of an object
point Bi when a three-dimensional hologram is reconstructed by an ex-
tended source. b^O and bjO are parts of the vectors BOO and BiO; 1-
virtual image of the point Bj; θ, -Bragg angle (2Θ1 = <p,).
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intensities over the object it is useful to have one of
the object points with preferential brightness.

This point can be regarded as the source of the
reference wave, but, unlike planar holograms, it is not
necessary to impose any conditions on the position of
the preferential point.

III. SPECIAL CASES OF RECORDING AND RECON-
STRUCTION OF THREE-DIMENSIONAL HOLO-
GRAMS

1. Use of Extended Sources

So far we have started from the assumption that the
reconstruction of the image is carried out by a single
wave. It is well known that in reconstructing an image
from a planar hologram by means of an extended
source it is necessary to distinguish between two
cases:

a) The recording was made with the aid of a point-
like reference source; the reconstruction by an ex-
tended source leads to severe blurring of the
imageC 3 '3 7 ];

b) the recording was made with an extended source.
Reconstruction of the image is possible if the recon-
structing source coincides with the recording one. In
this case the reconstruction of the image is equivalent
to the integral operation

U(T) . Τ (r) . T* (r),

w h e r e T ( r ) i s t h e s o u r c e f u n c t i o n , a n d t h e s y m b o l *

d e n o t e s t h e a u t o c o r r e l a t i o n o p e r a t i o n . If T ( r ) h a s a

b r o a d s p e c t r u m of s p a t i a l f r e q u e n c i e s , t h e n T ( r )

* T*(r) is close to a δ function and the image of the
object is reconstructed^'3 8·1.

Let us consider now in the same sequence the re-
construction of a three-dimensional hologram by an
extended source.

a) The hologram was recorded with a pointlike
source. If none of the points of the reconstructing
source coincides with the point Bo that produced the
reference wave during the recording of the hologram,
then, as we have already seen, the image of the object
is not reconstructed, and all that can appear are
images of individual points outside the object. For
convenience in the discussion that follows, let us ana-
lyze the process of production of the image for one of
the object points Bi, if the reconstructing source con-
tains the point Bo. The construction is shown in Fig.
10. Let Ko be the wave vector of the wave emitted by
the point of the reconstructing source which coincides
with the object point Bo during the recording of the
hologram. Then Ki is the wave vector of the recon-
structed wave, forming the virtual image of the point
Bi. It is seen from this scheme that there are also
other directions Ko (corresponding to the generatrices
of a cone with aperture angle 180° -ψ), for which the
appearance of a reconstructed wave of the type Ki is
possible.

We can now conclude that if the extended recon-
structing source contains points that emit waves within
the limits of the section of the diffraction cone, then
the image of the object point Bi will be the line Sjqi,
analogous to the well known Kikuchi lines. As a result,

FIG. 11. Formation of the
image of the object point Bj when
hologram is recorded and recon-
structed with an extended source.
The notation is the same as in
Fig. 10.

the image of the object in the reconstruction by the
extended sources is blurred, as in the case of planar
holograms.

b) The hologram was recorded with an extended
source. We shall show that in this case the reconstruc-
tion of the image can be effected with the aid of a
source of practically arbitrary form. Let Bi, as be-
fore, be one of the object points and BOi and B02 two
arbitrary points of the recording extended source. It
is obvious that the corresponding diffraction cones
should have a common generatrix Obi (Fig. 11), since
tangency or intersection of the cones fixes the direc-
tion of the wave that reconstructs the point Bi. Con-
sequently, there is separated in the image plane a
point of intersection of the lines s ^ and s 2q 2. To
each point Boj of the recording source there corre-
sponds a definite diffraction cone and a line Sjqj in the
image plane. It is clear that Bi is the point of inter-
section of all the lines Sjqj, and is therefore of out-
standing brightness. Thus, one should expect the re-
constructed image of the object to be sharp if the num-
ber of lines taking part in the formation of each image
point is sufficiently large. Obviously, this condition
can be regarded as satisfied if the reconstructing and
recording sources overlap at least in part. The con-
trast of the obtained image does not depend in this
case on the total dimension and shape of the recon-
structing source. Figure 12 shows a photograph of a
reconstructed image of a triangle. The same extended
source was used to record and reconstruct the holo-
gram. Figure 13 shows an example of reconstruction
of the image of the object (small triangle) when the
recording source is a strip and is part of the recon-
structing source (large triangle). The use of extended
sources in the case of three-dimensional holograms
makes it possible to obtain good-quality images, as is
illustrated by the photograph of the reconstructed
image of test pattern No. 4 on Fig. 14. We emphasize
in connection with the foregoing that a three-dimen-
sional hologram is capable of producing additionally a
phantom image of the object from the part of the object
contained in another object. The brightness of the ob-
tained image is proportional to | | U ( r ) d r | 2 , where the

FIG. 12. Photograph of reconstructed image
of a triangle. The reconstruction was effected by
the bright part of the triangle
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FIG. 13. a) Object (triangle) and extended reference source (strip),
b) Photograph of reconstructed image of triangle (large triangle-recon-
structing source).

integration is over the area that is common to the re-
constructing and recording sources.

2. The Renninger Effect

In the preceding analysis we considered cases when
the reconstructing wave is sent to the hologram from
some external source. In this case there propagate
inside the hologram waves that participate in the for-
mation of the image of the object. The diffracted waves
experience scattering in the volume of the hologram,
which greatly complicates the process of reconstruct-
ing the image. Let us imagine that, for example, two
holograms were recorded in a single photosensitive
element by successive exposures, as shown in Fig. 15.
We shall carry out the reconstruction with wave 1. The
Bragg condition is then satisfied for one hologram.
However, wave 3 is reconstructed with respect to the
second hologram. Consequently, there will be recon-
structed not only wave 3, but also an "ex t ra" wave 2.
The need for taking such a phenomenon into account
when reconstructing holograms is confirmed by an
experiment described in [ 3 e ] . The corresponding effect
is known in x-ray structure analysis as the "rounda-
bout excitation" or the Renninger effect.

This effect can be considered only in the dynamic
theory. Let us assume that we have first recorded a
hologram of an object consisting of N, - 1 points with
the aid of a reference wave of preferred brightness,
denoted by the index 0. On the same photosensitive ele-
ment, there is recorded a hologram of a second object,
consisting of N2 - 1 points, and one of the points of the
first object, say the point with the index q = Ni - 1, is
the source of the reference wave. From (17) we find

FIG. 14. Photograph of recon-
structed image of pattern No. 4.
The hologram was recorded with
a round source of 0.2 mm diam-
eter; the image was reconstructed
with a source having a diameter
of several millimeters; the centers
of the two sources coincided.

3'

FIG. 15. Diagram of experiment for the observation of the Renninger
effect, a) Recording of hologram with waves 1 and 3; b) recording of
hologram with waves 2 and 3, which is reproduced after the recording
of the hologram in the scheme a); c) reconstruction of image by wave 1.

expressions for the amplitudes of the reconstructed
waves

A, (22)

A'l-l
Nz-1 .

c:. —A0)— y -

_ / ^ _ Λ,,,Ν.-^',,,,.ν,-! / DK,-l \ .
A) ~ 2 e m - , l 0 \ Do I '

h e r e t h e i n d i c e s q p e r t a i n t o t h e i m a g e of t h e f i r s t o b -

j e c t , a n d t h e i n d i c e s m t o t h e w a v e s f o r m i n g t h e i m a g e

of t h e s e c o n d . W e s e e t h a t t h e a m p l i t u d e s of t h e w a v e s

D q a n d D m a r e d e t e r m i n e d b y a l l t h e h a r m o n i c d i s t r i -

b u t i o n s of t h e r e f r a c t i v e i n d e x , a n d t h a t t h e a m p l i t u d e

D m d e p e n d s o n t h e r a t i o of t h e a m p l i t u d e s of t h e t w o

r e f e r e n c e w a v e s .

T h e a n a l y z e d c a s e s c o n s t i t u t e a n e x a m p l e of t h e

e x t e n t t o w h i c h t h e p r o p e r t i e s of t h r e e - d i m e n s i o n a l

h o l o g r a m s a r e u n u s u a l . I t i s i n t e r e s t i n g t h a t t h e

R e n n i n g e r e f f e c t s i m u l a t e s , a s i t w e r e , a n a s s o c i a t i v e

m e m o r y s i m i l a r , f o r e x a m p l e , t o t h e l i n g u i s t i c m e m o r y

of a m a n r e a d i n g l i t e r a t u r e i n a l a n g u a g e w i t h w h i c h h e

i s n o t v e r y f a m i l i a r . H e g a i n s a n i d e a of t h e s u b j e c t s

o n l y a f t e r t r a n s l a t i n g t h e w o r d s i n t o h i s n a t i v e t o n g u e ,

i . e . , i n t w o s t a g e s , j u s t a s i n t h e a p p e a r a n c e of t h e

" e x t r a " w a v e i n t h e r e c o n s t r u c t i o n of t h e h o l o g r a m [ 5 ° ! .

T h e l a t t e r p r o p e r t y of t h r e e - d i m e n s i o n a l h o l o g r a m s c a n

g i v e a n e w i m p e t u s t o d i s c u s s i o n of t h e q u e s t i o n a s t o

w h e t h e r t h e h u m a n m e m o r y i s h o l o g r a p h i c 1 · 8 ' 4 0 " 4 3 1 .

I V . I N F L U E N C E O F L I M I T E D D I M E N S I O N S O F

H O L O G R A M

1 . T h r e e - d i m e n s i o n a l H o l o g r a m a s a n O p t i c a l I m a g e -

p r o d u c i n g S y s t e m

T o e s t i m a t e t h e p o s s i b i l i t i e s of p r a c t i c a l u l t i z a t i o n

of t h r e e - d i m e n s i o n a l h o l o g r a m s , g r e a t i m p o r t a n c e

a t t a c h e s t o t h e r e s o l u t i o n d u r i n g r e c o n s t r u c t i o n , w h i c h

d e p e n d s o n t h e r e a l d i m e n s i o n s of t h e h o l o g r a m .

T h e r e s o l v i n g p o w e r o f p l a n a r h o l o g r a m s w a s c o n -

s i d e r e d i n a n u m b e r o f p a p e r s ( s e e , f o r e x a m p l e / 4 4 1 ) .

I t h a s b e e n s h o w n t h a t t h e l i m i t i n g r e s o l u t i o n of p o i n t s

i n t h e i m a g e of t h e o b j e c t i s l i m i t e d b y t h e d i f f r a c t i o n

of t h e w a v e b y t h e p l a n a r a p e r t u r e o f t h e h o l o g r a m . I t

w i l l b e s h o w n b e l o w t h a t r e g i s t r a t i o n of t h e w a v e f i e l d

i n t h r e e d i m e n s i o n s s i g n a l s t h e c r e a t i o n of a q u a l i t a -

t i v e l y n e w o p t i c a l i m a g e - p r o d u c i n g s y s t e m .
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a) Resolution. We r e t u r n to formula (7) and a s -
sume that the object is flat and has a field distribution
U(x ' , y ') · Since the hologram has finite dimensions,
the integral (7) must be taken between cer ta in l imi t s .
Let the hologram be a rectangular parallelepiped with
dimensions X, Y, and Z. Then we have in place of (7)
the function U"(x ' , y ') , which descr ibes the recon-
structed image

x',y') = U'(x'.y').L(\K),

where L 2(AK) is the Laue function,

• sin n&KxX \ 2 / •'

> πΔΚχΧ f \ -π
sin π.ι\ΚχΖ ·

(23)

(24)

and sinceK z = V(l - λ = ) - Κ ^ - Κ 2 ,

L(AK) descr ibes the image of the point as recon-
structed from the hologram. At Ζ = 0, formula (23)
gives the resolution of the object when the r e c o n s t r u c -
tion is from a planar hologram. A three-dimensional
hologram makes possible a higher resolution at given
t r a n s v e r s e dimensions X and Y. We shall i l lustrate
this deduction with an Ewald construction. In the case
of a bounded hologram, we have in the Four ier space,
in place of the pointlike nodes, nodes with dimensions
2/S, 2/Y, and 2/Z, where 2/X is the distance between
the first minima of L(AKx). Figure 16 shows one of
the nodes of the Four ier image of the hologram, which
intersects the Ewald's sphere at a given direction of
the reconstruct ing wave Ko· The angle between the
vectors Κ ± ΔΚι and Κ ± ΔΚ2 determines the resolu-
tion. It is seen from the figure that at the same dimen-
sion X, the increase of the thickness of the hologram
( Z i > Z 2 ) leads to a decrease of the interval ΔΚ (to
a decrease in the dimensions of the image of the point).

The validity of the foregoing resul t was confirmed
in an experiment whose scheme is shown in Fig. 17a t 5 1 1 .
The hologram was produced by two plane waves. A
slit of width 200 μ was placed in front of the hologram
during the reconstruct ion. Curves 1 and 2 of Fig. 17b
show the intensity distribution in the reconstructed
wave for holograms of thickness Z x = 12 mm and Z 2

= 6 mm, respectively. The positions of the minima of
these curves coincide with those calculated by formula
(24). The same figure shows for comparison the d i s-
tribution of the intensity in diffraction of a plane wave
by a slit of 200 μ (curve 3).

We call attention to the fact that the three-d imen-
sional hologram r e g i s t e r s values of the wave-vector
components with accuracy governed by its dimensions.

FIG. 16. Ewald construction for
holograms having finite dimensions.

a) O" 200" 400" 600"
b)

FIG. 17. a) Diagram of experiment that demonstrates the in-
fluence of the thickness of the hologram on the resolution with
respect toAK x (1, 2—plane waves incident at an angle ψ= 11.3°
on the hologram H; 3—lens; the slit limiting the dimension of the
hologram during the reconstruction is shown dashed. The intensity
of the distribution was measured along the X axis), b) Experimental
results (the intensity is given in relative units).

H o w e v e r , if t h e g e o m e t r y in w h i c h t h e h o l o g r a m h a s
b e e n o b t a i n e d and h e n c e r e c o n s t r u c t e d i s known, t h e
u n c e r t a i n t y in t h e v a l u e of t h e w a v e v e c t o r c a n b e d e -
c r e a s e d c o m p a r e d wi th t h e v a l u e d e t e r m i n e d by t h e
relation ΔΚχΛΧ = 1.

For quantitative es t imates it is important that
when Κχ = Ky = 0 (for a point lying on the optical axis)
the resolution increases insignificantly so long as 2X2

> Ζλ.
At X « Y « Z , the resolution remains approxi-

mately constant as the point moves away from the
optical axis . It is easy to show that a three-dimen-
sional hologram gives an image with increased resolu-
tion also in the Ζ direction.

b) Spectral resolution. As noted many t imes in the

literature 1 - 4 5 " 4 9 1 , a three-dimensional hologram is a
spectra l instrument that makes it possible to recon-
struct an image in white light. This important property
of three-dimensional holograms can readily be ex-
plained by using Ewald's-construction. Unlike the
preceding construction, we take the radius of the sphere
to be unity, and then the modulus of the vector G is
equal to λ/d. In this construction, the node in Four ier
space has an additional blurr ing along the vector G
when a nonmonochromatic light source is used for the
reconstruct ion (Fig. 18). It follows from the construc-
tion that if the t r a n s v e r s e dimensions of the hologram
a r e sufficiently large, then the spect ra l resolution de-
pends on the thickness Ζ and on the angle ψ . For
example, at the arrangement of the hologram and of

FIG. 18. Ewald's construction for
the case when the reconstruction is by
a polychromatic light source, and the
hologram is symmetrically placed with
respect to the waves Ko and Kq.
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the waves Ko and Kq as shown in Fig. 18, the waves
participating in the formation of the image lie in the
interval Δλ (Δλ < λ0):

Thus, a three-dimensional hologram recorded with
light of wavelength λ0 selects, when illuminated with
a source of white light, a section of the spectrum in
the vicinity of this wavelength. We see that the inter-
val Δλ decreases with increasing diffraction angle and
becomes small at angles φ close to 180°, even at small
values of Ζ. This explains the ability of holograms
recorded on Lippmann emulsions in accordance with
the Denisyuk scheme to reconstruct the image with a
source of white light. It is obvious that when the holo-
gram is recorded in complementary colors, it is pos-
sible to reconstruct a colored image of the object'49»831.
The use of an extended source during recording leads
to an unexpected result. Then the spectral selectivity
of the three-dimensional hologram becomes manifest
only if the reconstructing source is also extended.
Indeed, if the image is reconstructed with a pointlike
polychromatic source, the Bragg condition is satisfied
for a large spectral interval that includes λ0. This
results in a superposition of images produced by an
entire set of wavelengths. If a "white" extended source
is used for the reconstruction, the contrast of the
image of each point of the object is determined by the
intersection of a group of diffraction cones at a single
generatrix (see Fig. 11). In this case the image of the
object is sufficiently sharp and at the same time a
narrow spectral interval is separated in the vicinity of

λο·
In some experiments, the linear dimensions of the

hologram can vary as a result, for example, of shrink-
age of the film during the photographic processes, or
of thermal expansion of photochromic material. Fol-
lowing a uniform change of the dimensions of the holo-
gram, any vector G is replaced by G^, where j33

= Vo/V, and Vo and V are the volumes of the hologram
before and after the processing, respectively. The
image of the object remains unchanged in this case.
The reconstruction should be carried out with a wave-
length λι = λο/β· A nonisotropic change of the dimen-
sions of the hologram can make it utterly impossible
to reconstruct the image at any wavelength.

In concluding this section, let us estimate the re-
solving power of a three-dimensional hologram.1·501 It
is seen from Fig. 16 that if X = Υ = Z, then the angu-
lar dimension of the image of a point remains constant
at λ/Χ as the angle φ varies. From the Bragg equa-
tion we obtain Δλ = d cos (φ/2) Δ. φ . If we define the
resolving power R in the same manner as for plane
diffraction gratings, then if Ν = X/d is the number of
lines of the diffraction grating, R = N/cos (φ/2).

Thus, the resolving power of three-dimensional
holograms is higher than that of plane diffraction
gratings with an equal number N, and its dispersion
region is no smaller. This can be of great practical
importance when three-dimensional holograms are
used in spectral instruments.

FIG. 19. Construction of the dispersion surface and determination
of the wave points from the boundary conditions. M, and M2-wave
points chosen from the condition of equality of the wave-vector com-
ponents parallel to the surface SeS'e; the points P& and P} on the cir-
cles are chosen from the same conditon on the surface SSlt. For sim-
plicity, the figure shows the construction only for the wave vectors con-
nected with the point Mi. The wave vectors K." and K '̂ of the waves
emerging from the hologram are determined in the same manner, a)
Semiinfinite hologram; b) hologram bounded on both sides. Since IK'I =
|Ke| = |K|, the points Ρ lie on circles with radius equal to |K| = LO =

2. Allowance for the Boundary Conditions

Allowance for the boundary conditions is essential
for the calculation of the image intensit ies . The intro-
duction of the boundary conditions is made s impler if
account is taken of the fact that the hologram is sur-
rounded by a medium having a dielectric constant τ}1(

whereas the dielectric constant of the hologram is Th
+ Δη, where, as before, Δη/η^ -C 1. We confine our-
selves to the case when the hologram is recorded with
a reference beam located on the same side as the waves
from the object points.

If the reconstructing wave Do is incident on the
interface between the hologram and the medium, then
the condition that the phase jump be constant over the
entire surface is satisfied. This means that the com-
ponents of all the wave vectors parallel to the upper
surface are equal to each other. This condition makes
it possible to determine the wave points on the disper-
sion surface and, consequently, the amplitudes of the
diffracted waves.

Let us perform the geometrical construction for
specified boundary conditions in the two-wave case. In

Fig. 19a, LO and LHi are the wave vectors of the
waves taking part in the recording of the hologram,

Ko = PfO is the vector of the reconstructing wave, and
Ko and K; are the vectors of waves propagating inside
the hologram and specified by the positions of the
points of intersection of the branches of the dispersion
surface with the normal drawn from the point pf to
the trace of the interface S e S i e .

We denote MiPf by | Κ I qin e, where n e is a unit
vector normal to the surface S e S i e . Since by definition
ej1 = (| K/1 - | k |)/1 k 1, it can readily be found from
Fig. 19 that Cj1 is approximately equal to g1sin(ipi
- φι/2) + δφ sincpj. Substituting this value in (13), we
obtain



P R O P E R T I E S OF T H R E E - D I M E N S I O N A L HOLOGRAMS 273

EL C,A,
(25)

If the hologram was recorded from a large number of
points with a reference wave, then, as seen from
formula (20), the solution of the wave equation does
not differ formally from the solution for two waves.
Therefore formula (25) gives the amplitudes of all
waves inside the hologram. We denote the angles ψ
and φ for the point lying in the center of the object by
φ 0 and ψ0. Then for al l the remaining points Φι = ψ0

- Δφι/2, φι = ψ0 + Δφι. We can thus write in place of
(25)

^ '

It is seen from (26) that the intensit ies of the points in
the image of the object will always be distorted. This
distort ion is s m a l l e r for waves connected with that
branch of the dispers ion surface which lies c loser to
the point L. We note that if the hologram is obtained
from a smal l object and <p0 = 0, then at φ 0 = 90° the
distort ions a r e smal l .

We introduce analogously the boundary conditions on
the output surface. Figure 19b shows the construction
for the two-wave c a s e . Here Ko is the wave vector of
the reconstruct ing wave incident on the input surface,
and Ko and K e a r e the wave vectors of the waves
emerging from the hologram.

We now consider the boundary conditions for the
fields Ε and D. Under the assumption made above
concerning the medium surrounding the hologram,
neglecting quantities of the o r d e r Δη/η1} we can write
the boundary conditions on the upper surface for one
reconstruct ing wave:

JV+l

A,= Σ οι,
5=1

(27)

The waves D? a r e specified by the wave vectors K^

for each branch of the dispers ion surface. Equations
(26) and (27) make it possible to determine uniquely
the amplitudes of the field D^ in each experimental
situation.

On the hologram output surface, the boundary condi-
tions a r e written in the form

2 M"iDT=D',Mi-\ (28)

where M^ = exp(27riK^r) a r e phase coefficients that

depend on the thickness of the hologram.
We call attention to the fact that in the general case,

2N2 waves emerge from the hologram, and 2N different
waves propagate in the direction of each point of the
object. These waves form an interference pattern. The
directions of all 2N waves coincide only in the case
when the surfaces S e S i e and S^ 1* a r e paral le l . T h e r e -
fore the condition that the hologram constitute a r e c -
tangular parallelepiped is necessary for reconstruct ion
of the image. Assuming now that this condition is
satisfied, we obtain the relat ive intensities of the waves

κ
κ

T |/li|2lcil2' N-l
y, \Aqcq

2
5=12 JV-1
fe—1

(29)

Although formulas (29) were obtained for a particu-
lar case, they make it possible to draw a general con-
clusion: the intensities of the reconstructed waves
oscillate with increasing thickness. The periods of the
oscillations a r e proportional to Δη, and the sum of the
harmonic t e r m s is preceded by a factor proportional
to the intensity of the wave used to record the holo-
g r a m . Obviously, the intensity of the reconstructed
image, calculated with the aid of the dynamic theory,
coincides with the intensity calculated from the formu-
las of the kinematic theory* if

Ζ « A . (30)

We call attention to the fact that the calculation
made above pertains to phase holograms. For holo-
g r a m s recorded in a strongly absorbing medium
( μ Ζ 3> 1), the formulas become s impler , since it can
be assumed that only waves possessing the smal lest
absorption emerge from the hologram. These waves,
as already noted, correspond to the lower branch of
the dispers ion surface, that closest to the point L. In
place of Eq. (28) we can write

In the general case, the absorption can be taken into
account if it is assumed that the vectors K/,q in (28)
a r e complex quantities [ 5 2 > 5 3 1 .

3. Information Capacity

As first shown by Van Heerden, a three-dimensional
hologram has a large memory capacity'· 9 1 . Let us es t i -
mate the memory capacity within the framework of the
kinematic approximation of diffraction theory. It was
shown e a r l i e r that individual points of the image will
be resolved if the corresponding nodes in the Four ier
space do not overlap. If the information is recorded
in the hologram with light of wavelength λ, then the
periods of the harmonic distributions of Δη cannot be
smal ler than λ/2. This means that in Four ier space
the nodes can be situated only within a sphere of
radius 2/λ, the center of which l ies at the origin
(Fig. 16). We shall assume that the hologram is a
parallelepiped with dimensions X, Y, and Z. The
dimensions of any node in Four ier space will be 2/X,
2/Y, and 2/Z. Then in the volume Vo occupied by the
limiting sphere we can place n 0 = (%)τ?·ΧΥΖ/λ3 nodes,
i.e., independent memory e lements . If the hologram is
recorded from Ν points, then the Four ier space will
contain N 2 - Ν nodes and the maximum number Ν is
equal to / n ^ .

The most favorable case is when the recording is
carr ied out with a reference wave of outstanding

D\\\\\\ if al l e/ = e o :

*We note that the criterion (30) is simultaneously also the criterion
for the smallness of the ratio D;/Do, when formulas (19) are valid.
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b r i g h t n e s s . T h e n It I s n e c e s s a r y t o t a k e Into a c c o u n t

In F o u r i e r space only 2N nodes, and Ν = η ο / 2
« 2.1 Vh/λ 3, where Vh = XYZ Is the volume of the
hologram. We note that If the boundary sphere Is
densely filled, then the ra t io of the signal power to the
noise power is no smal le r than the rat io of the a r e a of
al l the diffraction maxima to the total a r e a of the
la tera l maxima (see express ion (24)). This makes it
possible to obtain for the memory capacity a limiting
value of approximately 5 χ 10 2 bi ts for λ = 1 μ and
Vn = 1 c m 3 . This es t imate actually shows the amount
of Information that can be recorded in a hologram by
the interference method-. In the holographic " r e a d i n g "
of this information, noise may a r i s e due to the fea-
t u r e s of diffraction of a wave by a three-dimensional
diffraction s t r u c t u r e (for example, the Rennlnger ef-
fect). Therefore when Ζ > λ/Δη the maximum number
of Independent points that can be recorded and recon-
structed holographically will be approximately njf3; the
maximum memory capacity d e c r e a s e s to 3 χ 10 8 b i t s at
λ = 1 μ and Vh = 1 c m 3 [ 5 0 ] .

V. LIMITING TRANSITION FROM THREE-
DIMENSIONAL HOLOGRAMS TO PLANAR ONES

1. C r i t e r i a of Transi t ion

The separat ion of holograms into three-dimensional
and " p l a n a r " ones is to some degree a r b i t r a r y . One
can formulate only severa l methods of choosing the
separat ion c r i t e r i a . A cr i te r ion that meets with al l the
most important propert ies of three-dimensional holo-
g r a m s , which were considered in detail in the preced-
ing chapter s , can be written in the form

Κ Γ » λ 3 . (31)

It Is frequently assumed that the main attribute of a
three-dimensional hologram Is the absence of a second
Image of the object upon reconstruction. This condition
is satisfied if

z » 4 sin2 (φ/2)
( 3 2 )

It i s o b v i o u s t h a t t h e c o n d i t i o n ( 3 1 ) i s m o r e g e n e r a l ,

f o r i t s s a t i s f a c t i o n a l s o i m p l i e s t h e s a t i s f a c t i o n of t h e

inequality (32) in a wide interval of angles φ up to
values (λ/Ζ)^2. On the other hand, the inequality (32)
can also be satisfied for thicknesses Ζ comparable
with the wavelength λ. In this case the angle ψ should
be close to 180°. Such holograms, for which (32) Is
satisfied but not (31), possess only some of the proper-
t ies of three-dimensional holograms under definite r e -
cording conditions. They must therefore be regarded
a s intermediate . If Ζ < λ/4, then the form of the wave
field upon reconstruct ion does not depend significantly
on the method used to r e c o r d the hologram*. The lat ter
condition is a c r i te r ion for the limiting case of planar
holograms.

The real izat ion of the propert ies predicted for
three-dimensional holograms by the dynamic theory is
determined by formula (30). This formula gives a
cr i ter ion for the applicability of the kinematic ap-
proximation of the theory. At large Δη, the effects of
the dynamic theory can become manifest on holograms
with smal l thickness Z. Therefore the thickness of the

FIG. 20. Ewald's construction for
a planar hologram, a—angle between
the perpendicular to the plane of the
hologram and the reconstructing wave
K*,; KT

0 is the specularly reflected
beam. K',, K*, K ,̂ and K' are the dif-
fracted waves.

hologram must be estimated independently from the
point of view of the c r i t e r i a (31)—(32) as well as the
cr i ter ion (30).

2. Features of Planar Holograms

The theory developed in the preceding section can
be used to descr ibe the propert ies of holograms which
were classified by us a s planar and intermediate, and,
in part icular, permits a comparative analysis of planar
and three-dimensional holograms. On going over to
smal l thicknesses of the photosensitive layer, In
pract ice It always suffices to use only the kinematic
approximation. Let us consider the s t ructure of
Four ier space for a hologram. It was shown in Chap.
IV that the dimension of the node in the Ζ direction is
Inversely proportional to the thickness of the hologram.
Therefore al l the nodes in the Four ier space a r e
transformed Into rods perpendicular to the surface of
the hologram. The corresponding Ewald construction
for one elementary harmonic recorded on the hologram
is shown in Fig. 20. We see that the Four ier t ransform
of one elementary harmonic can have four points of
intersection with the Ewald s p h e r e . These points cor-
respond to diffracted waves with wave-vector d i r e c -
tions K. The presence of the reflected wave is taken
into account by constructing the rod for the zero h a r -
monic; this rod passes through the origin. When the
angle between the plane of the hologram and the r e -
constructing beam changes, a change takes place in the
relat ive positions of the diffracted waves and in their
intensit ies, and at a cer ta in angle some waves vanish.

FIG. 21. Line diagram showing
the dependence of the intensities
and of the mutual placement of the
waves Κ on the angle Oo for the
simplest hologram ( a 0 = a on Fig.
20). During the recording of the
hologram, the angle ψ0 between the
two plane waves was approximately
10°. The angle φ in the figure is
reckoned from the direction of the
wave K^.
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An experimental confirmation of the real i ty of the de-
scribed situation is shown in Fig. 21. A hologram r e -
corded with two waves on an ordinary photographic
emulsion was mounted on a goniometer. During the
reconstruct ion, it was illuminated with a l a s e r , and the
intensities of the diffracted waves were reg i s tered with
a photomultiplier1-2 5 3. Thus, to each node in Four ie r
space there correspond in the general case two dif-
fracted rays on opposite s ides of the hologram. It will
suffice henceforth to consider only the r a y s passing
through the hologram.

For any Ν points of the object, the Four ier space
will contain N 2 - Ν nodes, and the number of object-
image points will correspond to the number of inter-
sections of the nodes with the Ewald s p h e r e . The loca-
tions of these points can be calculated in the following
m a n n e r . Let the field distribution over the object be
described by the function U(x ' , y ') · Then the distr ibu-
tion recorded on the hologram will be the one de-
scribed by formula (4) at Ζ = 0. If the hologram is
reconstructed by a point source, we get

U'(x-,y')^U(x',y'),U*(x'.y'). (33)

Thus, what is reconstructed is not the field U(x' , y ' ) ,
but its auto-correlat ion function, i.e., the r e c o n s t r u c -
ted image contains a set of displaced and overlapping
images corresponding to recording by one of the points
of the ent ire remainder of the object. In the special
case when a preferential point producing a reference
beam was used in the recording of the hologram, one
of the images of the object is outstanding among the
others in the reconstruct ion.

This image can be reconstructed in pract ice at an
arb i t ra ry angle between the reconstruct ing beam and
the surface of the hologram. However, when this angle
is varied, the locations and intensit ies of the image
points vary. Therefore, to obtain a c o r r e c t undistorted
image of the object in the reconstruct ion, it is neces-
sary to adhere rigorously to the geometry of the r e l a -
tive placement of the hologram and of the reference
beam used during the recording. We note that in the
case of three-dimensional holograms, satisfaction of
the reconstruct ion condition corresponds to satisfac-
tion of the condition of reconstruct ion of an undis-
torted image of the object. It thus turns out that it is
preferable to use three-dimensional holograms in
holographic interferometry, technology, and intrascopy,
when it is necessary to obtain undistorted images of
the objects.

A case of interest is when the reconstruction is
with a nonmonochromatic light source with a spect ra l
interval Δλ = λ 2 - λ χ. With the aid of the construction
shown in Fig. 22, it can be shown that each elementary
harmonic will produce the spectrum of the source in
the angle interval

. Δλ (34 \

We see that at smal l and large angles φ , the quan-
tity Αφ and, consequently, also the smear ing of the
object points during the reconstruct ion with a poly-
chromatic source of light will be negligible, and al l the
points will turn out to be colored. This shows the pos-
sibility of reconstruct ing planar and intermediate holo-

FIG. 22. Ewald's construction
for the case of reconstruction of
planar holograms by a source
emitting electromagnetic waves
in a spectral interval Δλ = λ2 —
\ t . For simplicity, only one of
the nodes in the Fourier space of
the hologram is shown. OM, =
l/λ! andOM2 = 1/λ2.

g r a m s in " w h i t e " l ight. We note that for intermediate
holograms it is bet ter to use large angles φ , s ince at
such angles the condition for separating the images is
simultaneously satisfied for these angles (see (32)).

In conclusion, we point out that the intermediate
holograms have features in common with three-dimen-
sional holograms not only in the s implest kinematic
approximation. It has been shown experimentally that
when ordinary emulsions a r e used one can observe the
effects of the dynamic theory 1 3 1 ' 3 5- 1 . The dynamic theory
for such holograms is more complicated than for
three-dimensional ones, since it is necessary to deal
here with extended nodes in Four ier space.

We have already mentioned that the effect of ano-
malously low absorption was discovered in the study
of diffraction of x-rays by perfect c r y s t a l s . The same
effect, observed with thin holograms, is of definite
interest , since it has been possible for the first t ime
to observe anomalous passage for periodic s t r u c t u r e s
whose thickness is only a few wavelengths. The per-
formance of such an experiment in the x-ray band is
difficult. The lat ter r e m a r k shows that three-dimen-
sional and intermediate holograms can also be used
for simulation of certa in situations of x-ray and elec-
tron diffraction by perfect crystals'-S5»5°].

VI. CONCLUSION

In spite of the technical difficulties determined by
the need for creating and master ing the use of more
perfect three-dimensional photosensitive mater ia l s ,
there a r e no grounds for doubting that three-dimen-
sional holograms should make an essentially new con-
tribution to the entire set of problems connected with
the development of holography.

This pertains pr imari ly to the theory of processes
involved in the recording and reconstruct ion of the
image, s ince, as shown above a three-dimensional
hologram has more features in common with natural
three-dimensional crys ta l lat t ices than with ordinary
optical s y s t e m s . The use of three-dimensional holo-
g r a m s ass igns a much more modest role to the so-
called " r e f e r e n c e " beam, which in this case is no
longer essent ia l in principle for the production of the
image of the object. On the whole, the regis trat ion of
the wave field in a three-dimensional element is a
m o r e general case compared with its regis t rat ion in a
plane (for example, on a photographic plate), and this
can lead to interesting consequences with respect to
the possibil it ies of obtaining complete (amplitude and
phase) information concerning the object.
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It is presently difficult to speak of all the possible
applications of three-dimensional holograms. In some
cases they have considerable advantages over planar
holograms, for example, when it is necessary to obtain
an exact undistorted image of the object, in systems
for storage and processing of information, etc. In dif-
ferent spectral instruments, three-dimensional holo-
grams can ensure resolving powers close to those
provided by Michelson or Fabry-Perot interferometers,
at a dispersion width no smaller than that of the optical
grating. One can assume that when holographic motion-
picture and television systems are developed, "instan-
taneous" three-dimensional holograms will be used,
for example, recorded with the aid of nonlinear effects,
making it possible to record and read the frames in
sequence.

Special emphasis must be placed on the possibilities
arising in the experimental investigation of the phe-
nomena of diffraction by three-dimensional holograms.
Indeed, the holograms recorded with the aid of color
centers or nonlinear optical effects make it possible
to study certain properties of crystals, in view of the
sensitivity to very small variations of the refractive
index (or of the absorption).

On the other hand, recording of a hologram can en-
sure a specified structure of a three-dimensional dif-
fraction grating. By the same token, a way is opened
for simulation of different problems of structural
analysis for the purpose of obtaining, in the optical
band, experimental data that make it possible to evalu-
ate complicated wave fields in the diffraction of elec-
trons, neutrons, and x-rays. The undertaking of such
investigations would be advantageous from the point of
view of the dynamic theory of scattering, which re-
quires further development.
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