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INTRODUCTION

J.HE ability to generate light beams with small angle
divergence and high spatial coherence is the most re-
markable feature of lasers, and motivates their prac-
tical applications. Therefore questions concerning the
angle structure of the radiation of lasers and the mech-
anism of shaping a given structure has been the subject
of a very large number of researches.

In the present review we systematize the results of
these researches. Although the material employed per-
tains mainly to solid-state lasers, many of the problems
touched upon are of general significance. Principal at-
tention has been paid to papers explaining the most im-
portant factors determining the degree of directivity of
the radiation. The results of a number of investigations
devoted to the influence of readily removable or random
factors will not be considered. Such investigations in-
clude observations of additional radiation beams result-
ing from reflection from the polished lateral surface of
the active medium, ί 1 > ζ 1 the study of the structure of the
beam when prisms are used as the elements of the reso-
nator [ 3 3 and others.

The results of the theory of ideal empty open reso-
nators will be used in the course of the exposition. Since
the main premises of this theory are universally known
for resonators with concave or plane mirrors (and their
equivalents), """^ these will likewise not be discussed
here.

The paper is divided in two parts. The first consid-
ers the properties of lasers having two-mirror reso-
nators with small diffraction losses, and the second dis-
cusses the features of systems using various angular
selection devices, including the use of the so-called
"unstable" resonators.

I. GENERAL INFORMATION ON THE ANGULAR
DIVERGENCE OF RADIATION

1. Results of Experimental Investigations

The very first observations of the generation of solid-
state lasers have shown that the angular divergence of
their radiation is much larger (usually by 1-2 orders of
magnitude) than the expected value corresponding to dif-
fraction by the exit aperture of the generator. To ascer-
tain the causes of the large angular divergence of the
radiation, various investigations were undertaken on the
dependence of the spatial structure of the generated beam
on the homogeneity of the active medium, the pump inten-
sity, etc. Most of these investigations pertain to the case

of the resonator with flat mirrors, which was proposed
in 1958." '"

Comparison of the experimental data with the results
of the theory of open resonators very soon revealed that
a regular distribution of the spots in the far-field picture,
corresponding to definite modes of the ideal resonator, is
observed as a rule only for exceedingly homogeneous
samples and at a slight excess above the generation
threshold.C9"12:l With increasing pump intensity, the num-
ber of modes present in the generation increases because
of the modes with more complicated structure ;C 9 ' 1 0 ' 1 2 ) 1 3 : l

to observe them it is necessary to employ, as a rule,
high-speed photography, since the far-field picture
changes from spike to spike, and it is difficult to inter-
pret the integral distribution.

If active rods with noticeable optical inhomogeneities
are used, the identification of individual modes becomes
impossible.C 1 4 '1 5 '1 1 > 1 2 : | It was observed in many investiga-
tions that small resonator aberrations suffice to produce
complete distortion of the form of the field distributions
in the lower-order modes. Thus, for example, in one
caseC 1 6 3 such a distortion was produced by elastic defor-
mations of the ruby rod, and in another by changing over
from samples with optical-length variation AL· =* 0.1 λ
to samples with AL =* 0.25X.cli:l This has led to a ten-
dency, in the later investigations, to analyze the mecha-
nism of the influence of the properties of the real reso-
nator on the angular divergence of the radiation.

A considerable step forward in the understanding of
the gist of this mechanism were the investigations of
Evtuhov and Neeland, C1C'17: | and particularly the work of
A. M. Leontovich and A. P. Veduta.cl8J It was shown in
these investigations that if the inhomogeneous active rod
serves as a source of wave aberrations of second order
(of the positive-lens type), then a resonator with flat
mirrors becomes equivalent to some empty resonator
with concave mirrors . The observed field structure cor-
responds in such cases to the predictions of the theory
of generalized confocal resonators. Thus, the concept
of the equivalent resonator was used for the first time
for the treatment of the experimental data.

The paper of A. M. Leontovich and A. P. Veduta also
explained a number of phenomena typical of the use of
resonators with "stable" configurations (more accu-
rately, with low diffraction losses). In the case of a
small excess above threshold, the only modes excited
are the lower modes localized near the axis of the sam-
ple, with the smallest diffraction losses. The appear-
ance of generation first in the central zone of the sam-
ple is aided by the fact that the pump radiation density,
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a n d wi th i t a l s o t h e i n v e r t e d p o p u l a t i o n , f r e q u e n t l y

r e a c h e s a m a x i m u m p r e c i s e l y on t h e a x i s of t h e s a m -

p l e . a a } With i n c r e a s i n g p u m p p o w e r , t h e t h r e s h o l d f o r

t h e g e n e r a t i o n of h i g h e r m o d e s i s r e a c h e d . F i n a l l y , a t

l a r g e e x c e s s e s a b o v e t h r e s h o l d , t h e m a x i m u m t r a n s -

v e r s e i n d e x of t h e e x c i t e d m o d e s i s d e t e r m i n e d b y t h e

c o n d i t i o n f o r t h e f i l l ing of t h e e n t i r e a c t i v e s a m p l e wi th

t h e g e n e r a t i o n r a d i a t i o n .

T h e p i c t u r e of t h e c h a n g e of t h e o s c i l l a t i o n m o d e s

d e s c r i b e d a b o v e w a s i n d e e d o b s e r v e d in m a n y i n v e s t i -

g a t i o n s (for e x a m p l e / 2 0 ' 2 1 · 1 ) ; t h e n o t i o n of t h e m e c h a -

n i s m d e t e r m i n i n g t h e m a x i m u m i n d e x of t h e t r a n s v e r s e

m o d e s p r e s e n t in t h e g e n e r a t i o n w a s l i k e w i s e fully c o n -

f i r m e d . 1 · 2 2 " 2 4 3 We n o t e t h a t a " s t a b l e " r e s o n a t o r conf ig-

u r a t i o n w a s e n s u r e d in d i f f e r e n t i n v e s t i g a t i o n s e i t h e r

b y u s i n g c o n c a v e m i r r o r s , £ 2 2 ' Z 4 : | o r by i n t r o d u c i n g p o s i -

t i v e l e n s e s in to a r e s o n a t o r wi th f lat m i r r o r s , C Z 3 ' 2 4 : I a s

w e l l a s b y t h e l e n s c h a r a c t e r of t h e s a m p l e i t s e l f . l M i

It i s c u r i o u s a l s o t h a t w h e n m o d e s with h i g h e r i n d i c e s

a p p e a r in t h e g e n e r a t i o n , t h e l o w e r o s c i l l a t i o n m o d e s

v a n i s h (for e x a m p l e , C 2 c : l ) .

With d e c r e a s i n g s p h e r i c i t y , a s t h e r e s o n a t o r a p -

p r o a c h e s t h e p l a n a r c o n f i g u r a t i o n , t h e i n f o r m a t i o n on

t h e a n g u l a r d i v e r g e n c e b e c o m e s l e s s a n d l e s s s y s t e -

m a t i c . It i s v e r y dif f icult t o identi fy t h e i n d i v i d u a l o s -

c i l l a t i o n m o d e s ; f r e q u e n t l y i t i s i m p o s s i b l e t o t r a c e t h e

c o r r e l a t i o n b e t w e e n t h e w i d t h of t h e d i r e c t i v i t y p a t t e r n

of t h e r a d i a t i o n a n d t h e p e r f e c t i o n of t h e r e s o n a t o r .

M o r e o v e r , n u m e r o u s i n v e s t i g a t i o n s h a v e d e m o n s t r a t e d

t h a t it i s p r e c i s e l y in t h e c a s e of a p l a n a r r e s o n a t o r

t h a t t h e a n g u l a r d i v e r g e n c e of t h e r a d i a t i o n t u r n s o u t

to b e p a r t i c u l a r l y s e n s i t i v e t o wave a b e r r a t i o n s o c c u r -

ing i n s i d e t h e r e s o n a t o r , t h e s o u r c e s of w h i c h a r e q u i t e

v a r i e d in t h e c a s e of s o l i d - s t a t e l a s e r s . In s p i t e of

t h i s , a c a r e f u l c o m p a r i s o n of t h e g e n e r a t i o n c h a r a c t e r -

i s t i c s f o r r e s o n a t o r s wi th f la t and s p h e r i c a l m i r r o r s C 2 e ]

s h o w s t h a t a p l a n a r r e s o n a t o r e n s u r e s a m u c h l a r g e r

d e g r e e of d i r e c t i v i t y a n d b r i g h t n e s s of t h e r a d i a t i o n . *

I n a s m u c h a s for p r a c t i c a l a p p l i c a t i o n s of l a s e r s a n

i m p o r t a n t r o l e i s p l a y e d , a s a r u l e , n o t by t h e p o s s i b i l -

i ty of ident i fy ing t h e i n d i v i d u a l m o d e s b u t by t h e b r i g h t -

n e s s of t h e r a d i a t i o n , g e n e r a t o r s with f lat m i r r o r s h a v e

for m a n y y e a r s b e e n t h e m a i n t y p e of s o l i d - s t a t e l a s e r .

T h e r e l a t i v e l y s m a l l a n g u l a r d i v e r g e n c e of t h e r a d i -

a t i o n a n d , a t t h e s a m e t i m e , t h e v a r i e t y of f a c t o r s t h a t

i n f l u e n c e i t , h a v e e n s u r e d c o n s t a n t i n t e r e s t in t h i s t y p e

of l a s e r o n t h e p a r t of t h e r e s e a r c h e r s . We p r e s e n t t h e

m a i n r e u l s t s of n u m e r o u s e x p e r i m e n t a l i n v e s t i g a t i o n s

d e v o t e d t o t h e s t u d y (and t o a t t e m p t s a t e l i m i n a t i o n ) of

t h e f a c t o r s t h a t l i m i t t h e a x i a l s t r e n g t h of a l a s e r wi th

a p l a n a r r e s o n a t o r .

T h e g r e a t e r p a r t of t h e s e i n v e s t i g a t i o n s p e r t a i n s t o

t h e c a s e of r u b y l a s e r s . B e i n g a t y p i c a l c r y s t a l l i n e a c -

t i v e m e d i u m , r u b y h a s a t r e m e n d o u s n u m b e r of r a n d o m l y

d i s t r i b u t e d m i c r o s c o p i c a n d m a c r o s c o p i c i n h o m o g e n e i t i e s

"Here and throughout we are dealing mainly with solid-state lasers
having a sufficiently large value of the parameter Ν = a 2 /\L e f f (2a-
transverse dimension of the sample, Leff—effective resonator length, see
below). At small Ν it may be more convenient to use concave mirrors
with large curvature radii [ 2 7 ] , which at the same time ensure approxi-
mately the same brightness, plane-spherical resonators with a concave
mirror having a radius of curvature somewhat larger than L e f f [ 2 8> 2 9],
or dihedral reflectors with angles somewhat smaller than 180° [169] or
?0° [170] between the faces.

w h i c h l e a d t o c o n s i d e r a b l e l i ght s c a t t e r i n g . T h e c h a r a c -

t e r i s t i c m a g n i t u d e of t h e l o s s t o s m a l l - a n g l e l i ght s c a t -

t e r i n g a m o u n t s t o 0 . 0 1 - 0 . 1 c m " 1 f o r t h i s m a t e r i a l L * i :

( a s w e l l a s f o r m a n y o t h e r c r y s t a l l i n e a c t i v e m e d i a l s o 1 ) .

In t h e p r e s e n c e of n o t i c e a b l e l i ght s c a t t e r i n g , t h e

width of t h e c e n t r a l c o r e in t h e a n g u l a r d i s t r i b u t i o n i s

u s u a l l y 5 ' - 2 0 ' . T h e c o r e i s s u r r o u n d e d b y a s y s t e m of

r e l a t i v e l y i n t e n s e r i n g s ' · 3 2 " 3 5 ' 1 1 ' 1 8 · 1 wi th a n a n g u l a r r a d i u s

e q u a l t o t h e r a d i u s of t h e r i n g s in t h e F a b r y - P e r o t i n -

t e r f e r o m e t e r f o r l i ght with a w a v e l e n g t h e q u a l t o t h e

e m i s s i o n w a v e l e n g t h in t h e c e n t r a l c o r e (for e x a m p l e ,
C 3 5 ] ) . A c c o r d i n g t o c e r t a i n o b s e r v a t i o n s , t h e w i d t h s of

t h e s e r i n g s a r e d e t e r m i n e d b y t h e s a m e r e l a t i o n s a s in

t h e p a s s i v e i n t e r f e r o m e t e r , a n d d e p e n d a c c o r d i n g l y on

t h e q u a l i t y of t h e s a m p l e . t l l J F i n a l l y , M. P . Vanyukov

e t al.13'2 p r o v e d f ina l ly , by i n t r o d u c i n g a n a d d i t i o n a l

s c a t t e r i n g e l e m e n t i n s i d e t h e r e s o n a t o r , t h e c o n n e c t i o n

b e t w e e n t h e r i n g s in t h e a n g u l a r d i s t r i b u t i o n a n d t h e

l ight s c a t t e r i n g .

O b s e r v a t i o n s of t h e s p a t i a l c o h e r e n c e C 3 2 " S 4 : l and of

t h e e m i s s i o n s p e c t r a l 3 1 i h a v e led t o t h e c o n c l u s i o n t h a t

t h e r a d i a t i o n b e l o n g i n g t o i n d i v i d u a l o s c i l l a t i o n m o d e s

i s d i s t r i b u t e d p r a c t i c a l l y o v e r t h e e n t i r e s p o t of t h e

f a r - f i e l d p i c t u r e , a n d t h e w a v e f r o n t e m e r g i n g f r o m

t h e l a s e r d i f f e r s g r e a t l y f r o m a p l a n e o n e .

None of t h e s e f a c t s a g r e e with t h e n o t i o n s r e s u l t i n g

f r o m t h e t h e o r y of i d e a l e m p t y r e s o n a t o r s . T h e i n t e r -

p r e t a t i o n of t h e o b s e r v e d p h e n o m e n a i s m a d e dif f icult

a l s o b y t h e fac t t h a t in p r a c t i c a l l y e v e r y c p n c r e t e c a s e

t h e r e a p p e a r s t h e i n f l u e n c e of a g r e a t v a r i e t y of t y p e s

of r e s o n a t o r a b e r r a t i o n s . N e v e r t h e l e s s , m a n y w o r k e r s

h a v e s u c c e e d e d in t r a c i n g a d i s t i n c t c o r r e l a t i o n b e t w e e n

t h e o p t i c a l p e r f e c t i o n of t h e a c t i v e m e d i u m and t h e d e -

g r e e of d i r e c t i v i t y of t h e r a d i a t i o n , n a m e l y , the a n g u l a r

d i v e r g e n c e i n c r e a s e s wi th d e c r e a s i n g h o m o g e n e i t y of

t h e s a m p l e , b o t h in t h e c a s e of a m p l i f i e r s l 3 a } and t h e

c a s e of o p t i c a l g e n e r a t o r s . C 3 8~ 4 3 : | It i s c u r i o u s t h a t t h e

m a g n i t u d e of a l a r g e a n g u l a r d i v e r g e n c e i s c l o s e t o t h e

a n g u l a r d i v e r g e n c e of a w e l l - c o l l i m a t e d b e a m f r o m an

e x t e r n a l s o u r c e a f t e r p a s s i n g o n c e t h r o u g h t h e s a m e

s a m p l e . t 4 2 " 4 4 ]

T h e f e a t u r e s of t h e in f luence of s u c h c o n c r e t e s o u r c e s

of l i ght s c a t t e r i n g a s g l i d e s u r f a c e s , b o u n d a r i e s b e t w e e n

b l o c k s , e t c . w e r e c o n s i d e r e d in d e t a i l in C 4 1~*3 : l, i t fo l lows

f r o m t h e p r e s e n t e d d a t a t h a t t h e m a c r o s c o p i c i n h o m o -

g e n e i t i e s affect m a i n l y t h e c e n t r a l c o r e of t h e a n g u l a r

d i s t r i b u t i o n , w h i l e s c a t t e r i n g b y t h e m i c r o s c o p i c i n -

h o m o g e n e i t i e s a f f e c t s t h e " w i n g s " of t h e d i s t r i b u t i o n .

T h e d e p e n d e n c e of t h e a n g u l a r d i v e r g e n c e and of t h e

r a d i a t i o n p o w e r on t h e r e s o n a t o r l e n g t h w a s i n v e s t i g a t e d

in [ 4 5 ] f o r t h e c a s e of a l a s e r u s i n g a m e d i u m t h a t i s

m a c r o s c o p i c a l l y h o m o g e n e o u s b u t h a s a n o t i c e a b l e l i ght

s c a t t e r i n g by m i c r o s c o p i c i n h o m o g e n e i t i e s ( C a F 2 : S m 2 * ) ,

As a l r e a d y i n d i c a t e d , s o u r c e s of l i ght s c a t t e r i n g in

c r y s t a l l i n e a c t i v e m e d i a a r e d i s t r i b u t e d o v e r t h e v o l u m e

m o r e o r l e s s r a n d o m l y . T h e a b e r r a t i o n s d u e to u n e v e n

h e a t i n g of t h e a c t i v e r o d (the s o - c a l l e d t h e r m a l d e f o r -

m a t i o n s of t h e r e s o n a t o r ) h a v e a n e n t i r e l y d i f f e r e n t c h a r -

a c t e r . T h e i r s o u r c e s a r e t e m p e r a t u r e v a r i a t i o n s of t h e

r e f r a c t i v e i n d e x a n d p h o t o e l a s t i c i t y p h e n o m e n a due t o

t h e p r e s e n c e of t h e r m a l s t r e s s e s . [ 4 β ' 4 7 : ι

T h i s ef fect w a s o b s e r v e d in 1 9 6 3 C 4 8 ' 4 9 : | and w a s i n v e s -

t i g a t e d in d e t a i l in a n u m b e r of s u c c e e d i n g p a p e r s . t s 0 " e i : l

By v i r t u e of i t s v e r y o r i g i n , t h e t h e r m a l d e f o r m a t i o n s ,
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unlike light scattering, are equivalent to the presence of
a refractive-index gradient that varies slowly over the
cross section of the sample.

Even when the laser operates in the single-flash re-
gime, the thermal deformations at the end of the pulse
frequently reach noticeable magnitude and greatly in-
fluence the angular divergence of the radiation. Thus,
M. P. Vanyukov et a l . t e i ] found that the divergence was
doubled at the end of the pumping pulse in the case of
a neodymium-glass laser, and increased 3-5 times in
the case of a ruby amplifier.c e 2 ]

The thermal deformations are particularly large in
active elements of lasers operating in the periodic C56»S9]

or the continuous1·253 regime. The decrease of the tem-
perature inside such elements with increasing distance
from their axis is approximately proportional to the
square of the radius, and large aberrations of second
order appear (thermal " lens") · As a result, the angu-
lar divergence of the radiation of such lasers is quite
large and can be significantly decreased by introducing
some correcting element into the resonator.C 2 5 ' e 3 ] The
usual correcting element is a lens or a spherical mir-
ror replacing a flat one.

We note that compensation of the "sphericity" of the
resonator due to the inhomogeneity of the sample is
sometimes carried out in the regime of single flashes
and naturally exerts the same influence on the angular
distribution of the radiation. t e 4 ' 6 5 1 In particular, in :"4 1

the use of a convex mirror of suitable radius of curva-
ture has led to a decrease of the angular divergence by
a factor of 4.

Thermal deformations of the resonator are the main
and most important source of aberrations in lasers
using such highly homogeneous active media as neody-
mium glass.* The possibilities for their complete can-
cellation are quite limited, especially in generators
without Q switching.

Indeed, in the case of Q switching, the generation
pulse is so short that the thermal deformation does not
have time to change noticeably during the generation
time, and can be compensated beforehand by a corrector
(a master generator in the system with high radiation
brightness has been constructed on the basis of this
principle : β β 1). In the case of a laser without Q switching,
the thermal deformations, as already indicated, change
appreciably during the generation pulse, and their dy-
namic compensation is a very complicated problem
which has not yet found an acceptable solution. All the
more curious is the possibility of complete annihilation
of thermal deformations for emission of one of the po-
larizations by using an active element of flat shape and
by suitably choosing the thermooptical constants of the
active medium. For the case of neodymium glass, such
a selection is perfectly feasible ; [ β 1 ' 1 β 8 1 in accordance
with the data on the properties of lasers with birefring-
ent active media/ 6 7 1 the generation of polarized radia-
tion in such elements does not involve energy loss.

Besides the already considered factors, the spatial
structure of the beam is influenced by many others.
Thus, an important role is played by the accuracy of
the adjustment of the flat mirrors : if they are not par-

allel, the spot in the far zone becomes elongated in the
misalignment direction, and in the case of misalignment
on the order of several minutes it breaks up into a num-

ber of individual spots. [68-71] Particularly sensitive to
nonparallelism of the mirrors are resonators with a
homogeneous active medium and accordingly with a
small radiation divergence."1·1

It has also been noted that the angular divergence of
the radiation depends on the character of the distribu-
tion of the inverted population over the cross section of
the sample," 2 ' 7 3 1 etc.

The aggregate of many factors causes in final analy-
sis the angular divergence to amount usually to several
minutes of angle and to exceed greatly the diffraction
limit even in the case of lasers using highly homogene-
ous active media.

From the point of view of the structure of the beam
itself, the large magnitude of its divergence may be a
manifestation of both the multimode character of the
generation and of the fact that in systems with consid-
erable aberrations the radiation wave front pertaining
to the oscillation modes with the highest Q may differ
greatly from a plane front. The latter phenomenon is
frequently called mode deformation.*

From the data given in many papers ' 1 1 " 1 5 ' 3 2 " 3 4 ' 3 7 ' 9 8 ' 7 1 1

we can draw the qualitative conclusion that in the case
of lasers with flat mirrors, mode deformations are par-
ticularly important in the presence of noticeable aber-
rations. Attending a decrease of the aberrations is an
increased role of multimode generation (for example
t 1 2 1 ) ; finally, if the experiment is performed with par-
ticular care and the active medium is homogeneous,
then the angular divergence of the radiation is due
mainly to the multimode generation.1·451

Although the indicated general tendencies are quite
clearly manifest, it is very difficult to distinguish ex-
perimentally between the influence of the multimode
generation and oscillation-mode deformation. The over-
all picture is greatly complicated by the unique kinetics
of the solid-state lasers; as already mentioned, it is
also difficult to separate the influence of individual types
of aberration. All this makes it practically impossible
to systematize the concrete data on the angular diver-
gence of radiation of solid-state lasers. We shall hence-
forth pay principal attention to the results of a theoret-
ical analysis which makes it possible to understand at
least qualitatively the majority of the phenomena listed
above. Experimental information will serve where nec-
essary as criteria for the validity (or the advantage of
utilization) of one particular theoretical model or an-
other.

We stop first of all to discuss the very possibility of
using concepts developed by the theory of empty open
resonators to describe the properties of real lasers.

2. Model of Open Resonator with Active Medium in the
Quasistationary Approximation

To explain the experimentally observed regularities,
extensive use is made of the results of the theory of
empty open resonators. When the resonator is filled
with an active medium, its properties, generally speak-

*The initial inhomogeneity of the refractive index and the light scat-
tering in neodymium glass are quite small (30].

*Although this term is not quite exact, it is used in many papers
and is convenient.
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FIG. 1. Active layer in open reso-
nator, r, lies in plane I, r2 in plane II,
and r on the surface of one of the mir-

ing, are significantly altered. These changes must be
carefully taken into account.

To ascertain the connection between the spatial dis-
tribution of the radiation in real lasers and in empty
resonators, let us consider an idealized case of an in-
finite plane-parallel active layer of thickness I between
two mirrors of finite dimensions that are separated by
a distance L (Fig. 1). The refractive index of the me-
dium of the layer, n, will be assumed to be constant and
different from unity, the inverted population is assumed
uniformly distributed over the volume, the surfaces are
assumed nonreflecting, and the mirror reflection coef-
ficients (in terms of intensity) are 1 and R'. The steady-
state distribution of the field will be sought by the method
of Fox and Li,C74:i and we confine ourselves, as usual, to
the scalar formulation of the Huygens-Fresnel principle
and assume that the transverse dimensions of the region
in which the radiation is concentrated are small com-
pared with its length (see, for example, t Z 9 ] ) .

We consider first the passage of a light wave through
the active layer. The field distribution u(r2) on the sec-
ond surface of the layer can be expressed in terms of the
distribution in the first surface α(τχ) with the aid of the
standard relation

(f2) —JV U ( Γ , ) f d S . ,

where λ' = λ/η is the wavelength inside the layer, k' is
the Bouguer coefficient of light intensity amplification,
and the integration is carried out over the first surface.*

Changing over to the wavelength in free space λ and
neglecting the term (k'/2) Ir 2 - r x f/2l in the argument
of the exponential, we obtain

—
u (r2) = e -

(1)

From (1) we see that the form of the wave front after
passing through the active layer of thickness I is trans-
formed in the same manner as after passing through a
distance l/n in free space; the optical thickness of the
layer id determines only the total phase advance; the
amplitude of the field is multiplied by exp (k7/2).

It is now easy to trace the passage of the light wave
through the resonator in the forward and backward di-
rections and to set up the corresponding integral equa-
tion. Obviously, it differs only by a constant factor in
the right-hand side from the equation for the equivalent
empty resonator consisting of two mirrors having the
same configuration, but with total reflection, and sepa-

r a t e d b y a d i s t a n c e L e q = L - I + i / n . W e w r i t e i t i n

t h e f o r m

j 2 5 . , ,

Y«(r)~• <·*'' j/ \ft' e λ

Γ ) ; ( 2 )

H e r e Lo = L — I + nZ i s t h e o p t i c a l l e n g t h of t h e r e s o -

n a t o r , a n d P ( L e q ) i s t h e i n t e g r a l o p e r a t o r t h a t t r a n s -

f o r m s , i n a c c o r d a n c e w i t h t h e H u y g e n s - F r e s n e l p r i n -

c i p l e , t h e s c a l a r f i e l d d i s t r i b u t i o n f u n c t i o n u ( r ) o n o n e

of t h e m i r r o r s of t h e e q u i v a l e n t e m p t y r e s o n a t o r i n t o

t h e f i e l d d i s t r i b u t i o n f u n c t i o n o n t h e s a m e m i r r o r a f t e r

c o m p l e t e p a s s a g e of t h e w a v e t h r o u g h t h e r e s o n a t o r ;

a l l t h a t i s e x c l u d e d f r o m t h i s o p e r a t o r i s t h e c o n s t a n t

c o m m o n p h a s e f a c t o r e x p [ i ( 2 7 i / X ) 2 L e q ] .

T o d e t e r m i n e t h e s p e c t r u m of t h e e i g e n v a l u e s of ( 2 )

w e u s e i n f o r m a t i o n c o n c e r n i n g t h e p r o p e r t i e s o f t h e

e m p t y e q u i v a l e n t r e s o n a t o r . W h e n a w a v e w i t h a f i e l d

d i s t r i b u t i o n u m ( r ) c o r r e s p o n d i n g t o a m o d e w i t h a t r a n s -

v e r s e i n d e x m p a s s e s t h r o u g h t h e e q u i v a l e n t r e s o n a t o r ,

an additional phase shift — 4πρ' is produced, and the
amplitude is decreased by a factor exp (— 4np ")
(1 - exp (- 8πρ") is the diffraction loss; we use the
notation of t e ] ; the argument of the exponential is twice
as large as in the corresponding expressions of ίβ1 be-
cause the calculation is for a double passage through
the resonator).

Thus,

Pum (r) = amum (r), am = e - 4 n i <»'-'»").

Substituting (3) in (2), we obtain

(3)

ym = e*'<

The connection between the foregoing analysis and
the determination of the stationary distribution of the
field with complex frequency ω = ω' —ιω" №1 is estab-
lished in the following manner. At the resonant fre-
quency u) m = 27rcAm the quantity y m should be real,
and the total phase advance (co'/c)2L0 — 4πρ' should
equal 2wq, where q is an integer (the axial index). The
field amplitude changes by a factor y m after a time
2L,, /c, and y m = exp (- 2JTLOO>"/C).

Thus,

2L0

<4>

Relations (4) determine the spectrum of the eigen-
values of the resonator with the active medium. It is
remarkable that the active medium does not enter in
any way as some external source of excitation of the
oscillations. Its presence causes mainly a realignment
of the spectrum of the natural frequencies of the sys-
tem.* This leads, in particular, to a conclusion con-
cerning the possibility of separating individual oscilla-
tion modes in resonators with large losses.

Indeed, the condition for the overlap of the resonator
curves corresponding to two neighboring natural fre-
quencies of the system ω, and ω2 can be written in the
form™

i ' ι ι ω ΐ + <ι)2 / C \
| β > 1 — β > ϋ | < 9 · W

The signs in front of i have been reversed compared with [29]
since we assume, in accord with the notation of [6], a field ~ exp
(-ia>t) (and not exp (icjt) as in ["]).

*For an exact calculation of cOqm it is necessary also to take into ac-

count the dependence of η and k' on λ ("frequency pulling"; see, for

example, [ 3 0]), but this will not be done here.
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In the absence of pumping (k' < 0), this condition is
almost always satisfied, since the losses in the reso-
nators of solid-state lasers are quite large (their main
source is most frequently not diffraction effects, but
inactive absorption and the diversion of energy through
the semitransparent mirror). Thus, when such a sys-
tem is excited by an external source of electromagnetic
oscillations, its resonant properties are insufficient for
the separation of the individual oscillation modes.

The situation is different in the presence of inverted
population. The values of ω " decrease in accordance
with (4); on approaching the generation threshold, some
of them tend to zero. As a result, the resonant proper-
ties of the system can become fully manifest even in the
regime of regenerative amplification, in spite of satis-
faction of the condition (5) in the absence of excitation
of the active medium. The resonant properties of the
system become even more clearly pronounced during
the time of generation, when one or several of values of
w m are equal to zero.*

Analyzing the foregoing example, we can formulate
the conditions satisfaction of which makes it possible to
use directly the results of the theory of open empty res-
onators for the description of the structure of the field
in real lasers. The most important of these conditions
are as follows:

1. It is necessary to have high optical homogeneity
of the active medium. The passage of the wave front
through an inhomogeneous medium cannot be reduced
to the passage over a corresponding path in empty space;
the choice of the equivalent empty resonator becomes
more complicated and in many cases utterly impossible.

2. In the case of a resonator with external mirrors
it is necessary to exclude the influence of the light re-
flected from the active-element surfaces facing the mir-
rors . In the presence of antireflection coatings, it can
be usually assumed that this condition is satisfied. In
some cases (see Sec. II.2) such measures turn out to be
insufficient, and to eliminate side effects it is necessary
to incline the interfaces considerably to the direction of
propagation of the radiation.

3. In the derivation of (2) we used the model of an in-
finite homogeneous layer. In order for this model to be
valid it is necessary that both the refractive index and
the inverted population be constant not only immediately
between the mirrors, but also in the entire region where
the radiation field has a noticeable intensity; there should
be no influence of the side walls of the active element.

In real lasers this condition is hardly ever satisfied.
Moreover, in the case of flat mirrors of the resonator,
the role of the aperture diaphragms limiting the gen-
eration zone is frequently performed not by the mirrors
but by the lateral surfaces of the active element. To be
sure, in order to exclude the appearance of the addi-
tional light beams described in il'zi and caused by total
internal reflection from the lateral surfaces, these sur-
faces are usually ground dull or the rod is placed in an
immersion medium. Such measures make the well known
model of an ideal dielectric rod between mirrors of in-

**If this circumstance is disregarded, it is concluded erroneously
that the generation is "nonresonant" in systems with very large losses.
The size of the loss itself is important, but affects not so much the reso-
nant properties of the system as the character of the kinetics of the ge-
neration and the mode competition (Sec. 1.4).

finite dimensions (lZ9i, p. 149 and others) perfectly un-
acceptable, but do not eliminate partial scattering of the
diffracted radiation.

Since the decrease of the role of the light scattering
by the side surfaces is accompanied by an increased
degree of directivity of the radiation, it is reasonable
nevertheless to use the model of the open resonator
in estimates of the limiting characteristics of the sys-
tem.

4. In order for the distribution of the laser radiation
field to be describable by the eigensolutions of the sta-
tionary integral equation, it is necessary that the gen-
eration conditions remain unchanged during a suffi-
ciently long time. This requirement again is far from
always satisfied. Thus, in a number of theoreticalC 7 S '7 e : l

and experimentalC77"79] papers it was shown that in the
case of the single-pulse regime of a laser with a planar
resonator and relatively homogeneous medium, the spa-
tial distribution of the inverted population and of the ra-
diation field change exceedingly rapidly (within the time
10~9-1(Γ8 sec). In such a situation it is meaningless to
consider the spatial structure of the radiation and dis-
regard its connection with the kinetics of the generation.
This connection was investigated in detail by A. F. Such-
kov and V. S. Letokhov.[8°'81]

The operating regime of solid-state lasers is non-
stationary also in the absence of Q-switching of the res-
onator (we have in mind primarily the presence of char-
acteristic radiation spikes). A detailed theoretical de-
scription of the space-time structure of the radiation is
possible only in some of the simplest cases (for exam-
ple, LB01), which are never realized in practice. There-
fore in the overwhelming majority of the studies use is
made of a quasistationary approximation, which does not
take into account the features of the generation kinetics.
The character of the errors incurred thereby becomes
clear if it is recognized that in real lasers the role of
the " p r i m e r " in the formation of individual pulses
(spikes) of generation is practically always played by
the spontaneous noise radiation.* A narrowly-directed
light beam is produced only in the course of the non-
linear amplification of the " p r i m e r . " Therefore devia-
tions from the quasistationary regime lead, as a rule,
to a certain decrease of the directivity of the radiation.

In spite of this, the quasistationary approximation is
reasonable in many cases.

If the aberrations (and with them the angular diver-
gence in the quasistationary approximation) are large,
then the features of the kinetics, for obvious reasons,
no longer have a strong influence on the resultant width
of the directivity pattern. In particular, the angular dis-
tribution of the radiation becomes approximately the
same in the monopulse and in the ordinary generation
regimes.

For the case of the ordinary regime of free genera-
tion, the quasistationary multimode approximation can
be used to describe satisfactorily the properties of even
lasers with highly homogeneous media (li5i; Sec. 1.4).

Having made all the necessary stipulations, we pro-
ceed to an exposition of the results of the most impor-

*For the case of the random-spike regime, the validity of this state-
ment follows from the fact that the spectral composition of the radia-
tion is not the same in succeeding spikes (for example, [82>9.83 ]).
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tant theoretical papers concerning the spatial structure
of the field of a laser in the stationary generation re-
gime. Most of these papers can be broken up into two
main groups. One includes papers in which the influ-
ence of different perturbations on the field configuration
and individual oscillation modes is analyzed, and the
other is devoted to analysis of the mode competition in
ideal resonators. The mechanism of mode competition
in resonators with aberrations is too complicated and
is not discussed in the literature.

3. Influence of Aberrations on the Field Configuration
Of Individual Oscillation Modes

Most reasonable results concerning the calculation
of the field configuration in the presence of aberrations
were obtained either by the numerical method of Fox
and Li, or by directly solving the differential equations
for the electromagnetic field, or else, finally, by series
expansion in the eigenfunctions of the ideal resonator.
The latter method is quite lucid, especially in the form
proposed by V. V. Lyubimov. Since we shall explain
the main qualitative laws precisely with the aid of this
method, we shall stop to discuss it in greater detail.

The possibility of series expansion in terms of a
system of eigenfunctions u m of the operator of the ideal
resonator Ρ requires that this system be complete. For
open resonators with mirrors of finite dimensions, this
condition, generally speaking, is not satisfied.№1 More-
over, for modes of higher order, the scalar formulation
of the Huygens-Fresnel principle becomes invalid.
However, the eigenfunctions corresponding to modes
with the lowest transverse indices practically coincide
in the case of slightly concave mirrors with the func-
tions of the Hermitian operator of an infinite confocal
resonator/85-1 and in the case of flat mirrors they are
quite close to the eigenfunctions of a closed resonator
with flat mirrors, which form a complete set.w e : l It
must also be borne in mind that in real generators the
rays propagating at large angles to the resonator axis
and corresponding to modes of higher order are usually
absent. Therefore, in all cases of practical importance
we can confine ourselves to the first few terms of the
expansion.C85]

For the reasons given above, the series expansion in
the eigenfunctions of the resonators with both concave
and flat mirrors turns out to be possible and leads to
results that coincide in practice with the data of the ex-
act calculations. In the case of small aberrations, per-
turbation-theory methods can be used.

In the first approximation of perturbation theory, the
solutions of the equation (P + P ' ) u m = am um> corre-
sponding to a resonator with aberrations, are described
by the formulas

Pkm
(6)

Relations (6) have a very simple meaning. The matrix
elements P^m °* ^ e perturbation operator are equal to
the relative amplitudes of the light wave scattered as a
result of the perturbation from one of the oscillation
modes of the ideal resonator into another (this will be
clearly seen in the analysis of the concrete forms of
the perturbation operator). The quantities amjj are the

FIG. 2. Equivalent diagram of resonator with flat mirrors. I,
II-mirrors, III—perturbation zone.

amplitude of the induced oscillations; naturally, they
are inversely proportional to the frequency differences
between the driving force and the free oscillations,
am - Qf]j. In the case of resonators with concave mir-
rors, these differences are approximately proportional
to the curvature of the mirrors and are usually many
times larger than the differences for the case of flat
mirrors . t e 3

This circumstance is the main cause of the relatively
weak dependence of the form of the field distribution in
resonators of "s table" configuration not only on the mis-
alignment of the mirrors (which reduces in first approx-
imation to a shift of the resonator axis), but also of aber-
rations of other types. As a result, the angular diver-
gence of the radiation of a laser with concave mirrors
is determined as a rule not by the influence of the aber-
rations but by the index of the oscillation modes present
in the generation (see Sec. 1.4). In the present section
we shall therefore not discuss further the properties of
resonators of " s table" configuration with aberrations,*
and confine ourselves to resonators with flat mirrors.

In the case of flat mirrors with a large number of
Fresnel zones, the action of the operator Ρ reduces to
a considerable degree to parallel transfer of the wave
front. The diffraction "mixing" of the radiation is
small; the source of the field at an arbitrary point (see
the equivalent diagram of Fig. 2) is in essence the field
of the initial wave in a small region Q about the same
point. This circumstance greatly facilitates the calcu-
lation of the matrix elements of the perturbation oper-
ator.

Indeed, assume that the perturbation source is con-
centrated in a narrow zone (Fig. 2). When the wave
passes, its amplitude becomes multiplied by a factor
f (r) that varies slowly over the resonator cross section
(in the general case, this factor includes both amplitude
and phase corrections). If the changes of f (r) over the
dimensions of the region Q are small, then the distribu-
tion of the field of the wave passing through the entire
resonator in the forward and backward directions turns
out to be multiplied by f2(r) regardless of where the
perturbation zone is located on the length of the reso-
nator. Therefore all such aberration sources (including
a nonuniformly-excited active medium) can be regarded
as concentrated in narrow zones near the mirrors, as
is done in many papers.C89"93: l *

Thus,
PP

These properties are considered in detail in [8S], and also in [87>27>88]
and elsewhere.

*It is easily seen that this approximation is equivalent to the calcu-
lation of the corresponding integral by the constant-phase method.
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(We have used am « 1; F is a factor describing the
summary influence of all the aberrat ion s o u r c e s ; infor-
mation on the normalizat ion of u^ can be found in iBSi).

In the calculation of the expansion coefficients amji

by means of formulas (6) and (7) it i s convenient to in-
troduce one m o r e simplification, replacing both the e i -
genfunctions and the eigenvalues by the corresponding
quantities for the closed resonator . In fact, the fact that
the eigenfunctions of the open ( u m ) and closed (u°m) r e s -
onators with flat m i r r o r s of large dimensions a r e close
has already been mentioned. In par t icu lar , for a two-
dimensional resonator with m i r r o r s of width 2a we
have Lei

/ cos \ nmz
- I • Ι -ΊΓ- •\sin / 2n

1, 3, 5, .. .,
2, 4, 6, . . . ,

where - a s χ s a, β/Μ « 0.16/VN~; usually Ν = a 2 A L e q

3> 1, and β/Μ is a smal l p a r a m e t e r .
The difference of the eigenvalues for the open r e s o -

nator, accurate to t e r m s of the same o r d e r of smal lness ,
is determined by the value of the phase correct ions
^Wm-№1 r"^ne phase correc t ions , unlike the diffraction
losses , a r e pract ical ly independent of smal l para l le l
shifts or of the inequality of the s izes of the m i r r o r s ,
and coincide with the correc t ions for the closed r e s o -
nator . In the two-dimensional case

It follows therefore that the resul t of the influence
of the perturbat ions on the form of the field distr ibu-
tion depends little on random factors . Therefore infor-
mation obtained with the aid of the foregoing approxi-
mation can serve as an objective character i s t ic of the
radiation field of r e a l l a s e r s ; the calculation of the dif-
fraction losses cal ls for a more complicated analysis
(for example, C 9 4 3 ) .

Let us proceed to consider types of perturbat ions,
start ing with stationary phase aberra t ions .

The most detailed study was made of the influence
of wave aberrat ions of the f irst o r d e r (violation of the
para l le l i sm of the m i r r o r s ) . In this case we have for a
two-dimensional resonator

F{x) — i= i~-

(e is the misalignment angle). The perturbation is ant i-
symmetr ica l ; consequently, only am^ with odd | m - k |
do not vanish. A simple analysis shows that with in-
creas ing misal ignment angle, the center of gravity of
the field distribution shifts monotonically towards the
farther edges of the m i r r o r s . * In par t icu lar , the ex-
press ion for the eigenfunction of the lowest mode is of
the form u^ « u x + 4(ae/A)Nu 2 ( w e l ; Fig. 3a). In accor-
dance with this expression, the fundamental mode turns
out to be noticeably deformed even at extremely small
misalignment angles e. When e r e a c h e s the value \/4aN,
the angular divergence of the radiation of the fundamen-
tal mode is approximately doubled;C 8 4 ] at the same t ime,
perturbation theory itself ceases to be valid.

FIG. 3. Influence of phase aberrations on the distribution of the
field of the lowest mode, a) Misalignment of mirrors, b) concave mir-
ors, c) convex mirrors

Since p m ~ m 2 , the mode deformations decrease
rapidly with increasing t r a n s v e r s e index. Therefore in
the usual multimode regime the total angular divergence
turns out to be much les s sensitive to misal ignments
than the configuration of the field of the fundamental
mode.

More detailed information on the s t ructure of the
field and diffraction losses in r e s o n a t o r s with flat m i s -
aligned m i r r o r s a r e given in i70»71»88*3*-91". ^ the last of
these re ferences , the corresponding resu l t s were ob-
tained in analytic form. It is quite remarkable that, in
accordance with the data of L9il, the diffraction losses
of the lowest-order modes increase rapidly with in-
creas ing misalignment angle. As a resul t , the plots of
the losses of the different modes against the misal ign-
ment angle intersect .

A s imi lar intersect ion of the curves was observed
also in m i in calculations (by an iteration method) for
a planar resonator with large i r r e g u l a r aberra t ions ,
due to t h e r m a l deformations of the active element in
imperfect illuminating sys tems . This fact shows that
in the case of r e s o n a t o r s with large diffraction losses
at tempts to classify modes by the s ize of the i r los ses
can lead to misunderstandings (see, for example,
[171,159,172])

Approximately the same volume of calculations a s
for sys tems with flat nonparallel m i r r o r s has been p e r -
formed for r e s o n a t o r s with smal l second-order a b e r r a -
tions (convex and concave m i r r o r s [ 9 5>9 4>8 8 : l e tc .) . In the
case of a two-dimensional resonator we have

where h is the difference of the distances between the
m i r r o r s on the edge and at the center of the resonator
(Figs. 3b and 3c). The perturbat ion is symmetr ica l ,
u j » u x - 0 . 6 ( h A ) N u 3 . : 8 6 ]

When h < 0 (concave m i r r o r s ) the field is naturally
concentrated near the resonator axis (a 1 3 > 0, Fig. 3b).
The diffraction los ses then d e c r e a s e . C 9 4 > 9 5 ] At deflec-

*The opposite conclusion, drawn in [6], from which it was taken by
the authors of [7 1], is based on an error in the reasoning.

tions |h | k, λ/π 2Ν i m one can determine the distribution
of the field in the fundamental mode by using the r e s u l t s
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of the theory of generalized confocal resonators.
When h > 0 (convex mirrors) the field distribution

over the resonator cross section becomes more uni-
form (Fig. 3c). With increasing curvature of the mir-
rors one even observes a tendency to the formation of
a " d i p " of the intensity on the resonator axis.C8o:l The
diffraction losses increase sharply.* We shall discuss
in greater detail the properties of resonators with con-
vex mirrors in Sec. Π.2.

The case of a planar resonator with randomly dis-
tributed inhomogeneities, which is very important for
solid-state lasers, was considered in a number of
papers. Attempts to represent the light scattering sim-
ply as diffusion of the generation radiation in a direc-
tion perpendicular to the resonator axisC1OO: are hardly
justified, since the modes in the lasers are determined
principally by interference effects, which are not taken
into account in the diffusion equation.

M. S. Soskin and V. I. Kravchenko"0 1 '7 1 3 succeeded
in explaining a number of phenomena observed near the
generation threshold by using a model of a resonator
with "stepwise" mirrors . According to this model, the
field is concentrated on individual small sections of the
resonator cross section, between which there is a weak
diffraction coupling. However, at a large excess above
the generation threshold, the field intensity distribution
inevitably becomes more uniform (owing to the nonlin-
earity of the active medium). The experimental data of
£33,34,37] a l g Q i n d i c a t e that in the case of intense pump-
ing, the radiation of the individual oscillation modes is
distributed practically uniformly over the entire cross
section of the resonator (a negligible fraction of the
total radiation flux is concentrated in the "filaments"
that are sometimes observed). Therefore the indicated
model is hardly suitable for an estimate of the angular
divergence of the radiation in the usual generation re-
gime.

V. V. Lyubimov l l0Zi proposed apparently the most
successful method of taking into account the influence
of the randomly located inhomogeneities. His method
is based on an estimate of the spectral width of the re-
gion in which locking of a group of modes of an ideal
resonator is possible. This width turned out to be pro-
portional to Pgcat» where p s c a t is the loss to light scat-
tering per single pass of light through the sample.

The frequency locking results in the complicated
complexes that are the oscillation modes of the real
system. The angular aperture θ of the radiation of such
complexes can be estimated from the formula θ = p ^ a t
χ V λ/Lgq , l i m which is in satisfactory agreement with
the experimental data.C 4 5 '1 0 3 J

If the source of the light scattering is random varia-
tions of the optical length of the resonator (for example,
due to inaccuracies in the manufacture of the mirrors),
then the angular aperture of individual oscillation modes
can be estimated from the formula θ « VAL/Leq , where
AL is the rms deviation of the length.C1021 Both this and
the preceding formula are applicable only if the angular

*In ["] a unique model was used to perform a number of calcula-
tions for a planar resonator with aberrations. For the case of convex
mirrors, the paradoxical conclusion that there are no losses for certain
modes was reached. Therefore the very possibility of using such a mo-
del requires apparently a more thorough analysis than in [" ].

divergence of the radiation greatly exceeds the diffrac-
tion limit.

In accordance with the concepts developed in t102»103^
rings in the angular distributions are due to the Inter-
action between the low modes and the modes that differ
both in their transverse and axial indices, but have close
frequencies.

With this, we can conclude the analysis of the influ-
ence of stationary phase perturbations on the properties
of empty resonators. We proceed now to an exposition
of the results of investigations in which account is also
taken of the nonuniformity of the distribution of the gain
over the resonator cross section.

The first calculations of this type were performed
by T. I. Kuznetsova;1104·1 the distribution of the radiation
was obtained by solving the differential equations for the
electromagnetic field at a complex value of the dielec-
tric constant of the medium. It was shown that in the
case of nonuniform inversion there occurs a diffraction
"feeding" of zones with small inversion (or with large
losses) by radiation from the region in which the gain
prevails over the losses. As a result, the equal-phase
surface ceases to coincide with the surface of the mir-
rors, and the front of the radiation emerging from the
resonator may differ strongly from a plane front even
for the lowest mode.

The concrete calculations were performed by T. I.
Kuznetsova for the case of infinite flat mirrors, when
the field is localized in a finite region only because of
the presence there of a jump of the inverted population.
For solid-state lasers, such a model can be used pri-
marily near the generation threshold. It was possible
to explain with the aid of this model,£ l o e : in particular,
the singularities, described in [ β 3>1 0 5 ], of the energy char-
acteristics of lasers with nonuniform pumping.

The deformations of the lower modes of a two-di-
mensional open resonator with flat mirrors, due to the
nonuniform inversion, were calculated for individual
particular cases, using numerical methods, by Tang
and StatzC89>93] and also by Li and Skinner.C90] It was
observed that these deformations reduce principally to
changes not of the amplitude but of the phase of the
field.

In addition to nonuniform distribution of the gain,
in i9n account was taken also of the presence of anoma-
lous dispersion of the active medium. As a result of its
influence, the form of the field distribution becomes de-
pendent on the location of the generation frequency rela-
tive to the frequency corresponding to the center of the
line of the working transition; at lower frequencies, the
field "contracts" to the resonator axis, and at higher
frequencies its distribution becomes somewhat broader.

An examination of the effects connected with the non-
uniformity of the distribution of the inverted population
is also the subject of C1073, but the results there are in
error (the complex character of the field amplitude was
not taken into account in the derivation of the initial
equations).

The mechanism of the influence of the amplitude
aberrations as well as of the phase aberrations can be
understood with the aid of perturbation theory. The
quantity F - 1, which determines the matrix elements
of the perturbation operator, is equal in the general
case to
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£86]

where ρ is the summary loss (including the loss for
transmission of the mirrors), AL the variation of the
optical length of the resonator due to stationary phase
distortions, and Tjk'Z the phase distortions due to the
presence of anomalous dispersion of the active me-
dium.* In the case of uniform Lorentz broadening
17 = 2 (v — νο)/Δνι, where ν and v0 are the working fre-
quency and the frequency at the center of the lumines-
cence line, respectively, and Δι// is the half-width of
the luminescence line (see, for example, C 1 0 7 1 ) .

If there are no phase aberrations and the only source
of the perturbation is the nonuniformity of the distribu-
tion of k' and ρ over the resonator cross section (77 = 0),
then the matrix elements of the perturbation operator
are real. The coefficients a m k turn out to be, like am

— «k, pure imaginary quantities (see (6)). It is pre-
cisely for this reason that the amplitude aberrations
lead primarily to phase distortions of the eigenfunctions.

Within the framework of the first approximation of
perturbation theory, it is also easy to find self-consis-
tent solutions for the single-mode generation regime/
The reason for the nonuniformity of the distribution of
the inverted population is in this case the very presence
of the inhomogeneous generation field. The results
agree sufficiently well with data of exact numerical cal-
culations (Fig. 4).

The corresponding analysis shows that small phase
aberrations of the negative-lens type (convex mirrors)
contribute to attainment of single-mode generation. l a e i

Questions concerning the number of modes present in
the generation will be considered in greater detail in
the next section.

Summarizing the materials pertaining to the influ-
ence of aberrations on the structure of the fields of the
individual oscillation modes, we must emphasize that
the quantity of published information is quite large; we
have presented here only a tentative systematization of
this information.

4. Competition of Transverse Modes of Oscillation

The problem of multimode generation arose initially
in connection with the difficulty of interpreting the ex-
perimental data concerning the spectral composition of
the radiation: according to the notions of the elementary
theory, the generation should occur at a single fre-
quency close to the center of the line of the working
transition; actually this is far from being the case.

T. I. Kuznetsova and S. G. Rautianc i l o : l have shown
that in spite of the predictions of the elementary theory,
the single-mode generation regime is unstable. On the
basis of similar representations, Tang and Sta tz c l l l ' U 2 J

succeeded in finding the stationary distribution of the
intensity of radiation of generation between individual
oscillation modes for the case of a resonator with flat
mirrors . The model was based on allowance for the

•Generally speaking, the refractive index depends on the degree of
excitation of the active medium not only because of the anomalous dis-
persion. In particular, for neodymium glass it is more important that
the atoms have different polarizabilities in the ground and excited states
[ " 8 ] ; the same effect for the case of ruby is described in [109].

FIG. 4. Distribution of the
field of the lowest mode in a two-
dimensional resonator with allow-
ance for the saturation of the gain
and the anomalous dispersion of the
active medium. Ν = 10, ρ = 0.1,
twofold excess over the generation
threshold. Points—calculation by
perturbation theory, solid curves-
exact numerical calculation [ " ] .
I—17 = 0, 2—77 = —1, 3—17 = +1.
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saturat ion of the inverted population and for the differ-

ent spat ia l d is tr ibut ions of the f ie lds of the individual

m o d e s . The interact ion of the radiat ion and the matter

w a s d e s c r i b e d with the aid of an equation of the ba lance

type; the broadening of the working-trans i t ion l ine w a s

a s s u m e d to be h o m o g e n e o u s , and the e x c e s s above g e n -

erat ion thresho ld to be s m a l l .

In sp i te of the l imi ted appl icabi l i ty of the obtained

r e l a t i o n s , the r e s u l t s of Tang and Statz w e r e of g r e a t

importance for the c o r r e c t understanding of the m e c h a -

n i s m of mul t imode generat ion. The val id i ty of the m a i n

notion, n a m e l y that the d i f ferences of the spat ia l d i s t r i -

butions of the individual m o d e s a r e important, w a s c o n -

f i r m e d by r e s u l t s of a number of inves t igat ions of the

s p e c t r a l c h a r a c t e r i s t i c s of lasers . 1 · 1 1 3 " 1 1 5 ' 3 7 · 1

To be s u r e , the e s t a b l i s h m e n t of the s tat ionary equi-

l ibr ium distr ibut ion of intens i ty among the m o d e s , which

w a s p r e d i c t e d by the c a l c u l a t i o n s , w a s n e v e r o b s e r v e d

in p r a c t i c e (owing to the " s p i k e " c h a r a c t e r of the ki-

net ic generat ion r e g i m e ) . N o n e t h e l e s s , fol lowing the

publ icat ion of [ 1 1 0 ~ U 2 : l

j a r t i c l e s in which the s e l e c t i v e

c a p a b i l i t i e s of the r e s o n a t o r w e r e e s t i m a t e d only f rom

the point of v i e w of the magnitudes of the diffraction

l o s s e s , without a l lowance for the f e a t u r e s of the spat ia l

s t ructure of the f ie ld (for e x a m p l e , [ l e ] ) , hardly e v e r

appeared.

It w a s a l s o shown in i l l 2 i that in the c a s e of a planar

r e s o n a t o r , at l e a s t at s l ight e x c e s s o v e r threshold, the

c a l c u l a t i o n s of the s p e c t r a l and angular c h a r a c t e r i s t i c s

can be c a r r i e d out independently (a s i m i l a r r e s u l t for

l a r g e e x c e s s e s above the generat ion thresho ld w a s ob-

tained in C 9 2 3 ) . This h a s made it p o s s i b l e to l i m i t s u b -

sequent work to an a n a l y s i s of p a p e r s devoted to the

compet i t ion of m o d e s with different t r a n s v e r s e i n d i c e s .

Worthy of i n t e r e s t among such p a p e r s i s the a l ready

ment ioned a r t i c l e by Fox and Li. The tradit ional

i terat ion method w a s used to inves t igate the f e a t u r e s

of generat ion for both flat and c o n c a v e m i r r o r s with

round a p e r t u r e s . The c a l c u l a t i o n s took into account

the p r e s e n c e of a nonl inear a c t i v e m e d i u m and a c c o r d -

ingly the nonuniform distr ibut ion of the gain, due to the

nonuniformity of the f ie ld of the g e n e r a t e d radiat ion.

The g r e a t e r part of the ca lcu la t ions w e r e p e r f o r m e d

for the c a s e of r e l a t i v e l y s m a l l m i r r o r d i m e n s i o n s

( N = 5 ) .

In the c a s e of c o n c a v e m i r r o r s , in full a c c o r d with

the e x p e r i m e n t a l data ( s e e S e c . I.I), with i n c r e a s i n g

generat ion thresho ld one o b s e r v e s the p r o c e s s of

" c r o w d i n g o u t " of the l o w e r m o d e s by m o d e s with

higher t r a n s v e r s e i n d i c e s . The s a m e r e s u l t w a s ob-

tained with the aid of analogous c a l c u l a t i o n s in [ 1 1 7>2 4J#
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It is explained by the fact that in the case of concave
mirrors, the radiation of the higher-order modes is
distributed in a larger volume than the radiation of the
lower modes. Owing to the resultant nonuniformity of
the distribution of the inverted population, the average
gain for the lower mode turns out to be much smaller.

The situation is different in lasers with flat mirrors.
The volumes of the modes with different transverse in-
dices are approximately the same, and in the case of
uniform pump distribution the lower mode cannot be
"crowded out."

This is how it turned out in the paper of Fox and Li.
Moreover, even for a 20-fold excess over the threshold,
the calculations predicted generation at only one lower
mode. The authors considered this fact to contradict the
model of Tang and Statz, but in £ 9 2 ] the latter was ex-
tended to the case of a large excess above threshold and
it was shown that the number of modes is determined
not so much by the pump intensity as much by the ratio
of the diffraction losses to the nonselective losses (i.e.,
those common to all modes). In the calculations of Fox
and Li many modes could not appear apparently because
of the too low value of the nonselective losses, which
was entirely untypical of solid-state lasers, namely 1%
(usually the nonselective losses in solid state lasers
amount to more than 10%).

The competition of transverse modes was considered
in l92i under conditions when the pump not only has ar-
bitrary intensity but, like the loss sources, is nonuni-
formly distributed over the cross section of the reso-
nator. It was shown that the number of modes q' in a
two-dimensional resonator, and consequently the mag-
nitude of the angular divergence of the radiation θ
« Aq'/2a, saturate very rapidly with increasing pump
intensity above threshold (q' ~ [(κ — 1)/κ] ι / 3, where κ
is a parameter equal, in the case of a four-level me-
dium, to the ratio of the pump intensity to the threshold
value). If a sufficiently intense pump is uniformly dis-
tributed and q' £ 3, the following simple formulas hold:

1,5/p e»0,7p«/3j/ (8)

We see from them that inasmuch as q'~ a, the angu-
lar divergence of the radiation does not decrease with
increasing cross section of the active elements, and
moves farther and farther away from the diffraction
limit. The same regularities should also hold in a
three-dimensional resonator,Ε β ζ 1 as was confirmed by
direct experiment for the case of a neodymium-glass
l a s e r . " "

The data given in i922 also make it possible to draw
a number of conclusions concerning the operation of a
laser with nonuniform distribution of the pump intensity
I and of the losses ρ over the cross section of the res-
onator . If I/p can be approximately represented in the
form of the sum of the intensities of the lower modes,
then the generation will be realized just at these modes.
In this case both the mode deformation and the sum-
mary angular divergence are small. A simple analysis
shows that such a situation should be observed most
frequently if I/p decreases smoothly from the center
towards the edge of the resonator; the intensity of the
lowest mode increases noticeably compared with the

case of uniform pump distribution.*
When the ratio I/p is minimal at the center of the

resonator, this should lead as a rule to a large angular
divergence, not only because of the presence of many
modes in the generation, but also because of the consid-
erable mode deformation. Finally, in the case of a
sharply asymmetrical distribution of the pump, the an-
gular divergence of the radiation should be especially
large.

All the foregoing regularities are actually observed
in laser investigations if measures are taken to reduce
the phase aberrations of the resonator to a minimum.
Thus, in C7s:i a large concentration of the pump on the
axis of a cylindrical rod caused a decrease of the angu-
lar divergence of the radiation. Interesting results were
also obtained by comparing the cases of symmetrical
and asymmetrical distribution of the pump over the
cross section of the resonator ;C72:1 they can serve as
a good illustration of the presented considerations
(Fig. 5). In particular, the sharp asymmetry of the
angular distribution in the case of asymmetrical pump
distribution offers evidence of large mode deformation,
since the modes of the ideal resonator have a symmet-
rical far-field picture.

Summarizing the materials concerning multimode
generation of solid-state lasers, it should be noted that
most of the calculations C 1 1 1 ' 1 1 2 ' 7 4 > 9 2 > 2 4 : were performed
in an approximation in which the intensities of the
modes present in the generation are additive, and not
their amplitudes. + The interference terms are not con-
sidered, for even in the case of two modes their con-
sistent calculation is quite complicated (for example,
[i2o]^ F o r a n u m b e r of reasons it can be assumed that
the use of such a very simple approximation is reason-
able.

Indeed, the most characteristic generation regime
of solid-state lasers is the regime of irregular spikes
of radiation. It is known that the energy characteristics
of the generator, when averaged over a sufficiently large
number of spikes, correspond to the data of the proba-
bilistic calculations in the stationary approximation.
The same considerations can also be advanced in favor
of the validity of the discussed model, if there is no ad-
ditional mechanism that makes simultaneous generation
on many modes energetically "convenient."

The presence of such a mechanism leads, as a rule,
to the phenomenon of the so-called mode locking. Mode
locking is most frequently observed in monopulse lasers
with passive shutters: the smallest shutter losses are
obtained in the case when the radiation is concentrated
in a spatially short train with large energy density (see,
for example C 1 2 1 ] ) . The length of the train, in turn, is
inversely proportional to the number of locked modes,
as a result of which simultaneous generation on many
modes turns out to be energetically convenient. Natu-

*In real lasers such effects can appear only in the absence of ther-
mal deformations.

+According to the explanation of [ l l s], the unclearly described cal-
culations of A. M. Ratner [U9] were made in the same approximation.
Since Ratner calculated only the summary intensity of the fields,
whereas an evaluation of the divergence calls for knowledge of the dis-
tribution of this intensity among the individual modes, we shall not stop
to discuss the results of [ 118>119] in detail.
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FIG. 5. Angular distribution of laser radiation in the case of pum-
ping that is not uniform in one of the directions, in accordance with
the pump distribution of [n]. a) Pump distribution (thickness of active
element 8 mm), b) angular distribution of the radiation.

rally, one cannot obtain estimates for such a regime by
using the simplest balance equations.

In the case of solid active media one also observes
in individual spikes simultaneous generation on several
transverse modes (predominantly in the case of a ruby
laser and quite rarely for neodymium-glass lasers1122·1).
The possibility of locking of transverse modes was dis-
cussed theoretically in ll23i. Finally, the phenomenon
of transverse-mode locking was indeed observed re-
cently in investigations of lasers with high uniformity
of the pump-radiation distribution.11243 In spite of this,
the locking of transverse modes is not as clearly fav-
ored energy wise as in the example discussed above,
and cannot change significantly the number of modes
present in the generation.

By virtue of this, a multimode approximation of the
probability theory is convenient for an estimate of the
angular characteristics of the radiation averaged over
a large number of generation spikes. The influence of
the singularities of the kinetics and of the inevitable
aberrations can only increase the angular divergence
compared with the value predicted by (8) (as was indeed
observed for large cross sections of the active element
C 7 2 3 ). It is clear that in the case of a large number Ν of
Fresnel zones special measures are necessary in or-
der to bring the width of the directivity pattern close to
the diffraction limit. Part II of the paper is devoted to
an examination of these measures.

II. METHODS OF ANGULAR SELECTION OF RADIA-
TION

1. Angular Selection in Lasers with Planar Resonators

Various procedures, unified under the common name
of angular selection, are used in order to reduce the

angular divergence of the radiation. In evaluating them,
the following must be borne in mind.

Angular selection in the general case causes a de-
crease of both the number of non-synchronized modes
present in the generation and of their deformations. In
the case of an ideal active medium, the mode deforma-
tions are small, t 9 Z 3 and the number of modes depends
principally on the ratio of the diffraction to the non-
selective losses. Therefore for angular selection with
an ideal medium it is necessary to increase the differ-
ences of the diffraction losses.

In the presence of aberrations of any type, to de-
crease the mode deformations, in accordance with Sec.
1.3, it is necessary to increase the differences of the
eigenvalues of the operator Ρ (see (6)), including the
phase corrections.

Having made this general remark, let us proceed to
consider individual methods of angular selection.

The simplest and most natural method of angular
selection is to decrease Ν by increasing the resonator
length" 0 ' 1 2 5 " 1 2 8 ' 4 " (such measures as the use of dia-
phragms of small cross section greatly reduce the
efficiency of the laser and will not be considered here).
This increases both the diffraction losses and the phase
corrections. As a result, if the aberrations are small,
the angular divergence of the radiation decreases like
L^q2 up to the diffraction limit without an appreciable
decrease of the generation power.1453 In the case of
large resonator aberrations, the "forced" decrease
of the mode deformations is connected with a sharp
increase of the diffraction losses; as a result, it is
impossible to reach the diffraction angle without loss
of generation power.C1273 This is precisely why the axial
strength of the light passes through a maximum with in-
creasing resonator length long before the angular diver-
gence of the radiation reaches the diffraction limit.C1273

With increasing cross section of the active element, the
required distance increases rapidly (~a2), and its mag-
nitude becomes unreasonable already at 2a > 1 cm. In
this case the desired effect can be reached by introduc-
ing into the resonator with small L special additional
elements called angular selectors. Historically, the
first type of angular selector was a system used in the
case of a planar resonator and consisting of two con-
focal lenses on a small-aperture diaphragm placed in
their common focus.1·129"1313 A planar resonator with
such a selector (Fig. 6a) is perfectly identical to a con-
centric resonator with a diaphragm in the central plane
ci32.ee: ( F i g _ 6 b ) _ ^ [133̂  t h e r Q l e o f t h e d i a p h r a g m w a s

played by a passive shutter.
The action of a selector based on a Fabry-Perot in-

terferometer 1 1 3 4 ' 1 3 5 3 (Fig. 6c) is based on the fact that
the transmission of the interferometer depends not only
on the wavelength but also on the radiation propagation
direction. Since this dependence becomes stronger for
oblique incidence of the beam, the interferometer is
mounted at a certain angle to the resonator axis. To
realize angular selection in both directions it is nec-
essary to use two interferometers.

Perhaps the most widely used selection method is
based on the use of the dependence of the reflection co-
efficient at the boundary of two media on the angle of
incidence near the critical angle of total internal re-
flection. t l 3 e 3 To intensify the selection, it is possible
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c)

i)

FIG. 6. Diagrams of angular selectors. 1-Active sample, 2-flat
mirror, 3-spherical mirror, 4—diaphragm with aperture, 5-lens, 6-
Fabry-Perot interferometer, 7-plane-parallel plate.

FIG. 7. Form of the transmission
bands of different angular selectors.
1—Gaussian selector, 2—selector based
on Fabry-Perot interferometer, 3—"i-
deal" selector.

to make the light experience numerous reflections (see
Fig. 6d). Various modifications of selectors of this
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type were proposed ([137-143] and others).
Let us examine the mechanism of the influence of the

selectors on the angular divergence. It is obvious from
quite general considerations that the presence of a se-
lector whose transmission depends on the direction of
propagation of the radiation affects primarily the mag-
nitude of the losses. The phase corrections are deter-
mined by the phase velocity possessed by the wave front
with the corresponding structure, and should change in-
significantly in the presence of the selector. The re-
sults of rigorous calculationsC144:l confirm this conclu-
sion.

We present data for the idealized case of a Gaussian
selector whose transmission-band shape is intermedi-
ate between those of the real selectors shown in Fig. 6,
and described by the formula gz{q>) = exp [- (φ/Δφ)ζ]
(Fig. 7; see U * 4 J ) , where φ is the angle between the di-
rection of propagation of the radiation and the resonator
axis, Αφ the bandwidth, and g2 the intensity t r a n s m i s -
sion. If it i s recognized that t r a n s v e r s e modes with in-
dex m correspond to values φ = ± m.6(Hf/2 (m; θ^α
= X/2a), we get from this directly the value of the loss
introduced by the selector Δ (4irpm) = m2(6^if /2Αφ)ζ

(the same resul t was obtained in C 1 4 4 ] by a more r igorous
method).

We now t r a c e the manner in which the angular diver-
gence of the radiation should change with the bandwidth
of the se lector .

In the absence of aberrat ions, the role of the se lec-
tor reduces to a change of the conditions for mode com-
petition (Sec. 1.4) by increasing the loss differences.
The los ses introduced by a Gaussian selector a r e larger
than the diffraction losses in an ideal empty resonator
at 2A<p/0dif < ( a 2 A L e q ) 3 / 4 . Since a2/ALeq = Ν is usually
large for solid-state l a s e r s , the angular divergence can
decrease strongly even at a relatively large selector
bandwidth. An est imate shows that to reach the single-
mode reg ime with an ideal active medium it suffices to
use a selector with Αφ l a rger than θ$β /2 by several
t i m e s .

Such a possibility is based on the fact that the losses
introduced by this type of selector a r e noticeable a l-
ready at φ <C Αφ (see Fig. 7). From among the rea l
se lec tors , such a (quadratic) form of the g((p) depen-
dence at smal l φ i s possessed only by the selector based
on the F a b r y - P e r o t inter ferometer (Fig. 6c). Selectors
with a p e r t u r e s (Figs. 6a and 6b) and those using total
internal reflection (Fig. 6d) have t ransmiss ion bands
with a form close to rectangular ( " i d e a l " se lectors
ci44,i45]j ^ yjjg c a s 6 j a s e x p e c t e d , the presence of a
selector influences the losses noticeably only for those
modes whose indices a r e close to the value 2Αφ/θ(\α,
Lli42 and therefore se lec tors of these types can decrease
the angular divergence only to a value approximately
equal to Αφ.

In the case of large aberrat ions, the main function
of the selector should be to decrease the deformation
of the modes with the highest Q. We recal l that the
mode deformations themselves can be treated as a r e -
sult of the presence of induced oscil lations in other
modes (see Sec. 1.3, and also I 1 2 0 J ) . Starting from this,
it is easy to verify that to decrease the mode deforma-
tions, the loss introduced by the selector should turn
out to be la rger in magnitude not only than the diffrac-
tion losses , but also than the phase correct ions in the
empty resonator . It follows therefore that in the case
of noticeable aberrat ions only se lectors with relatively
small bandwidths can be useful ( regardless of the shape
of the band).

When se lectors a r e used, just as in the case of angu-
lar selection by increasing the resonator length, inter-
est attaches not only to the angular but also to the en-
ergy c h a r a c t e r i s t i c s of the radiation. The possibility
of decreasing the width of the directivity pattern without
an appreciable loss of radiation power is connected with
the magnitude and character of the aberrat ion. This
connection is most c lear ly manifest when the form of
the scatter ing indicatrix is considered.

Figure 8 shows schematically two directivity pat-
te rns of a light beam after a single pass through an
active sample (the wave front is plane on entering the
sample). These d iagrams character ize directly the an-
gular divergence of the radiation on leaving the la ser
system, using the given sample as the final amplifier
(provided, of course, that the beam is well collimated
at i ts input).

The f irst of them (Fig. 8a) per ta ins to the case of
weak light scatter ing by microinhomogeneities. The
greater p a r t of the energy of the light passing through
the sample (of the o r d e r of 1 - P S C a t ! w e neglect the
presence of secondary diffraction maxima) is concen-
trated in the centra l core having the diffraction width.
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F I G . 8. Directivity pat tern of radiation for a single pass through

the active sample, a) Light scattering by microinhomogeneities, b) pre-

sence of macroinhomogeneit ies.

T h e r e m a i n i n g p a r t of t h e r a d i a t i o n i s d i s t r i b u t e d i n a

r e l a t i v e l y w i d e r a n g e of a n g l e s .

F i g u r e 8 b c o r r e s p o n d s t o t h e p r e s e n c e of w a v e a b e r -

r a t i o n s of l o w o r d e r ( l i g h t s c a t t e r i n g b y m a c r o i n h o m o -

g e n e i t i e s ) . W h a t i s b r o a d e n e d p r i n c i p a l l y i s t h e c e n t r a l

c o r e o f t h e d i a g r a m i t s e l f , a n d t h e a x i a l s t r e n g t h of t h e

l i g h t d e c r e a s e s a p p r e c i a b l y . It f o l l o w s f r o m t h e R a y -

l e i g h c r i t e r i o n , i n c i d e n t a l l y , t h a t t h e w i d t h of t h e c o r e

b e g i n s t o e x c e e d t h e d i f f r a c t i o n l i m i t n o t i c e a b l y w h e n

the aberrations exceed λ/4.
It is obvious that even for equally large initial values

of the angular divergence of the laser, attempts to de-
crease it will lead to essentially different results in the
cases of Fig. 8a and 8b. The light scattering by micro-
inhomogeneities does not prevent the diffraction limit
from being reached; the power of the generated radia-
tion decreases negligibly in this case (the effective
losses increase approximately by PscatC45:i)· m m e case
of Fig. 8b, an attempt to narrow down the angular diver-
gence to a value smaller than the width of the central
core of the scattering indicatrix entails inevitable and
considerable energy losses.

With this, we can conclude the analysis of the mech-
anism of the influence of angular selectors on laser
characteristics. When all the foregoing devices are
used, as well as some others (for example C 1 4 e 3 ), a de-
crease of the angular divergence and an increase of the
radiation brightness are observed. Nevertheless, angu-
lar selectors are not widely used, owing to the stringent
requirements with respect to manufacturing and adjust-
ment accuracy, as well as many concrete shortcomings
inherent in each type of selector.

The main shortcoming of a system with a diaphragm
(Fig. 6a or 6b) is the undesirable concentration of the
radiation in a small part of the cross section. Even in
lasers of relatively low power this leads to destruction
of the diaphragm or to electric breakdown near its sur-
face.C 6 e ] When a Fabry-Perot interferometer is used,
it is necessary to cope with the presence of a large num-
ber of transmission maxima. Finally, selectors based
on total internal reflection are especially complicated
to construct and adjust.

All this led to numerous and repeated attempts to
attain high directivity of radiation with the aid of sim-
pler means. Such attempts led at best to a slight in-
crease of the brightness, and were of no great signifi-
cance.

Thus, in t 1 4 7 3 the diffraction losses were increased
by providing the output mirror of a planar resonator
with a semitransparent reflecting coating only on a
section having an area smaller than the cross section
of the active rod. The same device with slight modifi-
cations was used in lliai. This selection method found

its logical culmination in a laser described by Yu. A.
Kalinin, A. A. Mak, et al., in which the resonator mir-
rors had variable transmission over the cross section.
C 1 4 9 ] In all cases the degree of directivity was increased
and the misalignment sensitivity of the mirrors was de-
creased, but in the case of intense pumping the angular
divergence exceeded the diffraction limit appreciably.

We note that the generators with mirror transmis-
sions that are variable over the cross section are a
clear-cut example of systems in which the mode struc-
ture depends extremely strongly on the excitation con-
ditions. Η the pump is uniformly distributed and the
generation threshold is slightly exceeded, the field con-
figuration of the individual modes is close to the con-
figuration predicted by the theory of corresponding
empty resonators.C 1 5 0 3 If the excess above threshold is
large, then as a result of mode competition the distri-
bution of the gain over the resonator cross section ap-
proaches the distribution of the losses, and the struc-
ture of the individual modes becomes similar to the
structure in lasers with ordinary flat mirrors . To es-
timate the angular divergence at a large excess above
the generation threshold, and for an ideally active me-
dium, it is possible to use the results of C9Z].

In addition to the already mentioned papers, many
articles have been devoted to angular selection but con-
tain little useful information. These include, for exam-
ple, the series of papers by N. E. Korneev et al. [ 1 5 1~1 5 e 3

They use resonators of a great variety of types: convex-
concave with a geometry close to semi-concentric,C 1 5 1 ]

confocal, [ 1 5 3 '1 5 5 3 with convex mir rors/ 1 5 2 ' 1 5 4 3 and finally
a system equivalent to a planar composite resonator. i l 5 e i

Judging from the presented concrete data, the angular
divergence turned out to be approximately the same in
all cases and exceeded the diffraction limit by 5-10
times. This contradicts the statement made by the au-
thors that the diffraction limit had been reached, and
the treatment of the results of the papers does not cor-
respond to modern theoretical notions.

In conclusion, mention should be made of one more
method of constructing highly efficient laser systems
with small angular divergences. It is universal and con-
sists of using a driver generator and a number of stages
of succeeding amplification. The driver generator can
be of low power and have low efficiency, so that it is
easy to obtain single-mode operation under these con-
ditions. The generator radiation is usually fed to a
telescopic system, which increases the diameter of the
light beam, and then to amplification stages which are
in turn separated by telescopic systems (Fig. 9).

Since small aberrations lead in light amplifiers to
much smaller distortions of the wave front than in gen-
erators with flat mirrors (Sec. 1.3), such systems in-
deed ensure a minimum angular divergence of the ra-
diation, but they are very complicated. It has been
shown recently that similar output characteristics can
be obtained from simpler generators with "unstable"
resonators. The next section is devoted to their dis-
cussion.

2. Lasers With "Unstable" Resonators

In 1962 Boyd and Kogelnik1·1573 compiled a classifica-
tion of open resonators made up of two spherical mir-
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FIG. 9. Example of a multistage laser [66]. 1 -Active rod, 2-tele-
scopic system, 3—selector unit with diaphragm and total-reflection mir-
ror, 4—semitransparent mirror on a Brewster-angle prism, 5—shutter.

rors with arbitrary curvature radii Rx and R2. They
showed that in the case when the product (1 - L/Rj)
χ (1 - L/R2) becomes smaller than zero or larger than
unity (L is the distance between the mirrors, and the
radii of convex mirrors are assumed to be negative),
the diffraction losses increase exceedingly sharply.
Since stable generation is impossible in the presence
of large diffraction losses, resonators with such pa-
rameters were called unstable and for a long time were
neglected by the specialists.

Interest in them was revived only after the publica-
tion in 1965 of a paper by A. Siegman.1158-1 He succeeded
not only in correctly understanding certain features of
unstable resonators, but also in arriving at the conclu-
sion that their use may be promising. Nonetheless, as
indicated by Siegman himself, the main problem—estab-
lishing the possibility of the selection of transverse
modes—was not solved by him either theoretically or
experimentally. Many important features of lasers with
unstable resonators were revealed only by subsequent
investigations. The advantages of such systems were
completely realized relatively recently. C 1 5 9 ' i e o : l

We shall first discuss briefly the properties of empty
unstable resonators: this question has not yet been dis-
cussed systematically in the literature.

A very interesting feature of unstable resonators is
that their main properties can be described within the
framework of the simplest geometrical approximation.
In this approximation the fundamental mode of an ideal
unstable resonator consists of spherical waves travel-
ing in both directions and having virtual or real centers.
The positions of these centers are conjugate with re-
spect to each of the mirrors (Fig. 10). Satisfaction of
this condition ensures reproducibility of the form of the
wave front after its passage through the resonator.'1 5 8·1

Starting from this, it is easy to find with the aid of geo-
metrical optics both the locations of the centers them-
selves and the coefficient of magnification Μ of the
transverse dimensions of the spherical wave after pas-
sage through the resonator (see Fig. 10).

We note that the curvature of a "converging" wave
having the opposite propagation direction (with the di-
rections of the arrows in the figure reversed), is also
reproducible, but the dimension of its cross section

b)

c)

FIG. 10. Different types of unstable resonators.

FIG. 11. Equivalent diagram of a laser with a telescopic resonator.
1 —Active sample, 2—gathering lens equivalent to a concave mirror, 3—
scattering lens equivalent to a convex mirror.

does not increase, but decreases by a factor M. Inas-
much as the cross section continues to decrease on
further passing through the resonator, such a wave does
not correspond to a steady-state solution. At the same
time, the cross section of a wave with the ray travel as
shown in the figure turns out to be limited because of
the finite dimensions of the mirrors. Some of the radi-
ation leaves the resonator, and this determines the
large magnitude of the losses. In accordance with the
fraction of the radiation remaining in the resonator,
the loss is equal to 1 - 1/M in a two-dimensional res-
onator and 1 — 1/M2 in a three-dimensional one; it is
determined only by the ratios Rx /L and Rg /L and does
not depend on either the parameters of the mirrors or
on which of them (or in part both) limits the cross sec-
tion of the beam.

For the case of unstable resonators, the influence
of the wave aberrations of lower order can frequently
be estimated within the framework of the geometrical
approximation and turns out to be small. Indeed, let us
consider in accordance with ll60i the passage of a light
wave through the equivalent scheme of the laser with
the so-called telescopic resonator proposed in il5Bi

(Fig. 11). This resonator consists of confocal convex
and concave mirrors (Fig. 10c); the generation radia-
tion propagating towards the convex mirror is a par-
allel beam, thereby ensuring a number of practical
advantages.

As seen from Fig. 11, the radiation filling the entire
cross section of the resonator is first " spread" during
several passes from the central part of the cross sec-
tion. The dimension of this part decreases with in-
creasing number of passes in geometric progression,
and rapidly becomes small enough to permit regarding
the steady-state front as plane within its limits.

If Μ and the number of the Fresnel zones Ν are suf-
ficiently large, the process of "spreading" of the radi-
ation is described by the geometrical approximation.
We see that the influence of the aberrations accumulates
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essentially only within a small number of passes.* The
expression for the steady-state field distribution can
then be represented in the f o r m a e i J

•M= II
φ (JFX)

Φ(υ)
0)

where r is the distance to the resonator axis, Φ(Γ) is a
factor describing the influence of the amplitude and
phase aberrations for passage of the wave through the
resonator in both directions (this factor is similar to
the factor F introduced in Sec. 1.3, but in the general
case it is not equal to it); in the absence of aberrations
Φ(Γ) = 1.

It is easily seen that (9) is a solution of the equa-
tionmi,iei]

(For a two-dimensional resonator k = %, and for a three-
dimensional one k = 1).

Estimates made with the aid of (9) show that the gen-
eral deformations of the wave front naturally decrease
with increasing M, and even at Μ = 2 they slightly ex-
ceed the magnitude of the aberrations per pass that are
inevitable in any laser scheme.

These are the most important properties of unstable
resonators that can be found with the aid of the geomet-
rical approximation. In the diffraction approximation,
the picture would be more complicated. Computer cal-
culations have shown that an increase of the transverse
dimensions of the mirrors is accompanied by a succes-
sive alternation of the modes having the highest Q;C159>

162,172] th e alternation occurs at mirror dimensions cor-
responding to integer values of the parameters Neq
= Αφ/τι, where Αφ is the phase advance over the mirror
for the geometrical-approximation wave (in the case of
a symmetrical resonator using convex mirrors we have
N e q = (N/2)(M - l/M); [ 1 7 1>1 5 9- i e 2 ]for a telescopic reso-
nator Neq = 2h/X, where h is the height of the convex
mirror); the modes at the points of alternation are
doubly degenerate in the losses; finally, the distribu-
tions of the fields of the highest-Q modes differ some-
what from the predictions of the geometrical approxi-
mation.

Siegman and Miller, lX7Z} analyzing these effects,
reached the conclusion that it is advisable to use res-
onators with Neq = %, corresponding to convex mirrors
with heights h < X/4.t Actually, however, resonators
with small Neq (and Μ « 1) are of no interest whatever,
since the field distribution in them depends on the in-
homogeneity of the medium almost as strongly as in the
case of flat mirrors .

We have already seen that in the case of large Neq
(and M) the situation is different. In addition, in real
systems of large size, the phenomena revealed by com-
puter calculations should not occur: as shown in t i e l ] ,
their occurrence is connected only with the use of the
little-justified assumption that the mirror edge is

*In this approximation, for the case of a planar resonator the distor-
tions of the wave front would accumulate without limit, and it is impos-
sible to determine the steady-state field distribution without allowance
for the diffraction effects.

+Such systems belong in essence to the "transition region" recom-
mended in ['",174]

ideally sharp and exactly outlined. Even a slight
"smoothing" or unevenness of the edge, such as almost
always occurs, lifts the loss degeneracy of the modes,
the eigenvalues approach the analogous quantities for a
resonator with infinite mirrors, C17V76] and the field dis-
tribution of the fundamental mode begins to be splendidly
described by the geometrical-approximation formula (9).
To lift the degeneracy, it suffices, for example, for the
reflection coefficient of the mirrors to decrease to zero
not abruptly but over a zone of width δ £ a/2Neq.c i e i : l In
necessary cases (principally at relatively small N e q )
the "smoothing" can be realized purposely by such de-
vices as cutting a chamfer, using a diaphragm with an
uneven contour, e tc . K ' 1 6 i : i

We note that the character of the edge of the mirrors
is important because after a single passage through an
unstable resonator, the external part of the beam, which
is strongly perturbed by the diffraction, is taken to the
outside, and far from the boundary of the geometrical
shadow the influence of the diffraction is noticeable only
in the case of an ideally sharp and exactly delineated
edge.

It also follows from the results of Llt11 that reso-
nators with a "smooth" edge should reliably ensure
generation on one transverse mode even for an arbi-
trary but not too uneven distribution of the inverted
population of the resonator cross section.

Thus, in spite of the notions of C172:l, it is precisely
the unstable resonators with large Neq and Μ which
satisfy all the requirements that can be imposed on
resonators for lasers with high spatial coherence of
the radiation.* Their advantages becomes obvious if
attention is called to the fact that a laser with a tele-
scopic resonator corresponds to a system consisting
of a driving generator and an amplifier with a match-
ing telescope between them. The role of the generator
is carried out in this case by the central zone of the
sample cross section, and the role of the amplifier by
the peripheral zone. Unlike the scheme shown in Fig. 9,
the amplification of the beam occurs here also during
the stage of its expansion, which replaces, as it were,
the intermediate amplification stages.

Let us dwell now on questions concerning the choice
of optimal parameters of unstable resonators.

We have seen that the "sensitivity" of the resonator
to aberrations decreases with increasing M. But Μ can-
not be chosen arbitrarily large, since the energy char-
acteristics of the lasers depend on the radiation losses.

It was shown in [ l e o ] experimentally and in [ 1 6 3 : l by
calculation that the energy characteristics of lasers
with planar and telescopic resonators are approximately
the same if the radiation losses for these two types of
resonator are equal. In the case of a planar resonator,
the magnitude of the radiation losses is determined by
the transmission coefficient of the output mirror. In the
case of unstable resonators and large-dimension active
elements, both mirrors are usually made totally re-
flecting; : 1 5 9 ' 1 6 O ' 1 6 4 J the radiation is extracted from the
laser through an annular zone around the mirror bound-

*The foregoing considerations are fully confirmed by the results of
the experimental paper [ m ] , namely, generation at a single transverse
mode with an angular divergence of the radiation ~2" was obtained in
the case of a neodymium-glass laser with N e q « 700 and Μ = 2.
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ing the cross section of the beam (Fig. 10, see also lX5al)-r

the radiation loss is equal to 1 - 1/M2.
It follows therefore that in the case of a telescopic

resonator with total-reflecting mirrors, all the known
formulas of the probability theory130·1 remain in force,
except that the reflection coefficient of the output mir-
ror of the planar resonator R' is replaced by 1/M2. At
the optimal value of Μ (which is equal to 1/VRopt ), the
telescopic resonator results in approximately the same
maximum efficiency as in a generator with flat mirrors.
The use of unstable resonators of other types leads to
a decrease of the efficiency, owing to the poor filling of
the active element by the generation radiation (by a fac-
tor 1.5-2 when Μ Ζ 2

[ 1 5 9 ' 1 8 0 ' 1 β 4 ] ) .

If the gain of the radiation after passing through the
active element is small and the radiation loss cannot
be made sufficiently large, then the cross section of
the annular zone through which the radiation emerges
becomes exceedingly small. This leads to a consider-
able increase of the angular divergence of the radiation
even in the absence of aberrations. α β 5 ' 1 5 9 ] In such cases
it may therefore be more convenient to use a semitrans-
parent mirror in conjunction with a still smaller Μ (so
that the total value of the losses to radiation remains
optimal). Incidentally, at small Μ a plano-convex sys-
tem of mirrors (Fig. 10a) ensures almost the same out-
put parameters of the lasers as a telescopic resonator.
It is necessary only to compensate for sphericity of the
wave emerging from the plano-convex resonator.α β β ' 1 5 9 : ι

The foregoing considerations allow us to conclude
that the use of unstable resonators is particularly con-
venient if the active elements have large dimensions
and the medium is sufficiently homogeneous. In this
case replacement of the planar resonator by a tele-
scopic one should cause a sharp narrowing of the di-
rectivity pattern without an appreciable lowering of the
efficiency.

This conclusion was confirmed by results of inves-
tigations of a neodymium-glass laser. C 1 5 9 ' l e o ' l e 4 ] For an
active element of 45 mm diameter and 600 mm length,
the angular divergence of the radiation was ~ 20" (in-
stead of the usual several minutes, although Μ was rel-
atively small (~2). One additional condition, satisfac-
tion of which turned out to be necessary to attain the
maximum radiation brightness, was revealed: namely,
there should be no sources of light scattering leading
to the occurrence of a "converging" wave (see the
commentaries to Fig. 10) even with negligibly small
initial intensity. l i e o i In the case of a telescopic reso-
nator the "converging" wave (shown dashed in Fig. 11)
arises upon reflection of the "normal" wave from the
flat separation surfaces perpendicular to the system
axis, and therefore, in spite of the presence of anti-
reflection coatings, the ends of the active rods should
be inclined at an appreciable angle (2-3°).*

In conclusion, let us mention a certain properties of
lasers with unstable resonators.

From the point of view of the spectral and temporal
characteristics, this class of generators differs little
from generators with flat mirrors. Only the radiation

*In accordance with [178>161], it is precisely the "converging" wave
resulting from the diffraction by the sharp edge which is responsible for
the effects of mode degeneracy etc. observed in computer calculations
r171,162,1721

spikes have a shorter duration and the time interval
between them increases somewhat. This is caused by
the exceedingly rapid establishment of the oscillations
over the entire cross section of the resonator, owing
to the presence of a mechanism of forced "spreading"
of the radiation ( [1ββ>159:, S ee also R 5 ] ) . In the mono-
pulse regime, the same mechanism leads to a very ap-
preciable change of the output parameters of the laser
(thus, in c i e 4 ] the laser pulse decreased from 40 to ~15
nsec on changing over to the unstable resonator). We
note that Q switching can be realized with the aid of
small-area shutters (relative to the dimension of the
convex mirror).

The parameters of lasers with unstable resonators,
as expected, depend little on the accuracy of the adjust-
ment of the mirrors . In the case of small transverse
displacements or rotations of the mirrors, there is only
a certain change in the direction of the radiation; the
curvature of the wave front varies with the distance be-
tween mirrors. The magnitudes of these effects corre-
spond to the estimates carried out within the framework
of geometrical optics.C 1 5 9 ]*

A particularly important role in unstable resonators
is played by the section adjacent to the axis, from which
radiation "spreads out" over the entire cross section.
The requirements imposed on the optical homogeneity
of the medium and on the quality of the mirrors in this
section are particularly stringent. At the same time,
by introducing radiation from an external source into
it, it is apparently possible to realize effective control
of the radiation of the entire l a s e r . a t o i

With this, we conclude the examination of the prop-
erties of lasers with unstable resonators. The appear-
ance of this class of generators has made it possible to
solve one of the problems of quantum electronics,
namely, the production of simple laser systems ensur-
ing high brightness of radiation at relatively large val-
ues of a highly-homogeneous active medium. If the me-
dium is strongly inhomogeneous, no tricks with reso-
nators can greatly increase the directivity of the radia-
tion without a loss of its power. Indeed, we have already
mentioned (Sec. I.I) that in the case of a strongly in-
homogeneous medium the angular divergence of the ra-
diation θ in a laser with flat mirrors approaches the
angular divergence θ^ of a well-collimated beam after
a single passage through the active sample. Unstable
resonators can ensure in the best case (at Μ > 1) an
angular divergence of radiation approaching eit and
therefore their use is advantageous only if θ S> e r

In order to obtain the minimal angular divergence
with the aid of unstable resonators, it is necessary to
impose definite requirements not only on the optical
homogeneity of the medium, but also on the uniformity
of its excitation. Thus, if the gain per pass of the reso-
nator is less than Mz near the system axis and is large
on the periphery, the generator can still be above the
self-excitation threshold, in spite of the predictions of
the geometrical approximation. The steady-state field
distribution will then be determined principally by dif-
fraction effects (an analogous situation takes place in
a laser with flat misaligned mirrors). The directivity

•Results of similar observations for a CO2 laser were recently pub-
lished [167].
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of the radiation in such cases becomes much worse.
Thus, to form powerful b e a m s with high directivity

of radiation in the general case of an inhomogeneous
active medium it is necessary to have other devices,
perhaps fundamentally new ones.

In conclusion the author is grateful to N. A. Sven-
tsitskaya, V. E. Sherstobitov, and M. P. Vanyukov for
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