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1. INTRODUCTION

J.N recent years, the attention of researchers has
turned again to problems of strong-current electron ac-
celerators. This is due, on the one hand, to the develop-
ment of high-power electronics and the creation of well-
emitting surfaces (electron beams, plasma cathode,
etc.) and, on the other hand, to the increasing interest
in the intense sources of x-rays and microwaves. A
major role was played here also by the recently ad-
vanced ideas of the use of powerful relativistic electron
beams,to initiate controlled thermonuclear reactions
and to transmit energy over large distances.

It was shown already in Langmuir's first papers (see
t l ] and the literature cited there) that the main obstacle
in the path of obtaining strong-current electron beams
is the space charge, which limits the maximum current
in the beams. To overcome this obstacle, P ie rce t 2 ] ad-
vanced the idea of compensating the charge of the elec-
tron beam by means of an ion background. He called at-
tention to the fact that in compensated electron beams
the current cannot increase without limit; at currents
exceeding a certain critical value, electrostatic insta-
bilities can develop in the system. However, confining
himself to the case of infinitely heavy ions, Pierce
could not prove that under these conditions the system
is actually unstable. The physical nature of the insta-
bility of an electron beam passing through an ionic core
was uncovered much later by BudkerC3] and by Bune-
man,'4 1 who took into account the finite mass of the
ions. It will be shown below that it is precisely this in-
stability which determines the limiting current in a
compensated electron beam. In the case of nonrelativis-
tic beams, this current is only a few times larger than
the vacuum limiting current determined by the space
charge of the electrons of the beam. Experimental in-
vestigations,C5: however, did not confirm this theoreti-
cal conclusion fully. In some cases, when the electron

beam was confined by a not very strong magnetic field,
the limiting current turned out to be smaller than that
determined from the condition for the development of
the Buneman instability. In £5 ] it was noted correctly
that the reason for the discrepancy between theory and
experiment is the current-convective instability,16 '7]

which under certain conditions can develop at currents
smaller than required for the development of the Bune-
man instability.

Later, in I8>9: |, an attempt was made to systematize
different types of instabilities that can develop in com-
pensated electron beams, and the critical currents of
such a system were determined from the conditions for
the development of the instabilities. In spite of the qual-
itative agreement with experiment, the analysis carried
out in these papers must be regarded as unsatisfactory.
The point is that in C8>9:| they used the theory of stability
of a spatially-inhomogeneous plasma in the geometrical-
optics approximation (the theory developed in i6'n),
which makes it possible to determine the critical cur-
rents in compensated beams relative to excitation of
short-wave oscillations. A more rigorous analysis car-
ried out in L l o : has shown that the critical currents are
actually determined by the excitation of long-wave os-
cillations with a wavelength larger than the transverse
dimensions of the electron beam. To investigate the
stability of the beams against such long-wave oscilla-
tions, it is necessary to solve the boundary-valve prob-
lem; this solution is given in Chs. 4 and 5 of the present
review. For comparison, we present in Ch. 3 expres-
sions for the limiting currents in uncompensated elec-
tron beams in the cases of both nonrelativistic and rela-
tivistic beam energies. It should be noted that, unlike
the nonrelativistic electron beams, the limiting currents
in which were discussed many times in the literature
(see I 1 | U J and also in the review papers I12>13:), the
question of the limiting currents of relativistic uncom-
pensated beams was discussed, insofar as we know,
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only in c w > 1 4 » 1 5 ] . This remark, however, pertains to
electron beams kept from spreading by a strong longi-
tudinal magnetic field greatly exceeding the magnetic
field produced by the beam current. The question of
limiting currents in partly or fully compensated relativ-
istic electron beams balanced by the current's own
field was discussed long ago. c l e > 1 7 ] A review of the
literature on limiting currents of relativistic beams,
determined from the equilibrium conditions, was r e -
cently presented in C l 8 ] where, in particular, it is shown
that in the presence of a strong longitudinal magnetic
field the current in the electron beam is not limited by
the equilibrium conditions. The limitation on the beam
current is imposed by the requirement that it be stable.

As already noted above, the critical current in a
nonrelativistic compensated beam, determined by the
stability condition, can exceed the limiting current of
an uncompensated beam by only a few times. The situa-
tion is different in the case of relativistic energies of
the beam electrons. In Chs. 4 and 5 of the present r e -
view we show that the critical current in a relativistic
compensated beam can exceed the vacuum current by a
factor (S/mc 2) 2, where S is the electron energy. It
should be noted, however, that such an increase of the
current is possible only under conditions when no cur-
rent-convective instability develops in the system. The
latter, generally speaking, can develop at very small
currents, even smaller than the limiting current in an
uncompensated beam.

At finite values of the magnetic field, it is quite dif-
ficult to produce conditions when the current-convective
instability in the compensated beam does not develop.
It is therefore difficult to make use of the aforemen-
tioned advantage of the compensated beam over the un-
compensated one under real conditions. It is much eas-
ier, as shown in t l 9 ] , to obtain large currents in over-
compensated electron beams in the case when the beam
passes through a denser plasma. The conditions for the
development of the electron current-convective insta-
bility, C 7 > 2 o : ! which limits the critical current in uncom-
pensated beams, are much more difficult. Questions of
the interaction of a relativistic electron beam with a
denser plasma and problems of critical currents in
such a system are discussed in Chs. 6, 7, and 8 of the
present review.

The theory of the interaction of electron beams with
a plasma has been the subject of a large number of pa-
pers (see t 2 1 ' 2 2 ] and the literature cited therein). None-
theless, the presently available tremendous experimen-
tal material C 2 3 ] cannot always be explained and com-
pared quantitatively with the theory. From our point of
view, a good approach £5, an has been noted in recent
years in the experimental investigation of the interac-
tion of beams with a plasma; this approach makes it
possible to establish the correspondence between the
experiments and the theory and consists in investigation
of the interaction of a beam with a plasma produced by
the beam itself by ionization of the gas and in the deter -
mination of the critical parameters (the critical current
or the critical plasma density), at which instabilities
arise in the system. The process of plasma formation
is in this case slow compared with the characteristic
times of development of the instabilities. Therefore, by
regulating the gas pressure, the beam density, its en-

ergy, the magnitude of the longitudinal magnetic field,
and the geometrical dimensions of the system, it is al-
ways possible to create conditions for the development
of some single type of instability and to investigate it in
detail. Such an experimental approach to a beam-plasma
interaction calls for a corresponding change in the for-
mulation of the theoretical research. It becomes the
task of the theory to determine those critical parame-
ters of the plasma and of the beam under which some
type of collective interaction arises in a bounded sys-
tem. It is precisely from this point of view that we pre-
sent in the present review the theory of stability of
electron beams in a plasma.

Finally, we point to one more advantage of a system
with an over compensated electron beam. As will be
shown below (see Ch. 8 and also C 2 4 > 2 5 ] ) , when a rela-
tivistic electron beam interacts with a plasma, the rel-
ative loss of beam energy to excitation of the oscilla-
tions is of the order of ( S/mc2) (n^n,,)1/3, where nx

and ηϋ are the densities of the electrons in the beam
and in the plasma, respectively. Under conditions when
this quantity is small, the loss of beam energy and the
resultant energy spread of the electrons are negligible,
and in spite of the fact that the conditions for develop-
ment of instability are satisfied in this system, the beam
will pass through the plasma practically unchanged. In
this case one should speak of critical currents in the
system, to distinguish it from the case of strictly com-
pensated beams, where the beam loses a considerable
fraction of its energy as a result of the development of
the Buneman instability£26: i and undergoes considerable
changes. Therefore the critical currents in compen-
sating beams are simultaneously also limiting cur-
rents.

Finally, in Ch. 9 of the present review the developed
theoretical concepts are compared with experiments C5>
9,20,27,28 ] o n jjje interaction of electron beams with the
plasma produced by them.

2. FORMULATION OF PROBLEM AND INITIAL
EQUATIONS

We consider an electron beam in an equipotential
drift space, passing along the axis of a metallic wave-
guide of radius R and of longitudinal dimension L
» R . The critical currents passed by such a system
will be determined from the condition of the stability of
the electron beam as it passes either through the com-
pensating background of ions or through the denser plas-
ma. We shall therefore formulate in the present chap-
ter the fundamental equations describing the stability of
such a beam. We investigated two possible geometries
of the electron beam, as shown in Fig. 1 (cases (a) and
(b)). In the first of them, a beam of radius r 0 < R
passes along the axis of the waveguide, and in the sec-
ond it is "tubular" with thickness a =R — Rx. In the

limits as r 0 — R and 0, the two cases coincide
and describe an electron beam completely filling the
cross section of the waveguide.

We note first that in order to prevent spatial split-
ting of the beam, the system must be placed in a suffi-
ciently strong longitudinal magnetic field satisfying the
condition

(2.1)
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FIG. 1

where i^ is the density of the electrons in the beam,
m is the rest mass, γ = (1 - u 2 c 2 ) " 1 / 2 (u is the elec-
tron velocity), and Bo is the magnetic field intensity.
When the condition (2.1) is satisfied, the energy of the
magnetic field is much higher than the energy of the
beam electrons, making it possible to confine ourselves
in the investigation of the stability to consideration of
only the potential (electrostatic) oscillations of the field
in the system.

In addition, we shall assume that the magnetic field
Bo greatly exceeds the self-field of the current, i.e., in
case (a)

2J/cr0,

and in case (b)

2JR
c(№-R\) for a < n.

(2.2a)

(2.2b)

It will be shown below that the conditions (2.2) are
equivalent to requiring that the Larmor radius of the
electrons in the longitudinal magnetic field be small
compared with the transverse dimensions of the beam,
i.e., to the condition of transverse localization of the
electrons.

In fields Bo > 105 Oe the conditions (2.1) and (2.2)
are well satisfied for beams with energy 8 ~ (l-lO)MeV
and r 0 ~ a ~ 1 cm at currents J £ (1-5) χ 105 A (or,
equivalents, for ηχ ~ (1-3) χ 1013 cm" 3).

Finally, it must be specially stipulated that the en-
tire subsequent analysis of the interaction of the elec-
trons beams with the plasma pertains to the stationary
case, and therefore does not take into account the work
necessary to produce the self-field of the beam current.
This work, especially in the region of large currents
and at relativistic electron energies, can greatly exceed
the kinetic energy of the beam. It is consumed, however,
only during the transient buildup of the current in the
system; in the stationary regime, on the other hand, the
energy of the magnetic field remains unchanged and no
work is done. We note that in the system considered by
us the magnetic energy of the current exceeds the kinet-
ic energy of the beam under conditions when the follow-
ing inequalities are satisfied:

J > -
c . .

— (7 — 1 1
l + 4 1 n (

in case (a) and

J ^ •itfic 0 c ,

(2.3a)

(2.3b)

in case (b) (tubular beam). For electron beams that fill
the cross section of the waveguide completely (i.e., r 0

as R or Rj = 0), at energies 1-10 MeV the inequality
(2.3) is satisfied only for very large currents J i ( 1 -
15) χ 105 A. However, if the beam does not fill the
waveguide completely, then the magnetic energy of the

current turns out to be larger than the kinetic energy of
the beam particles even at relatively small currents, on
the order of several dozen kiloamperes.

Having indicated the main limitations, let us formu-
late the equations describing the motion of the electron
beam. Since we are interested in electron beams of high
energy and in their stability against rapidly growing os-
cillations, we can neglect the thermal motion of the par-
ticles. To describe the considered system we therefore
use the relativistic equations of two-fluid hydrodynam-
ics of a cold plasma (see, for example, C29 ] )

ΔΦ= — in.

(2.4)*

where a = e or i, and Φ is the potential of the elec-
tric field, which arises in the system only during the
oscillations.

In the analysis of an uncompensated electron beam it
is necessary to solve the nonlinear stationary system
(2.4) with allowance for the space charge of the elec-
trons, and to determine from the beam cutoff conditions
the limiting current passed by the system (see Ch. 3).

To determine the critical currents in compensated
and overcompensated beams, the system of equations
(2.4) is linearized and the stability problem is solved.
In the stationary equilibrium state it is assumed here
that the beam electrons move with velocity u relative
to the resting ions or the dense plasma. The ζ axis is
assumed directed along the waveguide axis and the beam
velocity and the external magnetic field are parallel to
the ζ axis. Since the critical currents in electron
beams, as will be shown presently, are determined by
excitation of the longest-wavelength oscillations in the
system, the parameters of the beam and of the plasma
(the dimensions of which we assume to coincide with the
beam dimensions) can be regarded as homogeneous with
a sharp boundary. Linearizing the system (2.4) with r e -
spect to small deviations from the equilibrium state and
assuming for the non-equilibrium quantities a time and
coordinate dependence in the form

4 fr\ (2.5)

where I and kg are respectively the azimuthal and
longitudinal wave numbers, we obtain for the potential
of the perturbation field the following equation:

(2.6)

We have introduced here the notation

IV

« 3 / 2

(ω —ku)2 '

ω-ku
1-1
J .

where ω\_, = 4πε2η/ηι, Ω = eB0/mc, β = u/c and the

*[vaB0] =\ax Bo.
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s u m m a t i o n extends over a l l s p e c i e s of charged p a r t i c l e s

in the s y s t e m .

Equation (2.6) should be supplemented with boundary

condi t ions . On the f ree s u r f a c e of the b e a m t h e s e condi-

t ions a r e obtained by integrat ing Eq. (2.6) over an i n -

f in i tes ima l ly thin layer near the s u r f a c e , and take the

form

{Φ}2=Γ0,Βι = 0, (2.7)

< ε ι —=—1—£[Φ[ = 0 . /ο Q\
I dr r J r=ro,Rl \6·°)

O n t h e s u r f a c e o f t h e m e t a l l i c w a v e g u i d e , o n t h e o t h e r

h a n d , w e h a v e t h e o b v i o u s c o n d i t i o n

Φ | Γ = Β = 0. (2.9)

Solv ing Eq. (2.6) with a l lowance for the boundary

condit ions (2.8) and (2.9), we find the d i s p e r s i o n equa-

t ion for s m a l l e l e c t r o s t a t i c o s c i l l a t i o n s of the s y s t e m .

In c a s e (a), i . e . , for a b e a m p a s s i n g a long the a x i s of

the waveguide, th is equation i s wr i t ten in the form

where 7,(i«r0) dr0

_,, h (I K I R) K\ (| kz 1 ro)-Kl (| kz I R) I- (I kz I rp)
; " ' l |Λ(1**1 ro)

(2.10)

For a tubular beam (case (b)) the dispersion equation of
the electrostatic oscillations is of the form

J,{iaR) {/jflfczI Ri) [iae± j

-\k,\N, (iofl,) /; (| kz | Λ.)} + TV, (iaR) [\k1\Jl (ίαΛ,) 1\ (| kz

In ( 2 . 1 0 ) - ( 2 . 1 2 ) , J j , I j , N j , and K; a r e B e s s e l func-

t ions , and

α,=*Ι(ε||/ε±). (2.13)

We note that under conditions when Rj — 0 or r 0 — R,
i.e., when the beam fills the cross section of the wave-
guide completely, Eqs. (2.10) and (2.12) coincide and
are written in the form

J,(iaR)=.O. (2.14)

For a system that is infinite in the longitudinal di-
rection, relations (2.10), (2.12), and (2.14) constitute
the dispersion equations that determine the oscillation
spectra ω = u)(k). Our problem consists of determining
the parameters of the plasma and of the beam for which
instability arises in the system, i.e., there appear
among the roots of Eqs. (2.10), (2.12), and (2.14) solu-
tions with Im a)(k) > 0. It is precisely from this condi-
tion that we shall determine in Chs. 4 and 6 the critical
currents in the beam and the critical densities of the
plasma, corresponding to the onset of instability in this
system.

On the other hand, if the waveguide has finite longi-
tudinal dimensions, then relations (2.10)-(2.14) must be
regarded as characteristic equations for the determina-
tion of the wave numbers k z . Then the solution takes
the form Φ = Σ) C n exp { ik z n z}, where k ^ are the

roots of the characteristic equation. To obtain the dis-
persion equation, this solution must be substituted into

the boundary conditions on the ends of the waveguide,
and the number of these boundary conditions must cor-
respond to the number of roots k ^ . These boundary
conditions will be discussed in Chs. 5 and 7 below, when
we determine the beam and plasma critical parameters
corresponding to the onset of instability in bounded
systems.

3. LIMITING CURRENTS IN UNCOMPENSATED
ELECTRON BEAMS

In uncompensated electron beams, the currents can-
not exceed a value determined by the space charge of
the electrons. Expressions for the limiting current can
be obtained directly from (2.4) by considering a purely
electronic beam. Taking into account the energy and
momentum conservation laws

mc*y + εφ = me2 = const,

env—j = const,
(3.1)

the Poisson equation for a cylindrically-symmetrical
electron beam reduces to the form

In wr i t ing out r e l a t i o n s (3.1) and (3.2) we a s s u m e d that

Φ = 0 at ν = 0. This is how the potential is reckoned in
the literature * 1 1 ' 2 ' 1 1 " 1 4 ] .

An analysis of Eq. (3.2) in the general case for an
arbitrary ratio εΦ/mc2 is very complicated and is pos-
sible only by numerically solving this equation. How-
ever, such an analysis becomes much simpler in the
limiting cases of nonrelativistic and relativistic beam
energies. In the nonrelativistic limit, when β Φ « me2,
we obtain from (3.2)

τ dr \ dr ) ~
ίπί

( 3 . 3 )

T h i s e q u a t i o n i s v a l i d i n s i d e t h e e l e c t r o n b e a m . I n t h e

r e g i o n n o t o c c u p i e d b y t h e b e a m , t h e p o t e n t i a l s a t i s f i e s

t h e h o m o g e n e o u s e q u a t i o n .

T o d e t e r m i n e t h e l i m i t i n g c u r r e n t o f t h e e l e c t r o n

b e a m , t h e P o i s s o n e q u a t i o n m u s t b e s o l v e d u n d e r t h e

f o l l o w i n g b o u n d a r y c o n d i t i o n s :

Φ |r (3.4)

The relation obtained in this case between the current
in the beam and the value of the potential on the wave-
guide axis <Ι(Φ0) must be maximized with respect to
Φο. The maximum value of the current J(u) is the

*To avoid misunderstandings, we note that on entering the wave-
guide (the drift space) all the beam electrons have the same energy (and
consequently the same velocity), which is determined by the accelerat-
ing system. We note, however, that over a length on the order of the
radius of the waveguide the electrons are decelerated by the space
charge of the beam, and at large distances ζ > R there is established a
stationary picture that is uniform in the longitudinal direction and not
uniform radially, and is described by the system of equations (2.4). The
considered particular solution of this system (3.1) and (3.2), which is
homogeneous along the ζ axis, corresponds in essence to the presence
of a sufficiently strong longitudinal magnetic field satisfying the ine-
qualities (2.2).
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sought limiting current of the uncompensated electron
beam passed by the system in question. Since Eq.(3.3)
is nonlinear, the solution of such a problem, strictly
speaking, is possible only numerically. It is precisely
in this manner that the limiting current was determined
for a nonrelativistic electron beam passing in drift
space along the axis of a metallic waveguide. c l l ] We
present here an approximate analytic expression for the
current passed by such a system, obtained from the par-
ticular solution of the equation

(for this solution Φο =0):

J» = -g mu3 (3.5)

The numerica l analysis c a r r i e d out in t 1 1 3 gives the
following values for the limiting c u r r e n t at different r a -
tios R/r 0 :

f 088 for H « r0,
J, = •?£•

0.88
0.31
0.14

for
for

= 2,2r0, ( 3 < 6 )

A comparison of these values with (3.5) shows that this
formula gives, with a sufficient degree of accuracy, the
limiting current up to R / r 0 ~ 10.

At large values of the r a t i o R/r 0 , when In (R/r 0 )
» 1, formula (3.5) becomes inaccurate . In this case it
is possible to obtain an exact analytic expression for
the limiting current of the beam for all electron ener-
gies, assuming the potential inside the beam to be ho-
mogeneous and equal to Φο. The second boundary con-
dition (3.4) must in this case be replaced by

φ ! R== %-mc'1 ^5fj( T _ l ) | (3.7)

which is valid for al l e lectron energies . Here
γ = ϊ / m c 2 = 1/Vl - (u 2/c 2). By determining the cur-
rent passed by the system under these conditions, and
by maximizing it with respect to Φ0) we obtain an ex-
pression for the limiting current in the beam

ι _ >J ο - - - 2 In (R/r0)
( V 2 ' 3 - ! ) 3 ( 3 . 8 )

In the nonrelativistic limit, when γ « 1 + u2/2c2, this
expression takes the form

τ _ Δ muu

(3.9)

In the opposite limit of ultrarelativistic energies of
electrons in the beam, when γ 5ί> 1, we obtain from
(3.8)

τ %c 1
°~~Γ21η(Λ/Γ0)· (3.10)

For an ultrarelativistic electron beam, the limiting
current can be obtained for arbitrary values of the
ratio R/ro.The point is that in this case the Poisson
equation (3.2) with allowance for the inequality βΦ
» me2 reduces to the linear equation

A^_( r ^_\ = _ i U , (3.11)
r dr \ dr ) c \ · /

which can readily be solved analytically and exactly. As

a result we obtain for the limiting current the expres-
s i o n 1 1 0 ' 1 4 ]

%C 1
y o = r "Tl+2 1n(fl/ro)· (3.12)

When In (R/r0) » 1/2 this expression goes over into
(3.10).

Finally, we present an interpolation formula for the
limiting current in an electron beam passing in the
drift space along the axis of the metallic waveguide, one
that generalizes formula (3.6)-(3.12):

J η '— ι
- 2 1η(Λ/Γ 0Γ (3.13)

At high electron energies, γ » 1, this formula is exact,
but at nonrelativistic energies it coincides with good ac-
curacy with (3.6).

From a comparison of formulas (3.5)-(3.13) we see
that with increasing electron energy the growth of the
limiting current in the beam slows down. At nonrelativ-
istic energies we have J o ~ f 3 / 2 , whereas in the ultra-
relativistic limit J o ~ '£•. This circumstance limits con-
siderably the limiting current in vacuum systems at
relativistic beam energies. Thus, as S ~ 1-10 MeV
and R ~ r 0, the vacuum current changes in the range
J o ~ (3-30) χ 104 A. When R > r 0, the limiting current
passed by the vacuum system turns out to be even
smaller.

Much larger currents can be reached in tubular elec-
tron beams under conditions when R » a, i.e., when
the beam thickness a is many times smaller than the
radius of the waveguide. In this limit, the Poisson equa-
tion (3.2) reduces, by making the substitution r = R - χ
(with R » x) to the planar equation

a'2|P _ 4 π ' Τ ΐ ii " " V
δχ' ~~ c Υ \ me* I

(3.14)

which admits of an exact analytic solution. Satisfying
the boundary conditions (3.4) and (3.7), we ultimately
obtain for the limiting current in a tubular electron
beam at R ^i>a the expression1 1 1 5 ]

/. = •!£ (v*/»-i)3/*4. (3.15)

We see that the limiting current in an uncompensated
tubular electron beam exceeds by R/a times the limit-
ing current in the vacuum system when the waveguide
cross section is completely filled with the beam. This
result seems physically obvious. Actually, when the
waveguide cross section is completely filled, the limit-
ing current in the electron beam does not depend on the
radius of the beam. It is important, however, that the
beam touches the metallic walls of the waveguide.
Therefore, by locating beams with radius a « R near
the surface of the waveguide it is possible to increase
the current in the system by a factor R/a. At electron
energies .8 ~ 1-10 MeV and R/a ~ 10, the limiting
current in the tubular beam turns out to be of the order
of J o «s (3-30) χ 105 A.

It should be noted that the r a t i o R/a in a tubular
beam cannot be a rb i t ra r i l y large . The point i s , as indi-
cated above, that neglect of the self-field of the beam
c u r r e n t (of condition (2.2)) imposes the l imitation that
the L a r m o r radius of the electrons be smal l compared
with the t r a n s v e r s e dimensions of the beam. Indeed, by
assuming for the c u r r e n t in a re lat iv i s t ic e lectron b e a m
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the estimate J o ~ (mc'/e) y(R/a) (at R w a this esti-
mate is also suitable for a beam completely filling the
waveguide cross section), we get from conditions (2.2)

where Ω 8 = eB0/mc. In the electron energy range
Β ~ 1-10 MeV of interest to us and at a ~ 1 cm the r a -
tion R/a w 10 can be attained only in sufficiently strong
magnetic fields Bo £ 105 Oe.

The above-noted increase of the limiting current by
a factor R/a in a tubular beam takes place under con-
ditions when the cavity inside the beam is evacuated or
when the beam is contained between two coaxial metal-
lic cylinders. If the cavity inside the beam is filled with
plasma, then, as shown in ll3^) the limiting current in
the tubular beam is no larger than in the case of a solid
beam. In the system considered by us, with a strong
longitudinal magnetic field, the plasma is produced only
in the region occupied by the electron beam, and cannot
diffuse outside the limits of the tubular beam (during
the short time of the pulse duration). Therefore the cav-
ity inside the beam is actually a vacuum.

In conclusion, we emphasize once more that the ex-
pressions given above for the limiting currents in un-
compensated electr on ·> beams, like all the results of the
present review, are valid only in the presence of a
strong longitudinal magnetic field satisfying the condi-
tions (2.2). Only in this case does the self-field of the
current play no important role in the formation of the
beam. The beam electrons are contained and guided by
the external longitudinal magnetic field. On the other hand,
if conditions (2.2) are not satisfied, then the trajectories of
the electrons and the equilibrium of the beams as a whole
are determined essentially by the self-field of the beam.
It is obvious that the first integrals of motion in the
form (3.1) likewise become meaningless in this case,
together with the formulas given above for the limiting
currents of the uncompensated electron beams. Expres-
sions for the limiting currents in electron beams with
allowance for the influence of the magnetic field of the
current on the motion of the electrons can be found
in Ci,i2,i6-i8 3.

4. CRITICAL CURRENTS IN COMPENSATED
UNBOUNDED ELECTRON BEAMS

Let us consider now an electron beam whose charge
is compensated by ions. As already noted, the current
can be larger in such compensated beams than in un-
compensated ones. However, even in compensated
beams the current cannot be arbitrarily large and is
limited by the condition of the development of electro-
static instabilities. The minimum value of the current
at which instability occurs in the beam will henceforth
be called critical. An expression for the critical cur-
rent can be obtained from an analysis of relations
(2.10)-(2.14), which for the here-considered case of an
electron beam unbounded in the longitudinal direction
constitute the dispersion equation of the oscillations.

We investigate first the stability of an electron beam
filling completely the cross section of the waveguide,
i.e., R ss r 0 . It is easy to show that in this case the dis-
persion equation (2.14) reduces to

kl [l _ ψ ϊ ^ — ϊ - - ^ ] + %- (1 — ^ j - ] (4.D

where n e = nj = n^ and μ 8 ; are the roots of the Bessel
function J/ (μ 8/) = 0. In deriving (4.1) we took into ac-
count the inequality (2.1) which makes it possible to con-
fine ourselves to an investigation of the stability of the
beam in the frequency region (ω - k z u) 2 « Ω | ( 1 - β2)

| / 2

In the analysis of Eq. (4.1) it is necessary to dis-
tinguish between two limiting cases. If (μ%ι yVk|R2)
χ (m/M) « 1, then the unstable solutions of this equa-
tion lie in the region ω < kzu, with

0)2 = - (4.2)

where tii

From the instability condition (ω 2 < 0 when a < 0) we
obtain the current in the beam at which an oscillation
mode with specified wave numbers k z, I, and μ3/ is
excited: C 3 ' t e ] *

/ = ^Ηΐγ3(Α·Λ» + μ·,). (4.3)

In the opposite limiting case when ^ I j y V k z R 2 )
χ (m/M);» 1, the unstable solutions of Eq. (4.1) lie in
the region ω as k z u. Writing ω = k z u + yQ, we obtain
for the determination of the small increment y0

ω? .*!/?«

Yo=- ( 4 . 4 )

W e s e e t h e r e f o r e t h a t t h e o s c i l l a t i o n s t h a t c a n g r o w

(γΐ < 0) are those for which ω 2 ^ > k | u 2 > Ω · . The cur-
rent necessary to excite oscillations with a specified
value of ω is given by

j ^ ^ ^ k l R K ( 4 > 5 )

The critical current in a compensated electron beam
with radius r 0 =R, filling completely the cross section
of the waveguide, is determined by minimizing expres-
sions (4.3) and (4.5) and corresponds to the minimum
current in the beam, at which Buneman instability oc-
curs in the system. It is equal to

mu m
(4.6)

In the case of strong magnetic fields, when Ω 6
s / 2 V /> (2.4uy s / 2/E) the critical current passed by the

system considered by us is determined by the first ex-
pression of (4.6); in the opposite limiting case it coin-
cides with the second expression. It should be noted
here that, strictly speaking, this statement is valid
practically for unbounded systems, the length of which
is ,

The influence of finite longitudinal dimensions of the
"•'tem on the critical currents in compensated elec-

*We note that in deriving (4.3) we have neglected terms of order
(m/M)''37 < 1. We shall henceforth neglect such terms throughout.
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tron beams will be discussed in the next chapter.
Expressions (4.3), (4.5), and (4.6) are valid not only

for the case when the beam fills the waveguide com-
pletely and r 0 as R, but also in the case when there is
a small gap satisfying the condition 2.4 In (R/r0) « 1
between the metallic walls of the waveguide and the
beam. If the gap is sufficiently large, however, so that
the inverse condition is satisfied (more accurately
In (R/r0) » 1), then Eq. (2.10) takes the form

1 —
ω2,. 1.2-2 Ι" <1>2, υ) 2 , • -ι r

ττπ 11 ~ ν3 (ω-"* -)2—£-\+Ύ}ι=0'
(4.7)w h e r e

fl =
f o r l ^ 0 ·

f o r
( 4 . 8 )

E q u a t i o n ( 4 . 7 ) i s v a l i d f o r l o n g - w a v e o s c i l l a t i o n s , w h e n

a r 0 « 1 a n d k z R « 1 . I t i s p r e c i s e l y s u c h o s c i l l a t i o n s

w h i c h d e t e r m i n e t h e c r i t i c a l c u r r e n t s i n t h e s y s t e m

c o n s i d e r e d b y u s .

F o r a x i a l l y - s y m m e t r i c m o d e s (I = 0 ) w e o b t a i n f r o m

( 4 . 7 )

1+. rl In (Λ >0)
">Li _ „
ω2 ~ ·

( 4 . 9 )

It is easy to show that unstable solutions of this equation
(with Im ω > 0) appear only if

a n d t h e i n s t a b i l i t y h a s a t w o - s t r e a m c h a r a c t e r ( i s o f t h e

B u n e m a n t y p e [ 3 > 4 ] ) a n d t h e f r e q u e n c y o f t h e e x c i t e d

oscillations lies in the region ω £ (m/M)1/ i3 ykzu. The
minimum current necessary for the excitation of these
oscillations is then determined by the expression

r
·> a —

ie ' 1η(Λ,'Γ0)
( 4 . 1 0 )

On the other hand, if Ι Φ 0, then the unstable oscilla-
tions will appear both in the frequency region ω « k zu
and at ω » k zu. For oscillations in the region ω
« k zu the dispersion relation (4.7) reduces to the
quadratic equation

kzuQe

t h e r o o t s o f w h i c h a r e

4 ( 0 ^ ( 2 - ) . ( 4 . 1 2 )

F r o m t h e c o n d i t i o n f o r t h e i n s t a b i l i t y o f t h e o s c i l l a t i o n s

(Im ω > 0) we obtain the following expression for the
current corresponding to the excitation of an axially -
asymmetrical mode with specified k z and I:

1
1 +21 (I + 1) uy3 (4.13)

This instability has a current-convective character C e ) 7 :

and develops only at finite values of the longitudinal
magnetic field, when the second term in the denomina-
tor of (4.13) differs from zero. As k z — 0, according
to this expression, we get J; — 0. Actually, however,
k z cannot be arbitrarily small; the oscillations turn out
to be unstable only if 4k z u> Ώ^. At the minimum values
of k z, the current Jj tends to

ι m " "'
' """ 8e Μ

( 4 . 1 4 )

It is obvious that the critical current for the excitation
of long-wave oscillations in the frequency region
ω « k z u corresponds to the smaller of the expressions
(4.10) and (4.14), i.e.,

/c r = mm {/„,/,}. (4 .1 5 )

It follows therefore that in strong magnetic fields, when

ο
M

t h e c r i t i c a l c u r r e n t i s d e t e r m i n e d b y e x c i t a t i o n o f a x i -

a l l y - s y m m e t r i c a l o s c i l l a t i o n m o d e s b e c a u s e o f t h e d e -

v e l o p m e n t o f t h e B u n e m a n i n s t a b i l i t y ; i n t h e o p p o s i t e

c a s e , t h e d e c i s i v e f a c t o r s a r e t h e a x i a l l y - a s y m m e t r i c a l

m o d e s a n d t h e c u r r e n t - c o n v e c t i v e i n s t a b i l i t y .

T h e d e v e l o p m e n t o f c u r r e n t - c o n v e c t i v e i n s t a b i l i t y

also determines the character of the long-wave oscilla-
tions in the frequency region ω » kzu, in which the
dispersion equation (4.7) takes the form

ω(ω ( ω , kzu \ ω1,.
Ί^+~ΰ~) ~~~^22/ (( + 1

( 4 . 1 6 )

It is easily seen that Eq. (4.15) can have solutions cor-
responding to unstable oscillations only if ω « Ω ΐ (and
consequently Ω^ » kzu), with

(4.17)

The unstable modes are those for which 21(1 + l)u
> Ω β | k z l r o · T h i s inequality does not depend on the den-
sity, and it can be assumed that such an instability de-
velops at arbitrarily small currents in the beam. Actu-
ally, however, the current is bounded from below by the
value

J>^-Q,\kz\wl (4.18)

I n i n f i n i t e l y l o n g s y s t e m s , t h e q u a n t i t y | k g | c a n t e n d

t o z e r o , a n d t h e r e f o r e t h e c u r r e n t ( 4 . 1 8 ) ( t o g e t h e r w i t h

t h e c r i t i c a l c u r r e n t ) t u r n s o u t t o b e a r b i t r a r i l y s m a l l .

I n s y s t e m s w i t h f i n i t e l e n g t h t h i s i s n o t t h e c a s e .

F o r o s c i l l a t i o n s t h a t a r e s h o r t - w a v e i n t h e r a d i u s ,

w h e n otro ~ 1 a n d k ^ « 1 , t h e r o o t s o f E q . ( 2 . 1 0 ) c o -

i n c i d e w i t h a g o o d d e g r e e o f a c c u r a c y w i t h t h e r o o t s o f

t h e e q u a t i o n j £ ( i a r 0 ) = 0 . T h e n t h e e n t i r e a n a l y s i s o f

t h e d i s p e r s i o n r e l a t i o n i s s i m i l a r t o t h a t p r e s e n t e d

a b o v e a n d l e a d s t o c u r r e n t s s i m i l a r t o ( 4 . 3 ) a n d ( 4 . 5 )

for the excitation of such oscillations, where μ 8; are
the nonzero roots of the equation j'i (μ.3ι) = 0. The criti-
cal current for the excitation of short-wave oscillations
is in this case analogous to (4.6) with the factor (2.4)2

replaced by (3.9)2.
From the foregoing analysis of the stability of com-

pensated relativistic electron beams passing through
the drift space along the axis of a metallic waveguide,
it follows that the critical currents for the excitation of
different oscillation modes under conditions when the
waveguide is completely filled with the beam are always
larger than in the case of incomplete filling. A similar
situation obtains, as shown in Ch. 3, for uncompensated
beams with the same geometry. On the other hand, in
the case of tubular electron beams in the absence of
charge compensation, the limiting current is larger than
in a homogeneous beam completely filling the wave-
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guide. It is therefore of interes t to determine the c r i t i -
cal c u r r e n t s in tubular beams under conditions of com-
pensation of the electron charge by ions.

The dispers ion equation for e lectrostat ic oscillations
in a compensated tubular beam of unlimited length (2.12)
under conditions when R - R j = a « R and aR » 1,
reduces to the form

where s = 0, 1, 2, . . . . This equation is completely
analogous to Eq. (4.1) and descr ibes the interaction of
the e lectron beam with the charge-compensating ions
(i.e., it contains only an instability of the Buneman type).
Therefore the analysis of expression (4.1) r e m a i n s in
force a l so for Eq. (4.18'). As a resu l t we obtain for the
cr i t ica l current upon excitation of short-wave (in the
radia l direction, a a ~ 1) oscillations in a compensated
tubular beam, the expression 1- 1 5 ] (compare with (4.6))

ί ΊΓ^Η3Τ·
ηιη <

(4.19)

F r o m a comparison of this express ion with (4.6) it fol-
lows that in the case of s t rong magnetic fields, when the
upper express ions a r e minimal in formulas (4.6) and
(4.19), the cr i t ica l c u r r e n t for the excitation of axially-
s y m m e t r i c a l modes in a tubular e lectron beam exceeds
by R/a t imes the corresponding current of the homo-
geneous beam completely filling the waveguide,* in ex-
actly the s a m e manner as for uncompensated b e a m s .
On the other hand, if the magnetic field is not very
strong, then the indicated gain in the magnitude of the
cr i t ica l c u r r e n t does not exist, and it may even turn out
that the cr i t ica l current in the compensated tubular
beam is smal ler than in the homogeneous b e a m .

Let us consider now (radially) long-wave oscillations
in the tubular beam, aR « 1. The dispers ion equation
(2.12) for such oscillations under the condition
is written in the form

>2i2f-i2f Λ Ι. ω(ω2_Ω?) Qe(io-k,u) J

This equation, unlike (4.18'), contains a current-convec-
tive instability due to excitation of axially a symmetr ica l
modes with Ι Φ 0. It is possible both in the frequency
region ω > Ω{ and for ω < Ω { . In the frequency region
ω > Ωΐ the unstable modes a r e those for which ω
< kgu, with

e I kz I «•

(4.21)

T h e m i n i m u m c u r r e n t n e c e s s a r y f o r t h e e x c i t a t i o n o f

s u c h o s c i l l a t i o n s c o i n c i d e s w i t h t h e l o w e r e x p r e s s i o n o f

( 4 . 1 9 ) . T h e r e f o r e t h e c r i t i c a l c u r r e n t i n a c o m p e n s a t e d

tubular beam, with allowance for the possible develop-
ment of the high-frequency current-convective instabil-
ity (k z u > ω > Ω]) does not change and is determined by
formula (4.19).

*We n o t e that its conclusion is valid only in the case when the

cavity inside the beam is not filled with plasma. If the cavity is filled

with plasma then the critical current in the compensated tubular beam

for excitat ion of axially symmetrical oscillations is of the same order as

in the solid beam. [ 1 3 ]

The situation is different for the low-frequency c u r -
rent-convective instability when ω < Ώ{. F r o m (4.20) it
follows that

ζ r •* Λ Ωί
kzu (4.22)

The condition for the occurrence of instability (Im ω
> 0) leads in this case to the following expression for
the c u r r e n t : t l 5 : i

4e (4.23)

I n s y s t e m s o f u n l i m i t e d l e n g t h | k z | — 0 a n d c o n s e q u e n t -

l y t h e c u r r e n t J — 0 . A s a r e s u l t , i n a t u b u l a r b e a m t h e

c r i t i c a l c u r r e n t , w h i c h i n i n f i n i t e l y l o n g s y s t e m s i s d e -

t e r m i n e d b y f o r m u l a ( 4 . 2 3 ) , a l s o t u r n s o u t t o b e a r b i -

t r a r i l y s m a l l . I n s y s t e m s w i t h f i n i t e l e n g t h , a s w i l l b e

s h o w n i n t h e n e x t c h a p t e r , t h e c r i t i c a l c u r r e n t i n t h e

b e a m i s b o u n d e d f r o m b e l o w .

5 . I N F L U E N C E O F F I N I T E L O N G I T U D I N A L

D I M E N S I O N S O F T H E S Y S T E M O N T H E

C R I T I C A L C U R R E N T S I N E L E C T R O N B E A M S

F o r s y s t e m s t h a t a r e l i m i t e d i n t h e l o n g i t u d i n a l d i -

r e c t i o n , r e l a t i o n s ( 2 . 1 0 ) a n d ( 2 . 1 2 ) a r e c h a r a c t e r i s t i c

equations determining the wave numbers k z n . The solu-
tion of the field equation (2.6) Φ = Σ/ C,n exp ( i k z n z )

η

s h o u l d s a t i s f y t h e b o u n d a r y c o n d i t i o n s o n t h e e n d s o f

the waveguide, i .e., at ζ = 0 and ζ = L. If the ends of
the waveguide a r e metal l ic, then, obviously,

Φ | β , , ι = 0. (5.1)

These conditions a r e sufficient if the character i s t ic
equations reduce to quadratic equations. Frequently,
however, these equations turn out to be of higher order
in k 2 and it becomes necessary to use additional bound-
ary conditions. We can choose as such conditions the
P i e r c e boundary conditions 1 1 2 3

^ = £ <i -β»)3'2 2 ^ g - o * - μ0 = o,

= 0, (5.2)

where vzi and ffj are the perturbed values of the veloc-
ity and density of the beam electrons in the oscillations.
In the cases considered below, conditions (5.1) and (5.2)
are sufficient.

We start the investigation of the stability of a com-
pensated electron beam in bounded systems with the
case of a beam completely filling the waveguide, r0 ssR.
The characteristic equation (2.14) reduces in this case
to Eq. (4.1). In the frequency region ω < k z u this equa-
tion determines two values k z i 2 = ± k n . The boundary
conditions (5.1) give for k n the following values:*
k n = ττη/L at η = 1, 2, 3, . . . . As a resul t , the frequen-
cies of the excited oscillations and the current n e c e s -
sary for their excitation a r e determined by formulas
(4.2) and (4.3), in which k z — k n . It follows therefore
that if the length of the system satisfies the condition

m ,,3/2 '
(5.3)

*We note that conditions (5.2) are in this case satisfied automatically.
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then the cr i t ica l current in a homogeneous compensated
beam is determined by the expression

(5.9)

__ (2,4)2 mu*
! ~ 4 e ( l — βη3/2

(5.4)

If the system is sufficiently long so that a condition in-
v e r s e to (5.3) is satisfied, then unstable oscil lations o c -
cur in the system at frequencies ω » wu/L. The c h a r -
acter i s t ic equation (4.1) determines in this case two
roots k z i 2 = ω/u ± k n , and the boundary conditions
(5.1) lead'to the following dispers ion equation:

, ω rou,Le Ι, ω1ί \ - 1 _ an ( 5 . 5 )

F r o m an analysis of this equation and from the condi-
tion for the occurrence of the instability (Im ω > 0) we
determine the cr i t ica l c u r r e n t s passed by the system
in the c a s e under considerat ion:

2.4 f - (5.6)

\ ΊΓ Μ r o" ' ·

F o r m u l a s ( 5 . 4 ) a n d ( 5 . 6 ) d e t e r m i n e t h e c r i t i c a l c u r -

r e n t s i n s y s t e m s of a r b i t r a r y l e n g t h . I n p a r t i c u l a r , i n

t h e l i m i t o f a n u n b o u n d e d w a v e g u i d e ( L — °°) t h e y c o r r e -

s p o n d t o t h e r e s u l t s o b t a i n e d i n t h e p r e c e d i n g c h a p t e r , i f

i t i s r e c o g n i z e d t h a t t h e c r i t i c a l c u r r e n t i n t h e s y s t e m

i s d e t e r m i n e d b y t h e s m a l l e r o f t h e e x p r e s s i o n s ( 5 . 4 )

a n d ( 5 . 6 ) . T h i s r e m a r k p e r t a i n s a l s o t o s y s t e m s of f i -

n i t e l e n g t h u n d e r c o n d i t i o n s w h e n t h e p a r a m e t e r s a r e

s u c h t h a t t h e c r i t i c a l c u r r e n t i s d e t e r m i n e d b y t h e f i r s t

e x p r e s s i o n o f ( 5 . 6 ) .

L e t u s c o n s i d e r n o w t h e c a s e o f a n i n c o m p l e t e l y

f i l l e d w a v e g u i d e , w h e n r 0 « R . T h e c h a r a c t e r i s t i c

e q u a t i o n ( 2 . 1 0 ) f o r l o n g - w a v e o s c i l l a t i o n s r e d u c e s i n

t h i s c a s e t o ( 4 . 7 ) . J u s t a s i n t h e c a s e o f a n u n b o u n d e d

w a v e g u i d e , l e t u s a n a l y z e t h i s e q u a t i o n s e p a r a t e l y f o r

modes with 1=0 and for modes with Ι Φ 0.
For axial ly-symmetrical modes {I = 0) in the f re-

quency region ω « k z u, the only one in which the ex-
istence of instability is possible, Eq. (4.7) is quadratic
and determines two roots k z l 2 = ± k n , which assume,
when the boundary conditions (5.1) a r e taken into a c -
count, the d i scre te values k n = ττη/L, where η = 1, 2,
. . . (we note that conditions (5.2) a r e satisfied automat-
ically in this case) . As a resu l t we obtain for the spec-
t rum of the oscil lation frequencies

(5.7)]η (Λ, r0)

F r o m t h e c o n d i t i o n f o r t h e o c c u r r e n c e o f i n s t a b i l i t y i n

the system (ω2 < 0 ) we obtain in this case the following
express ion for the minimum c u r r e n t necessary to excite
the axia l ly-symmetr ical modes :

/ „ = - ( 5 . 8 )
In (fl/r 0) 1" ·

I n d e r i v i n g t h i s e x p r e s s i o n w e t o o k i n t o a c c o u n t o u r

m a i n p r e m i s e c o n c e r n i n g t h e l e n g t h o f t h e s y s t e m ,

L/r 0 > π / in (R/r o )/2. Owing to this condition, formula
(5.8) coincides exactly with (4.10), which is obtained for
the case of an unbounded waveguide, as expected.

For axially a s y m m e t r i c a l modes (1*0) and for
k z r o « 1> the roots of the c h a r a c t e r i s t i c equation (4.7)
a r e equal to

where
—Qf) -i

u I ' 2S/ (ω -

ω|,(ω-Ωί) ,z ι

2
ω (ω 4 2ί (Ζ + ]

1 2 - -
">L

+ ϋ;)ω
" - | " 2 - . _ ^ L _ _ . T

The boundary conditions (5.1) lead in this case to a d i s-
pers ion equation b = k n = irn/L, which in the l imit ω
« k n u gives the following spectrum of the low-fre-
quency osci l lat ions:

Ω?
1 ^ :

(5.10)

F r o m t h e c o n d i t i o n for t h e o c c u r r e n c e of i n s t a b i l i t y

(Im ω > 0), which has the character of current convec-
tion, we obtain in this case the minimum c u r r e n t n e c e s -
sary for the excitation of the axia l ly-asymmetr ical
modes with frequency ω « k n u in a compensated e lec-
tron beam (this c u r r e n t corresponds to excitation of the
modes with 1=1):

»ί(ί+ΐ)?3 τ 1

|
( 5 . 1 1 )

T h i s f o r m u l a i s s i m i l a r t o f o r m u l a ( 4 . 1 3 ) , o b t a i n e d f o r

excitation of low-frequency oscillations (ω < k z u ) in an
unbounded waveguide. In the case of sufficiently long
s y s t e m s , when I > (π/2)Ώ,6τΙ/\ιγ3, it leads to the follow-
ing dependence of the minimum current necessary for
excitation of axia l ly-asymmetr ical modes on the beam
p a r a m e t e r s :

j l = JL^Qerl. ( 5 > 1 2 )

With increasing system length L, the current J ; de-
c r e a s e s . This formula, however, is valid only so long
as L < 27ru/S2i. In longer s y s t e m s , when L > 2ττ\ι/9,ι,
the low-frequency modes of ax ia l ly-asymmetr ica l o s -
cillations (ω « k n u) turn out to be stable. The equa-
tion b = kn = 7rn/L in long s y s t e m s has unstable solu-
tions for ω Li > ^ i k n u , and the frequency of the excited
oscil lations is ω = 2k n u. The minimum current n e c e s -
sary for the occurrence of such instabil it ies is (com-
p a r e with (4.18))

J^^-Q^rl (5.13)

We see therefore that in long sys tems the cr i t ica l c u r -
rent can be a rb i t ra r i l y s m a l l and is bounded from below
by the longitudinal dimension of the sys tem.

Summarizing all the foregoing, we a r r i v e at the fol-
lowing express ion in the l imit of long-wave oscillations
for the cr i t ica l c u r r e n t in a compensated electron beam
in a waveguide of finite length in the case R » r 0 :

JCI = min {Jo, Jt) ( 5 . 1 4 )

w h e r e J o i s d e t e r m i n e d b y f o r m u l a ( 5 . 8 ) a n d Jj i s t h e

l a r g e r o f e x p r e s s i o n s ( 5 . 1 1 ) a n d ( 5 . 1 2 ) .

A s t o t h e s h o r t - w a v e o s c i l l a t i o n s , j u s t a s i n t h e c a s e

of a n u n b o u n d e d w a v e g u i d e , t h e c r i t i c a l c u r r e n t f o r t h e i r

e x c i t a t i o n i s d e t e r m i n e d b y a n e x p r e s s i o n s i m i l a r t o

( 5 . 6 ) w i t h ( 2 . 4 ) r e p l a c e d b y ( 3 . 9 ) . T h e t r u e c r i t i c a l c u r -

r e n t i n t h e s y s t e m i s o b v i o u s l y d e t e r m i n e d b y t h e s m a l -

l e r o f t h e e x p r e s s i o n s ( 5 . 6 ) a n d ( 5 . 1 4 ) .

T h e a n a l y s i s o f t h e s t a b i l i t y a n d t h e d e t e r m i n a t i o n o f
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the critical currents in a compensated tubular beam of
finite length are perfectly analogous. Thus, in suffi-
ciently short systems, when

o n l y s h o r t - w a v e o s c i l l a t i o n s f o r w h i c h a R « 1 a n d

ω << | k z | u can be unstable. The characteristic equa-
tion (4.18), which is perfectly analogous to (4.1) yields,
with allowance for the boundary conditions (5.1), k ^ 2

= ±k n = πη/L; for the critical current we obtain the ex-
pression (compare with (5.4))

' cr ^ J ι = -
π 2 R mil'

( 5 . 1 5 )

I n l o n g e r s y s t e m s s a t i s f y i n g t h e c o n d i t i o n 2 V M / m

χ γ~3^2 < L/a < ffu/aS2j, the unstable oscillations are
those with ω > 7ru/L, and the characteristic equation
(4.18) determines two roots k Z l j 2 = ω/u ± k n . In exact-
ly the same manner as above, we have in this case for
the critical current in a compensated tubular beam

Ja = min{Jl,Ji}, (5.16)

where (compare with (5.6))

π» M U 3 n /-M

4 e L V m * '
( 5 . 1 7 )

F i n a l l y , i f t h e s y s t e m i s s u f f i c i e n t l y l o n g , s o t h a t

L > ιηι/Ώ^, then the critical current in the compensated
electron beam is determined by the relation

where
/,, J-,

ma' Μ 2π=/ί.ιτ _ m u a
 J L

( 5 . 1 8 )

( 5 . 1 9 )

T h e c u r r e n t s J x a n d J 2 a r e d u e t o e x c i t a t i o n o f a x i a l l y -

s y m m e t r i c a l m o d e s , i . e . , t h e y a r e c o n n e c t e d w i t h t h e

d e v e l o p m e n t i n t h e s y s t e m o f t w o - s t r e a m i n s t a b i l i t y o f

t h e B u n e m a n t y p e ; t h e c u r r e n t J 3 , o n t h e o t h e r h a n d , i s

c o n n e c t e d w i t h t h e d e v e l o p m e n t o f c u r r e n t - c o n v e c t i v e

i n s t a b i l i t y i n t h e t u b u l a r b e a m , a c c o m p a n i e d b y e x c i t a -

t i o n o f a x i a l l y - a s y m m e t r i c a l m o d e s . W e s e e t h a t i n v e r y

l o n g s y s t e m s i t i s p r e c i s e l y t h i s i n s t a b i l i t y w h i c h d e t e r -

m i n e s t h e c r i t i c a l c u r r e n t .

I n c o n c l u s i o n , w e p r e s e n t q u a n t i t a t i v e e s t i m a t e s o f

t h e c r i t i c a l c u r r e n t s i n c o m p e n s a t e d e l e c t r o n b e a m s

a n d c o m p a r e t h e m w i t h t h e l i m i t i n g c u r r e n t s t h a t c a n

b e o b t a i n e d i n v a c u u m s y s t e m s . W e c o n f i n e o u r s e l v e s

h e r e t o s y s t e m s o f f i n i t e l e n g t h , f o r w h i c h L < ffu/Oj.

I n t h e c a s e o f s u f f i c i e n t l y h e a v y i o n s w i t h a t o m i c

w e i g h t l a r g e r t h a n 1 0 0 , t h i s i n e q u a l i t y i s s a t i s f i e d u p t o

L ~ 1 0 3 c m e v e n i n v e r y s t r o n g m a g n e t i c f i e l d s B o

~ 1 0 e O e . I t i s p r e c i s e l y s y s t e m s o f s u c h l e n g t h t h a t a r e

o f g r e a t e s t i n t e r e s t i n r e a l c a s e s .

U n d e r c o n d i t i o n s w h e n t h e r a d i u s o f t h e e l e c t r o n

b e a m c o i n c i d e s w i t h t h e r a d i u s o f t h e w a v e g u i d e , i . e . ,

r 0 a s R , t h e c r i t i c a l c u r r e n t u p o n c o m p e n s a t i o n o f t h e

c h a r g e o f t h e b e a m i s d e t e r m i n e d b y f o r m u l a s ( 5 . 4 ) a n d

( 5 . 6 ) . A c o m p a r i s o n o f t h e s e f o r m u l a s w i t h ( 3 . 6 ) , ( 3 . 1 2 ) ,

a n d ( 3 . 1 3 ) , w h i c h d e t e r m i n e t h e l i m i t i n g c u r r e n t s i n u n -

c o m p e n s a t e d e l e c t r o n b e a m s , s h o w s t h a t w h e n L / R

< / M / m y " 3 / i 2 t h e m a i n a d v a n t a g e o f c o m p e n s a t e d

b e a m s l i e s i n t h e r e g i o n o f r e l a t i v i s t i c e l e c t r o n e n e r -

g i e s . I n t h e n o n r e l a t i v i s t i c r e g i o n , t h e c r i t i c a l c u r r e n t

in the compensated beam is only six times larger than
the limiting current J o passed by the vacuum system,
whereas in the relativistic region this ratio can be quite
large, JcrAo « (8 /me2)2 « y 2. This circumstance un-
covers great possibilities for obtaining strong-current
electron beams by compensating the charge of the elec-
trons with an ion background. Thus, at S ~ 5 MeV the
current in the compensated beam can be of the order of
J c r — 107 A, which is 100 times larger than the limiting
vacuum current Jo for such a beam. It should be noted,
however, that such a current can be obtained only in
sufficiently short systems, when L/R i (VM/m )/25
£ 20. In longer systems, as seen from (5.6), the criti-
cal current in the compensated electron beam is smal-
ler and when L/R> VM/m γ~3^2 we have J c r / J 0

a 2(R/L)VMy/m. We therefore obtain for » ~ 5 MeV,
VM/m ~ 400, and L/R ss 102 the value J c r / J 0 ss 25.

Under conditions when the beam does not fill the
waveguide completely and In (R/r0) » 1, the indicated
advantages of the compensated beam over the uncom-
pensated one can occur only in the presence of a suffi-
ciently strong longitudinal magnetic field, satisfying the
requirement

Ω 8 > ν " 2 ^ ln(fl/r0)· (5.20)

When th is inequality i s sa t i s f i ed , the c r i t i c a l current in
the c o m p e n s a t e d b e a m i s determined by formula (5.8)
and J c r / J 0 « («/me 2) 2 = γ2. For a beam^ with Ε
~ 5 MeV, r 0 ~ 1 cm, R/r0 ~ 10 and L/r0 ~ 100, the
inequality (5.20) is satisfied only in very strong mag-
netic fields Bo £ 107 Oe, which can be obtained only in
pulsed systems. In weaker fields, the critical current
in a compensated electron beam is determined by for-
mula (5.12), with J c r / J 0 ~ (2 f fr 0/L)(n er 0/c) In (R/r0).
On the other hand, if Bo < 105 Oe, then the critical cur-
rent in the beam turns out to be smaller than the vac-
uum current. The reason for this decrease of the cur-
rent in the beam is the current-convective instability.

A similar situation also occurs in tubular electron
beams. In relatively short systems and in the presence
of strong magnetic fields, as seen from formulas (5.15)—
(5.19), compensated tubular beams, as well as uncom-
pensated ones, have an appreciable advantage over ho-
mogeneous beams: it is possible to attain in them cur-
rents larger by a factor R/a. When R/a s» 10 and
% = 5 MeV, the maximum current in the compensated
tubular beam can be of the order of 103 A. In long sys-
tems and relatively weak magnetic fields, however, this
advantage of tubular currents is not obtained, owing to
the development of current-convective instability.
Moreover, the critical current in sufficiently long com-
pensated tubular beams may even turn out to be smal-
ler than in homogeneous uncompensated beams.

6. INTERACTION OF UNBOUNDED RELATIVISTIC
ELECTRON BEAMS WITH A PLASMA

We have verified above the advantages of compen-
sated electron beams over uncompensated ones when it
comes to obtaining large currents. Under real condi-
tions, however, it is very difficult to make use of these
advantages, for this calls for placing the system in a
very strong magnetic field. Otherwise there can develop
in the compensated beam a current-convective instabil-
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ity corresponding to excitation of axially-asymmetrical
modes and, in essence, cancelling out the aforemen-
tioned advantages.

More promising in practice for the obtaining of
strong-current electron beams under real conditions,
from our point of view, are overcompensated beams, or
in other words systems with relatively dense plasma
through which an electron beam is made to pass. The
question of the critical parameters of such a system,
under which electrostatic instabilities develop in a rela-
tivistic overcompensated electron beam, is discussed
in c l a ].* The exposition that follows is based on this
reference.

We consider first the interaction of an unbounded
electron beam with a plasma. To analyze this problem,
we start from Equations (2.10) and (2.12), which consti-
tute in the present case the dispersion equations of the
electrostatic oscillations. When R:«r0, i.e., in the case
of a plasma completely filling the waveguide, Eq. (2.10)
reduces to

where u>n and OIL2 are the Langmuir frequencies of
the beam and plasma electrons, the densities of which
in the laboratory frame are respectively n^ and n2. In
writing down Eq. (6.1) we took into account the condition
(2.1), which allows us to confine ourselves to an investi-
gation of the stability of the electron beam in the fre-
quency region (ω — k zu) 2 « n e / y 2 . It is easily seen
that when nx « r^y 3 the solutions of (6.1) correspond-
ing to unstable oscillations of the system can lie only in
the frequency region ω « k zu. For long-wave oscilla-
tions with k zu < Ω β the condition for the occurrence of
instability is written in the form

For short-wave oscillations with
hand, the instability sets in if t

k zu > Ω ε , on the other

( i f f — π,γ-
. (1 + μ»,/*!*?»)

( 6 . 3 )

The minimum value of the plasma density i^ corre-
sponding to the start of the instability in the system will
be called critical. Obviously, to determine the critical
density of the plasma, expressions (6.2) and (6.3) must
be minimized with respect to the wave numbers k z and
μ$1, and the smallest minimum determined in this case
(minimum minimorum) will be the sought critical den-
s i t y t e :

where μ ,̂ = 2.4. According to these expressions, the
dependence of the critical density of the plasma on the

*The existence of a critical plasma density for the excitation of
symmetrical modes by a nonrelativistic electron beam was point out
earlier in [30].

tit should be noted that the excitation of cyclotron oscillations,
when ω*Ί£ ζιι * Ω 6 , is possible at plasma densities exceeding the values

(6.3).

m a g n e t i c f i e l d i s q u i t e s t r o n g a n d c a n e v e n h a v e a n a l -

m o s t " r e s o n a n t " c h a r a c t e r a t s u f f i c i e n t l y h i g h b e a m

densities; at low beam densities, when (ηι/η2)
1/3γ~ι

« 1, no resonance appears. When the critical density
(6.4) is reached, a two-stream instability develops in
the plasma and the fundamental modes s = I = 0 are ex-
cited with frequency ω ^ k zu £ Ω β and with growth in-
crement y 0 £ (n 1 /2n 2 ) 1 / 3 k z uy" 1 . The wave number kg
can vary in this case in a rather wide range, from
k z m i n , which is determined by the length of the system
(see Ch. 7) up to MO O/R. Therefore the frequencies of
the excited oscillations lie in the range nu/L £ ω ~ WL2.

Formula (6.4) remains valid also in the case when
there is a gap between the plasma and the metallic
jacket, but the gap is sufficiently small so that
2.4 In (R/r0) « 1 . In the opposite limit, when R » r 0,
more accurately In (R/r0) » 1, the gap exerts a notice-
able influence on the character of the interaction of the
beam with the plasma. The critical density of the plas-
ma is determined in this case by the excitation of radi-
ally long-wave oscillations for which a r 0 « 1 and
Eq. (2.10) takes the form

Γ ω ; , ω?, ι

-~- + a " - - 7 - / 1 ] = °-

( 6 . 5 )

I n w r i t i n g d o w n t h i s e q u a t i o n i t w a s a s s u m e d a l s o

t h a t k z R <K 1 , f o r i t i s p r e c i s e l y t h e l o n g - w a v e o s c i l l a -

t i o n s w h i c h d e t e r m i n e t h e c r i t i c a l p l a s m a d e n s i t y . F r o m

( 6 . 5 ) w e o b t a i n t h e f o l l o w i n g e x p r e s s i o n f o r t h e m i n i m u m

p l a s m a d e n s i t y , a t w h i c h e x c i t a t i o n o f s y m m e t r i c a l

m o d e s w i t h 1=0 t a k e s p l a c e :

«20 = 3· (6.6)

An analysis of (6.5) for asymmetrical modes (ΙΦ 0)
is more complicated, and it can be carried out analyti-
cally only provided one can neglect terms of the order
of (n 1/n 2) 1 / 3y" 1. Under this condition, we obtain for the
minimum plasma density corresponding to the start of
the excitation of the mode with given I and k z the ex-
pression c l s : i

(6.7)

where

M i n i m i z i n g ( 6 . 7 ) w i t h r e s p e c t t o I a n d k z , w e o b t a i n

t h e c r i t i c a l p l a s m a d e n s i t y f o r t h e e x c i t a t i o n o f a s y m -

m e t r i c a l m o d e s

; i 2 c r = - - 5 - 1 0 - 5 - ^ - K ^ V 3 / 2 · ( 6 . 8 )

I n t h e d e r i v a t i o n o f t h i s f o r m u l a i t w a s a s s u m e d t h a t
ω Ι α Γ ο « 4u2y " 3, for only under this condition can the
critical density determined by formula (6.8) be smaller
than (6.6). This requirement can be expressed more ac-
curately in the form

(6.9)

If this inequality is satisfied, the critical density of the
plasma corresponds to the development of beam-drift
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instability in the system with excitation of the mode with
I = 1 and k z = ωιι1γ

3/2/-ί!τ0Ω,β) and in accordance with
(6.8) it increases with increasing beam density. In the
opposite case the critical plasma density is determined
by (6.6) and corresponds to excitation of axially-sym-
metrical modes in the system*

We note that formulas (6.6) and (6.8) remain valid
also for a finite but sufficiently long waveguide. If it is·
recognized that the frequency of the excited oscillations
is of the order of ω » kzu, and the increment is y0

& (n 1/n 2) 1 / 3k zuy~ l, then in order for formula (6.8) to be
valid it is necessary to have

Formula (6.6), on the other hand, is valid if the weaker
condition

V 1/3
(6.11)

is satisfied. The same inequality determines the appli-
cability of formula (6.4) for the case r 0 «J R. It should
be noted that the inequalities (6.10) and (6.11) are rough
estimates. The influence of the finite longitudinal di-
mensions of the waveguide on the critical plasma den-
sity is investigated more rigorously in the next chapter.
Nonetheless, it follows even from these inequalities that
the conditions for the development of a beam-drift in-
stability, (6.9) and (6.10), are very difficult to realize.
In practice, the critical density of the plasma is always
determined by the development of the two-stream insta-
bility with excitation of axially-symmetrical oscillation
modes.

It is even more difficult to excite axially-asymmetri-
cal modes in a tubular electron beam interacting with a
dense plasma. This can be verified easily by analyzing
the dispersion equation (2.12) for such a beam for insta-
bility. For short-wave oscillations, aR » 1, Eq.(2.12)
takes the form

f.2 Γ) " £ , r 3 ω£, -,
• Ι. (ω — * j u ) s ω2 J

where s = 0, 1, 2, . . . . This equation is perfectly analo-
gous to (6.1). Therefore the entire analysis given above
remains in force also in the present case. Namely, for
the critical density we have in analogy with (6.4)

Γι-ι-
|

Ι γ .}Q2a3 I

ί
{

( 6 . 1 3 )

Expressions (6.13) correspond to the development of
two-stream instability and to excitation of axially -
symmetrical modes in an over-compensated tubular
beam. Axially asymmetrical modes can be excited in
principle in the long-wave limit aR « 1, when Eq.
(2.12) takes the form

*In formulas (6.6) and (6.8) there is no resonant dependence of the
critical plasma density on the magnetic field, which is characteristic of
a completely filled waveguide (see formula (6.4)). Such a dependence
can remain also in the presence of a gap, provided ln(R/r0) ίΞ 1. In this

case, however, the dispersion equation (2.10) must be analyzed numeri-

cally. The resonant dependence can appear also under conditions when

the plasma radius exceeds the beam radius.

1 | **- L 1 = 0 ( fi 1 4 )

It is easy to prove that this equation has unstable solu-
tions only if WL 2 >: k zu > Ω β , and consequently the criti-
cal density for the development of the beam-drift insta-
bility is always larger than (6.13).

7. STABILITY OF BOUNDED ELECTRON BEAMS IN
A PLASMA

The analysis presented in the preceding chapter is
suitable, strictly speaking, only for an infinitely long
waveguide. Only in this case are relations (2.10) and
(2.12) the dispersion equations of the oscillations. In
the case of a bounded waveguide, these relations are
characteristic equations and determine the set of possi-
ble wave numbers k z n of the system oscillations. To
obtain the dispersion equations in this case, the solu-
tions of the field equation Φ = Σ/ C n exp (ik z nz) must

η

b e s u b s t i t u t e d i n t h e b o u n d a r y c o n d i t i o n s ( o n t h e e n d s o f

t h e w a v e g u i d e ) , t h e n u m b e r o f w h i c h s h o u l d c o r r e s p o n d

t o t h e n u m b e r o f r o o t s o f t h e c h a r a c t e r i s t i c e q u a t i o n s .

T h e c o n d i t i o n s f o r t h e s o l v a b i l i t y o f t h e s y s t e m s of a l -

g e b r a i c e q u a t i o n s o b t a i n e d i n t h i s c a s e c o n s t i t u t e t h e

d i s p e r s i o n e q u a t i o n s o f t h e o s c i l l a t i o n s .

A s a l r e a d y n o t e d a b o v e , i n t h e c a s e w h e n t h e w a v e -

g u i d e i s c o m p l e t e l y f i l l e d w i t h a p l a s m a , w h e n r 0 « R ,

a n d a l s o f o r e x c i t a t i o n o f s y m m e t r i c a l o s c i l l a t i o n s w i t h

I = 0 a t R » r 0 i n a t u b u l a r b e a m , t h e i n f l u e n c e o f t h e

b o u n d a r y c o n d i t i o n s o n t h e e n d s o f t h e w a v e g u i d e c a n b e

n e g l e c t e d i f t h e c o n d i t i o n ( 6 . 1 1 ) i s s a t i s f i e d . T h e c r i t i -

c a l p l a s m a d e n s i t y i s t h e n d e t e r m i n e d b y f o r m u l a s ( 6 . 4 ) ,

( 6 . 6 ) , a n d ( 6 . 1 3 ) , r e s p e c t i v e l y . T h e c o n d i t i o n ( 6 . 1 1 ) i s

s a t i s f i e d i n r e a l e x p e r i m e n t s a s a r u l e w i t h a l a r g e

m a r g i n ; t h e r e f o r e , f o l l o w i n g l l s n , w e c o n f i n e o u r s e l v e s

b e l o w t o a n i n v e s t i g a t i o n o f t h e i n f l u e n c e o f t h e b o u n d e d -

n e s s o f t h e w a v e g u i d e o n t h e e x c i t a t i o n o f a s y m m e t r i c a l

modes with Ι Φ 0 at R » r 0, when the characteristic
equation is of the form (6.5).* This equation determines
four roots k z n , and therefore, generally speaking, it is
necessary to satisfy four boundary conditions on the
ends of the waveguide at ζ = 0 and L. However, if it is
recognized that the most appreciable influence is ex-
erted by the boundary conditions on the long-wave oscil-
lations with wavelength comparable with the longitudinal
dimension, we can change over in (6.5) to the limit k | r o
« 1. If we note in addition that the critical density of
the plasma can be smaller than that defined by formula
(6.6) and can correspond to excitation of the mode with
1=0 only if η » 1, then we obtain from (6.5) a quad-
ratic equation the roots of which are equal to

* t l.2 = p ± K F = 4 i , (7.1)
where

"Ί.1

Ω.

l+i)
This c i r c u m s t a n c e enab les us to confine o u r s e l v e s , in

the so lut ion of the prob lem, to the obvious boundary

condit ions (5.1) on the meta l l i c ends of the waveguide,

*The finite length of the waveguide for axially symmetrical modes

is manifest only in the fact that the frequency of the excited oscillations

is limited, ω 7t TTU/L.
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which lead to the following dispersion equation: k j
k z i - kZ2 = 2kn = 2im/L·, where η = 1, 2, . . . , or, what
is the same,

co3 4 3ρ,ω + 2 9 l = 0, (7.2)

w h e r e

3Ρι=
bk'luH (i +1) V3 2*n" 4 ' (' + 1> ωΐ,ιϊ3

F r o m t h e c o n d i t i o n for t h e o c c u r r e n c e of c o m p l e x

roots of Eq. (7.2), corresponding to unstable oscilla-
tions, we obtain the plasma density at which an asym-
metrical mode with specified wave numbers η and I
can be excited in the system:

• ίο-1 (7.3)

From this we have for the minimum density correspond-
ing to excitation of the mode with I = η = 1

„. _ , n - 1 4 Τ / 2 ^ Ω β ϊ 3 / 2

( 7 . 4 )

W i t h i n c r e a s i n g l o n g i t u d i n a l d i m e n s i o n o f t h e s y s t e m ,

a s s e e n f r o m ( 7 . 4 ) , t h e q u a n t i t y n a C r d e c r e a s e s a n d

t e n d s t o z e r o a s L — «>. A c t u a l l y , h o w e v e r , t h e d e -

c r e a s e of t h e c r i t i c a l d e n s i t y o f t h e p l a s m a w i t h i n c r e a s -

i n g L c o n t i n u e s u n t i l e x p r e s s i o n ( 7 . 4 ) b e c o m e s e q u a l t o

( 6 . 8 ) , w h i c h i s v a l i d f o r t h e c a s e o f a n u n b o u n d e d w a v e -

g u i d e . F u r t h e r i n c r e a s e o f t h e w a v e g u i d e l e n g t h n o

l o n g e r i n f l u e n c e s t h e c r i t i c a l d e n s i t y o f t h e p l a s m a ; t h e

w a v e g u i d e b e c o m e s u n b o u n d e d , b y v i r t u e o f w h i c h w e

g e t t h e r e s u l t s o f t h e p r e c e d i n g c h a p t e r . O n t h e o t h e r

h a n d , e x p r e s s i o n ( 7 . 4 ) i s v a l i d o n l y u n d e r c o n d i t i o n s

w h e n i t i s s m a l l e r t h a n ( 6 . 6 ) , f o r i n t h e o p p o s i t e c a s e

e x c i t a t i o n o f a m o d e w i t h 1=0 w i l l o c c u r i n t h e s y s t e m .

T h u s , t h e d e p e n d e n c e o f t h e c r i t i c a l d e n s i t y o f t h e p l a s -

m a o n t h e m a g n e t i c f i e l d w h i c h i s c o n t a i n e d i n f o r m u l a

( 7 . 4 ) c a n a p p e a r i n a r a t h e r n a r r o w r e g i o n l y i n g b e t w e e n

t h e v a l u e s ( 6 . 8 ) a n d ( 6 . 6 ) , o r , e q u i v a l e n t l y , w h e n

• 4 j k ^ i i n ( f l / r 0 ) < A < l 0 - · - ^ . ( 7 . 5 )
Λ/η, ro " i r o

W e n o t e t h a t t h e i n e q u a l i t i e s ( 7 . 5 ) c a n b e s a t i s f i e d o n l y

u n d e r t h e c o n d i t i o n ( 6 . 9 ) . T h i s c o n f i r m s t h e i d e a a d -

v a n c e d a b o v e c o n c e r n i n g t h e d i f f i c u l t y o f o b s e r v i n g

b e a m - d r i f t i n s t a b i l i t y i n o v e r c o m p e n s a t e d e l e c t r o n

b e a m s .

8 . C R I T I C A L C U R R E N T S O F R E L A T I V I S T I C

E L E C T R O N B E A M S I N A P L A S M A

T h e f o r e g o i n g a n a l y s i s o f t h e i n t e r a c t i o n o f a r e l a -

t i v i s t i c e l e c t r o n b e a m o f l o w d e n s i t y w i t h a p l a s m a

m a k e s i t p o s s i b l e t o e s t i m a t e t h e c r i t i c a l c u r r e n t s i n

b e a m s t h a t c a n b e p a s s e d t h r o u g h a p l a s m a f i l l i n g a

w a v e g u i d e . G r e a t e s t i n t e r e s t a t t a c h e s , n a t u r a l l y , t o t h e

t r a n s p o r t o f t h e b e a m o v e r l a r g e d i s t a n c e s . W e s h a l l

t h e r e f o r e d i s c u s s t h i s q u e s t i o n w i t h a n i n f i n i t e l y l o n g

w a v e g u i d e a s a n e x a m p l e .

I t f o l l o w s f r o m f o r m u l a s * ( 6 . 4 ) , ( 6 . 6 ) , a n d ( 6 . 1 3 ) t h a t

10

*It was already noted above that the conditions for the development
of beam-drift instability with excitation of axially-asymmetrical modes
is very difficult to realize. We therefore confine ourselves to an exami-
nation of the consequences ensuing from ordinary two-stream instabil-
ity with excitation of axially-symmetrical modes.

an electron beam can be unstable in the plasma at prac-
tically arbitrarily small current in the beam, provided
the plasma density exceeds the critical value n2 C r. On
the other hand, when nx « n 2y 3 and n2 < n2 C r, the
electron beam in the plasma is always stable, and the
dependence of n2cr o n the current in the beam is weak.
It is precisely this circumstance that makes it possible
to estimate the upper limit of the critical current of a
relativistic electron beam in a plasma. It is equal to

Ja <eun2cr7
3S0, (8.1)

w h e r e S o i s t h e b e a m c r o s s s e c t i o n a l a r e a ( f o r a c y -

l i n d r i c a l b e a m S o = Τ Γ Γ 2 , , w h e r e r 0 < R ; f o r a t u b u l a r

b e a m S o = 7 r ( R 2 - R 2 ) , S o = 2 t f R a ) , a n d n 2 C r i s d e t e r -

m i n e d , d e p e n d i n g o n t h e g e o m e t r y o f t h e b e a m , b y f o r -

m u l a s ( 6 . 4 ) , ( 6 . 6 ) , a n d ( 6 . 1 3 ) . A s a r e s u l t w e o b t a i n f o r

t h e c r i t i c a l c u r r e n t o f a n e l e c t r o n b e a m i n a p l a s m a

t h e f o l l o w i n g l i m i t :

' c , < ^ V i ; ( 8 . 2 )

where ξ is a geometrical factor, equal to ξ = μ2^
= (2.4)2 in the case when the waveguide is completely
filled with a plasma, ξ = 2/ln (R/r0) when R » r0, and
ξ = (;r2/2)R/a for a tubular beam. In writing down (8.2)
it was assumed that the system is placed in a sufficient-
ly strong longitudinal magnetic field, so that Ω; » u/Δ,
where Δ is the transverse dimension (radius or thick-
ness) of the electron beam. In addition, we have neg-
lected terms of order (n1n2)

ly's7'~1, which is valid if the
current in the beam is much smaller than the limit (3.2);
by at least one order of magnitude. Even under this lim-
itation, the currents in electron beams that can be
passed through a dense plasma turn out to be quite im-
pressive. In such overcompensated beams it is possible
to obtain currents that are smaller by only one order of
magnitude than the maximum attainable currents in
compensated beams. Thus, at ( = 5 MeV in an over-
compensated beam completely filling the waveguide, it
is possible to have without special difficulty a current
J ~ 106 A. In a tubular beam this current can be R/a
times larger.

It is important to note that strongly overcompensated
beams have one essential advantage over compensated
beams. The point is that even if an instability arises in
such a system, the beam energy loss (the conversion of
the directional energy of the beam into energy of elec-
trostatic oscillations) and the associated energy spread-
ing of the beam can be negligible if the plasma density
is high enough. Indeed, from the foregoing analysis it
follows that, as a rule, single-mode instabilities should
develop in low-density beams under conditions when the
plasma density is close to critical.* The interaction of
the beam with the wave and the growth of the latter con-
tinues in this case until the wave amplitude reaches the
critical value corresponding to the capture of the beam
electrons by the wave. From this condition we obtain an

"This is indeed the case for axially-asymmetrical modes, since the
necessary plasma densities corresponding to excitation of different
modes of such oscillations, according to (7.3), differ greatly from each
other. As to the symmetrical modes, the plasma densities necessary for
their excitation generally speaking differ little from each other and the
appearance of single-mode instability should be expected only in rela-
tively short systems, when L/r0 ~ (2n2/n1)

1/37 (see also [25]).
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estimate for the amplitude of the potential of the steady-
state wave upon development of instability in the plasma-
beam system:

'φό = ̂ · (8.3)..

where Φό and u' are the amplitude of the potential and
the beam-electron velocity in a coordinate system con-
nected to the wave. In this coordinate system, the beam
electrons are nonrelativistic because of the condition
ω « k z u. On going over to the laboratory coordinate
system, taking into account the fact that in this system
the field of the wave is purely potential, we obtain

Φ ο = ^ ( » « ) > , (8.4)

Recognizing further that Eo = — νΦ 0 and that the maxi-
mum growth increment of the oscillations is y0 m a x

= (ω - k z u) m ax « (rii/2n2)
1 / 3y "Hi^u, we obtain after

simple calculations the relative fraction of the energy
transferred by the beam to the electrostatic wave:C 2 5 ]*

_ i ! _ = J_Jii(_^_\f/3v (8.5)

This ratio, as can be readily understood, also char-
acterizes the smearing of the beam upon development of
instability in the plasma. Therefore, under conditions
when the right-hand side of (8.5) is small, the beam en-
ergy loss and its energy smearing are negligibly small.t
To the contrary, in compensated beams (when nt» n2)
there is no such small parameter, and the development
of the instabilities in such a beam causes its total de-
struction. In this sense it can be assumed that the criti-
cal currents obtained above for compensated beams are
in essence limiting currents, whereas in overcompen-
sated beams they are only critical; in the latter it is
possible to attain large currents without significantly
destroying the beam. This is precisely the advantage of
overcompensated beams compared with compensated
ones.

Finally, attention should be called to the fact that the
right-hand side of (8.5) increases with increasing elec-
tron energy and can become of the order of unity in the
relativistic region. This means that the energy of the
oscillations excited in the plasma can become of the or-
der of the energy of the beam itself, i.e., practically the
entire beam energy goes over, upon development of the
instability, into the energy of the microwave oscilla-
tions. This, too, is an essential advantage of relativis-
tic electron beams over nonrelativistic ones when used
to construct microwave generators and amplifiers for
the centimeter and millimeter bands. The powers of
such sources can be very large. Indeed, at an electron
energy 10 MeV and a current J ~ 105 A (the current is
smaller than the vacuum value, see Ch. 3) the power of
a microwave generator based on the interaction of such
a beam with a plasma can exceed in accordance with
(8.5) 1010 W even at ^ / ^ < 10"4.

It is possible to vary the spectrum of the micro-

*We note that an analogous result is also obtained in the quasilinear
theory of beam relaxation in a plasma [M].

tit should be noted that the indicated small parameter also ensures
smallness of the amplitudes of the higher harmonics of the electrostatic
field upon development of two-stream instability [2S].

FIG. 2

waves excited by the beam in the plasma over a rather
wide range. It follows from the results of Ch. 7 that in
a system of finite length there occurs excitation of os-
cillations with a spectrum ω = (7rn/L)u, where η =1,2,
. . . are the numbers of the various modes. If it is rec-
ognized that two-stream instabilities are convectiveC 2 2 ]

and therefore intensify only the modes for which y0 m a x
f» (n1/2n2)1 / '3 Trnu/yL > u/L, it is easy to determine the
region of the frequencies of the oscillations excited by
the beam,*

- « ω « ' ι (8.6)

where μ0 = 2.4 for a cylindrical beam and μ0 = ττ/2 for
a tubular beam, (in the latter case r 0 should be taken
to be the beam thickness a). We see therefore that un-
der conditions when γ (2n2/n1)r0/L « 1, the microwave
spectrum is broad; on the other hand, if this ratio is of
the order of unity, then the spectrum turns out to be
narrow and one can speak of development of practically
single-mode two-stream instability in the plasma.

9. COMPARISON OF THEORY WITH EXPERIMENT

The interaction of beams of charged particles with a
plasma has been the subject of a large number of ex-
perimental investigations. A splendid review of these
investigations was recently given by Ya. B. Fainberg.1 2 3 3

The most profitable, from our point of view, are inves-
tigations of the interaction of an electron beam with a
plasma produced by the beam itself as a result of ioni-
zation of the residual gas in the chamber, aimed at de-
termining the critical parameters under which instabil-
ities arise in the system. Such an approach of investi-
gating plasma-beam interaction was proposed by M. V.
Nezlin£ 5» 9 ] and developed in C 2 0 > 2 7 > w 2 . The experimen-
tal setup used in these investigations is shown sche-
matically in Fig. 2. The electron beam emitted from an
incandescent cathode at a potential —Vo is accelerated
in the gap between the cathode and a grounded grid
(gap I), passes through drift space Π, and is gathered by
a collector. The electron beam ionizes the residual gas,
producing a plasma in the chamber and by the same
token compensating the charge of the beam. The proc-
ess of gas ionization is slow compared with the charac-
teristic times of instability development in the system,
making it possible to investigate the behavior of the
electron beam during different stages of its compensa-
tion.

At first the electron beam is uncompensated, and the

•Recognizing that the excitation of axially-asymmetrical modes in
overcompensated beams is difficult, we confine ourselves in the estimates
to a consideration of only symmetrical modes.
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FIG. 3. Dependence of the critical
current of a compensated beam on the
electron energy at L = 100 cm, R = 5
cm, and r0 = 0.5 cm. Curve 2 corre-
sponds to a magnetic field Bo = 4000 G,
curve 1 to Bo = 600 G, and curve 3 was
calculated from formula (5.8).
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transmitting ability (more accurately, the limiting cur-
rent) of the system in question is determined by formu-
las of Ch. 3 of the present review.

During this stage, a comparison of the theory with
experiment showing good quantitative agreement between
them was carried out both in C5> 9> 20>28] and in numerous
earlier studies* (see the reviews C 1»1 2 :).

Further on, during the course of ionization of the gas,
the electron beam captures the produced ions and be-
comes neutralized. The critical currents in such a
compensated beam were experimentally investigated in
[5>8 ] ; where it was shown for the first time that the
critical current in a compensated electron beam is de-
termined by the development of the Buneman instability
(accompanied by excitation of axially-symmetrical
modes) and current-convective instability (with excita-
tion of axially-asymmetrical modes). The transition
from the first type of instability to the second is ac-
companied by a change in the dependence of the critical
current on the beam energy (Fig. 3, taken from C 5 ]), as
predicted by the theory expounded in Ch. 5 (see formu-
las (5.8), (5.11), and (5.14)).

From the curves of Fig. 3 we see that at low ener-
gies Jcr ~ u3 ~ ί3/<2, and at high energies J c r ~ u2

~ 8 . The larger the longitudinal magnetic field, the
later (in energy) the transition from the first law to the
second, in full accord with the theory.

It was already mentioned in the introduction that the
attempt made in C9 ] to compare the theory with experi-
ment is unsatisfactory, since it was based on the theory
of stability of a compensated electron beam relative to
short-wave oscillations described in the geometrical-
optics approximation^'7] (see also C8:1). As shown in
Chs. 4 and 5 of the present review, the critical currents
in electron beams are determined by the development of
long-wave oscillations. In this connection, P. S. Strel-
kov and A. Shkvarunetsl31 ] again carried out careful
experiments on critical currents in compensated elec-
tron beams, for the purpose of comparing the experi-

*It should be noted that all the investigations of the limiting cur-
rents of electron beams were carried out for the system considered by
us only at nonrelativistic electron energies. The experiments described
in [18] pertain to a different system; in particular, they employed no
external beam-containing longitudinal magnetic field. The beams in-
vestigated in [5.9.2°. 27,28] Were likewise nonrelativistic.

FIG. 4. Dependence of the critical
current of a compensated beam on
the magnetic field at L = 100 cm,
R = 7.5 cm, and r0 = 1.5 cm. Ex-
perimental curves 1—4 (solid lines)
correspond to electron energies 0.5,
1, 2, and 4 keV. The dashed lines
represent the theoretical curves.

B0,kG

n i c r , 10'° cm'

&, keV
FIG. 5. Dependence of the critical density of the plasma on the beam

energy at L = 60 cm, R = 0.65 cm, r0 = 0.5 cm, Bo = 1200 G. Experi-
mental curves 1-3 (solid lines) correspond to currents 0.13, 0.4, and
0.7 A. The dashed lines represent the theoretical curves.

mental results with the theory developed above. Their
comparison of experiment with theory is shown in Fig. 4.
We see that the agreement is good not only qualitatively
but also quantitatively, thus indicating that the premises
of the theory are correct.

In conclusion, let us discuss experiments on the in-
teraction of electron beams with a denser plasma,C20»
2τ>&ι also carried out with apparatus represented sche-
matically by Fig. 2. Under conditions when the current
in the electron beam is smaller than either the critical
current in the compensated beam or the limiting cur-
rent in the uncompensated beam (this can be attained by
suitably choosing the cathode heating conditions), no in-
stability develops in the system during the neutralizatioi
stage. The beam continues to ionize the residual gas in
the chamber and produces a plasma whose density is
larger than the density of the beam electrons, n2 » τιλ.
When the plasma density reaches a certain critical
value n2Cr» as shown in Chs. 6 and 7 of the present re-
view, high-frequency two-stream and beam-drift insta-
bilities develop in the system. These instabilities can-
not lead to an interruption of the current (see Ch. 8) and
are experimentally manifest in the form of powerful mi-
crowave radiation from the plasma and in a sharp
growth of gas ionization under the influence of the fluc-
tuation fields.1 1 2 0'2 7'2 a ] The sharp increase of the gas
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Table I. Limiting currents in uncompensated beams

Cylindrical beam Tubular beam
17J" 1+21η(Λν 0 ) (V<γ 2 / 3 _ 1)3/2, IcA / 0 = 1 7 _ ( v 2 / 3 - l ) 3 / 2 , kA

Critical currents in compensated beams

Cylindrical beam

In fl/ro^r 1

A < J L l / ^ v - 3 / 2

J r c r = ( 2 / i ) 2 ' - ^ V 3

n / ? T - w l < ^ <
.2,4πΐ ι>/Λί \3/2

, 2,4π·ηιι» r0 _ 3 / 2
c t 4 ; /- V

, (2,4)«mu>

/ a — mm t
mu m_

I 47 Λί " "

In B/t-o-M

/ C T — min·

m«s 2 3

4e ln/?/r0

V

mu3 1(1-1-1)

ι mu3 2
. 1 4« In i?/r0

 r

/ c r =iiun <
1 " ' " o n "r»

Tubular beam

o r m '

. , TV R mu* .

2 ΐ / Λ ί V - 3 / 2 < Λ < " "

/ α = ΐ η ί η { / „ / , }

(• π2««3 Λ , / T i , , 3 / 2

/ 2 = max * L* ~1

Ja = mw{J,, Js, J3I

r mu» Μ 2π2/ί«
3 4e m L?

Table Π. Critical plasma densities for over compensated
beams

Tubular beam

"2CT = m i n

4 3
1 -13

X V J

L

io-«ae 3

V«T Ί

< -

1

/2

- , 1 β -4 .4 ·1(

10-4Ώβ·ν

Χ "1

H « r t l

3/2
In (Λ,ι-ο)

•j

In Λ/ι0

£ ,,Ο
< Γο "" ~

γ3 / 2 (Μ) V «7)"1

A > 10-9 ^k > 10-4 Ω«''^ |n (/( rra "ι Ύ η ι

i o n i z a t i o n w a s u s e d t o d e t e r m i n e t h e c r i t i c a l p l a s m a

d e n s i t y i n c 2 8 : l , f r o m w h i c h t h e r e s u l t s s h o w n i n F i g . 5

w e r e b o r r o w e d . W e s e e t h a t t h e d e p e n d e n c e o f Ojcr o n

t h e e l e c t r o n e n e r g y a t d i f f e r e n t v a l u e s o f t h e l o n g i t u d i -

n a l m a g n e t i c f i e l d a n d t h e b e a m c u r r e n t , u n d e r c o n d i -

t i o n s w h e n t h e w a v e g u i d e i s c o m p l e t e l y f i l l e d w i t h p l a s -

m a , i s w e l l d e s c r i b e d b y t h e t h e o r e t i c a l f o r m u l a s o b -

t a i n e d i n C h . 7 . I n t h e c a s e o f i n c o m p l e t e f i l l i n g o f t h e

w a v e g u i d e w i t h p l a s m a , t h e a g r e e m e n t b e t w e e n t h e o r y

a n d e x p e r i m e n t h a s a q u a l i t a t i v e c h a r a c t e r . C 2 8 ]

A l l t h e e x p e r i m e n t s d e s c r i b e d a b o v e p e r t a i n t o c y -

l i n d r i c a l b e a m s p a s s i n g a l o n g t h e a x i s o f a m e t a l l i c

w a v e g u i d e . E x p e r i m e n t s w i t h t u b u l a r b e a m s a r e j u s t

n o w b e g i n n i n g . A l s o p r o j e c t e d a r e e x p e r i m e n t s w i t h

r e l a t i v i s t i c e l e c t r o n b e a m s . W e a r e c o n v i n c e d t h a t

t h e s e e x p e r i m e n t s , a s w e l l a s t h o s e d e s c r i b e d a b o v e ,

w i l l l e a d t o n e w p r o g r e s s i n t h e t h e o r y a n d w i l l u n c o v e r

a w a y o f o b t a i n i n g u l t r a s t r o n g e l e c t r o n b e a m s of h i g h

p o w e r .
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