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INTRODUCTION

L HE main difficulties in modern nuclear theory are
connected both with our insufficient knowledge of the
nature of the nuclear interaction and with the many-par-
ticle character of the nuclear systems. Study of the
nuclear interaction between nucleons—the simplest com-
ponent particles of nuclei—is one of the central problems
of nuclear theory. The presently available experimental
data on nuclear interaction do not contradict the assump-
tion of the two-particle character of nuclear forces.
Nuclear theory is a nonrelativistic theory and is based
on the assumption that nuclear interaction between
nucleons can be described with the aid of a potential
which depends in the general case on the spin and iso-
spin state of the nucleons.

Although the interaction between nucleons is strong,
nonetheless a system of two nucleons has only one bound
state—a deuteron—characterized by an exceedingly low
binding energy. By virtue of this circumstance it is im-
possible to determine the potential uniquely from the
scattering of two nucleons in the nonrelativistic energy
region. To eliminate the ambiguity in the determination
of the potential, it is necessary to refine greatly the ex-
perimental data on nuclear scattering, or to make use of
other data.

One can expect a study of nuclear systems consisting
of three and more nucleons to be a major source of
additional information on the interaction between
nucleons. Indeed, the properties of a system of two
nucleons at energies close to zero can be explained by
means of forces with a zero radius. However, in the
case of zero-radius forces, the binding energy of a sys-
tem of three nucleons turns out to be infinitely large t l l l ] .
Therefore the very existence of triton nuclei and Hes

indicates that the nuclear forces are characterized by a
finite radius of action.

Data on the scattering of nucleons by nucleons at low
energies (<, 10 MeV) make it possible to determine only
the effective parameters characterizing the magnitude
and radius of the interaction potential. These data, how-
ever, are insufficient for a complete determination of
the form of the potential. Unlike the two-nucleon prob-
lem, the problem of motion of three (or more) nucleons

turns out to be more sensitive to the form of the two-
nucleon potential. Of considerable interest is the possi-
bility of explaining the properties of three-nucleon sys-
tems and systems consisting of a large number of
nucleons on the basis of two-particle forces determined
from a solution of the two-nucleon problem.

Data on two-nucleon interaction can be obtained from
the properties of nuclei containing more than two
nucleons; for this purpose it is necessary to calculate
the properties of such nuclei. In essence, this calcula-
tion means solution of the many-body problem; the sim-
plest example of such a problem is that of the motion of
three particles, a rigorous formulation of which and
proof of existence of whose solution were obtained rela-
tively recently.

Owing to the indicated difficulties, the properties of
a system of three nucleons and other few-nucleon nuclei
were investigated in detail with the aid of different
variational methods. During the last three decades, a
considerable number of variational calculations were
performed using different potentials that agree with data
on the two-nucleon interaction1·121. In the case of central
forces, the value of the binding energy of the triton
turned out to be strongly dependent on the potential and
too high in comparison with the experimental value. The
introduction of tensor forces leads to a qualitative im-
provement of the agreement with experiment. The most
consistent variational calculations of the binding energy
and of the wave function of the triton, using the Hamada-
Johnston potential, which takes into account different
details of the nuclear interaction (repulsion at small
distances, tensor and spin-orbit forces) were carried
out recently by Delves et al . t 5 8 ] . The value of the binding
energy of the triton, obtained in t58J, turned out to be
6.7 ± 1.0 MeV. Variational methods were also used to
estimate the lengths of scattering of a neutron by a deu-
teron. The Kohn variational method makes it possible
to obtain an upper bound for the neutron-deuteron scat-
tering length. The results of the calculations depend,
however, on the form of the trial functions, and there-
fore the accuracy of the obtained values is low. For the
Hamada-Johnston potential the value obtained for the
doublet scattering length int58] by the variational-method
is 2A = 1.2 ± 1.0 F.

125



126 A. G. S I T E N K O and V. F . KHARCHENKO

From the fundamental point of view, more interest
attaches to calculations based on a direct solution of the
equations of motion of the three-nucleon system. During
the last decade, considerable progress was made in the
formulation of the equations of the three-particle prob-
lem and in the development of methods of solving such
equations.

As shown by Skronyakov and Ter-Martirosyan [ 2 e : l,
the problem of the motion of three nucleons in the case
of two-particle forces with zero radius of action reduces
to a solution of one-dimensional integral equations. If
the orbital angular momentum of the system of three
nucleons is equal to zero, then at a summary spin
S = 3/2 and isospin Τ = 1/2 there is one integral equa-
tion, and at S = 1/2 and Τ = 1/2 there are two integral
equations. For the quartet spin state of three nucleons,
the integral equation contains only one two-particle
parameter—the triplet nucleon-nucleon scattering length.
In the case of zero energy of the incident neutron, the
authors οίί2Β} were able, by solving the indicated equa-
tion, to calculate the quartet neutron-deuteron scatter-
ing length, which was found to be 4A = 5.1 F. For the
doublet spin state of a system of three nucleons, the in-
tegral equations contain two two-particle parameters—
the triplet and singlet scattering lengths. The homo-
geneous system of equations corresponding to the bound
state of the three-nucleon system leads in this case to
an infinitely large value of the binding energy. On the
other hand, the inhomogeneous system of equations des-
cribing the neutron-deuteron scattering does not have a
unique solution. (The ambiguity is connected with the
existence of a solution of the corresponding homogene-
ous system of equations for any value of the energy of
the neutron-plus-deuteron system). To eliminate this
ambiguity, Danilov'141 introduced into the problem, in
addition to the two-particle parameters, one additional
parameter, namely the binding energy of the system of
three nucleons. In this manner it was possible inL143 to
obtain for the doublet length of neutron-deuteron scat-
tering a value 2A = 0.48 F, which agrees well with the
experimental value.

The formal theory of scattering and reactions in a
system of three particles in the case of two-particle
forces with a finite radius of action was developed by
FaddeevC 3 0 ) 3 1 ]. Although the formalism of[30] did not get
rid of the main difficulty of many-particle problems,
connected with the fact that the complete Hamiltonian of
the system does not break up into a sum of additive
terms that depend on the coordinates of the individual
subsystems, it was possible inC 3 0 ], by separating the
wave function of the system of three particles into indi-
vidual terms, to obtain for them a system of integral
equations admitting of a unique solution. The kernels of
the obtained equations are expressed in terms of two-
particle scattering amplitudes off the energy shell. An
essential advantage of the Faddeev equations over the
well known Lippman-Schwinger equation is that their
kernels can be reduced to the Fredholm type, and it is
therefore possible to use known methods for the solution
of the indicated equations. A generalization of Faddeev's
integral equations to the case of a system of three
nucleons with allowance for the spin and isospin depen-
dences of the interaction between the nucleons was car-
ried out in [ 1 0 7 J . A generalization of Faddeev's equations

tp the case of an arbitrary number of particles was car-
ried out ini32'391.

The technique of summation of nonrelativistic Feyn-
man diagrams for the three-value problem was devel-
oped by Komarov and Popova t 1 7 1.

The Faddeev equations for the system of three parti-
cles are transformed in the general case, by expanding
the wave function in terms of the angle functions and
separating the angle variables, into an infinite system of
two-dimensional integral equations. If the two-particle
potential is characterized by a finite radius of action,
then the interaction between each pair of particles is
manifest only in a finite number of partial states. In this
case it is necessary to take into account only a finite
number of equations out of the infinite number of two-
dimensional integral equations.

The problem simplifies greatly if the two-particle
scattering amplitude has a separable form. In this case
the indicated system of two-dimensional integral equa-
tions reduces to a system of one-dimensional integral
equations' 3 4 ' 1 0 7 3. The two-particle scattering amplitude
has a separable form if the interaction between the par-
ticles is described by a separable non-local potential
takes into account the finite radius of action of the for-
ces between the nucleons and makes it possible to solve
in explicit form the problem of motion of two nucleons.
Such a potential is a rather good approximation of the
local short-range potential for a system of two parti-
cles, if formation of not more than one bound state is
possible in the system. The application of a separable
potential for the description of the two-particle interac-
tion has made it possible to develop a technique for cal-
culating three-particle systems (see'27"1). By numeric-
ally solving the one-dimensional integral equations, we
obtained in1107·1 the binding energy and the wave function
of the triton, and also the quartet and doublet scattering
lengths of a zero-energy neutron by a deuteron. The
problem of three nucleons was considered independently,
using a separable potential, by Mitra1 9 3·1.

The calculations with separable potentials pointed to
an appreciable dependence of the triton binding energy
and of the doublet neutron-deuteron scattering length on
the form of the potential, and also on the magnitude of
the singlet effective radius of interaction between the
nucleons. A change of the value of the singlet effective
radius from 2.4 to 2.7 F leads to a decrease of the tr i-
ton binding energy by approximately 1 MeV and to an
increase of the doublet length by approximately 0.7 F.
The quartet neutron-deuteron scattering length turned
out to be insensitive to the change of the form of the two-
particle interaction, this being connected with the influ-
ence of the Pauli principle, which prevents simultaneous
approach of all three nucleons to small distances from
one another.

The calculated values of the doublet and quartet
neutron-deuteron scattering lengths turned out to be
close to one of the two possible experimental sets of
scattering lengths which were known at that time,
4A > 2A. Subsequently, experimental measurements
performed by Shapiro et sd.1451 using polarized neutrons
and deuterons, confirmed the correctness of this set.

The influence of the tensor forces on the properties
of a system of three nucleons was investigated for
separable potentials ini*>™,->W»>™i. it turned out
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that an admixture of D state with weight of 4% decreases
the triton binding energy by approximately 2 MeV and
increases the doublet length by more than 1 F [ 2 6 J .

An investigation of the elastic scattering of a neutron
by a deuteron at finite energies, and also of the reaction
of the disintegration of the deuteron in the interaction
with a neutron has been carried out by Amado et al.C42'40]

and by Phillips"00 '1013. The calculated differential cross
sections in the case of a separable potential agree well
with the experimental data. The three-particle model of
the stripping reaction with a separable potential was
considered int43>104].

The Faddeev equations for a system of three parti-
cles can also be brought to a one-dimensional form in
the case when the interaction is separable between at
least two particles. The interaction with zero radius is
a particular case of a separable interaction. Baz' et
al.t93 investigated the three-body problem in the case
when the interaction between two particles is character-
ized by a zero radius of action and the potential of inter-
action of each of these particles with a third infinitely
heavy particle has the form of a square well.

The problem of motion of three particles the interac-
tion between which is described by local potentials was
recently considered on the basis of the Faddeev equa-
tions in a number of papers. We note first of all papers
based on numerical solution of the two-dimensional
integral equations. The direct solution of the two-dimen-
sional homogeneous integral equation describing the
bound state of three identical spinless particles was
carried out by Osbornt72:l. We note that such calcula-
tions are at the borderline of feasibility by modern
computation techniques. The method of successive itera-
tions of a two-dimensional integral equation was used by
Malfliet and Tjon[913 to find the binding energy and the
wave function of the triton. They used a local potential
in the form of a superposition of two Yukawa potentials
with repulsion at small distances. The triton binding
energy turned out to be 8.3 MeV compared with the value
12.1 MeV obtained in the case of a purely attractive
Yukawa potential with the same values of the low-energy
parameters.

The two-dimensional integral equations of the three-
nucleon problem can be reduced to one-dimensional
equations by using a separable representation for the
two-particle scattering amplitude, which is equivalent to
a separable expansion of the matrix elements of the in-
teraction potential. In the case of the potentials custom-
arily used for the phenomenological description of two-
nucleon interaction, which are not very singular at small
distances and decrease rapidly at large distances, the
two-particle scattering amplitude can be approximated
well by the first few terms of the expansion.

Several methods were proposed for approximating the
two-particle scattering amplitude by a series with
separable terms'96 '86 '87 '103 '15 '871. In the method based on
the use of the Hilbert-Schmidt theorem for symmetrical
integral equations'-18·1, the separable expansion of the
two-particle scattering amplitude off the energy shell is
expressed in terms of the eigenfunctions and eigenvalues
of the kernel of the Lippmann-Schwinger integral equa-
tion. Such a separable representation was first used by
Weinberg"153 to eliminate divergences of the Born
series for the two-particle scattering amplitude.

Faddeev has pointed out1813 the possibility of using the
Hilbert-Schmidt method for solving the problem of the
motion of three particles. By now, this approach has
been used in a number of papers for the solution of both
atomic and nuclear three-particle
problems150'65'109'78'81'49'843. In the case of attractive
potentials, each term of the separable expansion corre-
sponds to a corresponding separable attraction potential.
Allowance for the succeeding terms in this expansion
means introduction of a stronger attraction. Therefore
allowance for further corrections in the Hilbert-Schmidt
expansion can change the results of the calculation only
in one direction (increase the binding energy of the t r i -
ton and decrease the doublet scattering length). In the
case of a potential of rectangular form, the two-particle
scattering amplitude is well approximated by two terms
of the Hilbert-Schmidt expansion. Calculations with
such potentials make it possible to estimate the contri-
bution of the higher partial moments in the two-particle
interaction to the values of the binding energy of the
triton and the neutron-deuteron scattering length. This
contribution turned out to be small and amounts to 0.2%
for the triton binding energy and 0.5% for the doublet
length137'793. The triton binding energy and the doublet
neutron-deuteron scattering length in the case of a rec-
tangular well agree better with the experimental values
than do the values for the Hulthen potential, which has a
smeared edge and a singularity at zero.

The Hilbert-Schmidt expansion for the two-particle
scattering amplitude is unitary only if account is taken
of an infinite number of terms. If we use the expansion
of the matrix elements of the potential in eigenfunctions
of the kernel of the Lippman-Schwinger equation at a
fixed energy, then we obtain for the two-particle scat-
tering amplitude a separable expansion which is unitary
when account is taken of a finite number of terms. Such
an expansion, called the unitary pole expansion, was
used by Harms1893. The unitary pole expansion can
serve as a basis for the use of separable potentials,
inasmuch as allowance for the first term of such an ex-
pansion (the unitary pole approximation) is equivalent to
introduction of a separable Yamaguchi potential.

Another method of obtaining separability of the two-
particle scattering amplitude, the so-called Bateman
method152'163 is based on replacing the matrix element
of the potential by a sum of separable terms, the coeffi-
cients of which are chosen such that the sum coincides
with the matrix element at definite values of the argu-
ments. This method was used to solve the three-nucleon
problem by Belyaev et al.u"3 '113 . Int3'113 the binding en-
ergy, the form factors, and the weight of the states of
intermediate symmetry were calculated for the triton,
and also the neutron-deuteron scattering lengths in the
case of a Morse potential and a potential chosen in the
form of a superposition of Yukawa potentials. The em-
ployed potentials took into account repulsion at small
distances and were reconciled with data on the interac-
tion of two nucleons at low and high energies. It turned
out that the aggregate of the calculated quantities in the
case of a superposition of Yukawa potentials is in better
agreement with the experimental data than the values
calculated for the Morse potential.

Simonov and BadalyanC23'7'253 proposed a method of
solving the problem of the bound state of a system of
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three nucleons, based on expansion of the wave function
in six-dimensional angular harmonics and making it
possible to reduce the problem to a solution of a system
of one-dimensional differential equations. Devoted to
the construction of a complete system of bas is eigen-
functions for a system of three par t ic les a r e the papers
of Smorodinskii et al.L2°>211 . Filippov and Ovcharenko
developed a method of expansion in t e r m s of the r e c i p r o -
cal powers of the interaction p a r a m e t e r , which makes it
possible to calculate the energy of the bound s ta tes of a
system of three nucleons 1 3 3 · 1 .

In the present survey, we develop a nonrelativist ic
theory of three-par t ic le sys tems with paired interaction.
The development is based on the Faddeev formalism
using a separable representat ion for the two-particle
interaction. We consider bound s tates and elast ic scat-
ter ing in a system of three identical spinless par t ic les
and in a system of three nucleons*.

1. NONRELATIVISTIC THEORY OF SYSTEMS
CONSISTING OF THREE PARTICLES

1.1. The Lippman-Schwinger Equation

We consider a quantum-mechanical system consisting
in the general case of several interacting par t ic les . We
shall assume that the Hamiltonian of the system Η can
be broken up into two parts:

H = H0 + V, (l.l)
where the first term Ho describes the unperturbed mo-
tion of the system, and the second term V describes the
interaction that vanishes when the interacting parts of
the system come sufficiently far apart.

In the stationary formulation, the scattering problem
reduces to finding the solution of the Schrodinger equa-
tion

( # - £ ) Ψ = 0 (1.2)

with definite boundary conditions (E is the energy of the
system). At infinity, the solution Φ should have the form
of a sum of an incident wave Φ, which is a solution of
the unperturbed equation

(#„-£) Φ =-0, (1.3)

and a diverging scattered wave.
The solution of (1.2) satisfying the indicated boundary

conditions can be represented in the form

(1.4)

where Go(z) is the Green's function of the unperturbed
equation (1.3):

(1.5)

The rule for going around the pole in (1.5) corresponds
to the choice of a diverging scattered wave in the asymp-
totic form of Φ. The formal solution of the Schrodinger
equation (1.4) is an integral equation and is usually
called the Lippman-Schwinger equation1 8 8 1.

*A number of recent reviews [">60> 92> *6> s9> 9 8] discussed the re-
sults of calculations on the basis of the Faddeev integral equations for
three-particle systems with a nonlocal separable interaction. Unlike
these papers, the present review considers the properties of systems
with local interaction.

The amplitude of the probability of the transition of
the system from a state asymptotically described by the
function Φ into a state described by the function φ ' is
d e t e r m i n e d b y t h e e x p r e s s i o n ( Φ ' , V * ) a t E ' = E .

T h e s o l u t i o n o f ( 1 . 4 ) c a n b e e x p r e s s e d d i r e c t l y i n

terms of the asymptotic function Φ with the aid of the
Green's function of Eq. (1.2)

G(z) = (z-#)-i. (1.6)

The Green's function G(z) satisfies the equation

G(z)-~G0(z)-\ G0(z)VG(z). (1.7)

By direct verification it is easy to check that the solu-
tion (1.4) can be represented in the form

Ψ = lira if G (E -f ie) Φ. (1.8)

Indeed, multiplying (1.7) with ζ = Ε + ie by i, applying it
to the function Φ, and noting that lim ieG0 (Ε + ϊε)φ = Φ,
we obtain (1.4). e ^ °

Usually in considering the scattering problem one
employs the transition operator T. We represent the
Green's function G(z) in the form

G (z) = G0 0(z) Τ (z)G0(z); (1.9)

and then we obtain from (1.7) the following equation for
the operator T(z):

Τ (z) = F + VGa(z)T (z). (1.10)

This equation, generally speaking, i s equivalent to the
Lippman-Schwinger equation (1.4). Indeed,! applying the
operator equation (1.10) to Φ and comparing the obtained
equation with (1.4) multiplied from the left by V, we
readily see that

2Ό> = ΡΨ. (1.11)

According to ( l . l l ) , the amplitude of the transition of
the system from the state Φ into the state Φ' is directly
determined by the matrix element of the operator T:

(Φ', νΨ) = (Φ', 5ΓΦ). (1.12)

The solutions of the Schrodinger equation (1.2) for
negative values of the relative-motion energy c o r r e -
spond to bound s tates of the system. The Schrodinger
equation for bound states of the system can be written
with the aid of the Green ' s function (1.5) in the form of
a homogeneous integral equation

(1.13)

The Lippman-Schwinger equation (1.4) in the presence
of bound states of the system has in the general case no
unique solutions1 6 3 3. In fact, even for a system consist-
ing of two particles, the energy levels

(K—total momentum, M—total mass and e—energy of
relative motion) are multiply degenerate, since different
distributions of the energy between the internal motion
and the motion of the system as a unit correspond to
different states. Since the presence of a bound state of
the system denotes the existence of a solution of the
homogeneous equation (1.13) at a fixed value of E, the
solution of the inhomogeneous equation (1.4) becomes
multiple-valued. For a system consisting of two parti-
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cles, the Lippman-Schwinger equation admits of a unique
solution only on going over to the center of m a s s system;
in this case Κ = 0 and the energy degeneracy is lifted at
Ε = e.

An analogous ambiguity of the solutions of the
Lippman-Schwinger equations takes place also for sys-
t e m s consisting of three and m o r e par t ic le s . Since in
this case we can have besides the bound state of the en-
t i re system also bound states of the subsystems consist-
ing of smal le r numbers of p a r t i c l e s , the solutions of the
inhomogeneous Lippman-Schwinger equations are always
ambiguous. A unique solution is obtained only for the
homogeneous equation in the case of a bound state of the
entire system regarded in the center of m a s s system.

Skornyakov and Ter-Mart i rosyan have shown C 2 8 ] ,
using as an example a system of three par t ic les with
z e r o action radius, that the wave function of the system
can be broken up into individual t e r m s for which a coup-
led system of integral equations is obtained. A general-
ization to the case of sys tems of three par t ic le s with
arb i t rary radius of action was c a r r i e d out by
F a d d e e v L 3 0 ' 3 1 J . Unlike the Lippman-Schwinger integral
equations, the obtained integral equations admit of a
unique solution.

1.2. Faddeev's Equations

The method of obtaining integral equations for sys-
tems of interacting par t ic les will be considered with a
system of three nonrelativist ic spinless par t ic les as an
example. The unperturbed Hamiltonian Ho i s chosen to
be the operator of the kinetic energy in the par t ic le s ;
the interaction V in the case of two-particle forces i s
represented in the form of a sum of three t e r m s ,

(1.14)

where V^; charac ter izes the interaction between p a r t i -
cles i and j , which d e c r e a s e s with increasing relat ive
distance between them. We note that the kernel of the
integral equation (1.10) is in this case singular because
of the presence of δ functions express ing the conserva-
tion of the momentum of the part ic le that does not i n t e r -
act with the chosen pair .

The system transit ion operator T, in accord with
(1.10), is naturally represented in the case of two-part i-
cle forces (1.14) likewise in the form of a sum

Τ (Ζ) = Γ " ' (Ζ) f Τ'" (Ζ) -f Τ"' (Ζ), (1.15)

w h e r e t h e i n d i v i d u a l t e r m s a r e c o n v e n i e n t l y d e f i n e d by
m e a n s of t h e e q u a l i t i e s

T<-k)(Z)=Vu+ViiGIJ(Z)T(Z), ijk= 123, 231, 312 (1.16)

(Z = Ε + iO, Ε is the total energy of the t h r e e - p a r t i c l e
system). Representing the operator T(Z) in the right-
hand sides of (1.16) in the form (1.15), re lat ions (1.16)
can be regarded as a system of coupled operator equa-
tions defining the individual t e r m s of (1.15). We note
that the iteration s e r i e s for T » ' ( Z ) from (1.16) contains
both singular t e r m s (of the type V23G0(Z)V23,
V23Go(Z)V23Go(Z)V23, etc.), and t e r m s in which the δ
functions a r e eliminated by intermediate integration (of
the form V23G0(Z)V3i etc.) . The obtained system (1.16)
is obviously equivalent to (1.10) and therefore, like the
Lippman-Schwinger equation, has no unique solution.

To el iminate the ambiguity, we reconstruct the sys-
tem (1.16), assuming the two-particle operators Tjj to
be known. We determine the opera tors T - with the aid
of the equation

Tij(Z)=VuirVifia(Z)Tij(Z), (1.17)

which is obtained from (1.10) if we neglect in the la t ter
the interaction of the par t ic les i and j with the third
part ic le . We note that the right-hand side of Eq. (1.17)
contains al l the s ingulari t ies of Eq. (1.16), and therefore
the s ingularit ies in (1.16) can be eliminated with the aid
of (1.17). Separating the diagonal p a r t in (1.16) and in-
verting the two-particle operator f 1 - VjjGo(Z)], we r e -
write the system of coupled equations for the individual
t e r m s of the transi t ion operator Τ with the aid of (1.17)
in the form

(Ζ)\, i/* = 123, 231, 312.
(1.18)

T h e o b t a i n e d s y s t e m of i n t e g r a l e q u a t i o n s , u n l i k e (1 .16) ,
h a s a u n i q u e s o l u t i o n . T h e i t e r a t i o n s e r i e s f o r t h e s e c -
ond t e r m of t h e r i g h t - h a n d s i d e of (1.18) d o e s not c o n t a i n
any s i n g u l a r i t i e s . T h e r e f o r e t h e s y s t e m of i n t e g r a l
e q u a t i o n s (1.18) c a n b e s o l v e d b y F r e d h o l m m e t h o d s * .

Taking into account the connection between the t r a n -
sition operator Τ and the Green ' s function G (1.9), we
can obtain from (1.18) a system of equations for G. In
accordance with the breakdown (1.15) we have

G (Ζ) =-. Go (Ζ) f G'u (Ζ) + G<!) (Ζ) -L G'3> (Ζ),

G(i)(Z)=G0(Z)Tw(Z)G0(Z), i = l, 2, 3

T h e f u n c t i o n s G^ 1 ' s a t i s f y h e r e t h e e q u a t i o n s

.}
(1.19)

w h e r e

ijfc = 123, 231, 312,

ij (Z) = Go (Z) + G o (Z) T,j (Z) Go (Z).

{i> (Ζ)], ( χ . 2 0 )

On t h e b a s i s of (1.20) we c a n e a s i l y o b t a i n wi th t h e a id
of (1.8) t h e c o r r e s p o n d i n g e q u a t i o n s for t h e d e t e r m i n a t i o n
of the wave function of the system Ψ.

In the system of three interacting par t ic les it i s pos-
sible to have both infinite motion of all three par t ic les ,
and infinite motion of an individual part icle relative to
the two other par t ic les that a re in a bound state. The
corresponding asymptotic wave functions of the system
will be denoted by Φ123 and Φ^, where i = 1, 2, or 3. (An
index next to a function denotes the number of an un-
bound part ic le in the system. All the par t ic les a r e a s -
sumed to be different.)

Applying Eqs. (1.20) multiplied by ie to the functions
Φ123 and taking (1.8) into account, we obtain the following
equation for the determination of the wave function Φ123
of the system in the case of unbound motion of all three
par t ic le s :

^ = Φ ι (2:i) - Φι 2 3 τ «η (Ζ) 7V, (Ζ) [ ψ<£ + 4™ Ι,

»>1, Ζ Ε ι-,Ό,

(1.21)

*Α generalization of Faddeev's equations to the case of an arbi-
trary number of particles was made in [32> 3 9 ] .
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where Φ ι 2 3 = lim ieG 2 3 (E + ίε)Φι 2 3 e tc. The functions

Φι(23) differ from Φι 2 3 in that account i s taken of the
interaction between part ic les 2 and 3. It is easy to verify
that the difference Φι ( 2 3> - Φ123 is a diverging wave at
large dis tances with respect to the relative coordinate
between the par t ic les 2 and 3.

In the case of scat ter ing of an individual part ic le by
two other par t ic les that are in a bound s tate, we can ob-
tain the following equations for the determination of the
wave function of the system Φι (for the scatter ing of
part ic le 1 by the bound state of par t ic les 2 and 3)

ν»,,(αί+α0(Ζ)Τια(Ζ)ΐΨ» + ψ<«]. .
W(2) /~ι ι y\ fp C7\ Τ 11/(3) ι W ( l ) i I \ A · β ώ /

Ψ"' - Go (Ζ) Γ 1 2 (Ζ) [ψ«> + Ψ«>|, Ζ = £ + (Ό.

Analogous s y s t e m s of equat ions hold for the functions

Φ 2 and Φ 3.
The system of three integral equations (1.22) can be

reduced to a system of two integral equations for the

functions Φ Ρ 3φ<χ> a n d * i n ) =*[2) +*ί 3 > . It is easy to
verify that the functions Φ
tions

and Φ *•"•' satisfy the equa-

(1.23)

where the operator Ti descr ibes the scat ter ing of an in-
dividual part ic le by two others in the absence of inter-
action between them:

T, (Z) r.-. Vi r Vfia (Z) Tl (Z), F, = V12 + Va. (1.24)

We note that both in the case of infinite motion of all
particles and in the case of scattering of an individual
particle by two others in the bound state, we have an in-
homogeneous system of integral equations admitting of
a unique solution. The integral equations for the system
of three particles (1.21) and (1.22) were obtained by
Faddeev J . The integral equations (1.23) were obtained
by Baz' et al. t e 3. The main advantage of the Faddeev
equations over the Lippman-Schwinger equations is that
the Faddeev integral equations have Fredholm kernels,
and therefore it is possible to use known methods for
the solution of the indicated equations.

In the case of a bound state of the entire system, it
is possible to obtain in similar fashion the following
homogeneous system of integral equations for the deter-
mination of the wave function Φ ο:

Ψ0 =

The homogeneous system of equations (1.25) has solu-
tions only at energies corresponding to bound states of
the system. In the c .m.s . this energy is negative
(E < 0). We note that the system of equations (1.25) can
be obtained formally from the system (1.22) by putting
in the la t ter Φ ι = 0.

1.3. Coordinates and Momenta in a System of Three
Particles

We denote the m a s s e s of the three par t ic les by mi,
m 2 , and m 3 ; accordingly the radius vectors and the mo-

menta of the par t ic les a r e denoted by r t , r 2 , r 3 and
ki, k2, and k3. In the description of the relat ive motion
in a system consisting of three par t ic les , it is conven-
ient to choose the Jacobi coordinates

Pi --= «Ι —
m2 r2

3), ( 1 . 2 6 )

where Μ = mi + m 2 + m 3 i s the total m a s s of the sys tem.
In place of the relative coordinates pi and r 2 3 we can use
the relat ive coordinates p 2 and r 3 i or p 3 and r i 2 . Accord-
ingly, it is convenient to introduce the Jacobi momenta

. ro3ka — m2k3 v , , . ,
: Μ m,-|-w3 1 r ! ! + j

( 1 . 2 7 )

In p l a c e of t h e r e l a t i v e m o m e n t a p i a n d k 2 3 w e c a n c h o o s e

p 2 a n d k 3 i o r p 3 a n d k J 2 .

T h e k i n e t i c - e n e r g y o p e r a t o r of t h e s y s t e m i s w r i t t e n

i n t h e J a c o b i c o o r d i n a t e s r 2 3 , p i , a n d R i n t h e f o r m

where μ 2 3 = m 2 m 3 / ( m 2 + m3) and μ ι = mi(m 2 + m 3)/M
a r e the reduced m a s s e s . In the momentum r e p r e s e n t a -
tion Ho takes the form

0 ~ ·>.• _- ' " "ΟΤΙ Γ i l f '
( 1 . 2 9 )

We present explicit express ions for the asymptotic
functions. We denote the initial values of the momenta
by z e r o indices. The asymptotic function Φ ι 2 3 ) which
descr ibes the free motion of all the par t ic les , can be
written in the form

We note that the function Φ Χ 2 3 is invariant against sub-
stitution of the Jacobi coordinates. The asymptotic
function Φ ι takes the form

„ , . * « . ' ! ' *h , κ°> (1.31)

(1.32)

where φΚ23(τ23) i s a solution of the equation

( —2μ-^Δ23 + ^ 2 3 —ε23) <Px23(r23) = 0

at a negative value of the energy of the relative motion
e 2 3 = -κ13/2β23, i .e., a function describing the bound
state of the system of par t ic les 2 and 3. Asymptotically
the function Φ κ 2 3 ) is written in the form

ι-, η&\ where c£>to (r 2 3 ) is the solution of Eq. (1.32) for e 2 3
3

= ^ 5 / 2 μ 2 3 > 0, which has at infinity the form of a sum
of a plane wave and a diverging spherical wave.

1.4. Momentum Representation

The Faddeev integral equations have the s implest
form in the momentum representat ion. Each of the
components of the wave function of the system Φ ' i ' can
be conveniently represented in the form of a function of
the corresponding set of coordinates:

Ψ ( Ι ) = Ψ " ' ( Γ Λ , ρ,, R), ijk= 123, 231, 312. (1.34)

In the momentum representat ion, the function •&"> is
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defined with the aid of the equality

Ψ « > ( ^ , P i , K ) = \ β ~ 1 ^ · * ^ - ' Ρ ί Ρ ί - * " Ψ < · ) ( Γ . Λ ι P i , R)dtjhdPidn.

(1.35)
I n a s m u c h a s the k i n e t i c - e n e r g y o p e r a t o r in t h e m o -

m e n t u m r e p r e s e n t a t i o n i s a m u l t i p l i c a t i o n o p e r a t o r , t h e
G r e e n ' s funct ion Go(z) i s d i a g o n a l in t h e m o m e n t u m
r e p r e s e n t a t i o n . T h e o p e r a t o r of t w o - p a r t i c l e s c a t t e r i n g
T . . ( z ) i s d i a g o n a l in t h e r e p r e s e n t a t i o n of t h e t o t a l m o -
m e n t u m of t h e s y s t e m a n d t h e m o m e n t u m of t h e f r e e
p a r t i c l e p^:

(klkp,K\Tik(Z)\VjkpW)

= (2n)· < ( ^ ; £ ) |

(1.36)

where t^-(z) is a two-particle t m a t r i x defined by the in-

tegra l equation

o r

<k[t(z)|k'> = <k | f| q)<q | i (z) | k')
z—q-

2μ

iq

( 1 . 3 7 )

(e i s t h e e n e r g y o f t h e r e l a t i v e m o t i o n of t w o p a r t i c l e s

and μ is the reduced m a s s ) . In the general case Eq.
(1.37) determines the t matr ix off the energy shell
&2/2μ * ^ 2 / 2 μ * e) . We reca l l that the amplitude of the
elast ic scatter ing of the par t ic les is expressed in t e r m s
of the t matr ix on the energy shell :

2μ 2μ
(1.38)

T h e t w o - p a r t i c l e t m a t r i x ( k | t ( z ) | k ' ) in t h e p l a n e of
complex energies ζ has s ingularit ies, namely poles,
corresponding to a d i screte spectrum, and a cut along
the positive part of the r e a l axis, generated by the con-
tinuous spectrum of the system of two par t ic le s . The
explicit form of the indicated s ingularit ies can be ob-
tained from the so-called spectra l representat ion of the
t m a t r i x " 9 ] :

<k | ί (z) | k'> = <k | V | k'> !K (k) gN (k')

, 2μ

Λ2 \ Ι \.

2μ~~' ) | / dq
(2it)3 '

( 1 . 3 9 )

where gN(k) = (k2 + κ^/2μ)<ρΝ(1ί), Ν = {η, I, m } , and

κ^/2μ and i^j^(k) Ξ <^n^(k)Y^m(k) a re the binding energy

and the wave function of the bound state of the two p a r t i -

cles in the momentum representat ion ( J y 2 (k) r- , 3 = l j .

Since all operators entering in the Faddeev equations
a r e diagonal in the Κ representat ion, the wave function
• will contain the factor δ(Κ - Κ°), which e x p r e s s e s the
law of conservation of the total momentum of the sys-
tem. Therefore all dependences on Κ can be completely
eliminated by changing over to the c .m.s .

By way of an example let us consider in the momen-
tum representat ion the Faddeev system of integral equa-
tions (1.22) in the case of scatter ing of a part ic le by two
other par t ic les that a r e in a bound state:

17 p a \ I

^+^Γ3Ρ · p )J(2H)·'

131 (k v\-tz- — —£-
, (k, p)-^Z 2 ^ 2J

X f l Y k L · (Z-f-) ^ i _ p ,

2 +m3

 v '

2μι 2 μ 2 3

The function Φι&23, Pi) equals, according to (1.31),

where ψκ (k23) is the wave function of the bound state

of two p a r t i c l e s with binding nnergy κ ! 3 /2μ 2 3 and p? is

the momentum of the relat ive motion of the system in

the initial s tate.
If all three par t ic les are the same and have zero spin

and isotopic spin, then the total wave function of the sys-
tem Φ should be symmetr ica l against permutation of
any pair of par t ic les ; in this case

Therefore the wave function can be represented in the
form

Ψ —4-(k23, Pi) + i|)(k3i, p2) + i|j(k12, p3), (1.42)

w h e r e i/)(-k, p) = i/)(k, p ) . In p l a c e of t h e s y s t e m (1.40)
we o b t a i n in t h i s c a s e one i n t e g r a l e q u a t i o n for t h e f u n c -
t ion i/)(k, p ) :

(1.43)

w h e r e <p(k, p) i s a funct ion in t e r m s of w h i c h t h e i n i t i a l
wave funct ion of t h e s y s t e m i s e x p r e s s e d v i a s y m m e t r i -
z a t i o n :

> --- ct. <k23, ρ,) -ι-<p(ksl, p2)-r<P(k,2, p3)

ψ, = ψ<» (k23, P l) + Ψ;2· (k31, P2) + Ψ;3 1 (k12, P 3 ) , (1.40)

In the case of a bound state of three par t ic les φ - 0,
Ζ = Ε < 0; in the case of scatter ing of one part ic le by
the two others which are in the bound state, the function
<p(k, p) is determined by an express ion of the type
(1.41).

The integral equation (1.43) determines the wave
function of the system, which depends in the general
case on six variables (two relative vectors) . By expand-
ing the wave function in t e r m s of the angle functions and
separat ing the angle var iables, the three-dimensional
integral equation (1.43) in the case of centra l interaction
between the par t ic les can be reduced to a system of two-
dimensional integral equat ions 1 4 4 ' 9 9 ' 1 1 4 - 1 .
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1.5. Expansion in Partial Waves

Assuming that the interaction between the particles
is central, it is convenient to expand the two-particle
potential in terms of the partial components

(k | V | k'> •--., Σ (21 -+-1) V, (k, k') P, (cos Θ) (1.44)

w h e r e Y j m ( k ) and Y ^ m ( k ' ) a r e s p h e r i c a l f u n c t i o n s of t h e

a n g l e s c h a r a c t e r i z i n g t h e d i r e c t i o n s of t h e v e c t o r s k

and k'; θ is the angle between the vectors k and k'. The
individual terms in (1.44) describe the interaction be-
tween the particles in states with different values of the
orbital angular momentum I. An analogous expansion is
best carried out also in the expressions for the t matrix
and for the scattering amplitude

. k';z)P, (cosβ), (1.45)

ose). (1.46)/(k', k) = 2(2Z

F r o m (1.37) we e a s i l y obta in t h e fo l lowing i n t e g r a l e q u a -

t i o n f o r t h e d e t e r m i n a t i o n of t h e p a r t i a l c o m p o n e n t of

t h e t m a t r i x :

tliz) = V! + Vl{z-Ho)-1t,(z) (1.47)

or
/, (k, k'; z) = V, (k, k') -)- JL j dqqW, (k, q) z_ ' t, (q, ft'; z).

(1.48)

The partial scattering amplitude fy(k) = (l/k)e 'sin 6;
(6j is the phase of the scattering at infinity) is connected
with the partial component of the t matrix by the rela-
tion

/<(*)=-• ~-£rtt(k, k;-£- + m) . (1.49)

In the case of a system of three identical particles,
we introduce the orbital momentum of the relative mo-
tion of the two particles 1 and the orbital momentum of
the relative motion of the third particle and the center
of mass of the two other particles λ. It is obvious that
the total angular momentum of the system L is equal to
the vector sum of 1 and λ:

The corresponding wave function describing the state of
the system with total angular momentum L can be
chosen in the form

YIXLM (k, p) ••= Σ (ίλ"ίμ ILM) Yim(k) Κλμ (ρ). ( 1 - 5 0 )

T h e f u n c t i o n s Y ^ ^ j f o r m a c o m p l e t e s y s t e m of o r t h o -
n o r m a l f u n c t i o n s .

T h e w a v e f u n c t i o n of t h e s y s t e m o f t h r e e p a r t i c l e s
^(k, p) depends not only on the vectors k and ρ but also
on the vector of relative momentum of the system in the
initial state po. Let us assume that the angular momen-
tum of the bound state of the system of two particles
from which the third particle is scattered is equal to
zero (lo = 0). Then by virtue of the scalar character of
the wave function ^(k, p) the expansion of this function
in terms of the functions (1.50) takes the form

p; Vo)=[)£ii p; po)Y».LM(k\

Substituting the expansions (1.51) and (1.45) in (1.43)
and using the orthonormalization of the functions (1.50),
we obtain for the expansion coefficients ipn-^ the follow-
ing system of integral equations:

dk'k'p'

Xt,(k, <?; Z p';
(1.52)

where Δ, = %{l + (-1)*}, Q2 = k'2 + % p ' 2 - %p 2 and

/ \
f.Vv (P, P'; k') = 2 j dopdov-Yhu, ( |Η-/Λ p)

Χ δ ^ COS θ ;-ϊ [ Yri-ι
I PP I

/'\

( 1 . 5 3 )

W e h a v e t h u s r e d u c e d t h e i n t e g r a l e q u a t i o n ( 1 . 4 3 ) f o r

t h e f u n c t i o n # ( k , p) t o a n i n f i n i t e s y s t e m of t w o - d i m e n -

s i o n a l i n t e g r a l e q u a t i o n s f o r t h e e x p a n s i o n c o e f f i c i e n t s

ψίχτ (k, ρ ) .

S u b s t i t u t i n g i n (1.53) t h e e x p l i c i t f o r m of t h e func-

t i o n s Y/^Lo a n d i n t e g r a t i n g wi th r e s p e c t t o t h e a n g l e s ,

w e c a n o b t a i n t h e k e r n e l s of t h e i n t e g r a l e q u a t i o n s

., , (p, p ' ; k ' ) i n t h e f o r m

~m'm (ILm. -Βΐ|λΟ)

*-«-(θ, 0),

(1.54)

X(l'Lm', —

where the angles Θ, $ and ύ' are determined by the ex-
pressions

!.'« ~t * ~"> (./•> _̂ g L η'- Λ
cos θ = - - , COS ί> = -

cos 0 ' = -
4 ^

We n o t e t h a t

" • 0 0 , 0 0 ~~-

L . 5 5 )

( 1 . 5 6 )

p) = 2 ψαΐ.(k,p) YaLM (k, p).

( 1 . 5 1 )

I n t h e c a s e o f t h e b o u n d s t a t e o f t h e s y s t e m o f t h r e e

p a r t i c l e s , t h e w a v e f u n c t i o n c a n a l s o b e e x p a n d e d i n

t e r m s o f t h e a n g l e f u n c t i o n s ( 1 . 5 0 ) . I f t h e s y s t e m i n t h e

b o u n d s t a t e i s c h a r a c t e r i z e d b y a t o t a l a n g u l a r m o m e n -

t u m L a n d a p r o j e c t i o n M , t h e n t h i s e x p a n s i o n t a k e s t h e

f o r m

( 1 . 5 7 )

T h e e x p a n s i o n c o e f f i c i e n t s ^ L ( k , p ) a r e d e t e r m i n e d b y

t h e s y s t e m o f i n t e g r a l e q u a t i o n s ( 1 . 5 2 ) i f w e s e t t h e i n -

h o m o g e n e o u s t e r m s i n t h e l a t t e r e q u a l t o z e r o .

Owing to the presence of the factor Δ̂  in Eqs. (1.52),
the components ^ L with odd I are equal to zero, this

being due to the symmetry of the wave function Φ against
permutations of any pair of particles.

For short-range potentials, the elements of the two-
particle t matrix t^(k, k'; z) decrease rapidly with in-
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creasing I (at small k or k' the elements tj(k, k'; z) are
proportional to k̂ k ', at large k the components tj are
small for all I; in addition, the contribution of large k to
the equations is suppressed by the factor (Z_ - k2/m) 1).

Therefore the summation over I in the obtained equations
(meaning summation over λ for specified L) can be l imi-
ted to a finite number of t e r m s , and consequently the
systems of integral equations become finite.

The sys tems (1.52) become much s impler if the two-
part ic le t matr ix has a separable form. In this case the
sys tems (1.52) can be reduced to sys tems of one-dimen-
sional integral equations which admit of a numerical
solution.

1.6. Method of Harmonic Polynomials in the Three-body
Problem

Another approach in the solution of the problem of
the bound state of three-par t ic le system, based on in-
troducing harmonic polynomials, was developed by
Simonov and Badalyan 1- 2 3 ' 7 ' 2 5 · 1. In this case the
Schrbdinger differential equation, which defines a sys-
tem wave function that depends on six relat ive coordin-
ates , reduces to an infinite system of equations for func-
tions of one variable.

To i l lustrate the method of harmonic polynomials,
let us consider the s implest case of three identical
spinless par t ic les . In the c .m.s . , the components of the
vectors ^ / v ^ a n d V%p7, describing the relat ive motion
of the t h r e e par t ic les , a r e best considered as compon-
ents of a certa in single vector in six-dimensional space,
the square of the modulus of which i s equal to

'' + '"· •ι-Ί-τΜ. + Ί+'ί,)· ( L 5 8 )
P1 = 4 Ί . +τ

In the spherical coordinate system of the six-dimen-
sional space, the kinetic energy of the system (1.28)
t a k e s the form

where Δ ^ is the angular part of the six-dimensional
Laplace operator. (The let ter fi denotes all the angle
var iables of the six-dimensional vector r 2 3//2, V2/3Pi.)

The wave function ψ , which i s a solution of the
Schrbdinger equation, will be represented in the form of
an expansion in a complete system of orthonormal
eigenfunctions uj^n(fi) of the opera tor Δ ^ , called
harmonic polynomials:

j u'Kn (Ω) ujt-»· (Ω) ΊΩ =

T h i s e x p a n s i o n i s of t h e f o r m

+ ί)ιικη(Ω), )
(1-60)

(1.61)
The quantum number Κ c h a r a c t e r i z e s the total angular
momentum in six-dimensional space and can a s s u m e
arb i t ra ry positive integer values. The remaining quan-
tum numbers a r e denoted by the le t ter n. The aggregate
η contains L—the total orbital angular momentum of the
relat ive motion of the par t ic les , M—the projection of the
total angular momentum, v— a quantum number charac-
ter iz ing the symmetry of the polynomial against permu-
tation of the coordinates of the par t ic le s , and an addi-
tional quantum number, which is necessary in the case

of the higher values of L and K. If the total orbital
angular momentum of the system is equal to zero,
L = 0, then the quantum numbers Κ and ν determine
completely the set of orthonormal functions. Harmonic
polynomials for a system of t h r e e par t ic le s were con-
structed i n L 2 3 > 2 1 ] .

Substituting the function ψ in the form (1.61) in the
Schrbdinger equation for t h r e e p a r t i c l e s with interac-
tion in the form (1.14) and using re lat ions (1.59) and
(1.60), we obtain for the coefficients of the expansion
(1.61) the following system of ordinary differential
equations:

Τίη

where
(1.62)

νί3.ι V3l)uTa. (1.63)

The system (1.62) consists of an infinite number of
coupled differential equations and i s exact.

It i s easi ly seen that for pai red osci l lator potentials
of the type

W - t f j (1.64)

the matr ix e lements (1.63) have a diagonal form

τβ_-. (1-65)

and the system (1.62) splits into independent differential
equations for each of the functions ?>Kn(p)- I n this case
Κ i s an exact quantum number.

In the general case, the nondiagonal matr ix elements
(1.63) differ from z e r o and Κ i s not an integral of the
motion. However, as shown i n

C 5 > 7 ' 2 5 : l , in the case of
short-range paired potentials the main contribution to
the binding energy and to the wave function of the tr i ton
is made by the t e r m of the expansion (1.61) with the
minimum value Κ = 0. The role of the higher values of
Κ in the system (1.62) is immater ia l both because of the
smal lness of the nondiagonal m a t r i x e lements compared
with the diagonal ones, and because with increasing Κ
the effective at t ract ive potentials vj^n, KrT(P) a r e c a n ~
celled by the t e r m s of the centrifugal potential energy
K(K + 4)/p 2 .

The eigenvalue of the energy of the system, calcula-
ted by the method of harmonic polynomials, has a varia-
tional property: it i s the upper l imit for the exact value
of the energy. This can easily be verified by choosing
a s the t r i a l function an approximate wave function in the
form (1.61), satisfying the system (1.62) when account
i s taken of a finite number of t e r m s in (1.61) and (1.62).

A generalization of the method of harmonic poly-
nomials to the case of four and m o r e par t ic le s i s con-
sidered inW.ae.M.e.io] .

2. SEPARABLE REPRESENTATION OF TWO-
PARTICLE t MATRIX

2.1. Separable Representation of Two-particle t Matrix
and Reduction of the Integral Equations for a System
of Three Particles to One-dimensional Form

The two-part icle t matr ix tj(k, k'; z) is called separ-
able if it can be represented in the form of a sum of a
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finite number of terms, each of which is the product of
a function of k by a function of k'. Such a form is as-
sumed by the t matrix in the case of a separable two-
particle potential

V[s1(k.k') - 2H»t(k)g,a(k'). (2.1)

The explicit form of the two-particle t matrix can easily
be obtained by solving Eq. (1.48). In the case of one
(N = 1) term in (2.1) the t matrix is determined by the
expression

tt{k, *'; z) -* , (2.2)

The potential (2.1) in the general case is nonlocal.
The use of non-local potentials of the form (2.1) in
three-particle problems has made it possible to develop
a calculation procedure for three-particle sys-
t e m s ' 1 0 7 ' 2 " . We note that the zero-radius potential
usedin' 2 8 J can be regarded as separable (2.1) with
I = 0, in which the functions g do not depend on k.

In the general case, real physical potentials are
local and do not have the form (2.1). However, short-
range potentials, which are usually employed for
phenomenological description of interactions between
nucleons, can be uniformly approximated by separable
expressions of the type (2.1), leading to a separable
representation for the two-particle t matrix. Indeed,
using expression (2.1), we can obtain the solution of the
Lippman-Schwinger equation in the form

f, (ft. k'; z),-- - 2 gm (k) τ,,,,-,, (ζ) #„·, (&'). (2.3)

where τηη/ ι represents the elements of the matrix in-
verse to the matrix

(T-'w.i-a,,..+-^ j d<i<f ^ ' / ( Χ * - · (2.4)
II

With the aid of the separable representation of the
two-particle t matrix (2.3) the system of two-dimen-
sional integral equations for three particles could be
reduced to a system of one-dimensional equations. For
example, in the case of three identical spinless parti-
cles, substitution of the expression for the t matrix
(2.3) in (1.52) makes it possible to represent the func-
tion ii/Λ τ in the form

Ψίλζ,ί*. Ρ; Po) - = (2π)3 {<]>,„ ( f t )/r 2 6(p — p,>) M M - -

- Λ' {ζτ> - 4r)"' 2«»'{k) τ""··'(Ζ"' An'tkr {ρ'Ρο)}
(2.5)

and to obtain for the functions An̂ L the following sys-
tem of one-dimensional integral equations:
Ann.L (P, Po) = tf!iw,. \«u. (P> Po)

,,(ρ', p0),
(2.6)

where we have introduced the notation
Wr!l λ I-, IO!.£.(P. Po) =

I
" h3''o

Λ/ Γ / *: U') / '
ft2 J Pl'o '

(2.7)

W ,..,.v,. (P• P'( - - j r 1 f dk' j-r Kjfri· (p, fl\ k') gn

(l,lfJ'l_'lz ,

There are different possible methods of approximate
factorization of the potential, and consequently of the
two-particle t matrix. In the Bubnov-Galerkin method
an approximate factorization is obtained by choosing the
solution of the Lippman- Schwinger equation in the form
of a linear combination of a certain system of linearly
independent functions'15-1. In the Bateman method'52'16'113

the potentialV/(k, k') is directly approximated by the
separable potential Y- \k, k'), which is chosen in such
a way that the functions V, and V̂  ·• coincide on 2N

straight lines (k = q i ; k' = qj, i, j = 1, 2, ..., N). The

Bateman separable approximation for the potential

V/(k, k') can be represented'77-1 in the form (2.1), where

gnl («) = ,
V—GnUin, In)

h'\—ft ) — k lr'\Λ, ft ) &n-ll (gn-l,
——?n-li Qn-i) ( 2 . 8 )

W e n o t e t h a t t h e s e p a r a b l e a p p r o x i m a t i o n o f N o y e s -

K o w a l s k i ' 9 6 ' 8 6 3 f o r t h e t w o - p a r t i c l e t m a t r i x

ti (k, ft'; z) « /"< (ft, ?) i( (j, ?; z) f; (ft', g),
„ ., . ti (k, q; z) ( 2 . 9 )

i s in essence the Bateman approximation of the t matr ix
by one t e r m . For the values of the variable momenta
on the energy shell k = q or k' = q (z = Ε + iO, Ε > 0)
the approximate expression (2.9) for the t matr ix coin-
cides with the exact one. An approximation of the type
(2.9) for negative energies was considered by
K o w a l s k i ' 8 " .

In the case when the solution of the problem of the
bound state of two par t ic les can be found in explicit
form, it i s convenient to use for the approximation of
the two-particle t matr ix by a separable expression a
method based on the application of the Hilbert-Schmidt
theorem for the solution of symmetr ica l integral equa-
tions, which we shall henceforth call the Hilbert-Schmidt
m e t h o d ' 6 1 ' 5 0 ' 6 5 ' 1 0 9 ' 7 6 ' 8 1 ' 4 9 ' 8 4 ' 1 9 - 1 .

A comparison of different separable representat ions
for the two-particle t matr ix at positive and negative
values of the energy ζ i s car r ied out in ' 1 0 3 ' 8 7 - 1 .

2.2. The Hilbert-Schmidt Expansion for a Two-particle
t Matrix

The Lippman-Schwinger integral equation (1.48),
which defines the two-particle t matr ix, can be reduced
with the aid of t h e s imilar i ty t ransformation t o the
symmetr ica l form

i I ( i )=f i ( i ) + iF

i(z)ii(z), (2.10)

where

Vi(z)= -{H0-zf2V,(H0-z) 2, ti(z)= - № > — ζ)~2ί,(ζ)(Η0-ζ)~ϊ.

( 2 . H )
T h e i d e a of t h e H i l b e r t - S c h m i d t m e t h o d c o n s i s t s i n u s i n g
t h e e i g e n f u n c t i o n s of t h e k e r n e l of t h e i n t e g r a l e q u a t i o n
(2.10), i . e . , t h e s o l u t i o n s of t h e e q u a t i o n

The eigenvalues η η ;(ζ) (η—quantum numbers character-
izing the eigenvalues in decreasing order of absolute
magnitude) and the eigenfunctions gn/(z) depend on ζ as
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a p a r a m e t e r . The eigenfunctions gnj(z) a r e chosen in
Huber t space, i .e., it i s assumed that they have a finite
norm

(lnl(z), ?„· !«) =δηη·. (2.13)

In concrete calculations it i s m o r e convenient to use
the eigenfunctions gnj(z) of the kerne l of the nonsymme-
tr ized integral equation (1.47), i .e., the eigenfunctions
of the operator VjG0(z):

Vfi, (z) gnl (z) = r]nl (z) gm (z). (2.14)

Since the opera tors VjG0(z) and V/(z) a r e connected by
the s imilar i ty t ransformation, their eigenvalues c o r r e -
spond, and the eigenfunctions g ^ z ) and^ n ^(z) a r e con-
nected by the relat ion

In the momentum representat ion, Eq. (2.14) can be
written in the form

tain for the two-particle t matr ix the following formula:

h(k, k'; z) = Vt{k, /Ο-Σ l^uS,) *»'<*' Z)g''(k'' Z*]· ( 2 - 2 1 )

The s e r i e s in this expansion converges more rapidly
than (2.19), since the eigenvalues Vni which decrease
with η enter quadratically in (2.21). Calculations per-
formed in [ 1 0 5 > 8 6 : l have shown that allowance for the Born
t e r m Vj and the f irst t e r m from the sum (2.21) (the so-
called quasi-Born approximation) i s a very good approxi-
approximation both for the consideration of bound states
and for the consideration of the scatter ing of two par t i -
cles (even at sufficiently low energies) . Expression
(2.21), however, i s not separable. Therefore in the con-
sideration of t h r e e - p a r t i c l e sys tems we shall use the
expansion for the t m a t r i x in the form (2.19), confining
ourse lves to allowance for the first few t e r m s .

The expansion (2.19) can easily be generalized to the
case when the potential contains repulsion at small dis-
tances C 8 0 ' 6 4 ] . In this case t h e r e exist for the operator

? Vl (fc, ,-) ( . _ £ - ) - ' gnl (*·. z) ™- = η η Ι (ζ)*,,(ft, ,). (2.16) V < G o ( Z > eigenfunctions g ^ which correspond at ζ < 0

The orthonormalization condition of the eigenfunctions
, z) then becomes

Although the system of eigenfunctions g ^ z ) of the
kernel of the Lippman- Schwinger integral equation
(1.47) is not complete, nevertheless the solution tj(z)
and the free t e r m of the integral equation Vj can always
be represented in the form of expansions in t e r m s of
these functions.

We write down the solution of the integral equation
(1.48) in the momentum representat ion in the form of
the s e r i e s

t, (k, k'; z) = fe', z)gni(k, z). (2.18)

The coefficients an/ can easily be obtained by substitut-
ing (2.18) in (1.48) and using Eq. (2.16) and the ortho-
normalization condition (2.17). As a resu l t we obtain
the following separable representat ion for the two-parti-
cle t matr ix :

2 T ^ i W (2.19)

Similarly, with the aid of formulas (2.16) and (2.17) it i s
easy to obtain a separable representat ion for the inter-
action potential

V, (k, k') = - 2 Tfcl (z) gnl (ft, Z) gi, (ft', Ζ')- (2.20)

T h e e x p a n s i o n for t h e t - m a t r i x (2.19) c a n b e o b t a i n e d

by d i r e c t l y s o l v i n g t h e L i p p m a n - S c h w i n g e r e q u a t i o n

(1 .48) , u s i n g an e x p a n s i o n for t h e p o t e n t i a l (2.20) i n

which the value of the p a r a m e t e r ζ i s chosen equal to
the value of ζ in Eq. (1.48).

In the expansions (2.19) and (2.20), the r a t e of de-
c r e a s e of the t e r m s with increas ing η i s determined by
the ra te of d e c r e a s e of the eigenvalues ??n/(z) with in-
creasing η [the eigenfunctions g n ; (k, z) a r e bounded
functions of n ] . If we separate in the expansion (2.19)
the interaction potential in the form (2.20), then we ob-

to positive eigenvalues 77* ί > 0, and eigenfunctions

g^ , which correspond at ζ < 0 to negative eigenvalues

> n c = L 2> 3> ·•·.

The functions and g^ , form an orthonormal sys-

tern. In the case of a potential with repulsion, the separ-
able expansion for the t m a t r i x t a k e s the form' 8 0 · 1

(2.22)

Σ

The functions g^ ι can be regarded a s eigenfunctions of

the operator - VjG0(z) corresponding to positive eigen-
values - T J C ,(z).

n c i
The expansion (2.20) for the potential Vj(k, k') takes

place at an a rb i t ra ry value of z; the total sum in (2.20),
naturally, does not depend on z. What does depend on
the p a r a m e t e r z, however, i s the r a t e of convergence of
the sum in (2.20). With increas ing z, the convergence of
the expansion (2.20) [just a s that of the expansion for the
t matr ix (2.19)] becomes worse. Indeed, a s | z | — °° the
eigenvalues J]n;(z) — 0 and each t e r m in the expansions

(2.19) and (2.20) tends to zero . However, the sums of
the s e r i e s (2.19) and (2.20) r e m a i n finite (t/(k, k'; z)
-* Vj(k, k ')).

It i s possible to obtain for the two-particle t matr ix
a separable expansion with better convergence than that
of (2.19) by s tart ing from the expansion for the potential

(2.20) with a fixed value of the p a r a m e t e r ζ = zo, without
equating it to the var iable ζ in the Lippman-Schwinger
equation (1.48). The p a r a m e t e r z0 i s best chosen to be
negative, z<, < 0, for in th i s case the eigenvalues ?]n/(z0)
and the eigenfunctions gn/(k, z0) a r e rea l . Thus, we
choose

Vt (k, k').-. - V
i Z Q ) gnl (2.23)

When z0 s 0, each t e r m in (2.23) i s a rea l and symme-
t r i c a l operator . The sum (2.23) with a finite number of
t e r m s (N te rms) i s a separable potential of rank N. The
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corresponding two-particle t matr ix takes the form
(2.3) with form factors

( 2 . 2 7 )

)= V ηΒ/ (z0) gni (k, 20). (2.24)

The h e r m i t i c i t y of the separab le potential (2.23) with
account taken of any number of t e r m s e n s u r e s unitarity
for the corresponding t m a t r i x in all o r d e r s of the ap-
proximat ion. [ T h e Hi lbert-Schmidt expansion (2.19) i s
unitary only if an infinite number of t e r m s i s taken into
account in t h e sum.]

In the c a s e when t h e s y s t e m of t w o p a r t i c l e s can b e
in the bound s tate with a binding e n e r g y e, it i s conven-
ient to s e t t h e p a r a m e t e r z 0 equal t o the e n e r g y of the
bound s tate , z,, = — e. With such a c h o i c e of z 0 , the bind-
ing energy and the wave function co inc ide with the exact
o n e s a l ready in the f i rs t approximation, and do not
change when the s u c c e e d i n g t e r m s a r e taken into a c -
count in the expans ion (2.23).

The e x p a n s i o n (2.23) j us t i f i e s the u s e of s e p a r a b l e
potent ia l s . Thus, the f irst t e r m in the expans ion (2.23)
with a form factor in the form gKi(k, — e) i s equivalent
to the s e p a r a b l e Yamaguchi potent ia l ' 1 1 6 · 1 , the param-
e t e r s of which a r e fixed by the c h o i c e of the p a r a m e t e r s
for t h e in i t ia l l o c a l potential V(r). Introduction of the
s u c c e e d i n g t e r m s in the expansion (2.23) m a k e s it p o s s i -
ble to obtain further improvement of the approximat ion
of the loca l potential by a sum of separab le o n e s .

Separable e x p a n s i o n s for the potential (2.23) and for
the t m a t r i x (2.3) with g n j(k) in the form (2.24) w e r e
f i r s t c o n s i d e r e d by Harms'· 6 9 · 1 and des ignated the unitary
p o l e expansion. The a c c u r a c y of approximation of the
t w o - p a r t i c l e t m a t r i x by one t e r m of t h i s expansion w a s
inves t igated for different potent ia l s in the p a p e r s of
L e v i n g e r et a l . [87,55,703

2.3. Properties of the Eigenvalues and Eigenfunctions

Let us consider the main proper t ie s of the eigen-
values and the eigenfunctions used in the Hilbert-Schmidt
method. We note f irst that the kernel of the symme-
tr ized integral equation (2.11) is hermit ian only for rea l
negative values of z. F r o m the hermitici ty of the kernel
Vj(z) it follows in this case that the eigenvalues ηηι(ζ)
with ζ < 0_are always r e a l . In the remaining cases the
operator Vj(z) i s not hermit ian (although it r e m a i n s
symmetr ica l a s before) and i t s eigenvalues ^ ( z ) a r e
complex.

In place of the eigenfunctions g(z) it i s convenient to
use the functions ψ(ζ), which a r e connected with the
functions g(z) by t h e relat ion

G0(z)g(z) (2.25)

(2.26)

[ T h e o p e r a t o r s G 0(z)V and VG0(z) a r e connected with
each other by t h e s i m i l a r i t y t rans format ion.] The so lu-
t i o n s of Eq. (2.26) should be square- integrab le . F r o m
the condition for t h e existence of such solutions at arbi-
t r a r y values of ζ (with the exception of values lying on
the r e a l positive axis) one determines the eigenvalues
η(ζ).

E q u a t i o n ( 2 . 2 6 ) c a n b e r e w r i t t e n i n t h e f o r m o f t h e

S c h r o d i n g e r e q u a t i o n

and sat i s fy the equation

w h i c h c o n t a i n s t h e g e n e r a l i z e d p o t e n t i a l V/r ) (z ) , w h i c h

depends on z. At rea l negative values of ζ this general-
ized potential i s hermit ian, and the solution of Eq.
(2.27), ip(z), can be regarded a s the wave function of the
bound state of the system with binding energy—z. Conse-
quently, when ζ < 0 the eigenvalue η(ζ) determines the
number by which the potential V must be divided in
o r d e r for the system to have a bound state with a speci-
fied binding energy— z. At η(ζ) = 1, Eq. (2.27) goes over
into the usual Schrodinger equation, which admits of
solutions that d e c r e a s e at infinity only for definite nega-
tive values of the energy ζ = — e. Obviously, these values
correspond to bound s tates of the system and a r e deter-
mined from the condition

η ( - ε ) = (2.28)

The wave function of the bound state of the system in
the momentum representat ion can be written in the form

Ί (2.29)

w h e r e N,^ i s a normal i zat ion constant and g^pc, - e ^ )
i s an eigenfunction of Eq. (2.14) . Thus, out of t h e e n t i r e
set of wave functions ipni(z) with ζ < 0 the only physical
wave functions describing the bound s tates of the system
a r e the functions with such values of η and ζ = - e n j at
which the eigenvalues ηηι(ζ) become equal to unity. In
the case of potentials with definite signs, the eigenvalues
η(ζ) for rea l negative values of ζ a r e of definite sign,
namely, for attract ion potentials (V < 0) the eigenvalues
a r e positive, η(ζ) > 0, and a r e increasing functions of
z; for repulsion potentials (V > 0), the eigenvalues a r e
negative, η(ζ) < 0, and a r e decreas ing functions of
ζ ((l/η^ζ)) άηηι(ζ)/άζ > 0 when ζ < 0). According to
(2.28), it follows therefore that a bound state with nega-
tive energy ζ = — e ^ i s possible only if

(2.30)

In the case of complex values of z, solutions of (2.26)
a r e possible only for complex values of η(ζ). If the
eigenvalue ^ ( z ) at a complex energy z 0 with small
positive imaginary part i s such that

Rer\ni (z0) «i 1 and Im ηη ί (z0) < 1, (2.31)

then the corresponding wave function d e s c r i b e s a quasi-
d i s c r e t e resonant or e l s e a v irtual s t a t e of the s y s t e m .

In the coordinate r e p r e s e n t a t i o n , the determinat ion
of the eigenfunctions ψηι(τ, z) = u n /(r, z )/ r and of the
eigenvalues Vni(

z) reduces to a solution of the differen-
tial equation

•unt(r,z) = 0, (2-32)

with boundary condit ions

uni(r, z)~r'+t, r->

um (r, ζ) ~ eitr, r - *

w h e r e q i s d e f i n e d b y t h e e q u a t i o n

(2.33)

(2.34)

Let us examine the Schrodinger equation with poten-
tial gV(r), in which for convenience we have separated
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the coupling constant. The so lut ion of such an equation

Ψΐ(τ, q, g) at an energy ζ = q 2 /2μ, satisfying the boun-
dary condition (2.33) can be r e p r e s e n t e d in the form

<?i (T, q, g)~h(-q, g)fi (r, q, g)-fi (?, g)fi (r, - ? , g), (2.35)

where fj(±q, g) is the Jost function and fj(r, ±q, g) a r e
the solutions of the Schrodinger equation with boundary
conditions at infinity

lim e±*a'/, (r, ± q, g) = 1. (2.36)

We recal l that the Jost function f^(q, g) i s connected
with the corresponding solution fj(r, q, g) by the relation

f,(q, g) = l r, q, g). (2.37)

Obviously, the solution of Eq. (2.32) can be written in
the form (2.25), where g should be taken to mean the
generalized coupling constant g/T?(z). Since the proper
solution of (2.32), unlike (2.35), should contain at infinity
only a diverging wave, the dependence of η on ζ can be
obtained from the condition that the coefficient of the
converging wave vanish

/ i ( - i , f ) = 0 . (2.38)

The roots of these equations determine the eigenvalues

As is well known , the Jost function fj(— q, g) coin-
cides with the Fredholm determinant Dj(z, g) of the
integral equation (2.10). Noting that the Fredholm de-
terminant Dj(z, g) is represented in terms of the kernel
of the equation V (̂z) in the form of an infinite series

Σ (-1)"

...]dkm

V,{kt,kl;z)Vl(kl,k2;z) ... V, (ft,, ftm; z)
Vi (ft2, ftt; 2) V, (ft2, k2; z) ...V, (ft2, km; z)

V, (km, ft,; z) Vt (km, ft,; z) ...Vt (km, ftm; z)

and using the expansion (2.20), we get
(2.39)

(2.40)

Thus, the Jost function fj(— q, g) is expressed directly in
terms of the eigenvalues Vnii

z)'·

/ / ( - ? - g) = Π (Ι-η, , , (ζ)) . ( 2 · 4 1 )

We n o t e that t h e re la t ion (2.20) i s l i n e a r i n g and

7)nj(z) and it i s e a s y t o ver i fy that

· f) == Π (i- 3 5^). (2.42)
where η i s an arb i t rary p a r a m e t e r . Equating the left
side of (2.42) to z e r o in accordance with (2.38), we ac-
tually obtain an equation for finding the eigenvalues

Relation (2.41) enables us to find the connection be-
tween the phase for the scatter ing of two par t ic le s 5/(q),
in t e r m s of which the component of the two-part icle
t m a t r i x is expressed on the energy shell, and the eigen-
values J]nj(E + iO) at Ε = ς ζ /2μ > 0. Indeed, the scatter-
ing phase shift 6/(q) i s an argument of the Jost function
fy(q, g). Therefore, recognizing that 6j(q) i s an odd
function of q, and using (2.41), we find

))• ( 2 . 4 3 )

The J o s t function fj(- q, g) for c o m p l e x v a l u e s of g i s
an ent i re function of g for any va lue of q or z. T h e r e f o r e
the eigenvalues η η ;(ζ) at a fixed value of the energy z,
determined by the z e r o e s of the Jost function (2.38),
form a d i sc re te set; only a finite number of eigenvalues
Vnl(z) will l ie outside a c i rc le of finite radius . Owing
to the d i s c r e t e n e s s of the eigenvalues η^ζ), they can
be renumbered with the aid of the integer number η (in
o r d e r of decreas ing absolute magnitude of J)nj), as has
indeed been assumed implicitly thus far.

The analytic proper t ies of the Jost function fj(— q, g)
in the plane of the complex energy ζ a r e determined by
the behavior of the potential V(r). We shall a s s u m e that
the singularity of the potential at the point r = 0 is
weaker than r~2, and that at infinity the potential decrea-
s e s sufficiently rapidly (for example, more rapidly than
r~3). In this case the Jos t function fj(— q, g) i s analytic
and has no s ingulari t ies on the physical sheet of the
Riemann surface of the complex z, i .e., on the ent i re
complex ζ plane, with the exception of a cut along the
rea l positive axis. The analytic proper t ie s of the eigen-
values ηηι(ζ) follow from the analytic p r o p e r t i e s of the
Jost function fj(— q, g). Since the Jos t function fj(— q, g)
i s analytic in both var iables and in the general case
9fy/8g 5*0, Eq. (2.38) has a unique solution η η ; ( ζ ) , which
is an analytic function of ζ in the region of analyticity
of the function fj(— q, g). Thus, the eigenvalues ^ ( z ) of
the Hilbert-Schmidt operator a r e , like the Jost function
f̂ (— q, g), analytic functions without s ingularit ies on the
entire complex ζ plane, with the exception of a cut along
the rea l positive axis.

F r o m the reality of »jn;(z) at ζ < 0 it follows that the
Schwartz reflection pr inciple holds for complex ζ

η*ι<*> = τΜ*·). (2.44)

We note that at rea l negative values of ζ it i s possible to
make the functions gnj(k, z) rea l by a suitable choice of
the phase factor. In this case the reflection principle
also holds for the eigenfunctions

gnl(k,z)-~.gnl(k,Zt). (2.45)

As noted above, the eigenvalues η^ζ) a r e real only
on the rea l negative axis. Therefore, taking into account
the sign-definite character of the imaginary part of
Vnl(z) in the upper and lower half-planes of ζ and taking
into account the inequality ηη1(ζ)άηηί(ζ)/άζ > 0, which
holds for r e a l negative values of z, we find that in the
upper half of the ζ plane

Ιπιηη,(ζ)>0 for V < 0 andlmrw (z)<0 for V>0. (2.46)

In the lower half of the ζ plane the imaginary part of
Vni(z) has the opposite sign.

Using the independence of the t r a c e of an operator of
the choice of the representat ion, we find

J i z)F)", p = l , 2, 3, . . . (2.47)

For ρ = 1 we have

2 Άηΐ (ζ) = - 2ίμ? Ij /, (qr) V (r) M" (qr) r"- dr, q = /2J7z. (2.48)

n = l (I
T h e i n t e g r a l in t h e r i g h t - h a n d s i d e of (2.48) c o n v e r g e s
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if the potential is characterized by a finite radius of
action and the singularity of the potential at the point
r = 0 is weaker than r~2. To ensure the convergence of
the series in the left side of (2.48) in this case, the
eigenvalues ηη/(ζ) should decrease with increasing η
like n~"y, where γ > 1. For ζ < 0, the dependence of
^ ( z ) on η for large values of η can easily be deter-
mined in the quasiclassical approximation, using the
Bohr-Sommerfeld quantization rule

where ρ is determined from the condition V(ρ) =
For sufficiently large η

(2.49)

(2.50)

(Vo is the depth of the potential), and therefore the inte-
gration in (2.49) can be continued to infinity; it is possi-
ble to neglect the second term under the square-root
sign. As a result we obtain

(2.51)

where R = r)/Vodr is the effective radius of ac-

0
tion of the potential. Using (2.51), we can rewrite (2.50)
in the form

(2.52)

2.4. Eigenvalues and Eigenfunctions for a Hulthen
Potential and for a Square Well

By way of illustration, we present explicit expres-
sions for the eigenvalues and eigenfunctions in the case
of a Hulthen potential and a square potential well.

a) Hulthen potential

1)-S K . - , * = • . (2.53)

At s m a l l d i s t a n c e s ( r < R) the potent ia l (2.53) i s char-

a c t e r i z e d by a s ingu lar i ty of t h e type r"1, and at l a r g e

d i s t a n c e s (r ^ R) it d e c r e a s e s exponent ia l ly .

We confine o u r s e l v e s to s p h e r i c a l l y - s y m m e t r i c a l

s t a t e s {I = 0, the index I i s omitted) . F o r the Hulthen

potential, the J o s t function t a k e s the form
oo

/<-«.*)- Π ( i - i o ^ S ) ) · (2.54)

The zeroes of the Jost function (2.54) determine the en-
ergies of the bound states:

The corresponding functions of the bound states are

nl Γ ( ν + * ) Γ ( ν - » + 1 ) ( 2 · 5 6 )
-»τ-\ -/ vl(n-v)l fg_\ (g__n 7 7 Γ '

Knowing the J o s t function, w e can e a s i l y find in a c -

cord with (2.38) t h e e i g e n v a l u e s of t h e kerne l of the

Lippman- Schwinger equation

Tin (Z) = — ' , T = l u l l ' 2 ^ 0 . ίΟ £\*7\

-100 -50 -10 -5-1015 20 5 100 ω

Fig. 1. Dependence of Re T7n0 (solid curves and Im ηη0 (dashed
curves) ofi the parameter ω = 2μζϋ 2 for the Hulthen potential (g =
1.403). The numbers next to the figures indicate the values of n.

The corresponding e igenfunct ions, which a r e so lut ions

of (2.16), a r e of t h e form

η

, v + l T T » — 0

1vW

Ίσ(«)

σ—1

η — ι

' c l (z) = TWF- V^(z) Π it

(2.58)

The functions (2.58) are normalized in accordance with
the condition (2.17).

When the parameter ζ changes from — °° to 0, the
eigenvalues ηη(ζ) are real and change from 0 to g/n2.
The bound states correspond to values of ζ for which
?jn(z) = 1. With further change of ζ from 0 to °° + iO
(along the upper edge of the cut), the eigenvalues ?)n(z)
become complex and describe on the complex plane
semicircles of radius g/2n2 with centers lying on the
real axis at the points g/2nz. The real and imaginary
parts of the eigenvalues %(z) are shown in Fig. 1 for
the energy parameter ζ ranging from - °° to + » + iO, for
the case g = 1.4 (corresponding to interaction of the
nucleons in the triplet spin state).

b) Square potential well

f —v0, r<R,
Kir)-I t ( 2 · 5 9 )

In the case of a square well, the Jost function f(— q, g)
takes the form

f( — Q< g) = eiiR {cos Vg + q2R2—I——- »in]ig-\-ψβ2\ . (2.60)

The e n e r g i e s of the bound s t a t e s a r e d e t e r m i n e d by the

r o o t s of the t ranscendenta l equation

The correspond ing wave functions of the bound s t a t e s
a r e equal to

φ» (*) - .,+"„• C 0 3f |Χ1*"Χ"kR • (2.62)

The eigenvalues ηη(ζ) in the case of a square potential
well can be found by solving the transcendental equation

^ * . (2.63)

At small z, the eigenvalues »?n(z) can be obtained in ex-
plicit form:

(2·6 4)
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100

Fig. 2. Dependence of Re τ)η0 (solid curves) and Im 7jn0 (dashed
curves on the parameter ω = 2μζϊί2 for a square well ( g = 3.608). The
numbers next to the curves indicate the values of n.

The e igenfunct ions g n (k, z) for a s q u a r e w e l l a r e d e t e r -
mined by the formula

cosfcfl — i(g/k) sin kR

' [ (2.65)
ft(k, ζ)« Cn(ζ) -

n w μ (ίΛΐηΜ)-«?Λ

T h e r e a l a n d i m a g i n a r y p a r t s of t h e e i g e n v a l u e s i j n ( z )

for a square well with ζ varying along the r e a l axis from

— oo to 4-» + iO a r e shown in Fig. 2.

2.5. Convergence of Separable Hilbert-Schmidt
Expansion

Let us investigate the convergence of the Hilbert-
Schmidt expansion for the two-particle t m a t r i x using
negative_ values of ζ a s an example. If ζ < 0, then the
kernel Vj(k, k ; z) of the integral equation (2.10) is sym-
metr ica l and rea l . F o r short-range potentials having a
singularity weaker than r"2 a s r — 0, the kerne l and the
free t e r m of the integral equation (2.10) a r e square-
integrable:

dkdk'\V,(k, k', ( 2 . 6 6 )

I n t h i s c a s e i t c a n b e s h o w n t h a t o n g o i n g o v e r t o a f i n i t e
i n t e g r a t i o n i n t e r v a l i n t h e L i p p m a n - S c h w i n g e r e q u a t i o n
b y a s u i t a b l e c h a n g e o f v a r i a b l e s , t h e k e r n e l of t h e r e -
s u l t a n t s y m m e t r i z e d e q u a t i o n i s c o n t i n u o u s a n d b o u n d e d
in the chosen interval . In the case of positive eigen-
values ηηι > 0 (attract ive potentials) the s e r i e s (2.20)
for such a kernel [and consequently also the s e r i e s
(2.19) for the t matr ix] converges absolutely and uni-
formly with respect to both var iables k and k' (the
Mercer t h e o r e m 1 1 8 3 ) .

F o r a t t ract ive potentials V(r) < 0, each kerne l of the
expansion (2.20) i s a separable at tract ion potential.
Therefore further refinement of the expansion, i .e., the
use of a l a r g e r number of t e r m s in the Hilbert- Schmidt
expansion, corresponds to introduction of a s t ronger
attract ion.

In the expansion (2.19) of the t matr ix, the r a t e of
d e c r e a s e of the t e r m s with increasing η i s determined
by the r a t e of d e c r e a s e of the eigenvalues T/nj(z) with η
(the eigenfunctions a r e bounded functions of n). There-
fore the convergence of the Hilbert-Schmidt expansion
i n c r e a s e s with weakening of the singularity of the poten-
tial and with d e c r e a s e of i t s range. At ζ = 0, the eigen-
values % 0 (0) for η = 1, 2, 3, and 4 a r e re lated like

0 12 3 4 It 1 2 3 4 0
Fig. 3. Dependence of the partial two-particle t matrix (/ = 0) on

the parameter q ^v/rnTzT (z < 0) for three values of the momentum k
(k' = 1.0 F"1) in the case of a Hulthen potential. The numbers next to
the curves indicate the order of the approximation (the number of
terms in the separable expansion (2.19) taken into account in the cal-
culation). The parameters (a) of Table II for the triplet-singlet and
spin-isospin state were used.

3.0

0 12 3 4 0 2 3 0 12 3 q,F-l
Fig. 4. Dependence of the partial two-particle t-matrix (/ = 0) on

the parameter q = y/m\z\ (z < 0) in the case of a square-well potential.
We used the values of the parameters (a) for the triplet-singlet state
(curves ts). See the caption of Fig. 2.

1 : 1 / 4 : 1 / 9 :1/16 in the case of a Hulthen potential and
like 1 : 1 / 9 : 1 / 2 5 :1/49 in the case of a square well. [At
l a r g e n, the eigenvalues ϊ)ηο(0) for al l the short- range
potentials d e c r e a s e like n~2.]

In the case of a square well, the dependence of the
eigenvalues J?nj(O) with I > 0 on η and I can readi ly be
obtained in explicit form by using the conditions for the
appearance of levels with zero energy

and the asymptotic expansion of the spherical Bessel
function. As a resul t we have

η« (0); (2.67)

In a s y s t e m of two n u c l e o n s , owing t o t h e i r i d e n t i t y ,
only e v e n t r i p l e t - s i n g l e t and s i n g l e t - t r i p l e t s p i n - i s o s p i n
s t a t e s a r e p o s s i b l e . F o r s u c h s t a t e s t h e l a r g e s t c o n t r i -
b u t i o n t o t h e s e p a r a b l e e x p a n s i o n of t h e t m a t r i x i s
made by the t e r m s with η = 1, I = 0; η = 2, I = 0; η = 1,
1 = 2, e tc . ; the corresponding eigenvalues in decreas ing
o r d e r a r e TJ 1 O (0) ~ 1; i}20(0), η 1 2 (0) ~ V9; T)3o(0), 7722(0),
ί?ΐ4(0) ~ V25 etc. In spite of the fact that the eigenvalues
7720 and τ)12 a r e of the same o r d e r of magnitude, the con-
tribution of the t e r m with η = 1, / = 2 to the expansion
of the two-part icle t matr ix t^k , k'; z) at small k or k '
i s much s m a l l e r than the contribution of the t e r m with
η = 2, / = 0. [Owing to the finite radius of action of the
forces, the functions gnj(k, z), and consequently also the
par t ia l components t^(k, k'; z) at smal l k o r k ' d e c r e a s e
rapidly with increas ing I, g ^ k , z) ~k^.]
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T h e c o n v e r g e n c e o f t h e e x p a n s i o n s o f t h e t w o - p a r t i c l e

t m a t r i x ( 2 . 1 9 ) f o r d i f f e r e n t v a l u e s o f t h e m o m e n t u m k

and negative values of ζ (q = Vm| z|) in the case I = 0 is
shown for the Hulthen potential in Fig. 3 and for the
square well in Fig. 4. As follows from Fig. 4, in the
case of a square well the values of the two-particle
t matrix calculated with the aid of (2.19) with allowance
for two terms, turn out to be very close to the exact
values.

3. BOUND STATES AND SCATTERING IN A SYSTEM
OF THREE IDENTICAL SPINLESS PARTICLES

3.1. Separable Expansion of Two-particle t Matrix and
One-dimensional Integral Equations for a System of
Three Identical Spinless Particles

We now use the introduced separable expansion of a
two-particle t matrix to solve the three-particle prob-
lem. We stop first to discuss the simplest case of three
identical spinless particles. We start with the system
of two-dimensional integral equations (1.52). With the
aid of the Hilbert- Schmidt expansion (2.19) for the two-
particle t- matrix we can reduce the system (1.52) to a
system of one-dimensional integral equations. Indeed,
substituting (2.19) in (1.52) and using expression (2.29)
for the wave function of two particles in the bound state,
we can represent the function ^ L in the form

ψαΐ. {k, p; p0) =

= (Jto)» ̂  Ν» '"»*' Zp) {WiAi ^ r ^ !- τ., (Zp) anl,L (p, Po)} ,

^~Zp (3.1)
where the functions a ^ j j p , Po) satisfy the following
system of integral equations:

P, Po) = , Pa',

\ UnlU., n-VVI. (ρ, ρ'\ Ζ) τ,,·,· (Ζ „•) α,,τλ-L (Ρ', Po) Ρ' 2 dp',

» ( 3 . 2 )

, Ρ'; Ζ) =

(In t h e d e t e r m i n a t i o n of t h e q u a n t i t i e s

u s e d t h e p r o p e r t y

+ ppy·

(3.3)

n 7 ' x ' L w e

= Δ .̂ The factor Δ^ vanishes for

odd values of I, and therefore all the components

with odd I vanish. The function K, ' . , ,(p, p ' ; y), which
ίλ, ι λ

e n t e r s in (3 .3) , i s d e t e r m i n e d by e x p r e s s i o n (1.54), in

which the angles Θ, t» and t»' are expressed in terms of
the variable y by means of the relations

cos θ = y, cos 9 =

γ \p
y p* + ^p

(3.4)
The amplitude of elastic scattering of a particle by a

system of two particles that are in the bound state is
equal to

/<P. P o K f (3.5)

Using formulas (1.42), (1.51), and (3.1) we can show that

the partial amplitude
terms of the quantity

Po) is expressed directly in
at ρ = po:

4 ι \ 2um Γ dr\4Q (z) ~~\ (3.6)

T h u s , t h e w a v e f u n c t i o n of t h e s y s t e m of t h r e e p a r t i -

c l e s $ J X L i s r e p r e s e n t e d i n t e r m s of t h e f u n c t i o n s
&nlXL·^' P°) w h i c h a r e i n e s s e n c e t h e a m p l i t u d e s f o r t h e

s c a t t e r i n g o f t h e p a r t i c l e off t h e e n e r g y s h e l l b y a s y s -

t e m o f t w o o t h e r p a r t i c l e s i n t h e b o u n d s t a t e w i t h q u a n -

t u m n u m b e r s no = 1 a n d l0 = 0 ( t h e f i n a l s t a t e i s d e s -

c r i b e d b y t h e n u m b e r s nl). T h e f u n c t i o n s U n / ^ L n ' Z ' x ' L

p l a y t h e r o l e o f t h e m a t r i x e l e m e n t s o f t h e e f f e c t i v e

i n t e r a c t i o n p o t e n t i a l o f t h e p a r t i c l e w i t h t h e s y s t e m o f

t w o p a r t i c l e s i n t h e b o u n d s t a t e , a n d t h e f u n c t i o n s Tu/(Zp)

a r e t h e p r o p a g a t i o n f u n c t i o n s o f t h e f r e e p a r t i c l e a n d o f

t h e p a i r o f i n t e r a c t i n g p a r t i c l e s i n t h e b o u n d s t a t e w i t h

q u a n t u m n u m b e r s id. T h e e f f e c t i v e p o t e n t i a l d e p e n d s o n

t h e e n e r g y a n d i s n o n l o c a l .

I n t h e c a s e of z e r o e n e r g y o f t h e i n c i d e n t p a r t i c l e

(po = 0 ) t h e f r e e t e r m of ( 3 . 2 ) e q u a l s , i n a c c o r d w i t h

( 3 . 3 ) a n d ( 1 . 5 4 )

i W , .oii. (P, 0; - εί0) = 6u8nUn,,0. ,οοο (ρ, 0; - e i0), (3.7)

a n d c o n s e q u e n t l y t h e only n o n v a n i s h i n g a m p l i t u d e s a r e

a n ^ L ( p , 0) wi th z e r o t o t a l o r b i t a l a n g u l a r m o m e n t u m

L = 0 and with I = λ:

«nui. (Ρ, 0) = διοδ;λαη;;ο (ρ, 0). (3.8)

T h e i n t e g r a l e q u a t i o n s d e t e r m i n i n g t h e f u n c t i o n s

a n / Z 0 ( P ' ° ) s anZ(P> °) a r e

am (p, 0) = {/„,, ) 0 (p, 0; - ε,0) +

um.n-r(p,p'; - β ι ο ) τ « ' ί ' ( — β ί ο — | - ^ r ) p', 0)p'2dp',

(3.9)
where

(P, P'\ 1) = ί^ηΐίο. O (Ρ, ρ'\ Ζ)

xPr
') dy.

The scattering length, i.e., the amplitude for elastic
scattering at zero energy with minus sign, is deter-
mined by the expression

We write down also the integral equations for the
bound state of a system of three particles with total
orbital angular momentum L and projection M. Using
the separable expansion (2.19) of the two-particle
t matrix, we can represent the functions Φιλίι satisfying
the homogeneous system of equations corresponding to
(1.52) in the form

( 3 . n )

For the partial amplitudes &ηΐχι,(ρ) we obtain a homo-
geneous system of one-dimensional integral equations

Z) %n'V (Zp>) an,vx. '2 dp',

( 3 . 1 2 )
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1.0

0.5

3,4.

0.8 1.0 1Z 1.4 1.6 U 3
Fig. 5. Dependence of the quantitiesx/mEoR and ν τ η Ε ^ ( Ε 0

and E, are the binding energies of the system of three identical spin-

less particles in the ground and first-excited states with L = 0) on the

effective depth of the two-particle interaction g in the case of a Hul-

then potential. The numbers next to the curves indicate the order of

the approximation. The dashed curve pertains to the system of two

particles (the dependence of γ/meR on g, e is the binding energy of

two particles in the ground state with / = 0). The values of g are

marked for the triplet-singlet (ts) and the singlet-triplet (st) state of

two nuclei.

Fig. 6. Dependence of the quantities \/mE^ R and i/mE, R on
the effective depth of the two-particle interaction g in the case of a
square-well potential. See the caption to Fig. 5.

If t h e t o t a l o r b i t a l a n g u l a r m o m e n t u m of t h e s y s t e m

i s e q u a l t o z e r o , L = 0, t h e n

θΐλδι-λ'ίΛιΙ, η·|· (Pt Ρ'! Ζ),P'\ '} (3.13)

and Eqs. (3.12) are reduced to the form

Fig. 7. Dependence of the scat-
tering length A of one particle by
a system of two particles in the
bound state on g in the case of three
identical spinless particles for a Hul-
then potential. The numbers next
to the curves indicate the order of
the approximation.

The systems of one-dimensional integral equations (3.9)
and (3.14) admit of a numerical solution.

3.2. Binding Energy and Scattering Length

We present the results of the numerical solution of
the obtained systems of integral equations (3.9) and
(3.14) in the case when the interaction between particles
is described by a Hulthen potential1-109'76-1 or by a square-
well potential1-81 > 3 7 ] . We calculated the binding energies
for a system of three identical particles in the ground
and first-excited states with total angular momentum
equal to zero (L = 0), Eo and Ei and the scattering
length A of one particle by a system of two particles in
the bound state. To study the convergence of the solu-
tion when a separable expansion is used for the two-

1,5 2.0 2.5

p a r t i c l e t m a t r i x , w e t o o k i n t o a c c o u n t d i f f e r e n t n u m -

b e r s o f t e r m s i n t h e t m a t r i x e x p a n s i o n .

F i g u r e s 5 a n d 6 s h o w p l o t s of t h e q u a n t i t i e s VmE'oR

a n d VnaEiR o n t h e e f f e c t i v e d e p t h of t h e t w o - p a r t i c l e

i n t e r a c t i o n g f o r a H u l t h e n p o t e n t i a l a n d f o r a s q u a r e

w e l l . T h e d e p e n d e n c e o f t h e s c a t t e r i n g l e n g t h A o n g f o r

t h e H u l t h e n p o t e n t i a l i s s h o w n i n F i g . 7 . I n t h e c a l c u l a -

t i o n o f t h e f u n c t i o n s s h o w n i n F i g s . 5 - 7 , w e t o o k i n t o

a c c o u n t t h e i n t e r a c t i o n b e t w e e n t h e p a i r s o f p a r t i c l e s

o n l y i n t h e S s t a t e s (1 = 0). D i f f e r e n t c u r v e s w e r e o b -

t a i n e d w i t h a l l o w a n c e f o r d i f f e r e n t n u m b e r s o f t e r m s i n

t h e s e p a r a b l e e x p a n s i o n ( 2 . 1 9 ) [ t h e n u m b e r s n e x t t o t h e

c u r v e s i n d i c a t e t h e o r d e r of t h e a p p r o x i m a t i o n , i . e . , t h e

n u m b e r of t e r m s o f e x p a n s i o n ( 2 . 1 9 ) t a k e n i n t o a c c o u n t

i n t h e c a l c u l a t i o n ] .

I n t h e c a s e of a H u l t h e n p o t e n t i a l , c u r v e s 3 a n d 4 f o r

t h e b i n d i n g e n e r g y o f t h e g r o u n d s t a t e o f t h e s y s t e m o f

t h r e e p a r t i c l e s p r a c t i c a l l y c o i n c i d e ; c o n s e q u e n t l y , w e

c a n c o n f i n e o u r s e l v e s i n t h e c a l c u l a t i o n t o o n l y t h r e e

t e r m s i n t h e s e p a r a b l e e x p a n s i o n ( 2 . 1 9 ) . A t l a r g e v a l u e s

of t h e e f f e c t i v e d e p t h g, c u r v e 4 g o e s o v e r a s y m p t o t i c -

a l l y i n t o a s t r a i g h t l i n e , i . e . , t h e c a l c u l a t e d d e p e n d e n c e

of V E ^ o n g a g r e e s w i t h t h e l i n e a r d e p e n d e n c e

VmE0R~Cg—7-C"1, ( 3 . 1 5 )

o b t a i n e d f o r t h e H u l t h e n p o t e n t i a l i n t h e s t r o n g - c o u p l i n g

a p p r o x i m a t i o n i n [ 2 2 J , at a v a l u e C = 1 . 0 3 . I n t h e c a s e of

a s q u a r e w e l l t h e c o n v e r g e n c e o f t h e s o l u t i o n u s i n g

s e p a r a b l e e x p a n s i o n ( 2 . 1 9 ) i s e v e n b e t t e r t h a n i n t h e

c a s e of t h e H u l t h e n p o t e n t i a l . A s f o l l o w s f r o m F i g . 6,

t h e v a l u e s of t h e b i n d i n g e n e r g y o f t h e t h r e e p a r t i c l e s

E o c a l c u l a t e d w i t h a l l o w a n c e f o r o n e a n d t w o t e r m s i n

t h e e x p a n s i o n ( 2 . 1 9 ) a r e v e r y c l o s e .

T h e c a l c u l a t i o n s a l s o p o i n t t o t h e e x i s t e n c e , b e s i d e s

t h e b o u n d g r o u n d S - s t a t e of t h e t h r e e - p a r t i c l e s y s t e m ,

of a n e x c i t e d S- s t a t e f o r a l l v a l u e s o f t h e p a r a m e t e r g

a t w h i c h t h e f o r m a t i o n o f t h e b o u n d g r o u n d S - s t a t e of

t h e t w o p a r t i c l e s i s p o s s i b l e . F o r a l a r g e i n t e r v a l of

t h e p a r a m e t e r g, t h e b i n d i n g e n e r g y of t h e f i r s t e x c i t e d

t h r e e - p a r t i c l e s t a t e E i s l i g h t l y e x c e e d s t h e b i n d i n g e n -

e r g y e of t h e g r o u n d s t a t e o f t w o p a r t i c l e s . A n e x c i t e d

t h r e e - p a r t i c l e s t a t e i s p o s s i b l e i n t h e c a s e of p a i r e d

p o t e n t i a l s o f d i f f e r e n t f o r m ( s e p a r a b l e Y a m a g u c h i p o -

t e n t i a l " 1 ' 7 7 1 , e x p o n e n t i a l p o t e n t i a l ' 7 2 1 1 , H u l t h e n p o t e n -

t i a l 1.76,84] square well ).
The values of the binding energy and the scattering

length Eo and A corresponding to the parameters of the
interaction potential of the two identical spinless parti-
cles coinciding with the interaction parameters of the
two nucleons in the triplet-singlet spin-isospin state
are listed in Table I. The numbers 1, 2, 3, and 4 denot-



142 A. G. SITENKO and V. Γ . KHARCHENKO

Table I. Binding energy of three particles and scattering
length of particle by a system of two particles in the

bound state in the case when the particles are
identical and spinless

E0,MeV

A, F

Hulthen potential (triplet-singlet
parameters (a))

1 = 0

1
18.37

20.68

2
25.74

14.92

3 | 4
27.13

13.53

27.41

12.85

Square-well potential (triplet-
singlet parameters (c)> '

( = 0

1
20.42

29.23

2
20.64

28.34

ί = 0.2

1

20.44

29.14

Table Π. Parameters for a Hulthen potential and for a
square well, obtained from the data on the interaction

of two nucleons at low energies (v0 = mV0/h2)

Hulthen
potential

Square-well
potential

«οι,, F 1

1.8509

0.8513
0.8178
0.7945

K<«, F

0.8708

2.043
2.093
2.131

"Osi, F '

1.3493

0.3390
0.3770
0.3380

R s t >

F

0.8317

2.586
2.457
2.590

Two-nucleon
parameters

(a)

(a)
(b)
(c)

Fn(p,0),F

Fig. 8. The functions F n ( p , 0) obtained in [ 7 6 ] by numerical inte-

gration of the system (3.12) (/ = 0) in the case of a Hulthen potential

with allowance for one (a), t w o (b), three (c) and four (d) terms in

the expansion of the t matrix (2.19). The numbers next t o the curves

indicate the values of n . The parameters (a) of Table II for the triplet -

singlet state of t w o nucleons were used.

i n g t h e c o l u m n s o f t h e t a b l e i n d i c a t e t h e n u m b e r s o f

t e r m s i n t h e e x p a n s i o n ( 2 . 1 9 ) w h i c h w e r e i n c l u d e d i n t h e

c a l c u l a t i o n . ( T h e t w o - n u c l e o n p a r a m e t e r s a r e g i v e n i n

T a b l e II . )

F i g u r e s 8 a n d 9 s h o w t h e c o m p o n e n t s o f t h e s u c c e e d -

i n g a p p r o x i m a t i o n s o f t h e a m p l i t u d e

f o r a H u l t h e n p o t e n t i a l ( f o u r a p p r o x i m a t i o n s ) a n d f o r a

s q u a r e w e l l ( t w o a p p r o x i m a t i o n s ) . T h e g i v e n r e l a t i o n s

o f f e r e v i d e n c e o f g o o d c o n v e r g e n c e o f t h e m e t h o d .

T o e s t i m a t e t h e c o n t r i b u t i o n o f t h e i n t e r a c t i o n s i n

Fig. 9. The functions F n ( p , 0) obtained in [ " ] by numerical in-

tegration of the system (3.12) (/ = 0) in t h e case of a square well wi th

allowance for one (a) and t w o (b) terms in t h e expansion (2.19). The

numbers next to the curves indicate the values of n. The parameters

(c) of Table II for the triplet-singlet state of two nucleons were used.

t h e s t a t e s w i t h I * 0 , t h e b i n d i n g e n e r g y E o a n d t h e s c a t -

t e r i n g l e n g t h A w e r e c a l c u l a t e d i n 1 3 7 3 f o r a s q u a r e - w e l l

p o t e n t i a l w i a l l o w a n c e f o r t h e i n t e r a c t i o n i n t h e s t a t e s

w i t h I = 0 a n - 1 = 2. [ T o s i m p l i f y t h e c a l c u l a t i o n s , o n l y

the first term η = 1 was taken into account in the separ-
able expansion (2.19).] The results of the calculations
are given in Table I in the column marked I = 0, 2. As
expected, the contribution of the interaction to the state
with 1 = 2 turned out to be negligible.

The results shown in Figs. 5—7 confirm the previ-
ously made statement that refinement of the separable
expansion, i.e., allowance for a large number of terms
in (2.19) (as well as allowance of the interactions in
states with higher orbital angular momenta) leads only
to an increase of the attraction and consequently to an
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increase of the binding energy of the t h r e e p a r t i c l e s E o

and Ei and to a d e c r e a s e of the scatter ing length A for a
par t ic le scat tered by two o ther s in a bound s tate . There-
fore allowance for further correct ions in the expansion
can change the r e s u l t s only in one direction.

The performed calculations point to a strong depen-
dence of the proper t ie s of the t h r e e - p a r t i c l e system on
the form of the two-particle interact ion even in the case
of sufficiently short-range forces, unlike the two-parti-
cle system, the proper t ies of which a r e pract ical ly in-
sensitive to the form of the two-part icle interaction.
Thus, we see that the binding energy and the scattering
length of one par t ic le by two other p a r t i c l e s in the bound
state can differ noticeably in the case of a three-par t ic le
system for two-particle interact ions descr ibed by a
Hulthen potential and by a square well the p a r a m e t e r s
of which a r e chosen such that the binding energy of the
two-part icle system, the scat ter ing length, and the
radius of the effective interaction a r e the same.

4. BOUND STATES AND SCATTERING IN A SYSTEM
OF THREE NUCLEONS

4.1. Symmetry of Wave Function of a System of Three
Nucleons

The total wave function of a system of t h r e e nucleons
should be ant isymmetr ical against permutat ions of the
spatial, spin, and isospin coordinates of any pair of
nucleons. In the case of central forces, the nuclear
interaction between the nucleons (i and j) i s character-
ized by a potential

^ = νΣ/ ι ν )(π,·)Λ !Ι'(σ, τ). (4.1)

where ρ ( ^ ( σ , τ) i s the operator of projection in the

v- spin- isospin state. (The values ν = 1, 2, 3, and 4 de-
note respectively the tr iplet-s inglet t s , t r ip le t- t r ip le t t t ,
singlet-triplet st, and singlet-singlet s s spin-isospin
states of the two nucleons.)

In a system of t h r e e nucleons the interaction between
which i s described by (4.1), the total spin of the system
S, the total isotopic spin T, and thei r projections Mg
and M T a r e conserved quantities. The total spin and
the total isotopic spin S and Τ of a system of three
nucleons can assume two values: 1/2 and 3/2. Accord-
ing t o [ 1 2 J , in the case of centra l forces (4.1) the wave
function Φ^Τ a s a function of the values of S and Τ can
be represented in the form

(4.2)

Ψ'1 ζ - Ψ'γ'ζ" - Ψ'χ'ζ",
33

Here Φ δ and * a a r e the symmetr ica l and antisymme-
t r i c a l spatial functions. The functions Φ ' and Φ " t r a n s -
form upon permutation of the spatial coordinates in ac-
cordance with a two-dimensional i r reducible represen-
tation of the permutation group S 3

t l 2 ] . The spin function
X s (the isospin function f s ) is symmetr ica l against the
permutation of the spins (isotopic spins) of the t h r e e

nucleons. The spin functions v/ and χ" (the isospin
functions £' and ζ") t rans form upon permutation of the
spin (isospin) coordinates of the nucleons in a manner
s imi lar to ψ ' and Φ " . The spin-isospin functions
| a , ξ δ , ξ ' , and ξ " a r e equal to

=- (χ'Γ '•• xT)·

(4.3)

If the projection of the total spin of the system Mg is
equal to 1/2, then the spin functions a r e determined by
the express ions

ρ 5 ^ ) ( ) ( ) ;
, ( 4 · 4 )

s '" Τ '• Χ"" -ψϊ ( α (1) « (2) Ρ (;i) - - α (Ι) fi (2) α (3) + ft (1) α (2) α (3)},

(4.5)

where a and β a r e the spin wave functions of the indi-
vidual nucleon, corresponding to spin projections 1/2
a n d - 1 / 2 . We note that the function χ' corresponds to a
singlet spin s tate of the pair of nucleons 2 and 3, and the
function χ" to a t r iplet s tate of the same pair of nuc-
leons. The isospin functions f' and ζ" have a s imilar
form.

The wave functions Φ δ τ at Τ = 1/2 descr ibe the
bound state of a sys tem of two neutrons and a proton
(the t r i ton H3) or the scatter ing of a neutron by a deu-
teron (n-d scatter ing). In the investigation of the possi-
bility of a bound state in a system of t h r e e neutrons n 3,
it i s necessary to consider the wave functions Φ ST W j t n

Τ = 3/2. If the system cons is t s of two protons and one
neutron (the He 3 nucleus, p-d scattering), then the con-
served quantities a r e S, Mg, and M-j. (Coulomb interac-
tion between the protons violates conservation of the
total isotopic spin T). In this case the wave function of
the system can be represented in the form of a super-
position of functions with Τ = 1/2 and Τ = 3/2.

We shall henceforth as sume that the spatial functions
Φ8·, Φ δ , φ ' and Φ " depend on the momenta, i.e., a
F o u r i e r t ransformation has been c a r r i e d out over all
the spatial coordinates. The symmetry proper t ies of
the functions against permutat ions remain unchanged in
this case.

4 . 2 . E l e c t r o m a g n e t i c F o r m F a c t o r s of t h e N u c l e i H 3

and H e 3

An a n a l y s i s of t h e e x p e r i m e n t a l d a t a o n t h e s c a t t e r i n g

of e l e c t r o n s by n u c l e i i s b e s t c a r r i e d out by i n t r o d u c i n g

t w o m o m e n t u m - t r a n s f e r f u n c t i o n s — t h e c h a r g e and m a g -

n e t i c f o r m f a c t o r s , w h i c h r e p r e s e n t F o u r i e r t r a n s f o r m a -

t i o n s of t h e s p a t i a l d i s t r i b u t i o n s of t h e e l e c t r i c c h a r g e

and m a g n e t i c m o m e n t of t h e n u c l e u s . In t h e c a s e of t h e

n u c l e i H 3 and H e 3 , t h e c h a r g e and t h e m a g n e t i c f o r m

f a c t o r s F c ( q ) a n d F m ( q ) a r e d e t e r m i n e d b y t h e e x p r e s -

s i o n s t l 0 6 J

zFc (?) = (Ψ, PcW) dt, \iFm(q) - j e'l' (ψ, Ρ η 1ψ) rfr, (4.6)

where ζ and μ a r e the charge and magnetic moment of
the corresponding nucleus. [The parentheses in (4.6)
denote integration with respect to the internal re lat ive
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coordinates.] The charge and magnetic-moment density
opera tors p c and p m a r e given by

? (r-r;) + 1 _τίζ) φ?(r

3
= 2 [4"(

(4.7)

where the functions φ 0 and φ ΐ α describe the spatial dis- ,
tribution of the charges and of the magnetic moments
of the individual nucleons. The Fourier transformations
of the functions <pc(r) and £>m(r) are usually called the
form factors of the nucleons

/„(?)- fm (?) = j e*'<pm (r) dr. (4.8)

For the proton and the neutron, these form factors are
normalized in the following manner:

/p(0) = i, /j(0) = 0, /&(0) = /;,(0) = 1. (4.9)

Substituting in (4.7) the wave functions for the nuclei H3

and He3 in the form

and using formulas (4.7) for the charge and magnetic-
moment density opera tors , we can readi ly obtain expli-
cit expressions for the form factors of H 3 and He 3 . In
the case of H 3 we have

U4.ll)

MH îf (?) = μρ/£ (?) Gf (?) + Α μ χ (?) [Gf (?) - of (?)J, (4.10)

where

pf (?) = j e<«" [(Ψ' + Ψ')2 + (Ψ' - Ψ")2] άτ, 1

Ft (?) = Ff (?) - 3 j β"·'! (Ψ'Ψ· - Ψ°Ψ') άτ,

Gf (?) = / • ? ' ( ? ) - ^ < № ι ( ψ ' 2 + |-Ψ'Ψ° + Ψο2

F o r m u l a s (4.10) express the charge and t h e magnetic
form factors of the nucleus H3 in t e r m s of the form fac-
t o r s of the nucleons fc(q) and f m (q) and the s t ructure
form factors (4.11), which a r e determined completely
by the wave function of the nucleus. The form factors
F0(q) and FL(q) descr ibe the spatial distribution of the
nucleons in the nucleus in the proton (unpaired) and
neutron (paired) s tates , and the functions G0(q) and G L (q)
character ize the distribution of the average value of the
projection of the proton and neutron spin on the ζ axis.
The normalization of the structure form factors is de-
termined by the normalization of the wave function of
the nucleus. If the total wave function is normalized to
unity, then

and with allowance for the conditions for the normaliza-
tion of the form factors of the nucleons (4.9) we have
also FH3(0) = 1. We note that the magnetic form factors
G** (q) and GH (q) a r e not normalized to unity. We de-
note the weights of the symmetr ica l and ant isymmetr i-
cal s tates and the state with intermediate symmetry by
P s , P a , and P ' . Then

Gf (0) = l _ - (4.13)

F r o m formula (4.10) at q = 0, with allowance for the
normalization conditions (4.9), (4.13), and the condition
F m (°) = 1 l t i s e a s y t o o b t a i n t n e following expression
for the magnetic moment of the tr i ton:

μκ* = μρ + ϊ-(μη-μΡ)(Ρ' + 2Ρ°). (4.14)

Analogously, in the case of the nucleus He 3 we obtain
for the electromagnetic form factors the following
formulas:

/* (q) [Gfe3 (?) - G?

where < 4 · 1 5 )

Ρ™' (?) = J e'vi [(ψ· + ψ"-ψγ .,. (ψ' + ψ'_ xp)2j rfT>

F™3 (?) = F$e3 (?) - 3 j e*n [ψ" (Ψ" - ψ") + (ψ'ψ> _ ψ'ψ) _

(4.16)

F?° (?) — ̂  f e""1 (Ί" + Ψ' — Ψ")2 rft -

— 3 f e'l'i [2Ψ"Ψ" — 2 (ψ'ψ' - ψ"ψ") _

_ (ψ'*._ ψη + 2Ψ» (2 ψ' + ψ')] άτ.

In (4.16) the functions * s , ψ', ψ", and * a pertain to the
state with total isotopic spin Τ = 1/2, and the functions
* ' and φ " to the state Τ = 3/2. The form factors (4.16)
are normalized in the following manner:

i + P' + A f Ψ'Ψ'Λ) ;

(4.17)

Ρ' is the weight of the state with Τ = 3/2. The magnetic
moment of He3 is determined by the expression

If we neglect in the wave function of He3 the admix-
ture of the state with Τ = 3/2 (Φ' = Φ" = 0), then the
formulas for the structure form factors (4.16) coincide
with the corresponding formulas (4.11) for the nucleus
H\

Expanding the form factors in formulas (4.10) and
(4.15) in series in q2, we express the rms radii of the
charge distributions for the nuclei H3 and He3 in terms
of the rms radii of the distributions for the unpaired
and paired nucleons Ro and R L and the rms radii of the
charge distributions for the proton r c(p) and neutron
r c(n):

Rl (He3) - JH (He3) + r\ (p) + \ r" (n). \
In similar fashion we can also obtain expressions for
the rms radii of the distributions of the magnetic mo-
ments of the nuclei H3 and He3.

4.3. Integral Equations for a System of Three Nucleons

The Faddeev equations can easily be generalized to
the case of a system of three nucleons with allowance
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for the spin dependence of the interaction between
them 1 3 4 ' 1 0 7 3 . To this end it is necessary to take into ac-
count in Eqs. (1.40), which describe an arbitrary system
of three particles, the operator character of the two-
particle t matrix in the spin-isospin space of the
nucleons, and to take into account the dependence of the
wave function of the system on the spin and isospin
variables. Owing to the identity of the nucleons, the
system of equations (1.40) reduces to a single equation

(4.24)

1 :

(4.25)

(4.20)

where the functions Φ(2) and Φ ( 3 ) differ from the func-
tion Φ = Φ(1> by cyclic permutation of the spatial, spin,
and isospin coordinates of the nucleons.

In the case of a central interaction (4.1), the two-
nucleon t matrix which enters in (4.20) can be represen-
ted in the form

(k I tu (z) | k'> = Σ <k | i ( v ) (z) | k'> PiV (σ, χ), (4.21)

where t M ( z ) i s the eigenvalue of the t matr ix in a defin-
ite spin-isospin state v. Projecting Eq. (4.20) on the
possible spin-isospin s tates of the system of t h r e e
nucleons, we can obtain a system of integral equations
for the spatial functions %a, $ c , φ ' , and Φ " .

In place of the functions $ a , Φ δ , Φ ' , and Φ ", which
transform upon permutation of any pair of par t ic les in
accordance with the i r reducible representat ions of the
group of permutat ions S3, it i s convenient to change over
to the functions ^ ( k y , ρ^) corresponding to definite
spin-isospin s tates ν = 1, 2, 3, and 4 of the pair of par-
t ic les i j . The functions φν{ί\\, p^) a r e even if ν = 1 and
3 and odd if ν = 2 and 4 relat ive to permutation of the
par t ic le s i and j (k^ — kjj =—kjj):

\|)v(-k, P)-=(-l)T"''*v(k, p). (4.22)

In the case S = 1/2 and Τ = 1/2, the spatial functions
\tra, φ δ , φ ' , and Φ " a r e expressed in t e r m s of four
functions ipv with ν = 1, 2, 3, and 4; in the case S = 1/2
and Τ = 3/2, the spatial functions Φ ' and Φ " a r e ex-
pressed in t e r m s of two functions, φ2 and ip3; in the case
S = 3/2 and Τ = 1/2, the spatial functions Φ' and Φ " a r e
expressed in t e r m s of two functions ψχ and ψ2; finally,
in the case S = 3/2, Τ = 3/2 the spatial function Φ £ ι i s
expressed in t e r m s of one function ψ2:

f ψ3(3)},

(4.23)—§· №z (2) - ψ 4 (2) + ψ2 (3) - φ 4 (3)]

5 = 1 , Γ = 4:Ψ" = ψ,(1) + ψ2(2)+ψ1(3). (4.26)

To abbreviate the notation we have used the symbol

Ψν(^)=ψν(^, · , pfe), i/fc = 123, 231, 312.

The sys tems of functions φν, generally speaking, differ
for different spin-isospin s tates of the system of t h r e e
nucleons, i.e., for different values of S and T.

The system of integral equations for the functions
i/j^k, p) at a rb i t ra ry values of the spin and isospin of the
system of t h r e e nucleons can be represented in the form

(11)
Λ 2 2' -

1

V3

3

3

-Ϋ3

1

V3

- V'3

-3

Ϋ3

- 1

vv - 2 (4.28)

v = l, 2, 3, 4, ( 4 - 2 7 )

w h e r e t h e m a t r i c e s c ' , ' f ° r d i f ferent s p i n - i s o s p i n

s t a t e s of t h e s y s t e m of t h r e e n u c l e o n s a r e d e t e r m i n e d

by t h e e x p r e s s i o n s

Ϋ3

- 1

-V3

- 3

0 0 0

1 ~\f3 0

—VI - i o '

0 0 0

— 1 — Υ 3 0 0]

-Y3 1 0 θ)
0 0 0 0 '
0 0 0 0 J

In considering the bound states of a system of t h r e e
nucleons, the free t e r m in (4.27) must be set equal to
zero. We note that t h e integral equation for the system
of t h r e e identical spinless par t ic les (1.43) coincides
with (4.27) if we put in the la t ter

<w = evl6v-t. (4.29)

In the derivation of (4.27) we have neglected the
Coulomb interaction, and therefore Eqs. (4.27) a r e suit-
able only for the description of a system consisting of
t h r e e neutrons or of two neutrons and one proton*. In a
system consisting of two neutrons and a proton, a bound

;.5; = -δν2δν-2.

"Integral equations for a system of two protons and one neutron in
the bound state (the He3 nucleus) were obtained in [ 3 6 ] . Veselova [U3]
proposed a method of obtaining integral equations for the wave function
describing the scattering of a charged particle by a bound state of two
other charged particles.
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state (the triton) is possible, as is scattering of a neu-
tron by the two other particles in the bound state. In the
latter case, the free term in (4.27) must be chosen in
the form

(pv(k, ρ) = (2π) 3 φ(Ι ί )δ(ρ-ρ 0 )δ ν 1 , (4.30)

where <p(k) is the wave function of the ground state of
the deuteron. Since two neutrons do not form a bound
system, in the case of three neutrons it is possible to
consider only the bound- state problem.

4.4. Scattering of a Neutron by a Deuteron

Let us stop to discuss in greater detail the problem
of the scattering of a neutron by a deuteron. Since the
isotopic spin of a deuteron is equal to zero, the total
isospin Τ of the system is equal to 1/2, and the ordinary
spin can assume the values 1/2 and 3/2 (doublet and
quartet states). Taking into account the invariant char-
acter of the spatial functions $j,(k, p) against rotations,
we expand the functions ^ ( k , p) in terms of the angle
functions in the form (1.51). For the coefficients of

such an expansion, the functions ψ(ν) (k, p; p0), just as
ZAL

in the case of three spinless particles, we obtain a sys-
tem of two-dimensional integral equations

*, PI Ρύ = ( 3 Φιο

χ ϋτίλ.Ί'λ· (ρ> ρ'; *') ψί%. (*'. ρ'; ΡΟ).
(4.31)

where the functions Kj ' ., , a r e determined a s before
ί A y t λ

b y t h e e x p r e s s i o n ( 1 . 5 4 ) a n d

Δίν>=5-1[1 + ( — l) i+v+1] (*·ύΔ)

(po is the relative momentum of the neutron and the deu-
teron in the initial state).

Using the separable expansion for the two-particle
t matr ix (2.19) and expression (2.29) for the wave func-
tion of the deuteron, we can represent the function
in the form

~ lfm

where we have introduced the notation

P) «SIL (P, Po)} ,

(4.33)

(4-34)

The functions sSv) (p, p0) a r e determined by the follow-
niXL

ing system of one-dimensional integral equations:

alniu.(p, Po) =<\i#Sxi! IOLL(P; PO, Z)

-r 2 cvv f dp'p'*U%&, nWL (P, P'; Z) ti?i* (Zv-) αΆ-L (pr, po),
« η · ο (4.35)

where the effective potential U is determined by the ex-
press ion

dyK* !•>•• (Ρ, Ρ · ν) —

(^)It follows from (4.34)—(4.36) that the components
with ν and I of equal parity are equal to zero. This
is directly connected with the Pauli principle, which for-
bids, for a pair of nucleons, triplet- singlet and singlet-
triplet spin-isospin states (v = 1 and 3) with odd I and
triplet-triplet and singlet-singlet states (v = 2 and 4)
with even I.

The amplitudes of elastic scattering of a neutron by
a deuteron in the quartet and doublet spin states f*/2 and
ii/2 are determined by the formulas

/ 3 / 2 ( P , P O ) = ~ ~~ Γ)χ·ζ', [ F 3 I ( _ l r - p )

( - l r + ρ)] ψ25(Γ, ρ; p0)) drdp,

P, Po)= -~

(4.37)

[The indices 23, 31, and 12 in the right-hand side of

(4.37) number the par t ic les . ] The partial amplitudes

fj^ and fj^ a r e directly expressed in t e r m s of the func-

tions a ^LL^P° ' P°) * o r ^ e c o r r e s P o n d i n g s P i n s tates :

, . . 2lX / dxi. i ' ( Z ) \ — 1 ι \\ ι \ / A *i O\
JL{PO> PO) = - g - ' Λ I — J I a\ntr iPo' Po)· ( f l t . u o j

The neutron-deuteron scattering length in a definite
spin state is determined by the expression

2 s +U=-/?(0,0). ( 4 · 3 9 )

4.5. Bound State of a System of Three Nucleons

We now consider a system of three nucleons in a
bound state with total orbital angular momentum L and
projection M. We separate in the wave function of the
system the angle part

νΙΛΓ (k, P) = V Ψίλί. (Λ, Ρ) YlU.X ( ί Ρ)- (4.40)

Substituting (4.40) in (4.27), we obtain for φ \ ν \ a homo-

g e n e o u s s y s t e m o f t w o - d i m e n s i o n a l i n t e g r a l e q u a t i o n s ,

h a v i n g t h e f o r m o f t h e s y s t e m ( 1 . 5 2 ) w i t h o u t t h e i n h o m o -

g e n e o u s t e r m . U s i n g t h e s e p a r a b l e e x p a n s i o n f o r

t(l')(k, Q; Ζ ) we can represent the functions ψΜ in the

form

K, Ρ)-

-— Zr,
./.(P)- ( 4 . 4 1 )

'!/)~Z (4.36)

T h e p a r t i a l c o m p o n e n t s a\u> a r e d e t e r m i n e d b y t h e

n Z X L

h o m o g e n e o u s s y s t e m o f o n e - d i m e n s i o n a l i n t e g r a l e q u a -

t i o n s

= 2 e^ ] dp'p'VtSiTn-ivL (P, P'; Z) t i $ (Z,-) OS'IK-L (ρ')- ( Α Λ 2 )

ϊ ' η ' Γ Ι ' 0

T h i s s y s t e m o f i n t e g r a l e q u a t i o n s a d m i t s o f s o l u t i o n s

f o r s t r i c t l y d e f i n e d v a l u e s o f Z , w h i c h d e t e r m i n e t h e

e n e r g i e s o f t h e b o u n d s t a t e s o f t h e s y s t e m .

4 . 6 . B i n d i n g E n e r g y o f t h e N u c l e i H 3 a n d H e 3

W e c o n s i d e r f i r s t t h e r e s u l t s o f c a l c u l a t i o n s o f t h e

b i n d i n g e n e r g y o f t h r e e - n u c l e o n n u c l e i , w h i c h w e r e c a r -
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Table m. Binding energy of triton and scattering lengths
of neutron on a deuteron

ET, MeV

VI, F

M, F

Hulthen Potential
1 -= 0

1 | 2

7.91

—0.19

6.403

11.46

—2.88

6.361

Square-well potential
/ = 0

1

9,07
9.39
8.95

0.512
0.204
0.545

6.284
6.315
6.338

2

9.20
9,53
9.08

0,451
0.145
0.487

6.279
6.310
6.333

1 = 0,2
1

8.97

0.5-42

6.338

Two-
Nucleon
Parameters

(a)
(b)
(c)

(a)
(b)
(<·•)

( a )

< b )

( c )

r i e d o u t u n d e r t h e a s s u m p t i o n t h a t t h e i n t e r a c t i o n b e -

t w e e n t h e n u c l e o n s i s d e s c r i b e d b y p a i r e d c e n t r a l p o t e n -

t i a l s c h a r a c t e r i z e d b y t w o p a r a m e t e r s w h i c h d e t e r m i n e

t h e m a g n i t u d e a n d a c t i o n r a d i u s o f t h e f o r c e s . T h e

v a l u e s of t h e p a r a m e t e r s o f t h e t w o - n u c l e o n p o t e n t i a l s

i n t h e t r i p l e t - s i n g l e t a n d s i n g l e t - t r i p l e t s p i n - i s o s p i n

s t a t e s c a n b e d e t e r m i n e d b y u s i n g e x p e r i m e n t a l d a t a o n

t h e s c a t t e r i n g o f n u c l e o n s b y n u c l e o n s a t l o w e n e r g i e s

a n d t h e b i n d i n g e n e r g y o f t h e n e u t r o n p l u s p r o t o n s y s -

t e m . I n t h e c a s e o f c e n t r a l i n t e r a c t i o n , t h e v a l u e s o f t h e

t r i p l e t - s i n g l e t p a r a m e t e r s a r e d e t e r m i n e d f r o m t h e

l e n g t h of t h e s c a t t e r i n g o f t h e n e u t r o n b y t h e p r o t o n ,

a^g, a n d t h e b i n d i n g e n e r g y of t h e d e u t e r o n e ^ . S i n c e

t h e r e i s n o s i n g l e t b o u n d s t a t e of a s y s t e m of t w o

n u c l e o n s , t h e s i n g l e t - t r i p l e t p a r a m e t e r s a r e d e t e r m i n e d

f r o m t h e s c a t t e r i n g l e n g t h a sj- a n d t h e m a g n i t u d e o f t h e

e f f e c t i v e r a d i u s r o S t · W e n o t e t h a t t h e p a r a m e t e r s a S (·

a n d r o S (- f o r t h e s i n g l e t - t r i p l e t s p i n - i s o s p i n s t a t e a r e

k n o w n w i t h l e s s e r a c c u r a c y t h a n t h e t r i p l e t - s i n g l e t

p a r a m e t e r s . E v e n l e s s i s k n o w n c o n c e r n i n g t h e i n t e r a c -

t i o n b e t w e e n t h e n u c l e o n s i n t h e o d d s t a t e s ( i n t h e

t r i p l e t - t r i p l e t a n d s i n g l e t - s i n g l e t s p i n - i s o s p i n s t a t e s ) ,

t h a n c o n c e r n i n g t h e i n t e r a c t i o n i n e v e n s t a t e s . A t s u f f i -

c i e n t l y l o w e n e r g i e s of r e l a t i v e m o t i o n of t h e t w o

n u c l e o n s , t h e i n t e r a c t i o n p o t e n t i a l s V ^ a n d V s s c a n b e

n e g l e c t e d c o m p a r e d w i t h t h e p o t e n t i a l s Vj. g a n d V S (..

T h e a v a i l a b l e d a t a o n t w o - n u c l e o n i n t e r a c t i o n a r e

d i s c u s s e d i n t h e r e v i e w of N o y e s 1 9 7 - 1 .

W e p r e s e n t s e v e r a l s e t s o f v a l u e s o f t w o - n u c l e o n

p a r a m e t e r s , w h i c h w e r e u s e d i n ' 1 0 9 > 7 6 > 8 1 > 7 9 > 3 " j n t h e

c a l c u l a t i o n o f t h e t h r e e - p a r t i c l e b i n d i n g e n e r g i e s a n d

s c a t t e r i n g l e n g t h s . A c c o r d i n g t o t 3 f U

8 = , 5.378 F , £ „ - 2 , 2 2 5 MeV, « „ = • - - 2 3 . 0 9 F F ( a )

T h e p a r a m e t e r s o b t a i n e d o n t h e b a s i s o f m e a s u r e m e n t s

o f H o u k a n d W i l s o n t 7 1 ] a r e e q u a l t o

(b)
a, s-, 5.405 ± 0 . 0 0 6 F , a,,.-.-- 23.728 ± 0 , 0 1 3 F,

Ed = 2.225 M e V rw--.~- 2.56 ± 0 . 1 0 F .

T h e r e s u l t s of m e a s u r e m e n t s of H o u k a n d W i l s o n 1 7 1 - 1 a n d

K o e s t e r £ 8 2 : l l e a d t o t h e v a l u e s

a,,r= 5.425 ± 0 . 0 0 4 F , a , , = — 2 3 . 7 1 4 ± 0 . 0 1 3 F ,

ea = 2.225 M e V , r0.,, = 2.704 ± 0.095 F ..
(C)

t h e s t a t e w i t h t o t a l o r b i t a l a n g u l a r m o m e n t u m e q u a l t o

zero, L = 0 (triton H 3, S = 1/2, Τ = 1/2). The values of
the tr i ton binding energy Ε χ , calculated by the method
of separable expansion for a Hulthen potent ia l U O 9 > 7 6 : |

and for a square well" 1 ' 3 7 - 1 , a r e given in Table III (the
notation i s the same a s in Table I). The values of the
p a r a m e t e r s of the two-nucleon potentials used in these
calculations a r e given in Table II.

In the case of a Yukawa potential, the values of Ε χ ,
calculated by Efimov U 5 : l on the bas i s of the Bubnov-
Galerkin method with the p a r a m e t e r s (a) for a t s , e d ,
and a s t , but with other values of r o S j . , turned put to equal
E T = 11.65 MeV ( r o s t = 2.21 F) and E T = 10.83 MeV
( r o s t = 2 . 5 F ) .

I n t 5 J , the tr i ton binding energy was calculated in the
case of a square well on the bas i s of the method of
harmonic polynomials. F o r comparison with the resu l t s
of [ 5 ], the value of E T was calculated i n [ 8 U by the method
of separable expansion with the same p a r a m e t e r s as
i n [ 5 ] . (The tr iplet p a r a m e t e r s used in [ 5 J coincide with
the values of &is and e d of set (a), and the singlet
p a r a m e t e r s were taken from the data on pp scat ter-

[38] . a s t = 16.83 F , r o s t = 2.74 F ) . The value of E T ,

The ground state of a system consisting of two neu-
t r o n s and one proton, in the case of centra l forces, i s

ing
calculated for the indicated set of p a r a m e t e r s , turned
out to be Ε χ = 8.71 MeV when account i s taken of only
the first t e r m in the expansion of (2.19), and Ε χ
= 8.84 MeV if two t e r m s a r e taken into account in (2.19)
(n = 1 and 2, I = 0). Comparison of the quantity Εχ
= 8.84 MeV obtained i n C 8 U , with the value E T = 8.43 MeV
of153 points to a bet ter convergence of the method of
separable expansion compared with the convergence of
the method of harmonic polynomials. (When both methods
are used, further correct ions to the binding energy can
only increase the value of Ε χ . )

Central attract ive potentials reconciled with the data
on the interaction of two nucleons at low energies lead
to overes t imates of the binding energy of the tr i ton com-
pared with the experimental value Ε χ = 8.482 MeV. The
values of Ε χ obtained for potentials of different form
differ greatly from each other. The binding energy Ε χ
assumes smal ler values for l e s s extended and l e s s
singular potentials. The binding energy of the t r i ton
for a potential of rectangular form (which changes for
different values of the two-nucleon p a r a m e t e r s in the
interval from 8.84 to 9.53 MeV) a g r e e s with the experi-
mental value bet ter than the energies for other poten-

"T
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tials. The binding energy Ε τ decreases quite strongly
with increasing singlet effective radius r o S t . The depen-
dence of Εχ on the two-particle length a s t is quite
weak t l 0 8 ' 7 8 / .

The difference in binding energy between the triton
and the nucleus He3 (the experimental binding energy of
He3 is E R e 3 = 7.718 MeV, ΔΕ = E T - E H e 3 = 0.764 MeV)
is well explained if account is taken of the Coulomb
interaction between the protons in the He3 nucleus.
In ' 5 3 , the Coulomb energy for the He3 nucleus was cal-
culated in the case of a square-well potential on the
basis of the method of harmonic polynomials in first
order of perturbation theory. When the indicated param-
eters were used for the two-nucleon interaction, the
value of ΔΕ turned out to be 0.789 MeV. As we have
already noted, the Coulomb interaction between the
nucleons leads to an admixture of a state with Τ = 3/2
in the wave function of He3. A direct solution of the
system of differential equations with allowance for the
harmonics with Κ = 0 and Κ = 2 leads'36·1 in this case,
for a square-wave potential, to closely similar values
of the difference ΔΕ [ΔΕ = 0.777 MeV in the case of
parameters (b) and ΔΕ = 0.751 MeV in the case of
parameters (c)].

The correct behavior of the amplitude of scattering
of two nucleons on the energy shell at low energies can
be ensured by describing the interaction between the
nucleons by means of a potential containing two param-
eters, which are determined by specifying two experi-
mental quantities—the scattering length and the effec-
tive radius. To find the two-particle scattering ampli-
tude on the energy shell in a large interval of energies,
it is necessary to use more complicated potentials,
characterized by a larger number of parameters. As
is well known, data on nucleon-nucleon scattering in the
high-energy region point to the existence of a stronger
repulsion between the nucleons at small distances. In-
troduction of a repulsive core in the two-nucleon poten-
tial makes it possible to explain the reversal of the sign
of the S scattering phase at high energies. A potential
with repulsion at small distances and with subsequent
short-range attraction should contain at least three
parameters. Introduction of the radius of the repulsive
core—an additional parameter characterizing the repul-
sion—makes it possible to describe correctly the scat-
tering amplitude not only at low energies but also at
high ones. In order for the potential with repulsion to
describe data on the interaction of two nucleons at low
energies, the attractive part of the potential should be
deeper and its radius smaller than the corresponding
quantities for a purely attractive potential t 3 8 ].

The influence of the short-range repulsion on the
value of the binding energy of three nucleons was inves-
tigated in a number of papers both for separable'1 1 0 '5 3 '7 4·1

and for local 1 9 1 ' 3 ' 1 1 ' 4 8 ' 8 " potentials. In' 8 0 3 the triton
binding energy was calculated on the basis of the separ-
able expansion (2.22) for a local potential with infinite
repulsion and with attraction in the form of a square
well. The potential parameters were determined from
the low-energy data (c) and from the dependence of the
S phase on the energy in the interval from 0 to 400
MeV [903. The values of the radii of the repulsive core
turned out to be 0.186 F in the case of a triplet spin
state and 0.180 F in the case of a singlet state. The

calculated binding energy of the triton is equal to Εχ
= 8.8 MeV'803. This value differs very little from the
value Εχ = 9.1 MeV obtained for a purely attractive
square well.'813

Calculations performed on the basis of the Bateman
separable expansion'1 1 '2 '3 3 led in the case of a Morse
potential'573

" ( ^ - f J ^ T ^ - ^ T ) (4.43)

to the following values of the triton binding energy:
E T = 9.12 MeV ( a s t = -23.68 F, r Q S t = 2.44 F) and E T

= 8.10 MeV (a s t = -17 F and r o S t = 2.80 F). In the case
of a superposition of Yukawa attraction and repulsion
potentials'9 1 3

"Si "35 (4.44)

a direct solution of the homogeneous system of two-
dimensional integral equations (4.31) leads to a value
Εχ = 8.3 MeVC913 and a solution on the basis of the
Bateman expansion (N = 4) leads to the value Εχ
= 8.56 MeVf3] ( a ^ = 5.45 F, r o t s = 1.8 F, a s t =-23.3 F,
rost = 2 ·8 F ) · [ I n t n e c a s e o f a P u r e attractive Yukawa
potential (V02 = 0) corresponding to the same values of
the two-nucleon parameters we have Εχ = 12il MeVt913.]
We note that the values of the binding energy of the
triton for different potentials correctly describing the
phases of the two-nucleon scattering in a large energy
interval are quite close to one another. Allowance for
the tensor forces in the two-nucleon interaction can
greatly influence the results. Thus, in the case of a
separable potential ' 2 6 ' 1 0 8 ' 7 8 ' 5 4 ' 9 4 ' 1 0 2 3 , the introduction of
tensor forces, for which the weight of the D wave in the
ground state of the deuteron amounts to 4%, leads to a
decrease of the triton binding energy by 15—20%. As
already noted, in the case of two-particle forces that do
not depend on the spins and lead to the existence of a
bound S state of two particles, it is possible to have for
a system of three particles, besides the ground bound
state (L = 0), also an excited state (L = 0). Allowance
for the spin dependence of the forces and for the Pauli
principle weakens the two-particle interaction, as a re-
sult of which the excited state of the system of three
nucleons (S = 1/2, Τ = 1/2, L = 0) turns out to be im-
possible. As shown i n i 5 ] , there are also no excited
states of the triton with other quantum numbers. A num-
ber of theoretical and experimental works point to the
nonexistence of a bound state of a system of three neu-
t rons ' 5 ' 2 7 ' 4 7 ' 5 9 3 .

4.7. Wave Functions of H* and He3

Owing to the dependence of the two-nucleon interac-
tion on the spin and on the isotopic spin, the wave func-
tion of the ground state of the triton (L = 0, S = 1/2,
Τ = 1/2) is presented in the form of a superposition of
spatial functions have different symmetries against
permutations of the particle coordinates * s , φ ' and φ " ,
* a . Since the summary orbital angular momentum is
equal to zero in the ground state, the weight of the sym-
metrical state * s (S state) is close to unity. The magni-
tude of the admixture of the state of the intermediate
symmetry (S' state) is determined by the difference of
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Table IV. Wave functions of the nuclei H3 and He 3 ,
calculated i n ' 3 5 3 on the bas i s of the method of

harmonic polynomials with allowance for
Κ = 0 and 2 (square well, p a r a m e t e r s (c))

F

0.125
0.525
1.025
1,525
2.025
2.525
3.025
4.025
5.025
6.025
8.025

10.025

H3

p Txffi (p)

0.00224
0.0711
0.309
0.584
0,693
0.639
0.525
0,308
0.168
0.0891
0.0247
0.OO72B

10 Λχ$ <pl

0.424-10-s
0.00199
0.0383
0.210
0.481
0.519
0.445
0.261
0.137
0.0698
0.0175
0.00405

1 / I *
P«"xJ0"'(P)

0.00217
0.0693
0.303
0. 576
0.688
0.638
0.528
0.314
0.174
0.0942
0.0269
0.00731

10 ρ 2 xtf '(ρ)

0.110-10-»
0.00259
0.0421
0.218
0.492
0.534
0164
11.279
0.151
0.0790
0.0211
0.00515

1 /3 \
ΙΟΟρϊχ^'(ρ)

—0.670-ΙΟ"»
—0.00606
—0.0389
—0.0885
—0.125
—0.140
—0.139

-0.113
—0.0778
- 0 049b
-0.0177
—0.00503

t h e i n t e r a c t i o n s i n t h e t r i p l e t - t r i p l e t a n d s i n g l e t - t r i p l e t

s p i n - i s o s p i n s t a t e s . C a l c u l a t i o n s l e a d t o t h e f o l l o w i n g

v a l u e s o f t h e a d m i x t u r e of t h e S' s t a t e : P ' = 1 . 2 8 %

( s q u a r e w e l l t 5 ] ) , P ' = 4 . 7 % ( M o r s e p o t e n t i a l ' 3 ] , r o S t

= 2 . 4 4 F ) , a n d P ' = 2 % ( s u p e r p o s i t i o n o f Y u k a w a p o t e n -

t i a l s ' 3 ' 9 1 3 ) . T h e m a g n i t u d e of t h e a d m i x t u r e o f t h e a n t i -

s y m m e t r i c a l s t a t e P a i s d e t e r m i n e d b y t h e d i f f e r e n c e of

t h e p o t e n t i a l s a c t i n g i n t h e o d d s t a t e s ( 1 / 2 ) ( V s s - V t t ) ,

a n d i s v e r y s m a l l ( P a = 0 . 0 0 3 % t 5 8 3 ) .

In the case of the nucleus He 3 , the weight of the addi-
tional S' state at Τ = 3/2 amounts to P ' = 0.001%
(square w e l l ' 5 ' 3 5 3 ) .

The wave functions of the nuclei H 3 and He 3 differ
insignificantly from each other. Table IV gives the val-
ues of the components of the wave functions of H 3 and
He 3 in the case of a two-nucleon nuclear potential of
rectangular form (parameter s (c)) with allowance for the
Coulomb interaction between the protons, calculated
in [ 3 5 : l on the basis of the method of harmonic polynom-
ials with allowance for the harmonics Κ = 0 and 2 (the
corresponding values of the binding energies of H3 and
He 3 turned out to be Ε χ = 8.45 MeV and E H e 3 = 7.70
MeV). The weights for the s ta tes with intermediate
symmetry for the functions of Table IV turned out to be

H":/" = 1.01%; He3: /" = l.l«0, /" ,. 0.001%.

According to (4.19), the charge r m s radii of the
nuclei H 3 and He 3 a r e expressed directly in t e r m s of
the r m s radii of the nucleon distr ibutions in the nuclei
and the r m s radii of the charge distribution of the
nucleons. Assuming the charge r m s radii of the nucleons
to be r c ( p ) = (0.84 ± 0.04) F and r c (n) = 0, the following

.,[4]values were obtained in for the charge root-mean-
squared radii of the nuclei H3 and He 3 (the potential i s
chosen in the form of a square well):

Ηc(№),--(i.Ί ±0.0i) F . Rc(He3) =(1.8 ± 0.04) F

T h e c o r r e s p o n d i n g e x p e r i m e n t a l v a l u e s a r e ' 5 6 3

i?c(H3) = (1.70 ±0.05) F , Re (He3) ^(1.87 ±0.05) F .

T h e i n f l u e n c e of t h e C o u l o m b i n t e r a c t i o n b e t w e e n t h e

p r o t o n s on t h e q u a n t i t y R c (He 3 ) i s v e r y s m a l l . U s i n g

t h e w a v e funct ion of H e 3 c a l c u l a t e d w i t h o u t a l l o w a n c e

f o r t h e C o u l o m b r e p u l s i o n b e t w e e n t h e p r o t o n s , t h e r m s

8 q 2 F -

FIG. 10. Form factors of the distributions of the paired and un-
paired nucleons in the H 3 nucleus, calculated for the case of a square-,
well potential [ 3 5 ] .

r a d i u s R c (He 3 ) d e c r e a s e s by a p p r o x i m a t e l y 1 % c o m -

p a r e d w i t h t h e r a d i u s c a l c u l a t e d o n t h e b a s i s of t h e func-

t i o n o b t a i n e d w i t h a l l o w a n c e f o r t h e C o u l o m b i n t e r a c -

t i o n ' 3 5 ] . T h e d i f f e r e n c e b e t w e e n t h e v a l u e s of R c (H 3)

[or R c (He 3 ) ] , o b t a i n e d u s i n g d i f f e r e n t s e t s of t w o - p a r -

t i c l e p a r a m e t e r s (b) a n d (c) , a m o u n t s t o a p p r o x i m a t e l y

2 . 5 % of t h e i r v a l u e 1 3 5 3 ( t h e c h a r g e r a d i i d e c r e a s e w i t h

i n c r e a s i n g r o S j . ) .

T h e f o r m f a c t o r s of t h e d i s t r i b u t i o n s of t h e p a i r e d

and u n p a i r e d n u c l e o n s i n t h e H 3 n u c l e u s , Fj_, and F o ,

c a l c u l a t e d on t h e b a s i s of t h e f u n c t i o n s of T a b l e IV, a r e

s h o w n i n F i g . 10. T h e d i f f e r e n c e b e t w e e n t h e f o r m f a c -

t o r s F L and F o i s d u e t o t h e a d m i x t u r e of t h e S' s t a t e

( P ' = 1 . 0 1 % ) . T h e c h a r g e f o r m f a c t o r s of t h e n u c l e i

F H e (q) and F * ? e (q) w e r e c a l c u l a t e d f o r a p o t e n t i a l i n
i4 1

t h e f o r m of a s q u a r e w e l l by B a d a l y a n and f o r a

M o r s e p o t e n t i a l a n d f o r a s u p e r p o s i t i o n of Yukawa p o -

t e n t i a l s , c o n t a i n i n g r e p u l s i o n a t s m a l l d i s t a n c e s , b y

A k h m a d k h o d z h a e v , B e l y a e v , a n d W r z e c i o n k o ' 3 3 . T h e

c a l c u l a t e d f o r m f a c t o r s F p 1 a n d F * ? e a r e i n s a t i s f a c -

t o r y a g r e e m e n t w i t h t h e e x p e r i m e n t a l v a l u e s ' 5 6 3 , b u t

t h e t h e o r e t i c a l v a l u e s e x c e e d t h e e x p e r i m e n t a l o n e s

s o m e w h a t .

In c o n c l u d i n g t h i s s e c t i o n , l e t u s s t o p t o d i s c u s s t h e

m a g n e t i c m o m e n t s of t h e n u c l e i H 3 and H e 3 . A c c o r d i n g

t o (4.14) and (4 .18) , t h e m a g n e t i c m o m e n t s of t h e n u c l e i

H3 and He 3 in the case of central forces satisfy the in-
equalities μ^3 < μ and Mjj e

3 > μ η . Allowance for the
tensor forces makes these inequalities even s t ronger ' 1 2 3 .
However, the experimental data lead to a reversed sign
of the inequality. This indicates that the values of the
magnetic moments and the magnetic form factors of
three-nucleon nuclei depend strongly on the s t ructure
of the nucleons, due to the existence of exchange meson
c u r r e n t s .

4.8. Deuteron-neutron Scattering Lengths

The scatter ing of a neutron by a deuteron in the
limiting case of z e r o energy i s character ized by two
p a r a m e t e r s — t h e quartet and doublet scatter ing lengths
4A and 2A, corresponding to t h e two possible values of
the total spin of the system S = 3/2 and S = l/2 (T = 1/2).
By numerical solution of the one-dimensional integral
equations (4.35) in the case of z e r o energy of the inci-
dent neutron (p0 = 0) it was possible to calculate the
values of the lengths 4A and 2A for a number of two-
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Fig. 11. The functions F ( t s) (p, 0) obtained in [76> 81 ] by numerical
integration of the system (4.35) (7 = 0) for n-d scattering in the quartet
state (S = 3/2, Τ = 1/2) in the case of Hulthen potentials and a square
well with allowance for one term in the expansion (2.19). The curves
for the Hulthen potentials and the square well practically coincide and
are shown in the figure by the solid line. Allowance for the next terms
in (2.19) leads to insignificant corrections. The dashed line corresponds
to the function Fj® calculated in the approximation of a zero radius
of action of the forces [2S ]. The values of the parameters (a) of Table
II were used.

Fig. 12. The functions F ^ (p, 0) (v = ts, st) for n-d scattering in
the doublet state (S = 1/2, Τ = 1/2) calculated in [76>81 ] in the case of
Hulthen potentials (a) and a square well (b) with allowance for one and
two terms in the expansion (2.19) for each spin state of the two nuc-
leons (/ = 0). The numbers next to the figures indicate the values of n.
The values of the parameters (a) of Table II were used.

nucleon potentials. The results of the calculations of the
n-d scattering for a Hulthen potential 1 1 0 9 ' 7" and for a
square-well potential1 8 1'3 7·1, are given in Table III. The

components of the function FJ^)(p, 0) = (.τ/^)^7^}

x (- *io - 3p2/4m)an

l2,0(P> 0) f o r t n e quartet and doublet
states are shown in Figs. 11 and 12.

We note that the system of integral equations (4.35)
with coefficients (4.28), which describes the scattering
in the quartet state, depends only on the triplet- singlet
spin-isospin two-nucleon parameters, the values of
which are well defined. The quartet length 4A turned
out to be practically independent of the form of the two-
nucleon interaction. For the Hulthen potential, the value
of 4A, obtained with allowance for four terms in (2.19),
is equal to 6.336 F t l 0 9 3 (the parameters (a)). For a
rectangular well the quartet length 4A is somewhat
smaller: 4A = 6.279 F (in the case of the parameters
(a) with allowance for two terms in (2.19)). Allowance
for the repulsion between the nucleons at small distan-
ces does not lead to an appreciable change in the quar-
tet length. In the case of a square well with infinite

repulsion (using two attractive terms and one repulsive
term, na = 1 and 2, n c = 1, in the expansion (2.22)), the
quartet length turned out to be 4A = 6.33 F' 8 0 3 . The
quartet scattering length in the case of the Morse poten-
tial (4.43) is equal to 4A = 6.35 F, and in the case of the
potential (4.44) it is equal to 4A = 6.37 F C 1 1 ] . This insen-
sitivity of the quartet length to the change of the form
of the two-nucleon interaction is due to the Pauli prin-
ciple, as a result of which the incident neutron does not
penetrate inside the deuteron if the spins of all the par-
.ticles are directed parallel to one another. Thus, the
interaction of the neutron with the deuteron reduces to
an effective repulsion1133 [the principal matrix element
of the n-d interaction in (4.34) with ν = ν = 1 corre-
sponds to the repulsion potential, inasmuch as for the
quartet spin state the coefficient c u is negative, en
= -1/2]. Therefore even in the approximation of zero
radius of action of the forces a sufficiently good value'28-1

4A = 5.1 F is obtained for 4A, although it is found by
using only one two-particle parameter, namely the
triplet scattering length a ^ = 5.378 F.

The values of the doublet length 2A obtained for the
Hulthen potential and a square well (see Table III) differ
greatly from each other. Just like the triton binding
energy Εχ, the doublet length 2A depends significantly
on the form of the two-nucleon potential. The length 2A
is also sensitive to the change of the singlet effective
radius roSj·. In the case of a potential with repulsion,
the following values are obtained for the doublet scatter-
ing length: 2A = 0.76 F (square well with infinite repul-
sion t 8 0 J ), *A = 0.54 F and 1.33 F (Morse potential for
the respective cases r o S t = 2.44 F, a s t = — 23.68 F and
r o s t = 2.80 F, a s t =-17 F U 1 3 ) , and 2A = 1.15 F (super-
position of Yukawa potentials, r s t = 2.80 F, a s t

= -23.3 F [ 1 1 3 ) .

The calculations of the n-d scattering lengths for the
local potentials, including the tensor interaction between
nucleons, have not yet been carried out. In the case of
separable potentials, allowance for the tensor forces
leads to a considerable decrease of the doublet
length'1 0 8 3.

Let us compare the calculated values of the quartet
and doublet scattering lengths with the experimental
values. During the last 20 years, several experiments
were organized on the determination of the lengths 2A
and 4A. The first to measure the total cross section for
the scattering of a zero- energy neutron by a deuteron,
σ = (4π/3)[2(4A)2 + (2A)2] were Fermi and Marshall" 2 3 :

σ =(3.44 ±0.06) b · (4.45)

Hurst and Alcock'733 determined the ratio of the doublet
and quartet lengths from the scattering of thermal neu-
trons in ortho and para deuterium:

*A/'A = 0.12 ±0.04. (4.46)

Using the values of (4.45) and (4.46), it is possible to
obtain two sets of possible values of the n-d scattering
lengths' 7 3 3:

lA = (6.38 ±0.06) F , 2A = (0.7 ±0.3) F , ,(4.47)

4.4 = (2.6±0.2) F - Μ = (8.26 ± 0.12) F . (4.48)

The experiments of Shapiro et al. at D u b n a c 4 5 ] , using
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A,F

Fig. 13. Experimental data for the determination of the quartet and
doublet lengths of n-d scattering.

p o l a r i z e d n e u t r o n s a n d p o l a r i z e d d e u t e r o n s , h a v e s h o w n

t h a t

a n d c o n s e q u e n t l y h a v e m a d e i t p o s s i b l e t o d i s c a r d t h e

s e c o n d s e t of s c a t t e r i n g l e n g t h s (4 .48) .

M e a s u r e m e n t s of t h e c r o s s s e c t i o n s f o r t h e s c a t t e r -

i n g of n e u t r o n s by o r t h o a n d p a r a d e u t e r i u m , c a r r i e d

out by N i k i t i n e t a l . t 9 5 ] , l e d t o t h e fo l lowing v a l u e s f o r

t h e s c a t t e r i n g l e n g t h s :

= (6.47±0.14) (0.57±0.14) (4.49)

Measurement of the c r o s s section of the incoherent
scatter ing of a neutron by deuterium bound in the DaO
molecule, ffincoh = 27r(4A- 2A)2, c a r r i e d out by
G i s s l e r ' 6 8 3 , has made it possible to determine the dif-
ference between the quartet and doublet scatter ing
lengths:

M--M = 5.99±0.06 p . (4.50)

The coherent scatter ing length A c o n = 4A + 2A/2 was
measured by Bartolini et a l . t 5 1 3 (by the method of specu-
l a r reflection of neutrons) and by Koester and
Ungerer ' 8 3 3 (with small-angle scat ter ing of neutrons
by a mixture of powdered solid and liquid). Using the
coherence length

Λοϋ = 6.21±0.04 F , (4.51)

o b t a i n e d by B a r t o l i n i e t a l . ' 5 1 3 a n d t h e l e n g t h d i f f e r e n c e

(4 .50) , it i s p o s s i b l e t o o b t a i n t h e fo l lowing v a l u e s for

t h e q u a r t e t and d o u b l e t l e n g t h s ' 1 1 2 ' 5 1 3 :

Μ =6.13 ±0.04 F , Μ - 0 . 1 5 ±0.05 F (4.52)

T h e s e t of l e n g t h s (4.52) c o r r e s p o n d s t o a t o t a l c r o s s

section σ = 3.15 ± 0.04 b, which a g r e e s with the value

= 3 . 2 ± 0 . l b (4.53)

o b t a i n e d by e x t r a p o l a t i n g t o z e r o e n e r g y t h e e x p e r i m e n -

t a l v a l u e s of t h e t o t a l c r o s s s e c t i o n of n - d s c a t t e r -

i n g 1 1 1 2 · 1 , but i s s o m e w h a t s m a l l e r t h a n t h e t o t a l c r o s s

s e c t i o n o b t a i n e d by F e r m i and M a r s h a l l 1 6 2 3 . We n o t e

a l s o t h a t t h e r a t i o of t h e l e n g t h s f r o m t h e s e t (4.52)

( 2 A/ 4 A = 0.024 ± 0.009) d i f f e r s g r e a t l y f r o m t h e r a t i o

m e a s u r e d by H u r s t a n d A l c o c k ' 7 3 3 .

K o e s t e r and U n g e r e r ' 8 3 3 o b t a i n e d f o r t h e c o h e r e n t

l e n g t h t h e v a l u e

which exceeds the value obtained by Bartolini et a l . ' 5 1 3 .
The value (4.54) and the value (4.50) for the length dif-
ference leads to the following values of the quartet and
doublet lengths of n-d scatter ing:

=6.46 ± 0.05 F , Μ = 0.47 ± 0.07 (4.55)

6.70±0.05 F , (4.54)

These values correspond to σ = 3.51 ± 0.06 b and 2A/4A
= 0.07 ± 0 . 0 1 .

Figure 13 shows plots of 4A against 2A, obtained on
the bas i s of the data on the total c r o s s section (4.45)
and (4.53), the coherent length (4.51) and (4.54), the
length difference (4.50), and the length rat io (4.46). The
intersect ion of any two curves in Fig. 13 determines the
values of the quartet and doublet lengths. The available
two experimental values of the total c ros s section σ and
the two experimental values of the coherent length Acoh
lead to two possible se t s of the lengths 4A and 2A. One
of them corresponds to the values of (4.52) obtained by
Van Oers and Seagrave ' 1 1 2 3 and by Bartolini et a l . 1 · 5 " ,
and the other corresponds to the r e s u l t s of Hurst and
Alcock (4.47), Nikitin et al. (4.49), and also the data of
Giss ler and Koester and Ungerer (4.55). The values
(4.52) correspond to the total c r o s s section of Van Oers
and Seagrave (4.53), but do not a g r e e with the ra t io
2A/4A of Hurst and Alcock (4.46). The values of 4A and
2A in (4.47), (4.49), and (4.55) lead to the total c r o s s
section (4.45) of F e r m i and Marshal l , and the i r ra t ios
a r e close to the resul t of'7 3 3. F o r final experimental
determination of the lengths 4A and 2A it i s necessary
to have additional, m o r e accurate experiments. In par-
t icular , it i s necessary to refine the value of the rat io of
the lengths 2A/4A.

Let us compare the calculated values of the quartet
and doublet lengths with the experimental values. We
note f irst that the quartet length 4A for all the potentials
in question i s close to the experimental values and
a g r e e s best with the value of 4A from the second system
of experimental lengths (4.47), (4.49), and (4.55).

The experimental data on the doublet length a r e l e s s
accurate . The experimental values of the doublet length
a r e found in the interval of values from 0.1 to 1.0 F .
The values of 2A calculated both in the case of a square
well (see Table ΠΙ) and in the case of a potential with
r e p u l s i o n ' 1 1 ' 8 0 3 fall in th i s interval. In this connection,
it is of interes t to c a r r y out the simultaneous compar-
ison with experiment of the doublet length 2A and of the
tr i ton binding energy Ε χ , the value of which i s well
known (Εχ = 8.482 MeV). In the case of a Hulthen po-
tential and square well, the binding energy Ε χ is too
high. A d e c r e a s e of Ε χ , which can be attained by in-
creasing, for example, the singlet effective radius r o S t ,
corresponds to an increase of 2A. In the case of a
square well with p a r a m e t e r s (c), a value of Ε χ equal to
the experimental value i s reached at ro Sj- ~ 2.9 F. The
doublet length 2A i n c r e a s e s in this case to approximately
1 F . Close values were obtained i n t l l ] for the potential
(4.44), which contains repulsion: Ε χ = 8.56 MeV, 2A
= 1.15 F ( r o S t = 2.80 F, a s t = - 2 3 . 3 F) . As shown by
calculations with separable p o t e n t i a l s ' 2 6 ' 1 0 8 ' 7 8 ' 2 7 3 , allow-
ance for the tensor interact ion between the nucleons
leads to the same effect for Ε χ and 2A as an increase of
the singlet effective radius . Thus, the calculated doub-
let length corresponding to the experimental value of
the binding energy of the t r i ton, like the quartet length,
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agrees best with the values of the experimental lengths
(4.47), (4.49), and (4.55).
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