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INTRODUCTION

THE main difficulties in modern nuclear theory are
connected both with our insufficient knowledge of the
nature of the nuclear interaction and with the many-par-
ticle character of the nuclear systems. Study of the
nuclear interaction between nucleons—the simplest com-
ponent particles of nuclei—-is one of the central problems
of nuclear theory. The presently available experimental
data on nuclear interaction do not contradict the assump-
tion of the two-particle character of nuclear forces.
Nuclear theory is a nonrelativistic theory and is based
on the assumption that nuclear interaction between
nucleons can be described with the aid of a potential
which depends in the general case on the spin and iso-
spin state of the nucleons.

Although the interaction between nucleons is strong,
nonetheless a system of two nucleons has only one bound
state—a deuteron—characterized by an exceedingly low
binding energy. By virtue of this circumstance it is im-
possible to determine the potential uniquely from the
scattering of two nucleons in the nonrelativistic energy
region. To eliminate the ambiguity in the determination
of the potential, it is necessary to refine greatly the ex-
perimental data on nuclear scattering, or to make use of
other data.

One can expect a study of nuclear systems consisting
of three and more nucleons to be a major source of
additional information on the interaction between
nucleons. Indeed, the properties of a system of two
nucleons at energies close to zero can be explained by
means of forces with a zero radius. However, in the
case of zero-radius forces, the binding energy of a sys-
tem of three nucleons turns out to be infinitely larget*'*’,
Therefore the very existence of triton nuclei and He®
indicates that the nuclear forces are characterized by a
finite radius of action.

Data on the scattering of nucleons by nucleons at low
energies (<10 MeV) make it possible to determine only
the effective parameters characterizing the magnitude
and radius of the interaction potential. These data, how-
ever, are insufficient for a complete determination of
the form of the potential. Unlike the two-nucleon prob-
lem, the problem of motion of three (or more) nucleons
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turns out to be more sensitive to the form of the two-
nucleon potential. Of considerable interest is the possi-
bility of explaining the properties of three~nucleon sys-
tems and systems consisting of a large number of
nucleons on the basis of two-particle forces determined
from a solution of the two-nucleon problem.

Data on two-nucleon interaction can be obtained from
the properties of nuclei containing more than two
nucleons; for this purpose it is necessary to calculate
the properties of such nuclei. In essence, this calcula-
tion means solution of the many-body problem; the sim-
plest example of such a problem is that of the motion of
three particles, a rigorous formulation of which and
proof of existence of whose solution were obtained rela-
tively recently.

Owing to the indicated difficulties, the properties of
a system of three nucleons and other few-nucleon nuclei
were investigated in detail with the aid of different
variational methods. During the last three decades, a
considerable number of variational calculations were
performed using different potentials that agree with data
on the two-nucleon interaction'?'. In the case of central
forces, the value of the binding energy of the triton
turned out to be strongly dependent on the potential and
too high in comparison with the experimental value. The
introduction of tensor forces leads to a qualitative im-
provement of the agreement with experiment. The most
consistent variational calculations of the binding energy
and of the wave function of the triton, using the Hamada-
Johnston potential, which takes into account different
details of the nuclear interaction (repulsion at small
distances, tensor and spin-orbit forces) were carried
out recently by Delves et al.'®®!, The value of the binding
energy of the triton, obtained in*®®’, turned out to be
6.7 + 1.0 MeV. Variational methods were also used to
estimate the lengths of scattering of a neutron by a deu-
teron. The Kohn variational method makes it possible
to obtain an upper bound for the neutron-deuteron scat-
tering length. The results of the calculations depend,
however, on the form of the trial functions, and there-
fore the accuracy of the obtained values is low. For the
Hamada-Johnston potential the value obtained for the
doublet scattering length int®®! by the variational-method
is A=1.2 £ 1.0 F.
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From the fundamental point of view, more interest
attaches to calculations based on a direct solution of the
equations of motion of the three-nucleon system. During
the last decade, considerable progress was made in the
formulation of the equations of the three-particle prob-
lem and in the development of methods of solving such
equations,

As shown by Skronyakov and Ter-Martirosyan
the problem of the motion of three nucleons in the case
of two-particle forces with zero radius of action reduces
to a solution of one-dimensional integral equations. If
the orbital angular momentum of the system of three
nucleons is equal to zero, then at a summary spin
S = 3/2 and isospin T = 1/2 there is one integral equa-
tion, and at S = 1/2 and T = 1/2 there are two integral
equations. For the quartet spin state of three nucleons,
the integral equation contains only one two-particle
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parameter—the triplet nucleon-nucleon scattering length.

In the case of zero energy of the incident neutron, the
authors of*®*’ were able, by solving the indicated equa-
tion, to calculate the quartet neutron-deuteron scatter-
ing length, which was found to be *A = 5.1 F, For the
doublet spin state of a system of three nucleons, the in-
tegral equations contain two two-particle parameters—
the triplet and singlet scattering lengths. The homo-
geneous system of equations corresponding to the bound
state of the three-nucleon system leads in this case to
an infinitely large value of the binding energy. On the
other hand, the inhomogeneous system of equations des-
cribing the neutron-deuteron scattering does not have a
unique solution. (The ambiguity is connected with the
existence of a solution of the corresponding homogene-
ous system of equations for any value of the energy of
the neutron-plus-deuteron system). To eliminate this
ambiguity, Danilov!*! introduced into the problem, in
addition to the two-particle parameters, one additional
parameter, namely the binding energy of the system of
three nucleons. In this manner it was possible in'™! to
obtain for the doublet length of neutron-deuteron scat-
tering a value A = 0.48 F, which agrees well with the
experimental value.

The formal theory of scattering and reactions in a
system of three particles in the case of two-particle
forces with a finite radius of action was developed by
Faddeev'®®’®?, Although the formalism of'**’ did not get
rid of the main difficulty of many-particle problems,
connected with the fact that the complete Hamiltonian of
the system does not break up into a sum of additive
terms that depend on the coordinates of the individual
subsystems, it was possible in‘®! by separating the
wave function of the system of three particles into indi-
vidual terms, to obtain for them a system of integral
equations admitting of a unique solution. The kernels of
the obtained equations are expressed in terms of two-
particle scattering amplitudes off the energy shell. An
essential advantage of the Faddeev equations over the
well known Lippman-Schwinger equation is that their
kernels can be reduced to the Fredholm type, and it is
therefore possible to use known methods for the solution
of the indicated equations. A generalization of Faddeev’s
integral equations to the case of a system of three
nucleons with allowance for the spin and isospin depen-
dences of the interaction between the nucleons was car-
ried out int*®™, A generalization of Faddeev’s equations
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to the case of an arbitrary number of particles was car-
ried out in‘¥%%?,

The technique of summation of nonrelativistic Feyn-
man diagrams for the three-value problem was devel-
oped by Komarov and Popova''”,

The Faddeev equations for the system of three parti-
cles are transformed in the general case, by expanding
the wave function in terms of the angle functions and
separating the angle variables, into an infinite system of
two-dimensional integral equations. If the two-particle
potential is characterized by a finite radius of action,
then the interaction between each pair of particles is
manifest only in a finite number of partial states. In this
case it is necessary to take into account only a finite
number of equations out of the infinite number of two-
dimensional integral equations.

The problem simplifies greatly if the two-particle
scattering amplitude has a separable form. In this case
the indicated system of two-dimensional integral equa-
tions reduces to a system of one-dimensional integral
equations®***°™, The two-particle scattering amplitude
has a separzable form if the interaction between the par-
ticles is described by a separable non-local potential
takes into account the finite radius of action of the for-
ces between the nucleons and makes it possible to solve
in explicit form the problem of motion of two nucleons.
Such a potential is a rather good approximation of the
local short-range potential for a system of two parti-
cles, if formation of not more than one bound state is
possible in the system. The application of a separable
potential for the description of the two-particle interac~
tion has made it possible to develop a technique for cal-
culating three-particle systems (see'*”’), By numeric-
ally solving the one-dimensional integral equations, we
obtained in'*®"! the binding energy and the wave function
of the triton, and also the quartet and doublet scattering
lengths of a zero-energy neutron by a deuteron. The
problem of three nucleons was considered independently,
using a separable potential, by Mitra'®®’,

The calculations with separable potentials pointed to
an appreciable dependence of the triton binding energy
and of the doublet neutron-deuteron scattering length on
the form of the potential, and also on the magnitude of
the singlet effective radius of interaction between the
nucleons. A change of the value of the singlet effective
radius from 2.4 to 2.7 F leads to a decrease of the tri-
ton binding energy by approximately 1 MeV and to an
increase of the doublet length by approximately 0.7 F.
The quartet neutron-deuteron scattering length turned
out to be insensitive to the change of the form of the two-
particle interaction, this being connected with the influ-
ence of the Pauli principle, which prevents simultaneous
approach of all three nucleons to small distances from
one another,

The calculated values of the doublet and quartet
neutron-deuteron scattering lengths turned out to be
close to one of the two possible experimental sets of
scattering lengths which were known at that time,

*A > ?A. Subsequently, experimental measurements
performed by Shapiro et al."**! using polarized neutrons
and deuterons, confirmed the correctness of this set.

The influence of the tensor forces on the properties
of a system of three nucleons was investigated for
separable potentials in'2%2!%878:%4,%%:1021 ' 14 tyrped out
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that an admixture of D state with weight of 4% decreases
the triton binding energy by approximately 2 MeV and
increases the doublet length by more than 1 Fi#,

An investigation of the elastic scattering of a neutron
by a deuteron at finite energies, and also of the reaction
of the disintegration of the deuteron in the interaction
with a neutron has been carried out by Amado et al.t*?:*"!
and by Phillipst*®*°"), The calculated differential cross
sections in the case of a separable potential agree well
with the experimental data. The three-particle model of
the stripping reaction with a separable potential was
considered int*%%*,

The Faddeev equations for a system of three parti-
cles can also be brought to a one-dimensional form in
the case when the interaction is separable between at
least two particles. The interaction with zero radius is
a particular case of a separable interaction. Baz’ et
al.!® investigated the three-body problem in the case
when the interaction between two particles is character-
ized by a zero radius of action and the potential of inter-
action of each of these particles with a third infinitely
heavy particle has the form of a square well,

The problem of motion of three particles the interac-
tion between which is described by local potentials was
recently considered on the basis of the Faddeev equa-
tions in a number of papers. We note first of all papers
based on numerical solution of the two-dimensional
integral equations. The direct solution of the two-dimen-
sional homogeneous integral equation describing the
bound state of three identical spinless particles was
carried out by Osborn!™?., We note that such calcula-
tions are at the borderline of feasibility by modern
computation techniques. The method of successive itera-
tions of a two-dimensional integral equation was used by
Malfliet and Tjon"*? to find the binding energy and the
wave function of the triton. They used a local potential
in the form of a superposition of two Yukawa potentials
with repulsion at small distances. The triton binding
energy turned out to be 8.3 MeV compared with the value
12.1 MeV obtained in the case of a purely attractive
Yukawa potential with the same values of the low-energy
parameters.

The two-dimensional integral equations of the three-
nucleon problem can be reduced to one-dimensional
equations by using a separable representation for the
two-particle scattering amplitude, which is equivalent to
a separable expansion of the matrix elements of the in-
teraction potential. In the case of the potentials custom-
arily used for the phenomenological description of two-
nucleon interaction, which are not very singular at small
distances and decrease rapidly at large distances, the
two-particle scattering amplitude can be approximated
well by the first few terms of the expansion.

Several methods were proposed for approximating the
two-particle scattering amplitude by a series with
separable terms!®: 25671931587 ' 1y the method based on
the use of the Hilbert-Schmidt theorem for symmetrical
integral equations'*®’ , the separable expansion of the
two-particle scattering amplitude off the energy shell is
expressed in terms of the eigenfunctions and eigenvalues
of the kernel of the Lippmann-Schwinger integral equa-
tion. Such a separable representation was first used by
Weinberg"™*®! to eliminate divergences of the Born
series for the two-particle scattering amplitude.

ol
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Faddeev has pointed out'®®’ the possibility of using the
Hilbert-Schmidt method for solving the problem of the
motion of three particles. By now, this approach has
been used in a number of papers for the solution of both
atomic and nuclear three-particle
problemg - 8%/109:7,81,4%:84) 1y the case of attractive
potentials, each term of the separable expansion corre-
sponds to a corresponding separable attraction potential.
Allowance for the succeeding terms in this expansion
means introduction of a stronger attraction. Therefore
allowance for further corrections in the Hilbert-Schmidt
expansion can change the results of the calculation only
in one direction (increase the binding energy of the tri-
ton and decrease the doublet scattering length). In the
case of a potential of rectangular form, the two-particle
scattering amplitude is well approximated by two terms
of the Hilbert-Schmidt expansion. Calculations with
such potentials make it possible to estimate the contri-
bution of the higher partial moments in the two-particle
interaction to the values of the binding energy of the
triton and the neutron-deuteron scattering length. This
contribution turned out to be small and amounts to 0.2%
for the triton binding energy and 0.5%, for the doublet
length'®7®), The triton binding energy and the doublet
neutron-deuteron scattering length in the case of a rec-
tangular well agree better with the experimental values
than do the values for the Hulthen potential, which has a
smeared edge and a singularity at zero.

The Hilbert-Schmidt expansion for the two-particle
scattering amplitude is unitary only if account is taken
of an infinite number of terms. If we use the expansion
of the matrix elements of the potential in eigenfunctions
of the kernel of the Lippman-Schwinger equation at a
fixed energy, then we obtain for the two-particle scat-
tering amplitude a separable expansion which is unitary
when account is taken of a finite number of terms. Such
an expansion, called the unitary pole expansion, was
used by Harms'®®’, The unitary pole expansion can
serve as a basis for the use of separable potentials,
inasmuch as allowance for the first term of such an ex-
pansion (the unitary pole approximation) is equivalent to
introduction of a separable Yamaguchi potential.

Another method of obtaining separability of the two-
particle scattering amplitude, the so-called Bateman
method'®*''®! is based on replacing the matrix element
of the potential by a sum of separable terms, the coeffi-
cients of which are chosen such that the sum coincides
with the matrix element at definite values of the argu-
ments. This method was used to solve the three-nucleon
problem by Belyaev et al.!*"*!, '™ the binding en-
ergy, the form factors, and the weight of the states of
intermediate symmetry were calculated for the triton,
and also the neutron-deuteron scattering lengths in the
case of a Morse potential and a potential chosen in the
form of a superposition of Yukawa potentials. The em-
ployed potentials took into account repulsion at small
distances and were reconciled with data on the interac-
tion of two nucleons at low and high energies. It turned
out that the aggregate of the calculated quantities in the
case of a superposition of Yukawa potentials is in better
agreement with the experimental data than the values
calculated for the Morse potential.

Simonov and Badalyan'®**"?*! proposed a method of
solving the problem of the bound state of a system of
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three nucleons, based on expansion of the wave function
in six-dimensional angular harmonics and making it
possible to reduce the problem to a solution of a system
of one-dimensional differential equations. Devoted to
the construction of a complete system of basis eigen-
functions for a system of three particles are the papers
of Smorodinskii et al.'***!, Filippov and Ovcharenko
developed a method of expansion in terms of the recipro-
cal powers of the interaction parameter, which makes it
possible to calculate the energy of the bound states of a
system of three nucleons!®,

In the present survey, we develop a nonrelativistic
theory of three-particle systems with paired interaction.
The development is based on the Faddeev formalism
using a separable representation for the two-particle
interaction. We consider bound states and elastic scat-
tering in a system of three identical spinless particles
and in a system of three nucleons*.

1. NONRELATIVISTIC THEORY OF SYSTEMS
CONSISTING OF THREE PARTICLES

1.1, The Lippman-Schwinger Equation

We consider a quantum-mechanical system consisting
in the general case of several interacting particles. We
shall assume that the Hamiltonian of the system H can
be broken up into two parts:

H=H,+V, (1.1)
where the first term Ho describes the unperturbed mo-
tion of the system, and the second term V describes the
interaction that vanishes when the interacting parts of
the system come sufficiently far apart.

In the stationary formulation, the scattering problem
reduces to finding the solution of the Schrodinger equa-
tion

(H—E)¥ =0 (1.2)

with definite boundary conditions (E is the energy of the
system). At infinity, the solution ¥ should have the form
of a sum of an incident wave &, which is a solution of
the unperturbed equation

(Hy—E)®-- 0, (1.3)

and a diverging scattered wave.
The solution of {1.2) satisfying the indicated boundary
conditions can be represented in the form

V04 Gy(E i) VY, (1.4)
where Go(z) is the Green’s function of the unperturbed
equation (1.3):

(1.5)

The rule for going around the pole in (1.5) corresponds
to the choice of a diverging scattered wave in the asymp-
totic form of ¥. The formal solution of the Schrodinger
equation (1.4) is an integral equation and is usually
called the Lippman-Schwinger equation‘®®’.

Go(z2)={(z—Hy)'. z=E+i0.

*A number of recent reviews [272 6% 92 46, 59, 98] (discussed the re-
sults of calculations on the basis of the Faddeev integral equations for
three-particle systems with a nonlocal separable interaction. Unlike
these papers, the present review considers the properties of systems
with local interaction.
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The amplitude of the probability of the transition of
the system from a state asymptotically described by the
function & into a state described by the function &' is
determined by the expression (®’, V) at E’ = E,

The solution of (1.4) can be expressed directly in
terms of the asymptotic function & with the aid of the
Green’s function of Eq. (1.2)

G (z) = (z— H), (1.6)
The Green’s function G{z) satisfies the equation
G (2) == Go(2) - Go (2) VG (2). (1.7

By direct verification it is easy to check that the solu-
tion (1.4) can be represented in the form

¥ =lim G (E+ ie) D. (1.8)
-
Indeed, multiplying (1.7) with z = E + ie by i, applying it
to the function &, and noting that lim ieGo(E + ic)d = &,
we obtain (1.4). e—~0
Usually in considering the scattering problem one
employs the transition operator T. We represent the
Green’s function G(z) in the form

(1.9)

and then we obtain from (1.7) the following equation for
the operator T{(z):

G(2)=06y(2)+Go(2) T (2) Gy (2);

(1.10)

This equation, generally speaking, is equivalent to the
Lippman-Schwinger equation (1.4). Indeed, applying the
operator equation (1.10) to & and comparing the obtained
equation with (1.4) multiplied from the left by V, we
readily see that

T(2)=V+VGy(2) T (2).

TO=yVY, (1.11)

According to (1.11), the amplitude of the transition of
the system from the state & into the state &' is directly
determined by the matrix element of the operator T:

(@', V¥) = (@, TD). (1.12)

The solutions of the Schradinger equation (1.2) for
negative values of the relative-motion energy corre-
spond to bound states of the system. The Schroddinger
equation for bound states of the system can be written
with the aid of the Green’s function (1.5) in the form of
a homogeneous integral equation

(1.13)

The Lippman-Schwinger equation (1.4) in the presence
of bound states of the system has in the general case no
unique solutions'®®'. In fact, even for a system consist-
ing of two particles, the energy levels

W= Gy (E+i) VY,

2

E= ZK—M +e
(K—total momentum, M—total mass and e—energy of
relative motion) are multiply degenerate, since different
distributions of the energy between the internal motion
and the motion of the system as a unit correspond to
different states. Since the presence of a bound state of
the system denotes the existence of a solution of the
homogeneous equation (1.13) at a fixed value of E, the
solution of the inhomogeneous equation (1.4) becomes
multiple-valued. For a system consisting of two parti-
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cles, the Lippman-Schwinger equation admits of a unique
solution only on going over to the center of mass system;
in this case K = 0 and the energy degeneracy is lifted at
E =e.

An analogous ambiguity of the solutions of the
Lippman-Schwinger equations takes place also for sys-
tems consisting of three and more particles. Since in
this case we can have besides the bound state of the en-
tire system also bound states of the subsystems consist-
ing of smaller numbers of particles, the solutions of the
inhomogeneous Lippman-Schwinger equations are always
ambiguous. A unique solution is obtained only for the
homogeneous equation in the case of a bound state of the
entire system regarded in the center of mass system.

Skornyakov and Ter-Martirosyan have shown'®®!,
using as an example a system of three particles with
zero action radius, that the wave function of the system
can be broken up into individual terms for which a coup-
led system of integral equations is obtained. A general-
ization to the case of systems of three particles with
arbitrary radius of action was carried out by
Faddeev'*"*!, Unlike the Lippman-Schwinger integral
-equations, the obtained integral equations admit of a
unique solution.

1.2, Faddeev’s Equations

The method of obtaining integral equations for sys-
tems of interacting particles will be considered with a
system of three nonrelativistic spinless particles as an
example. The unperturbed Hamiltonian Hp is chosen to
be the operator of the kinetic energy in the particies;
the interaction V in the case of two-particle forces is
represented in the form of a sum of three terms,

V=Vt Va+Vay, (1.14)

where Vij characterizes the interaction between parti-

cles i and j, which decreases with increasing relative
distance between them. We note that the kernel of the
integral equation (1,10) is in this case singular because
of the presence of § functions expressing the conserva~
tion of the momentum of the particle that does not inter-
act with the chosen pair.

The system transition operator T, in accord with
(1.10), is naturally represented in the case of two-parti-
cle forces (1.14) likewise in the form of a sum

(1.15)

where the individual terms are conveniently defined by
means of the equalities

T(@)=T"(2) +T9 () +T° @),

T®(Z2y=V:; - ViGo (D) T (2), (1.16)

(Z = E +i0, E is the total energy of the three-particle
system). Representing the operator T(Z) in the right-
hand sides of (1.16) in the form (1.15), relations (1.16)
can be regarded as a system of coupled operator equa-~
tions defining the individual terms of (1.15). We note
that the iteration series for T(K)(Z) from (1.16) contains
both singular terms (of the type V23Go(Z)Vas,

V23Go(Z) V23Go(Z) Vas, ete.), and terms in which the 6
functions are eliminated by intermediate integration (of
the form V23Go(Z) Vs etc.). The obtained system (1.16)
is obviously equivalent to (1.10) and therefore, like the
Lippman~Schwinger equation, has no unique solution.

k=123, 231, 312
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To eliminate the ambiguity, we reconstruct the sys-
tem (1.16), assuming the two-particle operators Tij to
be known. We determine the operators Tij with the aid
of the equation

Ti(Z)=Vi; L Vi,Go (Z2) Ti5(2), (1.17)

which is obtained from (1.10) if we neglect in the latter
the interaction of the particles i and j with the third
particle. We note that the right-hand side of Eq. (1.17)
contains all the singularities of Eq. (1.16), and therefore
the singularities in (1.16) can be eliminated with the aid
of (1.17). Separating the diagonal part in (1.16) and in-
verting the two-particle operator [1 — VijGo(Z)] , We re-
write the system of coupled equations for the individual
terms of the transition operator T with the aid of (1.17)
in the form

7% (2) = T, (D) +TAD) G 2NT® (2)+ TP (2)), ik =123, 231, 312.
(1.18)
The obtained system of integral equations, unlike (1.16),
has a unique solution. The iteration series for the sec-
ond term of the right-hand side of (1.18) does not contain
any singularities. Therefore the system of integral
equations (1.18) can be solved by Fredholm methods*.
Taking into account the connection between the tran-
sition operator T and the Green’s function G (1.9), we
can obtain from (1.18) a system of equations for G. In
accordance with the breakdown (1.15) we have

G(2)=Gy(2) + GV (2)-+ 6 (2) -+ G (Z), }

60 D=6 T @6y, i1, 2,5.) 1Y

The functions G(i) satisfy here the equations

6" (2) = Gij(2) —Go(Z) +Go(2) T:; (2) 16V (2) + 6V (Z)], (1.20)
ijk =123, 231, 312,

where
Gij(2) =Gy (Z)+ Gy (2) T (Z) G,y (Z).

On the basis of (1.20) we can easily obtain with the aid
of (1.8) the corresponding equations for the determination
of the wave function of the system ¥.

In the system of three interacting particles it is pos-~
sible to have both infinite motion of all three particles,
and infinite motion of an individual particle relative to
the two other particles that are in a bound state., The
corresponding asymptotic wave functions of the system
will be denoted by 125 and &;, where i = 1, 2, or 3. (An
index next to a function denotes the number of an un-
bound particle in the system. Allthe particles are as-
sumed to be different.)

Applying Eqgs. (1.20) multiplied by ie to the functions
®12; and taking (1.8) into account, we obtain the following
equation for the determination of the wave function W 123
of the system in the case of unbound motion of all three
particles:

Wygs o= Dy - Wiy 1 WG+ WG
Wi =D — Do+ Go (Z) Toy (2) | V15, 4 YL
\P;i; = Mgy — Dygs - Go(Z) T3y (Z) [W;Qy‘“ \Filg)a],
WO @y O Go(Z) T o (Z) (Wi -1 Wi Z o B 1),

(1.21)

*A generalization of Faddeev’s equations to the case of an arbi-
trary number of particles was made in [3%>39].
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where &2 = linb i€Gas (E + i€)® 125 etc. The functions
s

®, (23) differ from &,.5 in that account is taken of the
interaction between particles 2 and 3. It is easy to verify
that the difference @123, — ®.123 is a diverging wave at
large distances with respect to the relative coordinate
between the particles 2 and 3.

In the case of scattering of an individual particle by
two other particles that are in a bound state, we can ob-
tain the following equations for the determination of the
wave function of the system ¥, (for the scattering of
particle 1 by the bound state of particles 2 and 3)

‘Fl \I}‘(l) 1 \y(z)+\y(a)

W oz Gy (2) Ty (2) | B2 4 W), (1.22)
VP = Gy (2) Toy (2) ¥+ W), 1.22
Vi Gy (2) Tra (2) (W + WD), Z=E -+ i,

Analogous systems of equations hold for the functions
Y2 and ¥s.

The system of three integral equations (1.22) can be
reduced to a system of two integral equations for the

functions \119) =y i andnlv(n) =¥ +¥{¥, 1t is easy to

verify that the functions nlr(l) and \II(H) satisfy the equa-
tions

YO =@, + Gy (2) T (2) ¥, WD (1.23)

where the operator T, describes the scattering of an in-
dividual particle by two others in the absence of inter-
action between them:

=Gy (2) T{Z) ¥V,

(1.24)

We note that both in the case of infinite motion of all
particles and in the case of scattering of an individual
particle by two others in the bound state, we have an in-
homogeneous system of integral equations admitting of
a unique solution. The integral equations for the system
of three tpartlcles (1.21) and (1.22) were obtained by
Faddeev'®™’. The integral equations (1.23) were obtained
by Baz’ et al ®1 . The main advantage of the Faddeev
equations over the Lippman-Schwinger equations is that
the Faddeev integral equations have Fredholm kernels,
and therefore it is possible to use known methods for
the solution of the indicated equations.

In the case of a bound state of the entire system, it
is possible to obtain in similar fashion the following
homogeneous system of integral equations for the deter-
mination of the wave function ¥o:

¥, = \If‘(,l) + \P-,(’e) + \I;:)a)’
W =G0 () Tan () ¥ + ¥), }

T(Z)=V -+ ViG(2)T(Z), Vi=Vup+Vy.

VP =Go (2) Tay (2) [¥QV -+ ¥30),
\p(a) G(] (Z) T‘2 (7) [\P‘(l) \!;(()z»] .

The homogeneous system of equations (1.25) has solu-
tions only at energies corresponding to bound states of
the system. In the c.m.s. this energy is negative

(E < 0). We note that the system of equations (1.25) can
be obtained formally from the system (1.22) by putting
in the latter &, = 0.

(1.25)

1.3. Coordinates and Momenta in a System of Three
Particles

We denote the masses of the three particles by m,,
mg, and mj; accordingly the radius vectors and the mo-
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menta of the particles are denoted by ri, rs, rs; and

ki, k2, and k;. In the description of the relative motion
in a system consisting of three particles, it is conven-
ient to choose the Jacobi coordinates

malg + mgrs

1
My tmg Fog ==Xy — T3, R——

Py=T— i (Mg 4 Moty |- mats), {1.26)

where M = m; + m; + m; is the total mass of the system.
In place of the relative coordinates p, and r,; we can use
the relative coordinates p: and rs or p; and ry,. Accord-

ingly, it is convenient to introduce the Jacobi momenta

Py == (”;2-1‘-'."3) kiﬂ;"‘a Ky +ky) ks

3:"2%22_.;_,’,’,:2‘!“3: K=k {+k;+ks.

‘ (1.27)
In place of the relative momenta p, and kz; we can choose
P2 and k31 or Ps and klz.

The kinetic-energy operator of the system is written
in the Jacobi coordinates r:s, p1, and R in the form
P (1.28)
where (125 = myms/(m, + my) and gy = my(m, + my)/M
are the reduced masses. In the momentum representa-
tion Ho takes the form .

1
HO: —%Aza_

Hyw th K2 (1.29)

2[423_' 2;“ +37 -

We present explicit expressions for the asymptotic

functions. We denote the initial values of the momenta
by zero indices. The asymptotic function &3, which
describes the free motion of all the particles, can be

written in the form
02 Koz

kyy
E123”‘2”1+2'123 TN (1.30)

@5 = eipgpi+ik¥xrzx+iK0R’
We note that the function &;:2; is invariant against sub-
stitution of the Jacobi coordinates. The asymptotic
function &, takes the form

03
@, =eﬂ"l)P1'f'il{oR‘:P”2l (fs)s B, = Zm 2"::; [2(M , (1.3 1)
where ¢, (rz) is a solution of the equation
1
(—%Azs + V23_823) Pras (F20) = 0 (1.32)

at a negative value of the energy of the relative motion
€23 = —K33/2 L 23, i.€., a function describing the bound
state of the system of particles 2 and 3. Asymptotically
the function &,(23 is written in the form

ip9p;+HIKOR (1.33)

ouzs, =e

CPkg, (1‘23), Ei(%) = Eizs,

where qoko (rss) is the solution of Eq. (1.32) for €23

= K33/2 11 2s > 0, which has at infinity the form of a sum
of a plane wave and a diverging spherical wave.

1.4. Momentum Representation

The Faddeev integral equations have the simplest
form in the momentum representation. Each of the
components of the wave function of the system ¥‘\l/ can
be conveniently represented in the form of a function of
the corresponding set of coordinates:

YO =Y (r, o, R), k=123, 231, 312.  (1.34)

In the momentum representation, the function \Il(i) is
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defined with the aid of the equality

B (I py, K) = 5 e HAT TR IRR YD (pL o RYdr, dp; dR.
(1.35)
Inasmuch as the kinetic-energy operator in the mo-

mentum representation is a multiplication operator, the
Green’s function Ge(z) is diagonal in the momentum
representation. The operator of two-particle scattering
T, (2) is diagonal in the representation of the total mo-~
mentum of the system and the momentum of the free
particle p;:

(kampiK| Tin (2) | KinpiK")

tn (2 gt — ) |k 8 (mi— B O K —~K),
(1.36)
where ti]-(z) is a two-particle t matrix defined by the in-

tegral equation

= (211)0 \kjh

t(z)=V-+V(z—Hp)(2),

or
k|t () k)= &|V |k 4 | EADAZEND 2oy g0
PR g
2 (1.37)

(€ is the energy of the relative motion of two particles
and p is the reduced mass). In the general case Eq.
(1.37) determines the t matrix off the energy shell
(k?/2u # k'?/2p # €). We recall that the amplitude of the
elastic scattering of the particles is expressed in terms
of the t matrix on the energy shell:

k2 k2

= =

o I
Pl k)= — A L

k(e 420y | k), (1.38)

The two-particle t matrix (k|t(z)|k’) in the plane of
complex energies z has singularities, namely poles,
corresponding to a discrete spectrum, and a cut along
the positive part of the real axis, generated by the con-
tinuous spectrum of the system of two particles. The
explicit form of the indicated singularities can be ob-
tained from the so-called spectral representation of the
t matrix®®®’:

k|t (@) | k) = k| V]K)+ 2 iy (o )
QLD E]
2—(g*72p) @y’
(1.39)

where gy (k) = (° + ky/2p) o (k), N = {n, !, m}, and
N/Zu and gp(k) = qonl(k)Ylm(k) are the binding energy
and the wave function of the bound state of the two parti-

cles in the momentum representation ( f (p;(k)% = 1).

Since all operators entering in the Faddeev equations
are diagonal in the K representation, the wave function
¥ will contain the factor §(K — K°), which expresses the
law of conservation of the total momentum of the sys-
tem. Therefore all dependences on K can be completely
eliminated by changing over to the c.m.s.

By way of an example let us consider in the momen-
tum representation the Faddeev system of integral equa-
tions (1.22) in the case of scattering of a particle by two
other particles that are in a bound state:

Wy = ¥ (kos, Py) + W (kays o) -- VPP (kyo, Ps)s (140)
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k2 r? ) -1

YO (k, p)= Ok, P+ (Z— g — 5

X § [<kltza (Z

o N (o
2111) m2+m3p+p/‘1’ ( P ms-i—'":p p)

+ Kt (2= 30) [~ B p =D ¥ (o e ) e
v & p)= (2— g — )

% f[Cefen(—g5) [mpro > v (—p— e v)

ke (2= 45) [ 5= e (b v ¥) |
Ol D)= (2 g =)

xS \k’txz Z—z—pa),m‘"jmp—kp’/‘l"”('—p—m P ' p')

PN me r\ ¢ A\ .4p
+\k|t‘2 z 2#3” mtmy P -y (p+m3+m1p’ P) (237
o
=_1_ His .
Z_Z}H 2#23+ZO

The function ®1(kss, p1) equals, according to (1.31),

@, (kesy Pr) = (201)%0 (p, — PY) Pess (o), (1.41)

where @, (k) is the wave function of the bound state
of two partlcles with binding nnergy x5s/2p 23 and Pl is
the momentum of the relative motion of the system in
the initial state.

If all three particles are the same and have zero spin
and isotopic spin, then the total wave function of the sys-
tem ¥ should be symmetrical against permutation of
any pair of particles; in this case

W (k, p)= ¥ (k, p) =¥ (k, p)=p(k, p).

Therefore the wave function can be represented in the
form

Vo= (kasy o)+ (ksts P2} + ¥ (kizo Do), (1.42)

where -k, p) = y(k, p). In place of the system (1.40)
we obtain in this case one integral equation for the func-
tion y(k, p):

b (k, p) =0 (k, p)?( - ‘i,: 5{\k,t _%ﬁ),§7p,>
1<k|t(5 _f") P \P[pf%, )(g%w
(1.43)

where ¢(k, p) is a function in terms of which the initial
wave function of the system is expressed via symmetri-
zation:

B = @ (k. o)+ (kay, P2) -+ ¢ (Kpa, Pa)-

In the case of a bound state of three particles ¢ = 0,

Z = E < 0; in the case of scattering of one particle by
the two others which are in the bound state, the function
¢(k, p) is determined by an expression of the type
(1.41).

The integral equation (1.43) determines the wave
function of the system, which depends in the general
case on six variables (two relative vectors). By expand~
ing the wave function in terms of the angle functions and
separating the angle variables, the three-dimensional
integral equation (1.43) in the case of central interaction
between the particles can be reduced to a system of two-
dimensional integral equationsf**»®%!41,
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1.5. Expansion in Partial Waves

Assuming that the interaction between the particles
is central, it is convenient to expand the two-particle
potential in terms of the partial components

K[VIK) = Z 2L+ 1) Vi (k, &) Py(cos8) (1.44)

4 XV (ke k)Y i (B) Yin (B
tm

where Ylm(f{) and Ylm(ﬁ’) are spherical functions of the
angles characterizing the directions of the vectors k
and k’; 6 is the angle between the vectors k and k’. The
individual terms in (1.44) describe the interaction be-
tween the particles in states with different values of the
orbital angular momentum /. An analogous expansion is
best carried out also in the expressions for the t matrix
and for the scattering amplitude

(1.45)

k|t(z)|ky= (2l+1)t1 k, k'; z) Py (cos 8),

K, k)= Z(ZI-H ) f1 (k) Py (cos B). (1.46)
From (1.37) we easily obtain the following integral equa-
tion for the determination of the partial component of

the t matrix:

4 (2)=V,+ V. (z— Ho) ', (2) (1.47)
or
12y K 9) = VO ) § daaV (b, @) sl 210, K7 2.
(1 48)
The partial scattering amplitude f;(k) = (l/k)e lsin 8;

(6; is the phase of the scattering at infinity) is connected
with the partial component of the t matrix by the rela-
tion

fok) = = fty (ke k:%—i—iu) . (1.49)

In the case of a system of three identical particles,
we introduce the orbital momentum of the relative mo-
tion of the two particles 1 and the orbital momentum of
the relative motion of the third particle and the center
of mass of the two other particles A. It is obvious that
the total angular momentum of the system L is equal to
the vector sum of 1 and a:

=1+ A
The corresponding wave function describing the state of
the system with total angular momentum L can be
chosen in the form

Yo (k, ) '—'—'%} (Imp | LMY Y 1 (B) Y 2 (D). (1.50)
The functions Yy, 1 m form a complete system of ortho-
normal functions.

The wave function of the system of three particles
J(k, p) depends not only on the vectors k and p but also
on the vector of relative momentum of the system in the
initial state p,. Let us assume that the angular momen-
tum of the bound state of the system of two particles
from which the third particle is scattered is equal to
zero (lo = 0). Then by virtue of the scalar character of
the wave function y(k, p) the expansion of this function
in terms of the functions (1.50) takes the form

vk, p)=vy(k, p; Po)=ll§l Yoar (b p; po) Y oarw (4, l;) Yia (1;0)-

51)
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Substituting the expansions (1.51) and (1.45) in (1.43)
and using the orthonormalization of the functions (1.50),
we obtain for the expansion coefficients ¢;, ; the follow-
ing system of integral equations:

baar (B, Pi Po) = (20)°pyg (k) Sybar, “(p;p(’)
k2 \-1 1 ’ k& p
20 (2, — 1) D g | dp j di L2
UA [} lp_ 1)_"
3

Xty Q@ LYK 1a (p, 075 K'Y e (K, p's po),s

(1.52)
where a7 = %2{1 + - 1)*}, @ =k + Yup” ~ %p® and
N
KRvr (p, 95 K) =2 | dopdoy Y, (% +7' b)
k'2_pz __p N
xﬁ{cose— }Y,ALO( _’2_ f;’)
(1.53)

We have thus reduced the integral equation (1.43) for
the function (k, p) to an infinite system of two-dimen-
sional integral equations for the expansion coefficients
lpth(k9 p)-

Substituting in (1.53) the explicit form of the func-
tions Y51, and integrating with respect to the angles,
we can obtain the kernels of the integral equations

Kgi‘)l,x,(p, p’; k') in the form
H

3 -1 , .
Kfow (B P B) = (Gm2 (20 4+ )72 3} (= ) (1, — m | 20)

X (VLm', —m|Mm' —m) Y (8, 0) Yim (8, 0) Y armem (8, 0),
‘p—-7|<k’<p+7, (1.54)

where the angles 8, ¢ and ¢’ are determined by the ex-
pressions

, 1 1 1
Ke—p?—— p K2oe p2— . p2
COSO:—TL, COSﬁ-——_2=4—
Py K f wi-m (1.55)
k’2+p2~—%p2
cos 9’ = T
We note that

K§Q 0o =1. (1.56)

In the case of the bound state of the system of three
particles, the wave function can also be expanded in
terms of the angle functions (1.50). If the system in the
bound state is characterized by a total angular momen-
tum L and a projection M, then this expansion takes the
form

ras (5 ) = X s (s ) Y sae (K, B)- (1.57)
The expansion coefficients ¥y, 1 (k, p) are determined by
the system of integral equations (1.52) if we set the in-
homogeneous terms in the latter equal to zero.

Owing to the presence of the factor 4; in Egs. (1.52),
the components Y, 1, with odd ! are equal to zero, this

being due to the symmetry of the wave function ¥ against
permutations of any pair of particles.

For short-range potentials, the elements of the two-
particle t matrix t;(k, k’; z) decrease rapidly with in-
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creasing [ (at small k or k' the elements t;(k, k'; z) are
proportional to Kk !, at large k the components t; are
small for all I; in addition, the contribution of large k to
the equations is suppressed by the factor (Z, - K/ m)™y.

Therefore the summation over / in the obtained equations
(meaning summation over A for specified L) can be limi-
ted to a finite number of terms, and consequently the
systems of integral equations become finite.

The systems (1.52) become much simpler if the two-
particle t matrix has a separable form. In this case the
systems (1.52) can be reduced to systems of one-dimen-
sional integral equations which admit of a numerical
solution.

1.6. Method of Harmonic Polynomials in the Three-body
Problem

Another approach in the solution of the problem of
the bound state of three-particle system, based on in-
troducing harmonic polynomials, was developed by
Simonov and Badalyan'**"""**), In this case the
Schrodinger differential equation, which defines a sys-
tem wave function that depends on six relative coordin-
ates, reduces to an infinite system of equations for func-
tions of one variable.

To illustrate the method of harmonic polynomials,
let us consider the simplest case of three identical
spinless particles. In the c.m.s., the components of the
vectors rz3/v2 and v¥3p,, describing the relative motion
of the three particles, are best considered as compon-
ents of a certain single vector in six-dimensional space,
the square of the modulus of which is equal to

oot ot ineton ). (199
In the spherical coordinate system of the six-dimen-
sional space, the kinetic energy of the system (1.28)
takes the form
= = L (9055) 1 2]
where Ag is the angular part of the six-dimensional
Laplace operator. (The letter © denotes all the angle
variables of the six-dimensional vector rzs/vZ, V¥3p1.)

The wave function ¥, which is a solution of the
Schrodinger equation, will be represented in the form of
an expansion in a complete system of orthonormal
eigenfunctions ugy(Q2) of the operator Ag, called
harmonic polynomials:

Hy (1.59)

Aqiyn () = — K (K +4) ugn (Q),
S “ (1.60)
e (@) a9 42 = Bic e
This expansion is of the form
W= X fcn (0) g (). (1.61)

The quantum number K characterizes the total angular
momentum in six-dimensional space and can assume
arbitrary positive integer values. The remaining quan-
tum numbers are denoted by the letter n. The aggregate
n contains L—the total orbital angular momentum of the
relative motion of the particles, M—the projection of the
total angular momentum, v—a quantum number charac-
terizing the symmetry of the polynomial against permu-
tation of the coordinates of the particles, and an addi-
tional quantum number, which is necessary in the case
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of the higher values of L and K." If the total orbital
angular momentum of the system is equal to zero,

L = 0, then the quantum numbers K and v determine
completely the set of orthonormal functions. Harmonic
polynomials for a system of three particles were con-
structed int***!J,

Substituting the function ¥ in the form (1.61) in the
Schrodinger equation for three particles with interac-
tion in the form (1.14) and using relations (1.59) and
(1.60), we obtain for the coefficients of the expansion
(1.61) the following system of ordinary differential
equations:

[+

where

5 d  K(K-4+4) , 2mE
?J—p——rl+%]@xn(9)=2UK,,,T;Z(F’)‘PR;(P),

kn (1.62)

P ir 0= 35 | AU Vi Vot Vad iy

el (1.63)
The system (1.62) consists of an infinite number of
coupled differential equations and is exact.

It is easily seen that for paired oscillator potentials
of the type

Vi =% (1.64)
the matrix elements (1.63) have a diagonal form
P, i (0) '—f%ypfékﬁéﬂ;, (1.65)

and the system (1.62) splits into independent differential
equations for each of the functions ¢gn(p). In this case
K is an exact quantum number.

In the general case, the nondiagonal matrix elements
(1.63) differ from zero and K is not an integral of the
motion. However, as shown in'*>""**} in the case of
short-range paired potentials the main contribution to
the binding energy and to the wave function of the triton
is made by the term of the expansion (1.61) with the
minimum value K = 0. The role of the higher values of
K in the system (1.62) is immaterial both because of the
smallness of the nondiagonal matrix elements compared
with the diagonal ones, and because with increasing K
the effective attractive potentials vgp, Kn(p) are can-
celled by the terms of the centrifugal potential energy
K(K + 4)/p°.

The eigenvalue of the energy of the system, calcula-
ted by the method of harmonic polynomials, has a varia-
tional property: it is the upper limit for the exact value
of the energy. This can easily be verified by choosing
as the trial function an approximate wave function in the
form (1.61), satisfying the system (1.62) when account
is taken of a finite number of terms in (1.61) and (1.62).

A generalization of the method of harmonic poly-
nomials to the case of four and more particles is con-
sidered in',2®24:8,101

2. SEPARABLE REPRESENTATION OF TWO-
PARTICLE t MATRIX

2.1. Separable Representation of Two-particle t Matrix
and Reduction of the Integral Equations for a System
of Three Particles to One-dimensional Form

The two-particle t matrix t;(k, k'; z) is called separ-
able if it can be represented in the form of a sum of a
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finite number of terms, each of which is the product of
a function of k by a function of k’. Such a form is as-
sumed by the t matrix in the case of a separable two-
particle potential

h%
VI ey — D B ) B (K. 2.1
e
The explicit form of the two-particle t matrix can easily
be obtained by solving Eq. (1.48). In the case of one
(N =1) term in (2.1) the t matrix is determined by the

expression

k. K5 2) A=)

— gty (k) (1 A

. )12 S dqq®

The potential (2.1) in the general case is nonlocal.
The use of non-local potentials of the form (2.1) in
three-particle problems has made it possible to develop
a calculation procedure for three-particle sys-
tems'°"*”J, We note that the zero-radius potential
used in®®*) can be regarded as separable (2.1) with
! =0, in which the functions g do not depend on k.

In the general case, real physical potentials are
local and do not have the form (2.1). However, short-
range potentials, which are usually employed for
phenomenological description of interactions between
nucleons, can be uniformly approximated by separable
expressions of the type (2.1), leading to a separable
representation for the two-particle t matrix. Indeed,
using expression (2.1), we can obtain the solution of the
Lippman- Schwinger equation in the form

(2.2)

b 3 2) = — D) g () T 1 ) o (), (2.3)

where Tpp | represents the elements of the matrix in-
verse to the matrix

4,0 (4 €01 )

_ P U
(T Dynr, 1= 0.0 ey [5 dyyt —— e

(2.4)

With the aid of the separable representation of the
two-particle t matrix (2.3) the system of two-dimen-
sional integral equations for three particles could be
reduced to a system of one-dimensional equations. For
example, in the case of three identical spinless parti-
cles, substitution of the expression for the t matrix
(2.3) in (1.52) makes it possible to represent the func-
tion Py, 1, in the form

Vi (k, p; po) -= (271 {'Pw (k) o728 (p — po) Bugbos. -

l:mi) ~1 2 &at (k) T 1 (Zp) A it (P Po)}
nn’ (2'5)

and to obtain for the functions Ay, 1, the following sys-
tem of one-dimensional integral equations:

- (2~

Aninp (B o) = Waiar.. 101.1.(P» Po)

+ 2 5 dp' P Wane, wiart, (0s D) wene 0 (Zyr) Aumiarr (D' Do)y
wnredr B (2.6)
where we have introduced the notation
Wine, wie (P, po)=

t
bt . )
:-A—z ”S ' d/r'-——K). ar (P, !’ork)gnl(l/k"‘ 'l'ﬁi

b~ o] (2.7)
1
LRS-
IAL 3 v K L v En (@ (K)
Wi, wian(p. p') = —— 5 dkﬁ" ’A'A(/”/';k)m‘
3]

3 '
Pi—7 p“) P10 (£').
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There are different possible methods of approximate
factorization of the potential, and consequently of the
two-particle t matrix. In the Bubnov-Galerkin method
an approximate factorization is obtained by choosing the
solution of the Lippman- Schwinger equation in the form
of a linear combination of a certain system of linearly
independent functions'*®’. In the Bateman method!®?:*¢’11
the potential Vj(k, k') is directly approximated by the

separable potential k k", wh1ch is chosen in such

a way that the functmns Vl and V[ coincide on 2N
straight lines (k = g5, k' = Qj, 1, ] =1, 2, ..., N). The
Bateman separable approximation for the potential
Vy(k, k') can be represented””’ in the form (2.1), where

Gpni(k, gn)

NS ek

Gk, K'Y=V (k, &),

G (k, k') S:Gn—il (k, k’) _ Gy (ks gn_1) Gn-11 (gn-1, &) .

Grmtt @n—t+ 9nt) (2.8)
We note that the separable approximation of Noyes-
Kowalski'®"® for the two-particle t matrix
b (k, &' 2) & t Frlk, )te(g, 5 2) Fo (K q)s } (2.9)
Pk, =8 =V 3

is in essence the Bateman approximation of the t matrix
by one term. For the values of the variable momenta
on the energy shellk =qor k' =q (z=E +i0, E > 0)
the approximate expression (2.9) for the t matrix coin-
cides with the exact one. An approximation of the type
(2.9) for negatwe energies was considered by
Kowalski'®

In the case when the solution of the problem of the
bound state of two particles can be found in explicit
form, it is convenient to use for the approximation of
the two-particle t matrix by a separable expression a
method based on the application of the Hilbert- Schmidt
theorem for the solution of symmetrical integral equa-
tions, which we shall henceforth call the Hilbert-Schmidt
method[el,50,65,109,76,81,49,84,19] .

A comparison of different separable representations
for the two-particle t matrix at positive and negative
values of the energy z is carried out int**’%,

2.2, The Hilbert-8chmidt Expansion for a Two-particle
t Matrix

The Lippman-Schwinger integral equation (1.48),
which defines the two-particle t matrix, can be reduced
with the aid of the similarity transformation to the
symmetrical form

t1(2) = Vi (2) + V1 (2) (2, (2.10)

where

1 1 1
—(Hy—z) EVi(Ho—2) % 5i(a) = —(Ho—2) 2:(2) (Ho—2) 2.
(2.11)
The idea of the Hilbert- Schmidt method consists in using
the eigenfunctions of the kernel of the integral equation
(2.10), i.e., the solutions of the equation

Vl (2) Enl (2) ="Mt (3) Enl (z)e (2' 1 2)

The eigenvalues 1,;(z) (n—quantum numbers character-
izing the eigenvalues in decreasing order of absolute
magnitude) and the eigenfunctions g, ;(z) depend on z as

Vi(2)=
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a parameter. The eigenfunctions _g'nl(z) are chosen in
Hilbert space, i.e., it is assumed that they have a finite
norm

(8t (), Ewa(2) = (2.13)

In concrete calculations it is more convenient to use
the eigenfunctions g,;(z) of the kernel of the nonsymme-
trized integral equation (1.47), i.e., the eigenfunctions
of the operator V;Go(2):

V1Gy (2) 8nt (2) = e (2) gt (2)- (2.14)

Since the operators V;Go(z) and V(z) are connected by
the similarity transformation, their eigenvalues corre-
spond, and the eigenfunctions gp;(z) and g,;(z) are con-
nected by the relation
1
&ni (z)—(Ho-—z) gnl(z) (2'15)

In the momentum representation, Eq. (2.14) can be

written in the form

SV: (k, k') (z—%) gni (K, z) zn2 -n,.z(z)gn;(k 7). (2.16)
0

The orthonormalization condition of the eigenfunctions
gpy(K, z) then becomes

v k2 ~1 h2 gk
§ gtk 2 gui (k, 2) (5 —2) 7 S = b
0

(2.17)

Although the system of eigenfunctions g;;(2) of the
kernel of the Lippman-Schwinger integral equation
(1.47) is not complete, nevertheless the solution t;(z)
and the free term of the integral equation V; can always
be represented in the form of expansions in terms of
these functions.

We write down the solution of the integral equation
(1.48) in the momentum representation in the form of
the series

14} (IL, k'; Z) = ; ani (klf Z) &ni (kv Z). (2.18)
The coefficients ajy; can easily be obtained by substitut-
ing (2.18) in (1.48) and using Eq. (2.16) and the ortho-
normalization condition (2.17). As a result we obtain
the following separable representation for the two-parti-
cle t matrix:

z) = M (z)

E';
4k, 2 T @

gk, 2)gn (K, 2% (2.19)
Similarly, with the aid of formulas (2.16) and (2.17) it is
easy to obtain a separable representation for the inter-
action potential

Vi(k, )= — ; s () gmi (5 2) g2 (K5 7). (2.20)
The expansion for the t-matrix (2.19) can be obtained
by directly solving the Lippman- Schwinger equation
(1.48), using an expansion for the potential (2.20) in
which the value of the parameter z is chosen equal to
the value of z in Eq. (1.48).

In the expansions (2.19) and (2.20), the rate of de-
crease of the terms with increasing n is determined by
the rate of decrease of the eigenvalues 71, ;(z) with in-
creasing n [the eigenfunctions gy ;(k, z) are bounded
functions of n]. If we separate in the expansion (2.19)
the interaction potential in the form (2.20), then we ob-
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tain for the two-particle t matrix the following formula:

e ()

ti(k, k' 2y =V (k, k') — mgn,(k, z) ghilk’, z*).

(2.21)
The series in this expansion converges more rapidly
than (2.19), since the eigenvalues 7,; which decrease
with n enter quadratically in (2.21). Calculations per-
formed in"*%®:**! have shown that allowance for the Born
term V; and the first term from the sum (2.21) (the so-
called quasi-Born approximation) is a very good approxi-
approximation both for the consideration of bound states
and for the consideration of the scattering of two parti-
cles (even at sufficiently low energies). Expression
(2.21), however, is not separable. Therefore in the con-
sideration of three-particle systems we shall use the
expansion for the t matrix in the form (2.19), confining
ourselves to allowance for the first few terms.

The expansion (2.19) can easily be generalized to the
case when the potential contains repulsion at small dis-
tances®’%!, In this case there exist for the operator
V;Go(z) eigenfunctions gg- ; Which correspond at z < 0

to positive eigenvalues nn ! > 0, and eigenfunctions

gn 1 which correspond at z < 0 to negative eigenvalues

nncl <o (nay c™ 1) 2; 3’ rey Inll' > lrlzl[ > '7731( > ')

The functions g? , and g€ , form an orthonormal sys-
n.! n.l

tem. In the case of a potential with repulsion, the separ-
able expansion for the t matrix takes the form"'®!
nnal (z)

t,(k, ks T_E TG

_ i ]ncé(") &

L
ne=1 1= ) 70

The functions gﬁcl can be regarded as eigenfunctions of

2k, 2) g, (', 2%
(2.22)
(k, 2) g, (K, 7).

the operator — V;Go(z) corresponding to positive eigen-
values — an1 1(2)-
c

The expansion (2.20) for the potential V;(k, k') takes
place at an arbitrary value of z; the total sum in (2.20),
naturally, does not depend on z, What does depend on
the parameter z, however, is the rate of convergence of
the sum in (2.20), With increasing z, the convergence of
the expansion (2.20) [just as that of the expansion for the
t matrix (2.19)] becomes worse. Indeed, as |z| — « the
eigenvalues 7,,;(z) — 0 and each term in the expansions
(2.19) and (2.20) tends to zero. However, the sums of
the serles (2.19) and (2.20) remain finite (t;(k, k’; z)

— Vy(k, k).

It is possible to obtain for the two-particle t matrix
a separable expansion with better convergence than that
of (2.19) by starting from the expansion for the potential
(2.20) with a fixed value of the parameter z = z;, without
equating it to the variable z in the Lippman- Schwinger
equation (1.48). The parameter z; is best chosen to be
negative, 2, = 0, for in this case the eigenvalues n,;(2o)
and the eigenfunctions g ;(k, z,) are real. Thus, we
choose

Vi(k, b)== — L Tint (20) &nt (K5 2o) Bnt (', o). (2.23)
When z, = 0, each term in (2.23) is a real and symme-
trical operator. The sum (2.23) with a finite number of
terms (N terms) is a separable potential of rank N. The
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corresponding two-particle t matrix takes the form
(2.3) with form factors

gnt <k) = 1/ Nri (zo) gni (ky ZD)' (2.24)

The hermiticity of the separable potential (2.23) with
account taken of any number of terms ensures unitarity
for the corresponding t matrix in all orders of the ap-
proximation. | The Hilbert- Schmidt expansion (2.19) is
unitary only if an infinite number of terms is taken into
account in the sum.]

In the case when the system of two particles can be
in the bound state with a binding energy ¢, it is conven-
ient to set the parameter z, equal to the energy of the
bound state, z, = —¢. With such a choice of z,, the bind-
ing energy and the wave function coincide with the exact
ones already in the first approximation, and do not
change when the succeeding terms are taken into ac-
count in the expansion (2.23).

The expansion (2.23) justifies the use of separable
potentials, Thus, the first term in the expansion (2.23)
with a form factor in the form g o(k, —¢) is equivalent
to the separable Yamaguchi potential’**®? the param-
eters of which are fixed by the choice of the parameters
for the initial local potential V(r). Introduction of the
succeeding terms in the expansion (2.23) makes it possi-
ble to obtain further improvement of the approximation
of the local potential by a sum of separable ones.

Separable expansions for the potential (2.23) and for
the t matrix (2.3) with gy;(k) in the form (2.24) were
first considered by Harms'®' and designated the unitary
pole expansion, The accuracy of approximation of the
two-particle t matrix by one term of this expansion was
investigated for different potentials in the papers of
Levinger et al,®%™!,

2.3. Properties of the Eigenvalues and Eigenfunctions

Let us consider the main properties of the eigen-
values and the eigenfunctions used in the Hilbert-Schmidt
method. We note first that the kernel of the symme-
trized integral equation (2.11) is hermitian only for real
negative values of z. From the hermiticity of the kernel
—Vl(z) it follows in this case that the eigenvalues 7,,;(z)
with z < 0 are always real. In the remaining cases the
operator Vl(z) is not hermitian (although it remains
symmetrical as before) and its eigenvalues ny;(z) are
complex.

In place of the eigenfunctions g(z) it is convenient to
use the functions y(z), which are connected with the
functions g(z) by the relation

$(8)=Go(z) g (z) (2.25)
and satisfy the equation
Go(8) Vi (2) =0 (2) P (2). (2.26)

[ The operators Go(z)V and VGo(2z) are connected with
each other by the similarity transformation.] The solu-
tions of Eq. (2.26) should be square-integrable. From
the condition for the existence of such solutions at arbi-
trary values of z (with the exception of values lying on
the real positive axis) one determines the eigenvalues
7z).

Equation (2.26) can be rewritten in the form of the
Schriédinger equation

A. G. SITENKO and V. F. KHARCHENKO

{Hot ot —2} w0 =0,

o (2.27)

which contains the generalized potential V/n(z), which
depends on z. At real negative values of z this general-
ized potential is hermitian, and the solution of Eq.
(2.27), y¥(z), can be regarded as the wave function of the
bound state of the system with binding energy—z. Conse-
quently, when z < 0 the eigenvalue 7)(z) determines the
number by which the potential V must be divided in
order for the system to have a bound state with a speci-
fied binding energy—z. At #(z) = 1, Eq. (2.27) goes over
into the usual Schrddinger equation, which admits of
solutions that decrease at infinity only for definite nega-
tive values of the energy z = —¢. Obviously, these values
correspond to bound states of the system and are deter-
mined from the condition

n(—e)=1. (2.28)

The wave function of the bound state of the system in
the momentum representation can be written in the form

Pns (k)-:N"l gnt(k, —epn)) (2.29)

(k2/2p) +enp
where Ny ; is a normalization constant and g ;(k, —€,;)
is an eigenfunction of Eq. (2.14). Thus, out of the entire
set of wave functions y,;(z) with z < 0 the only physical
wave functions describing the bound states of the system
are the functions with such values of n and 2z =—¢,; at
which the eigenvalues 7,;(z) become equal to unity. In
the case of potentials with definite signs, the eigenvalues
7(z) for real negative values of z are of definite sign,
namely, for attraction potentials (V < 0) the eigenvalues
are positive, n(z) > 0, and are increasing functions of
z; for repulsion potentials (V > 0), the eigenvalues are
negative, n(z) < 0, and are decreasing functions of
z ((1/Mp(2)) dnyy(z)/dz > 0 when z < 0). According to
(2.28), it follows therefore that a bound state with nega-
tive energy z = —¢ is possible only if

LY (0) >1.

[

(2.30)

In the case of complex values of z, solutions of (2.26)
are possible only for complex values of #(z). If the
eigenvalue 77,,(2) at a complex energy z, with small
positive imaginary part is such that

(2.31)

then the corresponding wave function describes a quasi-
discrete resonant or else a virtual state of the system,

In the coordinate representation, the determination
of the eigenfunctions yp,;(r, z) = upy(r, z)/r and of the
eigenvalues nnl(z) reduces to a solution of the differen-
tial equation

Re nn; (20) = 1 and- Im n,; (2) € 1,

{_%df_‘ 1(21;21)_'_ n:z(g) __z} Unt (7 2) =0, (2.32)
with boundary conditions
Uni (r, g) ~ 1+, r_50, (2.33) -
uni (r; 2) ~ €4, r—> oo, (2.34)

where q is defined by the equation
g¢=V 72z, Img>0.

Let us examine the Schrodinger equation with poten-
tial gV(r), in which for convenience we have separated
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the coupling constant. The solution of such an equation
¢y(r, q, g) at an energy z = q ?/2y, satisfying the boun-
dary condition (2.33) can be represented in the form

Qa8 ~hi(~afilneO—fhigdli (2.395)

where f;(+q, g) is the Jost function and fj(r, +q, g) are
the solutions of the Schrodinger equation with boundary
conditions at infinity

» — s g)y

lim exiaf; (r, + ¢, g) =1, (2.36)
We recall that the Jost function fy(q, g) is connected
with the corresponding solution fj(r, q, g) by the relation

fi(g, &) =lim 2L+ )1 0, 8). (2.37)

Obviously, the solution of Eq. (2.32) can be written in
the form (2.25), where g should be taken to mean the
generalized coupling constant g/n(z). Since the proper
solution of (2.32), unlike (2.35), should contain at infinity
only a diverging wave, the dependence of 1 on z can be
obtained from the condition that the coefficient of the
converging wave vanish

fl( -4, %) ==0.

The roots of these equations determine the eigenvalues
Np1(2).

As is well known ", the Jost function f;(—q, g) coin-
cides with the Fredholm determinant Dj(z, g) of the
integral equation (2.10). Noting that the Fredholm de-
terminant Dy(z, g) is represented in terms of the kernel
of the equation \—fl(z) in the form of an infinite series

(2.38)

{751

Di(z, g) =1+ Z L= Sdkl...

Vitky, ki 2) Vi (kg by 2) oo Vo (ks by 2)
[ | Ve lhar i ) Vilhs i )V i 2
Vl (kms ky; 2) ‘71 (krm kaiz) ... ‘71 (kmv km; 2)
(2.39)
and using the expansion (2.20), we get
Dz, @)=t —nu (2). (2.40)

Thus, the Jost function f;(~q, g) is expressed directly in
terms of the eigenvalues 7, ,(z):

(=9 9 =lld—nu @) (2.41)
We note that the relation (2.20) is linear in g and

7,;(2) and it is easy to verify that
fl("'Iv fl) ”II(

where 7 is an arbitrary parameter. Equating the left
side of (2.42) to zero in accordance with (2.38), we ac-
tually obtain an equation for finding the eigenvalues
Tni(2)-

Relation (2.41) enables us to find the connection be-
tween the phase for the scattering of two particles 6;(q),
in terms of which the component of the two-particle
t matrix is expressed on the energy shell, and the eigen-
values 7),,(E +10) at E = q°/2u > 0. Indeed, the scatter-
ing phase shift §;(q) is an argument of the Jost function
f;(q, g). Therefore, recognizing that §;(q) is an odd
function of q, and using (2.41), we find

nnl()) , (2.42)

vl
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8 (0) = — S arg (1 —nu (£ +10)). (2.43)

The Jost function f;(—q, g) for complex values of g is
an entire function of g for any value of q or z. Therefore
the eigenvalues 7,,;(2) at a fixed value of the energy z,
determined by the zeroes of the Jost function (2.38),
form a discrete set; only a finite number of eigenvalues
npy(z) will lie outside a circle of finite radius. Owing
to the discreteness of the eigenvalues 7;(2), they can
be renumbered with the aid of the integer number n (in
order of decreasing absolute magnitude of 7,;), as has
indeed been assumed implicitly thus far.

The analytic properties of the Jost function f;(-q, g)
in the plane of the complex energy z are determined by
the behavior of the potential V(r). We shall assume that
the singularity of the potential at the point r = 0 is
weaker than r %, and that at infinity the potential decrea-
ses sufficiently rapidly (for example, more rapidly than
r’®). In this case the Jost function fy{—aq, g) is analytic
and has no singularities on the physical sheet of the
Riemann surface of the complex z, i.e., on the entire
complex z plane, with the exception of a cut along the
real positive axis. The analytic properties of the eigen-
values 7,;(z) follow from the analytic properties of the
Jost function f;(—q, g). Since the Jost function f;(-q, g)
is analytic in both variables and in the general case
8f)/ag =0, Eq. (2.38) has a unique solution 7,;(z), which
is an analytic function of z in the region of analyticity
of the function fj(—q, g). Thus, the eigenvalues 7;(z) of
the Hilbert- Schmidt operator are, like the Jost function
f;(~q, g), analytic functions without singularities on the
entire complex z plane, with the exception of a cut along
the real positive axis.

From the reality of n,;(z) at z < 0 it follows that the
Schwartz reflection principle holds for complex z

Mot (2) = Mz (2%). (2.44)

We note that at real negative values of z it is possible to
make the functions g;,;(k, z) real by a suitable choice of
the phase factor. In this case the reflection principle
also holds for the eigenfunctions

gr ke, z) =gy (k, 2*). (2.45)

As noted above, the eigenvalues (%) are real only
on the real negative axis. Therefore, taking into account
the sign-definite character of the imaginary part of
7p7(2) in the upper and lower half-planes of z and taking
into account the inequality Nni(2) dnnl(z)/dz > 0, which
holds for real negative values of z, we find that in the
upper half of the z plane

Imnn (2)>0 for V<<OandImny(s)<<0 for ¥V>0. (2.46)

In the lower half of the z plane the imaginary part of
7y;(2) has the opposite sign.

Using the independence of the trace of an operator of
the choice of the representation, we find

o0

Do @ =S Gu@ VY, p=1,2,5, ... (2.47)

For p = 1 we have

D et (5) = — 2ing
n={

The integral in the right-hand side of (2.48) converges

©

[ naveou ered, =VEe. (2.48)
0
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if the potential is characterized by a finite radius of
action and the singularity of the potential at the point
r = 0 is weaker than r>. To ensure the convergence of
the series in the left side of (2.48) in this case, the
eigenvalues 7, ,(z) should decrease with increasing n
like i~ 7, where y > 1. For z < 0, the dependence of
Tpo(2) on n for large values of n can easily be deter-
mined in the quasiclassical approximation, using the
Bohr- Sommerfeld quantization rule

0
5 b VAL I S
V 2p g 1/ T ) - zdr == nn,

where p is determined from the condition V(p) = zn, (2).
For sufficiently large n

(2.49)

[2] Mo (2) < Vg (250)

{Vo is the depth of the potential), and therefore the inte-
gration in (2.49) can be continued to infinity; it is possi-
ble to neglect the second term under the square-root
sign. As a result we obtain

(2.51)

2ul 72
Tho (2) & ’;2\,‘;,

o0
where R = va V{r)/Vodr is the effective radius of ac-

0
tion of the potential. Using (2.51), we can rewrite (2.50)
in the form

V—Zyzﬁ & nn, (2-52)
2.4. Eigenvalues and Eigenfunctions for a Hulthen
Potential and for a Square Well

. By way of illustration, we present explicit expres-
sions for the eigenvalues and eigenfunctions in the case
of a Hulthen potential and a square potential well.

a) Hulthen potential

V()= —VoleR— 1),

¢ (2.53)

Vo e -

At small distances (r < R) the potential (2.53) is char-
acterized by a singularity of the type r™!, and at large
distances (r > R) it decreases exponentially.

We confine ourselves to spherically- symmetrical
states (I = 0, the index [ is omitted). For the Hulthen
potential, the Jost function takes the form

(=g g)=q(1—m). (2.54)
A=

The zeroes of the Jost function (2.54) determine the en-
ergies of the bound states:

En=—'2—“", u,.=-2%—(%-n), n=1, 2, (2.55)

The corresponding functions of the bound states are

n
N v (V4 2%, R)
W =mTg 21 v RRAT (v F B *
=

vt T (%+v) r (%—n+1) (2.56)

T T (&) v (E=ntvt1) ’

n

avw=("1)

Knowing the Jost function, we can easily find in ac-
cord with (2.38) the eigenvalues of the kernel of the
Lippman- Schwinger equation

_— g z
m(z)_m, ImVz>0. (2.57)
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Fig. 1. Dependence of Re 7,4 (solid curves and Im n_, (dashed
curves) ofi the parameter w = 2uzR? for the Hulthen potential (g =
1.403). The numbers next to the figures indicate the values of n.

The corresponding eigenfunctions, which are solutions
of (2.16), are of the form

1

£
My (2) K2R:—2pz R 4 g '’

n
gnlk, 3)=Cu(3) 2 Any (2)
V=t o

gyt " n—o+1 N5 (z)
Anv(z)=(—1) ug n-+0—1 Mnyg-q (2) '

n~1
2n-11, -
a@=2r (@[ %@] "
v=1

(2.58)

2 _ ngR
Gl = pz (2)

The functions (2.58) are normalized in accordance with
the condition (2.17). ‘

When the parameter z changes from — « to 0, the
eigenvalues 7,(z) are real and change from 0 to g/n’
The bound states correspond to values of z for which
7p(2) = 1. With further change of z from 0 to « +i0
(along the upper edge of the cut), the eigenvalues 7,(z)
become complex and describe on the complex plane
semicircles of radius g/2n° with centers lying on the
real axis at the points g/2n®. The real and imaginary
parts of the eigenvalues n,(2) are shown in Fig. 1 for
the energy parameter z ranging from — « to + « + i0, for
the case g = 1.4 (corresponding to interaction of the
nucleons in the triplet spin state).

b) Square potential well

—Vo r<aR,
V)=
o { 0, r>R Vy=yiu
In the case of a square well, the Jost function f(-q, g)
takes the form

ey -7 qR Y o7
f(—q, g)=e'e® {cos Ve+ PR = s1an+q2R2} - (2.60)

The energies of the bound states are determined by the
roots of the transcendental equation .

(2.59)

Veg—x'Rictg V' g—u2R% = —xR. (2.61)

The corresponding wave functions of the bound states
are equal to
__ Nn  coskR+(xn/k)sin kR
n W =G~ iR (2.62)
The eigenvalues 7,(2) in the case of a square potential
well can be found by solving the transcendental equation

]/%--I- ¢*R3ctg V %—{- g*R* =igR. (2.63)
At small z, the eigenvalues 7,(z) can be obtained in ex-
plicit form:

o ke 8i 4 20
M (2) = Bn-1pE {1 +(2n—1)2 “2qR+(2n-1)2n2 (1 _(Zn—i)ﬁnE) (qR)z} s

(2.64)

g=V2pz, |q|R < 1.
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Fig. 2. Dependence of Re 1,4 (solid curves) and Im n,o (dashed
curves on the parameter w = 2uzR? for a square well ( g = 3.608). The
numbers next to the curves indicate the values of n.

The eigenfunctions g (k, z) for a square well are deter-
mined by the formula

- g  CcoskR—i(g/k)sin kR
&nlh 2)= o 3) 3557 G a0 (=) 2.65
C3 () = 43R 1H R (1 (Ve) (2.69)
n W (/M @) —igR -~

The real and imaginary parts of the eigenvalues 7,(2)
for a square well with z varying along the real axis from
— o to + % + i0 are shown in Fig. 2.

2.5. Convergence of Separable Hilbert- Schmidt
Expansion

Let us investigate the convergence of the Hilbert-
Schmidt expansion for the two-particle t matrix using
negative values of z as an example. If z < 0, then the
kernel \—/l(k, k ; z) of the integral equation (2.10) is sym-
metrical and real. For short-range potentials having a
singularity weaker than r™® as r — 0, the kernel and the
free term of the integral equation (2.10) are square-
integrable:

g ?dkdk'le(k, K, 7)< oo

W

vy

(2.66)

In this case it can be shown that on going over to a finite
integration interval in the Lippman-Schwinger equation
by a suitable change of variables, the kernel of the re-
sultant symmetrized equation is continuous and bounded
in the chosen interval. In the case of positive eigen-
values 7,; > 0 (attractive potentials) the series (2.20)
for such a kernel [and consequently also the series
(2.19) for the t matrix] converges absolutely and uni-
formly with respect to both variables k and k’ (the
Mercer theorem*®’),

For attractive potentials V(r) < 0, each kernel of the
expansion (2.20) is a separable attraction potential.
Therefore further refinement of the expansion, i.e., the
use of a larger number of terms in the Hilbert- Schmidt
expansion, corresponds to introduction of a stronger
attraction.

In the expansion (2.19) of the t matrix, the rate of
decrease of the terms with increasing n is determined
by the rate of decrease of the eigenvalues 7,;(z) with n
(the eigenfunctions are bounded functions of n). There-
fore the convergence of the Hilbert-Schmidt expansion
increases with weakening of the singularity of the poten-
tial and with decrease of its range. At z = 0, the eigen-
values 1, (0) for n =1, 2, 3, and 4 are related like

vl
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Fig. 3. Dependence of the partial two-particle t matrix {/ = 0) on
the parameter @ =/mlz| (z < 0) for three values of the momentum k
(k' = 1.0 F ') in the case of a Hulthen potential. The numbers next to
the curves indicate the order of the approximation (the number of
terms in the separable expansion (2.19) taken into account in the cal-
culation). The parameters (a) of Table II for the triplet-singlet and
spin-isospin state were used.
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Fig. 4. Dependence of the partial two-particle t-matrix (/ = 0) on
the parameter q = \/mlz| (z < 0) in the case of a square-well potential.
We used the values of the parameters (a) for the triplet-singlet state
(curves ts). See the caption of Fig. 2.

1:1/4:1/9:1/16 in the case of a Hulthen potential and
like 1:1/9:1/25:1/49 in the case of a square well. [At
large n, the eigenvalues 7y, (0) for all the short- range
potentials decrease like n'Z.]

In the case of a square well, the dependence of the
eigenvalues n,,;(0) with Z > 0 on n and ! can readily be
obtained in explicit form by using the conditions for the
appearance of levels with zero energy

. z _

iV Gl =0
and the asymptotic expansion of the spherical Bessel
function. As a result we have

(2.67)

In a system of two nucleons, owing to their identity,
only even triplet- singlet and singlet-triplet spin-isospin
states are possible. For such states the largest contri-
bution to the separable expansion of the t matrix is
made by the terms withn=1,1=0; n=2,1=0; n=1,

= 2, etc.; the corresponding eigenvalues in decreasing
order are 1,0(0) ~ 1; 720(0), Mm2(0) ~ 7s; Mso(0), 122(0),
1m4(0) ~ Y25 etc. In spite of the fact that the eigenvalues
feo and 7,2 are of the same order of magnitude, the con-
tribution of the term withn =1, [ = 2 to the expansion
of the two-particle t matrix t,(k, k’; z) at small k or Kk’
is much smaller than the contribution of the term with
n=2,1=0. [Owing to the finite radius of action of the
forces, the functions g;(k, z), and consequently also the
partial components t;(k, k’; z) at small k or k' decrease
rapidly with increasing I, gp(k, z) ~k!.]

4
Mt (0) = m (I—1) ( —m) < 2nn,
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The convergence of the expansions of the two-particle
t matrix (2.19) for different values of the momentum k
and negative values of z (qQ = vm[z]) in the case ! = 0 is
shown for the Hulthen potential in Fig. 3 and for the
square well in Fig. 4. As follows from Fig. 4, in the
case of a square well the values of the two-particle
t matrix calculated with the aid of (2.19) with allowance
for two terms, turn out to be very close to the exact
values.

3. BOUND STATES AND SCATTERING IN A SYSTEM
OF THREE IDENTICAL SPINLESS PARTICLES

3.1. Separable Expansjon of Two-particle t Matrix and
One-dimensional Integral Equations for a System of
Three Identical Spinless Particles

We now use the introduced separable expansion of a
two-particle t matrix to solve the three-particle prob-
lem. We stop first to discuss the simplest case of three
identical spinless particles. We start with the system
of two-dimensional integral equations (1.52). With the
aid of the Hilbert- Schmidt expansion (2.19) for the two-
particle t-matrix we can reduce the system (1.52) to a
system of one-dimensional integral equations. Indeed,
substituting (2.19) in (1.52) and using expression (2.29)
for the wave function of two particles in the bound state,
we can represent the function y;, 1, in the form

Yur (b, p; po) =
=(2n)3 21 Ny

k, Z
é’nz( ») {6 Buudas (P Pcu),-,17 ni{Zp) Gniar{p Po)}

(3.1)
where the functions ay;, 1(p, po) satisfy the following
system of integral equations:

m P

Unirt, 101 (Ps poi Z) +
4 Z .g U
A 0
Unlkl,. wan (P 03 2) =
AZA, Sl‘

aniL (Ps Po) =

wtaL, n'ta' 1, (Ps B3 Z) Tt (Z,) @yeiraer, (075 po) p'*dp’,
(3.2)

gnz(O, Zp) By (@' 2, )
— (p2+p’2+pp w—2

Da (s P'3 Y)

Qﬁ'l/%p“rp’“r pr'y, Q'='l/p2+z-p'2-+pp'y~(3 3)

(In the determination of the quantities UniaL, nl'a’L We
used the property A7 = A7) The factor A; vanishes for

odd values of [, and therefore all the components a1,
with odd { vanish. The function ng)l A,(p, p’; y), which

enters in (3.3), is determined by expression (1.54), in
which the angles §, ¢ and 4’ are expressed in terms of
the variable y by means of the relations

1.,
I-’+?Py

—;—p—w’y
]/%P2+p’2+1)p’y ]/p2 +%p’2+pp’y
(3.4)

The amplitude of elastic scattering of a particle by a
system of two particles that are in the bound state is
equal to

cosf=y, cos¥= cos &’ =

£ v = [ L2 {00 Wik, b3 o) iy | (3.5)

p=pg "

Using formulas (1.42), (1.51), and (3.1) we can show that
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the partial amplitude fy (po, po) is expressed directly in
terms of the quantity a1, a P = po:

2“’" [ dnyo (z) (3.6)

f.(po» Po)= a1z (Pos Po)-

z=—2y0

Thus, the wave function of the system of three parti-
cles ;, 1, is represented in terms of the functions
ann (P, Po) Which are in essence the amplitudes for the
scattering of the particle off the energy shell by a sys-
tem of two other particles in the bound state with quan-
tum numbers n, = 1 and /, = 0 (the final state is des-
cribed by the numbers nl). The functions Up/a1, n'2’A’L
play the role of the matrix elements of the effective
interaction potential of the particle with the system of
two particles in the bound state, and the functions 7,(Z
are the propagation functions of the free particle and ofp
the pair of interacting particles in the bound state with
quantum numbers nl. The effective potential depends on
the energy and is nonlocal.

In the case of zero energy of the incident particle
(po = 0) the free term of (3.2) equals, in accord with
(3.3) and (1.54)

(3.7)

and consequently the only nonvanishing amplitudes are
an 1.(p, 0) with zero total orbital angular momentum
L=0and withl=2A

Ui, wore (0 05 — £40) = 020810110, 1000 (2 O; — &),

aniaL (P, 0) == 6Loalkanllo (P, 0)' (3' 8)

The integral equations determining the functmns
anllo(p: 0) = ap(p, 0) are

(P, 0)=Uny, o (p, 0; —e39) +
U o 3 p
-+ Z S nt, w1 (Py D' €10) Tt { — 80— A ) anir(p'y 0) p'2dp’,
w0
¢ (3.9)
where
Uﬂl ny (pv P'§ Z) = Unllo, 0 (py pl Z)

L (204 ) @D 1) (— 1) S Py (cos ) ;
2 5 (P ptpp y)—
>< P, (cos 0') dy.
(3.10)
The scattering length, i.e., the amplitude for elastic
scattering at zero energy with minus sign, is deter-
mined by the expression

2z

— —Fm[e)"  a,00,0).

We write down also the integral equations for the
bound state of a system of three particles with total
orbital angular momentum 1. and projection M. Using
the separable expansion (2.19) of the two-particle
t matrix, we can represent the functions yy, , satisfying
the homogeneous system of equations corresponding to
(1.52) in the form

Yur(ky p)= 3 -E"I:T(k’i
z

n T4y

Tnl (Zp) Qnirr (p) (3.11)

For the partial amplitudes ay;, 1,(p) we obtain a homo-
geneous system of one-dimensional integral equations

aniar(p) = N SUnzxL wiat (B P's ZY v (Zp) @nrner (0°) p'2 dp’.

L e
(3.12)
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Fig. 5. Dependence of the quantitiesv/ mEgR andv/mE ;R (E,
and E, are the binding energies of the system of three identical spin-
less particles in the ground and first-excited states with L = 0) on the
effective depth of the two-particle interaction g in the case of a Hul-
then potential. The numbers next to the curves indicate the order of
the approximation. The dashed curve pertains to the system of two
particles (the dependence of ./meR on g, € is the binding energy of
two particles in the ground state with / = 0). The values of g are
marked for the triplet-singlet (ts) and the singlet-triplet (st) state of
two nuclei.
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Fig. 6. Dependence of the quantities /mEq R and /mE; R on
the effective depth of the two-particle interaction g in the case of a
square-well potential. See the caption to Fig. 5.

If the total orbital angular momentum of the system
is equal to zero, L. = 0, then

Uniag, wrao (00 D5 Z) =0u802-Uns, nr (p, P’ Z), }

3.13
anno (P) =81an (p), (3.13)

and Egs. (3.12) are reduced to the form
ni ()= D) SUM, wr (0, P Z2)twr (Zp) awr (p) p2dp’ . (3.14)
a0
The systems of one-dimensional integral equations (3.9)
and (3.14) admit of a numerical solution.

3.2. Binding Energy and Scattering Length

We present the results of the numerical solution of
_the obtained systems of integral equations (3.9) and
(3.14) in the case when the interaction between particles
is described by a Hulthen potential*'®®"®! or by a square-
well potential®®”*"!, We calculated the binding energies
for a system of three identical particles in the ground
and first- excited states with total angular momentum
equal to zero (L = 0), Eq and E, and the scattering
length A of one particle by a system of two particles in
the bound state. To study the convergence of the solu-
tion when a separable expansion is used for the two-
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Fig. 7. Dependence of the scat-
tering length A of one particle by
a system of two particles in the
bound state on g in the case of three
identical spinless particles for a Hul-
then potential. The numbers next
to the curves indicate the order of
the approximation.

particle t matrix, we took into account different num-
bers of terms in the t matrix expansion.

Figures 5 and 6 show plots of the quantities ymE.R
and ymE;R on the effective depth of the two-particle
interaction g for a Hulthen potential and for a square
well. The dependence of the scattering length A on g for
the Hulthen potential is shown in Fig. 7. Inthe calcula-
tion of the functions shown in Figs. 5—7, we took into
account the interaction between the pairs of particles
only in the S states (I = 0). Different curves were ob-
tained with allowance for different numbers of terms in
the separable expansion (2.19) [the numbers next to the
curves indicate the order of the approximation, i.e., the
number of terms of expansion (2.19) taken into account
in the calculation].

In the case of a Hulthen potential, curves 3 and 4 for
the binding energy of the ground state of the system of
three particles practically coincide; consequently, we
can confine ourselves in the calculation to only three
terms in the separable expansion (2.19). At large values
of the effective depth g, curve 4 goes over asymptotic-
ally into a straight line, i.e., the calculated dependence
of VE, on g agrees with the linear dependence

VmE,R-=Cg— 3 C, (3.15)

obtained for the Hulthen potential in the strong- coupling
approximation in'?®! | at a value C = 1.03. In the case of
a square well the convergence of the solution using
separable expansion (2.19) is even better than in the
case of the Hulthen potential. As follows from Fig. 6,
the values of the binding energy of the three particles
E, calculated with allowance for one and two terms in
the expansion (2.19) are very close.

The calculations also point to the existence, besides
the bound ground S-state of the three-particle system,
of an excited S-state for all values of the parameter g
at which the formation of the bound ground S- state of
the two particles is possible. For a large interval of
the parameter g, the binding energy of the first excited
three-particle state E, slightly exceeds the binding en-
ergy e of the ground state of two particles. An excited
three-particle state is possible in the case of paired
potentials of different form (separable Yamaguchi po-
tential®"'?"! | exponential potential®™*’ | Hulthen poten-
tial‘"®!  square well®®"’).

The values of the binding energy and the scattering
length E; and A corresponding to the parameters of the
interaction potential of the two identical spinless parti-
cles coinciding with the interaction parameters of the
two nucleons in the triplet- singlet spin-isospin state
are listed in Table I. The numbers 1, 2, 3, and 4 denot-

e
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Table 1. Binding energy of three particles and scattering
length of particle by a system of two particles in the
bound state in the case when the particles are
identical and spinless

Hulthen potential (triplet-singlet Square-well potential (triplet-
. parameters (a)) singlet parameters (c))
1=0 t=0 1=10.2
1 2 3 4 i 2 1
E,, MeV 18.37 25.74 2743 27.41 20.42 20.64 20.44
AF 20.68 14.92 13.53 12.85 29.23 28.34 29.14

Table II. Parameters for a Hulthen potential and for a
square well, obtained from the data on the interaction

of two nucleons at low energies (vo = mV,/h?
®o¢s, F? Ry, F vost, F? Ry, F Two-nucleon
parameters
Hulthen
potential 1.8509 0.8708 1.3493 0.8317 ()
Square-well
potential 0.8513 2.043 0.3390 2.586 (a)
0.8178 2.093 0.3770 2.457 (b)
0.7945 2.131 0.3380 2.590 ()
Fpp, 0), F Fulp, 0. F Fu(p, 0, F
.15 10
10 , 5
5
0 5 a1l i 5 8 pl
1 2 3 4 § § pF 2 3 B F

Fig. 8. The functions F (p, 0) obtained in [7%] by numerical inte-
gration of the system (3.12) (/ = 0) in the case of a Hulthen potential
with allowance for one (a), two (b), three (c) and four (d) terms in
the expansion of the t matrix (2.19). The numbers next to the curves
indicate the values of n. The parameters (a) of Table II for the triplet-
singlet state of two nucleons were used.

ing the columns of the table indicate the numbers of
terms in the expansion (2.19) which were included in the
calculation. (The two-nucleon parameters are given in
Table II.)

Figures 8 and 9 show the components of the succeed-
ing approximations of the amplitude

Frn(p, O)E%Pa‘fno ( —-”T_TL,:') ano (P, 0)

for a Hulthen potential (four approximations) and for a
square well (two approximations). The given relations
offer evidence of good convergence of the method.

To estimate the contribution of the interactions in

Fig. 9. The functions Fy,(p, 0) obtained in %7} by numerical in-
tegration of the system (3.12) ( = 0) in the case of a square well with
allowance for one (a) and two (b) terms in the expansion (2.19). The
numbers next to the curves indicate the values of n. The parameters
(c) of Table II for the triplet-singlet state of two nucleons were used.

the states with ! = 0, the binding energy E, and the scat- .
tering length A were calculated in®*"? for a square-well
potential wi' allowance for the interaction in the states
with ! = 0 an. { = 2, [ To simplify the calculations, only
the first term n = 1 was taken into account in the separ-
able expansion (2.19).] The results of the calculations
are given in Table Iin the column marked [ = 0, 2, As
expected, the contribution of the interaction to the state
with 7 = 2 turned out to be negligible.

The results shown in Figs. 5—7 confirm the previ-
ously made statement that refinement of the separable
expansion, i.e,, allowance for a large number of terms
in (2.19) (as well as allowance of the interactions in
states with higher orbital angular momenta) leads only
to an increase of the attraction and consequently to an
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increase of the binding energy of the three particles E,
and E; and to a decrease of the scattering length A for a
particle scattered by two others in a bound state. There-
fore allowance for further corrections in the expansion
can change the results only in one direction.

The performed calculations point to a strong depen-
dence of the properties of the three-particle system on
the form of the two-particle interaction even in the case
of sufficiently short-range forces, unlike the two-parti-
cle system, the properties of which are practically in-
sensitive to the form of the two-particle interaction.
Thus, we see that the binding energy and the scattering
length of one particle by two other particles in the bound
state can differ noticeably in the case of a three-particle
system for two-particle interactions described by a
Hulthen potential and by a square well the parameters
of which are chosen such that the binding energy of the
two-particle system, the scattering length, and the
radius of the effective interaction are the same.

4. BOUND STATES AND SCATTERING IN A SYSTEM
OF THREE NUCLEONS

4.1. Symmetry of Wave Function of a System of Three
Nucleons

The total wave function of a system of three nucleons
should be antisymmetrical against permutations of the
spatial, spin, and isospin coordinates of any pair of
nucleons. In the case of central forces, the nuclear
interaction between the nucleons (i and j) is character-
ized by a potential

Vij= }ji V(i P (o, 1),

(4.1)

where ng/)(o, T) is the operator of projection in the

v-spin-isospin state. (The values v =1, 2, 3, and 4 de-
note respectively the triplet-singlet ts, triplet-triplet tt,
singlet-triplet st, and singlet-singlet ss spin-isospin
states of the two nucleons.)

In a system of three nucleons the interaction between
which is described by (4.1), the total spin of the system
S, the total isotopic spin T, and their projections Mg
and My are conserved quantities. The total spin and
the total isotopic spin S and T of a system of three
nucleons can assume two values: 1/2 and 3/2. Accord-
ing to**®’| in the case of central forces (4.1) the wave
function ¥ ST as a function of the values of § and T can
be represented in the form

i1
W W W W | (4.2)
31
TR W — WL
13 i
[l Yy Yy, l
33
w2 Wiyt J

Here ¥ 5 and ¥# are the symmetrical and antisymme-
trical spatial functions. The functions ¥’ and ¥ ” trans-
form upon permutation of the spatial coordinates in ac-
cordance with a two-dimensional irreducible represen-
tation of the permutation group S;'**'. The spin function
x5 (the isospin function ¢5) is symmetrical against the
permutation of the spins (isotopic spins) of the three
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nucleons. The spin functions y’ and x” (the isospin
functions ¢’ and ¢”) transform upon permutation of the
spin (isospin) coordinates of the nucleons in a manner
similar to ¥’ and ¥”. The spin-isospin functions

£2, ¢S ¢’ and £” are equal to

" ! ren g . t tor | aen
g V3 (VESES § 9 N VR + %7, 4.3)
YeE (VESIED 4 NS Vi W'e =¥t

If the projection of the total spin of the system Mg is
equal to 1/2, then the spin functions are determined by
the expressions

K=y x (D (=BG ~B@ a6,

7S @B B a@)— ) T pha)a);
. (4.4)

S —’ X =~-v—fg—{a(1)a(2>ﬁf-‘%) ~aMPR)a3)+p)a(2) a(3d),
(4.5)

where a and § are the spin wave functions of the indi~
vidual nucleon, corresponding to spin projections 1/2
and —1/2. We note that the function y’ corresponds to a
singlet spin state of the pair of nucleons 2 and 3, and the
function y” to a triplet state of the same pair of nuc-
leons. The isospin functions ¢’ and ¢“ have a similar
form.

The wave functions ¥ ST at T = 1/2 describe the
bound state of a system of two neutrons and a proton
(the triton HS) or the scattering of a neutron by a deu-
teron (n-d scattering). In the investigation of the possi-
bility of a bound state in a system of three neutrons n®,
it is necessary to consider the wave functions ¥ ST with
T = 3/2. If the system consists of two protons and one
neutron (the He® nucleus, p-d scattering), then the con-
served quantities are S, Mg, and My (Coulomb interac-
tion between the protons violates conservation of the
total isotopic spin T). In this case the wave function of
the system can be represented in the form of a super-
position of functions with T = 1/2 and T = 3/2.

We shall henceforth assume that the spatial functions
¥2 ¢S ¢’ and ¥” depend on the momenta, i.e., a
Fourier transformation has been carried out over all
the spatial coordinates. The symmetry properties of
the functions against permutations remain unchanged in
this case.

4.2. Electromagnetic Form Factors of the Nuclei H?
and He®

An analysis of the experimental data on the scattering
of electrons by nuclei is best carried out by introducing
two momentum-transfer functions—the charge and mag-
netic form factors, which represent Fourier transforma-
tions of the spatial distributions of the electric charge
and magnetic moment of the nucleus. In the case of the
nuclei H® and He®, the charge and the magnetic form
factors F.(q) and Fp,(q) are determined by the expres-
SionS[wSJ

Felq) = [ 2 (¥, p W) dr, wFol) = [ v (¥, pWyar,  (4.6)

where z and p are the charge and magnetic moment of
the corresponding nucleus. {The parentheses in (4.6)
denote integration with respect to the internal relative

v
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coordinates.] The charge and magnetic- moment density
operators p. and pp, are given by

i=1

3
3 3
pe=3 [T A +ropr—r) + 40—t g2 (e~ ], l

3
Om = 2 [% (14 752) up@h, (r—r3) 4“%‘ (1 — i) pag, (r— !‘i)] Ci.y
i=1 )
4.7)

where the functions ¢, and ¢, describe the spatial dis-

tribution of the charges and of the magnetic moments

of the individual nucleons. The Fourier transformations
of the functions ¢.(r) and ¢p,(r) are usually called the
form factors of the nucleons

fel@)= [ evqendr,  fn(@)= | 60 () dr. (4.8)

For the proton and the neutron, these form factors are
normalized in the following manner:

f20)=

Substituting in (4.7) the wave functions for the nuclei H®
and He® in the form

rO=1, 0, BO=f(0)=1. (4.9)

it 11 13
\yI{a=__ 22 and ‘Yﬂea_\y E—f—‘lﬁi

and using formulas (4.7) for the charge and magnetic-
moment density operators, we can readily obtain expli-
cit expressions for the form factors of H' and He®. In
the case of H® we have

(g =
“HaFm (9)
where

=120 i (q)+2f2 (q) F (g,
= 1ol (@) GE (@) + 2l 0) [Go *@—6F (g)1.(4.10)

P (@)= [ om0+ WP (¥ — ¥y,

)
FE (@ =F1 (-3 { dn(P¥ —¥"¥)dr, '
t

4.11
& @=F (@5 [ e (v —woypar, (4.11)

¢ (@ =FY (9)—-5‘5e‘qfx(‘F'2+%‘F’llf“—}-‘Y°2)dt.

Formulas (4.10) express the charge and the magnetic
form factors of the nucleus H® in terms of the form fac-
tors of the nucleons f.(q) and fy;(q) and the structure
form factors (4.11), which are determined completely
by the wave function of the nucleus. The form factors
Fo(q) and F (q) describe the spatial distribution of the
nucleons in the nucleus in the proton (unpaired) and
neutron (paired) states, and the functions Go(q) and Gy (q)
characterize the distribution of the average value of the
projection of the proton and neutron spin on the z axis.
The normalization of the structure form factors is de-
termined by the normalization of the wave function of
the nucleus. If the total wave function is normalized to
unity, then
H3 3

Fy (0)=FF (0)=1, (4.12)
and with allowance for the conditions for the normaliza-
tion of the form factors of the nucleons (4. 9) we have
also FIéI (0) = 1 We note that the magnetic form factors
GH (q) and G% (Q) are not normalized to unity. We de-
note the weights of the symmetrical and antisymmetri-
cal states and the state with intermediate symmetry by
PS, P2, and P'. Then
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GO =12 (P +2P), GF(0)=1—3 (P 12P"). (4.13)

From formula (4.10) at q = 0, with allowance for the
normalization conditions (4.9), (4.13), and the condition

3
Fg (0) =1 it is easy to obtain the following expression
for the magnetic moment of the triton:

2 (un—pp) (P +2P7). (4.14)

HE? =pp+

Analogously, in the case of the nucleus He® we obtain
for the electromagnetic form factors the following
formulas:

2FE () = 12 (g) F§¥ (9) + 272 () FE* (9),
w2 (9) = pnfin (0) 65 (@) + 2 paf (165 (90— 657 (@)1,

where (4.15)
FE (@)= [ e (04 W — TP o (0 4 W — oy g,
FE% @ = (@ =3 { e (0 (0 — ) 4 (W T 0P
— ¥ (¥ + ¥ dv,
G @)= F @ =5 [ e (0 + T —wpan,  (4.16)

3 —
G (@)= FE @)= e (9" 1 T oy g

-3 S 9t [2WIP 2 (P T i)

— (¥ — V7)1 207 (29 -+ T)) dr.

In (4.16) the functions w5, ¥', v”, and ¥2 pertain to the
state with total isotopic spin T = 1/2, and the functions
¥’ and ¥ ” to the state T = 3/2. The form factors (4.16)
are normalized in the following manner:

FE° (0)= FE° (0) = 1,

GO =1—F (P42 Pk (W ar), ' (4.17)

GE (O =t —F (P2t B4 [ W ar) ;

P’ is the weight of the state with T = 3/2. The magnetic
moment of He® is determined by the expression
If we neglect in the wave function of He® the admix-
ture of the state with T = 3/2 ' = ¥” = 0), then the
formulas for the structure form factors (4.16) coincide
wgth the corresponding formulas (4.11) for the nucleus
5
Expanding the form factors in formulas (4.10) and
(4.15) in series in q°, we express the rms radii of the
charge distributions for the nuclei H® and He® in terms
of the rms radii of the distributions for the unpaired
and paired nucleons Ro and Ry, and the rms radii of the
charge distributions for the proton r (p) and neutron
rq(n):
R (H%) = R{ (H®) +72 (p) + 2r2 (n), 1
R} (He®) = Ry (He?) +72 (p) + =12 (). |
In similar fashion we can also obtain expressions for
the rms radii of the distributions of the magnetic mo-
ments of the nuclei H® and He®,

(4.19)

4.3. Integral Equations for a System of Three Nucleons

The Faddeev equations can easily be generalized to
the case of a system of three nucleons with allowance
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for the spin dependence of the interaction between
them'®1%7} | To this end it is necessary to take into ac-
count in Egs. (1.40), which describe an arbitrary system
of three particles, the operator character of the two-
particle t matrix in the spin-isospin space of the
nucleons, and to take into account the dependence of the
wave function of the system on the spin and isospin
variables. Owing to the identity of the nucleons, the
system of equations (1.40) reduces to a single equation

Y(k, p)= (k p) .

= (/ ——,'n— S L<klt2?(/ll)l Zp p>\1;(27(‘ "‘;‘Plv P')

(4.20)

where the functions ¢ and ¢‘® differ from the func-
tion ¥ = ¥'" by cyclic permutation of the spatial, spin,
and isospin coordinates of the nucleons.

In the case of a central interaction (4.1), the two-
nucleon t matrix which enters in (4.20) can be represen-
ted in the form

k|t (@) k) = >_ k|t (@) k) PY (0, v),

’!‘ <k l t23 (Zp)

(4.21)

where t(V)(z) is the eigenvalue of the t matrix in a defin-
ite spin-isospin state v. Projecting Eq. (4.20) on the
possible spin-isospin states of the system of three
nucleons, we can obtain a system of integral equations
for the spatial functions ¥a, ¥c, ¥’, and ¥”,

In place of the functions ¥, ¥ S, ¥’, and ¥ “, which
transform upon permutation of any pair of particles in
accordance with the irreducible representations of the
group of permutations S;, it is convenient to change over
to the functions zpu(kij, px) corresponding to definite
spin-isospin states v = 1, 2, 3, and 4 of the pair of par-
ticles ij. The functions ¢,(kjj, pg) are even if v = 1 and
3 and odd if v = 2 and 4 relative to permutation of the
particles i and j (ku — k] —-ki]-).

Wyl —k p) = (=" "y (k. p)- (4.22)
In the case S=1/2 and T = 1/2, the spatial functions
2, ¥5, ¢’, and ¢ ” are expressed in terms of four
functions ¥, with v = 1, 2, 3, and 4; in the case S=1/2
and T = 3/2, the spatial functions ¥’ and ¥ “ are ex-
pressed in terms of two functions, . and ¥s; in the case
S=3/2 and T = 1/2, the spatial functions ¥’ and ¥ “ are
expressed in terms of two functions ¥, and ¥,; finally,
in the case S=3/2, T = 3/2 the spatial function ¥2 is
expressed in terms of one function ¥,:

Sed. Tt ‘I’“——ZT}—E{IPEU)»“\IMU)
e (2) W (2) 4 e (3) + b (D))

W OB A (D) 400 2) 0 (2) - 01 (3) (),

= e {0 v )
e (@) =B @) (3)— 0, (3)] (4.23)
+ X 0 2~ @) 0 B+ |

VN b

Y = Vel {1171(1) Y3 (1)

~ 5 0 @)= % @)+ W B) — s (B)]

e
— 3 @ h @ =)+ 0@} ;

.
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1 .
S=g. T=3: W) =L 10, 2) 10 3) )
~ Y2 s 2)— s 3)],
" s (4.24)
W= — s (1) — 5= 12 (2) — 2 (3)]
é [3(2) - (3)];
S=g T= 3 W ()= Ly @ — 0B )
I\PZ(Z)T1P2(3 l 425
‘P"=—w,u>+%rwi<2>+wi(3n i )
— V3 e = ) j
S=5 . T=5: V= (1) +42.(2) 1 3). (4.26)

To abbreviate the notation we have used the symbol
P (k) =Py (kejs ),

The systems of functions y,,, generally speaking, differ
for different spin-isospin states of the system of three
nucleons, i.e., for different values of S and T.

The system of integral equations for the functions
¥,(k, p) at arbitrary values of the spin and isospin of the
system of three nucleons can be represented in the form

Z {1t @)1~ o v

+(__1)v+l<k|t(v)(zp)|__p p>}6w'¢v p+2P P)<)n)3y
v=1, 2, 3, 4, (4.27)

where the matrices c(ST) for different spin-isospin

ijk =123, 231, 312.

o (k, p) =y (k, p) 4 (Zp— o

states of the system of three nucleons are determined
by the expressions

1 V3 3 —)'3
c(%é—:.i V3 —1 —-¥V3 -3
w4 3 —V3 1 Y3’
-¥3 -3 V3 -1
0 0 00
13 0 1 V30
DS N (4.28)
0 —-¥3 —10
0 0 00
—1 —)V300
31 3 33
053,2 -1 ~V3 100[ c(zg)z_awavq
0 000
0 000 J

In considering the bound states of a system of three
nucleons, the free term in (4.27) must be set equal to
zero. We note that the integral equation for the system
of three identical spinless particles (1.43) coincides
with (4.27) if we put in the latter

Cvyr = Byibyry.

(4.29)

In the derivation of (4.27) we have neglected the
Coulomb interaction, and therefore Eqs. (4.27) are suit-
able only for the description of a system consisting of
three neutrons or of two neutrons and one proton*. In a
system consisting of two neutrons and a proton, a bound

*Integral equations for a system of two protons and one neutron in
the bound state (the He® nucleus) were obtained in [3¢]. Veselova [113]
proposed a method of obtaining integral equations for the wave function

describing the scattering of a charged particle by a bound state of two
other charged particles.
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state (the triton) is possible, as is scattering of a neu-
tron by the two other particles in the bound state. In the
latter case, the free term in (4.27) must be chosen in
the form

oy (k, p) = (2n)* @ (k) 8 (p—po) Busy (4.30)

where ¢(k) is the wave function of the ground state of
the deuteron. Since two neutrons do not form a bound
system, in the case of three neutrons it is possible to
consider only the bound- state problem.

4.4, Scattering of a Neutron by a Deuteron

Let us stop to discuss in greater detail the problem
of the scattering of a neutron by a deuteron, Since the
isotopic spin of a deuteron is equal to zero, the total
isospin T of the system is equal to 1/2, and the ordinary
spin can assume the values 1/2 and 3/2 (doublet and
quartet states). Taking into account the invariant char-
acter of the spatial functions y,(k, p) against rotations,
we expand the functions 3,,(k, p) in terms of the angle
functions in the form (1.51). For the coefficients of
such an expansion, the functions ngi)L(k, P; Po), just as

in the case of three spinless particles, we obtain a sys-
tem of two-dimensional integral equations

WLk, pi po) = (2n>s o (k) 2L 8,68,.8,

@ +p'/2 -
b S e far T w02
’.‘2("""7»')“" ° b2 )
X K (s 273 B)OSOL (S P75 Po)s
(4.31)
where the functions Kg‘) '\’ are determined as before
H
by the expression (1.54) and
AP =Lt (- (4.32)

(po is the relative momentum of the neutron and the deu-
teron in the initial state),

Using the separable expansion for the two-particle
t matrix (2.19) and expression (2.29) for the wave func-
tion of the deuteron, we can represent the function ap( )
in the form IAL

\pM (%, p; Do)
ek 2y) (5
= Ny (2n)® Z —l—& {MﬁniatoéxLﬁw-i-Tnt (Zp) alhhe (p, Po)}

" (4.33)
where we have introduced the notation

1 (@) (1 —nlp ()17

n

Y (2) =

(4.34)

The functions a( ) (p, Po) are determined by the follow-
ing system of one- d1mens1ona1 integral equations:
aShr. (P, Po) = ewUSAL, 1oL (D5 Poi Z)
+ 2 ew Sdp'p'zt W2, wrars (By P's 2)T0E (Zy) aPaen (07, Po)s
v'a'l'A ( 35)

where the effective potential U is determined by the ex-
pression

USiYwene (o, s 2)
A

2m2

g,.,’(O z,)e (@, 2,)
~m~(p2+p2+pp ¥z (4 36)

1
deKn w2 (Ps P'5 Y)

It follows from (4.34)—(4.36) that the components a%L
with v and ! of equal parity are equal to zero. This
is directly connected with the Pauli principle, which for-
bids, for a pair of nucleons, triplet- singlet and singlet-
triplet spin-isospin states (v = 1 and 3) with odd [ and
triplet-triplet and singlet-singlet states (v = 2 and 4)
with even I.

The amplitudes of elastic scattering of a neutron by
a deuteron in the quartet and doublet spin states £ and
f'%2 are determined by the formulas

P20 ) = =g e (o) xT, [V (—5r—0) ]
J.-V,z(——rrp] 3% p,po))drdp,

)
70 0= =g [ e (o0t [Var (— 77 —0)
)

11
+sz(——l'+p }‘I’EE (r, @; Py )dl‘dp.
(4.37)
[ The indices 23, 31, and 12 in the right-hand side of
(4 37) number the particles.] The partial amplitudes
f3 and fL are directly expressed in terms of the func-

tions a;’LL(po, po) for the corresponding spin states:

Z (1)
.fL (p()r Po = o ——m ( dZ(Z) )z‘—ewa%)l‘l' (va Po)- (4'38)

The neutron-deuteron scattering length in a definite
spin state is determined by the expression

ZS-HA: _fsg (0, O). (4.39)

4.5. Bound State of a System of Three Nucleons

We now consider a system of three nucleons in a
bound state with total orbital angular momentum L and
projection M. We separate in the wave function of the
system the angle part

(4.40)

Porar (ky p) = ;wz (kv p) Yiaws (K, D).

Substituting (4.40) in (4.27), we obtain for “’X)L a homo-

geneous system of two-dimensional integral equations,
having the form of the system (1.52) without the inhomo-
geneous term. Using the separable expansion for

tgv)(k, Q; Z,) we can represent the functions ng)L in the
form

2049 (2,) a3, ().

n

1p(w (k _ 855’(
BL(k, p) = (4.41)

The partial components aﬁS?\L are determined by the

homogeneous system of one-dimensional integral equa-

tions

(P

= 3 o [ U s 0, 5 2R E) e (). (442)
v'n'lA 0

This system of integral equations admlts of solutions

for strictly defined values of Z, which determine the

energies of the bound states of the system.

4.6. Binding Energy of the Nuclei H® and He®

We consider first the results of calculations of the
binding energy of three-nucleon nuclei, which were car-
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Table III. Binding energy of triton and scattering lengths
of neutron on a deuteron

Hulthen Potential Square-well potential Two-
t=0 =0 =02 | Nucleon
1 l 2 1 B R Parameters
Er, MeV 7.91 11.46 9.07 9.20 — (a)
Z — 9.39 9.53 — (b)
— — 8.95 9.08 8.97 {c)
24, F —0.19 —2.88 0.512 0.451 — (a)
— — 0.204 0.145 — (h)
— — 0.545 0.487 0.542 )
14, F 6.403 6.361 6.284 6.279 — (a)
— — 6.315 6.310 — (b
— — 6.338 6.333 6.338 (c)

ried out under the assumption that the interaction be-
tween the nucleons is described by paired central poten-
tials characterized by two parameters which determine
the magnitude and action radius of the forces. The
values of the parameters of the two-nucleon potentials
in the triplet-singlet and singlet-triplet spin-isospin
states can be determined by using experimental data on
the scattering of nucleons by nucleons at low energies
and the binding energy of the neutron plus proton sys-
tem. In the case of central interaction, the values of the
triplet- singlet parameters are determined from the
length of the scattering of the neutron by the proton,
atg, and the binding energy of the deuteron €4. Since
there is no singlet bound state of a system of two
nucleons, the singlet-triplet parameters are determined
from the scattering length ag and the magnitude of the
effective radius r ;. We note that the parameters ag;
and r ¢ for the singlet-triplet spin-isospin state are
known with lesser accuracy than the triplet- singlet
parameters. Even less is known concerning the interac-
tion between the nucleons in the odd states (in the
triplet-triplet and singlet- singlet spin-isospin states),
than concerning the interaction in even states. At suffi-
ciently low energies of relative motion of the two
nucleons, the interaction potentials Vi; and Vg can be
neglected compared with the potentials Vi, and V.

The available data on two-nucleon interaction are
discussed in the review of Noyes“m .

We present several sets of values of two-nucleon
parameters, which were used in!10976:8079:371 4y, the
calculation of the three-particle binding energies and
scattering lengths. According to™®!

0, =5.378 F, £—2.225MeV, ay= —2369 F, ru=27 F (a)

The parameters obtained on the basis of measurements
of Houk and Wilson'™! are equal to
ais=-5.405+0.006 F, ay- (b)
&g = 2.225 MeV

The results of measurements of Houk and Wilson'"*’ and
Koester'™! lead to the values

S -23.728 4 0.013 F,
Fost = 2.56 4 0.10 F.

a;,=5.425 +0.004 F,

A= —23.714+0.013 F, (c)
eq = 2.225 MeV,

Post = 2.704 4 0.095 F ..

The ground state of a system consisting of two neu-
trons and one proton, in the case of central forces, is

the state with total orbital angular momentum equal to
zero, L = 0 (triton H?, S = 1/2, T = 1/2). The values of
the triton binding energy Er, calculated by the method
of separable expansion for a Hulthen potential®°%"7%!
and for a square well®*"! are given in Table III (the
notation is the same as in Table I). The values of the
parameters of the two-nucleon potentials used in these
calculations are given in Table II.

In the case of a Yukawa potential, the values of ET,
calculated by Efimov**®? on the basis of the Bubnov-
Galerkin method with the parameters (a) for aig, €4,
and agt, but with other values of r g, turned gut to equal
ET = 11.65 MeV (r gt = 2.21 F) and E = 10.83 MeV
(Tost = 2.5 F).

In'®’, the triton binding energy was calculated in the
case of a square well on the basis of the method of
harmonic polynomials. For comparison with the results
oft®!, the value of E was calculated in'®*’ by the method
of separable expansion with the same parameters as
in'®!. (The triplet parameters used in'®! coincide with
the values of a;¢ and €4 of set (a), and the singlet
parameters were taken from the data on pp scatter-
ing™1: ag = 16.83 F, rygt = 2.74 F). The value of E,
calculated for the indicated set of parameters, turned
out to be Ep = 8.71 MeV when account is taken of only
the first term in the expansion of (2.19), and ET
= 8.84 MeV if two terms are taken into account in (2.19)
(n=1and 2, ! =0). Comparison of the quantity Er,
= 8.84 MeV obtained in"®"?, with the value Ep = 8.43 MeV
of'*! points to a better convergence of the method of
separable expansion compared with the convergence of
the method of harmonic polynomials. (When both methods
are used, further corrections to the binding energy can
only increase the value of Ep.)

Central attractive potentials reconciled with the data
on the interaction of two nucleons at low energies lead
to overestimates of the binding energy of the triton com-
pared with the experimental value Ep = 8.482 MeV. The
values of E1 obtained for potentials of different form
differ greatly from each other. The binding energy ET
assumes smaller values for less extended and less
singular potentials. The binding energy of the triton
for a potential of rectangular form (which changes for
different values of the two-nucleon parameters in the
interval from 8.84 to 9.53 MeV) agrees with the experi-
mental value better than the energies for other poten-

T
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tials. The binding energy ET decreases quite strongly
with increasing singlet effective radius r gy. The depen-
dence of E;r on the two-particle length agt is quite
Weak[108,78 N

The difference in binding energy between the triton
and the nucleus He® (the experimental binding energy of
He® is Egg3 = 7.718 MeV, AE = Eq — Eyggs = 0.764 MeV)
is well explained if account is taken of the Coulomb
interaction between the protons in the He® nucleus.
In'®?, the Coulomb energy for the He® nucleus was cal-
culated in the case of a square-well potential on the
basis of the method of harmonic polynomials in first
order of perturbation theory. When the indicated param-
eters were used for the two-nucleon interaction, the
value of AE turned out to be 0.789 MeV. As we have
already noted, the Coulomb interaction between the
nucleons leads to an admixture of a state with T = 3/2
in the wave function of He®. A direct solution of the
system of differential equations with allowance for the
harmonics with K = 0 and K = 2 leads™® in this case,
for a square-wave potential, to closely similar values
of the difference AE {AE = 0.777 MeV in the case of
parameters (b) and AE = 0,751 MeV in the case of
parameters (c)].

The correct behavior of the amplitude of scattering
of two nucleons on the energy shell at 1ow energies can
be ensured by describing the interaction between the
nucleons by means of a potential containing two param-
eters, which are determined by specifying two experi-
mental quantities—the scattering length and the effec-
tive radius. To find the two-particle scattering ampli-
tude on the energy shell in a large interval of energies,
it is necessary to use more complicated potentials,
characterized by a larger number of parameters. As
is well known, data on nucleon-nucleon scattering in the
high-energy region point to the existence of a stronger
repulsion between the nucleons at small distances. In-
troduction of a repulsive core in the two-nucleon poten-
tial makes it possible to explain the reversal of the sign
of the 8 scattering phase at high energies. A potential
with repulsion at small distances and with subsequent
short-range attraction should contain at least three
parameters. Introduction of the radius of the repulsive
core—an additional parameter characterizing the repul-
sion—makes it possible to describe correctly the scat-
tering amplitude not only at low energies but also at
high ones. In order for the potential with repulsion to
describe data on the interaction of two nucleons at low
energies, the attractive part of the potential should be
deeper and its radius smaller than the corresponding
quantities for a purely attractive potential’®®’,

The influence of the short-range repulsion on the
value of the binding energy of three nucleons was inves-
tigated in a number of papers both for separable!®:%:™1
and for local[®*>3:11:48:80) yotentials, In'®®’ the triton
binding energy was calculated on the basis of the separ-
able expansion (2.22) for a local potential with infinite
repulsion and with attraction in the form of a square
well. The potential parameters were determined from
the low-energy data (c) and from the dependence of the
S phase on the energy in the interval from 0 to 400
MeV'®3, The values of the radii of the repulsive core
turned out to be 0.186 F in the case of a triplet spin
state and 0.180 F in the case of a singlet state. The
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calculated binding energy of the triton is equal to Ep
= 8.8 MeV'®!_ This value differs very little from the
value ET = 9.1 MeV obtained for a purely attractive
square well, ®*J

Calculations performed on the basis of the Bateman
separable expansion'*’**1 led in the case of a Morse
potential *™?

Ve v, (2 _ ) (4.43)
to the following values of the triton binding energy:

Egq = 9.12 MeV (ag; =—23.68 F, r gt = 2.44 F) and Ep
=8.10 MeV (agt =—17 F and r gt = 2.80 F). In the case
of a superposition of Yukawa attraction and repulsion
potentials'®!?

r r

R R (4.44)

I3
Vir)- —-l/o,erhl o er

a direct solution of the homogeneous system of two-
dimensional integral equations (4.31) leads to a value
ET = 8.3 MeV'*"! and a solution on the basis of the
Bateman exPansion (N = 4) leads to the value Ep

=8.56 MeV"! (a, =545 F, r45=1.8 F, ag =—23.3 F,
r,st = 2.8 F). [In the case of a pure attractive Yukawa
potential (Voz = 0) corresponding to the same values of
the two-nucleon parameters we have ET = 12:1 MeV‘®'1]
We note that the values of the binding energy of the
triton for different potentials correctly describing the
phases of the two-nucleon scattering in a large energy
interval are quite close to one another. Allowance for
the tensor forces in the two-nucleon interaction can
greatly influence the results. Thus, in the case of a
separable potential ©8:198:™:54:94,1021 "4he jntroduction of
tensor forces, for which the weight of the D wave in the
ground state of the deuteron amounts to 49, leads to a
decrease of the triton binding energy by 15—~209%,. As
already noted, in the case of two-~particle forces that do
not depend on the spins and lead to the existence of a
bound S state of two particles, it is possible to have for
a system of three particles, besides the ground bound
state (L = 0), also an excited state (L = 0). Allowance
for the spin dependence of the forces and for the Pauli
principle weakens the two-particle interaction, as a re-
sult of which the excited state of the system of three
nucleons (S =1/2, T = 1/2, L = 0) turns out to be im-
possible. As shown in®®, there are also no excited
states of the triton with other quantum numbers. A num-
ber of theoretical and experimental works point to the

nonexistence of a bound state of a system of three neu-
trons[s,z'r,av,ss)

4.7. Wave Functions of H® and He®

Owing to the dependence of the two-nucleon interac-
tion on the spin and on the isotopic spin, the wave func-
tion of the ground state of the triton (L =0, S =1/2,

T = 1/2) is presented in the form of a superposition of
spatial functions have different symmetries against
permutations of the particle coordinates ¥5, ¥’ and ¥,
¥2, Since the summary orbital angular momentum is
equal to zero in the ground state, the weight of the sym-
metrical state ¥S (S state) is close to unity. The magni-
tude of the admixture of the state of the intermediate
symmetry (S’ state) is determined by the difference of
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Table IV. Wave functions of the nuclei H® and He®,
calculated in'**! on the basis of the method of
harmonic polynomials with allowance for
K = 0 and 2 (square well, parameters (c))

H3 Hed

P

Foolo53) o 0emdd 0 o33 @ (003D o100 o2y
0.125 | 0.00224 | 0.424-10-5| 0.00247 | 0.110.10-4|—0.670-10~4
0.525 | 0.0711 0.00198 | 0.0693 0.00250  |—0.00606
1.025 | 0.309 0.0383 0.303 0.0421  |--0.0389
1,525 | 0.584 0.210 0.576 0.218  |--0.0885
2.025 0.693 0,48t 0.688 (G.492 —0.125
2.525 | 0.639 0.519 0.638 0.53%  |—0.140
3.025 | 0.525 0.445 0.528 0.465 | —0.139
4.025 ) 0.308 0.261 0.314 0.218  |—0.113
5.025 | 0.168 0.137 0.174 0.154 —0.0778
6.025 | 0.089 0.0698 0.0942 0.0790 (00496
8.025 | 0.0247 0.0175 0.0269 0.0211  {—0.0177

10.025 [ 0.00726 | 0.00405 | 0.00731 | 0.005t5 |—0.00503

the interactions in the triplet-triplet and singlet-triplet
spin-isospin states. Calculations lead to the following
values of the admixture of the §' state: P’ = 1.289,
(square well'®), P’ = 4.79, (Morse potential®™®’, r gt

= 2,44 F), and P’ = 29, (superposition of Yukawa poten-
tials'®®%), The magnitude of the admixture of the anti-
symmetrical state P2 is determined by the difference of
the potentials acting in the odd states (1/2) (Vgg — Vit),
and is very small (P2 = 0.003 % '),

In the case of the nucleus He®, the weight of the addi-
tional 8’ state at T = 3/2 amounts to P’ = 0.001%
(square well**%1),

The wave functions of the nuclei H® and He® differ
insignificantly from each other. Table IV gives the val-
ues of the components of the wave functions of H® and
He® in the case of a two-nucleon nuclear potential of
rectangular form (parameters (c)) with allowance for the
Coulomb interaction between the protons, calculated
in!®*? on the basis of the method of harmonic polynom-
ials with allowance for the harmonics K = 0 and 2 (the
corresponding values of the binding energies of H® and
He® turned out to be E = 8.45 MeV and Eyes = 7.70
MeV). The weights for the states with intermediate
symmetry for the functions of Table IV turned out to be

H3: P'=1.01%; He3: £ =1.1%, P = (L.0M%.

According to (4.19), the charge rms radii of the
nuclei H® and He® are expressed directly in terms of
the rms radii of the nucleon distributions in the nuclei
and the rms radii of the charge distribution of the
nucleons. Assuming the charge rms radii of the nucleons
to be ry(p) = (0.84 £ 0.04) F and rys(n) = 0, the following
values were obtained in'*' for the charge root-mean-
squared radii of the nuclei H® and He® (the potential is
chosen in the form of a square well):

R (HY)— (1.7 £0.04) F. R.(lIe%) =(1.8 = 0.04) F.

The corresponding experimental values are'®!

R, (H%)=(1.70 £ 0.05) F., R.(He®) =(1.87 30.05) F.

The influence of the Coulomb interaction between the
protons on the quantity R, (He®) is very small. Using
the wave function of He® calculated without allowance
for the Coulomb repulsion between the protons, the rms
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FIG. 10. Form factors of the distributions of the paired and un-
paired nucleons in the H3 nucleus, calculated for the case of a square-
well potential [3°].

radius R, (He®) decreases by approximately 19 com-
pared with the radius calculated on the basis of the func-
tion obtained with allowance for the Coulomb interac-
tion'**), The difference between the values of R (HY)

for R, (He%)], obtained using different sets of two-par-
ticle parameters (b) and (c), amounts to approximately
2,59, of their value'*®? (the charge radii decrease with
increasing r g). )

The form factors of the distributions of the paired
and unpaired nucleons in the H® nucleus, Fy, and F,
calculated on the basis of the functions of Table IV, are
shown in Fig, 10. The difference between the form fac-
tors F, and F, is due to the admixture of the S’ state
(P’ = 1.01%). The charge form factors of the nuclei

Fges(q) and Fgeg(q) were calculated for a potential in
the form of a square well by Badalyan'*’ and for a
Morse potential and for a superposition of Yukawa po-
tentials, containing repulsion at small distances, by
Akhmadkhodzhaev, Belyaev, and Wrzecionko®!. The

calculated form factors FH3 and Fges are in satisfac-
tory agreement with the experimental valuest®?, but
the theoretical values exceed the experimental ones
somewhat.

In concluding this section, let us stop to discuss the
magnetic moments of the nuclei H® and He®. According
to (4.14) and (4.18), the magnetic moments of the nuclei
H® and He® in the case of central forces satisfy the in-
equalities pgs < Hp and pupe® > 1. Allowance for the
tensor forces makes these inequalities even stronger!*?’,
However, the experimental data lead to a reversed sign
of the inequality. This indicates that the values of the
magnetic moments and the magnetic form factors of
three-nucleon nuclei depend strongly on the structure
of the nucleons, due to the existence of exchange meson
currents.

4.8. Deuteron-neutron Scattering Lengths

The scattering of a neutron by a deuteron in the
limiting case of zero energy is characterized by two
parameters—the quartet and doublet scattering lengths
‘A and ®A, corresponding to the two possible values of
the total spin of the system S=3/2 and S=1/2 (T = 1/2).
By numerical solution of the one-dimensional integral
equations (4.35) in the case of zero energy of the inci-
dent neutron (p, = 0) it was possible to calculate the
values of the lengths *A and ®A for a number of two-
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Fig. 11. The functions F ) (p, 0) obtained in [ #!] by numerical
integration of the system (4.35) (/ = 0) for n-d scattering in the quartet
state (S = 3/2, T = 1/2) in the case of Hulthen potentials and a square
well with allowance for one term in the expansion (2.19). The curves
for the Hulthen potentials and the square well practically coincide and
are shown in the figure by the solid line. Allowance for the next terms
in (2.19) leads to insignificant corrections. The dashed line corresponds
to the function F® calculated in the approximation of a zero radius
of action of the forces [®]. The values of the parameters (a) of Table
II were used.

8 Hulthen potential

Square welt

Fig. 12. The functions F,g”) (p, 0) (v = ts, st) for n-d scattering in
the doublet state (S = 1/2, T = 1/2) calculated in ["¢* 3! ] in the case of
Hulthen potentials (a) and a square well (b) with allowance for one and
two terms in the expansion (2.19) for each spin state of the two nuc-
leons ({ = 0). The numbers next to the figures indicate the values of n.
The values of the parameters (a) of Table II were used.

nucleon potentials. The results of the calculations of the
n-d scattering for a Hulthen potential''®®™! and for a
square-well potential®®*>*"!  are given in Table III. The

components of the function Fg’)(p, 0) = (n/ 2)p2'r£1”2
X (— €30 — 3p%/ 4m)a{¥) (p, 0) for the quartet and doublet

N ooo
states are shown in Figs. 11 and 12.

We note that the system of integral equations (4.35)
with coefficients (4.28), which describes the scattering
in the quartet state, depends only on the triplet-singlet
spin-isospin two-nucleon parameters, the values of
which are well defined. The quartet length *A turned
out to be practically independent of the form of the two-
nucleon interaction. For the Hulthen potential, the value
of *A, obtained with allowance for four terms in (2.19),
is equal to 6.336 F''°%! (the parameters (a)). For a
rectangular well the quartet length *A is somewhat
smaller: *A = 6.279 F (in the case of the parameters
(a) with allowance for two terms in (2.19)). Allowanee
for the repulsion between the nucleons at small distan-
ces does not lead to an appreciable change in the quar-
tet length. In the case of a square well with infinite

repulsion (using two attractive terms and one repulsive
term, ny =1 and 2, n, = 1, in the expansion (2.22)), the
quartet length turned out to be A = 6.33 F'®!, The
quartet scattering length in the case of the Morse poten-
tial (4.43) is equal to *A = 6.35 F, and in the case of the
potential (4.44) it is equal to *A = 6.37 F'**!, This insen-
sitivity of the quartet length to the change of the form

of the two-nucleon interaction is due to the Pauli prin-
ciple, as a result of which the incident neutron does not
penetrate inside the deuteron if the spins of all the par-

ticles are directed parallel to one another. Thus, the

interaction of the neutron with the deuteron reduces to
an effective repulsion““ [the principal matrix element
of the n-d interaction in (4.34) with v = " = 1 corre-
sponds to the repulsion potential, inasmuch as for the
quartet spin state the coefficient c,, is negative, cy,
=-1/ 2]. Therefore even in the approximation of zero
radius of action of the forces a sufficiently good value'®’
‘A = 5.1 F is obtained for ‘A, although it is found by
using only one iwo-particle parameter, namely the
triplet scattering length a;g = 5.378 F.

The values of the doublet length A obtained for the
Hulthen potential and a square well (see Table III) differ
greatly from each other. Just like the triton binding
energy ET, the doublet length ?A depends significantly
on the form of the two-nucleon potential. The length °A
is also sensitive to the change of the singlet effective
radius r,gi. Inthe case of a potential with repulsion,
the following values are obtained for the doublet scatter-
ing length: °A = 0.76 F (square well with infinite repul-
sion'®’), “A = 0.54 F and 1.33 F (Morse potential for
the respective cases rogt = 2.44 F, agt =—23.68 F and
Iygt = 2.80 F, ag =~17 F**), and *A = 1,15 F (super-
position of Yukawa potentials, r gt = 2.80 F, ag;
=—23.3 Fl11y,

The calculations of the n-d scattering lengths for the
local potentials, including the tensor interaction between
nucleons, have not yet been carried out. In the case of
separable potentials, allowance for the tensor forces
leads to a considerable decrease of the doublet
length[ma] .

Let us compare the calculated values of the quartet
and doublet scattering lengths with the experimental
values. During the last 20 years, several experiments
were organized on the determination of the lengths A
and ‘A, The first to measure the total cross section for
the scattering of a zero-energy neutron by a deuteron,

o = (41/3)[2(°A)® + (*A)’] were Fermi and Marshall'®’:

o=(3.44+0.06) b . (4.45)

Hurst and Alcock'™! determined the ratio of the doublet
and quartet lengths from the scattering of thermal neu-
trons in ortho and para deuterium:

2A/44 = 0.12 £ 0.04. (4.46)

Using the values of (4.45) and (4.46), it is possible to
obtain two sets of possible values of the n-d scattering
lengths'™':

Y= (6382006 F, A=(0.7+03) F,  (4.47)
MU=(26:02) F, U=@E206+012) F.  (4.48)
The experiments of Shapiro et al. at Dubna®®’ | using
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Fig. 13. Experimental data for the determination of the quartet and
doublet lengths of n-d scattering.

polarized neutrons and polarized deuterons, have shown
that

14> 24,
and consequently have made it possible to discard the
second set of scattering lengths (4.48).

Measurements of the cross sections for the scatter-
ing of neutrons by ortho and para deuterium, carried
out by Nikitin et al.'’®®!  led to the following values for
the scattering lengths:

$A=(6.47 £01%) F, A4=(057+014) . (449
Measurement of the cross section of the incoherent
scattering of a neutron by deuterium bound in the DO
molecule, Oincon = 27(*A — *A)’, carried out by
Gissler'®’ | has made it possible to determine the dif-
ference between the quartet and doublet scattering

lengths:
(4.50)

The coherent scattering length A.qp = *A + °A/2 was
measured by Bartolini et al.'**! (by the method of specu-
lar reflection of neutrons) and by Koester and
Ungerer!®*! (with small-angle scattering of neutrons
by a mixture of powdered solid and liquid). Using the
coherence length

14.-24=5.99+0.06 F.

Aeon =6.21 004 F, (4.51)

obtained by Bartolini et al.'"™’ and the length difference
(4.50), it is possible to obtain the following values for
the quartet and doublet lengths'*'?%*1:

(4.52)

The set of lengths (4.52) correspor;ds to a total cross
section ¢ = 3.15 + 0.04 b, which agrees with the value

6=32+01 b , (4.53)

obtained by extrapolating to zero energy the experimen-
tal values of the total cross section of n-d scatter-
ing'**?! but is somewhat smaller than the total cross
section obtained by Fermi and Marshall®®', We note
also that the ratio of the lengths from the set (4.52)
(zA/4A = 0.024 + 0.009) differs greatly from the ratio
measured by Hurst and Alcock™!.

Koester and Ungerer!'®™’ obtained for the coherent
length the value

146132004 F, 24=015+0.05 F.

Aen=6.70+0.05 F, (4.54)

which exceeds the value obtained by Bartolini et al."™*!,
The value (4.54) and the value (4.50) for the length dif-
ference leads to the following values of the quartet and
doublet lengths of n-d scattering:

14=6.4610.05 F, *A=04T+£0.07F , (4.55)

These values correspond to o = 3.51 = 0.06 b and *A/*A
= 0.07 + 0.01.

Figure 13 shows plots of *A against A, obtained on
the basis of the data on the total cross section (4.45)
and (4.53), the coherent length (4.51) and (4.54), the
length difference (4.50), and the length ratio (4.46). The
intersection of any two curves in Fig. 13 determines the
values of the quartet and doublet lengths. The available
two experimental values of the total cross section ¢ and
the two experimental values of the coherent length A, 4
lead to two possible sets of the lengths ‘A and ®A. One
of them corresponds to the values of (4.52) obtained by
Van Oers and Seagrave''*?! and by Bartolini et al."*"?,
and the other corresponds to the results of Hurst and
Alcock (4.47), Nikitin et al. (4.49), and also the data of
Gissler and Koester and Ungerer (4.55). The values
(4.52) correspond to the total cross section of Van Oers
and Seagrave (4.53), but do not agree with the ratio
?A/*A of Hurst and Alcock (4.46). The values of *A and
%A in (4.47), (4.49), and (4.55) lead to the total cross
section (4.45) of Fermi and Marshall, and their ratios
are close to the result of ™', For final experimental
determination of the lengths *A and ®A it is necessary
to have additional, more accurate experiments. In par-
ticular, it is necessary to refine the value of the ratio of
the lengths A/*A.

Let us compare the calculated values of the quartet
and doublet lengths with the experimental values. We
note first that the quartet length *A for all the potentials
in question is close to the experimental values and
agrees best with the value of ‘A from the second system
of experimental lengths (4.47), (4.49), and (4.55).

The experimental data on the doublet length are less
accurate. The experimental values of the doublet length
are found in the interval of values from 0.1 to 1.0 F.
The values of “A calculated both in the case of a square
well (see Table III) and in the case of a potential with
repulsion'* fal] in this interval. In this connection,
it is of interest to carry out the simultaneous compar-
ison with experiment of the doublet length ’A and of the
triton binding energy ET, the value of which is well
known (ET = 8.482 MeV). In the case of a Hulthen po-
tential and square well, the binding energy ET is too
high. A decrease of Eq, which can be attained by in-
creasing, for example, the singlet effective radius r g4,
corresponds to an increase of *A. Inthe case of a
square well with parameters (c), a value of Eg equal to
the experimental value is reached at r gt ~ 2.9 F. The
doublet length ®A increases in this case to approximately
1 F. Close values were obtained in'**? for the potential
(4.44), which contains repulsion: E = 8.56 MeV, °A
=1.15 F (r gt = 2.80 F, agy =—23.3 F). As shown by
calculations with separable potentialsZ®:1%:™271 a]]ow-
ance for the tensor interaction between the nucleons
leads to the same effect for ET and A as an increase of
the singlet effective radius. Thus, the calculated doub-
let length corresponding to the experimental value of
the binding energy of the triton, like the quartet length,

e
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agrees best with the values of the experimental lengths
(4.47), (4.49), and (4.55).
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