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AT the present time nonlinear effects in semiconduc-
tors and gas-discharge plasmas are attracting more and
more attention by theorists and experimentalists. The
nonlinear effects which arise in the region of frequen-
cies where temporal (frequency) and spatial dispersion
are unimportant are extremely interesting, and also
attenuation (solitons, shock waves, and so forth). Under
these conditions the interaction of the harmonics, which
are being ‘‘generated’’ as a consequence of the non-
linearity, is strong; as a consequence of this the wave
far away from the generator, which was sinusoidal when
emitted, acquires a nonsinusoidal shape.'*’ Turbulences
may also arise in the presence of an instability of one
or another state of the plasma.m

In a semiconductor or gas-discharge plasma there is
a wide frequency interval in which temporal dispersion
plays a major role (see below for further details), as a
consequence of which the temporal harmonics interact
among themselves weakly. Nevertheless, if the damping
is negligible, then this interaction may lead to a number
of new phenomena, which are investigated by nonlinear
optics.”® The problems mentioned above have been
widely discussed in monographs and review articles
(some of which are cited by us).

The nonlinearities connected with the dissipation of
electromagnetic waves occupy a special place. The re-
view article by V. L. Ginzburg and A. V. Gurevich'*! is
devoted to these nonlinearities. However, since its ap-
pearance a number of new results have been obtained,
and these results are stated in the present article,
which may be regarded as a continuation of the review
article®’.

In a semiconductor or gas-discharge plasma, the
nonlinear effects connected with the heating of the gas
by the current carriers become important even for rela-
tively small electric fields. The distribution function of
the electrons, heated by a constant electric field, was
found a rather long time ago.'®

Upon heating the plasma by a variable electric field,
the so-called effects of self-action appear. Interest in
these effects is due to the experimental use of electro-
magnetic fields of large intensity. It was found that in
connection with the investigation of the self-action of
electromagnetic waves, one can also investigate those
properties of a plasma which do not appear in weak
fields.
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By self-action we shall understand the change in the
dielectric constant of the medium due to the influence of
the waves propagating in it. This is connected with the
fact that both the plasma of the current carriers in
semiconductors and a gas-discharge plasma are effec-
tively heated by a relatively weak electric field.'**’

The dielectric constant depends on the temperature of
the current carriers and, consequently, on the propagat-
ing field. Mathematically the problem of the propagation
of electromagnetic waves in a medium reduces to the
determination of the dependence of the current on the
field, the substitution of this current into Maxwell’s
equations, and their solution. We shall follow this
scheme.

I. FUNDAMENTAL EQUATIONS

1. The Kinetic Equation and the Equation of Balance

We shall describe the electrons in the plasma* with
the aid of the distribution function f(p, r, t) where p de-
notes the momentum (quasimomentum) of the electron,

T denotes its coordinate, and t is the time.

If the scattering of energy by the electrons on the
scattering centers is quasielastic (and here we shall
only consider such processes) and if the following condi-
tion on the inhomogeneity of the field is satisfied"*!

i | |

B>

Vo (1.1)
(E denotes the amplitude of the electric wave, w is its
frequency, v is the average thermal velocity of the
electrons, and v denotes the frequency of collisions in-
volving momentum transfer between the electrons and
the scattering centers), then one can represent the dis-
tribution function in the form™“™

foyr )= fole, v, 04 g (e v, o)+,

where |x| < f; (€ denotes the electron energy).

Here and below it is assumed that the dispersion law
of the electrons is quadratic and isotropic, that is,
€ = p/2m.

One can obtain the following system of equations for
fo and x by using well-known methods (see'*™®!):

(1.2)

*In what follows a plasma containing a single type of carrier is con-
sidered (for the sake of definiteness, the carriers are assumed to be
electrons).
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where m is the electron mass, n(e) = 4V2rm*/%'” is the
density of states, h = H/H, H is the external constant
magnetic field, wy = eH /mc, e is the electron charge,
c is the velocity of light in vacuum, v(€) is the frequency
of the collisions connected with momentum transfer be-
tween the electrons and the scattering centers, vg(e) is
the frequency of the collisions connected with energy
transfer, and S¢{fo, fo} is the collision integral describ-
ing electron-electron collisions and having an order of
magnitude vgq(€)fo. Formulas for the frequency vqq(€)
of interelectron collisions are given in article!”’ for
the case of a nondegenerate electron gas, and in arti-
cle®® for the case of a degenerate electron gas.

Expressions for v(€) and vg(€) in semiconductors are
calculated in"’®!, and in a plasma—in'*J,

If the collisions between the electrons and the scat-
tering centers are quasielastic, then vg/v ~ 6 < 1,
where in a plasma 6 ~ m/M* (where M denotes the
mass of the ion or neutral molecule), and in a semicon-
ductor 6 ~ (hwy/€)? (wy denotes the frequency of the
phonon on which energy relaxation occurs).

In the presence of several mechanisms for the trans-
fer of energy and momentum we have

Ve (8) = ; ven (), v(e)= 2 vi(e),

Vey -+ %

(1.3)*

(1.4)

where the summation over k runs over all mechanisms
of energy transfer, and the summation over [ runs over
all mechanisms of momentum transfer.

The term S;{f,, x} is omitted in the second equation
of (1.3); this term describes the electron-electron colli-
sions in the next approximation in 6. This is valid if the
following inequality is satisfied: t-*%

Vee << . (1 . 5)
If in addition to inequality (1.5) the relation**
Voo 2 Ve (1.6)

is also satisfied, then, as follows from (1.3) (also see!*),

the symmetric part of the distribution function f, will be
a Fermi distribution, with an effective temperature @.
From inequalities (1.5) and (1.6) it follows that

ve K ©. (1.m

In this connection, to the zero-order approximation in
ve/w fo will not depend on the time# ****), Thus

o= {1 (40}

(1.8)

where p is the chemical potential.

*[hx] =h X x.
T Nonfulfillment of this condition leads to an error of the order of
unity in the numerical factors of the kinetic coefficients. [°}

**For a nondegenerate electron gas, in connection with the scattering
of energy via acoustic phonons, inequality (1.6) goes over into the cri-
terion of Frohlich and Paranjape. [7]

$1n that case when the wave is circularly polarized, f, does not de-
pend on the time for any arbitrary relation between w and v. {1112]
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The relation between the chemical potential n, the
temperature @, and the electron concentration N is given
by the normalization condition

/%_\ fole, r)n(e)de=N.

u

(1.9)

Condition (1.6) is satisfied for sufficiently large elec-
tron concentrations. However if relation (1.6) does not
hold (the concentration is small), in order to calculate
the kinetic coefficients one can as usual use the Fermi
distribution function with a certain effective tempera-
ture @. In this connection the kinetic coefficients differ
from those obtained upon a rigorous kinetic investiga-
tion by factors of the order of unity. This is connected
with the fact that the kinetic coefficients, which are ex-
pressed in terms of the moments of the distribution
function, are not sensitive to its explicit form."*®! In
what follows, for the calculations we shall use {, in the
form (1.8).

Confirmation of the conclusions reached above fol-
lows from a comparison of the results of article™”? with
the results of articles™®:*®7,

As will be demonstrated below by direct calculations
(also see!’™’), the dielectric constant of a plasma does
not depend on the time if f, does not depend on the time,
Under this assumption the effects associated with fre-
quency multiplication are not present, and monochrom-
atic waves can propagate in the medium.

Since the heating of the electromagnetic field is
damped, the electron temperature @ will decrease in the
direction of propagation of the wave, i.e., a gradient
appears in the electron temperature. Therefore, in ad-
dition to the variable field, an electrostatic field also
appears (thermoeffect), which is associated with this
gradient.*’

Thus, one can represent the electric field E in the
form of the sum of the constant field E; due to the grad-
ient of the electron temperature and the variable field
~ e~iwt Below we shall denote the amplitude of this
field by the letter E. Correspondingly one can represent
X in the form of the sum of the following quantities:

X¢» Which does not depend on the time, and e 1@t
With the aid of x the electric current j and the heat flux
Q are determined by the following formulas:'?***3
J*%TZL‘ZS ey (e)de, Q= 1?:3'" 5 €2y (¢) de.
0 0

We find x from the second equation of the system
(1.3), we substitute it into the first equation of this sys-
tem, and integrate the resulting equation over the mo-
mentum, having multiplied it by 1 and by €. Assuming
that the magnetic field is directed along the direction of
propagation of the electromagnetic wave,t it is conven-
ient to change (see™”’) to normal waves possessing cir-
cular polarization, E = Ex + iEy. It is assumed every-
where below that the wave E = Ey — iEy is propagating
in the plasma. Then we obtain a system consisting of
two transport equations (we note that the system which

(1.10)

*The investigation of such effects is of independent interest. Here
we shall not consider them, referring to articles [2°°21],

t The results are given in articles [1"!8] for an arbitrary orientation
of the magnetic field.
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is thus obtained follows from the condition for solvabil-
ity of the system of equations (1.3)"*):
div jo= 0, }

div Qe - NTwe (8) (8 — 1) =0 (8) u; (1.11)

here the following notation has been introduced (see'®*?):
jc and Q. denote the densities of electric current and of
the heat flux, which are connected with the thermal

e.m.f., where
jo = €2 oBe—eJ  \VIn 0 + h (3 3B — J 3,V In &, h),
Q.=el Bi— J,VInGg -Lh(eJyE{ — J3VIn, h),

’ LT
E¢ =E —— V-,
< (1.12)
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¢ = /T is the dimensionless electron temperature,
33 3
812 miT e} v (z) z2
3N S (0f — 0)24-v%(z)
0

o(D)= — Iogr (1.13)
is the high-temperature conductivity, wg = 47€°N/m is
the Langmuir frequency, x = ¢/T, and u is the absolute
value of the electric field.

As the calculations show,'™®’ the following formulas

hold for v(x) and ve(s):

vi{z) = v (T) 279, ve (0) = voe (T) 971, (1.14)

The values of r, q, vo(T), and vee(T) are determined by
the mechanism responsible for the scattering of the
electrons (see'®'! and also see the table).

The second equation of (1.11) admits a simple phys-
ical interpretation. The term on the right-hand side of
the equation describes the liberation of heat due to the
heating of the electron gas by the field of the wave; the
second term on the left describes the transfer of heat
from the electron subsystem to the lattice, and the first
term on the left describes the heat flux in the electron
gas. Thus, this equation is the equation of energy bal-
ance for the electron subsystem.

Let us transform the equation of balance, having
noted beforehand that in the one-dimensional case which
is being considered here, j., Q., ¢, and the other quan-
tities only depend on a single coordinate (on z).

Let us eliminate the static field E, from the expres-
sion for the heat flux Q.. In a Jongitudinal magnetic
field E.x = Eqy = 0. The z-component of the static cur-
rent j. is therefore equal to zero. This follows from
the first equation of (1.11) and from the absence of a
static current at infinity (we recall that there is no heat-

|
Scattering Mechanism ¥ i 4
Semiconductors
Acoustic vibrations 32 —1/2
Optical vibrations, T < Ty 1 0
Optical vibrations, T > Ty —1/2 —1/2
Piezo-acoustic vibrations 1/2 1/2
Polar semiconductors, scattering by optical
vibrations, T > Ty —1/2 —3/2
Neutral impurities — 0
Charged impurities — 3/2
Dipole impurities ! — 1:2
Plasma
Scattering by ions I —1/2 32
Scattering by molecules | 3/2 —1,2
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ing at infinity). We substitute the thermomagnetic field
E.y found from these conditions into the second equation
of (1.12) and, by taking the one-dimensional nature of
the problem into consideration, we obtain the following
relation for ch = Qy:

Qo= —Tn ()22

(1.15)
where k(¢) denotes the coefficient of electronic thermal
conductivity, and moreover

* (8) = 2,874, (1.16)

and Ao = 4T(%s + q)NT/31rl/2mvo is the thermal conductiv-
ity of the electrons in a weak field,!*®’**
For a completely degenerate electron gas

_NT v(eg) = vo (T) (%)—q \ (1.17)

= 3v(gglm

% (9)

where ¢, denotes the Fermi energy.

Finally, with Eq. (1.15) taken into consideration, we
obtain the equation for the electron temperature from
the second equation of (1.11):

T (9) 20 NTve(8) (0 —1)= —o (9) w2, (1.18)

2. Maxwell’s Equation and the Boundary Conditions

Maxwell’s equation for the amplitude E = E, — iEy
has the form'**!
d2

3 Nw wyg—o—iv(s) dr

ke () E=0, (2.1)
where
Gy (9
Im e(0) :r*—-m;( ),
33 3
= L 3 2
E(ﬁ)TEO_Bl/‘Zn m‘Tzu)%, \' x~ ﬂd!; (2 )
i

here €, denotes the dielectric constant of the lattice
(in the plasma € = 1), and k = w/c.

Maxwell’s equation is nonlinear in virtue of the de-
pendence of the dielectric constant on ®. However, for
semimetals and degenerate semiconductors 8f,/é¢
=—0(e — €o) (0 is the delta-function) correct to
(8/€0)® < 1, and the dielectric constant does not depend
on ®."*! In this connection the fields are described by
the formulas of the linear theory.

Now let us formulate the boundary conditions on the
problem. Let the plasma (semiconductor or gas-dis-
charge) occupy the half- space z > 0; a plane mono-
chromatic wave of frequency w, coming from infinity
(z = ~=), is incident on the plasma at right angles to the
interface (z = 0). Incidence of the wave at some angle
(other than 90°) is not of any interest since the resuits
in this case differ from the results obtained below by a
redefinition of certain constants.”®’ For simplicity we
assume that the region of space z < 0 is filled with a
linear nondissipative medium with an index of refrac-
tion n = 1. Then for z < 0 the wave will have the form

(2.3)

where E, is the amplitude of the incident wave, c is the
velocity of light in vacuum, and R is the coefficient of
reflection. We shall also assume that the temperature
of this medium coincides with the lattice temperature T.
It is assumed below that the characteristic distance
L over which the field changes is much larger than the

E == Ey (¢ + Re %),
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Debye radius d ~ €/(4re’N)*%. As is well known from
the theory of plasmas, upon fulfillment of this inequality
one can regard the plasma as quasineutral. For a semi-
conductor containing carriers of a single sign this means
that at any arbitrary point the charge density of the
electrons (or holes) is equal to the equilibrium density
unless processes of the type of impact ionization, chan-
ges in the recombination coefficient in the field, etc. are
taken into consideration.

From here it follows that the concentration of car-
riers in an impurity semiconductor does not depend on
the coordinates. In a plasma the last assertion is valid
provided the duration At of the pulse is much shorter
than the time Aty for establishing the concentration.!?*’

The case when the concentration depends on the coor-
dinates, which corresponds, upon fulfillment of the con-
dition for quasineutrality L. >> d, to intrinsic semicon-
ductors and plasma with At >> Aty, will not be consid-
ered here, just as semiconductors containing two types
of carriers will not be considered for At < Aty. Also
the case of a layered-inhomogeneous plasma will not be
considered. Readers who are interested in these ques-
tions are referred to'®%,

We assumed above that the wave in the plasma is
circularly polarized. For this to occur, the polarization
of the wave incident on the half-space must also be cir-
cular., We note that in contrast to the linear theory,
where by the superposition of normal waves one can
satisfy the boundary conditions for arbitrary polariza-
tion of the incident wave, for the case of nonlinear
propagation the superposition of normal waves is not a
solution of Maxwell’s equation. Therefore, if the polar-
ization of the incident wave does not coincide with the
polarization of one of the normal waves in the plasma,
the picture becomes complicated.™’ We shall not dwell
on this question here since the results obtained below
remain qualitatively valid even for arbitrary polariza-
tion of the incident wave, !

Since the plasma is semi-bounded, it is necessary to
add to Eqgs. (1.18) and (2.1) the boundary conditions at
the interface z = 0 and for z — «,

The boundary conditions for the field have the usual
form:

E(—0)=E(+0), 220 (0 (2.9)
In the presence of attenuation
lim £ (z) — 0, (2.5)

200

i.e., the heating of the electron gas is absent at infinity;
therefore

lim ¢ (z) — 1.

200

(2.6)

If the wave incident on the half-space has the form
(2.3), then from the boundary conditions (2.4) one obtains
the following expressions for R and for the coefficient
of transmission P:

po B9 _

__2 =1,
Eo T+ °

= (2.7

here { denotes the surface impedance which is defined
by the formula

e E 1 GE(+0)
- @ E(-+0) az

(2.8)
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For || K1

P=2, R=—112

(2.9)
The boundary condition for the electron temperature
on the plane z = 0 is obtained in the following way: let
us integrate Eq. (1.18) term by term with respect to z
from 0 — & to 0 + £ and then let £ tend to zero. Assum-
ing that no surface conductivity is present, we have’®
To ()42 — 1 (8) (0—1) Lo
+5 (2.10)
n=lim NT S ve (8) da.
A

In order to obtain (2.10) it was considered that no
heat fluxes are present in the thermostat (Q(z = 0) = 0).
The sign of 7 is chosen such that the heat fluxes in the
sample were directed outwards. The right-hand side of
Eq. (2.10) describes the inelastic surface mechanism for
the absorption of energy, and n characterizes its effec-
tiveness. Thus, for 7 = 0 (see the second formula of
(2.10)) no specific surface mechanisms exist for the ab-
sorption of energy, but as n — « this mechanism be-
comes so strong that ¢( + 0) = 1, that is, @ (+ 0) = T.

II. THE NORMAL SKIN EFFECT

3. Propagation of Weakly-damped Electromagnetic
Waves

As has already been indicated above, two mechanisms
exist for the removal of energy from the electrons: the
thermal conductivity which is described by the first
term on the left-hand side of Eq. (1.18), and the transfer
of energy to the lattice, which corresponds to the second
term on the left-hand side of this same equation. The
ratio of these terms is of the order of I3 /Lg, where Lg
is the characteristic length over which the temperature
changes, and

le ~ Ve 3.1)

is the energy mean free path, characterizing the trans-
fer of energy to the lattice.

One can neglect the thermal conductivity provided
l3/Lg < 1. In this connection, as follows from Eq.
(1.18), the relation between the temperature and the
field is local and consequently Lg ~ L.

If the inequality

]
iy

~ _’LeT <A, (3.2)
is satisfied, then we shall talk about the normal skin
effect.

By the anomalous skin effect we mean that situation
when the inequality

1KLL (3.3)

is satisfied (I = v/v denotes the mean free path connec-
ted with momentum transfer), because the case L < I is
actually not realized in semiconductors.*’ However, the
inequality (3.3) may be satisfied since from the defini-

*Upon fulfiliment of the inequality L < I, the principal role is
played not by the effects connected with the heating of the electron
gas but by the so-called striction effects. [25:32]




PROPAGATION OF ELECTROMAGNETIC WAVES

tion of lg it follows that I/, ~ 6*/* < 1. From Eq. (1.18)
it follows that for L S lg the gradient term is of the
same order as the remaining terms, and the relation
between the electron temperature and the amplitude of
the wave is nonlocal.

Let us consider the propagation of weakly damped
waves, for which the wavelength is much smaller than
the attenuation length. In this case the nonlinearity due
to the dissipative part of the dielectric constant will be
small. This smallness is guaranteed by the fulfillment
of one of the other inequalities:
@
wjog—o--iv]

(3.4)

l“’jﬂ)lﬂ <t <t

We note that the second inequality is only due to the
smallness of the concentration and may be satisfied for
any arbitrary relation between |w — wy! and v, In what
follows, for this case we shall assume |w —wg| K v.*
For small attenuation, the dielectric constant can be
written as follows:

] ;
‘ o 4i) (7-—-41) wivy

. gl N - v .
£ oEen o (og — o) 31120 (0 — o)z o for log—ol <t
(5N 3.9)
4T (“2‘#“]) ] o2
=gt — 8 for ﬁ(l'
31 2wvy

If the nonlinearity is small, then one can use the
methods developed in the monograph'®*! in order to
solve Maxwell’s equation. Let us consider the case
when the first of the relations (3.5) is satisfied. We
shall seek the solution in the form

. o}
E=u (z) el (hnz-mt)' n'—"l/eo v

(0 — o)’

(3.6)

In virtue of the assumption about the smallness of the
attenuation, u(z) changes slowly in comparison with the
exponential. One can write down the following shortened
equation for u(z) (see'™®’)**

S 0 = ; (3.7)

here
2r (§~q) lvo

3ni/2e (og—w)n

B

is the attenuation in the linear theory.
In the same approximation the equation of balance
appears as follows:

G0t == NTvg 871 (8 — 1), (3.8)

where

5
4 (7 ———q) Vo3

90 T T (o — o)

is the conductivity in the linear theory.

In order for Eq. (3.8) to determine ¢ as a single-
valued monotonic function of u, the inequality r +q >0
must be satisfied. In what follows this inequality will be

*The resonance case w = wy, ¥/wy < | associated with strong at-
tenuation is considered in Sec. 4 of the present review, and for the case
of weak attenuation, it is considered in [!%].

**Here and below it is assumed for simplicity that there is one mech-
anism for the scattering of energy and one mechanism for the scattering
of momentum.

o
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regarded as satisfied {as well as the inequality r - g
> 0).*

The system of equations (3.7) and (3.8) has been in-
vestigated in a series of articles (see'’®*%!) Numer-
ical methods for its solution were developed in arti-
cles®»%! Here we shall be interested in the derivation
of expressions for #(z) and u(z) and the investigation of
their asymptotic behavior.

Eliminating u(z) from Eqs. (3.7) and (3.8), we obtain
the following equation for ¢:

(C+ ¥ —+g—1) 0y & g 0—1-0,  (3.9)
whose solution has the appearance:
i
— 2z = g Mﬂ“_(’i"‘—q_m 991 49, (3.10)

o

where ¢¢ = $(+0). The value of 4, is related to ue(u(+0))
by Eq. (3.8), where it is necessary to express u, in
terms of the amplitude E, of the incident wave. From
Eqgs. (2.3), (2.7), and (3.6) we find this relation and the
coefficient of reflection:

2y p_1-n

2ifo
14n’ _1+n+

(1 -+ n2

851, (3.11)

1y =

For the important case of helical waves (wyg > w,
ws/wwy > 1), assuming that $, > 1 we have

5 1
16T {5 —aq) vow|£ol2 \Toq
ﬁ0_4< (22 ) w14 ) ", (3.12)
3020 gvoeNT
In this connection
1
2l {5 —¢ u)ovocnE
ne 90 1 o (2 5 )§ i (3.13)
(wog)* 3nleal
In the absence of any magnetic field
1 1 1
_{ s’ 1 2o ) (o 98)?
ﬂom(nvoeﬂlrz)gNT ’ ”;(EO”V) ’
(3.14)

2r ,i—q (A4
3n§cm2n
Equation (3.10) determines ¢ as an implicit function of
z and simultaneously with (3.7) determines u(z) in
parametric form. It has not been possible to evaluate
the integral in (3.10) for arbitrary values of r and q.
Therefore let us consider two regions: the region im-
mediately adjacent to the surface z = 0, where in this
region we confine our attention to the case of strong
heating, ¢(z) > 1, and the region in the depths of the
sample where ¢(z) — 1 < 1 (the region of weak heating).
In the region where #(z) > 1, by neglecting unity in
comparison with ¢ in Eq. (3.10), we find the following
result for ¢:
2 - 1/g
=0 (1 t05) (3.15)
As z — « the field is attenuated; therefore the tempera-
ture must tend to unity. Let us find the asymptotic be-
havior of ¢ for large values of z. To this end we isolate
the divergent part from the integral in (3.10), having re-

*The casesr + q < 0 will be considered separately (see Sec. 5).

T Helical waves of large amplitude have been investigated in article ['8].
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written (3.10) in the form
&

. [t ) B —(rtg—1)] g9 1 8-t
_22027“5 [ o1 M- g (3.16)
0

For ¢ — 1 one can replace the upper limit on the integ-
ral in Eq. (3.16) by unity since the integral converges.
Finally we obtain the following expression for ¢(z) as
Z — « (assuming that §, > 1)

=1 4 8, Sge— 207, (3.17)
where

ta
r4+98—(r+g—1)] qq- 1 -
S = exp {5 [t foCho=blgm_ ot a0} (3.18)

is the so-called self-action factor for the tempera-
ture.®! After the temperature is found, E(z) is obtained
from Eqs. (3.6) and (3.7). For ¢(z) > 1 we have

i
= PEe™ (12 g0592) ™, (3.19)

and for ¢(z) -1 <1

E = PE,Sg exp {iknz — &z}, (3.20)
where Sp is the self-action factor for the field,"*’
L)
Sy = exp {i, S %ﬁ‘—i’xq—“mmq -—1]d\‘)} . (3.21)
1
and also for 4, > 1
exp {’j—qqﬂg} >1 for ¢>0,
Se~ { e (3.22)
B, g for ¢<0.

This factor has the following physical meaning: for
large values of z the temperature ¢ of the electron gas
is close to unity, i.e., the nonlinearity is essentially ab-
sent. However, the wave ‘‘remembers’’ that it went
through a strongly nonlinear region near z = 0, The self-
stress factor takes this fact into consideration. From
Egs. (3.20) and {3.22) it is seen that for g > 0 the self-
stress factor increases the field for large values of z in
comparison with the linear case, but for q < 0 it decrea-
ses the field. This is connected with the fact that v(e)
~ € % and for negative values of q the quantity v(€),
and consequently also the attenuation, increase with in-
creasing values of € and the field is attenuated more
rapidly than in the linear theory; for q > 0 the converse
situation occurs.

The characteristic distance over which the field de-
creases in the region of strong heating is given by
L ~ Losd (Lo ~ £5' is the attenuation depth in the
linear theory), i.e., the conclusions reached above re-
main valid.

For q = 0 the expressions for the field given by Egs.
(3.19) and (3.20) together with (3.21) go over into the
usual formula of the theory of the linear skin effect with
exponential damping of the field.

In that case when the second system of inequalities
(3.4) is satisfied, all of the results are obtained by re-
placing q by —q in Egs. (3.7) through (3.22). In this con-
nection, we obtain

i (—.3—‘+41) o}

2
3 evg

n=Ve. , L=L8;%,
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1

<4F (Z+9) atiop )"q
G| — 21— .

(3.23)

3
3“2V0VoeN T

The relation 8, > 1 was used above. For this to hold,
the amplitude of the incident wave must be much larger
than the plasma field:"’

| Eo|> up, (3.24)
where

1
F

2
Up= TuT? ( w«fguon) for helical waves,
% for wy=0; %‘:’:<<1.

From the definition of helical waves it follows that the
plasma field for them is much larger than the one as-
sociated with the propagation of an electromagnetic wave
in the absence of a magnetic field. The normal skin
effect is realized, for example, in InSb with N ~ 10
em™® v ~ 3 x 10" sec™ with T = 10°K for helical waves.
In this connection, at the frequency w = 10! sec™

(H = 10° Oe), one has

© = 10%sec™ (H = 10°0e) L ~ 10~ cm, L ~ 10~ cm.

4. The Propagation of Electromagnetic Waves in Media
with Strong Damping

If the imaginary part of the dielectric constant e(s)
is much larger than the real part, then the electromag-
netic wave will be strongly damped. From (2.2) it fol-
lows that this case is realized upon fulfillment of one of
the two systems of inequalities:

v w30?
0g OHYy

> €0

W == Oy,

or Iy 4.1)
oy =0, %>>1, “;;’—vo>> 2.

The first system corresponds to cyclotron resonance in

media possessing large electron concentrations, and the

second corresponds to low-frequency waves.

Upon fulfillment of the inequalities (4.1), the following
expressions for the dielectric constant are obtained
from Eq. (2.2):
4iT (%4_(1) w39

e= for w=opy, m—‘;{(i,

-

3nfmg‘vo
&I (%4-(]) w3? N
g=—————"—— for osg=0, K>>l'

3:L§uw0
If the first system of inequalities in (4.1) holds, then

the equation of balance and Maxwell’s equation take the
following form:

G009t = NTwyed™ (8 — 1), 4.2)
@RE | giag9 ’
T+ 25 E =0,
where
2r (5-+4) ono} a0 (3 +9) ot (4.3)
1z L7 —2 7,

EZ

’ Go= 3

3nlervy 3nlv,
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One is able to solve the system of equations (4.2) only
in the region #(z) > 1.""'*! Agsuming that $(z) > 1,
from the first equation in (4.2) we determine ¢:

1

a(F ) o T
| a1 s
or 3n2vovoeNT

- (4.4)

’n['(%—*—q) wduy T
0, - ———-;-———— .
31 veN T

Substituting ¢ from (4.4) into the second equation in
(4.2), we have

where

(4.5)

2q

CL caugol (L) E=0.

L]

(4.6)

We recall that u = |E|.
We shall seek the solution of Eq. (4.6) in the form

E:EO'“_*_Kz)—(oc—’rif’y)v (4-7)

where Eq denotes the value of E(z) for z = +0.
Substituting (4.7) into (4.6), equating the powers of
the exponents associated with (1 + xz), and then separat-
ing the real and imaginary parts, we obtain equations
for the determination of @, 8, and x. Finally, for E(z)

we find
1

e LR

E:~2§Eo(1 R 12 z) ‘

[@2r—a) (r—a))’
In the derivation of (4.8) it is assumed that || < 1.
The smallness of ¢ follows from: the penetration depth
in the resonant case is small in comparison with the
wavelength in vacuum, and || is of the order of their
ratio. The expression for ¢ is obtained from the boun-
dary conditions (2.9). It is only necessary to keep in
mind that u,, which appears in ¢,, must be expressed in
terms of E,. Finally for ¢{ and ¢, we have

(4.8)

bef e

N r—a a q

?_7,,#7( r )«’r ((qu07)¥7(i(EO{loe)vT
= r—qy 3 T

(4.9)
1
X | Lol exp { — [arctg (r’;q)z} ,
1
ar(Saq)) ® 1
Co=( (3;1/2 q)) (mggo)‘
exp{—i{—} is the value of ¢ for ¢ =1,
; + 7 (4.10)

n=27 () T () (<5t

After E(z) has been determined (see Eq. (4.8)), the de-
pendence of ¢ on z is obtained from Eq. (4.4):

(4.11)

B =19, ( 1y 8
[2r—q) (r—a)]
If the second system of relations in (4.1) is satisfied,

then expressions for ¢ and ¢, are obtained from Eqgs.
(4.9) and (4.10) by replacing wy by w-

For the derivation of the equation of balance in the
case of the normal skin effect, we neglect the term con-
taining the derivative with respect to the coordinate,
which corresponds to neglecting the spatial derivatives
in the kinetic equation. The condition L. > lg must be
satisfied in order to justify this neglect. In the case of
strong nonlinearity, L. ~ k™*{¢ [, as follows from Eq.
(4.8). Hence follows the inequality for the impedance:
[¢] > klg. On the other hand, from the resonance con-
dition it follows that [{| < 1. Thus, the value of the im-
pedance is bounded, both from above and from below, by
the conditions for the applicability of the theory. For
strong nonlinearity the penetration depth of the wave
deeply into the sample is given by L ~ Lodqg 2 (where
Lo = 1/£, is the penetration depth in the linear theory).
For negative values of q, L. > Lo, but for positive values
ofq, L < L.

The plasma field associated with cyclotron resonance
acquires the form u, = Tw,/el(wi{*v}’*. In InSb with the
following parameters: m = 102 g, N = 10*° ¢m™®,

v =10 sec”!, w = wy = 10" sec*, one finds I
~ 10 cm and L ~ 107 cm.

5. PROPAGATION OF ELECTROMAGNETIC WAVES
IN A PLASMA IN CONNECTION WITH A NONUNIQUE
DEPENDENCE OF THE ELECTRON TEMPERATURE
ON THE AMPLITUDE OF THE FIELD

In connection with specific mechanisms for the trans-
fer of energy and momentum (r + q < 0—superheating
mechanisms), the electron temperature may become a
triple-valued function of the field*’™% (an S-shaped de-
pendence). Such a situation can be realized in a
plasma®® ! and in n-InSb"" (r = 1/2, q = 3/2). This
is associated with the fact that for these mechanisms
the effect of runaway of the electrons™! occurs in the
absence of interelectron collisions, and the frequent
interelectron collisions totally play the role of a re-
straining mechanism, ‘16,3

Thus, the results of this Section are valid only for a
strong interelectron interaction (vge > vg). The
S-shaped dependence of the temperature on the field is
obtained in the following way: for r + q < 0 the function
¥(u), determined from Eqgs. (3.8) or (4.2), will have the
form shown in Fig. 1. However, at sufficiently large
temperatures new scattering mechanisms become im-
portant, as a consequence of which the function $(u) is
deformed into the form shown in Fig. 2 (for more de-




120

tails, see!®!), From Fig. 2 it is clear that in the pres-
ence of superheating mechanisms, the equation of bal-
ance has roots which decrease with increasing values of
u (the falling branch). Similarly™**! one can show that
the falling branch is unstable with respect to small per-
turbations. Only those branches of the curve $(u) are
stable where ¢ increases with increasing values of u,
that is, d¢/du > 0.

For convenience let us rewrite the equation of bal-
ance in the form

D(®)=ut, (5.1)

where D(8) = NT[vg(8)(s ~ 1)/0(9)].
Differentiating (5.1) with respect to ¢, we obtain the
following_ criterion for stability:

ab (9)
e 0.

(5.2)
The transition from stable branches to unstable

branches occurs at temperatures satisfying the condi-

tion du/d# = 0, or what amounts to the same thing,

dD (6)
o5 - =0. (5.3)

The field u corresponding to the transition of the tem-
perature from one branch to the other is determined
from Eq. (5.1) upon substituting the roots of Eq. (5.3)
into it.

Let us consider the change of the electron tempera-
ture as a function of the amplitude u, of the electromag-
netic wave at the boundary, which in turn is determined
by the amplitude E; of the incident field.

In connection with the adiabatic growth of the field
from zero until up < uy, (see Fig. 2), the electron tem-
perature as a function of the field in the interior of the
sample is described by the lower branch AC. For
Uo = Uy the temperature ¢, of the electron gas on the
boundary is changed by a jump from the value 43 to the
value ¢4, omitting the unstable part of the curve CD.
With a further increase of u,, ¢, will be moved to the
right along the curve DF.

Owing to dissipation, with increasing distance z from
the boundary of the sample the electric field is damped
to zero as z — », At the same time the electron tem-
perature will drop, tending to unity. If u, > w,, then at
a certain point z = a#(z) it changes by a jump from ¢,
to ¢, which leads to a discontinuity in the dielectric
constant at this point. The electromagnetic wave is re-
flected from the point of discontinuity of the dielectric
constant. Thus, in the case being investigated the
plasma behaves like a lamina of thickness a. It is
known™*! that the coefficient of reflection R from a
lamina in vacuum is an oscillating function of its thick-
ness. The thickness of the ‘‘lamina’’ must be found
from the equation u(a, E¢) = uy, which determines the
field at the point of breakdown. Thus, a is a function of
E, and u, and therefore R oscillates with variation of Eo.
As is well-known, ! the oscillations of the coefficient
of reflection with the thickness are determined by the
factor e21KNa  The calculation carried out in article!*®
completely confirms the qualitative conclusions reached
above, and moreover, if the wave is weakly damped then
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R has the form*’

i—n ic D%y w29,
R = "—
{ (1+n)? 7 4E3D1/Z (9y)

=T~ h (D () —D (D)2} . (5.4)

In connection with the derivation of Eq. (5.4), it was as-
sumed that the dielectric constant can be represented
in the form

£(8) =n? 5 ia® (0), (5.5)

where the smallness of the parameter o < 1 corre-
sponds to weak damping. From article*®? it follows
that a(Eo) must be determined from the condition

u(a, Eo) = uy cited above. To the zero-order approxi-
mation in o, u(z) for the case of weak damping is des-
cribed by formula (3.7). Changing to the notation of the
present section, for a we have

L)
a=pe {02 (0) 00 o,
b2
The period 6 E, of the oscillations of the coefficient
of reflection in the amplitude of the incident electro-
magnetic wave E; must be determined from the relation

(5.6)

2kn (a(Ey+0E¢) —a (Ey)] = 2n.

Since for the case of weak damping the period of the
oscillations of the coefficient of reflection 6E, < E,,
we obtain the following formula for 6E,:

SE sa® (9g)

0= E({dIn D (8g)/dEy) * (6.7

We note that the period of oscillations of the coeffi-
cient of reflection does not depend on the field u, at the
point of breakdown.

For strong damping the quantity 6 E, is of the order
of or larger than E, and thus does not depend on u,. In
this case the amplitude of the oscillating term substan-
tially decreases with increase of the field by an amount
of the order of the period of the oscillations, in contrast
to Eq. (5.4) where the amplitude does not change. From
what has been said it follows that it is convenient to ob-
serve the oscillations of the coefficient of reflection with
the field for small damping of the wave.

Owing to finite fluctuations of the temperature, the
collapse from the upper branch to the lower branch may
occur not at the point u = uy but at any arbitrary point
of the interval uy = u = uy (see Fig. 2). However, the
results remain valid even in this case, provided u, in
Eq. (5.4) is understood as the field at the point of break-
down.

II. THE ANOMALOUS SKIN EFFECT

6. Small Currents on the Interface

As mentioned in Sec. 3, the anomalous skin effect
corresponds to ! K L S lg. We shall consider the case
of a strong anomalous skin effect, ] < L </,

Let us transform the equation of balance (2.18), hav-
ing made the following change of variables:

i g 1
we | % (9 dﬁ/ { % (0) ao. (6.1)
o 2

*In article [*°] the factor <I>%(t92 )/<I>%(60) was erroneously omitted.
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Then Eq. (2.18) takes the form

P80 () = — 8P (wyue, (6.2)
where
Ny 0 () ve (w)
s Ve pipy =80 ) = 2o (g ) g
{ )20 e e } (6.3)

0
We note that 6 ~ lél. In this connection the boundary
conditions (2.6) and (2.10) are written as follows:

dw

dz

(6.4)

:Y[ﬁ (w)'41]7

Wz —> 1,
2==0

1
where ¥ = 1/T [k(s)ds.
o

In this section we shall investigate the case y < &,
This corresponds to a small heat transfer across the
boundary, when the energy from the electrons is largely
transferred to the lattice.

If y < £, then one can use the method of successive
approximations in order to solve the equation of balance,
neglecting the right-hand side of Eq. (6.2) in the zero-
order approximation and taking it into account after-
wards as a perturbation.

The physical meaning of this consists in the following.
From (6.2) it follows that the characteristic distance
over which the electron temperature falls off is 6. In
virtue of the large anomalous nature of the skin effect,
the field is damped considerably faster. Thus, the
right-hand side of Eq. (6) plays the role of surface
sources of heat, and for the solution of the equation of
balance in the zero-order approximation, one can neglect
it. It is necessary to take the right-hand side into con-
sideration in the next approximation in order to satisfy
the boundary conditions on the plane z = 0.

In connection with the solution of Maxwell’s equations
in the immediate vicinity of the boundary (z < l,) one
can replace the quantity w by w,, since w essentially
doesn’t change over distances of the order of L
(L < lg). After this Maxwell’s equation is a linear
equation with constant coefficients, which one can easily
solve, and moreover the field E near the boundary is
given by

E =:ugexp {iknz —E (wy) z}; (6.5)

here &(wy) is the value of the coefficient of attenuation
for z = 0.

In virtue of what has been said above, we shall seek
the solution of Eq. (6.2) in the form

W (6.6)

where w' is the solution of Eq. (6.2) without anything ap-
pearing on the right-hand side. The equation for w’ is
solved in quadratures:

w’ w 1

w=w +uw’,

— 26z = j dw [ S dw (w)] i

w’ 1
"

(6.7)

The boundary conditions at infinity were taken into con-
sideration in the derivation of (6.7).

The equation
(6.8)

o o
= B @)t 0.

is obtained for w” correct to within quantities ~ 6/¢
<1 (L/lg € 1). Correct to within terms of the order
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of 6/£, one can replace w' in Eq. (6.8) by wo. Substitut-
ing the expression for u = |E| from (6.5) into (6.8) and
solving it, we find

e LY B
- 18 ()

(6.9)

e (wy) 2.

We note that although w"/w’ ~ 6/£ < 1, dw”/dz is of the
same order as dw’/dz.

From the boundary conditions for w, the equation for
the determination of w, is obtained from (6.4) for z = 0

8P (i) | o |2

28 (wh)

u'(', 3}
= l/is[S Qwydw] =y[9 ) —1].  (6.10)
i

We note that if y < §, in formula (6.10) one can neglect
the last term; however if y > 6, then the first term on
the right becomes unimportant.

If there is only one mechanism for the scattering of
energy and one for the scattering of momentum, then
from Eq. (6.1) it follows that*)

w=H2+9_

(6.11)
Returning to the variable 4, in the region where $(z)
> 1 we have

2 ! 2% (87) 2
o= 0; {11—@+g—ns@) T — st (6.12)

where

r—q-2

_t
8(0) =122 +)(24-gi-1)] 288y 2

In virtue of the condition 8/¢ < 1 the second term in
(6.12) is much smaller than the first, and we neglect it
both in the expression for the temperature and in the
calculation of the fields.t’ Then ¢, coincides with the
temperature ¢, of the electrons on the surface.

Now let us consider the region ¢(z) -1 < 1. Pro-
ceeding in analogy to what was done in Section 3 [see
Eqgs. (3.16)—(3.18)], we find

, . 8z
=1 - 39S exp { *W} ’ (613)
where
1 1
- LT it T e R NI 20 DY
Sg=zexp{ — Vif-) [\)Hq ('Ej??* _'W) _ ‘%7‘1]d0}- ]
0

(6.14)

The evaluation of the integral in (6.14) leads to the fol-
lowing estimates for §; for ¢, > 1:

1
5 2fatr

" 2241~ B .
Sy ~ exp {—‘Wr—'ﬁo 2 }>>1 for 27q—r>0;} (6.15)
Sa~1 for 2+g—r<0.

After the temperature ¢(z) of the electron gas is
found, Maxwell’s equation becomes a linear equation
with a coefficient which depends on z. As a consequence
of the inequality & (#o) << £ (#o) the temperature as a
function of z varies slowly in comparison with the elec-
tric field, thanks to which one can use the WKB method
in order to solve Maxwell’s equation.

*For all known scattering mechanisms 2 + q > 0.

TTaking this term into account during the calculation of the fields
leads to corrections ~(8/£)3. [45] We note, however, that in connection
with the investigation of thermomagnetic effects, when derivatives of
the temperature play the major role, the second term inside the curly
brackets in (6.12) is essential.
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In the case of the anomalous skin effect, the solution
may be written down in general form for an arbitrary
dependence of €(¢) on ¢. However, it becomes visible
only in connection with a number of simplifications,
when certain restrictions are imposed on the frequency
and on the magnetic field.

For large values of z in the region where ¢(z) — 1
< 1, the field has the form [see Eq. (3.20)]

E (z) == PESgexp {iknz —E&oz}, (6.16)

where Sg denotes the self-stress factor for the field,
having the same meaning as in the case of the normal
skin-effect.

If the first inequality in (3.4) is satisfied, by expand-
ing €(#) in powers of v and solving Maxwell’s equation by
the WKB method, we obtain the following formula for the
field:

E(z)= PE,exp {iknz—-Eo § -1 d"-} . (6.17)
0

In the region where #(z) > 1, we have

2-g-r

— 2+ g—=r) B (D) )T — 1]}

-9
X (\xp{ilmz +(2—q—ryt §;(; 5 [(

Expressions for Sy in this and the subsequent cases are
cited in article'®’. Here we shall confine our attention
to estimates of Sg for ¢, > 1 for different relations
between r and q. We cite, for example, the expressions
for Sg only in two cases:

l
2@+ et

Z=q-T
3

Sp~exp { — Qo “w ? j<<1
for ¢<0, 2—q—r>0,
; (6.19)
2aor
A
for ¢=>0, 2+-q——r>0. J

Let us present expressions for the temperature on
the boundary, which enters into Egs. (6.17)—(6.19).
From Eq. (6.10), assuming for simplicity that y = 0, we
have

16 122
o=
317 (1 -+ n)2 022

in the case vy =0 and
1 2

{16'[ 3 94qn’r (%—q) avier| Ey |2 fgly } e
by = <

I

2 5 2 .
040" T (5 —1) vie2 | 5 PloeLo} ok

(6.20)

1
2 e
31 opoil?

for helical waves.
If the second inequality of (3.4) is satisfied, then in
absolutely similar fashion for ¢(z) > 1 we find

E = PE,exp {ikz+——1— 5o (6.21)

2-3q—r 6 ()

2-r3q—r

X[(1-@ =q+n8002) T 1]} .

The value of #¢ is determined by the formula

+9) ezwo,g,oe%}ﬁ?ﬁ (6.22)

0= 1/2

3noTe

1 5
{4 VE@+a+nT (54
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Upon fulfillment of inequalities (4.1), when the imag-
inary part of the dielectric constant becomes much lar-
ger than the real part, for the field we havet®’®
2

)L\pl

In the region where $(z) > 1, by substituting the
value of ¢(z) from (6.12) into (6.23), we obtain

B2, (% (=) ) (6.23)
0

£ 2kBo@4q4n
L

{t— (2 q—r) 6 (D) 2] - (6.24)

[ 1—i e AR
< exp L°+2q—ro(0)‘°’° [(1—@2--g—)8(Bg)2) > —1] .
For cyclotron resohance (w = wy) we find
1 1 1
LT {2 C+a+n ol 2e2|Eo\ logLo TFai (7D

0y == | (REELDE ) ] (6.25)

The results for the case of the low-frequency waves
associated with circular polarization of the incident field
are obtained from Eq. (6.25) by replacing wy by w. The
relation between £, and ¢ is given by the formula

1—i o

C’f‘—z— N <<1

(6.26)

7

We note that in virtue of the conditions imposed on r
and q (r + @ > 0), the dependence of ¢, on E; in all cases
is such that #¢ increases with increasing values of E,.
The condition for the anomalous skin effect is satisfied
form=10"°g, v =10 sec™, N= 10" em™, and w = wy
= 10" sec™. In this case I, ~ 3 x 107 cm and
L ~ 107 em

7. The Anomalous Skin Effect Associated with Large
Currents on the Interface

Let us investigate the limiting case of large heat
transfer on the boundary, y 2 &, associated with weak
damping of the electromagnetic wave.

Here it is necessary to distinguish two spatial reg-
ions (z € 67"). In the region immediately adjacent to
the boundary, where one can neglect the energy trans-
ferred to the lattice (z < 67%), the shortened Maxwell’s
equation and the equation of balance are written as fol-
Llows: 148

Pv 80 () ut -0, }

du

= Hiwu=

Taking into account that &(w) = 270(w)/wVey (€p is the
real part of the dielectric constant), and that the ex-
pression for P(w) [see Eq. (6.3)] is written as follows:
P = Po£(W) (Po = nc/27NTv ), we may easily solve the
system (7.1). The answer has the following form:!#¢]

—22=wjo dw[ 5 E(w) dw]—,, ]
' (7.2)
|

J

(7.1)

u=[55, S E(w)dw]

where Wy is the limiting temperature to which w(z)
tends for z >> £7%. If it is assumed that there is a sin-
gle mechanism for the scattering of momentum, then

e

E(w)=tow “*9 (see Section 6). Upon the fulfillment
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of the first condition in (3.4), in the expressions for §
it is necessary to maintain the upper sign, but if the
second condition in (3.4) is satisfied, then the lower
sign holds.

Returning to the variable ¢ and integrating over ¢ in
Eq. (7.2), we obtain

gUFD g5
ﬁiﬂﬁq? giara

PENE

)

o
280 \'
do

(7.3)

———

i

1
8nTholo ]2 (95T ﬁ‘_’n—wq)f pihnz )

E= [(2-%@'74) en
The first formula determines #(z) in implicit form,
and the system of equations (7.6) determines E(2z) in
parametric form. $, must be determined from the boun-
dary condition (6.4) for z = 0, which gives
280Tho
2+g759)
Taking the fact that E(+0) = 2E,/(1 + n) into account, we
obtain one more relation between #o and s, [see the
second formula in (7.3)]:

(BZHTL_ 9T (9, 1), (7.4

2Q--gF qen|Eo2 _ g2targ__gliata
T Ene Theg = i )

(7.5)

We can determine ¢, and ¢, from Egs. (7.4) and (7.5):

8. - 1--4nc | Eg |2
07 Rl )
! (7.6)
2249 F q)nc|Eo 2 ~(:-Lq¢q)]3+”"
o .
b=t [ 14 S R %

For z > ¢! the boundary conditions cease to be
‘‘felt’”” and the expressions for the field and for the tem-
perature are given by formulas (6.7) and (6.17).

We note that the expression for ¢, coincides with the
value of #, determined by formula (6.10), if there the
first term to the right is omitted (this is valid since
y > 0).

Thus, there is an interval z(§) ! < z < 67 where
the expression for the temperature from (7.3) coincides
with the temperature determined by formula (6.7). Thus,
if in the first formula of (7.3) by 4. one understands
#(2z) from (6.7), then formula (7.3) will describe the de-
pendence #(z) over the entire range of variation of z.

In fact, for z << 67 ¥(2z) from Eq. (6.7) reduces to a
constant equal to #.. On the other hand, for z >>» ¢77
we obtain the following expression for ¢(z) from (7.3):

9= 0. — Spexp { — 2,050}, (7.7)
where
L)
. o - L0t 1 \
Sa - (e — ) exp 1 S L (2__17(1;(1)(\:)20-}»:[‘;(,7‘(}27‘qlq) —{)v70]!/1r}J .

Bo

i.e., ¢ reduces to 4., which we replace by ¢(z) from
Eq. (6.7).

In conclusion we note that effects which are closely
related with the ‘“self-action’” were not considered in
the present review, that is, effects involving the non-
linear interaction of waves. These effects are discussed
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