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A T the present t ime nonlinear effects in semiconduc- By self-action we shall understand the change in the
t o r s and gas-discharge p l a s m a s a r e attract ing m o r e and die lectr ic constant of the medium due to the influence of
more attention by theor i s t s and exper imental i s t s . The the waves propagating in it. This is connected with the
nonlinear effects which a r i s e in the region of frequen- fact that both the p lasma of the current c a r r i e r s in
cies where temporal (frequency) and spatial dispers ion semiconductors and a gas-discharge plasma a r e effee-
a r e unimportant a r e extremely interest ing, and also tively heated by a relatively weak e lectr ic field.L*'5i

attenuation (solitons, shock waves, and so forth). Under The die lectr ic constant depends on the temperature of
these conditions the interaction of the harmonics , which the current c a r r i e r s and, consequently, on the propagat-
a r e being " g e n e r a t e d " a s a consequence of the non- ing field. Mathematically the problem of the propagation
linearity, is strong; a s a consequence of this the wave of electromagnetic waves in a medium reduces to the
far away from the generator, which was sinusoidal when determination of the dependence of the current on the
emitted, acquires a nonsinusoidal shape. C 1 ] Turbulences field, the substitution of this current into Maxwell's
may also a r i s e in the presence of an instability of one equations, and thei r solution. We shall follow this
or another state of the plasma. [ 2 ; i scheme.

In a semiconductor or gas-discharge p lasma there i s
a wide frequency interval in which temporal dispers ion I. FUNDAMENTAL EQUATIONS
plays a major role (see below for further details), as a
consequence of which the tempora l harmonics interact l . The Kinetic Equation and the Equation of Balance
among themselves weakly. Nevertheless, if the damping
is negligible, then this interaction may lead to a number W e s h a 1 1 descr ibe the e lectrons in the plasma* with
of new phenomena, which a r e investigated by nonlinear t h e a i d o f t h e distribution function f(p, r, t) where ρ de-
o p t i c s . 1 " The problems mentioned above have been n o t e s t h e momentum (quasimomentum) of the electron,
widely discussed in monographs and review a r t i c l e s r d e n o t e s i t s coordinate, and t is the t ime,
(some of which a r e cited by us). I f t n e scatter ing of energy by the e lectrons on the

The nonlinearit ies connected with the dissipation of scatter ing centers is quasielastic (and h e r e we shall
electromagnetic waves occupy a special place. The r e - ο η 1 ν consider such processes) and if the following condi-
view ar t ic le by V. L. Ginzburg and A. V. GurevichC 4 J i s t i o n o n t h e ^homogeneity of the field i s satisfied 1

devoted to these nonlinearit ies. However, since i ts ap- I E l » =L=|VE (1.1)
pearance a number of new resu l t s have been obtained, ^""*~ v'~
and these resu l t s a r e stated in the present ar t ic le , ( E denotes the amplitude of the e lectr ic wave, ω is i t s
which may be regarded a s a continuation of the review frequency, ν is the average thermal velocity of the
a r t i c l e ' 4 ] e lectrons, and ν denotes the frequency of collisions in-

In a semiconductor or gas-discharge plasma, the v ° l v i n S momentum t rans fer between the e lectrons and
nonlinear effects connected with the heating of the gas t h e scatter ing centers) , then one can represent the dis-
by the current c a r r i e r s become important even for rela- tribution function in the form
tively smal l e lectr ic fields. The distribution function of /(P> *, <•) - /o(e, r, t)-\ χ (ε, r, t)-p- , (1.2)

the e lectrons, heated by a constant e lectr ic field, was w h e r e | χ | « f0 ( e denotes the electron energy),
found a r a t h e r long t ime ago. H e r e a n d b e l o w i t i s a s s u m e d that the dispers ion law

Upon heating the p lasma by a var iable e lec t r ic field, o f t h e e lectrons i s quadratic and isotropic, that is ,
the so-called effects of self-action appear. Interest in e _ p

2 / 2 m
these effects i s due to the experimental use of e lectro- O n e c a n o b t a i n the following system of equations for
magnetic fields of large intensity. It was found that in f o a n d χ b y u s i n g w e i l - k n o w n methods ( s e e t 4 - 6 J ) :
connection with the investigation of the self-action of

electromagnetic waves, one can also investigate those *ln what follows a plasma containing a single type of carrier is con-
proper t ies Of a p lasma which do not appear in weak sidered (for the sake of definiteness, the carriers are assumed to be
fields. electrons).

113
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dt

(1-3)*

where m is the electron mass, n(t) = 4νΤπΐη3/2€ ι/2 is the
density of states, h = Η/Η, Η is the external constant
magnetic field, WJJ = eH/mc, e is the electron charge,
c is the velocity of light in vacuum, u(e) is the frequency
of the collisions connected with momentum transfer be-
tween the electrons and the scattering centers, ve(e) is
the frequency of the collisions connected with energy
transfer, and So{fo, fo} is the collision integral describ-
ing electron-electron collisions and having an order of
magnitude ^ee(e)f0. Formulas for the frequency vee(t)
of interelectron collisions are given in article1-7-1 for
the case of a nondegenerate electron gas, and in arti-
c l e 1 " for the case of a degenerate electron gas.

Expressions for v(e) and ve-(e) in semiconductors are
calculated in15'9-1, and in a plasma— in t 4 J .

If the collisions between the electrons and the scat-
tering centers are quasielastic, then ue/u ~ δ € 1 ,
where in a plasma δ ~ m/M4 (where Μ denotes the
mass of the ion or neutral molecule), and in a semicon-
ductor δ ~ (·ηωη/€)2 (ω η denotes the frequency of the
phonon on which energy relaxation occurs).

In the presence of several mechanisms for the trans-
fer of energy and momentum we have

(ε)-Σ W e ) . v ( 8 ) = 2 v ; ( 8 ) , (1.4)

where the s u m m a t i o n over k runs o v e r al l m e c h a n i s m s

of energy t rans fer , and the summat ion o v e r I runs o v e r

al l m e c h a n i s m s of momentum trans fer .

The term Si{f0, χ} is omitted in the second equation
of (1.3); this term describes the electron-electron colli-
sions in the next approximation in δ. This is valid if the
following inequality is satisfied: t C 1 0 3

v«<o. (1.5)

If in addition to inequality (1.5) the relation**

v«e»ve, (1.6)

is also satisfied, then, as follows from (1.3) (also see'4 3),
the symmetric part of the distribution function f0 will be
a Fermi distribution, with an effective temperature ©.
From inequalities (1.5) and (1.6) it follows that

νβ«ω. (1.7)

In this connection, to the zero-order approximation in
vju> f0 will not depend on the time* [ 1 3 " 1 5 J . Thus

/0(e, r ^ j l + e x p p : - ^ ] } " 1 , (1.8)

where μ is the chemical potential.

* [ h X ] = h X X .

t Nonfulfillment of this condition leads to an error of the order of
unity in the numerical factors of the kinetic coefficients. [6]

**For a nondegenerate electron gas, in connection with the scattering
of energy via acoustic phonons, inequality (1.6) goes over into the cri-
terion of Frohlich and Paranjape. [7]

ί ΐη that case when the wave is circularly polarized, f0 does not de-
pend on the time for any arbitrary relation between ω and v. [ u · 1 2 ]

The relation between the chemical potential μ, the
temperature ©, and the electron concentration Ν is given
by the normalization condition

A3 J Μ ε ' r)n(e)dti-IV. (1.9)
u

Condition (1.6) i s sat i s f ied for suff iciently l a r g e e l e c -

t r o n concentrat ions . H o w e v e r if re la t ion (1.6) d o e s not

hold (the concentrat ion i s smal l ) , in o r d e r to ca lcu late

the k inet ic coef f ic ients one can a s usual u s e the F e r m i

distr ibut ion function with a cer ta in ef fect ive t e m p e r a -

ture ®. In th i s connect ion the k inet ic coef f ic ients differ

f rom t h o s e obtained upon a r i g o r o u s k inet ic inves t iga-

t ion by f a c t o r s of the o r d e r of unity. Th i s i s connected

with the fact that the k inet ic coef f ic ients , which a r e e x -

p r e s s e d in t e r m s of the m o m e n t s of the d istr ibut ion

function, a r e not s e n s i t i v e to i t s expl ic i t form.1-1 6 3 In

what fo l lows, for the ca lcu la t ions w e shal l u s e f0 in the

form (1.8).

Confirmation of the c o n c l u s i o n s reached above fol-

l o w s from a c o m p a r i s o n of the r e s u l t s of article 1- 1 7 3 with

the r e s u l t s of a r t i c l e s 1 1 8 ' 1 9 3 .

A s w i l l be d e m o n s t r a t e d below by d i r e c t ca lcu la t ions

( a l s o s e e 1 1 8 3 ) , the d i e l e c t r i c constant of a p l a s m a d o e s

not depend on the t i m e if f0 d o e s not depend on the t ime.

Under th i s assumpt ion the e f fects a s s o c i a t e d with fre-

quency mult ip l icat ion a r e not p r e s e n t , and monochrom-

at ic w a v e s can propagate in the med ium.

Since the heating of the e l e c t r o m a g n e t i c f ield i s

damped, the e l e c t r o n t e m p e r a t u r e © wi l l d e c r e a s e in the

d i rect ion of propagat ion of the wave, i .e . , a gradient

a p p e a r s in the e l e c t r o n temperature . There fore , in ad-

dition to the var iab le f ield, an e l e c t r o s t a t i c f ield a l s o

a p p e a r s (thermoeffect) , which i s a s s o c i a t e d with t h i s

gradient .* '

Thus, one can represent the electric field Ε in the
form of the sum of the constant field E c due to the grad-
ient of the electron temperature and the variable field
~ β~*ω^. Below we shall denote the amplitude of this
field by the letter E. Correspondingly one can represent
χ in the form of the sum of the following quantities:
χ , which does not depend on the time, and χ-πέ~^ω^·
With the aid of χ the electric current j and the heat flux
Q are determined by the following formulas:'2 2 '2 3 3

- - 3 p — \ εχ (ε) de, Q -, ^ ^ j - j ε*χ (ε) rfe. (1.10)

We find χ from the second equation of the system
(1.3), we substitute it into the first equation of this sys-
tem, and integrate the resulting equation over the mo-
mentum, having multiplied it by 1 and by e. Assuming
that the magnetic field is directed along the direction of
propagation of the electromagnetic wave,t it is conven-
ient to change (see117·1) to normal waves possessing cir-
cular polarization, Ε = E x ± iEy. It is assumed every-
where below that the wave Ε = E x - i E y is propagating
in the plasma. Then we obtain a system consisting of
two transport equations (we note that the system which

*The investigation of such effects is of independent interest. Here
we shall not consider them, referring to articles [ 2 0 2 1 ] .

t The results are given in articles [17'18] for an arbitrary orientation
of the magnetic field.
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is thus obtained follows from the condition for solvabil-
ity of the system of equations (1 .3) u e l ) :

divjc = O, 1
yvrve(i>)(#-l) = a(d)u2; J ( 1 . 1 1 )

h e r e t h e f o l l o w i n g n o t a t i o n h a s b e e n i n t r o d u c e d ( s e e ' 2 3 · 1 ) :

j c a n d Q c d e n o t e t h e d e n s i t i e s o f e l e c t r i c c u r r e n t a n d o f

t h e h e a t f l u x , w h i c h a r e c o n n e c t e d w i t h t h e t h e r m a l

e . m . f . , w h e r e

Q c = eJ,fi'c - / , 2 V In d -!- h (eJ3iK — /32V In # , h ) ,

Ji,= -
16 Τ/2 π ω Η ' η ι 2 Γ

1 ., 3

rf/p

(1.12)

= Θ / Τ is the dimensionless e lectron t e m p e r a t u r e ,

8 1/2! ίη 2Γ"ω§ C ν (χ) χ1 df0 (1.13)

i s the high-temperature conductivity, ω2, = 47re2N/m i s
the Langmuir frequency, χ = e/T, and u i s the absolute
value of the e lectr ic field.

As the calculations show/18-1 the following formulas
hold for v(x) and fe(i>):

. (1.14)

The values of r, q, f o(T), and ^oe(T) a r e determined by
the mechanism responsible for the scatter ing of the
electrons ( s e e C 9 ' 1 0 ] and also see the table).

The second equation of (1.11) admits a simple phys-
ical interpretat ion. The t e r m on the right-hand side of
the equation descr ibes the l iberation of heat due to the
heating of the e lectron gas by the field of the wave; the
second t e r m on the left descr ibes the t rans fer of heat
from the electron subsystem to the lat t ice, and the first
t e r m on the left descr ibes the heat flux in the electron
gas. Thus, this equation is the equation of energy bal-
ance for the electron subsystem.

Let us t ransform the equation of balance, having
noted beforehand that in the one-dimensional case which
is being considered h e r e , j c , Q c , ύ, and the other quan-
t i t ies only depend on a single coordinate (on z).

Let us eliminate the static field E c from the expres-
sion for the heat flux Q c . In a longitudinal magnetic
field E c x = E C y = 0. The z-component of the static cur-
rent j c i s therefore equal to z e r o . This follows from
the first equation of (1.11) and from the absence of a
static current at infinity (we recal l that there i s no heat-

Scattering Mechanism

Semiconductors
Acoustic vibrations
Optical vibrations, Τ < T d

Optical vibrations, Τ > T^
Piezo-acoustic vibrations
Polar semiconductors, scattering by optical

vibrations, Τ > Td
Neutral impurities
Charged impurities
Dipole impurities

Plasma

Scattering by ions
Scattering by molecules

•

3 ' 2

1

- 1 / 2

1 / 2

— 1 / 2

—

—

—

— 1 / 2

3 / 2

— 1 / 2

0

- 1 / 2

1 / 2

- 3 / 2

0

3 / 2

1 : 2

3 / 2

— 1 / 2

i n g a t i n f i n i t y ) . W e s u b s t i t u t e t h e t h e r m o m a g n e t i c f i e l d

E c z f o u n d f r o m t h e s e c o n d i t i o n s i n t o t h e s e c o n d e q u a t i o n

o f ( 1 . 1 2 ) a n d , b y t a k i n g t h e o n e - d i m e n s i o n a l n a t u r e o f

t h e p r o b l e m i n t o c o n s i d e r a t i o n , w e o b t a i n t h e f o l l o w i n g

r e l a t i o n f o r Q c z = Q z :

&=-Γκ (*)•£-, ( 1 . 1 5 )

where κ(ι?) denotes the coefficient of electronic thermal
conductivity, and moreover

χ(*) = λο»
1+', (1.16)

and λ 0 = 4 Γ ( % + q)NT/37r l / 2m^ 0 i s the thermal conductiv-
ity of the electrons in a weak f i e l d . " 8 ' 2 "

F o r a completely degenerate electron gas

where e 0 denotes the F e r m i energy.
Finally, with Eq. (1.15) taken into consideration, we

obtain the equation for the e lectron tempera ture from
the second equation of (1.11):

T-^-v. (•&) -^- — NT\e (*)(#— 1)= —σ(Ο)ϋ2. (1-18)

2. M a x w e l l ' s Equation and the Boundary Condit ions

Maxwell's equation for the amplitude Ε = Ε χ - i E y

has the form L 1 8 ]

where

tPE + k2e (») Ε = 0, (2.1)

v ' ω

3 3

λ/2 η m"T issk j*

ΛΌ> ) ω / f — ω — iv {x) dx

S-dx;

( 2 . 2 )

h e r e e 0 d e n o t e s t h e d i e l e c t r i c c o n s t a n t o f t h e l a t t i c e

(in the p lasma e 0 = 1), and k = ω/c.
Maxwell's equation i s nonlinear in virtue of the de-

pendence of the die lectr ic constant on Θ. However, for
semimeta l s and degenerate semiconductors 8fo/Se
= —6(e — €0) (6 i s the delta-function) correc t to
(®Ao)2 *C 1, and the dielectr ic constant does not depend
on ®.ί181 In this connection the fields a r e described by
the formulas of the l inear theory.

Now let us formulate the boundary conditions on the
problem. Let the p lasma (semiconductor or gas-dis-
charge) occupy the half-space ζ > 0; a plane mono-
chromatic wave of frequency ω, coming from infinity
(z = —00), is incident on the p lasma at right angles to the
interface (z = 0). Incidence of the wave at some angle
(other than 90°) i s not of any in teres t since the r e s u l t s
in this case differ from the r e s u l t s obtained below by a
redefinition of cer ta in constants. ' 2 4 · 1 F o r simplicity we
a s s u m e that the region of space ζ < 0 i s filled with a
l inear nondissipative medium with an index of refrac-
tion η = 1. Then for ζ < 0 the wave will have the form

£,-£ 0 (e -rite ), (Z.J)

where E o is the amplitude of the incident wave, c i s the
velocity of light in vacuum, and R i s the coefficient of
reflection. We shall also a s s u m e that the t e m p e r a t u r e
of this medium coincides with the lat t ice tempera ture T.

It i s assumed below that the c h a r a c t e r i s t i c distance
L over which the field changes is much l a r g e r than the
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Debye radius d ~ e/(4ire2N) l/2. As is well known from
the theory of plasmas, upon fulfillment of this inequality
one can regard the plasma as quasineutral. For a semi-
conductor containing carriers of a single sign this means
that at any arbitrary point the charge density of the
electrons (or holes) is equal to the equilibrium density
unless processes of the type of impact ionization, chan-
ges in the recombination coefficient in the field, etc. are
taken into consideration.

From here it follows that the concentration of car-
r iers in an impurity semiconductor does not depend on
the coordinates. In a plasma the last assertion is valid
provided the duration At of the pulse is much shorter
than the time Atj^ for establishing the concentration.'25·1

The case when the concentration depends on the coor-
dinates, which corresponds, upon fulfillment of the con-
dition for quasineutrality L ^ d, to intrinsic semicon-
ductors and plasma with At ^> Atjj, will not be consid-
ered here, just as semiconductors containing two types
of carriers will not be considered for At <C Atjj. Also
the case of a layered- inhomogeneous plasma will not be
considered. Readers who are interested in these ques-
tions are referred t o t 2 5 " 2 9 J .

We assumed above that the wave in the plasma is
circularly polarized. For this to occur, the polarization
of the wave incident on the half-space must also be cir-
cular. We note that in contrast to the linear theory,
where by the superposition of normal waves one can
satisfy the boundary conditions for arbitrary polariza-
tion of the incident wave, for the case of nonlinear
propagation the superposition of normal waves is not a
solution of Maxwell's equation. Therefore, if the polar-
ization of the incident wave does not coincide with the
polarization of one of the normal waves in the plasma,
the picture becomes complicated. t30] We shall not dwell
on this question here since the results obtained below
remain qualitatively valid even for arbitrary polariza-
tion of the incident wave.'30-1

Since the plasma is semi-bounded, it is necessary to
add to Eqs. (1.18) and (2.1) the boundary conditions at
the interface ζ = 0 and for ζ — » .

The boundary conditions for the field have the usual
form:

F o r « 1

( - 0 ) _ δΕ( + 0)
dz " dz

In the presence of attenuation

lim E(z)

(2.4)

(2.5)

i .e., the heating of the electron gas i s absent at infinity;
therefore

lim (2.6)

If the wave incident on the half-space has the form
(2.3), then from the boundary conditions (2.4) one obtains
the following express ions for R and for the coefficient
of t ransmiss ion P :

ρ ^
2ζ

1+ζ

>• t ( 2 . 7 )

h e r e ζ denotes the surface impedance which i s defined

by the formula

' " " ϊ Γ ϊ Τ + o j - — J z — · \iX)

Ρ = 2ζ, Λ = _ 1 + 2ζ. (2.9)

The boundary condition for the e l e c t r o n t e m p e r a t u r e
on the plane ζ = 0 i s obtained in the following way: let
us integrate Eq. (1.18) t e r m by t e r m with respect to ζ
from 0 - ξ to 0 + ξ and then let ξ tend to zero. Assum-
ing that no surface conductivity i s present , we have'3 1·1

fη = lim NT f ve (») dz.
E-0 J.

(2.10)

In o r d e r to obtain (2.10) it w a s c o n s i d e r e d that no
heat f luxes a r e p r e s e n t in the thermostat (Q(z s. 0) = 0).
The sign of η i s chosen such that the heat fluxes in the
sample were directed outwards. The right-hand side of
Eq. (2.10) d e s c r i b e s the inelast ic surface mechanism for
the absorption of energy, and η charac ter izes i t s effec-
tiveness. Thus, for η = 0 (see the second formula of
(2.10)) no specific surface mechanisms exist for the ab-
sorption of energy, but a s η -— °° this mechanism be-
comes so strong that t» ( + 0) = 1, that i s , © (+ 0) = T.

II. THE NORMAL SKIN EFFECT

3. Propagation of Weakly-damped Electromagnetic
Waves

As has already been indicated above, two mechanisms
exist for the removal of energy from the electrons: the
thermal conductivity which is described by the first
t e r m on the left-hand side of Eq. (1.18), and the transfer
of energy to the latt ice, which corresponds to the second
t e r m on the left-hand side of this same equation. The
rat io of these t e r m s i s of the o r d e r of 2 e / l - 4 , where L@
is the character i s t ic length over which the tempera ture
changes, and

i s the energy m e a n free path, character i z ing the t r a n s -
fer of energy to the la t t i ce .

One can neg lec t the thermal conductivity provided
i g / L g <C 1. In th i s connect ion, a s fo l lows from Eq.
(1.18), the re lat ion between the t e m p e r a t u r e and the
field i s l o c a l and consequent ly Lg, ~ L.

If the inequality

L%
(3.2)

i s satisfied, then we shall talk about the normal skin
effect.

By the anomalous skin effect we mean that situation
when the inequality

l<L*cle (3.3)

i s satisfied (I = ~v/v denotes the mean free path connec-
ted with momentum transfer) , because the case L < I i s
actually not realized in semiconductors.•> However, the
inequality (3.3) may be satisfied since from the defini-

*Upon fulfillment of the inequality L < ', the principal role is
played not by the effects connected with the heating of the electron
gas but by the so-called striction effects. [2S>32]



PROPAGATION OF E L E C T R O M A G N E T I C W A V E S 117

tion of le it follows that l/le ~ δι/2 «C 1. From Eq. (1.18)

it follows that for L is Ze the gradient term is of the

same order as the remaining terms, and the relation

between the electron temperature and the amplitude of

the wave is nonlocal.

Let us consider the propagation of weakly damped

waves, for which the wavelength is much smaller than

the attenuation length. In this case the nonlinearity due

to the dissipative part of the dielectric constant will be

small. This smallness is guaranteed by the fulfillment

of one of the other inequalities:

|ω —ω Η | «ι. i)ff- ω-· iv I (3.4)

We note that the second inequality is only due to the
smallness of the concentration and may be satisfied for
any a r b i t r a r y relat ion between |ω — OJJJI and v. In what

follows, for this case we shall assume |ω — ωρίΙ <C ν.*

For small attenuation, the dielectric constant can be

written as follows:

: ε° Γ οι (ωΗ - ω) "^ 3π1/2ο) (ωΗ~ ω)2

- * f o r 4 - «

' for | ω Η —ω|

«Γ (|.
(3.5)

If the nonlinearity is small, then one can use the

methods developed in the monograph133·1 in order to

solve Maxwell's equation. Let us consider the case

when the first of the relations (3.5) is satisfied. We

shall seek the solution in the form

(3.6)

In virtue of the assumption about the smallness of the
attenuation, u(z) changes slowly in comparison with the
exponential. One can write down the following shortened
equation for u(z) (see[34]):**

« = 0: (3·7)du
IT

here

l-o—-«I Kvo

is the attenuation in the linear theory.

In the same approximation the equation of balance

appears as follows:

d'-1 (θ - 1), (3.8)

w h e r e

/ — ω ) ϋ

i s the conductivity in the l i n e a r theory.

In o r d e r for Eq. (3.8) to d e t e r m i n e t> a s a s ing le-

valued monotonic function of u, the inequal ity r + q > 0

must be sat i s f ied . In what fo l lows t h i s inequal ity wi l l be

*The resonance case ω = ω Η , ι>/ωΗ < 1 associated with strong at-
tenuation is considered in Sec. 4 of the present review, and for the case
of weak attenuation, it is considered in [ l s ] .

"Here and below it is assumed for simplicity that there is one mech-
anism for the scattering of energy and one mechanism for the scattering
of momentum.

regarded a s sa t i s f i ed ( a s w e l l a s the inequality r - q

> 0 ) . *

The s y s t e m of equat ions (3.7) and (3.8) has been in-

v e s t i g a t e d in a s e r i e s of a r t i c l e s ( s e e c i 3 ' 3 4 ' 3 5 ] ) . Numer-

i c a l m e t h o d s for i t s so lut ion w e r e developed in art i-

c l e s ' 3 4 ' 3 5 3 . H e r e w e shal l be i n t e r e s t e d in the der ivat ion

of e x p r e s s i o n s for ,?(z) and u(z) and the invest igat ion of

t h e i r a s y m p t o t i c behavior.

El iminat ing u(z) from Eqs . (3.7) and (3.8), we obtain

the fol lowing equation for rf:

^ 1 ) = Ο, (3.9)

(3.10)

w h o s e so lut ion h a s the appearance:

2|oZ . g-01

w h e r e * 0 = t>(+0). The va lue of Jo i s re lated to u o (u(+0))

by Eq. (3.8), where it i s n e c e s s a r y to e x p r e s s u 0 in

t e r m s of the amplitude E o of the incident wave. F r o m

E q s . (2.3) , (2.7) , and (3.6) w e find t h i s re lat ion and the

coeff ic ient of re f lect ion:

«o = -

F o r t h e i m p o r t a n t c a s e o f h e l i c a l w a v e s ( O > H

t> l ) , t > a s s u m i n g t h a t t ? 0 > 1 w e h a v e

6Γ ( γ -

I n t h i s c o n n e c t i o n

2Γ \ 2 / °

(3.11)

(3.12)

(3.13)

In the a b s e n c e of any magnet ic f ield

0 "

2Γ -τ- '
(3.14)

Equation (3.10) d e t e r m i n e s $ a s an impl ic i t function of

ζ and simultaneously with (3.7) de termines u(z) in

p a r a m e t r i c form. It has not been possible to evaluate

the integral in (3.10) for a r b i t r a r y values of r and q.

Therefore let u s consider two regions: the region im-

mediately adjacent to the surface ζ = 0, where in this

region we confine our attention to the case of strong

heating, ύ(ζ) 3> 1, and the region in the depths of the

sample where <?(z) — 1 <C 1 (the region of weak heating).

In the region where ii>(z) 3> 1, by neglecting unity in

comparison with •& in Eq. (3.10), we find the following

result for ύ:

ο-Μι-^ϊ.*·.)1". (3.15)
As ζ — oo the field is attenuated; therefore the tempera-

t u r e must tend to unity. Let us find the asymptotic be-

havior of ti> for large values of z. To this end we isolate

the divergent par t from the integral in (3.10), having re-

*The cases r ± q < 0 will be considered separately (see Sec. 5).

t Helical waves of large amplitude have been investigated in article [1 8].
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written (3.10) in the form

^ . (3.16)

F o r ,«> — 1 one can replace the upper l imit on the integ-
ra l in Eq. (3.16) by unity since the integral converges.
Finally we obtain the following express ion for t»(z) a s
ζ — °° (assuming that ύ0 ^ 1)

e-, (3.17)

where

m ! (3.18)

is the so-called self-action factor for the tempera-
t u r e . U 8 J After the temperature i s found, E(z) i s obtained
from Eqs. (3.6) and (3.7). F o r J>(z) » l w e have

(3.19)~*ϊ

and for J>(z) - K l

(3.20)

where SE is the self-action factor for the field,

and also for t>0

L3il

for

for ? < 0 .
(3.22)

This factor has the following physical meaning: for
large values of ζ the temperature ,? of the electron gas
i s close to unity, i .e. , the nonlinearity i s essentially ab-
sent. However, the wave " r e m e m b e r s " that it went
through a strongly nonlinear region near ζ = 0. The self-
s t r e s s factor takes this fact into consideration. F r o m
Eqs. (3.20) and (3.22) it is seen that for q > 0 the self-
s t r e s s factor i n c r e a s e s the field for large values of ζ in
comparison with the l inear case, but for q < 0 it decrea-
ses the field. This is connected with the fact that v(e)
~ e~1 and for negative values of q the quantity ί'(ε),
and consequently a lso the attenuation, increase with in-
creasing values of € and the field i s attenuated more
rapidly than in the l inear theory; for q > 0 the converse
situation occurs .

The charac ter i s t ic distance over which the field de-
c r e a s e s in the region of strong heating is given by
L ~ LOi>q (Lo ~ ξό1 i s the attenuation depth in the
l inear theory), i .e., the conclusions reached above re-
main valid.

F o r q = 0 the express ions for the field given by Eqs.
(3.19) and (3.20) together with (3.21) go over into the
usual formula of the theory of the l inear skin effect with
exponential damping of the field.

In that case when the second system of inequalities
(3.4) i s satisfied, all of the resu l t s a r e obtained by re-
placing q b y - q in Eqs. (3.7) through (3.22). In this con-
nection, we obtain

η =-- Vs>o< So =«•(-!•+,)•

1
Γ-ς

( 3 . 2 3 )

The relation ^ 0 ^> 1 was used above. F o r this to hold,
the amplitude of the incident wave must be much l a r g e r
than the p lasma field: W J

,\>up, (3.24)

w h e r e

l^T ( vjaf) f ° r helical waves,

for ωΗ = (Γ
'oe« νοω

From the definition of helical waves it follows that the
plasma field for them is much larger than the one as-
sociated with the propagation of an electromagnetic wave
in the absence of a magnetic field. The normal skin
effect is realized, for example, in InSb with Ν ~ 101β

3 " 1
cm"3, ν ,

3 x 10" sec"1 with Τ = 10°Κ for helical waves.In this connection, at the frequency ω = 101 1 sec" 1

(H = 103 Oe), one has

ω = M F s e c " 1 ^ = I03oe) h~ 10-2 cm, L ~ 10-1 cm.

4. The Propagation of Electromagnetic Waves in Media
with Strong Damping

If the imaginary p a r t of the die lectr ic constant e(tf)
i s much l a r g e r than the rea l par t , then the electromag-
netic wave will be strongly damped. From (2.2) it fol-
lows that this case i s realized upon fulfillment of one of
the two sys tems of inequalities:

o r

ω« = 0, ^ - > 1 ,

ωΗν 0

ων0

( 4 . 1 )

T h e f i r s t s y s t e m c o r r e s p o n d s t o c y c l o t r o n r e s o n a n c e i n

m e d i a p o s s e s s i n g l a r g e e l e c t r o n c o n c e n t r a t i o n s , a n d t h e

s e c o n d c o r r e s p o n d s t o l o w - f r e q u e n c y w a v e s .

U p o n f u l f i l l m e n t o f t h e i n e q u a l i t i e s ( 4 . 1 ) , t h e f o l l o w i n g

e x p r e s s i o n s f o r t h e d i e l e c t r i c c o n s t a n t a r e o b t a i n e d

f r o m E q . ( 2 . 2 ) :

for ω = ωΗ, -^-
3JI2<I>HV0

for

If the f irst system of inequalities in (4.1) holds, then
the equation of balance and Maxwell's equation take the
following form:

— 1),

where

(4.2)

(4.3)

3JI2V
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One is able to solve the system of equations (4.2) only
in the region ύ(ζ) > i . t l 7 > 1 8 J Assuming that ύ(ζ) » 1,
from the first equation in (4.2) we determine J:

or

where

(4.4)

(4.5)

Substituting ύ from (4.4) into the second equation in
(4.2), we have

^ + 2 i m { ~ ) -E = 0. (4.6)

We r e c a l l t h a t u = | E | .
We s h a l l s e e k t h e s o l u t i o n of E q . (4.6) i n t h e f o r m

£ = £0-<l + w ) - t a + " " . (4.7)

where E o denotes the value of E(z) for ζ = +0.
Substituting (4.7) into (4.6), equating the powers of

the exponents associated with (1 + κζ), and then separat-
ing the rea l and imaginary p a r t s , we obtain equations
for the determination of α , β , and κ. Finally, for E(z)
we find

Ε-2ζΕα

L+^ [ r ( r -, ) 1 z (4-8)

In the derivation of (4.8) it i s assumed that | ζ | <C 1.
The smal lness of ζ follows from: the penetrat ion depth
in the resonant case i s small in comparison with the
wavelength in vacuum, and | £ | i s of the o r d e r of their
rat io. The express ion for ζ i s obtained from the boun-
dary conditions (2.9). It is only necessary to keep in
mind that u0, which appears in £0, must be expressed in
t e r m s of E o . Finally for £ and ύ0 we have

exp I — i~\ i s the value of «» for i> = 1,

After E(z) has been determined (see Eq. (4.8)), the de-
pendence of i> on ζ is obtained from Eq. (4.4):

(4.11)

If the second system of re lat ions in (4.1) i s satisfied,
then express ions for ζ and t>0

 a r e obtained from Eqs.
(4.9) and (4.10) by r e p l a c i n g COJJ b y ω ·

For the derivation of the equation of balance in the
case of the normal skin effect, we neglect the t e r m con-
taining the derivative with respect to the coordinate,
which corresponds to neglecting the spatial derivatives
in the kinetic equation. The condition L ^> le must be
satisfied in order to justify this neglect. In the case of
strong nonlinearity, L ~ k~1\Q |, a s follows from Eq.
(4.8). Hence follows the inequality for the impedance:

ζ I 2> kle. On the other hand, from the resonance con-
dition it follows that | £ | <C 1. Thus, the value of the im-
pedance i s bounded, both from above and from below, by
the conditions for the applicability of the theory. F o r
strong nonlinearity the penetrat ion depth of the wave
deeply into the sample i s given by L ~ LOi?"cr('/ (where
Lo = l/ξο is the penetration depth in the l inear theory).
F o r negative values of q, L ^> L o, but for positive values
of q, L <S Lo.

The p lasma field associated with cyclotron resonance
i/2. In InSb with theacquires the form u p = Τω ο /βΖ ο θ *

following p a r a m e t e r s : m = 10"28 '

sec ω =
10 cm and L

Η

10" 2 c m .

, Ν = 10 1 5 cm" 3 ,
one finds lp

5. PROPAGATION OF ELECTROMAGNETIC WAVES
IN A PLASMA IN CONNECTION WITH A NONUNIQUE
D E P E N D E N C E OF THE ELECTRON T E M P E R A T U R E
ON THE AMPLITUDE OF THE F I E L D

In c o n n e c t i o n w i t h s p e c i f i c m e c h a n i s m s f o r t h e t r a n s -
f e r of e n e r g y a n d m o m e n t u m ( r ± q < 0 — s u p e r h e a t i n g
m e c h a n i s m s ) , t h e e l e c t r o n t e m p e r a t u r e m a y b e c o m e a
t r i p l e - v a l u e d funct ion of t h e f i e l d [ 3 7 * 4 0 J (an S-shaped d e -
p e n d e n c e ) . Such a s i t u a t i o n c a n b e r e a l i z e d i n a
p l a s m a C 3 9 " 4 0 ] a n d i n n - I n S b t 4 1 ] ( r = 1/2, q = 3/2) . T h i s
i s a s s o c i a t e d wi th t h e fact t h a t f o r t h e s e m e c h a n i s m s
t h e effect of r u n a w a y of t h e e l e c t r o n s ' * 2 · 1 o c c u r s i n t h e
a b s e n c e of i n t e r e l e c t r o n c o l l i s i o n s , and t h e f r e q u e n t
i n t e r e l e c t r o n c o l l i s i o n s t o t a l l y p l a y t h e r o l e of a r e -
s t r a i n i n g m e c h a n i s m . 1 1 6 ' 3 8 · 1

T h u s , t h e r e s u l t s of t h i s S e c t i o n a r e v a l i d only f o r a
s t r o n g i n t e r e l e c t r o n i n t e r a c t i o n (vee S> ve). T h e
S-shaped d e p e n d e n c e of t h e t e m p e r a t u r e on t h e field i s
o b t a i n e d i n t h e fol lowing w a y : f o r r ± q < 0 t h e f u n c t i o n
t?(u), d e t e r m i n e d f r o m E q s . (3.8) o r (4.2), wi l l h a v e t h e
f o r m shown i n F i g . 1. H o w e v e r , a t su f f ic ient ly l a r g e
t e m p e r a t u r e s new s c a t t e r i n g m e c h a n i s m s b e c o m e i m -
p o r t a n t , a s a c o n s e q u e n c e of w h i c h t h e funct ion i>(u) i s
d e f o r m e d i n t o t h e f o r m s h o w n in F i g . 2 ( for m o r e d e -

FIG. 1 FIG. 2
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t a i l s , s e e ' 3 8 · 1 ) . F r o m Fig . 2 it i s c l e a r that in the p r e s -
e n c e of superheat ing m e c h a n i s m s , the equation of bal-
a n c e h a s r o o t s which d e c r e a s e with i n c r e a s i n g v a l u e s of
u (the fal l ing branch). S i m i l a r l y 1 4 3 3 one can show that
the fal l ing branch i s unstable with r e s p e c t to s m a l l per-
turbat ions. Only t h o s e branches of the curve rf(u) a r e
stab le w h e r e i? i n c r e a s e s with i n c r e a s i n g v a l u e s of u,
that i s , dt»/du > 0 .

F o r c o n v e n i e n c e l e t u s r e w r i t e the equation of bal-
a n c e in the form

0 ( 0 ) = u\ (5.1)

where D(,s>) = NT[^e(i>)(i> - 1)/σ(ύ)].
Differentiating (5.1) with respect to ^, we obtain the

following cr i ter ion for stability:

iB-W^n (5.2)

The t ransi t ion from stable branches to unstable
branches occurs at t e m p e r a t u r e s satisfying the condi-
tion du/d!» = 0, or what amounts to the same thing,

- = o. (5.3)

The field u corresponding to the transit ion of the tem-
p e r a t u r e from one branch to the other i s determined
from Eq. (5.1) upon substituting the roots of Eq. (5.3)
into it.

Let us consider the change of the electron tempera-
t u r e a s a function of the amplitude u 0 of the electromag-
netic wave at the boundary, which in turn i s determined
by the amplitude E o of the incident field.

In connection with the adiabatic growth of the field
from zero until u0 < u^ (see Fig. 2), the e lectron tem-
p e r a t u r e as a function of the field in the inter ior of the
sample i s described by the lower branch AC. F o r
u 0 = u b the temperature ύ0 of the electron gas on the
boundary is changed by a jump from the value j 3 to the
value «>4, omitting the unstable part of the curve CD.
With a further increase of u0, rf0 will be moved to the
right along the curve D F .

Owing to dissipation, with increas ing distance ζ from
the boundary of the sample the e lectr ic field i s damped
to z e r o a s ζ — °°. At the same t ime the e lectron tem-
p e r a t u r e will drop, tending to unity. If Uo > u b , then at
a certain point ζ = a<?(z) it changes by a jump from ϋ2

to «»ι, which leads to a discontinuity in the die lectr ic
constant at this point. The electromagnetic wave i s r e -
flected from the point of discontinuity of the dielectr ic
constant. Thus, in the case being investigated the
plasma behaves l ike a lamina of thickness a. It i s
known" 4 J that the coefficient of reflection R from a
lamina in vacuum is an oscillating function of i t s thick-
ness . The thickness of the " l a m i n a " must be found
from the equation u(a, Eo) = u a , which determines the
field at the point of breakdown. Thus, a i s a function of
Eo and u a and therefore R osci l lates with variation of E o .
As i s well-known, t 4 4 : l the oscil lations of the coefficient
of reflection with the thickness a r e determined by the
factor e 2 i k n a . The calculation carr ied out in ar t ic le" 5 · 1

completely confirms the qualitative conclusions reached
above, and moreover, if the wave is weakly damped then

R has the form*'

f Φ №ο)
1 (l+n)2

uld>"2(»2) (Φ (d,) - Φ (#,) (5.4)

In connection with the derivation of Eq. (5.4), it was as-
sumed that the die lectr ic constant can be represented
in the form

E(d) = na-Wot<D(d), (5.5)

where the smal lness of the p a r a m e t e r a -C 1 c o r r e -
sponds to weak damping. F r o m a r t i c l e [ 4 5 J it follows
that a(E0) must be determined from the condition
u(a, Eo) = u a cited above. To the zero-order approxi-
mation in a, u(z) for the case of weak damping i s des-
cribed by formula (3.7). Changing to the notation of the
present section, for a we have

Κ (5.6)
βζ

The period δΕο of the oscil lations of the coefficient
of reflection in the amplitude of the incident electro-
magnetic wave Eo must be determined from the relation

2kn [a (Eo + δΕ0) - a (£„)] = 2n.

Since for the c a s e of weak damping the per iod of the
o s c i l l a t i o n s of the coeff icient of re f lect ion 6 E 0 <C E o ,
we obtain the fol lowing formula for 6 E 0 :

ftp παΦ^ο) (5_7)

We note that the period of oscil lations of the coeffi-
cient of reflection does not depend on the field u a at the
point of breakdown.

F o r strong damping the quantity 6 E o i s of the o r d e r
of o r l a r g e r than E o and thus does not depend on u a . In
this case the amplitude of the oscillating t e r m substan-
tially d e c r e a s e s with increase of the field by an amount
of the o r d e r of the period of the oscil lations, in contrast
to Eq. (5.4) where the amplitude does not change. F r o m
what has been said it follows that it i s convenient to ob-
serve the oscillations of the coefficient of reflection with
the field for small damping of the wave.

Owing to finite fluctuations of the temperature , the
collapse from the upper branch to the lower branch may
occur not at the point u = u a but at any a rb i t ra ry point
of the interval u a s u s % (see Fig. 2). However, the
resu l t s remain valid even in this case, provided u a in
Eq. (5.4) i s understood as the field at the point of break-
down.

ΠΙ. THE ANOMALOUS SKIN EFFECT

6. Small Currents on the Interface

As mentioned in Sec. 3, the anomalous skin effect
corresponds to / ^C L < le. We shall consider the case
of a strong anomalous skin effect, ! C L « / e ,

Let us t ransform the equation of balance (2.18), hav-
ing made the following change of var iables :

\ (6.1)

*In article [ 4 5 ] the factor ΦΛ(Θ2 )/Φή(θα) was erroneously omitted.
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Then Eq. (2.18) takes the form

where

•VVn,

(6.2)

(6.3)

We note that δ ~ Ze\
2
e In this connection the boundary

conditions (2.6) and (2.10) are written as follows:

— 1], • 1, ( 6 . 4 )

where γ =

(L <ίί Ze). After this Maxwell's equation i s a l inear
equation with constant coefficients, which one can easily
solve, and moreover the field Ε near the boundary is
given by

E^u0e\p{iknz — l(w0)z); ,Q§,

h e r e ξ ^ 0 ) i s the value of the coefficient of attenuation
for ζ = 0.

In v i r tue of what has been sa id above, w e shal l s e e k
the solut ion of Eq. (6.2) in the form

w^w'+w", !</'<«·', (6.6)

w h e r e w' i s the solut ion of Eq. (6.2) without anything ap-
pear ing on the right-hand s ide . The equation for w' i s
so lved in quadratures:

— |.·"2δ - \ dw[\ dw(J{w)~\ (6.7)

The boundary conditions at infinity were taken into con-
sideration in the derivation of (6.7).

The equation

—r - bH> (wr) (6.8)

i s obtained for w" correct to within quantities ~ δ/ξ
<C 1 ( L / Z e <C 1). Correc t to within t e r m s of the o r d e r

of δ/ξ , one can replace w' in Eq. (6.8) by wo. Substitut-
ing the express ion for u = | E | from (6.5) into (6.8) and
solving it, we find

w -= / ' —e "s \w0) s. vVpt//

We note that although w"/w' ~ δ/ξ < 1, dw"/dz is of the
same o r d e r as dw'/dz.

F r o m the boundary conditions for w, the equation for
the determination of wo i s obtained from (6.4) for ζ = 0

6^ (moΐ(Ι·1)£θ|ί = | / 2 δ [ j (6.10)

In this section we shall investigate the case γ -C ξ.
This corresponds to a smal l heat t rans fer a c r o s s the
boundary, when the energy from the e lectrons i s largely
t rans fer red to the latt ice.

If y ·< ξ , then one can use the method of successive
approximations in o r d e r to solve the equation of balance,
neglecting the right-hand side of Eq. (6.2) in the zero-
order approximation and taking it into account after-
wards a s a perturbation.

The physical meaning of this consis ts in the following. d = 1

F r o m (6.2) it follows that the character i s t ic distance
over which the electron t e m p e r a t u r e falls off is δ"1. In where
virtue of the large anomalous nature of the skin effect,
the field i s damped considerably faster . Thus, the
right-hand side of Eq. (6) plays the role of surface
sources of heat, and for the solution of the equation of
balance in the z e r o - o r d e r approximation, one can neglect
it. It is necessary to take the right-hand side into con-
sideration in the next approximation in o r d e r to satisfy
the boundary conditions on the plane ζ = 0.

In connection with the solution of Maxwell's equations
in the immediate vicinity of the boundary (ζ <ξί Ze) one
can replace the quantity w by w0, since w essentially
doesn't change over dis tances of the o r d e r of L

We note that if γ <C 6, in formula (6.10) one can neglect
the last t e r m ; however if γ 3> δ, then the first t e r m on
the right becomes unimportant.

If there is only one mechanism for the scattering of
energy and one for the scatter ing of momentum, then
from Eq. (6.1) it follows that* '

w=$™. (6.11)

Returning to the variable <?, in the region where ύ(ζ)
> 1 we have

(6.12)

In v ir tue of the condition δ/ξ <C 1 the second t e r m in
(6.12) i s much smal le r than the first, and we neglect it
both in the express ion for the tempera ture and in the
calculation of the fields.t> Then ^0 coincides with the
t e m p e r a t u r e #0 of the e lectrons on the surface.

Now let us consider the region ^(z) - 1 <C 1. P r o -
ceeding in analogy to what was done in Section 3 [see
Eqs. (3.16)-(3.18)], we find

^ H . V . e x p l - — ^ . } , (6.13)

where

(6.14)

The evaluation of the integral in (6.14) leads to the fol-
lowing e s t i m a t e s for S^ for ,»0 ^ 1:

•S*

-exp | i ^

-l for
> + ? - r > 0 ; l (6.15)

A f t e r t h e t e m p e r a t u r e «>(z) o f t h e e l e c t r o n g a s i s

f o u n d , M a x w e l l ' s e q u a t i o n b e c o m e s a l i n e a r e q u a t i o n

w i t h a c o e f f i c i e n t w h i c h d e p e n d s o n z . A s a c o n s e q u e n c e

of the inequality δ («?0) ^ ξ (»>ο) the t e m p e r a t u r e as a
function of ζ v a r i e s slowly in comparison with the elec-
t r i c field, thanks to which one can use the WKB method
in o r d e r to solve Maxwell's equation.

*For all known scattering mechanisms 2 + q > 0.
•^Taking this term into account during the calculation of the fields

leads to corrections ~(δ/ξ) 3 . [45] We note, however, that in connection
with the investigation of thermomagnetic effects, when derivatives of
the temperature play the major role, the second term inside the curly
brackets in (6.12) is essential.
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In the case of the anomalous skin effect, the solution
may be written down in general form for an a rb i t ra ry
dependence of e(*!>) on ,?. However, it becomes visible
only in connection with a number of simplifications,
when certa in r e s t r i c t i o n s a r e imposed on the frequency
and on the magnetic field.

F o r large values of ζ in the region where i?(z) — 1
< 1, the field has the form [see Eq. (3.20)]

Ε (ζ) --- PE0SE exp {iknz - ξοζ}, (6.16)

where S g denotes the s e l f - s t r e s s factor for the f ield,
having the s a m e mean ing a s in the c a s e of the n o r m a l
skin-ef fect .

If the f irst inequality in (3.4) is satisfied, by expand-
ing e(t>) in powers of ν and solving Maxwell's equation by
the WKB method, we obtain the following formula for the
field:

Ζ

Ε (ζ) = ΡΕ, exp {iknz-lo j 0'" dz} . ( 6_ 1 ? )

In the region where t?(z) 3> 1, we have

: exp {iknz + (2 — q — r)"1 - ί - ( 2 + ϊ-Γ)δ.(#0)2)2+«-'·-

(6.18)

Express ions for Sg in this and the subsequent cases a re
cited in article' · 1 8 · ' . H e r e we shall confine our attention
to es t imates of Sg for i?0 3> 1 for different relat ions
between r and q. We cite, for example, the express ions
for Sg only in two cases :

2-1-r
- exp i — - 2-q-r δ ""

for ? < 0 , 2—9 — r > 0 ,
1

2+1-r
SE ~ exp

for <?>0, 2 + g — r > 0 .

(6.19)

Let u s p r e s e n t e x p r e s s i o n s for the temperature on
the boundary, which e n t e r s into Eqs . (6.17)—(6.19) .
F r o m Eq. (6.10), assuming for simplicity that γ = 0, we
have

- 2 "|
(Af ~\/o to ' . 2 „ / 5 \ _ « . _ . , . . ^ 2+η-4-r

3 . - T ( i + n ) 2 ( , ) i r s

in the case ωΗ = ο and
_1

(6.20)

for helical waves.
If the second inequality of (3.4) is satisfied, then in

absolutely s imi la r fashion for i>(z) S> 1 we find

lo (6.21)

The value of «*0 is determined by the formula
_1 _ 2

p» 1/2 (2 + g + r)2 Γ (-§- + «) β3Ι £» I2 V'ol " + '

^ 2 7 i J

(6.22)

Upon fulfillment of inequalities (4.1), when the imag-
inary par t of the die lectr ic constant becomes much lar-
ger than the rea l par t , for the field we h a v e [ 6 ' 8 ]

(6.23)

In the region where «?(z) 3> 1, by substituting the
value of tf (z) from (6.12) into (6.23), we obtain

(6.24)

f 1- ' 2+2.1-r
- i ] } .

F o r cyc lo t ron r e s o n a n c e (ω = OJJJ) w e find

0 '

i
\ 2 « 2 | £ 0 | 8 ; 0 ^ - Ι Ι - Η + ( Γ / 2 )

/ ra J •
6 25)

The resu l t s for the case of the low- frequency waves
associated with c i rcular polarization of the incident field
a r e obtained from Eq. (6.25) by replacing a>jj by ω. The
relation between ξ 0 and ζ i s given by the formula

1 —i (6.26)

We note that in virtue of the conditions imposed on r
and q (r + q > 0), the dependence of ύ0 on E o in all cases
i s such that t?0 i n c r e a s e s with increasing values of E o .
The condition for the anomalous skin effect i s satisfied
for m = 10"2 9 g, ν = 10 1 0 sec" 1, Ν = 101 5 cm"3, and ω =
= 101 1 sec" 1 .
L ~ 10"3 cm.

In this case lt 3 χ 10 cm and

7. The Anomalous Skin Effect Associated with Large
C u r r e n t s on the Interface

Let us investigate the l imiting case of la rge heat
t rans fer on the boundary, γ > ξ, associated with weak
damping of the electromagnetic wave.

H e r e it i s necessary to distinguish two spatial reg-
ions (ζ « δ"1), In the region immediately adjacent to
the boundary, where one can neglect the energy t r a n s -
ferred to the lat t ice (z <C δ"1), the shortened Maxwell's
equation and the equation of balance a r e written as fol-
lows: 146 3

•i£ -f 6»P (w) u2 --- 0,

(ill c. , . ,,
-rr -Ι- ξ (w) u ^ 0.

(7.1)

Taking into account that £(w) = 2iro(w)/wVe7 ( e r i s the
r e a l part of the d i e l e c t r i c constant), and that the e x -
p r e s s i o n for P(w) [ s e e Eq. (6.3)] i s wr i t ten a s fo l lows:
Ρ = Poi(w) (Po = nc/27rNTf o e), we may easily solve the
system (7.1). The answer has the following form:" 6 · 1

(7.2)

where w^ i s the l imiting t e m p e r a t u r e to which w(z)
tends for ζ 3> ξ"1. If it i s assumed that there i s a sin-
gle mechanism for the scatter ing of momentum, then

ξ (W) = ξ oW
2 + q

( s e e Sect ion 6). Upon the fulfi l lment
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of the first condition in (3.4), in the express ions for ξ
it i s necessary to maintain the upper sign, but if the
second condition in (3.4) i s satisfied, then the lower
sign holds.

Returning to the variable i? and integrating over ύ- in
Eq. (7.2), we obtain

ίςο- Ι* Φ d&^

g _ Γ 8πΓλ0ς0 " I -

L(2 + 9=F q)cn\

( 7 . 3 )

The first formula de termines Λ(ζ) in implicit form,
and the system of equations (7.6) determines E(z) in
p a r a m e t r i c form. $0 must be determined from the boun-
dary condition (6.4) for ζ = 0, which gives

T a k i n g t h e f a c t t h a t E ( + 0 ) = 2 E O / ( 1 + n ) i n t o a c c o u n t , w e

o b t a i n o n e m o r e r e l a t i o n b e t w e e n t ? 0 a n d £ x [ s e e t h e

s e c o n d f o r m u l a i n ( 7 . 3 ) ] :

2 (2 -4-7-H ( _ „ 2+q • , _
( 7 . 5 )

We can determine ύ0 and ,?«, from Eqs. (7.4) and (7.5):

ο. Λ Γ-ι
π(1+»)«Γλ0ξ.

)1 2 ^
J

( 7 . 6 )

F o r ζ » ξ ' the boundary conditions cease to be
" f e l t " and the express ions for the field and for the tem-
p e r a t u r e a r e given by formulas (6.7) and (6.17).

We note that the express ion for $κ coincides with the
value of ii>0 determined by formula (6.10), if t h e r e the
first t e r m to the right i s omitted (this i s valid since
γ » δ).

Thus, there i s an interval ζ(ξ) 1 <?C ζ <C δ"1 where
the expression for the t e m p e r a t u r e from (7.3) coincides
with the t e m p e r a t u r e determined by formula (6.7). Thus,
if in the first formula of (7.3) by Jx one understands
,»(z) from (6.7), then formula (7.3) will descr ibe the de-
pendence ^(z) over the ent ire range of variat ion of z.
In fact, for ζ <IC δ"1 ι»(ζ) from Eq. (6.7) reduces to a
constant equal to ι ί^. On the other hand, for ζ 3> ξ" 1

we obtain the following express ion for i?(z) from (7.3):

#^»,,-S s exp{-25 0 Cz}. (7.7)

w h e r e

Κ -#0)exp { j [ —
" — β""1 q z q ) ,/fl.

i.e., >s> reduces to !>„, which we replace by ^(z) from
Eq. (6.7).

In conclusion we note that effects which are closely
related with the "self-action" were not considered in
the present review, that is, effects involving the non-
linear interaction of waves. These effects are discussed
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