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1. INTRODUCTION

1 HE extent to which wave motion i s widespread in na-
t u r e need hardly be restated. Waves on the surface of a
heavy liquid, elastic waves, electromagnetic waves,
waves in a plasma—these a r e only the most outstanding
representat ives of an extensive family of waves in con-
tinuous media. The proper t ie s of such waves in the
linear approximation have been investigated in sufficient
detail. Actually, however, very frequently the amplitude
of the wave i s not small , and we a r e dealing with non-
linear wave motions. All of us a r e quite familiar with
nonlinear waves on water, nonlinear waves in a p lasma
occur almost a s frequently, and the discovery of l a s e r s
has led to a wide c i rc le of nonlinear effects in optics.
Nonlinear effects in wave motion have been the object of
intense r e s e a r c h in recent years , and many interest ing
physical phenomena have been discovered therein. This
includes the already common effect of frequency multi-
plication, phenomena of self-focusing and self-contrac-
tion of wave packets, which have been most thoroughly
investigated in optics, effects of stimulated scattering,
which a r e called wave decays in p lasma physics, stoch-
ast ic wave interaction—weak turbulence, etc. In various
fields of physics these effects, in spite of their being
identical, a r e described essentially in somewhat differ-
ent t e r m s , and thei r analogy with related phenomena in
other fields i s not always indicated. Taking this circum-
stance into account, and also in view of the fact that a
certain clarity has been attained in the understanding of
nonlinear phenomena in wave motions and that the r e -
sults a r e of interest to a sufficiently large group of
physicists, we deemed it advantageous to compile the
present review, which descr ibes from a unified point of
view and in a relatively simple form the main resu l t s
obtained in this field. We shall also have, of course,
occasion to repeat well-known things, but we shall
attempt to descr ibe them from a common point of view.

As we shall see below, the character of the nonlinear
p r o c e s s e s depends strongly on the dispersion, i.e., on
the dependence of the phase velocity on the wave num-
ber. It i s therefore natural to begin the analysis with

the case of nondispersive media, and then take disper-
sion effects into account.

2. SIMPLE WAVES

2.1. Beam of Noninteracting P a r t i c l e s

As the simplest example of a nondispersive medium,
let us consider a beam of noninteracting par t ic les . The
velocity of each part ic le of such a beam r e m a i n s con-
stant, so that

V 0 · (2.1)
dv
~3T'

do
"dt

An aggregate of noninteracting par t ic le s i s not, of
course, a nonlinear system, but Eq. (2.1) has a non-
linear appearance and has, as we shall show, solutions
having the character i s t ic proper t ie s of nonlinear waves.

Let us first consider small oscillations near a homo-
geneous beam with constant velocity v 0 : ν = v 0 + v'.
Putting ν ' ~ exp(—ίωί + ikx) and l inearizing (2.1), we
obtain a relation between the frequency ui and the wave
vector of the perturbation:

« = fa*. (2.2)

We see therefore that in the l inear approximation we
deal with a nondispersive medium, Vf = ω/k = const. Let
us assume now that the initial perturbation of the veloc-
ity i s of the form ~ sin kx. It is convenient to consider
the evolution of this perturbation in a coordinate system
that moves with velocity v0, putting ν = v0 + u. In this
system we have

-3T = -S- + U -S— = 0. (2.3)
dt dt dx v '

Let us visualize the (x, u) phase plane (Fig. la) . On
this plane, the initial state of the beam is represented
by the sinusoid 1. With t ime, all the phase points, in-
cluding the points of the beam, move with a velocity
proportional to the distance from the χ axis, and the
wave profile becomes distorted—the par t ic les with
u > 0 run ahead, and those with u < 0 lag the wave.
This effect leads to a perturbation of the density—at the
points 1 and 2, where the slope is increased, the part i-
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dndn , d , . „
_ + _ ( w ) = 0 .

(2.5)

cles become condensed and the density increases . This
i s the so-called " b u n c h i n g " of the part ic les . It i s p re-
cisely bunching of th is type which i s used for the gener-
ation of high-frequency oscil lations in klystrons. The
increase of the density continues until the derivative
3u/3x, and with it also the density, becomes infinite at
the points 1 and 2. This is followed by " b r e a k i n g " of
the wave u(x, t) , and double the number of s ingularit ies
appear in the density (Fig. lb).

As t -— °°, the turning points move apart, the number
of opposing beams i n c r e a s e s without limit, and the den-
sity again tends to a constant value with small " s p i k e s . "
At each point of space t h e r e a r e very many beams with
a great variety of velocities, so that one can speak ap-
proximately of a velocity distribution function f(u) in the
form of a " t a b l e . " Of course, the ent i re p r o c e s s i s
fully revers ible—it suffices to r e v e r s e the direct ions
of all the velocities, and oscil lations will appear out of
a many-s t ream state that is homogeneous at first
glance: namely, the number of beams begins to de-
c r e a s e , " s p i k e s " of the density appear, and, finally,
the system a r r i v e s at the initial state. This again i s
followed by " b r e a k i n g " and formation of a many-s t ream
motion, but this t ime to the left and not to the right as
in Fig. l a .

Thus, a beam of non-interacting par t ic les has many
p r o p e r t i e s of a nonlinear system—it is subject to "wave
b r e a k i n g " and to generation of higher harmonics , and
also to amplification of small density oscil lations a s a
result of the nonlinear connection between the density
and the velocity.

2.2. Simple Waves in a Gas

Let us now consider nonlinear waves in continuous
media. We s tar t with ordinary gasdynamics. The propa-
gation of one-dimensional nonlinear acoustic waves is
described by the gasdynamic equations

We shall a s s u m e that ρ i s connected with η by the equa-
tion of state (isotherm or adiabat), and introduce the
notation c | = (l/m)dp/dn for the square of the velocity
of sound.

Out of the t remendous number of nonlinear solutions
of the gasdynamic equations, an important role i s played
by the so- called simple waves. These waves a r e a gen-
eralization of traveling l inear waves—they propagate in
one direction, and, just as in l inear waves, the density η
i s uniquely determined by the value of v, i .e., η = n(v)..
Consequently, for simple waves Eqs. (2.4) and (2.5) can
be written in the form

1 dn dv (2.6)

Multiplying the first of these equations by dn/dv and
subtracting from the second, we obtain after cancelling
d v / θ ζ

d ( i i ) W . ( 2 . 8 )

F r o m t h i s w e g e t

' . £ = ± » . ( 2 . 9 )

S u b s t i t u t i n g t h i s v a l u e i n ( 2 . 6 ) w e o b t a i n

T h u s , w e o b t a i n a n e q u a t i o n o f t h e s a m e f o r m a s f o r

a b e a m o f n o n i n t e r a c t i n g p a r t i c l e s , t h e o n l y d i f f e r e n c e

b e i n g t h a t n o w t h e n o n l i n e a r t e r m i s p r e c e d e d b y t h e

factor ν ± c s in place of v.
If we use the equation of the adiabatic p r o c e s s

t h e n w e g e t f r o m ( 2 . 9 )

•— c s 0

dv . dv I dp ^ „
dt ~^ dz "·" mn dz ' (2.4)

where c S o i s the velocity of the wave in the l inear ap-
proximation and γ is the adiabatic exponent of the gas.
Substituting this in (2.10), we obtain an equation for a
simple wave propagating in the positive ζ direction, in
the form

-bT + \c«>-rJLT-v}-ai = 0- (2-11)

If we change to a reference frame that moves with the
speed of sound c S o in the l inear approximation
(ζ = χ + c S o t) and introduce a new scale for the velocity
of the perturbation u = (γ + l)v/2, then we obtain ex-
actly Ε q. (2.3).

This leads to the well-known result that the velocity
profile of large-amplitude acoustic waves should also
be subject to steepening. In ordinary hydrodynamics,
this steepening continues all the t ime, so long as the
velocity v(z) remains single-valued. However, as soon
as 9ν/θζ becomes infinite, a shock wave begins to form,
on the front of which energy becomes dissipated as a
resul t of viscosity.

2.3. The Burgers Equation

The influence of viscosity in the evolution of a simple
wave can be taken into account in s implest fashion by
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adding the t e r m μ(3 2 ν/θζ 2 ) in the right-hand side of
(2.11). We then obtain in lieu of (2.3) the so-called
B u r g e r s equation' 1 J

(2.12)ifiu

where μ i s the damping coefficient of sound in the l inear
approximation.

It tu rns out that a general solution of the Burgers
equation can be obtained in closed analytic f o r m u : l .

Indeed, if we put

" = - 2 Η · ^ 1 η Φ (* (2.13)

then we obtain for φ(χ, t) the heat-conduction equation
Βφ/dt = μ(3 2^ι/θχ 2), which has well-known solutions.
They can be used to t r a c e readily the evolution of any
initial velocity profile. Let us consider, for example,
the t ime variation of a perturbation Uo(x) = u(x, t = 0) in
the form of a certain pulse that i s limited in x. Integrat-
ing Eq. (2.12) with respect to x, we easily verify that
the a r e a under the velocity profile

= f u(x, t)dx (2.14)

r e m a i n s constant in t i m e , i .e. , it i s an " i n t e g r a l of the
motion." From (2.13) we see that Μ determines the
" t e m p e r a t u r e " drop: φ(+·*>)/φ(— °°) = εχρ(-Μ/2μ) . But
at a given t e m p e r a t u r e drop, r e g a r d l e s s of the profile
of the transi t ion layer, the solution of the heat-conduc-
tion equation tends as t — °o to a self- s imi lar solution
corresponding to the presence, at the initial instant of
t ime t = 0, of a sharp transi t ion from one " t e m p e r a t u r e "
ψι = <p(°°) to another t e m p e r a t u r e <p2 = <p(-°°), at the
point of the i r " t a n g e n c y " χ = 0. It follows therefore
that as t —- °° the velocity profile u(x, t) will tend to a
certain universal asymptotic value, determined only by
the value of the constant M. In par t icular , as μ — 0, as
can be readily shown, the profile u(x, t) for Μ > 0 tends
to the value

f o r 0 < x < \ f 2 M t ,

for χ<0,
" ( μ - . 0 ) (

i . e . , it h a s the form of an expanding t r iang le with a
shock w a v e on the leading part of the prof i le. When
Μ < 0, the tr iangle i s directed with its vertex down-
ward, and the shock wave i s produced on i t s trai l ing
edge. Hie value of the jump in the shock wave i s
( 2 M / t ) l / 2 , i .e. , it d e c r e a s e s l ike t " l / a , and the width of
the profile, to the contrary, i n c r e a s e s in proportion to
the square root of the t ime, so that the total a r e a of the
perturbation re ta ins a constant value Μ (see Sec. 95 in
the b o o k t 3 ] ) .

The Burgers equation also has a stationary solution
describing a profile moving without deformation at con-
stant velocity c. In fact, if we substitute

u = f(x-ct) (2.16)

in (2.12) then we obtain a second-order differential
equation for f:

This equation has a solution, bounded at °°, in the form

ο = ηο + ψ, (2.18)

where u0 and Au a r e constants. This solution r e p r e s e n t s
a shock wave with a discontinuity Au and a transit ion-
region width δ = 2M/Au. A S μ — 0, the width δ also
tends to zero. With the aid of (2.13) it can be shown that
any perturbation with a velocity discontinuity Au tends
asymptotically with t ime to this wave.

Thus we see that the Burgers equation descr ibes
quite fully the general picture of formation and struc-
t u r e of shock waves. For weak waves, this description
is sufficiently accurate also quantitatively (see also"- 1).

3. NONLINEAR WAVES IN WEAKLY DISPERSIVE
MEDIA

3.1. Nonlinearity and Dispersion

The p r o c e s s of the steepening and breaking of waves,
considered in Sec. 2.1, i s essentially connected with the
absence of dispersion (or dissipation, which can be r e -
garded as " i m a g i n a r y " dispersion). It is precisely be-
cause of the absence of dispersion that all small-ampli-
tude waves with different wave numbers k propagate
with identical velocity and a r e capable of interacting
with one another for a long t ime, so that even a small
nonlinearity sooner or l a t e r should lead to accumulation
of the distortion. The influence of dissipation was ex-
plained in Sec. 2.3. We consider dispers ion below,
neglecting dissipative effects.

In this case the phase velocity of waves with different
k i s not the same, and therefore dispers ion can compete
with nonlinearity if the wave amplitude is not very large.
Higher harmonics, which a r e generated in the case of
nonlinear distortion of the wave, will ei ther overtake or
lag the fundamental wave a s a resul t of dispersion, de-
pending on whether the group velocity i n c r e a s e s or de-
c r e a s e s with k. Consequently, the wave can " fa l l
a p a r t , " even p r i o r to breaking, into individual wave
packets (which, generally speaking, a r e nonlinear), and
no shock wave will be produced. In o r d e r to t r a c e in
greater detail the physics of this phenomenon without
complicating the exposition with extraneous p r o c e s s e s ,
we consider a weakly dispersive medium without dissi-
pation. *

3.2. Waves in Shallow Water

Under natural conditions, there exists an object that
i s easily accessible for observation of wave propagation
in weakly dispersive media, namely shallow water. We
consider a layer of liquid of height h0, poured over a
solid surface, and consider gravitational waves with
wavelength much l a r g e r than h 0 in such a layer. For
simplicity we a s s u m e that the waves propagate along the
χ axis, so that the p r e s s u r e ρ and the velocity ν do not
depend on the variable y. If the wavelength i s large, i.e.,
the water is shallow, then the horizontal component of
the velocity can be regarded a s uniform over the height
(independent of z), so that we have for v x = ν

d o d v 1 d p Λ f K 1 ^

\ - v — | ^ — Q . \ ° ' χ /

H e r e the p r e s s u r e ρ can be understood in the sense of
i t s mean value over the height. It i s obviously l a r g e r

*A medium is called weakly dispersive if the dispersion appears only
at sufficiently large values of the wave number k.
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where the height of the liquid i s la rger , by an amount
(h - h0) pg compared with the p r e s s u r e in the unper-
turbed layer. Thus, Eq. (3.1) takes the form

i i i + i , i f i + i u = o . ( 3 · 2 )
5ΐ dx dx

T h e h e i g h t h , i n t u r n , i s d e t e r m i n e d b y t h e c o n t i n u i t y

e q u a t i o n

£ + £ ( t o ) = o . ( 3 . 3 )

w h i c h e x p r e s s e s t h e f a c t t h a t t h e r a t e o f c h a n g e o f t h e

h e i g h t o f t h e l a y e r , 8 h / 8 t , i s c o n n e c t e d w i t h t h e d i f f e r -

e n c e o f t h e f l o w s h v t h r o u g h i n f i n i t e s i m a l l y c l o s e c r o s s

sections χ and χ + dx.
Equations (3.2) and (3.3) coincide in form with the

equations of gas dynamics with γ = 2. This means that
in the l inear approximation, waves in shallow water
have no dispersion, and the effect of steepening and
turning of the waves should take place in a nonlinear
wave. F o r a simple wave these equations reduce to the
form

^ + ( Ι " ± < ο ) ^ = Ο, (3.4)

where c0 = Vgh0 is the phase velocity of the small-ampli-
tude wave. Changing over to a coordinate system that
moves with velocity ± c0, and putting u = 3v/2, we again
arrive at the equation

which i s common to a broad c las s of nondispersive
media.

3.3. The Korteweg—de Vries Equation

The phase velocity of very long waves on shallow
water does not depend on the wave number k and i s
simply equal to Vgh0. With increasing k, however, it
should begin to change, so that at very large k 3> hi 1 it
goes over into the relation v f = Vg/k for gravitational
waves on deep water. Since at large k the phase velocity
d e c r e a s e s , and furthermore Vf i s an even function of k,
at small values of k it can be represented in the form

where l / k 0 de termines the character i s t ic " d i s p e r s i o n
length," for which the change of Vf becomes of the order
of unity. For waves on shallow water, we have
ko = VS/Tw*

Let us attempt now to take into account the dispers ion
in the equation for simple waves. We consider for con-
c r e t e n e s s a wave propagating to the right, i .e., with
Vf > 0. In the l inear approximation we should obtain
for such a wave, in a coordinate system moving with
velocity Co, in accordance with (3.6), a frequency
ω = Cok3/ko, i .e., the corresponding equation in t e r m s
of the var iables χ and t should take the form

du c0 d'u_n
dt "τ" *2 a^s — " ·

( 3 . 7 )

O n t h e o t h e r h a n d , h o w e v e r , a t a f i n i t e a m p l i t u d e t h e

" T h e right-hand s i d e o f ( 3 . 6 ) c o m p r i s e s t h e first t w o t e r m s o f t h e

e x p a n s i o n o f t h e e x a c t e x p r e s s i o n v f = V ( g / k ) t a n h ( k h ) i n p o w e r s o f k

( s e e , f o r e x a m p l e , [ 3 ] ) .

equation should contain the nonlinear term u(8u/8x).
Thus, the complete equation describing nonlinear waves
on shallow water should be of the form

du du a d*iL ~ /Q Q\
——f- u l·-ρ = U \ · /

where β, which we shall call the dispers ion p a r a m e t e r ,
i s equal to c o /ko·

This equation was obtained by Korteweg and de Vries
in 1895C 5 ] for waves on water, and recently i n № 8: l for
waves in a plasma. F r o m the foregoing considerations
it i s c lear that the Korteweg—de Vries equation has a
much wider range of applications-it descr ibes " q u a s i -
s i m p l e " waves for any medium with dispersion (3.6),
which i s customarily called a medium with negative
dispersion. If the phase velocity increases with k, i .e.,
if at smal l k we have v^ = c o(l + (k2/ko)), then the med-
ium i s said to have positive dispersion.

For media with positive dispers ion it would be neces-
sary to r e v e r s e the sign of the last t e r m in (3.8). But
if at the same t ime we also make the substitutions
χ — — χ and u —• — u, then we again obtain an equation of
the type (3.8). Since χ is reckoned in our case from the
point cot, this means that in media with positive and
negative dispers ion the waves propagate with m i r r o r
symmetry relative to the point Xo = cot, which moves
with the velocity of the long-wave perturbat ions. By vir-
tue of this, it suffices to consider only the case of a
medium with negative dispersion, such as shallow water.

3.4. Waves in P l a s m a

Another example of a weakly dispers ive medium i s a
plasma in a magnetic field. The long-wave perturbations
in such a plasma propagate with a velocity that i s inde-
pendent of the wave number, and only at sufficiently high
frequencies does dispers ion appear. Accordingly, the
propagation of such waves i s described by the
Korteweg—de Vries equation.

Let us consider, for example, the case of propaga-
tion of a magnetosonic wave in a p lasma placed in a
strong magnetic field.

If the wave propagates at an angle a to the strong
magnetic field Ho (the energy of which greatly exceeds
the thermal energy of the plasma Ηο/8π S> nT), and the
angle a sat isf ies the relat ion

α · > ^ , ω ο ί = - ^ (3·9)

(this condition excludes waves propagating along the
magnetic field and those close to them), then the quantity

h — Hz — HQ sin α

s a t i s f i e s , u n d e r t h e c o n d i t i o n h / ( H o s i n < i ) <§; 1, t h e f o l -

l o w i n g e q u a t i o n :

3
h, + (cA + 4 hcA

 s - ^ ) Κ + f>hxxx =- 0,

where

cA=-

( 3 . 1 0 )

(3.1D

and c is the speed of light. All the remaining quantities
describing the wave (the density ρ, the macroscopic
velocities v e and vj, etc.) a r e expressed in t e r m s of h.
Thus, Eq. (3.10) is of the Korteweg—de Vries type.

We call attention to the character i s t ic behavior of the
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dispersion parameter β as a function of the angle a be-
tween the propagation directions and the magnetic field.
When

(almost " t ransverse" waves), the parameter β is posi-
tive and its order of magnitude is β ~ οχο2/ω2

0β. When
cot a > (m e /mi) l / 2 , the dispersion parameter reverses
sign and the corresponding waves should be regarded as
"oblique." In this case the parameter β is not only
negative, but has essentially a different value,
β ~ c^cVw^. Accordingly, the dispersion length
δ ~ kB1 for perpendicular and "oblique" propagation
has different orders of magnitude:

δ c- if *
2

δ ~ - ί - , if - i-

I me\ ill

By way of another example, let us consider ion-acoustic
waves in a p lasma without a magnetic field.

Let us as sume that the ion tempera ture i s low com-
pared with the electron temperature . In this case the
plasma i s described sufficiently well by the hydrody-
namic equations with adiabatic exponent γ = 1:

)=--0, (3.13)

where
c; = r./m(, (3.14)

and the deviations from quasineutrality (n e = nj = n) are
neglected; this is legitimate if the electron Debye
radius D = VTe/47rne2 is negligibly small compared with
the characteristic wavelength. Allowance for the finite
character of the Debye radius in first nonvanishing ap-
proximation leads to the following equations:

(3.15)

where jS = c0D
2/2.

In the linear approximation, Eqs. (3.15) lead to the
dispersion equation

a>(k) — cok[l 2~) , (3.16)

the right- hand side of which constitutes the first two
terms of the "exact" dispersion equation

ω = λ/— k (1 -

In t h i s c a s e we can a l s o wr i te down a Korteweg—

de V r i e s equat ion 1 9 ' 1 0 3 in the form

—-t-( -4- dv-t-&— — 0 (3 17)

and according to (3.16) the quantity β = c0D
2/2 is posi-

tive, and the dispersion length is of the order of the
Debye radius.

3.5. Periodic Waves, Solitons

We consider first periodic solutions of the Korteweg-
de Vries equation of the traveling-wave type
u = u(x— ct), where c is the phase velocity. For such
waves we have 3u/6t = —c(3u/9x), so that (3.8) changes
from a partial differential equation to an ordinary one.

It can be immediately integrated once to obtain
(3.18)

where a is the integration constant, which we can set
equal to zero without loss of generality (this can always
be done by changing over to a moving system of coor-
dinates). Then Eq. (3.18) can be represented in the form

(3.19)dW
' du •

w h e r e

w=—r+T- (3.20)

Equation (3.19) can be regarded as the equation of mo-
tion for a nonlinear oscillator—a material point of
mass β, moving in a potential well W(u), with the coor-
dinate χ playing the role of the time. The potential en-
ergy W as a function of u is shown in Fig. 2. It vanishes
when u = 0, u = 3c and reaches a minimum at u = 2c. In
the case of oscillations about the minimum of the poten-
tial energy W(u), the wave is practically harmonic:

u = 2c + «o exp { i ]/j (a ~~ ci)} ·

We see that u oscillates about the value 2c, i.e., in a
coordinate system moving with velocity 2c, where the
oscillations occur about a zero value, the wave propa-
gates with velocity c to the left, as it should for negative
dispersion. Since k = Vc//3 = k0Vc/c0, the increment to
the phase velocity is equal to CokVk2, as follows from
the dispersion equation.

With increasing oscillation amplitude, the wave be-
comes more and more asymmetrical (as seen from the
diagram for the potential energy); the particle will
spend a longer time having a low velocity u, where the
elasticity is smaller, and will jump faster through
values with large u (see Figs. 2 and 3). Finally, when
the amplitude increases to such an extent that values
u = 0 become possible, solutions of the type of solitary
waves or solitons appear, where only a single pulse
propagates through the liquid. In this case the "point"
u is situated "for an infinitely long t ime" at the position
u = 0, and then "slides down" into the potential well
W(u), reaching a value u = 3c, where W = 0, is reflected
from it, and again returns to the position u = 0. The
corresponding solution is of the form

/ χ-— c i \ " /Ο Ο 1 \
cha ( i

T

i ) ( 3 - 2 1 )

The amplitude a and the width Δ of a solitary wave are
given by the relations

~ *Ί/Ε. (3.22)

W e s e e t h e r e f o r e t h a t t h e l a r g e r t h e s o l i t o n v e l o c i t y c ,
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FIG. 3

the la rger i t s amplitude and the smal le r i t s width.
If the wave amplitude a i s barely smal ler than 3c,

then the solution i s in the form of pulses very close in
shape to solitons, following one another periodically
(Fig. 3).

Thus, with increasing oscillation amplitude, the
phase velocity changes from negative to positive and
i n c r e a s e s to a value a / 3 in solitary waves.

3.6. Evolution of Initial Perturbat ion

Let us now discuss the question of excitation of os-
cillations by initial perturbat ions of finite amplitude.
F o r simplicity we confine ourselves to the one-dimen-
sional case, assuming that the perturbation is infinitely
extended and i s homogeneous along the y axis.

Assume that at the initial instant t = 0 there i s pro-
duced a certa in perturbation of velocity with amplitude
u0 and width of the order Δ. If u 0 *C c 0, then the per tur-
bation can be regarded as weakly nonlinear. In this case
the perturbation breaks up rapidly, before nonlinearity
has a chance to manifest itself, into two perturbat ions
constituting simple waves traveling in opposite direc-
tions with velocity « c 0 . It suffices therefore to t r a c e
the slow evolution of only one s imple wave, i.e., it
suffices to investigate the nonstationary solutions of the
Korteweg—de Vries equation. We see therefore, in par-
t icular , why simple waves a r e m o r e important than any
other solution, even the most general nonlinear solu-
tions.

Nonstationary solutions of the Korteweg—de Vries
equations were first investigated numerically' 1 1 ' 1 3 - 1 and
an analytic theory for them was constructed only
l a t e r t l 4 ] (see a l s o 1 1 5 : ) . But the qualitative picture can
be described quite simply with the aid of the following
simple considerations.

Let us assume first that the initial perturbat ions
coincide exactly in form with the soliton, i .e.,

u(x,t = 0) = uo sech2

Then this perturbation could propagate like a soliton if
i t s amplitude were connected with the velocity by the
relat ion

«0Δ
1! = 12β = ^ = const, (3.23)

0
w h i c h fo l lows f r o m (3 .22) . In o t h e r w o r d s , t h e d i m e n -

s i o n l e s s q u a n t i t y

« = l / ? W ) = A l / ¥ (3.24)

i s equal to σ 8 = VITfor the soliton. But σ 2 is propor-
tional to the amplitude, and can therefore be regarded
as the nonlinearity p a r a m e t e r of the wave: at smal l
values of σ2 the perturbation has a very smal l amplitude
and can be regarded as " a l m o s t " l inear, at σ 2 = 12 a
solitary wave i s produced, and at σ 2 3> 12 the amplitude
is so large that the solution has a form that differs sig-
nificantly from a traveling stationary wave.

It is easy to see why in a weakly-dispersive medium
the nonlinearity index i s precisely the product of the
amplitude by the square of the width, and not the seem-
ingly m o r e natural rat io of the wave amplitude u 0 to the
character i s t ic phase velocity c 0 . The reason is that in
the absence of dissipation a one-dimensional wave of
arb i t rar i ly small amplitude i s nonlinear in a nondisper-
sive medium—it must sooner or la ter " b r e a k . " It is
precise ly the dispers ion that prevents this from happen-
ing, and therefore the amplitude u0 should be compared
not with the phase velocity c 0 of the long-wave per tur-
bations, but with the increment Cok2/ko ~ co(koA)2, which
is connected with the dispersion, so that the nonlinearity
index i s the quantity (u o /c o )(k o A) 2 .

If the initial perturbation does not coincide in profile
with the soliton, but has the form of a pulse of width Δ
and amplitude u0, then the nonlinearity p a r a m e t e r can
again be assumed to be the quantity σ. When c r < a s w e
deal again with an almost l inear perturbation. The
character of propagation of the waves due to such a
perturbation was already considered above—the long-
wave part of the spectra l expansion of such a perturba-
tion in powers of k propagates with a velocity close to
c 0, and the short-wave components lag the main pulse.

Great interest attaches to the case of a strongly non-
linear perturbation σ 3> a g , when the width Δ i s large.
During the first stage of the evolution of such a per tur-
bation, the dispersion does not play any role and i t s be-
havior i s determined by the nonlinearity. This means
that a steepening of the leading front should occur in the
pulse, and the la t ter has a tendency to break. However,
when high harmonics appear, dispers ion comes into
play, and should " s e p a r a t e " the perturbations with dif-
ferent wavelengths. Therefore, after the lapse of a
sufficiently long interval, the perturbation should " t u m -
ble"—break up into individual groups analogous to
groups of waves in the l inear case.

Each group can be set in correspondence with i t s own
" l o c a l " value of the p a r a m e t e r σ = σ-^. If σ-^ < as, then
the group is t ransformed in final analysis into a weakly
nonlinear wave packet. When a-^ > as, the group should
again break up into smal ler oscil lations. This will be
accompanied by formation of pulses, where a-^ differs
little from the cr i t ical value a s . It is natural to expect
such pulses to become transformed into solitons with
t ime. Thus, in the course of t ime an initial pulse with
σ > σ 8 should become transformed into a certain num-
ber of solitons and a weakly-nonlinear wave packet.

All the solitons move with velocity c > Co, and the
l a r g e r the soliton amplitude u 0, the larger this velocity,
while the wave packet, which spreads in t ime and de-
c r e a s e s in amplitude, lags the point χ = cot.

This p icture agrees fully with the numerical calcula-
tions. Figure 4, for example, shows the resu l t s of a
numerical solution of the Korteweg—de Vries equation
for an initial pulse with σ = 10. This solution was ob-
tained i n [ 1 2 : l . We see that the perturbation is broken up
into four solitons and a short-wave packet of small
amplitude. It i s easy to note that the ver t ices of the
solitons lie on a single straight line. This fact has a
simple explanation. The point is that the velocity of a
soliton, as we know, i s equal to c = u o / 3 , i .e., it is pro-
portional to the soliton amplitude. Therefore the dis-
tance Δχ = ct = u ot/3 t raver sed by the soliton during the



46 Β. Β. KADOMTSEV and V. I . KARPMAN

Λ
FIG. 4

zo

time t from the point χ = cot corresponding to the "ini-
t ial" position of the perturbation is proportional to u0.
In other words, all the solitons have emerged from a
single point and therefore the distance traversed by
them is proportional to the velocity.

For a more general initial distribution of the soli-
tons, the picture becomes more complicated. But if the
amplitude changes smoothly in space, i.e., u0 = uo(x),
then from the condition that the velocity of the individual
soliton be constant we obtain

du0 _ aup ι up Bug _ „

dt ~ dt ' 3 dx ~ '
(3.25)

i.e., we again obtain a nonlinear equation of the type of
the equation for a simple wave. This means that the
envelope wave for the solitons should evolve in time
like a simple wave—it should become steeper. No break-
ing occurs in this case; a soliton merely emerges in
front and moves with maximum velocity.

An example of the process of crumbling of a wave
into solitons may be found in the evolution of a sinu-
soidal perturbation of large amplitude, which is shown
in Fig. 5. A numerical solution of this problem was ob-
tained by Zabusky and Kruskal, from whose paper1 1 1 3

Fig. 5 was borrowed. This figure shows only one
period—the entire picture should be periodically con-
tinued on both sides. We see that at first the sinusoidal
perturbation evolves like a simple wave—it increases
its slope and has a tendency to break. However, before
the actual break, dispersion comes into play and the
first soliton begins to separate itself. Gradually the
entire perturbation breaks up into a set of solitons,
which themselves form a "simple wave" and whose am-
plitudes lie on one straight line for not too large a
period of time (curve C). This is followed by formation
of the "multistream" state—the solitons with large am-
plitude overtake the slower ones, so that intersection of
the soliton trajectories takes place.

It should be borne in mind that the solitons can be
produced only in the case when the initial perturbation
x(u, 0) has a positive amplitude (in a medium with nega-
tive dispersion). If the initial perturbation has a nega-
tive amplitude everywhere, then it cannot give rise to

s o l i t o n s . I n t h i s c a s e i t e v o l v e s i n t o a n o n l i n e a r w a v e

" t a i l " c o r r e s p o n d i n g t o p e r i o d i c s o l u t i o n s ( s e e b e l o w ) .

A l l t h e f o r e g o i n g p e r t a i n s t o m e d i a w i t h p o s i t i v e d i s -

p e r s i o n , w i t h t h e f o l l o w i n g m o d i f i c a t i o n : t h e s o l i t o n s

c o r r e s p o n d i n s u c h m e d i a n o t t o " c r e s t s , " b u t t o

" t r o u g h s , " a n d a l l t h e s o l i t o n s m o v e w i t h a v e l o c i t y

s m a l l e r t h a n c 0 , w h i l e t h e w a v e " t a i l " o f s m a l l a m p l i -

t u d e m o v e s w i t h a v e l o c i t y l a r g e r t h a n c 0 . I t w o u l d

t h e r e f o r e b e m o r e a p p r o p r i a t e t o c a l l i t n o t a " t a i l " b u t

a " p r e c u r s o r . " I n m e d i a w i t h p o s i t i v e d i s p e r s i o n ,

s o l i t o n s a r e p r o d u c e d o n l y a t a n e g a t i v e p e r t u r b a t i o n

a m p l i t u d e .

3 . 7 . C o n s e r v a t i o n L a w s

T h e K o r t e w e g — d e V r i e s e q u a t i o n c a n b e w r i t t e n i n

d i v e r g e n c e f o r m :

Ίϊ+Ίχ-^ + Ρ11**)^0' (3.26)
which has the form of the law for the conservation of

OO
the "momentum" Ii = / u(x, t)dx. Multiplying both sides

— 00
of the Korteweg—de Vries equation by u and u2, we ob-
tain after simple calculations two more conservation
laws, of which the first reflects the "energy" conserva-
tion

a 1 " (3.27)

It turns out that this does not complete the number of
conservation laws. It was shown inU 6 : l that the
Korteweg—de Vries equation corresponds to an infinite

oo
number of conserved quantities (invariants) I m = f Qm

oo
(x, t)dt, whose densities Qm(t) satisfy relations of the
form

)
l ax

and are polynomials of β, u, and of the derivatives
ux> uxx> uxxx> ··· t n e derivatives with respect to t can
be eliminated with the aid of the Korteweg—de Vries
equation). Let us consider now the more general struc-
ture of the densities Q [u] as " functionals" of u. If we
arrange the terms in Q m [u] in order of increasing
powers of β, then the term not containing β is always
proportional to u m ; using the fact that Q m is determined
accurate to a constant factor, it is convenient to write
this term in the form u m / m . Further, the quantity
Q m [u] contains terms with β (k = 1, 2, „., m - 2), and
the coefficients of β have the form of certain polynom-
ials of u, u x , Uxx, ..., the general structure of which can
be established from dimensionality considerations.

The general program for obtaining the numerical co-
efficients of the individual terms in Q m [u] is quite
cumbersome and will not be considered here ( s e e a e J

concerning this question). We present only the first two
terms in the expansion of Q m [u] i n powers of the param-
eter β:

ft. [ » ] - £ - ! (3.29)

3.8. Analytic Relations

Let us consider now the most important analytic re-
sults characterizing the solutions of the Korteweg—
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d e V r i e s equation u(x, t). We w r i t e the init ial condit ion

in the form

u(x, O) = u o < P ( i i ) , (3.30)

where Uo and Δ a r e the character i s t ic amplitude and
width of the initial perturbation, and φ(ξ) i s a dimen-
sionless function describing i t s profile (in this section
it is assumed throughout that φ(ξ) —• 0 as ξ — ±°°.

Changing over to the dimensionless variables

| = - ί , τ = ^ , η(ξ, τ) = -£-, (3.31)

we obtain the Korteweg—de Vries equation and the initial
condition in the form

(3-32)

(3.33)

It follows from (3.32) that solutions with identical σ and
φ(ξ) should be s imi lar to each other. In part icular , the
number of solitons produced as a resul t of the evolution
of the initial perturbation, the rat io of their amplitudes,
etc. a r e all determined uniquely by the quantity σ and by
the form of the initial profile, character ized by the func-
tion φ(ξ). Therefore the quantity σ can be called the
s imilar i ty parameter 1 · 1 2 · 1 .

As shown i n [ 1 4 ] , the amplitudes of the solitons pro-
duced by an initial perturbation that attenuates as
χ — ±°° a r e determined by the eigenvalues of a certain
Strum-Liouville boundary-value problem (or, using the
language of quantum mechanics, by the energy levels in
a certa in potential well). Let us d i scuss this question in
g r e a t e r detail.

We consider the Schr5dinger equation

, ϊτ)1Ψ(ξ; τ) = 0. (3.34)

where the p o t e n t i a l - η ( ξ , τ), the eigenvalues E ( T ) , and
the wave functions Ψ(ξ, τ) depend on the t ime τ as a
p a r a m e t e r , and this dependence i s determined by the
fact that η(ξ , τ) satisf ies the Korteweg—de Vries equa-
tion in the form (3.32), under the initial condition
»/(ξ, 0) = φ(ξ). (The role of the quantity 2m/h 2 i s played
in this case by a2/6.)

By considering simultaneously the equations (3.32)
and (3.34) we can prove, first of all, that the eigenvalues
of Eq. (3.34) do not depend on the t ime, i .e., Ε ( τ ) = Ε,
where Ε a r e the eigenvalues of the equation

) = ο. (3·35)

It t u r n s out, further, that the d i s c r e t e spectrum of Eq.
(3.35) completely de termines the amplitude, and conse-
quently also the velocit ies of all the solitons that a r e
produced from the initial perturbation, namely, the
soliton amplitudes a r (r = 1, 2, ..., N) satisfy the re la-
t ions

a, = — 2u0Er, (3.36)

where E r are the eigenvalues of the discrete spectrum.
Moreover, knowing the asymptotic behavior of the

wave functions Φ(ξ ; 0) as ξ —• ±°° (for both the discrete
and the continuous parts of the spectrum), we can also
determine the asymptotic forms of the wave functions
Φ(ξ ; τ) satisfying Eq. (3.34). On the other hand, knowing

the asymptotic behavior of Φ(ξ ; τ) as ξ —• ±«°, we can,
using the methods used in the solution of the inverse
problem of scatter ing t h e o r y U 7 ' 1 8 ] , reconstruct the
" p o t e n t i a l " -η(ξ, τ) of Eq. (3.34) for any τ. To this
end it i s necessary to solve a certain integral equation,
which i s now l inear and which i s given i n t l 4 ] . Unfor-
tunately, the lat ter i s quite complicated in form and i t s
exact solution for a rb i t ra ry τ is in general unknown.
Therefore, for example, the described method encoun-
t e r s great difficulties when attempts a r e made to use it
to investigate the character of " t a i l s , " etc.

Nonetheless, even formula (3.36) can yield very valu-
able information concerning solitons produced (at suffi-
ciently large τ) from an initial perturbation.

In part icular , if ψ(ξ) < 0 for all ξ, then the solitons
cannot a r i s e , no mat ter what the value of σ. On the other
hand, if the initial perturbation φ(ξ) i s of alternating
sign, then the solitons appear only at sufficiently large

OO
σ. Finally, if J ψ(ξ)άξ, > 0, then the SchrSdinger equa-

— OO
tion always has a d i scre te spectrum, i .e., at least one
soliton i s produced from an initial perturbation with
positive a r e a of the profile*. In the latter case (at suffi-
ciently smal l values of σ), the eigenvalue of the
Schrodinger equation can be obtained by perturbation
theory:

(see for example , ' 2 0 3 , Sec. 45). Accordingly, the ampli-
tude of the soliton is approximately equal to

(3.37)

The condition for applicability of perturbation theory
has in this case the form

σ» «σ1,. (3.38)

where σ δ = VT2~ is the value of the s imilar i ty p a r a m e t e r
for the soliton.

Let us consider now the case when σ ^ 1 and the
number Ν of the produced solitons i s large . In this case
they can be character ized by a distribution function
F(a), which determines the number of solitons dN having
an amplitude in the interval (a, a + da):

= F(a)da. (3.39)

The function F(a) can easily be obtained by calculat-
ing the level density in the potential well by the WKB
method. As a resul t we obtain*

where the region of integration Μ contains those values
of ξ where

2<VP (!)>«. (3.41)

F r o m (3.40) it follows, in par t icular , that the ampli-

*These results were obtained earlier in [19] from other considera-
tions.

tFormula (3.40) was first derived in [1S] on the basis of the conser-
vation laws (in a somewhat different form: by introducing into (3.40) a
new integration variable ζ = φ(ξ), we obtain expression (6) of [ 1 5 ]) .
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tudes of the solitons do not exceed double the maximum
of the initial perturbation:

) = 0 for 4->max(u0q>(|)). (3.42)

Integrating (3.40), we obtain an asymptotic expression
for the total number of sol i tons ' 2 1 J

N =
π 1/6 J

φ(Ε»ο
( 3 . 4 3 )

(The integration region contains only those values of ξ
for which φ(ξ) > 0). Thus, at large σ the number of
solitons i s determined only by the region where the
initial perturbation i s positive.

We present a few more asymptotic relations which
make it possible to compare the relative ro les of the
solitons and the " t a i l s " at large σ*. Denoting the
asymptotic values of the invariants for the solitons and
for the " t a i l s " (at σ » 1) by l(?) and I $ , respectively,

. . . F2ii m m
we obtain1

>=-±. j &»»(*, 0),
U<JC, 0)>0

;>=-^- j dxiira(i, 0).
u (X, 0)<0

(3.44)

Thus, the analytic values of the invariants for the
" t a i l s " iW a r e determined only by those regions where
the initial perturbation i s negative. If u(x, 0) > 0 for all
values of x, then it follows from (3.44) that I m ) = 0, so
that in this case one can state (with asymptotic accuracy
at large values of σ) that the perturbation breaks up
completely into solitons. The resu l t s of numerical cal-
culations given i n 1 1 2 ' 2 2 ' 2 3 3 show that this result , and also
formula (3.43), a r e in many cases quite accurate at
relatively small values of σ.

Finally, let us stop to discuss one m o r e aspect of the
resu l t s of t 2 2 j, which a r e described in this section. Since
it follows from the definition (3.33) of the number σ that
the limiting case σ 3> 1 can be realized at finite Uo
and Δ and at small β, it follows that the formulas ob-
tained above determine the asymptotic solution of the
Korteweg—de Vries equation at small values of the
p a r a m e t e r β. Let us consider this solution under the
condition φ(ξ s 0) and compare it with the solution of
the equation for a simple wave in hydrodynamics
uj + u u x = 0 under the same initial conditions, and also
with the asymptotic solution of the Burgers equation
(2.12) as μ -» 0 (the latter has a tr iangular profile with
a shock wave on the front).

The solution of the equation u^ + u u x = 0 i s represen-
ted by the curve ABDEF in Fig. 6a, and the solution of
the Burgers equation by the curve ABC. Under identical
initial conditions, the a r e a s of the curves a r e equal,
since the momentum conservation follows from the
equation uj. + u u x = 0 and from the Burgers equation.

The solution of the Korteweg—de Vries equation for
β —• 0 and φ(ξ) & 0 consists, according to the foregoing,
of a number of solitons the number of which increases

* Although the "tail" does spread out in the course of time, its con-
tributions to the momentum, energy, and to other invariants I m =_/
Q m [u]dx remain constant (after the solitons have "broken away""
from it). This raises the question of the relative magnitudes of these
contributions.

FIG. 6
b)

like β'ι/2 and whose widths decrease like /S l / 2. This
solution is shown in Fig. 6b.

As β —• 0, the invariants of the Korteweg—de Vries
equation assume according to (3.29) the form

/,» = - \ um(x, t)dz (3.45)

and consequently they coincide with the invariants of the
equation uj- + u u x = 0, which has an infinite number of
conservation laws in the form

a tu.™\ ο / n i " + i \

Si U J +dx l m + U ( 3 . 4 6 )

Thus, under the s a m e init ial condit ions, the prof i le

A B D E F and the prof i le shown in Fig. 6b have in the

limiting case β —• 0 not only identical a r e a s but also
other invariants of the type (3.45).

3.9. Shock Waves in Dispersive Media

We have assumed above that there a r e no dissipative
processes , i .e., that their role i s much smal ler than
that of dispersion. If there is some dissipation, for ex-
ample viscosity, then all the waves discussed above a r e
weakly damped, and second-derivative t e r m s appear in
the Koretweg—de Vries equation:

^ τ + " - ^ + β ^ = μ ^ ( 3 · 4 7 )

(this equation can be called the Korteweg—de Vries—
Burgers equation).

We consider again a traveling stationary wave in the
form u = u(x— ct). For such a wave, the equation (3.47)
can be integrated once with respect to x:

- — μ = - » + • £ = - £ • (3.48)

We see therefore that we again obtain an equation
for a nonlinear oscillator, but this time with damping.
Accordingly, the oscillations of the equivalent oscillator
with potential W(u) will be damped; therefore in place
of a periodic wave there will arrive an asymmetrical
train of waves (Fig. 7a). We see that after passage of
such a train, the state of the medium changes, for the
medium behind the train moves with a certain velocity
u0. This means that we obtain a jump, namely a shock
wave, but with oscillating structure'24'253. At low vis-
cosity, the first waves of this structure are close to
solitons, and if the viscosity is large compared with the
dispersion then we arrive at an ordinary shock wave
with a monotonic increase of u from 0 to u0.*

Since the minimum of the potential W is reached at
u = 2c, the difference between the limiting values u(°°)

*The critical value of the parameter μ, at which the transition from
an oscillatory to a monotonic structurejjf the shock wave takes place,
is determined by the expression μ =\/4/?c.



N O N L I N E A R W A V E S 49

b)

FIG. 7

= 0 and u(—«) = 2c turns out to be connected with the
velocity of the wave by the relation

Δι/. ( 3 . 4 9 )

where Au = u(—°°) — u(°°). Comparing this expression
with (2.18), we see that c coincides with the velocity of
the shock wave without dispersion. In a coordinate sys-
tem where t h e medium i s at r e s t , the velocity of the
shock wave i s equal to (c 0 + Au)/2, and the correspond-
ing Mach number i s

M = l + -^L (3.50)

This picture perta ins to media with negative disper-
sion, when the largest soliton t rave l s with maximum
velocity, and the oscillating " t a i l " r e m a i n s behind the
front. In media with positive dispersion, to the contrary,
the oscil latory s t ructure i s ahead of the wave front, as
shown in Fig. 7b. Both types of shock waves were ob-
served experimentally in a p lasma (see, for example 1 2 6 J )
and also in nonlinear t ransmiss ion l ines (electromag-
netic shock waves) ' 2 5 2 .

4 . S E L F - F O C U S I N G A N D S E L F - C O N T R A C T I O N O F

W A V E P A C K E T S

4 . 1 . S e l f - f o c u s i n g

W e h a v e b e c o m e a c q u a i n t e d a b o v e , i n s u f f i c i e n t d e -

t a i l , w i t h n o n l i n e a r w a v e s i n d i s p e r s i v e m e d i a , b u t h a v e

c o n f i n e d o u r s e l v e s a t a l l t i m e s t o t h e o n e - d i m e n s i o n a l

case, when all the quantities depended only on one coor-
dinate χ and on the t ime t. To obtain a more complete
representat ion of the dynamics of nonlinear wave proc-
esses , it i s necessary to forgo the one-dimensionality
limitation and to change over to the general case of
three-dimensional or at least two-dimensional waves.
But before we proceed to the r a t h e r complicated general
case, we shall consider a s impler c l a s s of problems,
when the waves differ l itt le from one-dimensional, i .e.,
when we deal with a wave whose amplitude and phase
vary slowly in space and in t ime. In this case we en-
counter two extremely interest ing nonlinear p r o c e s s e s -
self-focusing and self-contraction of wave packets. Let
us consider first self-focusing.

The phenomenon of self-focusing was predicted by
Askar 'yan ' 2 7 3 from very s imple considerations. Let us
assume that a powerful l a s e r beam propagates in an
optically t ransparent medium. Owing to a large number
of effects (nonlinear polarizability, e lectrostr ict ion,
heating, etc.) such a beam changes slightly the re f rac-
tive index of the medium. If this change i s positive, i .e.,
the medium becomes optically denser, then the beam
itself produces something in the way of a lens, which

FIG. 8

ff,
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FIG. 9

will focus the beam. In other words, the central part of
the wave front lags somewhat behind the per iphera l
regions, and the wave becomes convergent (Fig. 8).

This reasoning, the physics of which i s quite clear,
may sti l l turn out to be insufficiently justified if account
is taken of the fact that self-focusing i s a nonlinear and
furthermore r a t h e r slow process , and this r a i s e s the
question whether s t ronger effects of nonlinear wave
breaking (in the language of optics—frequency multipli-
cation) occur beforehand. However, the analysis in the
preceding chapter shows that the dispers ion readily p r e -
vents the breaking of the waves. Therefore in the p r e s -
ence of even small dispersion, strong saturation with
higher harmonics need not necessar i ly occur, and does
not occur if the wave amplitude i s not very large . Inci-
dentally, even at a sufficiently large amplitude, the
qualitative considerations of self-focusing remain in
force if a definite almost-periodic wave in χ i s estab-
lished and t h e r e i s equilibrium of the harmonics or a
" c o m p e t i t i o n " between the dispersion and the nonlinear
wave breaking. In part icular, effects of self-focusing
appear even in the limiting case of a single soliton'2 8-1.
Let us consider, for example, the soliton of Fig. 9a, the
amplitude of which changes from y (the density of the
shading in Fig. 9a corresponds to the height of the soli-
ton). In the media with negative dispersion, the sections
with l a r g e r amplitude move more rapidly and the soliton
bends, as shown in Fig. 9b. As a resul t of the bending,
focusing i s produced and the amplitude of the central
part begins to increase . This leads to a res torat ion of
the shape of the soliton, but with the regions of l a r g e r
amplitude moving along y. We see therefore that a soli-
ton in a medium with negative dispers ion does not ex-
per ience self-focusing—it v ibrates like a s tretched
string. But in the case of positive dispersion the situa-
tion changes: the sections with increased amplitude lag
somewhat and the new batches of perturbation tend to
them as a resul t of the bending; as a result , the soliton
c o m p r e s s e s into a compact formation also in the y di-
rection.

4.2. Self-contraction of Wave Packets

The phenomenon of contraction of a nonlinear wave
can occur not only in the t r a n s v e r s e but also in the
longitudinal direction relative to the direction of wave
propagation. To reveal this effect, let us consider a
plane wave packet with slowly-varying amplitude and
phase. We assume that the amplitude of the wave i s
smal l , so that it does not differ strongly from sinu-
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soidal, i.e., that the higher harmonics, which are in
equilibrium with the fundamental, are small. Then the
wave can be characterized by a wave number k and a
frequency ω of the fundamental harmonic. In this case
the main average nonlinear effect is the dependence of
the phase velocity or of the frequency on the amplitude
a; therefore at a low amplitude, when it suffices to con-
fine oneself only to the first nonvanishing correction

<o(k, a)= (4.1)

where wo(k) corresponds to the frequency of the linear
wave, and the second term to the nonlinear correction.
If k and a2 vary with x, then the phase φ(χ, t), which for
a monochromatic wave has the form ψ = kx— wt, will
now no longer be a linear function of χ and t; it can,
however, be assumed that, as before,

at
(4.2)

We see from (4.2) that the wave number varies with
time in accordance with the equation

i*.at • ax
( 4 . 3 )

w h e r e w e h a v e t a k e n i n t o a c c o u n t e x p r e s s i o n ( 4 . 1 ) f o r

t h e f r e q u e n c y , a n d d e n o t e d t h e g r o u p v e l o c i t y b y

ν = dcoo/dk. We now recognize that the energy in the
wave packet, which is a quantity quadratic in the ampli-
tude, is transported (in the considered approximation
in a) with the group velocity. Then for the energy con-
servation law we can assume the equation

β"2 , a , ,. „ ( 4 . 4 )

F r o m ( 4 . 3 ) a n d ( 4 . 4 ) i t f o l l o w s t h a t u n d e r c e r t a i n

c o n d i t i o n s a p l a n e w a v e i s u n s t a b l e a g a i n s t b r e a k d o w n

i n t o i n d i v i d u a l w a v e p a c k e t s . I n f a c t , l e t u s a p p l y t o a

m o n o c h r o m a t i c w a v e w i t h w a v e n u m b e r k 0 a n d a m p l i -

t u d e a o a s m a l l p e r t u r b a t i o n :

k = ko+k' exp (— ivt + ixx), α = α0 + α' exp (— i\t + ixx),

where ν *^i ω, κ <5£ k0 are the frequency and wave num-
ber of the modulation. Then in the linear approximation
we obtain from (4.3) and (4.4) the dispersion relation

ν = VgX ± Vav'tfll*., (4.5)

w h e r e v ' = 8Vg/ek. We s e e t h a t w h e n a v ~ < 0 w e h a v e

i n s t a b i l i t y of t h e t y p e of b r e a k d o w n of t h e w a v e in to

p a c k e t s and s e l f - c o n t r a c t i o n of t h e w a v e p a c k e t s . T h i s

r e s u l t w a s f i r s t o b t a i n e d by L i g h t h i l l 1 2 9 a j .

T h e p h y s i c s of t h e i n s t a b i l i t y i s e x p l a i n e d i n F i g . 10.

L e t u s a s s u m e t h a t a > 0. T h e n at t h e p o i n t s A and A '

t h e p h a s e v e l o c i t y of t h e w a v e i s l a r g e r t h a n at t h e

p o i n t B, and in s e c t i o n a t h e w a v e n u m b e r , w h i c h i s

p r o p o r t i o n a l to t h e n u m b e r of n o d e s p e r u n i t l e n g t h , w i l l

i n c r e a s e , w h i l e in s e c t i o n b i t w i l l d e c r e a s e wi th t i m e .

C o n s e q u e n t l y , w h e n v ' < 0, t h e w a v e p a c k e t i n t h e r e g -

i o n of a w i l l l a g a n d wi l l a m p l i f y t h e a m p l i t u d e at t h e

p o i n t A, w h i l e i n r e g i o n b i t w i l l m o v e a h e a d a n d a m p l i f y

t h e w a v e a t t h e point A ' .

An i n t e r e s t i n g e x a m p l e of u n s t a b l e n o n l i n e a r w a v e s

a r e t h e g r a v i t a t i o n a l S t o k e s w a v e s on t h e s u r f a c e of a

l iquid w h o s e d e p t h i s m u c h l a r g e r t h a n t h e w a v e l e n g t h .

In this case the dispersion equation of the linear ap-
proximation is of the form ω = Vgk~(see, for exam-

FIG. 10

ple, [ 3 ' 3 0 J ) . For a stationary wave of finite (but small)
amplitude, we obtain the following nonlinear dispersion
equation'3":

fc, a*) (4.6)

where a is the amplitude of the oscillations of the free
surface of the liquid. It follows from (4.6) that

«„;=_-**<„. (4.7)

Thus, the gravitational waves on the surface of "deep"
water are unstable against longitudinal perturba-
t ions ' 2 9 ^ . From the foregoing formulas we see that
the waves are stable against transverse perturbations
(i.e., they do not become self-focused).

The conclusion that periodic gravitational waves on
water are unstable created a sensation in hydrodynam-
ics in its time and seemed unlikely. But subsequently
it was derived again by different methods and was con-
firmed experimentally'31'32·1. Now no one doubts the
instability of gravitational waves in deep water, mean-
ing that the superstition of the "tenth wave" has definite
physical justification.

4.3. Parabolic Equation

Both self-focusing and self-contraction of wave
packets, and furthermore with allowance for diffraction,
can be described with the aid of a parabolic equa-
tion133"36·1 . Let us imagine that we have an almost-plane
wave with wave vector k0 and frequency ω0 = w(k0). In
the linear approximation, the system of equations for
small deviations from the equilibrium position can be
represented after expressing certain quantities in terms
of others in the form of one linear equation for the com-
plex amplitude ψ, namely ϋ(ω, k ) ^ ^ , = 0. In particular,
a solution of the dispersion equation ϋ(ω, k) = 0 is given
by the ΟΌ and k0 chosen by us. Near these values, con-
fining ourselves to terms linear in ω - ω 0 and k - k0,
the equation for the Fourier harmonic ψ^ω can be
represented in the form A(k0, ω0) [ω — «(k)] !/^ = 0,
where A = const can be omitted, and a>(k) is the solution
of the dispersion equation. We expand ai(k) near k = k 0 :

•ω (k) « <B(k0) + vg (V(k0 + κ*)2 + x\ - k0) + γ ν,*.' χ

<v ω №„) + vg (xx + -̂ j.) + 1 v'gK
2

x,

where κ = k — k0 is a small deviation of the wave vector
k0 (k0 = k o x ). If we substitute this expression in the
equation [ω — ωφ)]^ΐςω = 0 and change over from the
Fourier harmonics to the variables r and t, then putting
ω — coo = i(8/8t) and κ = — iV we obtain a parabolic equa-
tion for φ. When the nonlinear addition to the frequency
(4.1) is included, this equation takes the form
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where v' = 9v /8k0.

Equation (4.8) can be transformed into another
frequently-used form by substituting in (4.8) φ = ae1(P
(a—amplitude and ψ i s an increment to the phase of the
wave, both being assumed real) , and then separating the
r e a l and imaginary p a r t s . We then obtain the following
sys tems:

da* da?
••~w

It i s important that the coefficients of (4.8) (and also of
the system (4.9)) a re determined completely by the
nonlinear dispersion equation (4.1). Therefore waves of
different nature can be regarded from a unified point of
view. In par t icular , for an electromagnetic field in a
nonlinear medium with die lectr ic constant
e = €0(ω)(1 + β |Ε | 2 ) the equation for the complex ampli-
tude of the e lectr ic field E(r , t) takes the form

^ = 0· (4.10)2i(Et + vgEx) — km>vlExx -r — i

A t E t = 0 t h i s e q u a t i o n d e s c r i b e s t h e d i f f r a c t i o n of a

s t a t i o n a r y l i g h t b e a m w i t h a l l o w a n c e f o r t h e n o n l i n e a r

e f f e c t s . If w e n e g l e c t t h e n o n l i n e a r t e r m a n d t h e t e r m

with Εχχ (which is of the order of the rat io of the wave-
length to the width of the beam), then we obtain the so-
called parabolic equation of the approximate theory of
diffraction' 3 3 · 1. In this connection, Eq. (4.8) i s custom-
ari ly called the nonlinear parabolic equation. Equation
(4.10) was investigated in a number of papers in connec-
tion with the phenomenon of the self-action of light (see,
for example, the reviews ' 3 5 ' 3 6 · 1 ) . The resu l t s obtained
thereby, as seen from the foregoing, can be extended
also to other types of waves, which are described by
the more general equation (4.8).

Let us consider again the problem of the instability
of a plane wave: ip0 = aoexp(— iuot), where ao is the ini-
tial amplitude and v0 i s the nonlinear increment to the
frequency, which according, to (4.8) i s given by ν0 = aao.
Let us assume that the wave ψ0 i s perturbed somewhat,
and that i t s amplitude a and phase φ vary l i t t le in space
and in t ime: a = a0 + a', φ = v0 + φ ' . The small quanti-
t ies a' and φ ' should be regarded as rea l . After substi-
tuting this expression in (4.9) and discarding t e r m s
quadratic in a' and ψ , we obtain a system of equations
for a' and φ :

ao(^r+vg-^-)+iea' + 2aay = O, (4.11)

where Χ i s an operator equal to

Equations (4.11) and (4.12) a r e l inear, and their solution
can therefore be sought in a form proportional to
exp(-ii;t + i « r ) . X can be regarded h e r e as equal to the
number

and, as a condition for the solvability of (4.11) and
(4.12), we obtain the following expression for the fre-
quency:

«; + £)· (4.13)

If κ ι = 0 and κχ is small, then we obtain from this the
previous result (4.5), i.e., instability with respect to
self-contraction at a v g < 0. As seen from (4.13), the
conclusion of self-contraction when av'g < 0 i s valid
only at sufficiently smal l κ2

χ. If κχ > 4aao/vg, then the
instability with respect to self-contraction i s stabilized
by the diffraction spreading of the wave packet. In the
other limiting case κχ = 0, (4.13) leads to self-focusing
if a < 0. Self-focusing also begins only with sufficiently
small KL, namely κ\ < 4 a a o k 0 / v g . Since the minimum
possible value of KJ_ i s of the o r d e r of the reciprocal
radius R of the cylindrical beam, it follows therefore
that in the approximation under consideration, where
only the correct ion quadratic in the amplitude is inclu-
ded for the frequency (4.1), self-focusing begins only at
sufficiently large power of the wave beam, proportional
to aoR°.

The stabilizing role of diffraction makes it possible
for stationary focused beams or self-contracted wave
packets to exist. In fact, let us consider, for example,
the case α ν ' < 0 and let us assume that t h e r e is no de-
pendence on y or z. We consider a solution of the type
of a traveling packet ψ = e~1Uo u ( x - v~t). F o r the func-
tion u we obtain from (4.8)

I?!L = l!Lus-'^u. (4.14)
vg vg

We have already encountered an equation of this type
in the analysis of periodic solutions of the Korteweg—
de Vries equations. We can again regard (4.14) as an
equation for a nonlinear oscil lator with potential energy

W (U) = -^rll1 +~ U2.

When α ν ' < 0 and i>ov'g < o, the potential W(u) has a
well, so that both periodic envelope waves and localized
packets of the soliton type a r e possible.

The equation for the lat ter is of the f o r m ' 3 "

Similarly, for the case of self-focusing we can find
solutions localized in the t r a n s v e r s e direction if a < 0.
These solutions correspond to beams that produce a
waveguide by themselves and propagate in the form of
narrow filaments.

4.4. Nonlinear Geometrical Optics

The resu l t s of the preceding section describe only
the initial stage of the p r o c e s s e s of modulation and
focusing. An investigation of these p r o c e s s e s at suffi-
ciently large t becomes greatly complicated by the com-
plicated form of the fundamental equations. We shall
therefore consider first a simplified system of equa-
tions, which is obtained from (4.9) if one neglects in the
first equation of (4.9) the t e r m s containing the second
derivatives in the amplitude:

<«· = 0. (4.16)

^ τ ^ ^ Ο . (4.17)

We note that these equations can also be obtained from
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a three-dimensional analysis of Eqs . (4.2) and (4.3):

dk
at

by putting in them

dm

δφ{τ, t)
dT '

( 4 . 1 8 )

( 4 . 1 9 )

( w h e r e t h e " u n p e r t u r b e d " w a v e v e c t o r ko i s a s s u m e d t o

be directed along the χ axis), and by confining ourselves
to t e r m s quadratic in k - k 0 = νφ). Since Eqs . (4.18)
correspond to the geometrical-optics approximation, the
system (4.16) and (4.17) can be called the fundamental
equations of the nonlinear " g e o m e t r i c a l o p t i c s " for
small-amplitude waves, when the local profile of the
wave i s determined by one harmonic. This system of
equations descr ibes p r o c e s s e s of nonlinear self-action
of " r a p i d l y osci l lat ing" waves, character ized by the
fact that the changes of the amplitude, wavelength, and
other p a r a m e t e r s a r e sufficiently smal l over distances
on the order of the wavelength and in a t ime comparable
with the period of the oscil lations. The most general
approach to the nonlinear wave p r o c e s s e s in this l imit-
ing case was developed by W h i t h a m ' 3 7 ' 3 8 3 , who devised a
general method that makes it possible to obtain equa-
tions for slowly varying p a r a m e t e r s in an approxima-
tion that can now be called " a d i a b a t i c . " The approxi-
mation considered here corresponds in the Whitham
formalism to waves of smal l amplitude.

Let us now consider the nonlinear evolution of the
envelope of a wave having an amplitude ao pr ior to the
application of the perturbation. In this case it i s con-
venient to redefine the phase, φ — φ — aa.lt, so that the
last nonlinear t e r m in (4.16) i s replaced by a ( a 2 — ao).
Let us consider the one-dimensional case, when all the
quantities depend only on χ and t, and change over to
new var iables*

=x — vgt, T = v'gt. (4.20)

We see that ξ has the meaning of the coordinate in a
reference frame moving with the group velocity. In
t e r m s of these var iables, Eqs . (4.16) and (4.17), with
the redefined phase, take the form

ΰτ
(4.21)

(4.22)

which have the same form a s the hydrodynamic equa-
tions. Here φ( ξ, t) plays the ro le of the velocity poten-
tial and a2 plays the role of density (the "adiabat ic
exponent" i s γ = 2). Accordingly, the square of the
speed of " s o u n d " i s

e = ^ (4.23)

We see that an unstable wave corresponds to Co < 0,
i .e. , to "negat ive compress ib i l i ty . "

Let us consider first the case when the nonlinear
stationary wave i s stable, i.e., the square of the propa-
gation velocity of the modulation oscil lations (4.23) is

*We note that in terms of the variables (4.20), Eq. (4.8) takes the
form of the Ginzburg-Landau equation in superconductivity theory [3 9],
and the cases of unstable and stable plane waves correspond here to
states above and below the transition temperature.

p o s i t i v e . I n t h i s c a s e t h e s i m p l e s t n o n l i n e a r s o l u t i o n s

o f E q s . ( 4 . 2 1 ) a n d ( 4 . 2 2 ) a r e " s i m p l e w a v e s " o f t h e

m o d u l a t i o n p e r t u r b a t i o n s , p r o p a g a t i n g a g a i n s t t h e b a c k -

g r o u n d o f a n i n f i n i t e s t a t i o n a r y w a v e w i t h p a r a m e t e r s

ao, k0, ω 0 = co(ko, ao). Proceeding in the same manner as
in ordinary gasdynamics, we can easily obtain the fol-
lowing equation for a simple wave propagating in the
positive direction*:

• £ + * ( l + 3 ^ - 5 — 0 , (4.24)

where Co i s defined in (4.23). It follows from (4.24) that
in a re ference system where the medium i s at res t , the
point where the amplitude of the wave i s equal to some
fixed value a moves with a velocity

( . * ) . - , . + „ * ( l + 3 ' - = 5 ) (4.25)

(we have returned to the initial var iables χ and t in ac-
cordance with (4.20)). It is seen from (4.25) that the
l a r g e r a, the greater the velocity of the point of the
perturbation profile corresponding to this value of the
amplitude. As a resul t , the perturbation profile will be-
come steeper until a break in the amplitude occurs ,
with a corresponding break in the wave number k = k0

+ {Βφ/bξ). Of course, the approximation of nonlinear
geometrical optics becomes meaningless here, since
the gradients of the amplitude and of the wave number
become large near the breaking point. Therefore fur-
ther analysis of the evolution of the perturbations can
be based on the more exact theory that goes outside the
l imits of geometrical optics (see below).

More general nonlinear solutions of Eqs . (4.21) and
(4.22), which do not reduce to simple waves, can be ob-
tained, just as in hydrodynamics, with the aid of the
" h o d o g r a p h " transformation, choosing as the indepen-
dent var iables a and κ = (9<ρ/θξ); the quantities ξ and
τ should be defined in this case a s functions of a and κ.
The corresponding transformation was first car r ied out
by Lighthi l l t 2 9 ] . Introducing in place of the phase
φ(ξ, τ), which enters in Eqs. (4.21) and (4.22), a new
function

τ - φ ( Ι , τ) (4.26)

(where it i s assumed that the quantities ξ and τ a r e
certain functions of a and κ), we can obtain

T = i / i ? \ %= (J!®_\ _ Ζ ! ί ^ Φ (4.27)
2αα \ 3α lx ' 6 \ dv. la 2aa da '

with the function #(a, κ) satisfying the following l inear
equation:

ι 3φ
'~α da

4 α
- = 0. ( 4 . 2 8 )

When α/vg > 0 (i.e., when Co > 0), Eq. (4.28) has the
form of an axially- symmetr ica l wave equation in cylin-
drical coordinates (the role of the " r a d i u s " i s played
by a and that of the " t i m e " by κ).

If the initial conditions

κ = κ ο (ξ) (τ = ( 4 . 2 9 )

a r e s p e c i f i e d , t h e n t h e s o l u t i o n o f ( 4 . 2 8 ) c a n e a s i l y b e

*We recall that this equation pertains t o a system moving with the

group velocity Vg relative t o the medium.
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obtained by using, for example, the general Riemann
method. This solution was obtained and investigated in
detail in C 2 9 : l . Like the fundamental equations of geome-
t r ica l optics, it becomes meaningless when shock-wave
formation begins, owing to the nonlinear steepening of
the envelope profile.

At this stage, a significant ro le is assumed by the
last two t e r m s in the first equation of (4.9), which we
have neglected in the geometrical-optics approximation.
Taking into account t e r m s with higher derivatives, we
obtain in the one-dimensional case in place of (4.21) the
equation

1
Ία

= 0. ( 4 . 3 0 )

To clarify effects determined by the last t e r m , let
us consider first a s imple case, when the quantity a— ao
in the initial perturbation i s smal l compared with a0.
For stable waves (<*v' > 0) this quantity will likewise
not increase subsequently, so that in the first approxi-
mation the last t e r m of (4.30) can be written in the
form (l/2ao)(3 2 a/8£ 2 ). Then the system (4.30) and (4.22)
reduces to the Korteweg—de Vries equation, which in
this case takes the form (for perturbat ions propagating
to the r i g h t ) ' 4 0 ]

. * + Λ , + 3 , Λ * + β 4 * 0, (4-31)

w h e r e

( 4 . 3 2 )

Since the dispers ion p a r a m e t e r β i s negative in this
case, the perturbation breaks up into a s e r i e s of nega-
tive solitons and a wave packet propagating to the right.
The relat ion between the packet and the solitons is de-
termined by the initial perturbation in accordance with
the r e s u l t s of Sec. 3.8.

The general qualitative picture of the evolution out-
lined above r e m a i n s in force, of course, also in the
case when a — a 0 ~ a0.

In part icular , for all a - a0, Eqs . (4.30) and (4.22)
a r e satisfied by solutions describing stationary envelope
waves (solitary and periodic). Such solutions can be
easily obtained by substituting in (4.30) and (4.22) ex-
pres s ions such as

Ω 2 = ρ ( ξ - 7 τ ) , φ = φ , ( ξ - V T ) 4 const-τ. ( 4 . 3 3 )

T h e e x p r e s s i o n s d e s c r i b i n g t h e s o l i t o n a r e

- l I Po ) 1

( 4 . 3 4 )

where P m j n i s the minimum value of ρ in the soliton.
We see, in accord with the foregoing, that the soliton
r e p r e s e n t s h e r e a " w e l l " moving with velocity V against
the background of a stationary wave with amplitude ao
= p i . The phase difference between the points on both
sides of the soliton (formally between ξ = °° and ξ =—°°)
i s

= f φ ' (ξ) άς = - 2 arctg
V Pniln /

( 4 . 3 5 )

•r >O

FIG. 11

A special case i s a soliton with p m j n = 0. In this case

p = po[l-sech1!(i/Z)]> F = 0, (4.36)

Δ φ = - . χ (4.38)

We s e e t h a t s u c h a s o l i t o n i s a t r e s t r e l a t i v e to t h e w a v e
in q u e s t i o n (we r e c a l l t h a t a l l t h i s p e r t a i n s t o a r e f e r -
e n c e f r a m e m o v i n g with t h e g r o u p v e l o c i t y of t h e s t a -
t i o n a r y w a v e v f f ) .

All t h e s e r e s u l t s m a k e i t p o s s i b l e to a d v a n c e t h e
fol lowing q u a l i t a t i v e c o n s i d e r a t i o n s wi th r e s p e c t to
m o d u l a t i o n p r o c e s s e s in t h e c a s e of s t a b l e w a v e s
(av'g > 0 ) .

If at t h e i n i t i a l i n s t a n t of t i m e t h e r e i s a c e r t a i n
s p a c e - l i m i t e d p e r t u r b a t i o n a g a i n s t t h e b a c k g r o u n d of a
p l a n e w a v e , t h e n a t l a r g e v a l u e s of t it i s t r a n s f o r m e d
into two t r a i n s of w a v e s t r a v e l i n g in o p p o s i t e d i r e c t i o n s
a w a y f r o m t h e r e g i o n of t h e i n i t i a l p e r t u r b a t i o n * , a s
shown in F i g . 1 1 . The o s c i l l a t i o n s with t h e l a r g e s t
s c a l e c a n h a v e p r o f i l e s c l o s e t o t h o s e of s o l i t o n s (in t h e
r e g i o n of t h e m i n i m a ) .

4.5. Qual itat ive F e a t u r e s of the Evolution of Unstable
Waves

Let us stop to discuss now certain qualitative fea-

t u r e s of the evolution of modulated waves at α ν ' < 0

(when the plane wave is " u n s t a b l e " relat ive to small

perturbations).
In this case the fundamental equations in the geome-

tr ica l-opt ics approximation become elliptical (the
" s o u n d " velocity i s imaginary). Putting in (12.28)

H - f r * (4-39)

flag) 3Φ
~1F

w e o b t a i n a n a x i a l l y s y m m e t r i c a l L a p l a c e e q u a t i o n

r = 0 · ( 4 · 4 0 )

T h e a n a l y t i c s o l u t i o n of t h e C a u c h y p r o b l e m f o r t h i s
e q u a t i o n c a n b e o b t a i n e d b y t h e s a m e R i e m a n n m e t h o d
a s i n t h e c a s e ( 4 . 2 8 ) ( i n t r o d u c i n g c o m p l e x c h a r a c t e r i s -
t i c s ) , a s w a s i n d e e d d o n e b y L i g h t h i l l . R e f e r r i n g t h e
r e a d e r t o h i s p a p e r s ' 2 9 · 1 f o r d e t a i l s , w e p r e s e n t h e r e
o n l y s o m e r e s u l t s ( s e e a l s o H 1 J ) . A s s u m e t h a t a t t = 0
t h e r e i s a s y m m e t r i c a l w a v e p a c k e t w i t h w a v e n u m b e r
k 0 , i . e . ,

/(0) = i , / ( 2 ) - * . o ( 2 - ^ 0 0 ) , ( 4 . 4 1 )

*In a reference frame moving with velocity v g relative t o the medium.
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FIG. 12

where f(z) is an analytic function, ao is the maximum
amplitude, and L is the length of the packet. Then with
increasing t the amplitude remains a continuous even
function of ξ, and the increment to the wave number
κ(ξ , t) is odd, the value of the amplitude at the center of
the packet a(0, t) increasing with increasing t. At a cer-
tain value t = t0, the derivative (9a/9£) becomes infinite:

(ir)s-o •·,=<„ = o° ( 4 l 4 2 )

(the function a( ξ, t) itself remains continuous in gen-
eral). The time t 0 is connected with the parameters of
the packet at the initial instant of time t = 0 in the fol-
lowing manner:

, const -L .A «o\
' » - , ι , . . Ί 1 / 2 . ' I 4 · 4 · 3 )

w h e r e c o n s t i s a d i m e n s i o n l e s s c o n s t a n t t h a t d e p e n d s

n e i t h e r o n ao n o r o n L . I n p a r t i c u l a r , f o r t h e c o n c r e t e

i n i t i a l w a v e - p a c k e t p r o f i l e

( 4 . 4 4 )

Lighthill obtained'291 const = 0.69. Figure 12 shows
Lighthill's results, characterizing the evolution of the
packet with increasing t in the case (4.44) (t0 = tc rij·).

We note also that for elliptic equations the Cauchy
problem is incorrect: small changes of the initial con-
ditions lead (generally speaking, quite rapidly) to an ap-
preciable change of the solution (as is manifest by the
"instability" effect referred to above).

Near t = t0, the foregoing theory based on geometrical
optics becomes inapplicable, and it is necessary to use
Eq. (4.30) in lieu of (4.21). Hie term with the second
derivative in (4.30) then causes the sharp peak at the
center of the packet to be replaced by oscillations of
the envelope profile. A qualitative investigation of the
development of these oscillations, carried out in ' 4 2 J ,
and a numerical solution of the parabolic equation (4.8),
obtained in t 4 3 : l for the case when the initial profile of
the envelope has the form of a local perturbation against
the background of a plane wave, leads to the picture
shown in Fig. 13 (in a reference frame moving with the
group velocity Vg). Oscillations that propagate in both
directions away from the initial perturbation are pro-
duced in the central region, so that the width of the reg-
ion increases and, as a result, the wave breaks up into
wave packets whose amplitudes are larger by 1.5—2
times than the amplitude ao of the initial wave, and
whose form is sufficiently close to stationary wave
packets of the soliton type, described by formulas (4.15).
The self-modulation process described here is in quali-
tative agreement with experiments carried out for
gravitational waves on deep water ' 3 1 ' 3 2 3 , as can be seen
from Fig. 14, which is taken fromL 3 2 J.

FIG. 13

FIG. 14

5. E L E C T R O A C O U S T I C W A V E S

In t h e p r o p a g a t i o n of e l e c t r o m a g n e t i c w a v e s i n a c o n -

t i n u o u s m e d i u m a n i m p o r t a n t r o l e i s f r e q u e n t l y p l a y e d

b y t h e a l r e a d y m e n t i o n e d e l e c t r o s t r i c t i o n e f f e c t s , w h i c h

a r e m a n i f e s t i n t h e f a c t t h a t t h e p r e s s u r e of t h e h i g h -

f r e q u e n c y f i e l d o f t h e e l e c t r o m a g n e t i c w a v e c h a n g e s t h e

d e n s i t y o f t h e m e d i u m p , a n d w i t h i t a l s o t h e d i e l e c t r i c

c o n s t a n t e ( w , p ) .

In t h i s c a s e t h e m o d u l a t i o n p r o c e s s e s i n e l e c t r o m a g -

n e t i c w a v e s a r e a c c o m p a n i e d b y a c o u s t i c o s c i l l a t i o n s

t h a t a r e c o u p l e d t o t h e m ( e l e c t r o a c o u s t i c w a v e s ) . T h e

p r o p a g a t i o n of e l e c t r o a c o u s t i c w a v e s i s d e s c r i b e d b y a

s y s t e m o f M a x w e l l ' s e q u a t i o n s t o g e t h e r w i t h t h e h y d r o -

d y n a m i c e q u a t i o n s ( f o r l i q u i d s a n d g a s e s )

«,. ^ + div(pv) = 0. (5-1 )

where fg is the density of the electromagnetic-field
pressure forces, which can be written in accordance
with '" j in the form

(5.2)

The striction effects, in particular, can play a pre-
dominant role in an isotropic sufficiently rarefied
plasma'4 5"5 2 3 *. Substituting in (5.2) the expression for
the dielectric constant of the plasma € = 1 - 4irne2/mew

2

where η = η{|Ε|2} is the density of the particles (which
depends on the field), we arrive at an expression first
derived in ' 4 5 J :

e (5.3)

It is seen from (5.3) that the gradient of the electro-
magnetic-field pressure forces is directed so as to de-
crease the field-energy density, i.e., the plasma-parti-
cle density is smaller where the field is larger, and
vice versa. As a result it turns out that a sufficiently
strong electromagnetic field can propagate in a non-

"Concerning other media, see, for example, [5 3·3 5·3 6 '5 0].
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i sothermal p lasma ( T e 3> Tj), where ion-acoustic os-
cillations attenuate weakly, even in the case when the
equilibrium value of the dielectr ic constant e(n0) = 1
— ωο/ω 2 i s negative, i.e., the field frequency i s lower
than cr i t ical ω 2 < ωΐ = 4 7 m o e 2 / m e

I 5 O ' 5 U . In this case the
field propagates in the form of electroacoustic solitons
described by the re lat ions (for ω 0 - ω <C ω0)

Ε (χ, ί) = οί : — Vt)],

| Ε0(ω) |

( 5 . 4 )

( 5 . 5 )

h e r e Ε (χ, t) i s the slowly-varying amplitude of the elec-
t r i c field, and c s = ( T e / m j ) 1 / 2 i s the velocity of the ion
sound. The variation of the density inside the soliton i s
determined in this case by the expression

(5.6)

i . e . , t h e p l a s m a d e n s i t y i n s i d e t h e s o l i t o n i s l o w e r t h a n

t h a t o f t h e u n p e r t u r b e d p l a s m a , a s a r e s u l t o f w h i c h t h e

f i e l d i s " t r a p p e d " i n t h e s o l i t o n .

I t f o l l o w s f r o m ( 5 . 5 ) t h a t t h e p r o p a g a t i o n v e l o c i t y o f

a n e l e c t r o a c o u s t i c s o l i t o n i s a l w a y s s m a l l e r t h a n t h e

v e l o c i t y o f s o u n d c s a n d a p p r o a c h e s t h e l a t t e r i f t h e

m a x i m u m a m p l i t u d e a d e c r e a s e s . I t i s a l s o s e e n f r o m

( 5 . 5 ) t h a t t h e l a r g e s t p o s s i b l e v a l u e o f t h e a m p l i t u d e a i s

£·5=(32π«ο^|εο(ω)|)1/2. (5.7)

When a — E s the v e l o c i t y of the so l i ton tends to z e r o .

Writing formula (5.4) for t h i s c a s e in the form

Ε (χ) = (£ ssech [μ (χ — x0)], ( 5 . 8 )

w h e r e Xo i s t h e c o o r d i n a t e of t h e v e r t e x o f t h e " l i m i t i n g "

s o l i t o n , w e o b t a i n an e x p r e s s i o n f o r t h e f i e l d i n a s t a -

t i o n a r y n o n l i n e a r s k i n l a y e r f o r n o r m a l i n c i d e n c e o f a

p l a n e e l e c t r o m a g n e t i c w a v e o n a c o l l i s i o n l e s s

p l a s m a " 9 · 1 . T h e q u a n t i t y x 0 i s d e t e r m i n e d i n t h i s c a s e

by the value of the field amplitude on the plasma boun-
dary: Eo = E s s e c h ^ x < , ) (Fig. 15). When Ε 0 > E s the
plasma cannot " w i t h s t a n d " the p r e s s u r e of the wave
field and a stationary state of the p lasma i s impossible.
On the other hand, if a wave with variable amplitude is
incident on the plasma, i .e., E o = E 0 (t), then under cer-
tain conditions, electroacoustic waves* " s p l i t away"
from the skin layer, and a r e transformed, as they
propagate in the inter ior of the plasma, into solitons
described by formulas ( 5 . 4 ) - ( 5 . 6 ) t 5 1 J .

6. DYNAMIC AND STOCHASTIC INTERACTION OF
WAVES

6.1. Three-wave P r o c e s s e s

Let us now consider the general case of three-dimen-
sional nonlinear osci l lat ions. Of course, in the most
general case one can hardly advance far enough, since
t h e r e i s still no complete mathematical theory for the
solution of part ia l nonlinear differential equations. How-
ever, if it i s assumed that the amplitude of the oscilla-
tions i s not very large, then one can use the perturba-
tion-theory m e t h o d ' 5 4 " 6 0 3 . At first approximation, we
simply have a l inear theory with the superposition

*The generation of electroacoustic waves is most effective if the
characteristic amplitude modulation time Τ is of the order of
i.e., of the time required by the sound to traverse the skin layer.

Xg

FIG. 15

-Π-πηίυυιπ.

FIG. 16

p r i n c i p l e , s o t h a t a n a r b i t r a r y p e r t u r b a t i o n c a n b e

r e p r e s e n t e d i n t h e f o r m of a n a g g r e g a t e o f n a t u r a l o s -

c i l l a t i o n s :

Ψ = 2 <*ϋΨί exp (ikr — i(oki), (6.1)
k x '

where the quantity Φ has, generally speaking, several
components, * £ * s the polarization " v e c t o r " (suitably
normalized), a k i s the amplitude (complex), k i s the
wave number, and a>k is the natural frequency. If we
now take a weak nonlinearity into account, then the
p r e s e n c e of quadratic t e r m s will give r i s e in the equa-
tion of motion to t e r m s of the form
a k ' x a k " e x P [i(k' + k " ) r - i(a>k' + wk"H]· Such a t e r m
plays the role of a driving force with frequency cok '
+ ω^* and wave vector k' + k". We note that since Φ
and * £ a r e rea l , the t e r m s of the sum (6.1) must include
pairwise conjugate t e r m s , so that a _ k = a*., ω ^ = — ω_^.
Therefore, in addition to the force indicated above,
t h e r e should be present also a driving force at the fre-
quency difference ω^' - ω^" and wave vectors k' — k".
The appearance of beats at combination frequencies
w k ' + w k " a n d wave vectors k' + k" is graphically
demonstrated in Fig. 16, which shows the superposition
of two plane waves. Each of the shaded s t r i p s in Fig. 16
can be regarded a s a wave of stepwise form, in which
the amplitude changes jumpwise from zero to u n i t y -
zero where t h e r e i s a black l ine and unity between them
(see the lower part of Fig. 16). Upon superposition
(intersection) of such waves, their products a re pro-
duced—black s t r ips , where at least one of the ampli-
tudes is " b l a c k , " and a white field between them. We
see that a m o i r e pattern is produced upon superposition
of the waves, namely a wave with wave vector k' — k"
(in addition, a m o r e frequent r ipple is produced at the
sum k' + k") . When the waves k' and k" propagate, the
moire pattern also propagates, and if it coincides with
one of the natural waves, i .e., if ω^' + ω^" turns out to
be equal to the natural frequency ω^ corresponding to
the wave vector of the beats k = k" + k", then the non-
linear driving force leads to a buildup of the wave k.
The amplitude of the wave var ie s slowly with t ime, so
that
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(6.2)

H e r e k" = k - k', s ince Eq. (6.2) i s the Four ie r
harmonic, with wave vector k, of the initial nonlinear
equation of motion, and V k k ' k " is the matr ix element
of the interaction, which is' determined by the concrete
form of the equation of motion. If the detuning Δ = o>k'
+ u>k" — w k vanishes and resonance sets in, then even
in the case of a small nonlinearity a strong change of
the oscil lation amplitudes can occur after the lapse of
a sufficiently large time—one wave can break up into
two others and two waves can coalesce into one. Such
p r o c e s s e s , in which t h r e e waves interact, a r e called
three-wave p r o c e s s e s , and the spectrum (the dependence
of the frequency w k on k) for which the condition o>k

= U)k' + w k " can be satisfied is called a decay spectrum.

Decay conditions a r e part icular ly easy to satisfy in
a plasma, in view of the abundance of different oscilla-
tion m o d e s ' 2 4 6 1 3 . F o r example, in a compress ible
plasma (β = Η 2/8πηΤ * °°), the Alfven and the magneto-
sonic waves, while not decay waves themselves, can
decay into a pai r of Alfven and magnetosonic waves.
Helicons (whistlers) a r e decay waves in themselves.
Many examples of decay p r o c e s s e s can also be cited
from the field of nonlinear o p t i c s t 6 2 " 6 3 ] .

Three-wave p r o c e s s e s make possible the transforma-
tion of certain waves into others and by the same token
give r i s e to a complicated p r o c e s s of energy t ransfer
in the phase space of the wave numbers .

6.2. Interaction of Three Waves

Let us consider the simplest case when there a r e
only t h r e e waves k, k ' , and k" = k — k', related by the
resonance condition. We denote their amplitudes by
a i : ai = a k , a2 = a k ' , a 3 = a k " and their respect ive fre-
quencies by u>i, ω2, and ω3. We assume that all the f re-
quencies a r e positive and fur thermore (Ji = <J)Z + ω 3

«̂  CO2 /" CO3·
F r o m (6.2) we have for ai

(6.3)

where Vi = V k k ' k " .
We can s imilar ly obtain equations for a2 and a3. To

this end, in the former case we interchange k and k' in
(6.3):

^ - K * « : . (6.4)

and in the la t ter case we substitute k" for k and k for
k':

-^- = F3iHaJ, (6·5)

where V2 = V k ' j k ) _ k " , V3 = V k " ; k ; - k ' .

In the case when the nonlinear equations for the am-
plitudes a r e the resul t of the F o u r i e r t ransformation of
the initial par t ia l differential equations of motion, the
coefficients V k k ' k " have the same phase—they a r e
either pure imaginary or rea l . For simplicity we shall
a s s u m e them to be r e a l (imaginarity can always be
eliminated by introducing an additional factor i in the
amplitudes a k ) . In Eqs. (6.2)—(6.5), the dynamic varia-
bles a r e the amplitudes ajj. Changing the normalization
of the polarization vectors ψ£ in (6.1), we can introduce

additional factors in a k for the purpose of simplifying
the form of the equations. Using this, we normalize the
amplitudes a^ in such a way that the energy of the k-th
wave 8 k is equal to £ k = w k | a k | 2 . Its momentum Pjj is
then P k = k lajjl2. In analogy with quantum mechanics,
the quantity Nĵ  = | % | 2 can be interpreted as the number
of quanta in the state k. In the case of classical proc-
esses, this quantity is usually called the number of
waves.

By virtue of the energy and momentum conservation
laws for the interacting waves, the matrix elements in
(6.3)—(6.5) cannot be purely arbitrary. In fact, multi-
plying (6.3)—(6.5) respectively by u^aj* and kjaj"
(ki = k, k2 = k', k3 = k"), adding them to their complex
conjugates, and taking into account the energy and mo-
mentum conservation laws

ωιΝί+ωζΝ2 + ω3Ν3 = const, k ^ . + k ^ +k3N3 = const, (6.6)

we obtain

where we have taken into account the fact that ωι = ω2

+ «a, ki = k2 + k3. Equations (6.7) constitute a system of
four scalar equations for two quantities, Vi + V2 and
Vi + V3. It follows therefore that Vi = - V2 = - V3. In
addition, since reversal of the sign of all the k denotes
a changeover to the complex-conjugate quantities, and
Vj is real by definition, it follows that Vk k ' k "

= V—k — k ' — k " . In addition, as seen from (6.2), it can

be assumed that Vk k ' k " = Vk k " k ' . Thus, the sym-

metry conditions can be represented in the formC 5 9 > e 3 ) 6 4 ]

F k , k % k . = Kk,k.,k. = F_ k ,_^_ k .= - F k . , k , _ t . - - F k . , k , - k . . (6.8)

Besides (6.6), Eqs. (6.3)—(6.5) have one more integ-
ral of motion. In fact, if we multiply (6.3) by af and
(6.4) by a* and add them together with their complex
conjugate relations, then by virtue of the symmetry con-
dition we obtain zero in the right-hand side, i.e.,

iV, + # 2 = const. (6.9)

Analogously, from (6.4) and (6.5) we can obtain Ni
+ N3 = const, but this relation is a consequence of (6.6)
and (6.9) if it is recognized that ωχ = α>2 + ω3.

If we substitute for Nj in (6.6) and (6.9) the squares
of the amplitudes N. = a2, then we obtain the equations
for an ellipsoid (6.6) and a cylinder (6.9) with axis along
a3. The amplitudes aj can change upon interaction only
in such a way that the point (ai, a2, a3) moves along the
line of intersection of these surfaces. If it is recognized
that ω1 > ω2 > ω3, then the intersection line has the
form shown in Fig. 17.

FIG. 17 .
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It is seen from this figure that only a wave with
maximum frequency ωι can " d e c a y , " i .e., can d e c r e a s e
strongly in amplitude even under conditions when the
initial amplitudes of the two other waves a r e small :
ai 3> a2, a3. As to a2 and a3, in the case of slight excita-
tion of the waves resonantly coupled with them, they
change thei r amplitude little, executing small oscilla-
tions about the initial value. F r o m this figure, by virtue
of i ts symmetry, we can conclude also that the p r o c e s s
of wave decay has the character of periodic conversion
of the wave ai into the two other waves a2 and a3, and a
r e t u r n to the initial s tate.

The ent ire picture is s imi lar to the free motion of a
solid. In part icular , the p r o c e s s of the decay of the wave
ai into a2 and a 3 i s s imi lar to the free motion of an
asymmetr ica l top' 6 5 · 1 caused to r o t a t e about an axis
passing near the principal inert ia l axis, such that the
moment of inert ia I2 l ies between the two others , I 3 > I2

> IJL (see Fig. 51 o f [ 6 5 ] ) . This i s not surpris ing, since
the equations for the amplitudes (6.3)—(6.5) a r e very
s imi lar to E u l e r ' s equations for the free motion of an
asymmetr ica l solid. Accordingly, the analytic expres-
sions for the motion of a so l id [ 6 5 : a r e s imi lar to those
for the t ime variation of the amplitudes of three
resonantly-interacting waves with the same p h a s e t 6 3 ] .

6.3. Interaction of High-frequency Waves with Low-
frequency Waves

Let us consider another relatively simple case,
where the number of interacting waves is a rb i t rary , but
then one of the waves has a very smal l wave number
and low frequency i 6 6 : l . This case corresponds to Fig.
15, when the moire pattern from the high-frequency
waves can fall into resonance with a natural low-fre-
quency wave.

We denote the amplitude of the low-frequency wave
by b, and i t s wave vector and frequency respectively by
κ and v. By assumption, κ <̂C k0, where k 0 is the wave
number of the fundamental wave with amplitude a0. As
seen from (6.2), waves with wave vectors ko + ηκ enter
into the interaction; we shall denote their amplitudes by
a n . We assume that the detuning i s equal to zero, i.e.,
w k ~ w k-/c = v· Allowing for the smal lness of κ, we ob-
tain

da
ak* = v ** = v. (6.10)

We see therefore that in the considered case of smal l κ
the resonance condition corresponds to equality of the
group velocity of the high-frequency packet to the phase
velocity of the low-frequency waves. Since κ is small ,
the matr ix element in (6.2) can be regarded as indepen-
dent of n, so that the equation for SL^ can be written in
the form

^- = iV(aMb' + an-tb), (6.11)

where V is simply a certain number assumed to be rea l .
(As will be shown later, it i s convenient to normalize
the amplitudes in such a way that the matr ix element of
the interaction iV i s pure imaginary.) Analogously, we
have for b

=ίκ 2 «**_, (6.12)

a r e the same in (6.11) and (6.12), as is the case if the
amplitudes a n and b a r e normalized in a definite man-
ner.

We assume that at the initial instant of t ime there i s
excited only one wave with amplitude a§ and there i s a
small admixture of a low-frequency wave b. We assume
for simplicity that b i s a rea l quantity (the phase of b
depends on the choice of the coordinate origin). Then,
using the well-known r e c u r r e n c e relation for Bessel
functions 2[dJ n(x)/dx] = J n . ^ x ) - J n + 1(x) we can easily
verify that a solution of (6.11) is

an=ayjn{2V\bdt). (6.13)

We see therefore that owing to the interaction with the
low-frequency wave, there appear, with increasing t ime,
higher and higher harmonics a n , and as t — °° they be-
come equalized in the mean. The appearance of the
harmonics a n corresponds simply to modulation of the
initial wave, as is seen from the relation

> = e-i«M-kor) V (6.14)

If, in addition to the assumptions made above, we can
neglect the dependence of * n on n, then (6.14) takes the
form

Ψ = α;Ψοβ4<"''Γ-ω«'> exp {i [kor — ωοί] — ίλ cos (vt — xr)},

where λ = 2V f bdt. We see therefore that in the case

considered h e r e we have a pure phase modulation.
Substituting the obtained expressions for a n from

(6.13) into Eq. (6.12) for b, we obtain

db
i r = - ^ 2 ' - (6.15)

We assume that the matr ix elements of the interaction

But the expression in the right-hand side, by virtue of
the well-known addition theorem for Bessel functions,
vanishes. Thus, modulation of the high-frequency wave
occurs at constant amplitude of the low-frequency wave.
If we take into account the slight asymmetry of the ma-
t r ix e lements of the interaction, i .e., their dependence
on n, then the amplitude of the low-frequency wave will
also vary in time—it will ei ther increase or experience
low-frequency oscil lations. Everything depends on
whether the predominant transformation of the high-
frequency waves is in the Stokes or in the anti-Stokes
direction.

6.4. Weak Turbulence

The effect of the growth of the number of harmonics
and the tendency to distribution of the energy over a
very large number of waves a r e also retained in the
general case of a r b i t r a r y three-wave p r o c e s s e s . If the
number of excited waves i s very large, then as a resul t
of interaction with a la rge number of waves the phase
of each individual wave var ie s in a complicated i rregu-
lar manner with t ime, so that the entire p r o c e s s of ex-
change of energy acquires an i r regular character . But
it is precise ly because of this i r regular i ty that we can
descr ibe the p r o c e s s in a different language, by using
the s tat is t ical approach. In this limiting case it is as-
sumed that the waves constitute random quantities,
which can be regarded as pract ical ly uncorrelated—
such an approximation is well known in physics as the
random-phase approximation.
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In the random-phase approximation, the problem of
describing the dynamics of nonlinear waves reduces to
a determination of the time dependence of the mean
squares of the amplitudes, i.e., Nk(t). The correspond-
ing equations for N k can be obtained by averaging Eqs.
(6.2) over the phases. To this end, we first multiply
(6.2) by a£, add the result to its complex conjugate, and
average over the phases:

•^k V v

where the angle brackets denote averaging over the
phases, N k = | a k | 2 , and c.c. denotes the complex conju-
gate. If we assume the phases to be random and the
amplitudes a k to be completely uncorrelated, then we
obtain in the right-hand side of (6.16) simply zero. In
fact, a slight correlation between the amplitudes a k

does nevertheless arise, by virtue of the amplitude
equation (6.2) itself, owing to its nonlinearity. At small
values of a^, this correlation is naturally very weak. To
take it into account, we represent a k in the form a k

+ oajj, where a k is the fundamental part of the amplitude
with the random phase (this part of the amplitude can be
regarded as independent of the time), and 6a k is a small
increment that takes into account the correlation of the
amplitudes. In the first approximation in the correla-
tion, Eq. (6.2) takes the form

(6.17)

This equation can be integrated with respect to time
from — 00 to +», and assuming that the correlation
weakens as t — — •», i.e., the exponential of (6.17) con-
tains a small increment vt (v > 0), we obtain

. f. + cok— a>k).
(6.18)

W e h a v e r e t a i n e d h e r e o n l y t h e r e a l p a r t o f t h e

i n t e g r a l o f t h e e x p o n e n t i a l , w h i c h i s t h e o n l y p a r t t h a t

w i l l e n t e r i n t h e f i n a l r e s u l t , a n d i n a d d i t i o n w e h a v e

o m i t t e d t h e z e r o i n d e x f o r a k ' a n d a k " i n t h e r i g h t - h a n d

s i d e .

W e n o w s u b s t i t u t e i n t h e r i g h t - h a n d s i d e o f ( 6 . 1 6 )

a ^ = a k + 6 a k f o r e a c h o f t h e a m p l i t u d e s , a n d r e t a i n o n l y

t e r m s o f f o u r t h o r d e r i n t h e a m p l i t u d e s . I n t h e o b t a i n e d

e x p r e s s i o n , a l l t h e p h a s e s c a n a l r e a d y b e r e g a r d e d a s

u n c o r r e l a t e d , s o t h a t t h e m e a n v a l u e s o f t h e q u a d r u p l e

p r o d u c t s a r e t r a n s f o r m e d i n t o p r o d u c t s o f p a i r e d c o r r e -

l a t i o n f u n c t i o n s , i . e . , t h e y a r e e x p r e s s e d i n t e r m s o f

p r o d u c t s o f N j j . S i n c e t h e r e a r e m a n y s u c h t e r m s , t h i s

e n t i r e p r o c e d u r e h a s a s o m e w h a t c u m b e r s o m e a p p e a r -

a n c e , b u t t h e f i n a l r e s u l t , a f t e r t a k i n g i n t o a c c o u n t t h e

c o n d i t i o n s f o r t h e s y m m e t r y o f t h e m a t r i x e l e m e n t s

( 6 . 8 ) , i s v e r y s i m p l e :

( 2 l t ) 3 ( 6 . 1 9 )

w h e r e k" = k - k ' . *

I n p l a c e o f t h e s u m o v e r k ' , w e h a v e w r i t t e n h e r e a n

i n t e g r a l , a s i s u s u a l l y d o n e o n c h a n g i n g o v e r t o a c o n -

tinuous variable: Σ = fdk'/(27r)3. In Eq. (6.19), the
k' J

transition probability Wjjjj' can be very easily expressed
in terms of the matrix element of the interaction (which
by assumption is real);

Wkk. = Wk.k = Wkk. = 2nFkk.k.. (6.20)

It is easy to verify, and this is perfectly natural, that
the right-hand side of (6.19), which can be called the
term representing the collisions between waves, con-
serves the energy and the momentum of the waves. It
follows therefore, in particular, that Eq. (6.19) has the
Rayleigh-Jeans distribution N k = const/a>k as a station-
ary solution. This can easily be verified directly by
making the substitution Ujj = ? k /w k = const/ω^ in the
right-hand side of (6.19) and taking into account the
presence of a δ function under the integral sign.

The aggregate of a large number of waves that inter-
act weakly with one another is customarily called weak
turbulence. Thus, Eq. (6.20) can be regarded as a kine-
tic equation for weak turbulence with account taken of
only some three-wave interaction processes.

It turns out that weak turbulence can have properties
similar to strong turbulence. As shown i n

[ 6 8 ' 6 9 : l , in
many cases the transition probabilities W ^ ' in (6.19)
have the property that the probabilities of transitions
with strong change in the wave vector turn out to be
much lower than the probabilities of transitions with
change of k by an amount on the order of k. Conse-
quently, the process of relay-like energy transfer over
the spectrum first proposed for ordinary turbulence by
Kolmogorov[7o:l and ObukhovC71] can also take place in
weak turbulence. When account is taken of the fact that
the interaction term of (6.19) is quadratic in N k, the
condition for the transfer of energy over the spectrum
determines the spectrum of the oscillations £ k without
the need for solving in detail the kinetic equation for the
waves.

Let us consider, for example, the case of capillary
waves1693 having a decay oscillation spectrum
a>k = Vak3/p. Let ?k be the spectral energy function,
i.e., £fcdk is the oscillation energy in the interval dk
(we regard k here as a scalar—the absolute value of the
wave vector). We denote by i? the flow of energy over
the spectrum. The quantity b is obviously proportional
to k3 g/et, which according to the kinetic equation for
the waves should be proportional to the square S k, i. e.,
with dimensionality taken into account we have
i = Awk(gkk)2k2/a. Here σ/k2 is the only quantity at
our disposal with the dimension of energy, and was
added for the purpose of making A a dimensionless
constant. From this we get

" 1 /? ML / β 0 1 \

ί ) " ( σ ρ ) 1 / 4 *-"/*, Nh~k-'V*. (°·Δ1)

*Equation (6.19) coincides in form with the well-known kinetic
equation for phonons in a solid (see, for example [67]) in the classical
limit (fi->0).

This spectrum is an exact solution of the kinetic equa-
tion for the waveC69]. It corresponds to the energy of
inertial nonlinear energy transfer over the spectrum in
the direction of large wave numbers, where dissipation
by viscosity takes place.

6.5. Four-wave Processes

If the spectrum is of the non-decay type, i.e., the
dependence of ω^ on k is such that it is impossible to
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satisfy the condition ω^ - ω^' = wfc-k'» then it becomes
necessary to take into account the next higher (cubic in
the amplitude) t e r m of the wave interaction. In this case
the resonant t ransfer of the wave energy over the spec-
trum i s due to four-wave p r o c e s s e s , when the following
conditions a r e satisfied:

k, + k2 = k3 + k4, ω,+ω2 = ω3+ω4 (6.22)

for the conversion of two waves, ki and k2, into two
others , k3 and k4, or analogous conditions for the decay
of one wave into t h r e e or for the coalescence of three
waves into one. In this case the interaction i s a small
quantity of third o r d e r in the amplitude, and in the case
of random phases it i s of third o r d e r in the number of
waves Njj. Of course, four-wave p r o c e s s e s a r e funda-
mental also in the case when the nonlinearity is cubic
from the very outset, as is the case, for example, in
the equation (4.8) considered above, which descr ibes
self-focusing and self-contraction of wave packets.
These p r o c e s s e s themselves can also be interpreted in
the language of four-wave interactions of waves with
close wave vectors k and k ± κ

172>η>321, More detailed
information on four-wave p r o c e s s e s can be found
jn£56,60,62,63,73]

7. CONCLUSION

As seen from this review, t h e r e has been a consider-
able shift of emphasis during the last few years in the
theory of nonlinear waves, from investigations of indi-
vidual nonlinear waves, such a s simple and shock waves
or Stokes waves on the surface of a liquid, to the study
of entire c la s ses of nonlinear wave p r o c e s s e s . One
such c lass constitutes waves in weakly dispersive
media. For a very la rge number of objects, such waves
a r e described by the Korteweg—de Vries equation. The
use of numerical calculations and profound analytic in-
vestigations has brought about great clarity not only for
stationary solutions of this equation, but also for t ime-
dependent ones.

Another c lass of phenomena attract ing m o r e and m o r e
attention in different branches of physics i s that of slow
nonlinear p r o c e s s e s in almost-periodic waves—self-
focusing and self-contraction of wave packets. These
p r o c e s s e s a r e being intensely investigated in nonlinear
optics, where they have already become one of the
tradit ional t rends . They turned out to be m o r e unexpec-
ted for hydrodynamics—the theoret ical and experimen-
tal proof of instability of periodic Stokes waves over
deep water, the determination of whose profiles and the
proof of whose existence had consumed so many efforts,
has made it possible to examine the wave motion of
liquids in an entirely new light.

Self-focusing and self-contraction of wave p r o c e s s e s
constitute a par t icular case of a m o r e extensive c lass
of phenomena—stimulated scatter ing of waves by waves.
In optics, an example of this p r o c e s s may be stimulated
scatter ing of light by phonons, corresponding to the
Mandel 'shtam-Bril louin effect. Stimulated scatter ing
of waves by waves plays an important role in plasma,
where complicated nonlinear p r o c e s s e s with excitation
of a very large number of waves can frequently come
into play. Analogous phenomena also take place in exci-
tation of a broad spectrum of waves over water. These

phenomena have the character of stochastic interaction
between waves; they a r e called weak turbulence. Weak
turbulence has much in common with the interaction of
phonons in solids, constituting thus a r a t h e r extensive
circ le of physical phenomena. By now its theory, based
on expansion in t e r m s of the small interaction of the
waves with one another, has been developed sufficiently
fully, and it can apparently serve as a starting point for
the investigation of m o r e complicated stochastic proc-
e s s e s with large amplitudes of moderate and strong
turbulence.
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