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I. INTRODUCTION

I N connection with the transition of a substance from
the normal to the superconducting state, its physical
properties change very substantially. The electromag-
netic, thermal, and kinetic properties of superconduc-
tors differ from the properties of normal metals,
which are fairly well described by the ordinary quan-
tum theory of solids. In the microscopic theory of
superconductivity^1"3-1 it is shown that the basic charac-
teristics of the superconducting state are due to the
pair correlation of the electrons and the associated
appearance of a gap in the energy spectrum of super-
conductors .

The present review is devoted to a description of
kinetic phenomena in superconductors; in this connec-
tion we have confined the investigation to the phenom-
ena of thermal conductivity and the attenuation of
sound. Investigation of heat transfer processes in
superconductors was started quite a long time ago.
The specific properties of these phenomena (see, for
example,[4]) led to the creation of the two-fluid model,[s^
within the framework of which it was possible to de-
scribe qualitatively some of the observed relationships.

Transport phenomena in superconductors have al-
ready been briefly discussed in review articles on
superconductivity[8~9-1 which appeared soon after the
development of the microscopic theory. At the present
time one is able to rather completely describe the
phenomena of thermal conductivity and the absorption
of sound in superconductors on the basis of the contem-
porary microscopic theory. The description of trans-
port processes, as it appears to us, is at the present
time a rather completed branch of the physics of the
superconducting state. The obtained temperature de-
pendences of the kinetic coefficients actually turn out
to differ substantially from the well-known results for
normal metals. The basic property of superconductors
consists in the presence of a condensate of Cooper
pairs, whose motion is not accompanied by the trans-
port of entropy. The number of electronic excitations,
which play a basic role in kinetic phenomena, depends
on the temperature, decreases upon its reduction be-
low T c (T c denotes the critical temperature), and
tends to zero as T — 0. This dependence of the num-
ber of carriers on temperature and the corresponding
changes of the mean free path lead to an extremely
distinctive picture of kinetic phenomena in supercon-
ductors .

H. THERMAL CONDUCTIVITY OF SUPERCONDUCTORS

1. Mechanisms of Thermal Conductivity

As is well-known, the heat flux in a metal is com-
posed of two components: the electronic thermal con-

ductivity «e and the thermal conductivity of the lattice
/cp, so that K = Ke + «p- The steady-state nature of the
thermal conductivity process is guaranteed by the
presence of several relaxation mechanisms. In connec-
tion with an investigation of the electronic contribution
to the heat flux, such mechanisms are as follows: col-
lisions of electrons with impurities (which determines
/ced), with phonons (/cep), and interelectronic collisions
(Kee). The lattice thermal conductivity /cp is deter-
mined by the interaction of phonons with electrons
(/Cpe), by phonon-phonon collisions (Kpp), and by the
scattering of phonons by impurities, boundaries, and
defects of the crystal (/cpd).

Thus, six mechanisms of thermal conductivity exist.
The thermal conductivity corresponding to a given type
of carrier is approximately determined by the sum of
the thermal resistances. Therefore

Depending on the conditions, the different mecha-
nisms, of course, play unequal roles. In an ordinary
metal the electronic component «e makes the major
contribution to the heat flux, and under the most favor-
able conditions (see, for example,[10]) /cp amounts to
only a few per cent of the total thermal conductivity.

In superconductors the electronic thermal conduc-
tivity plays the main role in pure or slightly impure
samples. As T — 0 (*e falls exponentially as T — 0;
see below) and also in substances containing a large
concentration of impurities, the role of Kp increases
appreciably. A detailed discussion of the role of the
different mechanisms is given below in Sec. 6 after a
calculation of the coefficients of thermal conductivity
corresponding to the different mechanisms. We note,
incidentally, that since the basic properties of the
superconducting state are associated with a rearrange-
ment of the electronic system, the quantities Kpp and
Knd a r e described by the same laws which also hold
for normal metals.

2. Scattering of Electrons by Impurities

The mechanism1-111 under consideration (see also [12J)
plays a major role in superconducting samples contain-
ing small concentrations of impurities. In this connec-
tion, of course, the temperature region close to abso-
lute zero, where the number of electronic excitations
is exponentially small, is excluded.

The heat flux is determined by the relation

here f denotes the perturbed distribution function for
a superconductor's electronic excitations, which are
due to the effect of the temperature gradient and which
interact with the impurity atoms. For its determina-
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tion, let us write down the corresponding kinetic equa-
tion

we find

Of de df de
dx dpx dpx dx f-h (1)

here e denotes the energy of an electronic excitation,
given by e = V§2 + A2(T) (£ denotes the energy of an
ordinary electron measured from the Fermi surface,
£ = (p2 - Po )/2m = vp(p - Po), VF and p0 denote the
velocity and momentum, respectively, at the Fermi
surface, and A(T) is the gap in the energy spectrum),
and f0 = [exp (e/T) + l]"1 (the temperature is meas-
ured in energy units, k = 1). On the left-hand side one
can substitute f0 instead of f; then Eq. (1) reduces to
the form

S/o e de
de T dpx

1L~dx f-h (2)

We note that the temperature dependence of the excita-
tion energy comes entirely from the kinetic equation.

The time T for the relaxation of a superconductor's
electronic excitations by impurities appears on the
right-hand sides of Eqs. (1) and (2). In order to deter-
mine this quantity let us write down the Hamiltonian
for the interaction of ordinary electrons with impurity
atoms in the representation of second quantization:

Si' = S « l/2<Jk-, 1/2 + «k, -V"J'f, -1/2) Vkk;k

where a£ 1/2 and ajt) .x.2 denote the amplitudes of
second quantization with momentum k and spin y2
(-x/z> corresponding to the creation and annihilation of
an electron, and Vkk' denotes the matrix element.

According to f2], the superconducting state is de-
scribed by Fermi amplitudes ako and aki, where

=«k«-k,-l/2-r !
(3)

Introducing these amplitudes into 36', we find the
following result for elastic scattering (| k | = | k' | ) :

Se' = 2 T F**' KoOCk-0 + CtilOk.,),

where a ^ a k i denote the occupation numbers of the
excitation.

Then expressing the probability for the scattering
of an electronic excitation with the aid of the well-

ez o* as ag iff
T/TZ

FIG. 1

known quantum-mechanical formula ab
= 2TI\SS' \lbpE (the statistical weight pg = p2d«dp/dE),

(4)

where T0 is the relaxation time of the ordinary elec-
trons and does not depend on the energy.

Substituting the expression obtained for r into
formula (2), we find the desired distribution function,
and then we calculate the corresponding coefficient of
thermal conductivity

Sfo
de

+ 2Aln[l + e x p ( - A ) ] .

(5)
Thus, we see that the electronic thermal conductiv-

ity is described by a universal dependence on the tem-
perature and decreases with its lowering according to
the law (5). A graph of this dependence is plotted in
Fig. 1. In addition, experimental data obtained in an
investigation of impure samples of Tl[13] are also
shown. It is clear that the theory is in rather good
agreement with experiment. If we set A = 0 in formula
(5), then we arrive at the linear law for the variation of
the quantity /ced which is well-known in the ordinary
theory of metals (see, for example/101).

The electronic thermal conductivity /ced is calcu-
lated in articles'-14'153 by using an exact formula for the
coefficient of thermal conductivity^16-1 (see below, Sec.
8) and by application of the method of Green's func-
tions . As a result the authors arrive at the same
formula (5) which was obtained in[11] with the aid of the
kinetic equation.

3. Thermal Conductivity of Pure Superconductors

The thermal conductivity /cep associated with the
scattering of electrons by phonons plays a major role
in samples of high purity as T — T c .

In order to investigate the question of temperature
dependence^17'181, let us write down the kinetic equation

dj
dx

8j_
dpx

de,
"dx

where f denotes the electronic distribution function
which we shall seek in the form

In order to write down an expression for the collision
integral in the case under consideration, we make the
transformation (3) to new Fermi amplitudes in the
electron-phonon interaction Hamiltonian

SB'= k.s.qk=k+q
(6)

(bq denotes the amplitude for the creation of a phonon
with momentum q, s = l/2 or ~y2, and Vkk' denotes
the matrix element), after which the initial Hamiltonian
takes the form
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+ (it»iv + uk.vk.) (aioapi + ctkoQVi)] 6q + C.C. (6 ' )

Wi th t h e e x p r e s s i o n o b t a i n e d for 36' t a k e n in to c o n -
s i d e r a t i o n , t h e k i n e t i c e q u a t i o n i s w r i t t e n in t h e f o r m

X [qp (e', Q') —<p (e, Q)J exp (-£-) /„ (e) /„ (e') 8 (e-e ' -co) rfq

+ ^ ! F^A'o ( l - ^ = ^ - 2 ) [(f (e', Q')-<p(e, Q)]

X exp (-£ ) /„ (e) /o (e') 6 (e' + e- to) <2q,

*„ = [ e x p ( f ) — - l ] " ' . (7)

We f u r t h e r m o r e t a k e in to a c c o u n t t h e fac t t h a t t h e
w a v e v e c t o r q of a t h e r m a l phonon i s s m a l l in m a g n i -
t ude in c o m p a r i s o n wi th t h e e l e c t r o n m o m e n t u m .
T h e r e f o r e one can e x p a n d t h e funct ion cp(il') in p o w e r s
of q ' = p - p* (p* i s a v e c t o r d i r e c t e d a l o n g p a n d
h a v i n g a length e q u a l to 1 p ' | ) . Such a m e t h o d of i n -
v e s t i g a t i n g t he k i n e t i c e q u a t i o n w a s f i r s t d e v e l o p e d
in1-19-1. We s e e k a s o l u t i o n of t h e e q u a t i o n , which i s o b -
t a i n e d a f t e r i n t e g r a t i o n o v e r t h e a n g l e s a n d by t h e s u b -
s t i t u t i o n e e ' [ l ± ( | i= ' - A 2 ) / e e ' ] / | £ | | £ ' | « 2 ( s e e b e -
low, S e c . 3) , in t h e f o r m cp(e, fl) = cpi(il) + <p2(e, O) .
Af te r s i m p l e but c u m b e r s o m e c a l c u l a t i o n s we a r r i v e
a t t h e fo l lowing e x p r e s s i o n for t h e quan t i ty <p wh ich
d e t e r m i n e s t h e p e r t u r b e d e l e c t r o n i c d i s t r i b u t i o n f u n c -
t i o n :

+ 2 s-5e-2bs (8064s4 + 16063s3 + 2406V + 2406s + 120)

—•In (<?" + 1) 2 s 'V2 6 ' (6463s3 + 966V + 966s + 48).

T h e n t h e hea t flux i s c a l c u l a t e d a c c o r d i n g to t h e
f o r m u l a Q = 2 J e v x f d p , which l e a d s to t h e fo l lowing
f ina l e x p r e s s i o n :

<D (T) fi 0 )

( K 2 ( b s ) d e n o t e s t h e B e s s e l funct ion of i m a g i n a r y a r g u -
m e n t ) .

In t h e t e m p e r a t u r e r e g i o n c l o s e t o T c w h e r e t h e
c o n t r i b u t i o n of t h e e l e c t r o n - p h o n o n i n t e r a c t i o n t o t he
h e a t f lux i s m o s t i m p o r t a n t , we f ind

_®(rc) r2

(K§p d e n o t e s t h e t h e r m a l conduc t iv i ty of the n o r m a l

m e t a l ) . T h e c o r r e s p o n d i n g t h e o r e t i c a l c u r v e i s p l o t t e d
a n d e x p e r i m e n t a l d a t a f o r p u r e s a m p l e s of tin1-203 a n d
indium/ 2 1^ a r e g iven in F i g . 2 .

In su f f i c i en t ly p u r e s u p e r c o n d u c t o r s , e f fec t s m a y

FIG. 2. The experimental
points correspond to: X —
tin, [20] O - indium; [21] the
solid curve corresponds to the
theoretical value. ["]

a p p e a r wh ich a r e a s s o c i a t e d wi th t h e p r e s e n c e of
o v e r l a p p i n g e n e r g y b a n d s . In t h i s c o n n e c t i o n t h e t o t a l
coef f ic ien t of t h e r m a l c o n d u c t i v i t y , which i s d e t e r m i n e d
by t h e s c a t t e r i n g of e l e c t r o n s by t h e r m a l p h o n o n s ,
t u r n s out to be an a d d i t i v e func t ion of t h e coe f f i c i en t s
p e r t a i n i n g to d i f fe ren t bands ' - 2 2 1 (for m o r e d e t a i l s abou t
t h e cond i t i ons u n d e r which m a n y - b a n d e f fec t s a r i s e ,
s e e b e l o w , Ch . I l l , S e c . I d ) . We s h a l l not c o n s i d e r
p r o c e s s e s in which t h e e l e c t r o n s p a s s f r o m one band
to a n o t h e r s i n c e s u c h t r a n s i t i o n s in g e n e r a l a r e a c -
c o m p a n i e d by a c h a n g e of t h e e l e c t r o n m o m e n t u m by
an a m o u n t ~ P F , wh ich i s i m p o s s i b l e a t t h e f r e q u e n c i e s
is) ~ T of t he t h e r m a l phonons u n d e r c o n s i d e r a t i o n . T h e
i n d i c a t e d add i t i v i ty i s v i o l a t e d upon t h e i n t r o d u c t i o n of
i m p u r i t i e s w h o s e p r e s e n c e l e a d s t o i n t r a b a n d t r a n s i -
t i o n s / 2 3 3 F o r pa th l e n g t h s I s a t i s f y i n g t h e cond i t ion
I < ijo (£o d e n o t e s t h e s i z e of a C o o p e r p a i r ) , m a n y -
b a n d e f fec t s c e a s e t o p lay a r o l e , [ 2 4 ] a n d the u s u a l
s i n g l e - b a n d a p p r o x i m a t i o n b e c o m e s v a l i d .

4 . L a t t i c e T h e r m a l Conduc t iv i ty

Now let u s c o n s i d e r t he q u e s t i o n of t h e t r a n s p o r t of
h e a t by p h o n o n s , a s s o c i a t e d wi th t h e i r s c a t t e r i n g by the
e l e c t r o n i c e x c i t a t i o n s of a s u p e r c o n d u c t o r / 2 5 ' 2 6 - 1 A
t e m p e r a t u r e r a n g e ( T ^ 0 . 3 t o 0 .5 T c ) e x i s t s w h e r e
t h i s m e c h a n i s m p l a y s a d e c i s i v e r o l e .

L e t u s w r i t e down t h e k i n e t i c e q u a t i o n for t h e d i s -
t r i b u t i o n funct ion of N phonons

aS dT_ gx _ / dN \
W ~Sx U" I q I ~\ at L (11)

w h e r e u0 d e n o t e s t h e s p e e d of s o u n d , a n d q i s t he m o -
m e n t u m of a phonon .

U s i n g e x p r e s s i o n (6) fo r t h e e l e c t r o n - p h o n o n i n t e r -
a c t i o n H a m i l t o n i a n 38', in wh ich a t r a n s f o r m a t i o n h a s
b e e n m a d e to t h e new F e r m i a m p l i t u d e s which d e s c r i b e
t h e s u p e r c o n d u c t i n g s t a t e , we a r r i v e a t t h e fo l lowing
e x p r e s s i o n for t he c o l l i s i o n i n t e g r a l :

} ^ . (12)

T h e c o l l i s i o n i n t e g r a l (12) d i f f e r s f r o m t h e u s u a l
e x p r e s s i o n by t h e f a c t o r s { l ± [ ( 4 4 ' - — 2 ) / e £ ' ] } , w h o s e
a p p e a r a n c e i s a s s o c i a t e d wi th t h e p r e s e n c e of t he f a c -
t o r s (uk • u k ' - vfc • v k ' ) a n d (ufc • v k ' + u k ' • vk) in t he
H a m i l t o n i a n SB' g iven by E q . (6 ' ) . We s e e k t h e d e s i r e d
phonon d i s t r i b u t i o n funct ion in the f o r m

—N r(r\q*
- . / V O — ' - W - —

as

w h e r e x - w / T . A c c o r d i n g to E q s . (2) and (4) t he e l e c -
t r o n d i s t r i b u t i o n funct ion f i s g iven by

T h e n we s u b s t i t u t e t h e e x p r e s s i o n s for N a n d f in to
r e l a t i o n (12) a n d i n t e g r a t e o v e r t h e a n g l e s . A s s u m i n g
a p p r o x i m a t e l y L e e ' / | £ | | &,' \ « 2 , L = 1 ± ( £ £ ' - A 2 ) / e e '
( this g i v e s a n e r r o r ~ A 2

w
2 / 4 ( e e ' T A 2 ) e 6 ' , i . e . , an

e r r o r ~ 0 . 1 fo r Q when A / T = 1.5) and then i n t e g r a t i n g
o v e r t he e n e r g y e, we ob ta in t he fol lowing e x p r e s s i o n
f o r the d e s i r e d funct ion r ( x ) :
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const-p-!_.—-2 In (e"« +1) (e"+ I)"1

+ D (i);(26 — x + 2 In (e1"" +1) (e5 + I)"1]"1 ^- ;
here

6 = T , * = - ,
1, a;>26,
0, x<26.

f

We have taken into account the fact that the creation
of a pair of excitations by a phonon is possible only in
the case when w > 2A.

Now let us consider the thermal flux in the lattice

Evaluation of the integral leads to the following
final expression for the coefficient of lattice thermal
conductivity:

xpe = BT'F(T),
F(T) = —864 (eh — I)"1 — 8b3(eh—i)'1 + 6£(3) (eb + 1)

— 3 (eb + 1) 2 s-3e"2bs (46V + 46s + 2) + 6£ (4) (eb — 1)

6)

+ 3263 (e2b — I)"1 + a4 2 {se"2""—£i [ — s (26—a)]) + 62 s-3<ral>s,
« <

a x 26—0.16, £(s)= 2 «"s- (13)
n=l

The theoretical curve plotted according to Eq. (13)
and experimental data for an In-Tl alloyf27] are shown
in Fig. 3.

When A = 0, formula (13) goes over into the well-
known formula of the quantum theory of metals (see,
for example,1-101), describing the contribution of the
lattice thermal conductivity which decreases as the
temperature is lowered. As is well-known, this de-
crease is associated with a corresponding decrease in
the number of thermal phonons.

In superconductors, in contrast to normal metals,
the value of Kpe turns out to increase as the tempera-
ture is lowered, as is evident from Eq. (13). This
property is related to the increase in the mean free
path of the phonons due to the exponential decrease in
the number of electronic excitations (the mean free
path of the phonons, which is determined by their scat-
tering by electronic excitations, is equal to /pe
s» (necr)"1, where ne is the number of electronic exci-
tations and a is the cross-section).

At a sufficiently low temperature the phonons begin
to be primarily scattered by lattice defects and the
boundaries of the crystal (as is well-known,[28] the
phonon-phonon interaction does not play a role at tem-

peratures T <C ©). Here /cp » /cpd ~ T3, and the
lattice thermal conductivity decreases as T — 0. A
maximum of the lattice thermal conductivity should be
observed for the temperature at which Kpe ^ Kpd-

5. Comparison with Experiment

The temperature dependences (5), (9), and (13) ob-
tained above enable one to explain to a considerable
extent the totality of experimental data existing at the
present time, which has been obtained during investi-
gations of the thermal conductivity of superconductors.

As already mentioned above in Sec. 1, six mecha-
nisms of thermal conductivity exist whose relative
contributions depend very significantly on the condi-
tions of the experiment.

For pure superconductors and also for samples
containing small concentrations of impurities /c « /ce

(where for very pure superconductors K ~ Kep, but for
slightly impure ones K ~ Ked) except for the tempera-
ture region very close to absolute zero. Here the
thermal conductivity falls with a decrease of the tem-
perature in agreement with formulas (5) and (9) (see
Fig. 5 below, curve 1). At first this drop is slow, but
then it becomes exponential, which is related to the
corresponding decrease in the number of electronic
excitations.

Actually for qualitative estimates we shall use the
simple formula of kinetic theory, K = cvZv/3 (cy is
the heat capacity, I is the mean free path, and
v = vjr). In the case of interest to us cy ~ n
~ exp (-A/T), and I varies according to a power law.

The indicated dependence rather well describes the
experimental data obtained upon investigation of the
thermal conductivity of Al and Zn in[29] and later in[31],
Tl,[13] Sn/13'203 and In[21] (for a review of the experi-
mental data, see also^'7 '303).

At very low temperatures «e ^ Kpj then K » «pd-
In this connection the thermal conductivity is basically
determined by the scattering of phonons by impurities,
defects, and by their reflection from the crystal
boundaries. As T — 0 it tends to zero according to
the law K ~ T3. The abrupt increase in the role of the
lattice thermal conductivity is an intrinsic anomaly of
the superconducting state (in ordinary metals K * ne

at all temperatures) and is associated with a decrease
of the normal component of the electronic fluid. The
condensate of Cooper pairs has zero entropy, and
therefore does not give any contribution to the thermal
flux.

The thermal conductivity of Pb, Sn, In, and Ta in

75
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the low-temperature region was investigated in
article [32]; the properties of Sn were studied in[37],
and the properties of Tl, Sn, Al, Ga, Zn, Cd, and Pb
were studied in

[13>36>42>43]. In fact, it was established
that as T — 0 (for Tl, for example, for T ^ 0.3 to
0.4°K[13]) a superconductor, in regard to the nature of
its heat transfer properties, becomes no different from
a dielectric. It is seen in Fig. 4 that as T — 0 the
nature of the temperature dependence K(T) of tin[13]

changes: the thermal conductivity begins to vary ac-
cording to the law /cpd ~ T3.

The fact that the phonon thermal conductivity begins
to play a major role as the temperature is lowered is
experimentally confirmed in the following way. The
mean free path of the long-wave length thermal phonons
changes significantly upon plastic deformation of the
sample because in this connection they begin to be
primarily scattered by the dislocations which arise
during such a deformation. However, for the electrons,
which have a small wavelength, the appearance of dis-
locations does not play an important role, and, as be-
fore, they are primarily scattered by impurity atoms.
Therefore the thermal conductivity of the sample must
decrease following plastic deformation if the phonons
make the major contribution to the heat flow, and it
should not change in practice if the electronic com-
ponent plays the major role.

Measurements carried out in[33] showed a decrease
by a factor of six in the thermal conductivity of super-
conducting lead upon plastic deformation at T = 1°K,
which also confirms the arguments given above about
the increase in the role of Kp as T — 0.

Strong contamination of the sample decreases the
mean free path of the electrons, and at the same time
the electronic contribution to the thermal conductivity
also decreases in accordance with the formula
K = Zcyv/3. In this connection KP S> /ce and K » Kp at
all temperatures. In the intermediate temperature
range (T = 0.3 to 0.5 Tc) and as T — T c the scatter-
ing of phonons by electrons plays the main role, and
the thermal conductivity is described by formula (13)
(Fig. 5, curve 2). In this connection the function Kpe
increases as the temperature is lowered, which ex-
plains the experimentally observed anomalous behav-
ior of the thermal conductivity of superconducting
alloys. Experimental data for an In-Tl alloy'-271 are
shown in Fig. 3. An increase of Kp is observed in1-34'35-1

for Nb at T = 0.4 T c .
The temperature dependence of the thermal conduc-

tivity for an alloy of Pb + 10% Bi[36] is shown in Fig. 6.
At first the function K(T) increases with reduction of
the temperature, in agreement with Eq. (13), and then
after reaching a maximum it begins to decrease as
T — 0. In the temperature region corresponding to the
maximum, Kpe ~ Kpd (see Sec. 4). Upon a further r e -
duction of the temperature, the phonons are mainly
scattered by impurities, which also corresponds to a
decrease of the function K(T) .

In the intermediate case of not very pure supercon-
ductors Ke plays the dominant role in the temperature
region close to T c , and in view of this K falls accord-
ing to the law (5) as the temperature decreases (see
Fig. 5). At a sufficiently low temperature KP turns out
to be larger than /ce and the subsequent behavior of

m
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FIG. 5
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FIG. 7. The curves correspond to the follow- iff'
ing compositions: 1 - pure Sn, 2 - Sn + 0.3% In,
3 - Sn + 3% In.
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the thermal conductivity will be determined by curve 2
in Fig. 5, which corresponds to formula (13). Such a
dependence was observed experimentally for Sn/371

Hg,C38] and Pb.[4° : In Fig. 7[37] it is shown how a grad-
ual increase in the impurity concentration leads to an
increase in the role of the lattice thermal conductivity
and the appearance of a corresponding maximum.

The temperature dependence of the thermal conduc-
tivity of superconducting contaminated lead, obtained
in[40% is shown in Fig. 8. The decrease of K(T) for
T ~ T c is associated with the corresponding behavior
of the quantity Ke, which plays the major role for
T ~ T c . Then, as is evident from the figure, the
thermal conductivity of Pb starts to increase, and
later a maximum of the thermal conductivity is ob-
served, associated with the maximum of Kp.

6. Basic Types of Thermal Conductivity

Theoretical and experimental investigations of the
processes of heat transport in superconductors thus
point to the existence of three types of temperature
dependence of the thermal conductivity.

The first type (Fig. 9) is exhibited by pure or
slightly impure superconductors. As already men-
tioned above, the electronic thermal conductivity Ke
plays a dominant role in them as T — T c and in the

2t>

IS

s s
T,'K

FIG. 8
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FIG. 9

intermediate temperature range. Upon a reduction of
the temperature, K here basically falls according to
the exponential law described by formulas (5) and (9),
the first corresponding to the case of a slightly impure
superconductor, and the second corresponding to a
pure superconductor. The temperature dependence of
K for thallium^131, which belongs to the first type under
consideration, was shown in Fig. 1. As T — 0 the
lattice thermal conductivity begins to play the major
role: Kpd ~ T3 and K begins to tend to zero according
to a power law.

The second type of thermal conductivity involves
superconductors with a large impurity concentration
(Fig. 10). In contrast to substances of the first type,
the thermal conductivity of these strongly contaminated
superconductors increases for T ~ T c as the tempera-
ture is lowered. In this connection the lattice thermal
conductivity /cpe, described by formula (13), plays a
major role. A characteristic property of the case
under consideration is the presence of a maximum in
the thermal conductivity; after passing through its
maximum K(T) tends to zero according to the law de-
termined by the function Kpd ~ T3. An alloy of Pb
+ 10% Bi (see Fig. 6) is an example of a superconductor
of the second type.

Finally, the third type of thermal conductivity (Fig.
11), which describes the behavior of not very pure
superconductors, is a combination of the first type (for
T ~ Tc) and of the second type (in the intermediate
temperature range). The data on Pb and Sn (see
Fig. 8) cited in

[37>13)40] enable us to regard the corre-
sponding samples as examples of superconductors that
pertain to the intermediate case under consideration.

In these samples «ed plays the major role at
T ~ T c . Therefore the thermal conductivity first drops
with a lowering of the temperature according to the
law (5). Then, however, «p becomes larger than Ke,
and in what follows the superconductor behaves like a
substance belonging to the second type considered
above.

7. Effect of Anisotropy on the Thermal Conductivity of
Super conductors

An isotropic model was used above in connection
with the investigation of different mechanisms of
thermal conductivity. The dispersion law of the elec-
trons was assumed to be quadratic. The electron-pho-
non interaction was described by a constant quantity,
which was independent of direction.

Real metals are characterized by an intrinsically
anisotropic Fermi surface. The energy gap A(p) is,
in general, a function of direction. However, the
anisotropy of the gap is not large; in connection with

FIG. 10

this the isotropic BCS model, as is well known, de-
scribes the experimental data quite well.

Thermal conductivity is an integral effect. There-
fore the averaging carried out during its calculation
generally does not lead to any appreciable anisotropy
in the coefficient of thermal conductivity. Therefore,
the formulas cited in Sees. 2—4, obtained in an iso-
tropic model, describe the experimental data quite well.

Uniaxial crystals (for example, Ga and Zn) consti-
tute an exception. In these superconductors a notice-
able difference in the form of the function K(T) is
observed experimentally142'43-1 for different orientations
of the crystal.

Let us calculate the electronic thermal conductivity
of a uniaxial superconductor.t411 The kinetic equation,
describing the behavior of the electronic excitations
which are interacting with impurities in the anisotropic
case under consideration, has the form

i F i k ( | f v r ) = / c o U , (14)

where Icoll denotes the collision integral; in this con-
nection + A2(k).

The energy gap is small at temperatures close to
the critical temperature, and therefore effects associ-
ated with its anisotropy do not play an important role.
The situation is different at sufficiently low tempera-
tures which satisfy the condition T <C A m i n . Let us
consider a region of such low temperatures, for which
the gap actually ceases to depend on T and the distri-
bution function of the electronic excitations is deter-
mined by the exponential exp(-_/T) . In the aniso-
tropic case the gap A(k) will take a minimal value with
respect to certain extremal directions. In a uniaxial
crystal with an extremal direction which coincides
with a principal axis of its symmetry, a large fraction
of the electronic excitations will move along this direc-
tion.

FIG. 11

The collision integral which appears in Eq. (14)
may be written in the form (see Sec. 1)

ICI= — 2it^|7kv
 2(«k«k—i-tiv)2S(Ek — ek.)(/k — fk')dxK.
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(15)

It has been taken into account that in the anisotropic
case only the energy of an excitation is conserved
during elastic scattering by impurities. In contrast to
the isotropic case, the absolute magnitude of the mo-
mentum is not conserved.

We seek the desired distribution function fk in the
form fjj =f&(l + Xk)- After integration over £k the
kinetic equation takes the form

15

FIG. 13. Kes|| and /cesĵ  are the thermal con-
ductivities of Zn samples along and perpendicu-
lar to the hexagonal axis [43] (the dashed line
represents the theory [41]). 05

JI

as T/Tc

Equation (14') is solved for the extremal directions.
Let us denote the coefficients of thermal conductivity
along the extremal direction and along a direction
perpendicular to it by K\\ and KI, respectively. We
introduce the quantities Vo and V̂ - to denote the
matrix elements for scattering through angles of zero
degrees and -n radians, respectively, for excitations
which were initially moving in the extremal direction.
The solution of Eq. (14') leads to the following expres-
sions for the quantities K\\ and K±:

8 A 1 ' % I ^ - W M P ( - T ) - ( 1 6 )

w ) , T j T i T e " ' ( - T ) (16')

lf\dk
1042 /
3nA" {

(A" denotes the second derivative of the gap with r e -
spect to the angle 6 between VT and the vector k
near an extremum). The exponential part of the tem-
perature dependence of K is the same in all directions,
as is clear from Eqs. (16) and (16'). We see that the
ratio «X/KII turns out to be given by

IT
A" + n ~ ' (17)

i.e., the thermal conductivity in a direction perpendicu-
lar to the extremal direction turns out to be approxi-
mately T/A times smaller than the extremal value.
The dependence of the thermal conductivity on the
angle 6 (the case «X/KII = Vs is considered) is shown
in Fig. 12, the angle being measured from the extremal
direction and the thermal conductivity having the form
K = K\\ cos20 +«x sin2f9. Anisotropy of the thermal con-
ductivity has been experimentally observed in crystals
of Ga,[42] Zn, and Gd.[43] A detailed comparison of the
results obtained by investigation of Zn samples with
the theory[41] is carried out in1-43-1. As is evident from
Fig. 13, the agreement is quite good. The anisotropy
of the gap in Zn turns out to be characterized by the
following data: 4 m i n = 1.2 T c or ~ 1.0°K and A m a x

-—min~ 0.55 T c .

8. Investigation of the Intermediate State

An appreciable decrease in the thermal conductiv-
ity of a superconductor is observed experimentally
upon its transition to the intermediate state. This
phenomenon was first observed in[44], where samples
containing Pb +0.1% Bi were investigated. This effect
is also mentioned in a number of other articles, for
example, in[45"47] where the effect of a decrease in
K was observed for monocrystals of Hg, Sn, and In.
This effect was investigated in'-48'49-1 over a broad range
of temperatures. A decrease in the thermal conductiv-
ity is noted both at low temperatures, where the pho-
non thermal conductivity is the main term, and also in
the region of higher temperatures where the electronic
contribution is the major term. In the first case, which
is considered in[50>51], the decrease in K is associated
with a decrease of the phonon mean free path associated
with their transition from the superconducting phase
to the normal phase (in the experiments mentioned
above, the region of the normal phase was arranged to
be perpendicular to the sample axis along which the
heat flux is being propagated; therefore the phonons
crossed the boundary between the normal and super-
conducting phases). The average mean free path of the
phonons was decreased due to the presence of the
normal regions, which also led to a reduction in the
observed heat flow.

Let us consider further the region of higher tem-
peratures where the electronic contribution is the
major contribution (the sample is assumed to be suf-
ficiently pure). In1-521 it is shown that at the boundary
between the normal and superconducting phases, a
unique reflection of the electronic excitations takes
place in connection with transmission of heat across
the layers. Namely, an investigation of the equations

FIG. 12

/ (r, t) = (<»0 i xp (r, t) 1 (P.), <f = (r, t) = <O011|>
+ (r, t) | O,>,

(where #+ and $ are Heisenberg operators, * 0 and
$ i are the wave functions in the space of occupation
numbers which describe the ground and excited states
of the system, respectively, and ji denotes the chemi-
cal potential; the set of quantities f and <p has the
meaning of the wave function of the quasiparticles)
leads to the result that the momentum actually does
not change upon reflection, but the quantity £ and the
velocity 9e/dp change sign. In other words, upon re -
flection on "electron" changes into a "hole" and vice
versa.
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Let us consider the temperature interval T 0 C T
« T C (To is the temperature at which the phonon
thermal conductivity begins to play a major role). Then
excitations with an energy e close to A (the number of
other excitations is exponentially small) play a major
role. Here the coefficient for above-barrier reflection
turns out to be given by

W = l - / ( n , ) j / ^ - (18)

(f ~ 1, nz is the unit normal vector).
As we see, the coefficient W turns out to be a quan-

tity of the order of unity, and consequently heat ex-
change through the boundary between the superconduc-
ting and normal phases turns out to be intrinsically
difficult. A situation arises which is analogous to heat
exchange between solid and liquid helium.[55'56] In both
cases there is a temperature jump which, in the case
of the intermediate state, is related to the heat flow Q
by the following equation:

where Q = (8W/9T)6T, W is calculated according to
the formula

W= !, «0(e)=exp(-e,T),

and W is defined by Eq. (18). The additional thermal
resistance is defined by the formula

rradA3 • X P ( A )exp (19)

(a = -faajcpjirf) denotes the period of the structure in
the intermediate state[57]). The temperature depend-
ence of AR (in which the electron mean free path does
not appear, as is evident from Eq. (19)) is in quite good
agreement with the experimental data.

In[54] it is shown that in the case when a s -Ca,, (a s
and an denote, respectively, the thicknesses of the
superconducting and normal layers) the effect of
tunneling of the thermal excitations through the s-layer
turns out to be important for T <C T c , said effect lead-
ing to a power-law dependence of the thermal resist-
ance on temperature.

In[53], the problem of heat transmission along layers
of normal and superconducting phases is investigated
by the method of the kinetic equation. For T<CTC the
electrons in the normal regions play the major role.
In this connection the thermal conductivity £j]j (i, k
denote x, y; the z axis is normal to the boundary of
the region) of the layered structure turns out to be
given by

7£ (3) in/tS (cos 6), (20)

where n = 8E/8p/| 8E/8p| , K(9,<p) denotes the
Gaussian curvature of the Fermi surface, a = an + a s
is the period of the structure, and the angles 6 and <p
determine the mutual orientation of n and the z axis.
The excitations moving parallel to the boundary
separating the phases give the major contribution to
the thermal conductivity. It is essential that in the case
under consideration of a complex structure, K does not
depend on the mean free path. In this connection, as is

evident from Eq. (20), the thermal conductivity of the
pure normal phase turns out to be Za/a^ » 1 times
larger than the thermal conductivity of the intermed-
iate state.

In the case of a "filamentary structure," which is
thermodynamically more favorable near the boundary
of the intermediate state, the thermal conductivity
turns out to depend on the mean free path. In this
connection

T a 2 I n (I/a)

' ^ 4 K(O)lo '
(21)

where TJ denotes the concentration of the normal phase,
and I is the mean free path, l0 = 1(0); it is assumed
that the mean free path of the electrons is much larger
than the diameter of the normal filaments. In this case
excitations whose velocity of motion makes a small
angle with the axis of the filament give the major con-
tribution to the thermal conductivity.

9. Thermal Conductivity of Superconductors with a
Strong Electron-phonon Interaction

Experimental investigation of the thermal conduc-
tivity of pure, superconducting samples of Pb and
Hg[38'39] showed that for T ~ T c K(T) falls off with
decreasing temperature more abruptly than for other
metals (see Fig. 14). The thermal conductivity of these
superconductors is therefore poorly described by
formula (9). This property of lead and mercury is
associated with their membership in the group of so-
called anomalous superconductors. In addition to Pb
and Hg, the following also belong to this group:. Nb,
Ga, In, NbN, Bi films, and others. In these substances
the electron-phonon interaction which determines the
superconductivity is not weak, and therefore their
properties (see the review1-7-1) are poorly described by
the usual theory, which was developed in the weak-
coupling approximation. Anomalous superconductors
are characterized by a value of the ratio T c / 6 which
is significantly larger than that associated with other
metals. Thus, for example, for lead T c /0 « 0.1 (for
comparison we note that for Al, for example, Tc/0
« 1/400) which, according to the formula T c

« 0exp(-l /g) , leads to a value of the coupling constant
g p b « 0.4.

From formulas (5), (9), and (13) it is seen that the
thermal conductivity of superconductors is determined
by a universal function of the parameter b = A/T.
According to the usual theory[1 '6]

= 3 . 0 6 1 / 1 —

This relation, which was obtained in the weak coupling
approximation, turns out to be incorrect for anomalous
superconductors; the experimentally-noted discrepancy
between theory and experiment is also related to this.

Articles '^6 1 '6 2 - 6 3 ] are devoted to theoretical inves-
tigations of the properties of superconductors possess-
ing strong coupling. The specific characteristics of
the thermal conductivity of anomalous superconductors
are mentioned in[64].

The temperature dependence of the gap as T — T c ,
which is essential in order to solve the problem of
thermal conductivity of interest to us, is found in1-60'61-1.
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FIG. 14

It turned out that for Pb

— I
T \n.

' 4 1 / 1— -,

Since the electron-phonon interaction is not weak,
in order to calculate the electronic thermal conductiv-
ity of anomalous superconductors,^60'611 we shall start
from a general definition of the coefficient of thermal
conductivity[16]

(22)

where q denotes the operator of heat flow, an expres-
sion for which can be written in the form[65]

where V is the potential energy. Expression (22) may
be reduced to the form

S ^ ^ p2 {G" (P' U"° G" ( ~P' " iMl)
TSS

-rf*"(p, (-p, -0)1)1,
o>l = o>Tl.—cuj, Wj =—itii, (jin, = (2n'--l)nT'i (23)

here Gn and F n are the temperature Green's functions
of the electronic excitations which interact with the
impurities, and according to[66] Gn and F n may be
written in the form

2 (co. r)=tiE (w, T), i]-- 1-

where T is the relaxation time.
The function S(w, T) represents the self-energy

part, describing the Cooper pairing of the electrons.
In the weak coupling approximation its frequency
dependence can be neglected. In this connection
_(a>, T) = A(T) (A(T) denotes the energy gap). For
anomalous superconductors the function -(u>, T) is
determined by solving an integral equation[67J

a (toH.,T)dk.

where it turns out to be very essential to take the
"retardation" terms, described by the expression
(o>n ~

 w n ' ) 2 i-n the denominator of the phonon Green's
function, into account.

Let us substitute the expressions for the Green's
functions into Eq. (23), and then integrate with the aid
of the theory of residues. We replace the summation
(see1-143 for a similar calculation) by an integration in
the complex variable plane. It is essential that here
the singularities are points which satisfy the equation
a; = i-(co), i.e., points which are a solution of the equa-
tion for determination of the energy gap A. As a r e -
sult it turns out that the usual static coefficient of

thermal conductivity is described by expressions
in which, however, the gap A(T) corresponding to a
given anomalous superconductor appears; in lead, for
example, as we already noted above, A/T
« 4 VI - (T/T c) as T — T c .

Expression (9) with the appropriate function A(T)
also describes the thermal conductivity of pure ano-
malous superconductors, which is associated with the
scattering of electrons by phonons. The corresponding
theoretical curve, which describes the experimental
data quite well, is shown in Fig. 14.

The large value of the coefficient a in the formula

determines a much sharper than usual decrease in the
coefficient of thermal conductivity of anomalous super-
conductors as the temperature is lowered.

10. Thermal Effects

a) Thermoelectric effect. The anisotropy of a
crystal leads to the possibility of observing a distinc-
tive thermoelectric effect in superconductors. If a
temperature gradient is created in the sample, then its
existence leads to the appearance of a normal current
j < n ) . However, in the isotropic case this current is
completely cancelled by the counter, superconducting
current j ( s ) , and thus both the total current and the
field created by it are absent. Thus, the presence of
a temperature gradient only leads to the usual thermal
conductivity and to the small additional effect of con-
vective thermal conductivity.[68'69)U]

This effect is analogous to the circulation of the
normal and superfluid components of non-uniformly
heated He II. In[11] it is shown that the ratio QConv/Q
for the convective heat flow Qconv = TSvn (S denotes
the entropy, vn denotes the velocity of the normal
component) is a quantity of the order of
~k(T/T c)1 / 2 /(p§/m), which even for T ~ T c amounts
to a quantity of the order of ~10"5 to 10~4. However, in
the anisotropic case when there is not one direction
associated with VT but several preferred directions,
the current j ( n ) in general is not completely cancelled
by the current j < S ) . The first questions about the
thermoelectric effect in superconductors were con-
sidered in[70'68], where it was shown on the basis of an
appropriate generalization of the London theory that
taking anisotropy into account makes the usual conclu-
sion about the absence of thermoelectric phenomena
in superconductors untrue.

The thermoelectric coefficients, whose determina-
tion also permits us to determine the feasibility of ob-
serving the effect, may be calculated on the basis of
the microscopic theory. It is impossible to determine
them from experiments with normal metals since they
essentially depend on the parameters of the supercon-
ducting state (see below).

The thermoelectric effect in superconductors is
considered in[71] on the basis of the contemporary
microscopic theory. The question of the feasibility of
its experimental observation is investigated. The initial
equations for solution of the problem are Maxwell's
equation and also the expressions which determine the
superconducting and normal currents:
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(24)

(24')

(24")

where bap are the thermoelectric coefficients, and
Kajg is the so-called Pippard tensor which relates the
current to the vector potential; Kap is calculated on
the basis of the microscopic theory.[72]

Let us consider an infinite superconducting plate
(see Fig. 15; s is the axis of the crystal, all quantities
depend on y). In the case of a half-space, the non-
vanishing component of the current j x is given by

as is evident from Eqs. (24)—(24"), where 6 = K ^ O )
denotes the penetration depth, and H is the field in the
interior of the sample (see below). For a plate1-701 one
finds

cH s\\Jy/2l>)
lx ~ 4.i6 ch~(W28) '

The relations obtained in the planar case under con-
sideration are, of course, gauge invariant. Thus,
anisotropy of the crystal leads to the existence of a
circulating current, which does not vanish inside a
surface layer of thickness ~6. The magnetic field
created by this current is determined by the relation

dy

*« lt\ K (q) = Kxxln) (25)

It is important to note that even for Pippard super-
conductors the components of the Pippard tensor
corresponding to q — 0 enter into expression (25) for
the field, i.e., for an investigation of thermoelectricity
all superconductors are London-type. This is associ-
ated with the fact that for the possible values of the
temperature gradient, VT ^ 0 . 1 deg-cm"1, the normal
current associated with VT varies slightly over dis-
tances of order ~£0. In connection with this, values of
q <C So1 play a major role in the formula

Ax (V) = I in (q) ex"'J \q"- + A" (q)Vdq,

which determines the vector potential. In addition, of
course, q « 6"1 with the exception of a very small
temperature interval near Tc.

The normal current, determining the magnetic field
according to Eq. (25), and at the same time also the
thermoelectric coefficients are found by solving the
kinetic equation (see Eqs. (2) and (15))

— \T =-- — In
III

(where da denotes an element of the Fermi surface),
whose solution may be written in the formf73]

(A =r(p)v denotes the vector mean free path).
Finally the following expression is obtained for the

field created by the thermoelectric current:1-711

FIG. 15

where 6 denotes the angle between s and the Ox axis
(see Fig. 15), T is the relaxation time, k is Boltz-
mann's constant, vu j_ denote, respectively, the com-
ponents of the Fermi velocity parallel to and perpen-
dicular to the axis of the crystal s, and F(x)
= x(e x + 1)-1 - In (1 + e~x).

We see that the field is expressed in terms of a
universal function of T/Tc and quantities which char-
acterize the normal metal. As T — T c we find

Hz=
 CA(V7T •^-\sin29(<pn-(j)x) (l-*Y\ (27)

The effect increases as T — T c (with the exception
of a small interval near T c where the circulating
current vanishes).

Let us estimate the possible magnitude of the field:

If, for example, VT « 0.1 deg/cm and A « 0.1 cm (see,
for example/74 '301; the samples therefore must be suf-
ficiently pure), then fields H ~ 10-3 Gauss are possible
for T/T c « 0.99, and fields H ~ 10~5 Gauss are possible
for T/Tc «0 .9 .

As the temperature is lowered or upon contamina-
tion of the sample, the thermoelectric field, and to-
gether with it the magnetic moment, decrease. In this
connection an investigation of the thermoelectric effect
in superconductors may be used[75] as a simple method
for experimental observation of the quantization of
magnetic flux.

The thermoelectric effect appears most strongly
upon fulfilment of the following conditions: 1) the
sample must be sufficiently pure; 2) one should choose
a uniaxial crystal; 3) the temperature must be close to
Tc-

The values of the field H given above are quite
accessible to experimental observation, which there-
fore makes it of interest to set-up the appropriate
experiments.

b) The thermomagnetic effect. As is well known,
thermomagnetic effects arise due to the action of a
magnetic field on the thermal flux (see, for example/761).
In superconductors it turns out to be possible to observe
the Leduc-Righi effect, consisting in the appearance of
a temperature gradient perpendicular to the direction
of the resultant heat flow.

In order to investigate this effect[77] let us write
down the kinetic equation for electronic excitations in
the presence of a temperature gradient along the x
axis and a magnetic field which is perpendicular to the
direction of heat flow:

\i\~
i-h (28)

(26)
The relaxation time T is given by[11] T = Toe/| | |

(see above, Sec. 2). Naturally it is assumed that the
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size of the sample is smaller than the penetration
depth of the field. Solving Eq. (28) by the method of
successive approximations (f = f0 + fi + iz), we find
that

f me de, "~0x~
(29)

The magnitude of the Leduc-Righi effect is deter-
mined by the coefficient

(the x' axis coincides with the direction of the result-
ant heat flow). It is easy to see that L = Qy/QXH,
where

1. Ultrasonic Attenuation

a) Isotropic case. In the case under consideration
the period of the sound wave is much smaller than the
relaxation time. In this connection, as we have already
noted, the interaction of the wave with the electronic
system may be regarded as the emission and absorp-
tion of sound quanta by the electronic excitations.

Writing the probability for the absorption of a sound
quantum and the probability for the inverse process with
the aid of the u, v transformation given by Eq. (3), we
obtain the following expression for the absorption coef-

^2617!

/ - / ' ) 6 ( 8 ' - e -o

With the aid of Eq. (29) we find

(30)

The Nernst-Ettingshausen effect, consisting in the
appearance of an electric field perpendicular to the
direction of the resultant heat flow, obviously is not
present in the case of superconductors.

HI. ABSORPTION OF SOUND IN SUPERCONDUCTORS

The attenuation of longitudinal sound waves in
superconductors was first investigated just before the
appearance of the theory of superconductivity in[78'79].
Investigation of this effect in Pb and Sn, respectively,
led to the conclusion about the monotonic decrease of
the attenuation as the temperature is lowered below
T c . The temperature dependence turns out to be much
more abrupt in comparison with the relation y
~ (T/Tc)4, which was obtained upon investigation of the
two-fluid model of Gorter and Casimir.

The question of the attenuation of sound was one of
the first questions to be investigated in the theory of
superconductivity. This circumstance is not accidental.
The point is that the corresponding measurements en-
able us to obtain abundant information about the prop-
erties of the electronic spectrum of the excitations in
a superconductor. The temperature and angular de-
pendences of the energy gap are very accurately de-
termined with the aid of ultrasonic measurements.

In connection with an examination of the question of
the attenuation of sound, one should distingnish two
limiting cases. The first of these corresponds to fre-
quencies w which satisfy the condition w ~3> T'1

(ultrasound) where T is the relaxation time, and the
second case corresponds to frequencies which satisfy
the condition a> <S T"1 (long-wavelength sound). In the
first case one can generally neglect relaxation pro-
cesses and regard the absorption of sound simply as a
process involving the absorption of sound quanta by
free electronic excitations. In this case the attenuation
is completely analogous to the well-known Landau
damping of plasma waves,[80] and actually corresponds
to absorption of the wave by resonant electrons.

In the second case the relaxation processes naturally
play a decisive role, and the dissipation of the sound
wave energy is determined by investigating the appro-
priate kinetic equation.

Carrying out the corresponding integration, we ar-
rive at the following formula for the ratio of the coef-
ficients for ultrasonic absorption in the normal and
superconducting states (for a; ^ T):

+<)-'] + fl(i)(2fr-i + 21n[(t*-'' + l)(t''-l)-']) (31)
ln[(e* + l)/2)

where x = to/T and b = A/T; the function D(x) (see
above is introduced in connection with the fact that the
creation of a pair of excitations is possible only in that
case when u > 2 A ,

For x = w/T < 1 we arrive at the following for-
mula which was previously obtained in t l ] :

(32)

The experimentally-observed abrupt decrease in the
absorption as the temperature is reduced below T c is
described by a "Fermi" function, as is evident from
Eq. (32). It is determined by the sharp increase in the
function A (T) as the temperature moves away from
T c and is associated with a decrease in the number of
electronic excitations.

Formula (32) directly relates the energy gap A(T)
to the experimentally measured ratio ys/yn- ^s sim-
plicity enables one to use very effectively ultrasonic
measurements to determine the shape of the function
A(T). Experimental data[81] obtained in connection with
an investigation of ultrasonic attenuation in monocrys-
tals of Sn are shown in Fig. 16. The very good agree-
ment between theory and experimental data should be
noted. It is clear from this example that ultrasonic

A/Tc
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1.0 -
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measurements actually enable one to establish the
nature of the function A(T), which is the fundamental
characteristic of the superconducting state, with a high
degree of accuracy.

b) Influence of the gap anisotropy on ultrasonic
attenuation. 1) Absorption coefficient. Reconstruction
of the function A(n). The absorption of ultrasound is
extremely sensitive to the structure of the energy
spectrum of the substance being investigated. There-
fore the corresponding investigations, as already noted
above, enable one to obtain rather complete informa-
tion about the temperature and angular dependence of
the gap A(T, n) in the excitation spectrum.

A strikingly expressed anisotropy of the ultrasonic
absorption in superconductors is observed in a number
of experimental articles (see below). Formulas (31)
and (32), which were derived in the isotropic approxi-
mation, are not applicable for an analysis of the cor-
responding experimental data. Articles'-82'841 are de-
voted to a theoretical consideration of the effect of
anisotropy on ultrasonic attenuation.

At first we confine the investigation to a pure super-
conductor.[82]

The attenuation is described by the imaginary part
of the polarization operator jr(q, iwn) which is given
by

n(q' """̂ (S />' IG (P) G (p—q)—̂  (P) -f (p—q)].

where wn = (2n + 1)TTT,

•*-,-4
the dimensionless function g(p) depends on direction
in an essent ia l way.

Let us change from a summation over ti>n to an
integration with the aid of the replacement

where F denotes a contour consisting of two straight
lines paral le l to the imaginary ax is .

Evaluation leads to the following expression (for
y < 2 A) for Im 77:

The desired ratio
mula

n i-s described by the for-

<<P>» = g2 (n') 6 (cos x) cp (n') / \ ̂ -g'- (n') o (cos x) (33)

(da denotes an element of the Fermi surface, x de-
notes the angle between the direction of the Fermi
velocity and the direction of sound propagation), from
which it is clear that the absorption of sound is actually
characterized by considerable anisotropy.

A formula which is very convenient for analyzing
experimental data is obtained by considering the ultra-
sonic absorption in the region of low temperatures
which satisfy the condition

(u denotes the velocity of sound, a is the coefficient
of anisotropy, which is equal to the rat io of the change
in A(n) on the Fe rmi surface to the minimum value
Ao )• K has the form

/ A Will.
ys(q)~ (s(q)exp y— '-Y~) , (34)

where a>(q) is the phonon frequency, and A™ l n denotes
the minimum value of the energy gap on the c i rcum-
ference of a s tereographic projection of the Fe rmi
surface perpendicular to the vector n = q/q.

In the region of lower t empera tu res , at which m e a s -
urements have apparently not yet been ca r r ied out, the
absorption is determined by the absolute minimum of
the gap, Ao. In this connection

e x p ( — | 3 A 0 ) Y c o s • / „

where xo denotes the angle between the velocities at
the absolute minimum point and the direction of q.

From formula (34) it is immediately evident that the
absorption coefficient ys decreases exponentially with
temperature, and also the argument of the exponential
depends on direction. According to this formula, the
absorption is determined by the minimum value of the
gap along the line q • v = 0. This result has a clear
physical meaning. In fact, in the case under considera-
tion of the absorption of high frequency sound, which
(see Ch. I above) may be regarded as a direct quantum
process involving the absorption of a phonon by an
electron, the energy conservation law £p + q - £p = <*>q>
coq = u -q, must be satisfied. Taking the inequality
u 4C p into account, the cited condition may be written
in the form

v q = t o . ( 3 5 )

T h u s , a s o n e w o u l d e x p e c t , e l e c t r o n s m o v i n g i n a

p l a n e o f e q u a l p h a s e w i t h t h e s o u n d w a v e i n t r o d u c e t h e

m a j o r c o n t r i b u t i o n t o t h e r e s o n a n c e a b s o r p t i o n u n d e r

c o n s i d e r a t i o n . S i n c e t h e s p e e d o f s o u n d s a t i s f i e s t h e

i n e q u a l i t y u < C v j r , o n e c a n a p p r o x i m a t e l y w r i t e c o n d i -

t i o n ( 3 5 ) i n t h e f o r m v q = 0 , i . e . , i n f a c t e l e c t r o n i c

e x c i t a t i o n s w h o s e v e l o c i t i e s a r e p e r p e n d i c u l a r t o t h e

d i r e c t i o n o f s o u n d p r o p a g a t i o n i n t r o d u c e t h e m a j o r

c o n t r i b u t i o n t o t h e a b s o r p t i o n . A t l o w t e m p e r a t u r e s

t h e B o l t z m a n n d i s t r i b u t i o n o f t h e e l e c t r o n i c e x c i t a t i o n s

i n a s u p e r c o n d u c t o r a l s o l e a d s t o f o r m u l a ( 3 4 ) , i n w h i c h

the minimum value of the gap along the line v • q = 0
appears .

The question of the feasibility of reconstruct ing the
energy gap A(n) from measurements of ul trasonic a t -
tenuation in the low-temperature region is discussed in
ar t ic le [ 8 3 ] . A method is proposed which, in the presence
of a simply-connected Fe rmi surface, permi ts one to
reconst ruct the function A(n) in many cases . This
method consists in the following. The function f(n)
= A™ l n is determined with the aid of ul trasonic m e a s -
u rements . Then for each point of the level line y a of
this function, a large circle c(n) is constructed, pe r -
pendicular to the direction n. The envelope of the ob-
tained family of c i rc les represen t s the level line of the
function A(n) . Unfortunately, in the case of a multiply-
connected Fe rmi surface the cited procedure does not
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enable one to uniquely reconstruct the Fermi surface
since it is impossible to determine to which of its un-
connected parts the found level lines belong.

2) Experimental data. Anisotropy of the gap has
been observed in many superconducting elements with
the aid of ultrasonic methods. To begin with this r e -
fers to superconducting tin, which is investigated
in[85-88] ( s e e in[89] f ( J r a d e t a i l e d r e v i e w Of the experi-
mental data). The form of the dependence of the ab-
sorption[86] on the orientation of the sound wave is
immediately evident from Fig. 17.

In[90] it is mentioned that the difference A m a x
- —mjj! decreases as the sample becomes more im-
pure. According to [24], the introduction of impurities
actually causes the investigated superconductor to all
the more closely approach the isotropic model. The
effects of the gap anisotropy are important as long as
I > v/Aav

According to1-87"891 the orientation of the vector q
relative to the crystallographic axes given by q i [ 101J
corresponds to a minimum gap 2A =3.9 Tc referred
to the region q • v = 0 on the Fermi surface; however
if, for example, q 1 [112], then (2A/T c)m in = 4.4, and
the orientation q 1 [ i l l ] corresponds to (2A/T c)m in
= 4.8. Agreement with Pokrovskil's theorem^911 about
the proportional change with temperature of the gaps
pertaining to different crystallographic directions is
also noted.

With the aid of ultrasonic measurements anisotropy
is also observed in Ga,t92] Va and Zn,[93] Ta,[94] Re/9 5 ]

In,[96] and Nb.t97] In Zn, for example, A m i n = 3.4 T c ,
a n d Amax = 3-8 T c J11 Nb t n e orientation qmin II [100]
corresponds to A = 3.6 T c , and q II [ i l l ] corresponds
to A = 3.4 T c .

The energy spectrum of Nb is investigated in
article [98] by measuring its heat capacity in the low-
temperature region. According to the data given in
this article, pure superconducting Nb is characterized
by two gaps, 2Ai = 3.5 T c and 2A2 = 0.3 T c . Thus, an
investigation of the properties of Nb by different
methods leads to different values of Amin and A m a x .
This is associated with the fact that the many-band
structure of a superconductor (see below) basically
appears in connection with a measurement of the heat
capacity, but the anisotropy of the gap plays the major
role in connection with an investigation of the direc-
tional dependence of the ultrasonic absorption.

3) Absorption of sound in an anisotropic super-
conductor in the presence of impurities. Ultrasonic
absorption in a pure anisotropic superconductor was

0,7

007

FIG. 17. The curves correspond to
the following orientations of q: 1 — q
|| [001], 2 — q || [110], and 3 - q l
[001].

considered above. Now let us calculate[84-1 the absorp-
tion coefficient with the scattering of electronic exci-
tations by impurities taken into account. The problem
is solved for both a bulk superconductor and for a
lamina whose thickness d < I (I denotes the mean free
path of the excitations).

We shall regard the sound wave as a factor which
deforms the crystal lattice.c"'100 '106] The absorption
coefficient is determined by the formula ys = TS/W
(S denotes the entropy density of the gas of elementary
excitations, which is related to the distribution func-
tion n(p, r, t) in the usual manner, and W denotes the
energy density of the sound wave). Writing down the
collision integral in the relaxation time approximation,
we find

„ L
>•- if

dz
dp

(36)

where v' denotes the frequency of collisions between
excitations and impurities, and moreover
v' = i / | £ | / e t l l ] (see above, Ch. II, Sec. 1),

" = "o—IT*. no=[exp(e/r) + l]-1, 8(p, r, t) = e (p) + e, (p, r, t)

and the appearance of the correction €x (p, r, t) is due
to the displacement in the lattice which the sound wave
describes.

The function x which determines the perturbed
distribution function is found by solving a kinetic equa-
tion analogous to the equation used in1-100-1 in order to
solve the problem of sound absorption in a normal
metal. The following two cases are considered sep-
arately: 1) a bulk metal or lamina with specularly
reflecting boundaries; 2) a lamina with boundaries
which scatter diffusely.

In the first case in the region of most interest,
which turns out to be the low-temperature region
T < 6A = A m a x - Amin, the ratio ys/yn turns out to
be given by (for ql -C 1)

In the opposite limiting case, ql 2> 1, the ratio of
the quantities (qi")'1 and (T/6A)1 '2 turns out to be es-
sential. Thus, for example, if (ql )-1 < (T/6A)1/2, then

however, if (ql)'1 > (T/5A)1/2, then

The most complicated angular dependence turns out to
occur in the temperature interval (ql)'1 < (T/6A)1/2,
exp(6A/T) > ql (6A/T)1/2. In this connection, the
anisotropy of the pre-exponential factor turns out to be
important.

The absorption in a lamina, y g 1 , having diffusely-
scattering boundaries is described in the temperature
range 5A z T (it is precisely upon fulfilment of this
condition that the temperature change of the gap turns
out to be most noticeable) by the formula y s

a m

= 2n o (A o ) y n
a m , where y^"" = y°u l kd/Z, and Ao de-

notes the value of the gap at the point vx = vz = 0 on
the Fermi surface. This formula may be used in order
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to reconstruct the energy gap as a function of direction
and temperature.

In the isotropic case, the formulas obtained in[84]

go over into the usual relation (32). This is not acci-
dental, since elastic scattering on impurities cannot
be the relaxation mechanism for a system of electronic
excitations which are changing their energy in the
field of the sound wave. Therefore, in the isotropic
case absorption in the presence of impurities turns out
to be the same as in a free electron gas (see Sec. 1).
In the anisotropic case, however, just as in the pres-
ence of overlapping energy bands, the picture becomes
substantially more complicated since upon scattering
by impurities the electrons may go into another band
or into another part of the Fermi surface. An inter-
mingling of the corresponding ^-functions occurs.
The change of the electronic states affects the picture
of sound wave absorption, which also leads to relation-
ships which differ from formula (32) of the usual BCS
theory.

c) Ultrasonic absorption in superconductors with
overlapping energy bands. In the presence of overlap-
ping energy bands the absorption of ultrasound is de-
scribed by the Hamiltonian SB = YJ ^^ki^ i^q) w n e r e

i,k,q
k, k' denote the electron momenta, and q is the phonon
momentum.

For a> ̂  Ai(T) and for pure samples, the absorption
coefficient turns out to be equal to[101"103]

V ""• 2 - y i r r • <38)

The summation in Eq. (38) goes over all bands; the
quantities fi do not depend on the temperature. Pro-
cesses in which the electron, absorbing a quantum of
sound, goes from one band to another are not con-
sidered since such transitions are generally accom-
panied by a change of the electron momentum by an
amount ~p0, which is impossible for the sound wave
frequencies o> S A under consideration. As T —- 0,
as is evident from Eq. (38), the band characterized by
the smaller energy gap introduces the main contribu-
tion to the absorption, which leads to a deviation from
the simple exponential dependence and to a certain
slowing down of the decrease of the function ys(T).
This effect of a deviation in the absorption-coefficient
temperature dependence from an exponential depend-
ence as T —» 0 is noted in a number of experimental
articles. Thus, in[93] this phenomenon was observed
in superconducting vanadium. An analogous slowing
down of the decrease is noted in superconducting
tin.1-90-1 In accordance with1-241, the introduction of im-
purities gradually leads to the disappearance of many-
band effects, which is evident from Fig. 18, taken

Ys/%

It should be noted that the effect of anisotropy leads
to smaller changes in the gap than the effect due to
overlapping bands. In this connection, we note that in
the same article1-90] data is presented for the gaps Ai
and A2, which apparently pertain to different energy
bands: 2Ai/T c =2.8 and 2A2/TC = 8 (compare with
the data for Nb and see Item b2 above). It is men-
tioned in[89] that a deviation from exponential depend-
ence is observed for one of the orientations of the

FIG. 18. The curves corre-
spond to the following compo-
sitions: 1 — pure Sn, 2 - Sn + 0
0.1 at. % In.

70'

3 4
TjX

sound wave with respect to the axes of An. In this
connection we note that the effect of the many-band
structure in Sn on tunneling experiments is mentioned
int104l.

The absorption of longitudinal ultrasound in a two-
band superconductor is investigated in[103] by using the
method of correlation functions. In this connection the
coefficients fj appearing in Eq. (38) turn out to be
given by

ti = ^r-T (' = L 2)

(m1;2 denote the effective electron masses for the first
and second bands, respectively). In[105] a general for-
mula is derived for the coefficient of ultrasonic ab-
sorption in superconducting alloys using a many-band
anisotropic model. In this connection, it turns out that
even in the presence of isotropic gaps in each of the
bands, the absorption may turn out to be different de-
pending on the direction of sound propagation relative
to the crystallographic axes, provided that in connec-
tion with equality of the gaps the effective masses and
the Fermi momenta are unequal in different bands.

d) Ultrasonic absorption in strong-coupling super-
conductors. Ultrasonic absorption in superconducting
lead was experimentally investigated in[107]. It is noted
that below T c the attenuation falls off much more
rapidly than is predicted by the usual theory of super-
conductivity. It is clear that this property is associ-
ated with the anomalous character of lead, which is a
superconductor possessing a strong electron-phonon
interaction. Similar effects were observed during in-
vestigations of Nb[108] and Hg[109], which are also ano-
malous superconductors. The noted property can be
understood''1101 on the basis of the theory of supercon-
ductors with strong coupling. C60^61]

The calculation is carried out on the basis of the
method developed in^82-1 (see above, Sec. lb). It is taken
into account that the self-energy part 2(a>n, T), which
appears in the Green's function and which describes
the Cooper pairing, significantly depends on the "fre-
quencies" o>n (wn = (2n + l)uT). This dependence has
the formt60'61!

2(0,,,,

where a> denotes the phonon frequency.
It turns out that even in the presence of strong

coupling, the ultrasonic absorption is described by the
formulas (31) and (32) of the usual theory (this fact is
also mentioned in[111]). However, now the value of the
gap corresponding to a given anomalous superconduc-
tor appears in these formulas. If the coefficient a in
the formula
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A I
|

T \ 1/2

is equal to 3.06 in the usual case, then for Pb[60'61]

aPb =4, which determines a more rapid decrease of
the ultrasonic attenuation as the temperature is
lowered below T c . Experimental data1-1071 correspond-
ing to measurements near T c and a theoretical
curve1-110-1 constructed with the above considerations
taken into account are shown in Fig. 19. It is clear that
formula (32), with the dependence of A/T as T — T c

appropriate for lead, describes the experimental data
cited in t l07] quite well.

e) Threshold phenomena. The presence of a gap in
the energy spectrum leads to the possibility of observ-
ing so-called threshold phenomena in superconduc-
tors. [112-114] If the absorption of a phonon of arbitrary
frequency is possible in a normal metal, then in a
superconductor at T = 0°K ultrasound will be attenu-
ated only in the case when w > 2A(0). At finite tem-
peratures the corresponding process of the production
of a pair of excitations by a phonon turns out to be
possible only if the phonon energy is not smaller than
the threshold value, which is given by o> = 2A(T). The
presence of threshold effects in hypersonic absorption
in Al was observed experimentally in[115].

According to[113], the threshold absorption at
T = 0°K is described by the following general formula:

S± = !,±,/2. (39)
Near threshold, when a> = 2A[l + (7}/2)J (r\ <C 1) the

attenuation increases by a jump from zero to a finite
value gii/8v. Smearing of this jump of the attenuation
takes place in an extremely small region of frequen-
cies.

In the case when u> » 2A, one can neglect the
quantity 2A in Eq. (39). Then, of course, the formula[116]

describing the production of an electron-hole pair by
a phonon in a normal metal is obtained.

In the anisotropic case, the threshold frequency u)0,
as one would expect, is determined by the minimum
value of the gap on the line q • v = 0. Here it turns out
that near threshold the absorption ys(n) *-s described
by the law y s(n) ~ (a>o/v)(w - a>o)1/2.

Threshold effects are important at finite tempera-
tures,1-114-1 as already noted above, for frequencies
satisfying the condition u s 2A(T). Thus, even sound
quanta of small energy may decay into a pair of exci-
tations in the temperature region close to the critical
temperature. However, the contribution of these ef-
fects turns out to be small in comparison with the
contribution due to processes involving the direct ab-
sorption of phonons by quasiparticles/1161 Threshold
phenomena play an essential role in connection with
the evaluation of the derivative dy s / dT at T = T c .
According to Eq. (32), this derivative tends to infinity
at the critical point. Taking account of the threshold
absorption1-1141 leads to a finite value for it, which is
observed experimentally.1851 For example, for
w < ( U / V F ) T C

In a normal metal, as is well known, the coefficient
for the absorption of ultrasound does not depend on the
temperature,[100] i.e., here the derivative under con-
sideration turns out to be equal to zero. Therefore, a
jump in the value of the derivative d y s / d T takes place
upon transition of the metal from the normal to the
superconducting state. However, even at frequencies
equal, for example, to 108 sec"1, this jump turns out to
be extremely small: (T c / y n ) (dy s / dT) ~ 10 - \ It is
curious that in the case of high frequencies the deriva-
tive dy s / dT turns out to be a negative quantity, which
indicates an increase of the absorption coefficient as -
sociated with a reduction of the temperature near T c .

With the threshold effects taken into account, the
temperature dependence of the coefficient of ultrasonic
absorption[114] turns out to differ from formulas (32)
and (31), which were obtained under the assumption
that u "C T. For example, as T — 0

(03 > T).

The coefficient for the absorption of sound of rather
high frequency may increase as the temperature is de-
creased to a value Tthresh., which is determined by
the equation a> = 2A( Tthresh)- Such an increase in the
hypersonic absorption at a) ~ 3 x 1010 Hz is noted in
superconducting indium in [U7] .

jjjfua] jj- iS shown that at frequencies o> ~ 2A and
for sound propagation velocities close to VF (the latter
condition may be fulfilled in superconducting semicon-
ductors ), one should expect a noticeable anomaly in the
sound dispersion law. Here the wavelength x of the
sound becomes comparable with the size £0 of a
Cooper pair. The problem of the dispersion of sound
in superconducting metals is discussed in[119"121]. In1-122-1

it is shown experimentally, in agreement with
theory,[119] that no essential changes in the dependence
on w(q) were observed for q • vp ^ A (q denotes the
wave number).

2. Absorption of Long Wavelength Sound

Above we have talked about two limiting cases which
should be distingnished upon considering the problem
of sound absorption. Up to now we have basically in-
vestigated the case u> 2> T"1 (ultrasound).

The absorption of long wavelength sound, [17'18]

whose frequency satisfies the condition w <C T"1, is
determined in the isotropic case by the scattering of
electronic excitations by thermal phonons. We shall
regard the sound field as a factor which deforms the
lattice. The irreversibility of the deformation process

Js/Tn
IDS
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leads to the absorption of sound energy. The problem
thus reduces to the solution of the appropriate kinetic
equation and the subsequent calculation of the dissipa-
tive function which determines the absorption of the
sound wave.

The kinetic equation for the distribution function f
of the electronic excitations in a superconductor,
situated in a sound field and interacting with phonons,
has the form

where N denotes the number of phonons of frequency
CO.

Upon switching on the sound field, the electron turns
out to be in a lattice with a somewhat changed constant,
which leads to a dependence of its momentum on the
deformation tensor.1" ' Therefore

(uik is the strain tensor, and ejk is a tensor depend-
ing on the direction of k). The collision integral, of
course, has the same form as in the problem of the
electronic thermal conductivity of a pure superconduc-
tor (see above, Ch. II, Sec. 3). A spherical Fermi sur-
face is considered.

As usual, we seek the distribution function in the
form

where f0 = [exp (e/T) + I]"1, and g(e, ft) is a function
which depends on the energy of the electronic excita-
tions and on the angles determining the direction of
their motion. Let us represent it in the form of an
expansion in terms of Legendre polynomials and, by
integrating over the angles, we find the correction to
the distribution function. Then let us evaluate the dis-
sipative function T S (S denotes the entropy of the gas
of electronic excitations). The absorption coefficient
turns out to be a quantity which decreases with reduc-
tion of the temperature below T c according to the law

(41)

where yn = const -T"5 is the sound absorption coeffi-
cient in the normal metal;[99] *(T) is determined by
formula (8). The temperature dependence of the atten-
uation (41) is due to a decrease in the number of elec-
tronic excitations as T — 0. One can show[99'171 that
impurities do not play a role in the process under con-
sideration. This is natural since, as we already men-
tioned above, elastic scattering in the present case
cannot lead to the establishment of equilibrium.

Sound energy may also be absorbed by phonons in-
teracting with the electronic excitations in a supercon-
ductor. In this case the relaxation mechanism will be
the same as that used in connection with an investiga-
tion of the lattice thermal conductivity of superconduc-
tors (see above, Ch. II, Sec. 4). The solution of the
corresponding kinetic equation for phonons located in
a sound wave field, and the subsequent calculation of
the dissipative function enable one to determine the

temperature dependence of the absorption coefficient
yp e . t l 7 ] The absorption of sound by phonons turns out
to increase as the temperature is lowered, which is
associated with an increase in the mean free path of
the phonons as a consequence of a decrease in the
number of electronic excitations in the superconductor.
This mechanism plays a role at temperatures not too
close to T c .

3. Absorption of Sound in the Intermediate State

The absorption of sound in the intermediate state is
characterized by a number of essential features. First

, of all one should note the additional mechanism for the
absorption of a sound wave, investigated in[123] and
associated with the presence of alternating layers of
the normal and superconducting phases, which is char-
acteristic of the intermediate state of a system.

As is well known, the critical magnetic field depends
on the pressure and temperature of the sample. There-
fore its value changes in the presence of a sound wave.
The magnetic field in the normal layers is equal to the
critical field, and therefore a change of the latter leads
to a movement of the boundary between the phases. In
this connection, a variable magnetic field and the eddy
currents associated with it appear in the normal
layers. The Joule heat given off in this connection
represents an additional mechanism for dissipation of
the sound-wave energy.

In the case under consideration, one can write the
critical field He in the form

here Hco denotes the critical field in the absence of
sound, a « 1, uii = div u, u denotes the displacement
of the lattice in the sound wave, u = uoexp[i(k-r - cot)],
T' denotes the change in the temperature which arises
because of the generation or absorption of heat asso-
ciated with the motion of the boundaries between the
phases.

The mechanism described turns out to be essential
in connection with an investigation of the attenuation of
low-frequency sound, whose wavelength satisfies the
conditions \ » 5 and x 2> an (6 denotes the depth of
the skin-layer and an denotes the thickness of the
normal layers).

A general formula for the absorption coefficient is
obtained in[123]. In the limiting case of very small fre-
quencies, when an « 6, the absorption for T « T C is
described by the formula

»J[" M — (mn)2p lcHcy
-̂un) pmrlS* \ 2n ) '24 («.,

(42)

where m and n denote unit vectors in the direction of
Hco and k, p is the density of the metal, a s is the
thickness of the superconducting layers, u/ is the
velocity of longitudinal sound, and a denotes the static
conductivity; it is assumed that the mean free path of
the electrons is much smaller than an or 6, which
also permits one to use a. It is clear that in this case
the absorption is proportional to the square of the
sound wave's frequency w2 and is practically independ-
ent of temperature. This dependence becomes impor-
tant when T is raised.
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In the opposite limiting case, an » 6, the absorp-
tion

T = - pc (<"n -r "«) "|o (43)

.1/2turns out to be proportional to OJ
The ratio of the coefficient for the absorption of

sound, associated with the mechanism under considera-
tion, to the usual electronic absorption turns out to be
a quantity of the order of (e 2 /c ) (vp/c)(a /^ 0 ) 2

(a = an + a s) . This ratio may be larger than unity
thanks to the factor a/£0. Then the mechanism under
consideration for the absorption of low-frequency
sound, which is associated with the motion of the phase
boundaries, begins to play a major role. In this con-
nection the frequency dependence of the absorption
turns out to be extremely distinctive. In the region of
very small frequencies, the attenuation is proportional
to u)2. Then with an increase of the frequency a region
appears (for an !3> 6) where the absorption is propor-
tional to o)1/2. At large frequencies, where the absorp-
tion is determined by the usual mechanism/100-1 a de-
pendence y ~ a;2 again appears. The good agreement
of the obtained results with formula (43) is mentioned
in article'-124-' where the absorption of sound whose fre-
quency varied in the interval from 21 to 90 MHz was
experimentally investigated. The sound wave was ab-
sorbed in pure superconducting lead, existing in the
intermediate state.

Above we have discussed the absorption of low-
frequency sound. The attenuation of high-frequency
sound vibrations by superconductors existing in the
intermediate state is studied in[125]. In this connection
the wavelength of the sound wave turns out to be of the
same order of magnitude as the thickness of the layers.
Also the conditions a n « / and an "C R (R denotes
the Larmor radius in the critical magnetic field) are
assumed to be satisfied. In[125] it is shown that in this
case it is possible, with the aid of ultrasonic measure-
ments, to determine the period of the laminar struc-
ture of the superconductor under investigation. It is
shown that both for R 3> I as well as for the opposite
limiting case R <C I the monotonic part of the absorp-
tion is described by a function directly relating the
period of the structure with the value of the critical
magnetic field. For R<CJ, in addition, there is an
oscillating correction to the absorption (the analogous
effect in normal metals is mentioned in[126]), where
the period of the oscillations also turns out to be r e -
lated to the desired quantity a = an + a s .

4. Absorption of Transverse Sound Waves

The attenuation of transverse waves in superconduc-
tors has been studied to much less extent than the ab-
sorption in them of longitudinal sound waves. The dis-
tinctive features of the attenuation of transverse sound
are mentioned in articles[127>128], where Sn and In are
investigated, and in[129"131] where the corresponding
properties of Al are examined. The presence of two
regions, differing sharply in their temperature depend-
ences, is noted. In the first of these regions, existing
immediately close to T c , an extremely sharp drop in
the absorption is observed (Fig. 20). Thus, for exam-
ple, in[127^ upon a total change in the temperature be-
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of a system of vortex lines. The superconducting order
parameter A(r) vanishes on the axis of a vortex line.
The vortex structure and the associated appearance of
a normal component are additional factors which must
be taken into consideration in connection with an inves-
tigation of kinetic phenomena in type II superconductors.
The experimentally noted properties of heat transfer
and sound absorption processes in the mixed state are
also associated with the effect of these factors.

The behavior of the electronic thermal conductivity
was theoretically investigated in[141'142]: Ke varies
near HC2 according to a linear law, *e ~ (H - Ecz)-
An investigation of impure samples of lead and indium
is carried out int143^; it is noted, in agreement with
theory, that under conditions when the electronic con-
tribution to the heat flow is the major contribution, the
ratio of the derivatives d/c/dH and dM/dH (M denotes
the magnetization) is a universal function of the tem-
perature. A monotonic increase of the thermal conduc-
tivity as a function of the field, varying in the interval
between HCi and Hc2, is noted in1-1441 where mono-
crystalline samples of disordered alloys of tantalum
and niobium were investigated. The measurements
were carried out at a constant temperature close to
T c . Here the electronic component gives the major
contribution to the heat flow. Similar behavior is noted
upon investigation of pure Nb.[145'146] An intrinsic
anisotropy of Ke, depending on the angle between the
direction of heat flow and the direction of the vortex
lines, is observed in[147]. The behavior of K is utilized
to determine the values of Hci and Hc2.

The most significant anomalies are observed upon
investigation of the phonon thermal conductivity of
type-II superconductors. The presence of large-scale
structures, which correspond to Abrikosov lines, leads
to a noticeable decrease in the mean free path of the
thermal phonons, and associated with this there is an
abrupt drop in the value of /cp. This drop in the thermal
conductivity upon reaching the field value Hci was ob-
served in t l44] in the low-temperature region where, as
already noted above (see Ch. II, Sec. 5), phonon thermal
conductivity plays a major role. Its decrease with in-
creasing field also leads to the result that in the in-
vestigated superconductor the electronic thermal con-
ductivity «e again begins to play a major role; how-
ever, the value of «e increases with increase of H. In
virtue of the arguments presented here, it is clear that
the thermal conductivity K(H) of type II superconduc-
tors, investigated as a function of the field which varies
in the interval Hci < H < Hc2, is characterized in the
low-temperature region by the presence of a minimum.
This minimum has actually been observed in[144"146]

(Fig. 21).

The ultrasonic absorption coefficient in a "dirty"
superconducting alloy (TTC C l , T denotes the relax-
ation time) is calculated ur148]. It is assumed that the
field is not too large (HCi < H <C HC2). The work done
by the sound wave on the electron gas is determined,
where the wavelength of the sound is assumed to sat-
isfy the conditions qZ <C q60 <S 1, qd <Si 1, where d
denotes the distance between vortex lines. In the hy-
drodynamical approximation the dissipation of energy
is described by the following formula:

nU,kulm + <yihEiE'k], ( 4 5 )

w h e r e E i i s t h e e f f e c t i v e e l e c t r i c f i e l d i n t h e c o o r d i -
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c i e n t s o f v i s c o s i t y , a n d u i k i s t h e d e f o r m a t i o n t e n s o r ;

t h e b r a c k e t s ( . . . ) i n d i c a t e t h e r m o d y n a m i c a v e r a g i n g ,

a n d t h e b a r i n d i c a t e s a v e r a g i n g w i t h r e s p e c t t o t i m e .

T h e f i r s t t e r m i n ( 4 5 ) r e p r e s e n t s t h e o r d i n a r y a b -

s o r p t i o n o f a s o u n d w a v e b y a n e l e c t r o n s y s t e m . O n e

c a n r e p r e s e n t t h e d a m p i n g c o e f f i c i e n t a s s o c i a t e d w i t h

i t i n t h e f o r m

V" BCS
+K{T)JL; (46)

here B denotes the magnetic induction in the supercon-
ductor; the function K(T) is expressed in a definite
way in terms of the quantities K and A/T; K denotes
the parameter appearing in the Ginzburg-Landau
theory. At T = 0° the value of K(0)« 1.

The basic characteristics of sound absorption in a
mixed state are associated with the second term which
appears in Eq. (45). It describes the Ohmic losses
associated with the appearance of induced electric
fields. Upon a displacement of the crystal lattice due
to the passage of the sound wave, the vortex lines are
dragged by the ionic system of the metal. However,
the elastic interaction between the vortex lines leads
to the result that this dragging is not complete. In-
duced electric fields also appear due to the motion of
the system of vortex lines relative to the lattice ions.
In this connection, an extremely strong anisotropy is
observed in the absorption of both longitudinal and
transverse sound. Thus, for example, the coefficient
for the absorption of longitudinal sound turns out to be
proportional to ~sin6 6, where 6 is the angle between
the vectors q and Ho. In the case when the sound is
propagated in the direction of the field, deformation of
the vortex lattice does not occur, and the correspond-
ing absorption coefficient turns out to be equal to
zero. Waves propagating in a direction perpendicular
to the field are absorbed most strongly.

Ultrasonic absorption in the mixed state in the
presence of paramagnetic impurities is considered
in[149]. Articles[151"155) are devoted to theoretical and
experimental investigation of the question of the atten-
uation of sound in pure type II superconductors. In[1531

a linear dependence of [l - (yj/yn)] on [HC2(T) - Hj1/2

is experimentally obtained, which is in agreement with
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theory/151 ' where H denotes the external field, and •/•
denotes the coefficient for the absorption of longitudi-
nal sound in pure Nb.

The presence of a vortex structure leads to the
existence in type II superconductors of a type of phe-
nomena similar to the effect of ordinary magnetore-
sistance in a normal metal. Also thermomagnetic and
galvanomagnetic effects appear. The Ettingshausen
effect[154-157] (the appearance of a temperature gradient
perpendicular to the flowing current, where AT
~ ( V Z / K ) ( T / T C ) 2 ; [ 1 5 5 ] here N\ denotes the longitudinal
electric field intensity and K is the coefficient of
thermal conductivity), the longitudinal Nernst ef-
fectj[154,i56,i58] a n d t h e R a l l effect1159"1603 belong to this
type. The generation of Peltier heatci55'157] is observed
at the boundary separating the mixed (H > Hci) and
ordinary superconducting states.
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