SCIENTIFIC SESSIONS OF THE DIVISION OF

at all, its magnitude is smaller than the elementary
charge multipliedby 5x 10" cm. The sensitivity of
the employed resonance method is limited in final
analysis by the time of stay of the neutron in the ap-
paratus, which amounts to 7 = 2 X 1072 sec. The possi-
bility, noted by Ya. B. Zel’dovich, of storing in a
closed cavity very slow neutrons (velocity v < 5—8
m/sec), which experience total reflection from the
vacuum-medium interface at arbitrary incidence
angles'® makes it possible to realize a time 7 on the
order of the average radioactive decay time of the
neutron (10° sec). In principle this should raise the
sensitivity of the resonance method of measuring EDM
by five orders of magnitude. These arguments have
induced a group of physicists in the neutron physics
laboratory of the Joint Institute for Nuclear Research
(Dubna) to verify the possibility of extracting such
ultracold neutrons (UCN) from a reactor and of storing
them!*!, The experimental setup is shown in the figure.
Neutrons leaving the moderator 3 with velocity exceed-
ing 5.7 m/sec were absorbed upon collision with the
walls of the copper tube 4, or else emerged to the out-
side. The neutrons with lower velocities, experiencing
total reflection from the copper, diffused along the
evacuated tube to the neutron detectors 11 and 12, and
were registered whenever the very thin copper shutter
13 was opened, or else were reflected from the shutter
if the latter was closed. Accordingly, the counting rate
of the detector decreased sharply when the shutter was
closed. Special experiments have made it possible to
estimate the diffusion time of the UCN from the moder-
ator to the detector, which turned out to be of the
order of 200 sec.

The results of the experiments have shown that UCN
are produced and propagate in accordance with the
theoretical expectations. This makes it possible to
plan experiments on the measurement of the decay
period of the neutron and its EDM. It can be assumed
that the UCN will find also other applications based on
the use of their low energy (~107'° eV), their focusing
ability, and other properties.
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Experimental Setup

1—IBR reactor, 2, 3—moderator (2—paraffin, 3—polyethylene
layer 1 mm thick); 4—copper tube with inside diameter 9.4 cm, total
length 10.5 m; S—aluminum tube, 6—cylinder of copper foil; 7—
shield (paraffin with boron carbide); 8—two-meter concrete wall of
the reactor room; 9—detector shield (paraffin); 10—system for evac-
uating and filling the tube; 11, 12—detectors (FEU-13 photomult-
pliers with layers of ZnS + lithium compound); 13—copper shutter
1.6 p thick; 14—mechanism for moving the shutter; 15--trap for the
direct neutron beam.
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G. 1. Makarov and V. V, Novikov. Problems in the
Propagation of Superlong Radio Waves in the Earth-

ionosphere Waveguide Channel.

Radio waves of the superlong band (SLW) propagate
in the spherical waveguide channel produced by the
earth’s surface and the lower part of the ionosphere,
which in the frequency range under consideration
(1-60 kHz) behaves like a conductor of uneven height,
having an anisotropy as a result of the influence of the
earth’s magnetic field. The properties of the iono-
sphere and of the earth vary in both the radial and
tangential directions, but in most cases the change of
the properties of the media in the tangential directions
is slow, and in first approximation this circumstance
can be disregarded. As a result, the problem of propa-
gation of SLW in the near-earth waveguide reduces
mathematically to a construction of the solution of
Maxwell’s equations with specified sources for a
spherically layered medium consisting of three regions.
The first region a =r <a +h (where a—earth’s
radius and h—height of the lower edge of the ionosphere
over the earth’s surface) is a homogeneous isotropic
medium with properties practically coinciding with the
properties of vacuum. The second region 0 = r = a is
a conducting isotropic medium, the properties of
which, generally speaking, depend on the radial coordi-
nate r. Finally, the third region r > a +h (iono-
sphere) is an anisotropic conductor with a conductivity
that varies with the altitude. Even in such an idealized
formulation, it is impossible to construct a strictly
analytic solution of the problem, since the variables
cannot be separated in Maxwell’s equations that de-
scribe the field in the anisotropic ionosphere. At the
present time there is an approximate analytic solution
for this problem, but it still requires further refine-
ment and a quantitative investigation of the limits of
its applicability.

The problem of propagation of SLW was considered
by many authors!' !, who used different ways and ap-
proximations for the construction of the solution and
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for its investigation. There are two ways of construc-
ting the solution (using explicitly or implicitly an ap-
proximate separation of the variables of Maxwell’s
equations in the ionosphere): one is based on the ex-
pansion of the solution in the eigenfunction of the
radial operator (the normal-wave method), and the
other is based on the expansion in the eigenfunctions
of the azimuthal operator (the Debye method or the
method of multiply reflected waves). The second
method of constructing the solution is simpler mathe-
matically, since the azimuthal operator has only a
discrete spectrum. With the aid of the Watson trans-
formation, the solution obtained in this way is reduced
to a representation in the form of a series of normal
waves, which is conveniently used for numerical cal-
culations of the field at large distances from the
source (r > 3000 km). On the other hand, the expan-
sion of the solution in a series of waves multiply re-
flected from the surface of the earth and from the
ionosphere, which is obtained directly when the second
method is used, is convenient for calculations at small
distances from the source. It is easy to obtain from
this expansion an approximate geometrical represen-
tation of the solution in the form of multiply reflected
rays, which is valid in the region that is illuminated
for this ray. On the other hand, in the shadow region,
each individual term of the series of multiply reflected
waves can be interpreted as a ‘‘diffraction’’ ray that
experiences partial glancing over the earth’s surface.

In constructing the solution of the basis of expan-
sions in the eigenfunctions of the azimuthal operator
(the Legendre polynomials -Pp(cos 6)), the decreasing
field (the field of the source in free space) is given by
a series of normal harmonics, each term of which
represents a helical wave!''!, If we consider the suc-
cessive reflection of the individual helical wave alter-
nately from the earth’s surface and from the iono-
sphere, and if we satisfy the boundary conditions in
each reflection with the aid of spherical reflection co-
efficients of the helical waves, we can obtain a formal
solution of the problem in the form of a sum of multi-
ply reflected waves, each of which has been reflected
a definite number of times from the earth’s surface
and from the ionosphere. Each individual wave is
represented in turn as a sum of the eigenfunctions of
the azimuthal operator!®],

In the described scheme of constructing a solution,
it is assumed that upon reflection of a given helical
wave numbered n, the reflected field is one helical
wave having the same number. This assumption is
rigorously satisfied in the case of isotropic media, but
in reflection from the anisotropic ionosphere it is in
general violated—the reflected field is given in this
case by an infinite sum of helical waves. Therefore the
solution obtained by this method for anisotropic iono-
sphere is approximate and corresponds to the ‘‘diago-
nal’’ approximation of the spherical reflection coeffi-
cient from the ionosphere.

In constructing a solution, it is necessary to take
into account the change of the polarization of the wave
upon reflection from the surface of the anisotropic
ionosphere, and to use a spherical reflection coeffi-
cient matrix with nonzero non-diagonal elements. The
spherical coefficient of reflection from the earth’s

surface must in this case also be used in matrix form,
but with zero non-diagonal elements,

To investigate the solution in the form of a series
of multiply reflected waves or a series of normal waves,
it is necessary to know the spherical reflection coeffi-
cients. These can be written in explicit analytic form
only for homogeneous (layered-homogeneous) isotropic
media. In the case of inhomogeneous media, and also
in the case of an anisotropic ionosphere, it is necessary
to resort to numerical calculations of the reflection
coefficients (or of the surface impedances). As to the
spherical coefficient of reflection from an anisotropic
ionosphere, it must be replaced by the coefficient of
reflection of a plane wave from a plane-layered
medium (or, more accurately, by the coefficient of re-
flection of a cylindrical helical wave from a cylindric-
ally layered medium). As shown by investigations for
an isotropic ionosphere!*?! such a substitution ensures
high accuracy.

In the investigation of the solution in the form of a
series of normal waves, the main difficulty lies in the
solution of the characteristic transcendental equation
for the eigenvalues of the radio operator. By now, a
procedure has been developed for numerically solving
this equation!®®'%1 and numerous calculations have
been made, revealing the main laws governing the
propagation of superlong radial waves in the waveguide
channel next to the earth,

The fact that the problem has many parameters
makes it difficult to clarify the qualitative regularities,
and therefore great interest attaches to the use of
variational methods in order to obtain simple approxi-
mate expressions for the eigenvalues of the radial
operator. The use of such methods in the case of a
plane isotropic waveguide!'*! has made it possible to
analyze in greater detail the dynamics of the eigen-
values, their dependence on the frequency, on the height
of the waveguide, and on the surface impedance of its
upper wall, and also to observe the phenomenon of de-
generacy of the eigenvalues. Similar investigations for
a spherical waveguide have shown that the influence of
sphericity on the eigenvalues of the radio operator is
determined by the sphericity parameter S = (kh)%h/z,
which in the SLW band ranges from several hundredths
to several dozen, i.e., the influence of the sphericity is
very appreciable in the upper part of the SLW band. In
a spherical waveguide, as well as in a plane one, there
is the degeneracy phenomenon, which influences the
numbering of the normal waves.
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E. A. Konorova and S. F. Koslov. Diamond Detector
for Nuclear Radiation.

In spite of the progress made in germanium and
silicon detectors for nuclear radiation, there are
fields of application where the diamond detector has
definite advantages because of its high chemical and
thermal stability. The counting properties of diamond
have been the subject of a rather large number of in-
vestigations!'™®, These investigations, however, did
not lead to the development of a diamond detector—an
instrument suitable for practical use.

Natural diamonds are insulators with resistivity
10'* chm-cm and higher. Electric fields up to 10° V/cm
still produce no breakdown of the crystal. The carrier
mobility is large and amounts to 1550 cm?/V-sec for
holes'®) and 2000 ¢cm?/V-sec for electrons(®). These
properties of diamonds are very favorable for its use
as a radiation detector.

However, the use of very strong electric fields is
limited by the dependenee of the mobility on the field,
as in other valent crystals. According to[5’6], the elec-
tron drift velocity in diamond reaches its limiting
value 107 £ 0.2 x 10" cm/sec at room temperature in
a field of approximately 2 x 10* V/cm. This circum-
stance was not taken into account in any of the pub-
lished papers on the counting properties of diamonds,
and therefore the treatment of the experimental results
was not always satisfactory. Since the electron and
hole lifetimes in diamond exceed in very rare cases
107® sec!® the maximum depth of the work in the
region of the detector is limited to 200—300 n.

An essential shortcoming of diamond detectors is
the polarization of the crystal, since the very low
electric conductivity prevents the electric equilibrium
from becoming reestablished inside the crystal within
the time between pulses. Known methods of eliminating
the polarization by heating, illumination, or applying
an alternating field are not suitable and have little ef-
ficiency. To avoid polarization, we have proposed to
use an injecting contact on the side of the diamond
opposite to the irradiated side!”). In the vicinity of
such a contact there is maintained an equilibrium of
the field and the charge. When this equilibrium is
violated by the captured carriers, say electrons pro-
duced in the crystal following ionization by the regis-
tered radiation, their neutralization is effected by the
hole current from the contact (space-charge-limited
current).

! *e —energy necessary to produce a pair of carriers, calculated from
| the momentum at the maximum of the curve of the amplitude distri-
i .

bution.

Sample I Thickness, Working Counting l Energy re- e ). )
No. l mm voltage « | efficiency, % | solution, % I aeV |
| ; |
10 400 ‘ 00 5 15.6
2 0.16 600 . 100 | 5 15.4
3 I 0.21 600 ' 100 ! 8 ! 16.2
4 0.27 400 100 9 16.1 |
S5 | 0.14 600 100 ’ 8 16.3 |
6 | 0.20 300 ! 100 i 4 15.9 ‘
7 0.20 400 i 100 10 16.2 i
8 | 0.9 20 1 10 b 15 6.2 |
9 0.13 400 . 100 15 16,6 |
10 0.40 600 . 100 b 16.2 i
1
I
|
i

After overcoming many difficulties connected with
the development of injecting contacts for diamond, the
selection of crystals with necessary lifetime, and
others, we have constructed 10 diamond detectors. The
properties of these detectors were investigated by
registering 5.5-MeV a particles from a Pu®®#?%
source, The obtained results are summarized in the
table, the data in which pertain to room temperature.

The working area of the detectors ranged from 2
to 10 mm?

The operation of the detectors was investigated by
registering particles in the temperature range
300—1000°K. Up to 490—550°K, the properties of the
detector remained essentially unchanged, but at
higher temperatures, the amplitude of the pulses and
the counting efficiency decreased, but the count con-
tinued in some cases up to 1000°K.

At the present time we can point out the following
fields of application of diamond detectors for nuclear
radiations: 1) registration of short-range particles
(a particles, protons) at increased temperature,

2) registration of short-range particles in aggresive
media—in acids and alkalis, 3) registration of low-
energy B particles at room temperature and at in-
creased temperatures, and also in active media (for
example, the radiation of tritium in biological objects).
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The paper presents data on the observation and in-
vestigation of a new type of electric instability in
semiconductor plasmas, called recombination waves
(RW). The existence of RW was theoretically predicted
in“], where it was shown that waves of carrier density





