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IN physics there are many ‘‘perpetual problems,”” the
discussion of which continues for decades in the scien-
tific literature, let alone in text books. By way of ex-
amples from classical electrodynamics alone, we can
indicate the choice of the energy-momentum tensor for
a field in a medium (we refer here to the Abraham and
Minkowski tensors), to the problem of the electromag-
netic mass in the equation of motion with allowance for
the radiation friction force, and to the problem of the
radiation in the reaction of radiation accompanying uni-
formly accelerated motion of a charge.

1969 marks the sixteenth anniversary of M. Born’s
first analysis of the g)roblem of the field of a uniformly
accelerated charge' . It was concluded from Born’s
solution that a uniformly accelerated charge does not
radiate—this same opinion was reflected in the well
known book by W. Pauli’®’. At the same time G. Schott"®’
and later many other authors reached to an opposite
conclusion, namely that radiation exists for a uniformly
accelerated charge, as in any other accelerated motion.
At the same time, in the case of uniformly accelerated
motion of the charge the radiation-friction force is
equal to zero, which seems paradoxical in the presence
of radiation. This and related problems connected with
the study of uniformly accelerated charges have been
the subject of many articles, among which we point out
only the recent ones'*” (references to the earlier
literature can be found in'*"; see also below). For
example, in'®? the establishment of the energy balance
in uniformly accelerated motion of a charge is charac-
terized as the ‘‘most puzzling problem of classical
physics.”

The problem of radiation from a uniformly accelera-
ted charge and most other ‘‘perpetual problems’’ are
undoubtedly of no major significance, and this is pre-
cisely why they have remained insufficiently well ex-
plained for so long a time. On the other hand, however,
neglect of such methodological types of problems
sometimes incurs vengeance. For example, certain
inaccuracies and misunderstandings, recently observed
in the theory of synchrotron (magnetic bremsstrahlung)
radiation are connected precisely with the frequent
practice of equating of the radiated energy (total radia-
tion flux) to the work done by the radiation friction force
(seem , and also'®’ , where many articles devoted to this
problem in the theory of synchrotron radiation are
mentioned). Actually, however, the radiated energy and
the work of the radiation friction are not equal to each
other in the nonstationary case. This indeed resolves
the paradox concerning the radiation of a uniformly ac-
celerated charge. It seems to us that this circumstance

565

was not taken into account to a sufficient degree in
earlier discussions'*”. Nor was the behavior of a
uniformly accelerated charge discussed in sufficient
detail from the point of view of the equivalence princi-
ple. For these reasons and on the basis of the known
experience, which indicates that the discussion of the
corresponding problems is not sufficiently clear even to
well-trained physicists, it seems appropriate to stop
once more to discuss the radiation and radiation force
in the case of uniformly accelerated motion of a charge.

I. RADIATION AND RADIATION FORCE IN THE CASE
OF A UNIFORMLY ACCELERATED MOTION OF A
CHARGE

When a charge e moves vacuum along a certain
trajectory, the electromagnetic field is determined by
the well known equations that follow from the Lienard-
Wiechert potentials:

e [1—(%/c?)] -
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H = [RE]. (2)*
The fields E and H are taken here at the point of
observation at the instant t, and the quantities R, v, and

v in the right sides of the equations pertain to the
“‘radiation time’’ t’ = t — [R(t")/c], the vector R being
drawn from the point where the charge e is located to
the observation point. Further, v(t') = dR(t’) dt’ is the
charge velocity and v = dv/dt’. Obviously, expression
for R(t") determines the trajectory of charge motion,
but it is more convenient to characterize the position of
the charge by means of the vector r(t’) and the observa-
tion point by the vector r(t) = r(t’) + R(t’), from which
we get also r = dr/dt’ = —dR/dt’ (for a derivation of
formulas (1) and (2) see, for example, > 7).

The first term in (1) corresponds to the field of a
charge moving with velocity v; this term decreases
with increasing R like 1/R?. The second term in (1) de-
creases like 1/R and is the principal term when
R > c?[1 — (v*/c®)]/v; the field described by this term
is transverse and represents the field of a certain
electromagnetic wave. If the charge produces also a
wave field, then such a charge is said to be radiating.
Although this definition is not trivial, it does call for
clarification. Indeed, one can consider the charge’s
wave field, which decreases like 1/R, only in the wave

*[RE]=R X E.
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zone, where only one such field exists in practice. It is
possible, however, to verify the existence of a wave
term (the second term in (1)) also at shorter distances
from the charge. In such a case, however, the total
field is by far not the radiation field that propagates
with the speed of light. For reasons that will be made
clear later, it seems to us that it is better to take the
statement ‘‘the charge radiates’’ in a broader sense,
i.e., in the presence of a wave field and independently
of the presence or absence of other parts of the field.
It must be emphasized also that measurements of the
fields E and H at the instant t can lead to conclusions
concerning the state (for example acceleration) of the
electron only in the preceding instant t’ = t - [R(t’)/c].

If we consider only the field of one given charge,
then the energy flux through any closed surface sur-
rounding the charge should differ from zero in the
presence of radiation. Obviously, the energy passing a
time dt = [1 — (v-n/c)]dt’ through the area do = R*dQ in
the direction n = R/R is equal to (dQ is the element of
the solid angle)

d, = (EH] nR? dQ dz=—4—:!2? E'[—{‘E—(';Ex—;]‘;m aQar, @)
where the fields are represented by the wave field (the
second term of (1) or (2)). For this reason, expression
(3), generally speaking, is valid only in the wave zone.

Calculation of the total energy radiated in a unit time
t’ yields
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here wi = (w°, w) = dul/ds is a four-dimensional vector
of particle acceleration.* By virtue of the Lorentz in-
variance of expression (4), its calculation can be carried
out in any inertial system. In the system in which v = 0,
formula (3) is valid for any R, and consequently the
calculation of the radiated energy and the establishment
of the very presence of radiation can be carried out also
near the charge, and not only in the wave zone'™. This
conclusion is understandable in part, of course, even
from general considerations, since the field (particu-
larly the wave field) is defined by formulas (1) and (2)
at any distance from the charge.

The quantity P = v&/dt’ characterizes the flux of
energy through a sphere of radius R at the instant t, but
it must be emphasized that the quantities in the right
side pertain to the instant t’ =t - [R(t')/c], and the
radiated energy also is referred to units of ‘‘radiation

*We use the notation of {!!]. The four-dimensional velocity is

e = (u? U)=(‘ ! ’ M )'
ds ! V1= (v2/c?) V1— ()
uby; =ul—u2=1, ds=cdt V1=(v¥c?)

and
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where v = dv/dt. It is easy to see that
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time’’ t’. The difference between the intervals dt
=[1 - (v-n/c)jdt’ and dt’ is a manifestation of the
Doppler effect: a pulse of radiation emitted at the
instant dt’ will have a length c dt.

If the velocity of the charge at the instant of radia-
tion t* is equal to zero (or in practice is sufficiently
small), then the radiated energy is
d_ g8 2, (5)
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This expression is sometimes called the Larmor form-
ula, and it is quite well known.

In the case of nonrelativistic uniformly-accelerated
motion we have v = const. Relativistic uniformly-ac-
celerated motion is defined as motion in which the ac-
celeration is constant in the co-moving (proper) refer-
ence system, i.e., in the system in which the instantane-
ous velocity of the particle is zero. If we use the ex-
pression given in the foregoing footnote for wlwi, then
we get wl/wj =—w?/c*at v = 0 (we have introduced the
symbol v (at v = 0) = w). This condition, obviously, de-
fines relativistic uniformly-accelerated motion in an
invariant manner.

We confine ourselves here to the particular case of
linear motion (the vectors v and v are collinear); then
the foregoing general expression for wlwi and the condi-
tion w'w; = —w?/c* = const yield immediately
v/[1 - (v¥/c})P’? = w, or d[v/VI = (vE/c®)}/dt = w = const.
Choosing the velocity direction as the z axis and assum-
ing, in order to obtain specially simple expressions,
v=dz/dt = 0 and z = c®/w at t = 0, we get

dr_ ot _ wi (6)
@ Yiephre VT @)

dv c3
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Relativistic uniformly accelerated linear motion is
also called hyperbolic, since the function z(t) is a hyper-
bola*. In a homogeneous and constant electric field or
in a gravitational field, either of which is parallel to
the charge velocity, the motion is precisely hyperbolic,
since the equation of motion is given by

which coincides with the expression given above for
hyperbolic motion.

From formulas (4) and (5) and from the foregoing it
is clear that in both nonrelativistic and relativistic
uniformly accelerated motion the charge radiates, with
P = d&/dt’ = (2¢*/3c*)w®. Moreover, from the point of
view of the radiation, motion with constant acceleration
does not differ qualitatively at all from radiation pro-

*In the general case of uniformly accelerated motion [1 -
V3?1V + (3/cX)V - v) = 0 (see {*] and the literature cited there).
Hyperbolic motion is realized under the influence of a constant electric
field only if the charge velocity v is collinear with the field Eext. On the
other hand, if the charge moves in the electric field at an angle to Eext,
i.e., if its velocity has a component transverse to the field, then such
motion is not uniformly accelerated (in this case the charge is acted
upon also by a magnetic field in the reference frame in which the charge
is at rest) [7], let alone the obvious fact that it cannot be hyperbolic.
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duced in arbitrarily accelerated motion. The last re-
mark holds not only for the calculation of the total power

P =d&/dt’, but also for the spectral distribution of the
radiation’” .
An accelerated charge, generally speaking, experi-
ences a radiation-friction force f. In nonrelativistic
motion f = (2¢%/3c®)¥V, and the equation of motion is

given by
2y ™

’

mv:F-,Lm

F is the external force. A relativistic generalization
of this equation is
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(8)

where the external force is assumed to be a Lorentz
force (F}g{t is the tensor of the external electromag-
netic field). Sometimes Eq. (8) is written in a different
form, taking into account the fact that ul(dui/ds) =0,
and consequently

o dPup du® dup

ds? ds ds °

In three-dimensional notation, Eq. (8) takes the form
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For nonrelativistic uniformly-accelerated motion it is
immediately obvious that the radiation force

f = (2¢%/3c®)V is equal to zero. In hyperbolic motion,

the radiation force is also equal to zero, for in this case

| v

v . . t
[T - —(L~2/02)]3/2 =W = COns
and consequently,
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The last equation leads to the vanishing of the radiation
force in (9). This can be readily verified on the basis
of Eq. (8), by substituting the solution v

= wt/V1 + (wZ/c?) or ul = (V1 + (wi%/c?), 0, 0, wt/c).
The radiation force is equal to zero also in the general
case of uniformly accelerated motion.

A discussion of the character and of the conditions of
applicability of the equations of motion (8) and (9) also
constitutes one of the ‘‘perpetual problems’’ mentioned
in the introduction. We refer here both to the electro-
magnetic mass and to the fact that Egs. $8) and (9) have
inadmissible self-accelerating solutions'!**?!, It seems
to us, however, that this is of no significance in the
analysis of the motion and radiation of a uniformly ac-
celerated charge. It suffices to say that in the nonrela-
tivistic region one could consider an extended charge
and obtain expression (7) accurate to terms that are
arbitrarily small when the radius of the charged sphere
is made sufficiently small; at the same time, the elec-
tromagnetic mass remains finite (of course, we are
considering the non-quantum case throughout). In such
an approach it is also clearly seen that Eq. (7) is not
valid at the initial instant of time (we have in mind the
solution of the initial-condition problem; see, for exam-

.l
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ple'!* | and also'®), by virtue of which the self-acceler-
ating solutions cannot appear. Finally, and this may be
particularly convincing in this case, Eqs. (7)—(9) have

a fully defined meaning in the case of uniformly acceler-
ated motion, and neither difficulties nor misunderstand-
ings arise in this case (it will be shown below, in par-
ticular, that Egs. (7) and (8) lead to a result that agrees
with the equivalence principle).

II. WHAT IS UNCLEAR IN THE QUESTION OF RADIA-
TION AND THE MOTION OF A UNIFORMLY AC-
CELERATED CHARGE?

In the discussion of the question of the radiation and
motion of a uniformly accelerated charge, there are
some unclear aspects or apparent paradoxes of several
types.

First, we refer to the field obtained in'*! in the case
of hyperbolic motion (see also'®*®), The corresponding
solution for the field turns out to be valid not for all
values of z and t, this being connected with the consider-
ation of uniformly accelerated motion from t = —= to
t = +=. Attempts to ‘“‘correct’’ the solution of'* were
not successful. For example, one article'® ends with
the statement: ‘“We thus arrive at the conclusion that
Maxwell’s equations are incompatible with the existence
of a single charge that is uniformly accelerated all the
time.”” Such a conclusion may turn out to be perfectly
correct, since in hyperbolic motion that is not limited
in time the total radiative energy is infinite, and when
t — + the kinetic energy of the charge is also infinite
(the velocity of the charge is equal to c). But a solution
for unbounded motion need not be sought for any real
physical formulation of the problem, where the particle
moves with uniform acceleration only for a finite time
interval. For example, if we are dealing with motion in
a homogeneous and constant electric field, and specific-
ally in a capacitor, then the charge moves in the capaci-
tor in the time t; < t’ < t;, and whent’ < tjort’ > t; its
velocity, for example, may be constant (we recall that
such a motion in a capacitor is uniformly accelerated,
specifically hyperbolic, only if the velocity of the charge
is parallel to the field vector). If this circumstance is
taken into account, then the possibility of finding a solu-
tion for the field in the form of retarded potentials is
subject to no doubt. A second question discussed in the
literature'#®™ is connected with the interpretation of
the solution'*? in Pauli’s book™’, where it is concluded
that ‘‘hyperbolic motion is thus also unique in that it is
not connected with formation of a wave zone and of the
corresponding radiation.”’ Such a conclusion will subse-
quently become perfectly natural, since in hyperbolic
motion the radiation force vanishes (see above) ‘‘as it
should be, since in this case there is no radiation at
all”’'?!,

It is shown in'¥ that the solution used in'“*? for the
field of a uniformly accelerated electron, which is suit-
able for all z and t, can nevertheless be used when
t > —z/c and leads to the same result for the radiated
energy
_dE 2 2

@ T 3a W

which follows from the more general proof presented
above. As to Pauli’s conclusion concerning the absence
of a wave zone, it pertains to another case, namely,
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when the distance R = ¢(t ~t’) increases at a fixed ob-
servation time t. Consequently when R — « we have for
the time t" — —<, But whent' — —= we have for a par-
ticle executing hyperbolic motion (see formulas (6)),

v? 1 c?

P i
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from which we get

il (1—%2_—) ~et’,
At the same time, as follows from (1) and as was
already indicated, in the wave zone we have
R > c®[1 - (z%/€%)]/¥, and for hyperbolic motion this
condition cannot be satisfied at a fixedt =t’ + (R/c) and
R = <. By the same token, this explains the arbitrari-
ness of the concept of energy radiated by the charge—it
is necessary to stipulate whether we are dealing with
the time t or with the time t’.

For a motion that is uniformly accelerated in a finite
time interval, the situation is nevertheless perfectly
well defined. Given the observation time t and given the
law of charge motion, we obtain R(t’) and the radiation
time t’. I t’ was in the interval (ti, t;) when the charge
moved with uniform acceleration, then it can be stated
that at this instant t’ the charge was not acted upon by
the radiation force, and that at the same time the charge
radiated—the flux of energy through a sphere of radius
R(t’) at the instant t = t’ + (R/c) is different from zero.

The third and fundamental question connected with
radiation and motion of the uniformly accelerated charge
is raised precisely by the fact that the presence of
radiation in the absence of a radiation-deceleration
force is paradoxical.

The fourth question concerns the application of the
equivalence principle, on which the general theory of
relativity is based. According to this principle, all the
physical phenomena occurring in an inertial reference
frame K, in which there is a uniform gravitational
force wigh acceleration due to gravity g, are perfectly
equivalent to those in a uniformly accelerated system
K, moving with an acceleration g relative to an inertial
reference frame without a gravitational field. In the
presence of a uniform gravitational field, a charge
which is not secured is uniformly accelerated relative
to the inertial system, and will radiate in accordance
with the foregoing. On the other hand, in an accelerated
reference frame K, , the charge apparently should not
radiate, since it is not accelerated relative to the iner-
tial system. The systems and K, are thus non-
equivalent, i.e., the equivalence principle is violated.
Actually, however, the charge in the system K, radiates
exactly in the same manner as the system Kg, i.e., the
equivalence principle holds without qualifications.

In the last two sections we shall stop to explain the
paradoxes we have just formulated.

HI. CALCULATION OF THE RADIATED ENERGY BY
DIFFERENT ME THODS AND ON THE ENERGY
CONSERVATION LAW IN ELECTRODYNAMICS

To determine the energy radiated by a charge, or the
radiation intensity observed at a specified surface, the
procedure is to calculate the Poynting vector 8§ = cE
x H/4w far from the charge, and to find the energy lost
by the charge one determines the flux of this vector

V. L. GINZBURG

through a closed surface. This is precisely how the
standard formulas (4) and (5) are derived. However, the
problem is not limited to the use of these formulas,
particularly because they are valid only in vacuum. If
the charge moves in a medium, then the results obtained
in general are quite different. It suffices to state that
even a uniformly moving charge can radiate in a med-
ium—this is precisely what is observed in Cerenkov
radiation or in transition radiation. The calculation of
the Poynting vector and its flux through a surface re-
mains, of course, the method of determining the radiated
energy also when the charge moves in a medium (more
accurately, we have in mind a medium without spatial
dispersion, for in the presence of such a dispersion the
energy flux density is not given by the Poynting vector).
However, the energy lost by the charge or the radiated
energy can be calculated also by two other methods; by
determining the time derivative of the field energy

dv

d ED--H?2
e
or by determining the work eV-E’ = v-f performed by
the charge against the field produced by itself (in other
words, one calculates the work of the radiation friction
force f, which in the presence of a medium is of course
no longer determined by expressions (7)—(9)). For a
frequently encountered case (which will be identified
later), all three indicated methods lead to the same re-
sult; as one of the many examples, we point to the cal-
culation of the Cerenkov-radiation energy*. Actually,
however, the total energy flux is in general not equal to
the change of the field energy by the work of the radia-
tion force. Disregard of this circumstance has led, for
example, to an inaccuracy in the theory of synchrotron
radiation for helical (non-circular) particle motion®’
(see also'®’ , where references is made to certain arti-
cles published on the same topic in 1968).

The paradox arising in connection with the radiation
from a uniformly accelerated charge is also connected
with the incorrect identification of the energy flux with
the work of the radiation force.

The electromagnetic field equations yield, by the
well known method, the following relation (the Poynting
theorem)

4 (E&E) = —iE—divS, S=-L{EH]. (10)
Here and below we confine ourselves to the case of
vacuum and consider the motion of one point charge,
when j = evl(r — ry(t)). After integrating over a certain
volume V bounded by the surface 0, we get

aWe-m

s = ——evE—(S) Spdo, Wemm =

E21HY . 11
& jeity. (D

On the other hand, from the equation of motion (9) we get
_me (12)
V1=

In (11), we have by definition the total field E = Eqoyt

+E’, where E’ is the field of the charge itself; at the
point where this charge is located we have eE’ =f{, and

aw
—dt—k =eVEexy + v, Wi=

*In their original paper, I. E. Tamm and 1. M. Frank [!*] calculated
the energy flux, the change of the field energy per unit time was deter-
mined in {'®] and the radiation-friction force corresponding to Ceren-
kov radiation was calculated, for example, in [17].
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consequently in (11) ev-E = ev: Egy + v-f. Therefore,
as expected, (11) and (12) lead to the conservation law

§S do. (13)

The field energy We-pm includes the energy of the ex-
ternal field Egxt and Heyt, for example the energy of the
field in the capacitor through which the charge under
consideration moves and is accelerated. Therefore,
only to simplify the problem, we assume that the charge
is accelerated by some external field of non-electro-
magnetic nature (the influence of this field was not taken
into account in (8) and (9); the same pertains to (12) and
(13)).

Then the conservation law (11) assumes the form

dlv e.,
SoEm vi'7§ S, do,

d(IVem +1Pk)

(14)

where We_p, is the energy of the field of the charge (all
the remaining fields, as already mentioned, are as-
sumed to be missing); we emphasize that in (10)—(14)
the arguments which have not been written out involve
only one time—the observation time t.

Equation (14), which has a perfectly clear meaning,
shows that the work of the radiation force v -f, the
change of the field energy dWe_p,/dt, and the total en-

ergy flux of the field § Spdo are all connected by a single
relation, and in the general case are far from equal to
each other in absolute magnitude. On the other hand, if
we consider stationary motion, then dWe.p,/dt = 0 and
-v-f= f Spdo. We can further calculate the energy
We_m in all of space, by moving the surface o to infinity,
by virtue of which § Spdo = 0. Then dWg_p/dt = —v 1.
The foregoing explains why, say, the energy lost by the
particle v - f in the stationary regime can be determined
by calculating ¢ Spdo or aw,_./dt.
Stationary radiation in the exact meaning of this

word is not easy to realize (an example of a stationary
process is Cerenkov radiation), and usually one deals
with a periodic process, wherein Wg_p,(t1)
= We_m(t1 + T). This is precisely the situation in the
case, for example, of an immobile oscillator or
synchrotron radiation of a charge moving on a circular
orbit (it is important here that the radiating particle
returns to the same point after a period T). For a
periodic process

L4 T 1+7T

S VO E () di= — S

15 11

§ Sp (2) do dt, (15)
Obviously, the fact that the observation time t does not
coincide with the radiation time t’ is immaterial here,
since the choice of the instant t; does not play any role
in a periodic process. On the other hand, if there is
motion wherein the field energy We_p(t < t1)

= We-m(t > t2) = W&, then relation (15) is again
valid, except that t; + T is replaced by any time t > t,.
This is precisely the situation, or almost so, in the
case of radiation from a charge ‘‘reflected’’ from an
electric field in a capacitor (it is assumed that when
t<ti=t;andt >t =t, the charge velocity is con-
stant). It must only be borne in mind that the energy
We_m(t) depends on the volume V bounded by the sur-
face o (thus, the time t, can be assumed to be the time

23
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t; when the charge enters the capacitor, for the radia-
tion field must have time to leave the volume V).

The radiation-friction force that enters in the non-
relativistic equation (7) satisfies in obvious fashion the
foregoing conclusions. Indeed,

W= % (vw.r) «\;2
t1+T
and under conditions when [v X v]t = 0 and relation

(15) is valid we have
~(viar— 22 (War=25 {vear—§ par= (& sadoar. (16)

We have taken into account here also the nonrelativistic
formula (5), in which
€
== § S, do,

and either v — 0 or the integral is calculated in the
wave zone.

In the relativistic case, we can write for the time
component of (8), after elementary substitutions,

d me? 2e? ¢ dud
F(W) evEey -+ ¥ (77 -+ cwlw; ) . (7
With allowance for (4), Eq. (17) takes the form
;r (%—/7—)) = evEeyt - Vf:erEext’%‘%%,i“Pv
a8 e (18)
W= ST (b-/c s P=gp = — 5w
In (17) and (18), the time is denoted by t’; this time

characterizes the motion of the charge and represents
the radiation time when radiation is considered. Yet in
(14) and in the initial equations (2) and (11) the same
time t is used for the charges and for the field. In this
connection, even in the calculation of the fields in the
wave zone, the radiated energy P = d§/dt’ differs from

--—«(j’)S (t) do.

A charge that enters a capacitor parallel to the de-
celerating field radiates electromagnetic waves during
the entire time t’ that it remains in the field (as indica-
ted, t} = t’ = t;), with

dg e, AL
a3 T

P=

This means that at a sufficiently large distance R(t')
from the charge there will be observed at the instant
t = [t’ + R(t)}/c a radiation field with corresponding
value of the energy flux. The radiation force does not
act on the charge whent’ < tjandt’ > t;,. The charge
then moves in accordance with the law

d _ myv

=eBaxt.
EoIRY ey “Hext

=Foxt

At the instants t; and t;, the charge is acted upon by a
friction force, and the work of this force during the
entire time of accelerated motion is

L L

§vtar—=—§par—

4 i

2e2
vy g (G4

i.e., it is exactly equal to the radiated energy.
The vanishing of the radiation force during the
course of accelerated motion of the charge is in no way
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paradoxical, in spite of the presence of radiation. In-
deed, a nonzero total energy flux through a surface
surrounding a charge at a zero radiation force is exactly
equal to the decrease of the field energy in the volume
enclosed by this surface. Inthe general case, on the
other hand, all three quantities, dWe_y,/dt, v- £, and

§ Spdo differ from zero (see relation (14)). There are
all the more no grounds for expecting the work of the
radiation force v-f to equal the energy flux

%:@S,.do

or the flux d&/dt’ = P, since the force is applied to the
charge, and the flux is calculated through a sphere of
radius R(t’). In full accord with the spirit of field
theory, the energy flux through a surface is determined
directly by the field near this surface, and not by the
field on the trajectory of a charge situated inside the
surface*.

All these explanations may seem to be too detailed,
as indeed they do seem to the author himself. But this
was done because in a detailed article'" , devoted ex-
clusively to the radiation of a uniformly accelerated
charge, no use is made of the conservation law (14) at
all. Instead, as in many preceding papers, the concept
of the acceleration energy is introduced

__ 2620 262 _V\-I
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As is clear from (18)

-2
vf-W—P

and Eqs. (12), (17), and (18) are written in the form
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(19)
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In'?, the quantity Q is first interpreted as part of the
‘“‘internal energy of the charge yi)article,” and then, in
the same article!*’, and also in''®?, Q is assumed to be
a part of the energy of the field directly surrounding the
particle, but making no coniribution to its electromag-
netic mass. From this point of view, at zero radiation
force, it can be assumed that the radiated energy P is
drawn from the ‘‘acceleration energy’’ Q or the
““internal energy’’ (W) — Q). On the other hand, if Q is
assumed to be part of the field energy, then the radiation
energy P is drawn from the field energy. Formally, the
latter is perfectly true, since P = d&/dt’ is the field-
energy flux through a certain surface enclosing the
charge, referred to a unit time t'.

It seems to us, however, that the introduction of
some ‘‘acceleration energy’’ or ‘‘internal energy’’ of
the charge not only fails to add anything to the under-

*If one speaks not of the radiation force f itself, but of its work per
unit time v - f, then the difference between the aforementioned quanti-
ties can be said to appear in a rather trivial manner. Indeed, regardless
of the value of f, its work per unit time v - f is equal to zero when v =0,
i.e., for a charge at rest at the given instant t'. On the other hand, the
values of the flux and, say, the quantity P, are determined primarily by
the acceleration of the charge at the same instant t', and do not vanish
whenv=0.
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standing of the energy balance, but also confuses the
question. The charge has only an energy Wy
= mc?/¥1 — (v¥/c?); the subdivision of the radiation
force f or of the work of this force v-f into two parts or
into any other number of parts, of course, is not unique
and therefore can no longer have a special meaning.
More accurately speaking, if such a meaning is assigned,
then this is possible only in connection with identification
of part of work v-f with the expression obtained for P
from independent considerations.

Thus, in discussing the question of the energy balance
of the accelerated motion and of the radiation of a
charge, we see neither reason nor necessity for going
beyond the scope of the conservation laws (12) and (14).
Of course, writing down the work v-f in the form of a
sum of two terms (see (18)) is also convenient and
natural, but there is no need to impart any new meaning
to these terms.

IV. THE EQUIVALENCE PRINCIPLE AS APPLIED TO
UNIFORMLY ACCELERATED MOTION

By virtue of the equality of the inertial and heavy
masses, all the neutral bodies fall in a gravitational
field with equal acceleration, and consequently, within
the framework of classical mechanics, it is impossible
to distinguish between motion in a uniform gravitational
field with a gravitational acceleration g and motion rela-
tive to a reference frame K,, which has an acceleration
—g relative to the inertial system K without a gravita-
tional field*. A generalization of this statement to all
physical processes is indeed the content of the equiva-
lence principle (see, for example,m). If an inertial
reference frame with a gravitational field (acceleration
g) is designated as the system Kg, then, in accordance
with the equivalence principle, the systems Kg and K,
are on par, i.e., at identical initial and boundary condi-
tions, all the physical processes should occur in them in
perfectly identical manner. As already stated, the valid-
ity of the equivalence principle in mechanics is guaran-
teed by the equality of the inertial and heavy masses.

We shall now assume that the moving particle is
charged, confining ourselves for simplicity to the non-
relativistic case, when Eq. (7) is valid and takes in the
system Kg the form

22 - (20)

Vs o V.

I.f, as assumed, g = const, then Eq. (20) has a solution
v =g = const, and we see that the equivalence principle
is actually valid for charged particles. This principle
would already be incorrect, however, if attempts were
made to extend it to homogeneous but time-varying

*QOur reasoning, obviously, is pursued on the classical (pre-Einstein)
level and the gravitational field is understood in the Newtonian sense,
by virtue of which the gravitational field is assumed to be independent
of the choice of the reference frame. For example, one can choose as
the system Kg (see below) a system connected to the earth (in this case,
however, neither rotation of the earth nor the inhomogeneity of its
gravitational field should have any effect; both these conditions can be
satisfied in practice by considering a sufficiently small region of space
near the earth during a sufficiently short time interval).
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gravitational fields*. In fact, for uncharged particles
the field g(t) can be ‘‘replaced’’ by choosing an acceler-
ated frame K, with acceleration —g(t) relative to the
system K. But the motion of the charged particle in the
system Kg is described by Eq. (20), and, in particular,
depends on the particle mass m. On the other hand, in
the presence of a gravitational field the charged parti-
cle, like any other particle, moves with constant veloc-
ity relative to the inertial system K, and with an ac-
celeration g(t) that does not depend on the mass m rela-
tive to the system K,.

For the purpose of constructing a general relativity
theory, and conversely as a consequence of the general
relativity theory, it is necessary and sufficient to
satisfy the equivalence principle ‘‘in the small,” i.e.,
locally, in a sufficiently small space-time region, where
the gravitational field can be regarded as homogeneous
and constant. We conclude therefore that Eq. (20) is in
full accord with the equivalence principle. It is curious,
incidentally, that even on the basis of this principle it
can be stated that the radiation force should vanish in
the case of uniformly accelerated motion.

There remains, however, the question of radiation
from a uniformly accelerated charge. It might seem
that by detecting the presence of radiation one could
distinguish between the systems K, and K, since a
charge placed in the first of these systems is accelera-
ted and radiates, while a charge in the second system
is not accelerated relative to the inertial reference
frame K, and consequently it might seem that it should
not radiate. This paradox was discussed in'®%:2°!
where two arguments are presented. First, if the radia
tion is recorded in the usual manner in the wave zone,
then the measurement does not have a local character
and this can be referred to as meaning that in the wave
zone we go beyond the region of homogeneity of the
gravitational field. Such a conclusion'*?"’ is based on
rather deep reasoning (see below), although at first
glance it does not seem to be sufficiently convincing
and is refuted in'®’. In this connection, we must note
immediately that, as already indicated, the presence of

*In connection with the foregoing, we consider the following re-
mark made in [!'] (p. 291) to be incorrect: “A somewhat more general
case is a uniformly accelerated reference frame—it obviously is equiva-
lent to a homogeneous but variable gravitational field.” Incidentally,
this statement is a natural consequence of the fact that in [!!], asin
several other books, the equivalence principle is formulated essentially
as purely mechanical (i.e., as tantamount to the equality of the inertial
and heavy masses, or, which is the same, to the statement that accelera-
tion in a gravitational field is independent of the mass of the body). It
seems to us, however, that the equivalence principle must be formulated
(as was done by Einstein) in a more general manner—as applied to all
physical phenomena. To show how large this difference can be, we recall
the situation with the relativity principle. In classical mechanics this
principle (the equivalence of all inertial reference frames) is valid if the
Galilean transformations are used. But the same relativity principle,
when extended to optics, leads already to the Lorentz transformations.
Thus, from the logical point of view, the transition from the equality of
heavy and inertial masses to the equivalence principle is similar to a
generalization of the relativity principle of classical mechanics to include
all of physics. Here, to be sure, there is a certain difference, which is
already emphasized in [*®], but it still does not change the gist of the
matter and there is no need to dwell on it further.

v
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radiation in the sense that
P == d&/dt' == 0,

can be established at any distance from the radiating
charge, and therefore it is insufficient to refer to the
fact that the wave zone is remote.

The second argument is as follows. The total radia-
ted energy

2%

D= — Wi

(see (4)) is Lorentz-covariant, i.e., it is the same in any
inertial reference system K. However, on going over

to non-inertial systems, particularly to a uniformly ac-
celerated system K,, the quantity P is no longer con-
served. In the discussed case, P vanishes in the inertial
system K, but should not vanish and does not vanish in
the system K,.*

By the same token, the paradox is immediately re-
solved qualitatively. To satisfy the equivalence princi-
ple it is necessary, further, that the energy radiated in
the system K, be equal to P = (2e°/3c%)g?, for this is
precisely its value in the system Kg (this system is
inertial, and the charge in it has an acceleration g;
consequently, the energy P can be calculated here by
means of formula (5)). Sometimes one considers also a
charged particle ‘‘lying on a table’’ in the presence of a
gravitational force®® | i.e., a particle which is at rest
in the system Kg because some force balances the force
of gravity. Obviously, such a particle is always station-
ary in the system Kg and does not radiate.

We can finally consider the situation in one more
reference frame, namely in the system Kga’ which falls
freely in the Kg system (see also the table). In the sys-
tem Kga’ obviously, the charge is immobile at all times

and does not radiate, although in the inertial system
with a gravitational field an energy P = (2e?/3¢%)/g? is
radiated in a unit time. In this respect, and indeed in
all others, the system K o 18 equivalent to the inertial
system K and is called local-inertial.

The proof of the fact that there is no radiation in the
system Kga is given in**’. This proof, to be sure, is not
particularly lucid, but we do not consider it necessary
to present the corresponding calculation in greater de-
tail. The point is, first, that the absence of radiation in
the Kga system, which moves together with the charge
(it moves not only with the same instantaneous velocity,

*Let us assume that in the given system K a non-uniformly moving
charge is at rest at the instant t = 0 and its magnetic field at the same
instant of time is equal to zero everywhere (this is precisely the situation
in the case of hyperbolic motion of a charge and when the solution of
['1is used for its field; see [>*1]). Then, obviously, at the instant t = 0
the Poynting vector S = cE X H/4r is also equal to zero everywhere (at
all points) and there is no radiation. But at some other instant t it is
always possible to find an inertial system in which the charge is at rest;
from this it might seem that there is no radiation at any instant of time.
As correctly noted in [?'], such reasoning is perfectly analogous to the
well known reasoning of Zenon: since a flying arrow is situated at any
instant in only one place, it is immobile. In actual fact there is no such
inertial (non-accelerated) reference frame in which the charge under
consideration is always at rest and the energy flux is always equal to
zero.
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Reference frames

Acceleration i
System of ch:rge R::;:gd Character of the system.
Kgy g 22, Inertial system in which there is a homogene-
33 8 ous and constant gravitational field with accelera-
tion g.
Kq g 2¢2 2 N N ;
e Nonmemal reference system moving relative to
the inertial system K with constant acceleration
— 8. There is no gravitational field in this system.
K ga 0 0 The system Kg, falls freely in the system Kg,
i.e., it has an acceleration g refative to the system
Kg. The system Kga is called local-inertial (from
the point of view of general relativity theory, the
system Kg, is equivalent to the system K i.e., to
the inertial reference system without a gravitational
field).
K 0 0 Inertial system without a gravitational field.
The system K, moves relative to this system K
with acceleration — g.
K 0 0 . .

(the charge, ) We are dealing Wwith a charge “lying on a table”
is kept up by m.the system Kg, i.e., a charge that is immobile in
an external this .syst.em as the result of compensation of the
force) gravitation force by some other force,

In all the systems, the charge is immobile at the considered instant of time (it has
a velocity of v = 0). We emphasize that the systems Kg and Ky on the one hand, and
the systems K, and K, on the other, correspond to different physical situations.
Thus, in the systems Kg and Kga there is a gravitational field (in the classical sense),
for example, the system Kg may be connected with the earth while the system Kga
is connected with a rocket that falls freely on the earth (the inhomogeneity of the
gravitational field and the rotation of the earth are neglected here). In the systems
Ka and K there is no gravitational field; for example, they may be located far from

all stars, somewhere in interstellar or intergalactic space.

but also with the same acceleration), is very natural
even from energy considerations (the charge is at rest
at all times, and it has ‘‘nothing to radiate’’). Second,
the dependence of the radiated energy P on the accelera-
tion of the reference frame is in full agreement with the
fact that the quantity P and the radiation field itself (see
(1)) are determined by the acceleration of the charge
relative to the reference frame under consideration.
Third, finally, the conclusion that there is no radiation
in the system Kga and that it exists in the system K,
follows directly from the equivalence principle. No
calculation based on field theory can contradict this
principle, for within the framework of the general theory
of relativity one can solve, in principle, any electro-
dynamic problem; at the same time, the equivalence
principle is contained automatically in the general rela-
tivity theory, where it reduces to the statement that in
an infinitesimally small space-time region it is possible
to replace the Riemannian space-time by a tangent
pseudo-Euclidean space-time.

Following Einstein, the present author believes, like
many others, that the equivalence principle is the true
spirit of the general theory of relativity and must
inevitably remain at present the foundation for the ex-
position of this theory to students, and in general for
gaining familiarity with its principles (for details
see'??’). But when an entirely different question is dis-
cussed (in this case, the question of the radiation of a
uniformly accelerated electron), it is perfectly legiti-
mate not to prove anew the validity of the equivalence
principle, but to make use of this principle as a conse-

quence of the general relativity theory. Such an approach
makes it possible to determine directly the energy
radiated per unit time in the system K, or Kga- Inci-
dentally, as already mentioned, this energy can be cal-
culated also independently, and then we reach the con-
clusion that the equivalence principle is valid also for
radiation of a uniformly accelerated charge.

The foregoing, however, does not settle the question
and can give rise to new misunderstandings. After all,
we have reached the conclusion that by choosing the
reference frame it is possible to change the radiated
energy P = dé&/dt’, and consequently to produce radia-
tion in some manner. But such a conclusion would
contradict the classical concept of electromagnetic
waves or the quantum picture of radiation as an aggre-
gate of photons. If, say, a photon exists in some refer-
ence frame; then it should exist also in any other refer-
ence frame. It is possible that this statement is even
more strongly pronounced for particles with nonzero
rest mass such as electrons, mesons, or protons. All
these particles, from the quantum point of view, are
‘“‘quanta’’ of corresponding wave fields—the electron-
positron, meson, or nucleon field. It is clear that neither
a uniform gravitational field* nor a changeover to an
accelerated reference frame can generate new ‘‘free’’

*Furthermore, within the framework of the Newtonian theory of
gravitation, which is the only one referred to in the discussion of the
equivalence principle, the gravitational field should be weak (this means
that the encountered gravitational-potential differences @, — ¢, |
should be small compared with the square of the speed of light c?).
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particles, particularly photons.

Such a conclusion is indeed valid, but it does not
contradict the foregoing conclusions. The point is that
the criterion employed for the presence of radiation,
namely P = dg/dt’ = 0 (see (4)), is by far not tantamount
to the presence of free electromagnetic radiation or
photons propagating with the velocity c. It is sufficient
to state that for a charge at rest at a given instant t’
the quantity P, can be determined by measurements
performed as close as desired to this charge. In the
general case P is only a suitably defined energy flux
of the transverse field produced by the charge. On the
other hand, a transverse electromagnetic field, gener-
ally speaking, does not reduce at all to a field of elec-
tromagnetic waves (a radiation field). The field of the
charge is a radiation field only asymptotically, in the
wave zone, and formally only when R(t') — .

Strange as it may seem, it has been almost standard
procedure to forget this generally known circumstance
in the exposition of the quantum theory of radiation*.
We present therefore a trivial example to explain the
foregoing, namely we consider the field of a uniformly
moving charge. Such a field is described by the first
term of (1) and obviously contains a transverse part (it
suffices to state that the field H is always transverse,
i.e., it satisfies the equation div H = 0). This trans-
verse field moves with the velocity v of the charge and
cannot be reduced in any way to a radiation field propa-
gating with velocity c. The transverse part of the field

*The radiation field, defined as an aggregate of electromagnetic
waves, satisfies the free-field equations

1 dE 1 dH . .
rotH:-;W, rotE:—?—dt—, divH=0, div E=0.

On the other hand, for an arbitrary transverse field, the first and last of
these equations are
4n ., 1 dE

rot H=71'77IT’

(the remaining equations are the same). Only a free electromagnetic
field, or in practice only the field of charges in the wave zone, can be
regarded quantum-theoretically as an aggregate of photons, namely par-
ticles with energy hw and momentum bk, with w = ck. On the other
hand, the relation w= ck no longer holds for an arbitrary transverse field
expanded in terms of plane waves proportional to exp [— i(wt — k - 1)];
quantization of the field, of course, does not change anything, and for
the corresponding “field quanta™ we also have w # ck. Yet in the text
books on radiation theory known to us (including the latest of them[23]),
an aggregate of photons is defined either explicitly or implicitly as a
transverse field in the presence of sources. Such an approach and such
terminology usually do not lead to any difficulties only because of the
character of the problems and of the methods encountered in quantum
theory of radiation (see, however, [ 2*]). But even with the field of a
uniformly moving electron as an example, it becomes quite clear [2]
that it is necessary to distinguish between the radiation field (photon
field) and the transverse field dragged by the charge (the latter, if con-
venient, can be regarded as an aggregate of virtual photons with w # ck,
and these photons are independent of one another). The case discussed
in the present article, that of a field of a uniformly accelerated charge,
can serve as one more illustration of the foregoing. At the same time, it
must be emphasized, that the actual formulation of quantum electro-
dynamics is free of difficulties in this respect, and is not at all connected
with identification of the quantized transverse field with the field of
real photons. We find it only striking that this essentially trivial circum-
stance (see, for example, [*°]) is usually not explained in the exposition
of quantum electrodynamics.

div E =/np
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of a uniformly accelerated charge, at any finite distance
from the charge, is likewise not the field of free radia-
tion. In the case of unbounded hyperbolic motion, a
manifestation of this fact is the already noted absence
of a wave zone for any fixed observation time t.

Let us consider specifically a nonrelativistic uni-
formly accelerated motion in a gravitational field (with
acceleration v = g). The wave zone is then at distances
R > c?/g (see Sec. I). If the gravitational field were to
remain homogeneous also in the wave zone, then the
potential difference in this field would be |¢1— ¢1l = gR
> ¢?. Yet for a weak field, to which we should confine
ourselves, we have |gz — ¢1] < c? (see also™®’, page
305). Therefore, if we take the statement that radiation
is present to mean the possibility of measuring the field
in the wave zone, where this field is equivalent to some
degree to the free radiation field, then a charge moving
in a strictly homogeneous field cannot be regarded as
radiating[”] . The same pertains to the uniformly ac-
celerated reference frame K,, since such a frame can
be realized only within the limits in which the condition
gR < c? is satisfied (for details on the limitations im-
posed on realizable reference systems seel!! , Sec. 84).
By the same token, neither a homogeneous gravitational
field nor a uniformly accelerated reference frame can
actually ‘“‘generate’’ free particles, especially photons.

On the other hand, when we spoke above of the pres-
ence of radiation in the systems Kg and K,, we had in

mind, as already indicated, the appearance of a field
described by the second (wave) term in (1), and by the
ensuing existence of a flux P = (2e2/3c%)g® # 0. The
possibility of creating or annihilating the field of a
uniformly accelerated charge (at limited distances from
the charge) by choosing a corresponding accelerated
reference frame is analogous to the possibility of creat-
ing or annihilating the transverse field of a uniformly
moving charge by changing over to some inertial
(Lorentzian) reference frame; in this case, in the
reference frame co-moving with the charge, the trans-
verse field is equal to zero, and in other systems it
differs from zero.

It does not follow at all from the foregoing, of course,
that a charge moving in a gravitation field does not
produce a ‘‘true’’ radiation field, which can be observed
in the wave zone. The point is only that to this end, as
in any other real physical formulation of a problem, it
is necessary to investigate the radiation for time-limi-
ted uniformly accelerated motion. Under such conditions,
inasmuch as the acceleration of the charge is not always
constant, the gravitational field should not be constant
in time (or should be inhomogeneous in space). On the
other hand, if the particle moves in a non-constant or
inhomogeneous gravitational field, then, as we have
seen, this field is no longer equivalent to an accelerated
reference frame*.

* An exhaustive analysis of the question of the motion in radiation of
of a charged particle in a gravitation field it is possible only on the basis
of general relativity theory. As applied to nonrelativistic motion of a
charge in a weak static gravitational field, such an investigation was car-
ried out in [?7} and is quite instructive. We confine ourselves here only
to the remarks that the result of [27] agrees fully with the statement
that there is no radiation friction force when a charge moves in a homo-
geneous gravitational field.
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Thus, in the question of the field (as well as radiation)
of a charge, as in the question of its motion, the require-
ments connected with the equivalence principle are fully
satisfied.

It is possible that the last remarks should be dis-
cussed in greater detail for methodological purposes,
but this is hardly the place for it, for it would then be
necessary to touch upon entirely different problems, too.

*ok ok

Summarizing all the foregoing, we are able to con-
clude that on the sixtieth anniversary of Born’s work'*?,
where radiation and the radiation force of a uniformly
accelerated moving charge was first considered, this
problem is already clear enough not to be regarded as
a ‘““‘perpetual problem’’ of classical physics.

The author is grateful to D. A. Kirzhnits, V. I. Ritus,
and V. A. Ugarov for remarks made after reading the
manuscript.
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