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J.HE second part of the present survey l l i dealt with
the thermodynamic and kinetic properties of conduction
electrons in metals in stationary fields at quite high
temperatures, and the third with their kinetic proper-
ties. C2] However, a number of fundamentally important
effects do not arise in this temperature range.

At extremely low temperatures, a metal which is
neither a ferro- or antiferromagnet, because of the dia-
magnetic quantization of the electron orbits, is a strong
dia- or paramagnet, with a magnetic susceptibility
whose absolute value can be arbitrarily large (it can
reach 103 in magnetic fields of the order of 10 kOe). In
the case of paramagnetism this leads to the appearance
of a domain or periodic structure and the associated
phenomenon of phase transitions.

In semimetals and semiconductors in very strong
magnetic fields H, the "magnetic energy" p,H (where
fi is the Bohr magneton for a conduction electron) is the
largest of the contributions to the electron energy ("ul-
traquantum-mechanical case"). As a result it becomes
possible to have semimetal—intrinsic semiconductor
and intrinsic semiconductor—metal transitions.

The kinetic behavior at low temperature exhibits
quantum oscillations of the magnetoresistance (Shubni-
kov-deHaas effect), which were not treated in . In
the classical domain in strong magnetic fields one can
have a characteristic screening of a constant current,
which is confined to a thin layer near the surface of the
metal (static skin effect). At low temperatures this
screening markedly affects all the kinetic characteris-
tics of the metal and, in particular, leads to a new type
of skin effect, which differs from the normal and anom-
alous skin effects in having a completely different kind
of damping of the electric and magnetic fields.

The surface of a conductor plays a decisive role in
the very special kinds of oscillations of surface imped-
ance that occur in very weak magnetic fields,M5] caused
by magnetic surface levels.

This paper is devoted to the phenomena enumerated
above, which were discovered during the past few years.
The presentation is almost always such that a knowledge
of the earlier parts of the survey is not required. In or-
der not to make reading difficult, we have used a mini-
mal number of references, so that the references do not
give a complete bibliography.

I. THERMODYNAMICS

1. Physical Nature of Quantum Oscillations and
Strong Magnetism

It is well known (cf, for example, m ) that an electron
in a constant magnetic field H II z axis moves in a helix
with its axis along the magnetic field, so that its motion
in the plane perpendicular to the magnetic field is peri-
odic with a frequency equal to the cyclotron frequency
Cl. To a periodic motion in classical mechanics there
corresponds discrete levels in quantum mechanics where,
according to the correspondence principle,* in the quasi-
classical case the level separation is related to the clas-
sical frequency by the equation:

Ae =»««,/*, (1.1)

where B is the magnetic induction.
The classical frequency fi is (cf., for example,i3i)

Q = eB
where e is the electron charge, c is the velocity of
light, and m* is the effective mass of the electron:

Q.2}

1 dS

(S is the area of the section of the surface e(p) = € by
the plane p z = const, p is the quasimomentum and e is
the energy of the electron). From (1.1)—(1.3),

so that
(1.4)

where n is an integer.t It is important to emphasize

This paper is the fourth part of a survey; the preceding three parts
were published earlier, f1"3]

*In the general case the correspondence principle follows from the
following simple arguments. The resonance frequency is equal to Q, and
to Ae/h in the classical and quantum cases respectively. But as h -* 0
this must be one and the same frequency, so that in lowest approxima-
tion Ae/h as fl and Ae * M2. For an arbitrary dispersion law, such a re-
lation, which implies the continuity of Ae/h as a function of h, is non-
trivial (since h appears as a parameter in the highest derivative 3/3r) and
can be regarded as a physical limitation on the possible form of the dis-
persion law. Even in the simplest case of a free electron in a periodic
field the relations (1.1) are by no means simple (cf. [50]).

t Knowing only the classical Hamiltonian, one can obtain the energy
levels not only in the lowest approximation but also in the next approx-
imation, and also describe the wave functions. The point is that a hermit-
ian operator is determined by the corresponding classical quantity to
order h2 inclusive, since different ways of symmetrizing give differences
of order h2 (cf. [20]). This is related to the fact that [a,b] = ih {a,b}
where {...}is the classical Poisson bracket, and h occurs always accom-
panied by i.
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that (1.4) was obtained from (1.1) and thus, according
to the derivation, correctly determines the lowest ap-
proximation not only for S but also for AS. (Otherwise,
in the quasiclassical case, where by definition n ^> 1,
Eq. (1.4) as the lowest approximation would simply be
a truism.)

According to (1.4) the energy levels are infinitely
degenerate in the generalized quasimomentum P x . This
is natural physically: P x determines the position of the
center of the orbit in the crystal lattice (since p x = P x
+ (eB/c)y and y(t) = (px(t) - Px)/(eB/c), t is the time
of revolution in the orbit), which is unimportant, since
the interatomic spacing a in the quasiclassical case is
small compared to the Larmor radius r, and we are
interested only in the lowest approximation in a/r ; P x
is an integral of the motion in this same approximation,
since the vector potential was taken in the form
(-Hy, 0, 0).

Let us explain why the magnetic induction B, rather
than the magnetic field intensity, appears in the basic
formula (1.4). The problem of the behavior of the
charged quasipartides— the conduction electrons—in
a magnetic field is a typical problem of field theory for
the behavior of a system of free charges in vacuum (in
the present case, the vacuum for the quasiparticles).
Thus, strictly speaking, we should consider only the
microscopic magnetic field produced at a given point
by all the charges, moving in orbits whose radii are
of the order of the Larmor radius r . If the distance a
between the charges is small compared to r, as is usual
in metals (where a ~ 10~8, while r for B ~ 104 Oe is
~10'3 cm), the microscopic magnetic field at a point is
given by 4jr(r/a)2 (I/a.) ^> 1 for the electrons, and thus
is "compressed" (I is the mean free path of the elec-
tron).

By definition the magnetic induction B is such an
averaged selfconsistent field; it alone is felt by each
of the electrons, and it alone will determine the mag-
netic moment M. (This was first pointed out by
D. ShoenbergC7: and later proved by A. Pippard.ca])
It is understood that the connection between M and B
is nonlocal: M at a given point is expressed in terms
of the values of B at all points at a distance 2 r m a x
from the given point. (The fact that it is B that appears
in all the formulas is natural, since p = P - eA/c, while
curl A = B, since div B = 0.)

Let us first consider the main features of the energy
spectrum in a magnetic field for uniform B. The depen-
dence en(pz) given by (1.4) is shown in Fig. 1; the differ-
ent curves correspond to different n. From Fig. 1 we
see how the quantization in the magnetic field changes
the electron spectrum. Because of the presence of the
continuous parameter p z the spectrum remains contin-
uous, but in general the limit of the spectrum shifts.
(Thus, if we formally neglect the spin, for a free elec-
tron e = (n + y2)fin + (p|/2m), and e m m is equal to Kn/2
and not to zero as for B = 0.) But, as the energy in-
creases, there are abrupt changes in the degree of de-
generacy, since new "branches" of the spectrum ap-
pear. (For example, in Fig. 1 there are four branches
when e = e^1', while there are five when e = €o2>.) This
leads to singularities in the density of states v(e). Near
extremal values of the energy q, u(e) ss |e - ei I"1''2.
(To obtain v(e) we must write the density of states in

Ze'f

FIG. 1

the interval dpz . Since the number of states is con-
served when the magnetic field is switched on, even in
the case of a Fermi liquid (see below), to each spin pro-
jection there corresponds a number of states dp/h3

= dpxdpydpz/h3 = dSdpz/h3 — ASdpz/h
3. Using (1.4) this

gives the Landau formula dN = (eB/ch2)dpz.)
Let us consider any effect that is determined at ab-

solute zero (as is usually the case) only by electrons
with energies equal to the limiting Fermi energy e0
(cf. Fig. 1). Since the total number of electrons in met-
als is conserved, and the spectrum changes in the mag-
netic field, e0 must itself depend on magnetic field. But
the change in e0 is of the order Ae, while the changes of
interest to us are. as we shall show in this section, pro-
portional to (Ae)1'2, so that because of the smallness of
Ae/e0 <g; 1, we can disregard the change in e0.

With increasing magnetic field, since Ae ~ B, at
some value of B one of the branches (or part of one of
the branches, if there are points of type A or B in Fig. 1,
where e is an extremal) "quits the game," so that e = e0
will correspond to a singularity of v(e). It is clear that
this also leads to a singularity in any physical quantity.
Such a singularity is repeated every time another
branch, or part of one, "disappears" (and also when the
limiting Fermi energy passes through a singularity in
the spectrum, for example, a point like C), i.e., when
the number of branches having the energy e0 changes
by one. We thus find from (1.4) the period of the oscil-
lations (in the reciprocal of the magnetic field):

From our earlier remarks it is clear that S should be
taken at the point e = e0 and p z = p0, where p0 corre-
sponds to either an extremum of e(pz) or to points of
the type of C. It is convenient to transform the equation
en(pz) = 0 in the following way (using (1.4)):

\ 3(8, n) _ 9(e, 5) _ 8(6, S) I
> n ~" aJp^Tn) '" d {pz, S) ~ a (e,>2)~ /

d (pz, S)
«(e, p2)

(1.5)
From this we see that an extremum of en(pz) is reached
at the point where S'(pz) = 0 (S = Sext), i-e.,

A(M=££atte!L. (1.5a)

Formally en(pz) = 0 can also occur, according to (1.5),
when

—- — lam* = 4- oo,

which corresponds to singular sections that are self-
intersecting, or to the "boundary" sections between
open and closed sections. Such sections also "appear"
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in the oscillations and contribute "their" area

Let us estimate the amplitude of these oscillations
(for simplicity in the case of extremal sections). Since
one branch of the spectrum "drops out," the change in
the physical quantity is in general caused by the elec-
trons in an interval Apz corresponding to An = 1 (for
fixed B). Near the extremal section, we find from (1.4),

ehB

i.e.,
ehB

where p0 is the characteristic size of the Fermi surface
in the direction of p z .

Thus the relative magnitude of the effect is propor-
tional to d = Apz/p0, i.e.,

I ehB \ 1/2
\~7s~) •

( 1 . 7 )

I n t h e c a s e o f a t h e r m o d y n a m i c q u a n t i t y , w e s h o u l d

a l s o c o n s i d e r t h a t t h e m a g n e t i c m o m e n t h a s a p u r e l y

r e l a t i v i s t i c o r i g i n ( s i n c e t h e c h a n g e o f t h e q u a s i m o m e n -

t u m i n t h e m a g n e t i c f i e l d i s d e t e r m i n e d s o l e l y b y t h e

r e l a t i v i s t i c t e r m e A / c ) . S i n c e t h e s i g n o f t h e v e l o c i t y

v o f t h e c h a r g e s i s i r r e l e v a n t , t h e a d d i t i o n a l f a c t o r i s

o f o r d e r

H f ) a -
( 1 . 8 )

S o f a r w e h a v e b e e n d i s c u s s i n g t h e c a s e o f z e r o t e m -

p e r a t u r e T = 0 a n d i n f i n i t e m e a n f r e e p a t h o f t h e e l e c -

t r o n s I = °° ( w h e r e t h e c o n c e p t o f e n e r g y l e v e l s o f t h e

e l e c t r o n h a s a r i g o r o u s m e a n i n g ) . L e t u s n o w t u r n t o

t h e c a s e o f f i n i t e I a n d T .

I f I 3 > 2 7 r r , b e t w e e n c o l l i s i o n s t h e e l e c t r o n c a n c a r r y

o u t a l a r g e n u m b e r o f r e v o l u t i o n s a n d t h u s e x h i b i t t h e

p e r i o d i c i t y o f i t s m o t i o n ; t h e n a t u r a l w i d t h o f t h e l e v e l

K / T i s s m a l l c o m p a r e d t o t h e l e v e l s p a c i n g K J 2 , a n d i n

t h e l o w e s t a p p r o x i m a t i o n i n ( O T ) " 1 t h e a m p l i t u d e o f t h e

q u a n t u m o s c i l l a t i o n s i s i n d e p e n d e n t o f I. B u t i f / ^ C 2 7 r r ,

m o s t o f t h e e l e c t r o n s d o n o t s u c c e e d i n c o m p l e t i n g e v e n

a s i n g l e o r b i t , s o t h e y m o v e a p e r i o d i c a l l y , t h e n a t u r a l

w i d t h o f t h e l e v e l " c o v e r s " a l a r g e n u m b e r o f l e v e l s ,

a n d t o s a y w h i c h o f t h e b r a n c h e s p a s s e d t h r o u g h e = e 0

i s m e a n i n g l e s s . H o w e v e r , t h e r e a r e e l e c t r o n s t h a t

t r a v e r s e p a t h s o f o r d e r 2 T J T a n d t o w h i c h a l l t h e p r e v i -

o u s a r g u m e n t s a r e a p p l i c a b l e . T h e s e a r e t h e e l e c t r o n s

t h a t m a k e t h e o s c i l l a t i o n s p o s s i b l e ; t h e a m p l i t u d e o f t h e

o s c i l l a t i o n s i s p r o p o r t i o n a l t o t h e n u m b e r o f s u c h e l e c -

t r o n s , i . e . ,

e x p •-••--d,.

w h e r e t h e c o n s t a n t a ~ 1 a n d c a n n o t b e d e t e r m i n e d f r o m

q u a l i t a t i v e a r g u m e n t s . T h e e x a c t c a l c u l a t i o n ( c f . C 4 : l)

s h o w s t h a t a = n a n d

• exp ( 1 . 8 a )

F i n i t e t e m p e r a t u r e h a s a f u n d a m e n t a l e f f e c t o n t h e

o s c i l l a t i o n a m p l i t u d e ; t h e e f f e c t i s n o l o n g e r d e t e r m i n e d

o n l y b y e = e 0 i f t h e e n e r g y s m e a r i n g c o v e r s s e v e r a l

l e v e l s :

T>hQ. ( 1 . 9 )

W e a s s o c i a t e w i t h t h e t e m p e r a t u r e a n " e f f e c t i v e l i f e -

t i m e " o f t h e l e v e l ( d u r i n g w h i c h f o r f i n i t e T a n e l e c t r o n

c a n r e a c h o r l e a v e t h e l e v e l ) :

-•---T,

T h e n m a k i n g s o m e w h a t f o r m a l u s e o f ( 1 . 8 a ) , w e o b -

t a i n t h e c o r r e c t r e s u l t ( f o u n d b y d i r e c t c a l c u l a t i o n i n
Li'5i) f o r t h e d e p e n d e n c e o f o s c i l l a t i o n a m p l i t u d e o n

t e m p e r a t u r e :

2n'1T \
J

( 1 . 1 1 )

( N a t u r a l l y , s i n c e t h e f u n d a m e n t a l p a r a m e t e r i s s t i l l

H f i / e 0 , w h i c h t e l l s u s h o w q u a s i c l a s s i c a l t h e s i t u a t i o n

i s , w e s h o u l d t a k e Q i n ( 1 . 1 1 ) a t € = e 0 , p z = p 0 . )

S u m m a r i z i n g a l l t h e e s t i m a t e s a n d t a k i n g a " m a g -

n e t i c e n e r g y " o f o r d e r B Z / 8 T , w e f i n d t h e o r d e r o f m a g -

n i t u d e o f t h e m a g n e t i c c o r r e c t i o n 69 t o t h e t h e r m o d y -

n a m i c p o t e n t i a l 8 ( s i n g u l a r s e c t i o n s a r e n o t i n c l u d e d

f o r s i m p l i c i t y ; i n a n y c a s e a s o n e c a n e a s i l y s e e f r o m

t h e e s t i m a t e o f t h e c o r r e s p o n d i n g A p z , t h e i r c o n t r i b u -

t i o n s a r e m u c h s m a l l e r ) :

w h e r e t h e s u m i s t a k e n o v e r a l l e x t r e m a l s e c t i o n s o f a l l

z o n e s , a n d f a ( x ) i s a n o s c i l l a t i n g f u n c t i o n w i t h a p e r i o d

o f o r d e r 1 . ( T h i s e s t i m a t e c a n o f c o u r s e b e g o t t e n f r o m

t h e f o r m u l a s o f t 4 ' 5 : l , i f w e c o n s i d e r t h a t e 2 / J i « e 2 a / f i a

« e 2 / a p s« e / p « v . )

W e n o t e t h a t t h e f a c t o r ( v / c ) 2 h a s a p u r e l y q u a n t u m

m e c h a n i c a l o r i g i n , s i n c e v « h / m a ( t h i s f o l l o w s i m m e -

d i a t e l y f r o m t h e i n d e t e r m i n a c y p r i n c i p l e A p • A x « h ) .

T h u s B 2 ( v / c ) 2 c a n b e w r i t t e n i n t h e m o r e " u s u a l " f o r m

n t i f t « K f i / e 0 , w h e r e n K £ 2 i s t h e e n e r g y o f t h e " c o m p l e t e l y

o r i e n t e d " d i a m a g n e t i c m o m e n t s ( n i s t h e t o t a l c h a r g e

d e n s i t y ) , w h i l e R n / e 0 i s t h e f r a c t i o n o f t h e m o m e n t s t h a t

a r e o r i e n t e d b y t h e f i e l d B .

B e f o r e p r o c e e d i n g t o f u r t h e r d i s c u s s i o n , w e a l s o n o t e

t h a t f o r m u l a ( 1 . 4 ) d e t e r m i n e d o n l y t h e k i n e t i c e n e r g y o f

t h e c h a r g e s . B u t t h e t o t a l e n e r g y o f a n e l e c t r o n i n a

m a g n e t i c f i e l d , i n c l u d i n g t h e s p i n p a r a m a g n e t i s m , i s

( p . , n) - ( ( 1 . 1 3 )

w h e r e e n ( p z ) i s g i v e n b y ( 1 . 4 ) a n d m 0 i s t h e m a s s o f a

f r e e e l e c t r o n .

L e t u s d i s c u s s i n a l i t t l e m o r e d e t a i l t h e q u e s t i o n o f

w h y t h e c h a r g e , s p i n a n d p a r a m a g n e t i c m o m e n t o f a

q u a s i p a r t i c l e — t h e c o n d u c t i o n e l e c t r o n — t u r n o u t t o b e

t h e s a m e a s f o r t h e f r e e e l e c t r o n . T h e c o r r e s p o n d i n g

t o t a l q u a n t i t i e s — r i g o r o u s i n t e g r a l s o f t h e m o t i o n — f o r

t h e w h o l e e n s e m b l e o f p a r t i c l e s a n d e x c i t a t i o n s o b v i -

o u s l y c o i n c i d e . I t i s a l s o c l e a r t h a t t h e t o t a l n u m b e r

o f s t a t e s d o e s n o t d e p e n d o n t h e i n t e r a c t i o n , C 6 a i s i n c e

t h e n u m b e r o f s t a t e s i s t h e n u m b e r o f l i n e a r l y i n d e p e n -

d e n t w a v e f u n c t i o n s o f t h e s y s t e m , i . e . , t h e n u m b e r o f

b a s i s v e c t o r s , w h i c h d e p e n d s o n l y o n t h e d i m e n s i o n a l -

i t y o f t h e c o r r e s p o n d i n g s p a c e , a n d i s u n c h a n g e d i f t h e

n u m b e r o f p a r t i c l e s i s c o n s e r v e d . ( F o r t h e c a s e o f a

f i n i t e n u m b e r o f s t a t e s a n d F e r m i s t a t i s t i c s t h e c o n -
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servation of the number of states is physically obvious:
if all the states are occupied, a reduction in their num-
ber when the field is switched on or off would require
a reduction in the number of particles.) If the corre-
sponding interactions, for example, spin-orbit interac-
tion, are small (in good metals with a number of free
electrons per atom of order 1 this is natural: the only
characteristic energy* is e2/a « h2/2ma2 « e0, while the
spin-orbit interaction contains the additional small pa-
rameter v/c), so that in lowest approximation the
charge, spin and paramagnetic moment, for the branches
of the spectrum of interest to us, do not depend on the
dynamic characteristics of the quasiparticles and we get
our result. (This argument is not applicable to semimet-
als: there still another small parameter appears—the
number of electrons per atom. The effect of the strong
spin-orbit interaction is that the spin and the momen-
tum do not commute, cr itself cannot be taken as an inte-
gral of the motion, and formula (1.13) is meaningless.
We note in passing that the coulomb interaction of quasi-
particles, in contrast to the coulomb interaction of bare
electrons, is small because of the smallness of the num-
ber of excitations and is proportional to T2.)

So far we have discussed effects related to the finite
separation of levels with a given p z , i.e., with Q * 0 in
formula (1.1).

When O = 0 the lowest quasiclassical approximation
corresponds to a continuous spectrum. Naturally the
transition from the discrete spectrum to a continuous
one, and the associated singularities, are of interest.

The vanishing of O, i.e., the increase to infinity of
the period of revolution (in the plane perpendicular to
the magnetic field) can obviously have two origins. If
the orbit is finite it can occur if in approaching some
point on the orbit in the x, y plane, the velocity goes to
zero sufficiently rapidly, i.e., is parallel to the mag-
netic field. Since the velocity is along the normal to
the surface e(p) = e, the corresponding point can be
either of type A (Fig. 2a), in which case O * 0, or it
can correspond to the saddle point B and a self-inter-
section of the orbits. Then for a given p z , fl(e) = 0 at
an isolated point e, where there is a transition from
two sections with, correspondingly, two branches of Q
and the energy levels, to one section with double the
number of levels (the transition is examined in detail
in wa,i9,20]^

The second reason why motion in the orbit may not
be periodic is that the orbit may be infinite in extent.
It is clear that then fi = 0 fills the whole energy range,
and the transition to ft = 0 corresponds to the transi-
tion from closed to open orbits, i.e., to self-intersect-
ing trajectories (curve I in Fig. 2b). Since there is an
exponentially small probability of tunneling from one
closed orbit (a) to another (j3), interaction of the orbits
occurs. The discrete levels are smeared out over a
band of relative width of order exp (- I e - eg | /fifi),
where e = eg corresponds to self-intersection.

For motion in open orbits, in an exponentially narrow
energy interval there is a resonance probability (also
proportional to exp (- | e - eg I /frft) of total internal re -
flection from the "low barr ier ." This results in expo-
nentially narrow forbidden bands in the continuous
spectrum.

FIG. 2

Thus, as we approach the energy for self-intersec-
tion, eg, from the closed orbit side, the levels of the
discrete spectrum are broadened into bands; then as we
move away from eg, the "chinks" between the bands
narrow and tend to zero. The parameter corresponding
to the smearing of levels or of forbidden bands of the
continuous spectrum is P x ; it is a reflection of the non-
equivalence (in the next approximation in a/r) of differ-
ent positions of the orbit centers in the lattice. (For de-
tails on the nature of the spectrum, cf. t8"*0!.)

If the xy plane is a symmetry plane, the orbits with
self-intersection run through the whole lattice in this
plane (Fig. 2c). In this case the inclusion of the inter-
action between orbits shows the importance of the com-
mensurability of the field-dependent deBroglie wave-
length and the period of the crystal lattice. Near the
self-intersection, where the effect is nonexponentially
small, the character of the spectrum is determined by
the expansion of the reduced reciprocal magnetic field
h"1 (for a square lattice, h"1 = 27rc(eBRa2)"1, where a is
the lattice period) in continued fractions: h"1 = s
+ l /[s!+ l /(s2+ . . . ] . The spectrum consists of s levels,
each split into Sj sublevels; each sublevel is in turn
split into s2 sublevels, etc. The separation of levels,
sublevels, etc, oscillates with B"1 with a universal pe-
riod. Each rational point of h"1 is singular for an infi-
nit mean free path I; finite I leads to a smearing out of
this complex system of levels. It should be remembered
that the total width of the split Landau level is of order
exp (- | e - eg | /fiO). (The character of the spectrum is
described in more detail in C1W.)

Th£ study of the spectrum in the region of "interac-
tion" of orbits is extremely important for the study of
a variety of quantum effects, for example for studying
magnetic breakdown.

2. Physical Reason for Domain and Periodic Diamag-
netic Structures. Character of Phase Transitions

In the preceding section we obtained the estimate
(1.12) of the diamagnetic contribution to the thermody-
namic potential. Considering that eo/fiJ2 ;§> 1, and that
consequently f ̂ (B"1) is a rapidly oscillating function,
we find for the magnetic moment M the formula

- - — ~y B (-Y Qx hQJ'a\ ehB ) * ' >

Then the magnetic susceptibility x = - 6M/6B is

2 ( J ( j e P ( f ( - (2.2)

For sufficiently low temperatures, in pure samples,
when

•This argument may not be valid for the case of high Z nuclei.
(2.3)
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X in formula (2.2) can reach arbitrarily large values and
correspond to strong magnetism. (This was first pointed
out by Shoenberg/7-1) In particular, for x > 1, we need
for (2.3)

103 (2.4)

A specific feature of electron diamagnetism is that,
when T = 0, T = °°, it is the stronger, the weaker the
magnetic field: M/B ~ B~1/2, x =" B~3'2. The term "dia-
magnetism" is used here and in the sequel only to mean
that strong magnetism occurs, i.e., in the sense of the
diamagnetic quantization of Landau. But the magnetic
susceptibility, according to (2.2), in general consists
of the sum of "diamagnetic" and "paramagnetic" com-
ponents (where we name them according to their sign),
and can give either strong diamagnetism (- x > 1) or
strong paramagnetism (x > 1). The latter leads to an
instability of the homogeneous state (cf. below).

The nonoscillatory contribution 66>L to 8 because of
the Landau diamagnetism is due to all the branches in
Fig. 1, and is therefore much greater than 66 (cf. (1.12)):
60L « nfift(KO/e0) « B2(v/c)2. However, it changes
smoothly, and at low temperatures (when (2.3) is satis-
fied) its contribution to the total x and M is obviously
small: M a / B « (v/c)2, \ ~ (v/c)2.

Since for T = 0, T = °°, and B — 0, not only x but also
M/B ~ B"1^2 has a singularity, it is possible to have
I M I > ] B | . For this, according to (2.1) it is necessary
that

i.e.,

(a is the mean distance between electrons) or T < 10"4

10~SoK, I > 10-10"3 cm. Experiments at such tempera-
tures and free paths are not realizable at present, so we
shall assume from now on that

7-; _l_Eo(Ji)4, jJLj € l . (2.4a)

Even under these conditions formula (2.2) can give
large positive values of x- But we know that there is
thermodynamic stability only for states corresponding
to 8H/9B > 0 (cf. m), i.e., 4i7X < 1. Thus an increase
in x when 47TXmax > * leads to a segregation into mag-
netic phases with different values of B (Fig. 3), i.e., to
the appearance of magnetic domains. This was first
noted by Condon'103 (cf. also C86]); the shape of the walls
between domains was found by Privorotskii;cua: l the
sizes of domains were found in tuk J .

A direct experimental proof of the existence of dia-
magnetic domains was given in C64:l: a splitting of an
NMR line because of the different values of the mag-
netic moment was observed (for a presentation of the
results of this model, and its discussion, see lesl).

Physically this is related to the fact that the magnetic
field changes the density of states and consequently,
also, the internal energy of the electron gas, and when
4irxm a x > 1 it is favorable to have the readjustment of
the density of states associated with the change in B on
segregation of phases.

Since, according to (2.2), the value of x oscillates,

T V W

I I
K 0

FIG. 3

the equilibrium curve has a series of periodically r e -
peated flat regions of segregation (one is shown dashed
in Fig. 3).

An unstable homogeneous state of the magnet can
also occur when the splitting into domains is still not
favored thermodynamically, if x contains both paramag-

ato
netic and diamagnetic components: x = Zy Xa (c*- (2.2))

with 4TTX < 1, but where, in the absence of interaction,
instability against phase separation would already have
appeared for the paramagnetic components: 47rxo= 47rSx^
> 1 (where v labels those a for which x^ > 0). The phase
separation does not occur because of the self-consistent
interaction with components for which the homogeneous
state is stable. This means that the interaction leads to
"mixing," i.e., it gives an effective attraction of the di-
amagnetic (x a < 0) and paramagnetic (xa > 0) compo-
nents.* Thus the instability of the v components pro-
duces a tendency to separation into phases, while the
attraction between them (negative surface energy)
causes a mixing. In such a case it is natural to expect
an ordering of the phases, i.e., the appearance of a self-
consistent periodic structure, whose characteristics are
determined by the properties of the thermodynamic sys-
tem. Thus the period of the structure is macroscopic
and of the order of the interaction radius—the Larmor
radius r . A necessary condition for the appearance of
a magnetic structure is to have several de Haas-van
Alphen periods (a0 > 1).

One can understand from general considerations how
the transition from the homogeneous to the periodic
structure will occur.T The requirement of thermody-
namic stability leads to continuity in the transition of
the corresponding thermodynamic potential (thus a pos-

*The separation into magnetic phases when (3H/3B)j < 0 is an-
alogous to the separation into liquid-vapor in a multicomponent system
when (9p/3p)raln < 0; the pressure corresponds to a magnetic field in-
tensity equal to the sum of the partial fields for the components corre-
sponding to the extremal sections or bands, while the specific volume
V = p"1 corresponds to the magnetic induction. The interaction between
components reduces formally to the statement that the "specific vol-
umes" of the different components must coincide. (B obviously depends
only on the coordinates.) As a result, although separation into phases
with B and B' is favorable for the v components, it is forbidden by the
other bands, for which such "specific volumes" are unfavorable. But for
an inhomogeneous induction B, the different Xa change differently, the
total susceptibility can increase, which is thermodynamically favorable
(cf. below).

t The possible occurrence of a periodic structure was first pointed
out in [12]. This paper also gave a theory of such structures. In [13] the
occurrence of periodic structures was noted, but the solution found
there corresponds to 4TTX > 1, which is thermodynamically absolutely
unstable, and therefore can never be realized (cf. below).
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itive specific heat cv means that the free energy will be
continuous and monotonic as a function of temperature
T). This means that at the transition point either an in-
finitesimal amount appears of a new phase with essen-
tially new properties, i.e., with a finite amplitude A of
spatial oscillations, or that the new phase itself differs
infinitesimally from the old one (i.e., the amplitude of
the oscillations is infinitesimal).

In the first case the appearance of the new phase is
associated with seed regions that appear through fluc-
tuations, and which, in order to be thermodynamically
favorable, must be quite large (since there is surface
energy at the boundaries of the phases). It is thus pos-
sible to have superheating and supercooling, and a pres-
ervation of a metastable homogeneous phase. The tran-
sition point is thus a point of intersection of the thermo-
dynamic potentials for the homogeneous phases, and is
not really a singularity (cf. U4] Sees. 81 and 83)-this is
a phase transition of the first kind.

In the second case the surface energy is absent, so
that superheating and supercooling are not possible: the
new state appears abruptly over the whole volume and
the transition point is a singularity of the thermody-
namic potential of the system (phase transition of the
second kind). The abrupt change of state over a whole
macroscopic volume must obviously be "prepared":
the dimensions of the regions of unfavorable state (cor-
relation radius r c ) arising from fluctuations must in-
crease without limit as the transition point is ap-
proached. In the Landau theory this occurs according
to the law (cf. C14] Sec. 119)

(a is the separation between particles, Tc is the transi-
tion temperature). So long as the correlation radius is
small compared to the interaction radius p (the Larmor
radius in our case), the fluctuating nonuniformity in the
oscillation amplitude can be disregarded and the ampli-
tude can be considered to be uniform and " rea l " (not a
fluctuation) and determinable from the conditions of
thermodynamic equilibrium. The inequality r c < C r
corresponds to | T - Tc | > ( a / r ) 2 ^ (a ~ 10"8 cm,
r ~ 10'3 cm in magnetic fields H ~ 104 Oe, T c ~ 1°K;
only for such temperatures are the quantum oscillations
important, i.e., I T - T c | > 10'10 °K). A violation of
these inequalities occurs only far beyond the limits of
possible experiments.

If (a/r)2 <: N"1/2 (N is the number of particles) the
inequality r c < r is satisfied over the whole range of
validity of thermodynamics, since the measurement of
temperature is meaningful only to within the fluctua-
tions: T > N"1/2. (We note that (a/r)2 ~ n"*/3, where n
is the enormous density of the Fermi particles.)

When we neglect fluctuations, the correction to any
thermodynamic potential that is associated with the
magnetic field depends on the "total" induction. Since
the inhomogeneous contribution near the point of a tran-
sition of the second kind is small compared to the ho-
mogeneous contribution (A —• 0 for T — 0)), 6 can be
expanded in series in powers of this contribution. Re-
garding the oscillation period A. as given* (i.e., guaran-

teeing a minimum of the thermodynamic potential for
a given amplitude A of the spatial oscillations), we get
an expansion of 0 in powers of A, which is analogous to
the familiar Landau expansion

e = Qt> + aA2 + $Al+yAe+ ... (2.5)

For a = 0, fi > 0 we get phase transitions of the second
kind of the Landau type (cf. C143 Sees. 137, 138) with a
finite jump in the specific heat eg (if the transition oc-
curs for a fixed magnetic field and changing tempera-
ture) or in the magnetic susceptibility (if H changes
and T is fixed). One can show that the relative size of
the jump is of order

*For T = Tc it is finite; assuming the function MT) to be regular,
we get a correction to Xc near Tc that is linear with temperature. The
proof is given below.

FIG. 4. Phase diagram. line of phase transitions of the second
kind; — line of phase transitions of the first kind; • • • — line of abso-
lute instability; O - critical point of second-kind phase transitions; X -
critical point of first-kind phase transitions. The cross-hatching shows
the region of existence of a spatially periodic structure.

The curve of phase transitions of the second kind
may terminate, intersecting the curve of phase transi-
tions of the first kind at the critical point for the sec-
ond-kind transitions (cf. C14:i, Sec. 140), where, in for-
mula (2.5), a (To, Bo) = j3 (To, Bo) = 0. For a = a/Tj
+ bjHi, /3 = a2Tx + bj-Hi (where T t = T - T0) Hx = H - Ho,
I Ti/T | < 1, | Hi/H | <C 1, the investigation of the min-
imum in (2.5) is conveniently done in the (a,/3) coordi-
nate system, after which we go over to coordinates
(Tlf Hi). When y > 0 it turns out that the direct exten-
sion of the curve of second kind phase transitions is a
line of absolute instability of the homogeneous phase
with A = 0 (concerning the investigation of the curve
bounding the region of instability, see later in Sec. 6);
tangent to it at the point (To, Ho) are the line of phase
transitions of the first kind (corresponding to a sepa-
ration into a homogeneous phase with A = 0 and a peri-
odic phase with A * 0) and the line of absolute instability
of the periodic phase with A * 0 (Fig. 4). On the latter
the specific heat CH or the corresponding susceptibility
X go to infinity like | Tx |"

1/2 or | Hx f
1/2 (cf. Sec. 6).

It is of course, possible to have a phase transition
not only from a homogeneous to a periodic structure,
but also one where on the background of an inhomoge-
neous structure there appears with finite amplitude a
contribution (finite or infinitesimal) with a new period
that differs from the old period by a finite amount.

The periodic dependence of the quantum oscillations
on B"1 in the uniform case leads to repeated transitions
when we change B"1 for given T.

All the difficulties in constructing a theory of the
second-kind transitions refer to the experimentally un-
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attainable region r c > p (if such a region exists at all).
Phase transitions associated with the diamagnetic

Landau quantization also occur in the appearance of a
domain structure (cf. Fig. 3). In the external magnetic
field Ho parallel to the sample surface, when Ĥ  = Ho,
the independent parameter is H and the potential

601'-'- —{-^) (2.6)

has a minimum. When H = Hc, "boiling" occurs—a
phase transition of the first kind from B c to B c . If the
field Ho is normal to the surface, it coincides with the
average over the surface of the sample of the magnetic
induction B:

H0=-Bn. (2.7)

(This follows from the continuity of /BndS.) From
(2.7), Hc = cB c+ (1 - c ) B c , where c is the concentration
of the phase B c . The points B c and B c correspond to
4TTX < 1> and are found from the minimum of the_ther-
modynamic potential. Since, according to (2.7), B is
given, the independent parameter is B, and we seek a

minimum of &£ (69$ =—£— H6B) under the supplementary
condition (2.7). This means that Q\_ = 6( + A / B d r has
an unconditional minimum. Determining the constant A
from 60t/6B = 0, we find A = - H/47T, and

8 9 < - - = - T V —̂8n . ( 2 . 6 a )

Thus fy has a minimum with respect to the independent
variable B, so that (cf. Fig. 3) the points B c and B c are
determined by the equality of the areas ACCCDC and
DcCcAc. When Ho changes in the range B c < H < B j
there is an "evaporation" accompanied by a jump in the
susceptibility, associated with a second-kind transition
of the Landau type. Consequently the situation is analo-
gous to the usual separation in the vapor-liquid system:
at constant volume the independent parameter is the
mean specific volume v, the nonuniqueness of v(p) per-
mits one to vary the pressure p for a given v and the
thermodynamic potential $ (d* = vdp) has a minimum
as a function of v; the value of the potential $ per par-
ticle, i.e., the chemical potential, is the same in the two
phases.

Thus, phase transitions of the first and second kind
can correspond to a transition to a periodic or to a do-
main structure.

In order to distinguish the phase transitions related
to the appearance of periodic and domain structures, we
must make use of the fact that the latter is dependent on
the geometry of the sample, while the first is not. Thus,
for example, if Ho is rotated in a plane perpendicular to
a fourfold axis (sample dimensions Lx, Ly, VrLx 3> Ly
^> r), the nature of the phase transitions when Ho II x
and Ho II y will be the same for periodic structures, and
will differ markedly for domain structures (transitions
of the first kind for Ho II x and transitions of the second
kind for Ho II y).

An important feature of such phase transitions is the
macroscopic size of the interaction radius. The finite
size of the sample leads to a relative width of the tran-
sition (both in temperature and magnetic field) of order
(r/D)2, where D is the smallest linear dimension of the
sample. Within this region all thermodynamic quantities
are rapidly varying, but analytic, functions.

Formula (2.2) shows that inhomogeneous structures
arise for weak magnetic fields and low temperatures in
pure samples (for T = 0 and T = °° the susceptibility
X — °° for B — 0), i.e., for

2n27' v Ml • (2 .8 )

I n t e r f e r e n c e of d i f f e r e n t t r a n s i t i o n s l e a d s t o a r e d u c -

t i o n i n x a n d a s m e a r i n g o u t o f t h e t r a n s i t i o n t e m p e r a -

t u r e o r e v e n c o m p l e t e i m p o s s i b i l i t y o f a n i n h o m o g e n e -

o u s s t r u c t u r e , if x i s t o o s m a l l . T h i s m e a n s t h a t o n e

n e e d s e x t r e m e l y w e a k m o s a i c c h a r a c t e r of t h e c r y s t a l ,

h i g h s t a b i l i t y w i t h t i m e , a n d s p a t i a l u n i f o r m i t y of t h e

m a g n e t i c f i e l d ( i t s v a r i a t i o n m u s t b e s m a l l c o m p a r e d

t o t h e p e r i o d A B of t h e o s c i l l a t i o n s of x , i . e - , s m a l l

c o m p a r e d t o B h ~ n / e 0 ~ B 2 ) .

T h e o c c u r r e n c e of a n i n h o m o g e n e o u s m a g n e t i c m o -

m e n t l e a d s t o t h e a p p e a r a n c e o f a n e l e c t r o s t a t i c p o t e n -

t i a l cp. A c c o r d i n g t o t h e c o n d i t i o n s f o r t h e r m o d y n a m i c

e q u i l i b r i u m , t h e c h e m i c a l p o t e n t i a l £ i s c o n s t a n t o v e r

t h e s y s t e m , a n d i n o r d e r t o a s s u r e c o n s t a n c y of t h e t o t a l

e l e c t r o n d e n s i t y ( w h i c h f o l l o w s f r o m t h e c o n d i t i o n of

e l e c t r i c a l n e u t r a l i t y , w h i c h i s s a t i s f i e d up t o t e r m s of

o r d e r ( a / r ) 2 ( c f . , f o r e x a m p l e , U5i), w e m u s t i n t r o d u c e

<p{r). S i n c e ecp(r) <C nT2, <p n e e d n o t b e c o n s i d e r e d i n

t h e q u a n t i z a t i o n , s o t h a t , if N = N o + A N ( A N = - ,
9?

i s t h e o s c i l l a t o r y p a r t o f N f o r c o n s t a n t f, O ( r ) i s t h e

d e n s i t y of t h e p o t e n t i a l Q, N o i s t h e p a r t o f t h e e l e c t r o n

d e n s i t y t h a t i n l o w e s t a p p r o x i m a t i o n i s i n d e p e n d e n t of

m a g n e t i c f i e l d a n d m o n o t o n i c ) , w e h a v e

A' f-\— V '*• ' em\ ' \Vil!'r-\ O Q1!

r«V,
( 2 . 9 a )

I

T h e q u a n t i t y f i s d e t e r m i n e d f r o m t h e i d e n t i t y o f t h e

t o t a l n u m b e r s of e l e c t r o n s i n t h e m a g n e t i c f i e l d a n d i n

i t s a b s e n c e . K n o w l e d g e of f a n d <f>(r) a l l o w s o n e t o d e -

t e r m i n e t h e d e n s i t y of e l e c t r o n s of e a c h z o n e a t t h e

p o i n t r .

U s i n g t h i s f o r m u l a a n d t h e e s t i m a t e m a d e e a r l i e r

f o r t h e c o r r e c t i o n t o t h e t h e r m o d y n a m i c p o t e n t i a l , i t i s

e a s y t o s e e t h a t , i n t h e r e g i o n o f i n t e r e s t t o u s , t h e p o -

t e n t i a l cp h a s n o e f f e c t o n e i t h e r t h e q u a n t i z a t i o n i n t h e

m a g n e t i c f i e l d o r o n t h e m a g n e t i c s u s c e p t i b i l i t y . T h u s

a l l c a l c u l a t i o n s c a n b e d o n e w i t h o u t <p{r), a n d b y s u b -

s t i t u t i n g t h e c o m p u t a t i o n a l r e s u l t s i n ( 2 . 9 a ) w e g e t

cp(v).

T h e s p a t i a l l y p e r i o d i c s t r u c t u r e a l s o a f f e c t s o t h e r

p r o p e r t i e s o f t h e m a g n e t . T h e p r o p a g a t i o n of e l e c t r o -

m a g n e t i c a n d u l t r a s o n i c w a v e s i s c h a n g e d b e c a u s e of

t h e p e r i o d i c s u p e r s t r u c t u r e ; i n p a r t i c u l a r , f o r s u f f i -

c i e n t a m p l i t u d e of t h e w a v e s , o n e g e t s p e c u l i a r i t i e s

a s s o c i a t e d w i t h t h e p e r i o d i c i t y i n t i m e of t h e p h a s e

t r a n s i t i o n s . N e w t y p e s of r e s o n a n c e s a p p e a r b e c a u s e

of n e w b r a n c h e s of t h e n o r m a l v i b r a t i o n s i n t h e s u p e r -

s t r u c t u r e . A s p a t i a l m o d u l a t i o n of t h e s p e c i f i c v o l u m e

o c c u r s ( m a g n e t o s t r i c t i o n i n a p e r i o d i c f i e l d ) .

It i s c l e a r t h a t p e r i o d i c s t r u c t u r e s , d i a m a g n e t i c d o -

m a i n s a n d a l l t h e r e l a t e d e f f e c t s a r e a l s o p o s s i b l e i n a

f e r r o m a g n e t , w h e r e e v e n i n t h e a b s e n c e of a n e x t e r n a l

f i e l d w e h a v e B = 4 i rM 0 ( M 0 ( T ) i s t h e s p o n t a n e o u s m a g -

n e t i c m o m e n t ) .
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3. Thermodynamics of Domain and Periodic Structures

In order to simplify our treatment, we restrict our-
selves to the case where the magnetic field is along one
of the principal crystal axes, so that M II B n H n z. We
shall consider only the lowest approximation in the mean
free path I: 1= °°. Then there is no characteristic length
along the z direction, and so nothing depends on z. Since
curl H = 0 this means that

H=HZ = const, M = Mz(x, y), B = BI(x, y). (3.1)

To d e t e r m i n e the equation of s ta te , i . e . , the d e p e n -
dence of M on B, which, a s w a s shown in S e c . 1 (cf.
F ig . 1) h a s a nonlocal functional c h a r a c t e r :

M = M{B), (3.2)

w e m u s t ca lcu la te the c o r r e c t i o n 60, b e c a u s e of d i a m a g -
ne t i c and spin quantization, to the corresponding t h e r m o -
dynamic potent ia l (cf. (2 .6a)) . (Since t h i s c o r r e c t i o n i s
a l w a y s s m a l l , accord ing to (1.12) , the contributions to
a l l the t h e r m o d y n a m i c s potent ia l s in the corresponding
v a r i a b l e s c o i n c i d e s ; cf. u*2 S e c . 24) . M i s then g iven by:

theory in the quantization rules and wave functions.*
In the general case the correct zero-order wave func-
tions and the energy levels correct to first order have
the form

<i>(cl =

(3.5)

where e' i s a continuous quantum number, and x ( P x ) i s
gotten f rom the equation

=B-H, (3.6)

ae

It is most convenient to calculate the potential

Q=— + 1)

(3.3)

(3.4)

(where the sum is over all states).
In the uniform case the energy levels have already

been given in formula (1.13). According to (1.13) the
inhomogeneous contribution depends only on M, which
is always small compared to B (cf. (2.4a) and the dis-
cussion of this question in Sec. 2). This enables us to
use perturbation theory on M in finding the energy lev-
els in a nonuniform field B: the degeneracy in P x is then
lifted, since in the nonuniform field the position of the
center of the orbit, which is determined by P x becomes
significant.

In the one-dimensional case, where B depends on
only the one coordinate and P x is again an integral of
the motion, the calculation is elementary (and was first
done in ); in the two-dimensional case it is somewhat
more complicated, since P x is no longer conserved and
one must determine the "correct" zero order functions
in the case of an infinite degeneracy (the computation is
given in t l 7 ] ) .

The order of magnitude of the relative contribution
to the level separation is obvious: M/H sw M/B « x ^ A o
(compare with (2.1) and (2.2)). This small addition has
no effect on the estimates made in Sec. 2 and affects
mainly the argument of the oscillating function; the num-
ber of levels e = e0 is no longer e0 /Eft, but because of
the change Ae, is (eo/lifi) [l + (aM/H)]"1 (a ~ 1). In the
linear approximation in M, the small contribution to the
phase is thus of order x (cf. (2.2)). The next approxi-
mation gives a very small correction (M/B)2(c0/Rn)
^(v/c) r(Rfi/e0)1 /2 (cf. (2.1)). This means that even in
the argument of the periodic function we can remain
with the linear approximation in M. But this means
that one can only get the first order of perturbation

while en^z* ^ApzPx correspond to the zeroth approxi-
mation (B = H) and are given, for example, in .

The calculation of the thermodynamic potential for
known energy levels can be done similarly to the pro-
cedure in the uniform case (cf. m ) . The result is sim-
plest in the one-dimensional case:"73

^ ) < - ] .

M =B-H (3.7)

where
a

i s the potential found by Lifshitz and

KosevichC5:i in a uniform field H. Just as in the uniform
case, to obtain the final formula one can replace the
chemical potential by the limiting Fermi energy.

The formulas found apply only to an ideal electron
gas and do not include the Fermi liquid interaction;
but the latter has no effect on the period oscillations
and the order of magnitude of their amplitude (cf. £1>l8:i).
But the specific form of M (r) is not very important, and
the character of this function can be gotten from very
general arguments.

As was shown at the beginning of this section, in the
general case all quantities are periodic functions whose
argument is a linear function of the magnetic moment.
This means that the density of any thermodynamic po-
tential 0i(r) for the magnet must, when we include trans-
lational symmetry, have the form (where B is again
along a crystal axis)

e (r) = • — • • ' ) M (

(3.8)

where the centra l s y m m e t r y of the c r y s t a l guarantees
that K a ( r ) i s an e v e n function. Knowing the t h e r m o d y -
n a m i c potent ia l enables us to d e t e r m i n e the moment M

*It is for just this reason that we can disregard the spin-orbit force
in the homogeneous field, associated with the force n0 V (aB). This
also allows us to use the correspondence principle (1.1), with Si the
classical frequency in the nonuniform field, to get the quantization
rules. It can be found using perturbation with respect to M in the class-
ical Hamilton-Jacobi equation; it is more convenient than Newton's
equations when one varies the period.
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using formula (3.3) and to write the fundamental equa-
tion for determining B(x, y):

B — 4nM{B] = # = const. (3.9)

It should however be remembered that this equation
alone can give not only equilibrium solutions, but also
metastable and even absolutely unstable solutions. In
fact the equation of state (3.3) guarantees only an ex-
tremum of the thermodynamic potential and not a mini-
mum value, and is only a necessary (but not sufficient
condition) for equilibrium. To get rid of the absolutely
unstable solutions, one should write the second variation
of the total thermodynamic potential, the magnetic con-
tribution to which is related not only to the quantization
but also to the variation of field in the magnet. In Sec. 2
it was shown that this potential is always the potential
69 = -B6H/47T (formulas (2.6), (2.6a)); the arguments
obviously do not depend on whether one is discussing
domain or periodic structures. Since H is not varied
(H = const) and - M6B = 69 (cf. (3.3)),

0,- Q-r^lM'dr, M~*=Z=—^. (3.10)

The formulas (3.10), (3.8), (3.3) and (3.9) enable us
in principle to construct a thermodynamics of magnets
in both the equilibrium and metastable states. Since the
thermodynamic potentials in these states differ by a
finite amount and have a minimum in both cases, the
investigation of the variational derivatives gives noth-
ing more. To the equilibrium state will correspond the
smallest value of &t, which can be selected by compar-
ing the values of #t f ° r the different solutions (substi-
tuted in (3.10)).

Because of the long range interaction, metastable
solutions in magnets may prove to be extremely stable,
since one always needs macroscopic inclusions of the
new phase (of the order of r, i.e., 10~3-10~4 cm). During
boiling we know that even for slight superheating the
critical size of the centers is the size of an atom. It is
true that the heating must occur very rapidly since the
characteristic relaxation times have an atomic origin,
and are extremely small (even in extremely pure met-
als at helium temperatures they are ~10"9 sec). We
now turn to a more interesting region—the appearance
of an inhomogeneous structure. We first study the case
where such a structure appears during a transition of
the second kind.

4. Theory of Diamagnetic Phase Transitions of the
Second Kind

The fundamental equation of the theory of periodic
structures is

H--'>7\M {!',} I! cons I, li^JS(R), R = (.,-, y). (4.1)

Equation (4.1) always has the uniform solution Bo:

/<„ —4JI,¥(«„)=.//, (4.2)

which may not be unique. Let us examine the conditions
for the existence of an inhomogeneous solution infinitely
close to the homogeneous one:

We have

H />'„ ]-

B, =

(4.3)

(4.4)

where x is a linear integral operator. From the homo-
geneity of space (with respect to shifts by a period of
the crystal lattice, which in the lowest approximation
is infinitesimal compared to the distance r) it follows
that this operator must have a difference form, while
the invariance of the crystal under inversion (R -*• -R)
assures its evenness, so that (4.4) can be written in the
form

x(-R)=x(R)-

Setting

(tkR)],

(4.5)

(4.6)

we arrive at the equation for the period of spatial oscil-
lations

4nx(ko) = (4.7)

For Any < 1 the condition for solvability is not only
necessary, but also a sufficient condition, for the ap-
pearance of periodic structure. To prove this we expand
9{B} in terms of B^ Considering that (3.10) should then
coincide with (4.5), and taking account of the symmetry
of the crystal, we find

+ J _ \ f (R — R', R —R") Bt (R) B, (R') B, (R") dR dR' dR"IZJX J

+ TST§ ? ( R - R ' . R " R " . R-R")
xBl(R

m)dRdR'dR"dR"'+ ... (4.8)

The term linear in Bx is absent from (4.8) because it
must have (from translational symmetry) the form,
Ko(Bo)/B (R)dR, but stability with respect to uniform
perturbations (Bx = const) means that

= 1 — 4itx > 0

by assumption).
We write (4.8) in the form

8 nt ~ On -r - (4.9)

(where the tilde denotes Fourier components of the cor-
responding quantity).

If (4.7) has a solution, then 4irxmax > 4ir5^k0) = 1, and
according to (4.9) a small inhomogeneity is very favor-
able, and the homogeneous state is unstable. As already
mentioned in Sec. 1, instability of the homogeneous state
may be related to either the appearance of a periodic
structure or to separation into diamagnetic domains.
The latter already occurs (cf. Fig. 3) when 4irx < 1 (i.e.,
QTT

—s-> 0): only such values of Y are realized. Thus, for
OD
the existence of a periodic structure it is necessary* to
have 47rxmax & 1 (maximum is taken over k) when 477X

*One can show that for a given band and a given section, x/i (R)
has a fixed sign, and

sign x,i(R) = sign Xj,, in j Xti ' <4lt ' Xn (°) ^4lt ; Xn !•
Thus for the realization of a periodic structure one needs several extre-
mal sections and 4JTX0 > 1 with 4ir\ < I • (The definition of Xo is given
in Sec. I).
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FIG. 5

We shall assume that this condition is satisfied. The
second order phase transition point corresponds to the
first appearance of a root of (3.7), i.e., 47rxmax

 = *> s o

that we get a multiple root of (3.7) (Fig. 5). Near this
point, the interval of k in which 1 - Airx< 0 is small:
| Ak/k0 | c l . This means (cf. Fig. 5) that when | Ak |
> k0, where | - lirxO*-) > 1, the value of Bi must be small
compared to its value in the interval where 1 -47rx'< 0,
since the term written in (4.9) is controlling for small
Bi (as assumed initially), and a state with a small
spread Ak is very unfavorable. This means that even
when we include the higher terms in the expansion near
the transition point, B! can be represented in the form

i?,(R)=^(R)exp((xR)^^*(R)exp( — ixR) + C(R), |C|«|/lj, (4.10)

X(x) = W , VX(x) = 0, (4.H)

where A(R) is a slowly varying function (over distances
large compared to the radius of interaction in the ker-
nels in (4.8)—the Larmor radius r), the asterisk denotes
the complex conjugate, and C(R) may correspond to any
k, changes arbitrarily, but is small compared to A(R)
(strictly speaking, its rapidly varying part need not have
a small amplitude).

The form (4.10) enables one to solve by successive
approximations* the nonlinear equation for Bj.(R) which
follows from S e t / ^ = 0:

B,(RH4jT§x(R-R')£,(R')tfR' + § /(R—R', R—R")Bi(R')

XS,(R") dR'dW + ^ g{R — R', R —R", R—R")B,(R') B,(R")

xBi(B")dR'dB"dRm + ... (4.12)

Substituting (4.10) in (4.12), we find (to second order in
A) the value of C:

(4.13)

(4.14)

In the next approximation, in addition to the third
harmonics, first harmonics appear from the terms of
third order in Bj.. The corresponding equation (which,
of course, coincides with the condition for orthogonality
of the "perturbing" inhomogeneous terms in (4.12) to
the solution of the homogeneous equation) has the form

*It is clear that the choice of the zero order approximation in the
form (4.10) already completely determines the behavior of the higher
approximations, provided we take account of the condition for solva-
bility of an inhomogeneous equation when the homogeneous equation
has a nontrivial solution. Then the solution of the equation / h(R - R')
$ (R') dR' = F (R) exp (isR) with F(R) a slowly varying function has
the form

\ A no o /
) — 1, 2p = 3g(x, x, —

•=o,

l - 4 n X ( 2 x

dx.\

(4.15)

(4.16)

here a^ > 0, since \ has a maximum at the point /c; the

directions of the x, y, axes are chosen so that -z—^—
OKOK

O (R, -. (,p ((,R) ff- —
F (R) ) , / / (I) = \ exp \m ( 4 - s ) ] ft (R) (JR

= 0 .

W e i n t r o d u c e K0, t h e p o i n t a t w h i c h ( c f . F i g . 5 )

4n%(xo) = l, V X ( X O ) = O. ( 4 . 1 7 )

I n a d d i t i o n t o d e t e r m i n i n g K0, t h e t w o e q u a t i o n s ( 4 . 1 7 )

a l s o g i v e t h e r e l a t i o n b e t w e e n T a n d H , i . e . , t h e c u r v e

o f p h a s e t r a n s i t i o n s f r o m t h e h o m o g e n e o u s t o t h e p e r i -

o d i c s t r u c t u r e i n t h e T , H p l a n e . I f t h e t r a n s i t i o n i s o b -

s e r v e d a t f i x e d H , t h e n T ~ T - T 0 ( H ) ( w h e r e T 0 ( H ) i s t h e

t r a n s i t i o n p o i n t ) ; i f T i s f i x e d , t h e n T ~ H - H 0 ( T ) .

S e t t i n g A = | A | e x p (ity), w e f i n d t h a t i f 4> * 0 t h e n Vi/>

~ | A | " 2 , a n d i s a r a p i d l y o s c i l l a t i n g f u n c t i o n o f R ( s i n c e

| A | i s s m a l l b y a s s u m p t i o n ) , w h i c h w a s s h o w n a b o v e t o

b e f a l s e . T h e r e f o r e 4> = 0 a n d A i s r e a l . S u b s t i t u t i o n o f

( 4 . 1 0 ) , ( 4 . 1 3 ) a n d ( 4 . 1 4 ) w i t h r e a l A i n ( 4 . 8 ) l e a d s t o t h e

e x p r e s s i o n

(4.18)

F r o m t h e f a c t t h a t , a s o n e s e e s f r o m t h e g e n e r a l a r -

g u m e n t s a b o v e , a p e r i o d i c s t r u c t u r e a r i s e s a t t h e t r a n -

s i t i o n p o i n t w i t h p e r i o d 2 m q 1 « r , t h e f o r m ( 4 . 1 8 ) f o r

t h e e x p a n s i o n o f fy i n t e r m s o f t h e s l o w l y v a r y i n g ( c o m -

p a r e d t o r ) s m a l l c o r r e c t i o n A c a n b e o b t a i n e d d i r e c t l y .

I t i s s u f f i c i e n t t o r e m e m b e r t h a t : 1 ) f r o m t h e r e q u i r e -

m e n t o f a m i n i m u m o f 9± ( a l r e a d y a v e r a g e d o v e r d i s -

t a n c e s o f o r d e r r ) a s a f u n c t i o n o f A a t t h e t r a n s i t i o n

p o i n t , w e g e t 6 6 > t / 6 A = 0 ; 2 ) 6 H / 6 A ~ T ( s i n c e 47rx~(/c0)

= 1 ) , b u t t h i s g i v e s 6 2 ^ / 6 A 2 ~ T ; 3 ) t h e p r e s e n c e o f a

m i n i m u m o f 0 t ( A ) f o r T = 0 r e q u i r e s 636/6A3 = 0 ,

6 4 0 / 6 A 4 = /3 > 0 ; 4 ) t h e e x p a n s i o n i n t h e s m a l l q u a n t i t y

V A ( s m a l l b e c a u s e o f t h e s l o w v a r i a t i o n o f A ( R ) ) c a n

c o n t a i n o n l y e v e n p o w e r s o f V A b e c a u s e o f t h e i n v a r i -

a n c e u n d e r t h e s u b s t i t u t i o n R — - R .

L e t u s e x p l a i n t h e m e a n i n g o f t h e r e q u i r e m e n t j3 > 0 .

If p < 0 , i t f o l l o w s f r o m ( 4 . 1 8 ) t h a t t h e p o i n t T = 0 i s i n

g e n e r a l n o t s i n g u l a r — t h e r e i s a l r e a d y a p e r i o d i c s t r u c -

t u r e w i t h f i n i t e a m p l i t u d e , t h e t r a n s i t i o n h a s o c c u r r e d

e a r l i e r a t f i n i t e A ( s i n c e t h e t r a n s i t i o n w h e n A — 0 h a s

j u s t b e e n s t u d i e d ) , i . e . , w e h a v e a p h a s e t r a n s i t i o n o f t h e

f i r s t k i n d .

S i n c e a{ > 0 ( c f . ( 4 . 1 6 ) ) , Bx > - U ( A ) > - U m a x , w h e r e

t h e e q u a l i t y 6X = - U m a x i s a t t a i n e d f o r u n i f o r m A . T h e

t e r m c o n t a i n i n g d e r i v a t i v e s i n ( 4 . 1 8 ) v a n i s h e s , 6 X t a k e s

a f o r m c h a r a c t e r i s t i c f o r s e c o n d - k i n d t r a n s i t i o n s o f t h e

L a n d a u t y p e ( c f . ( 2 . 5 ) ) , a n d l e a d s t o a t r a n s i t i o n f r o m

A = 0 w h e n T < 0 t o ±A0, A , , = %VT/2p, w h e n T > 0 .

T h e s t a t e s w i t h ± A 0 d i f f e r o n l y b y a p h a s e s h i f t . T h i s

d i f f e r e n c e c a n b e i m p o r t a n t i n a f i n i t e s a m p l e , w h e r e

s u c h s t a t e s a r e a n a l o g o u s t o d o m a i n s . F r o m t h e d e f i -

n i t i o n s o f K a n d K0 i t i s e a s y t o f i n d t h e d e p e n d e n c e o f

m q 1 o n T : K - K0 ~ T . T h u s , t h e
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p e r i o d o f o s c i l l a t i o n c h a n g e s l i n e a r l y w i t h T n e a r t h e

t r a n s i t i o n p o i n t , b u t t h e a m p l i t u d e i s p r o p o r t i o n a l t o

7 7 .

A l l t h e a b o v e d i s c u s s i o n i s p a r t i c u l a r l y l u c i d i n t h e

o n e - d i m e n s i o n a l c a s e ( A = A ( y ) ) , w h e n t h e f u n c t i o n a l

( 4 . 1 8 ) c a n b e i n t e r p r e t e d f o r m a l l y a s t h e a c t i o n f o r t h e

o n e - d i m e n s i o n a l m o t i o n of a p a r t i c l e w i t h m a s s a i n

t i m e y o v e r t h e c o o r d i n a t e A , w h e r e e m e r g e n c e of t h e

p a r t i c l e t o i n f i n i t y i s f o r b i d d e n ( s i n c e B m u s t b e f i n i t e ) ,

U ( A ) i s t h e " p o t e n t i a l e n e r g y . " T h e t r a n s i t i o n b e t w e e n

t h e s t a t e s w i t h ± A o i n t h i s c a s e h a s d o m a i n c h a r a c t e r ,

a n d o c c u r s ( w h e n T > 0 ) a c c o r d i n g t o t h e l a w

A = Aa\h^-iy-ca(y—y0)j. ( 4 . 1 9 )

F r o m t h e d e f i n i t i o n ( 4 . 7 ) i t i s c l e a r t h a t w h e n k — °°

t h e f u n c t i o n x(k) o s c i l l a t e s , t e n d i n g t o z e r o . T h i s m e a n s

t h a t w h e n t h e t e m p e r a t u r e ( o r t h e m a g n e t i c f i e l d ) i s

c h a n g e d , n e w r o o t s of E q s . ( 4 . 1 1 ) c a n a p p e a r , a n d c o r -

r e s p o n d i n g l y t h e r e m a y b e n e w p h a s e t r a n s i t i o n s . If a n y

e x t r e m u m £ ( k ) f o r k > 0 i s d e g e n e r a t e , o n e c a n h a v e a

s e p a r a t i o n i n t o p h a s e s w i t h d i f f e r e n t p e r i o d s .

In a l l t h e p r e c e d i n g d i s c u s s i o n , i t w a s a s s u m e d t h a t

t h e r e i s a u n i q u e s o l u t i o n K of ( 4 . 1 1 ) . I t i s u n d e r s t o o d

t h a t t h i s i s s o o n l y f o r a p l a n e r e c t a n g u l a r l a t t i c e : t h e

p r e s e n c e of a s y m m e t r y a x i s of o r d e r h i g h e r t h a n t w o

g u a r a n t e e s a c o r r e s p o n d i n g n u m b e r of s o l u t i o n s of ( 4 . 1 1 )

— t h e " s t a r " of t h e v e c t o r s K. If n o t h r e e of t h e m a d d t o

z e r o , t h e w h o l e t r e a t m e n t r e m a i n s v a l i d , b u t i s s o m e -

w h a t m o r e i n v o l v e d . B u t if s o m e of t h e s o l u t i o n s of

( 4 . 1 1 ) s u m t o z e r o , t h e t h i r d o r d e r t e r m i n t h e e x p a n s i o n

of 6t(A) d o e s n o t v a n i s h , a p h a s e t r a n s i t i o n of t h e s e c o n d

k i n d i s i m p o s s i b l e , a n d t h e p e r i o d i c s t r u c t u r e a p p e a r s

a s t h e r e s u l t o f a p h a s e t r a n s i t i o n o f t h e f i r s t k i n d .

5 . C r i t i c a l P o i n t a n d D o m a i n S t r u c t u r e

I n t h e p r e c e d i n g s e c t i o n i t w a s a s s u m e d t h a t t h e i n -

s t a b i l i t y of t h e u n i f o r m s t a t e a p p e a r s w h e n K * 0 . N o w

l e t u s c o n s i d e r t h e c a s e w h e n x i n a x = x"(0) = X- ( T h e

n u l l n e c e s s a r i l y c o r r e s p o n d s t o a n e x t r e m u m , b e c a u s e

of t h e c e n t r a l s y m m e t r y of t h e c r y s t a l : x l - k ) = xfe), s o

t h a t V x l - k ) = - V x ( k ) , f r o m w h i c h Vx~ = 0 , i . e . , t h e r e i s

a n e x t r e m u m w h i c h , b e c a u s e of t h e i n i t i a l s t a b i l i t y of

t h e u n i f o r m s t a t e , i s a m a x i m u m ) . T h e p o i n t of t r a n s i -

t i o n t o t h e n o n u n i f o r m s t r u c t u r e w h e n x < 0 c o r r e s p o n d s

t o 47rx '= 1 a c c o r d i n g t o ( 4 . 7 ) . I n t h i s c a s e w e c a n u s e

t h e t h e o r y d e v e l o p e d i n t h e p r e v i o u s s e c t i o n , b u t i t i s

s i m p l e r t o r e m a r k i m m e d i a t e l y t h a t w h e n K0 = 0 t h e

q u a n t i t y B v a r i e s s l o w l y , s o t h a t 0 I { B } c a n b e e x p a n d e d

i n p o w e r s of V B . I n l o w e s t a p p r o x i m a t i o n 9 c o i n c i d e s

w i t h t h e " l o c a l " u n i f o r m d e n s i t y 0 ? ( B ) . I n t h e n e x t a p -

p r o x i m a t i o n ,

(5.1)

Using arguments similar to those in Sec. 4, we see that
this point corresponds to a separation into diamagnetic
domains. Outside the domain wall the derivatives in
0! {B} should be dropped.

Since 4TTX = 1, and consequently in the uniform case

-r=- = 0, from the stability of the uniform state on the
9 B 82H

83H
9B3 > 0. Setting B = Bo+ B1; T = To+ Tlf H = Ho+ H1(

and noting that

w e find

60,-• —mu,

— ^ - ) B, -, 1 • 1 aji\.

(5 .2 )

( 5 . 3 )

T h i s e x p a n s i o n ( w h o s e v a l i d i t y w a s j u s t i f i e d i n S e c . 2)

i s a n a l o g o u s t o t h e G i b b s e x p a n s i o n n e a r a n o r d i n a r y

c r i t i c a l p o i n t of t h e l i q u i d - v a p o r s y s t e m (cf . f o r e x a m -

p l e , a i i S e c . 8 3 ) , e x c e p t t h a t H p l a y s t h e r o l e o f t h e

p r e s s u r e a n d B t h a t of t h e s p e c i f i c v o l u m e v . ( I t i s u n -

d e r s t o o d t h a t , n e a r a n " o r d i n a r y " c r i t i c a l p o i n t , e x p e r -

i m e n t a l i n v e s t i g a t i o n f o r a g i v e n r e l a t i o n of p a n d v ,

c o r r e s p o n d i n g t o a s h i f t e d H o , i s e x t r e m e l y d i f f i c u l t . )

T h u s a l l t h e r e s u l t s of t h e G i b b s t r e a t m e n t of c r i t i c a l

p o i n t s e a s i l y c a r r y o v e r t o t h e p r e s e n t c a s e . In a n a l o g y

t o f o r m u l a ( 8 4 . 1 0 ) of S e c . 1 3 7 i n U i \ w e h a v e

cH^(a3T, -, ZaJiirK ( 5 . 3 a )

I n p a r t i c u l a r , o n t h e e q u i l i b r i u m c u r v e , w h e r e B i < ^

I T j | 1 ^ 2 , t h e s p e c i f i c h e a t C H °° T " 1 , w h i l e i n a m a g n e t i c

f i e l d e q u a l t o t h e " c r i t i c a l " o n e (Hi = 0 ) , w h e n w e f i n d

o n e s i d e o f t h e t r a n s i t i o n p o i n t i t f o l l o w s t h a t
8 B 2 = 0,

f r o m t h e m i n i m u m of fit ( i - e -> f r o m - - = i = 0 ) t h a t B i

^ T'1/3, f o r m u l a ( 5 . 3 a ) g i v e s c H «> T ^

T h e u n d e r s t a n d i n g of t h e s i z e s a n d s h a p e s of d i a m a g -

n e t i c d o m a i n s h a s a n i n t r i n s i c i n t e r e s t . T h e m o s t i n t e r -

e s t i n g a n d i m p o r t a n t c a s e i s t h e o n e w h e r e t h e s a m p l e

d i m e n s i o n s L a r e l a r g e c o m p a r e d t o t h e L a r m o r r a d i u s

r , s o t h a t t h e s i z e g of t h e d o m a i n s i s m u c h g r e a t e r t h a n

t h e t h i c k n e s s d o f t h e d o m a i n w a l l s . In t h i s c a s e t h e s o -

l u t i o n of t h e p r o b l e m b r e a k s u p i n t o a " m i c r o s c o p i c "

a n d a " m a c r o s c o p i c " p a r t .

T h e " m i c r o s c o p i c " p a r t c o n s i s t s i n e x p l a i n i n g t h e

s h a p e of t h e d o m a i n w a l l , i . e . , t h e d i s t r i b u t i o n of t h e

i n d u c t i o n i n a l a y e r of t h i c k n e s s ~ d . S i n c e d <̂ C g , i n

l o w e s t a p p r o x i m a t i o n i n d / g t h e w a l l m a y b e t r e a t e d a s

a p l a n e , b u t t h e p r o b l e m i s o n e - d i m e n s i o n a l s o t h a t a c -

c o r d i n g t o M a x w e l l ' s e q u a t i o n s B n = c o n s t , H t = c o n s t

( n i s t h e n o r m a l , w h o s e d i r e c t i o n w e s h a l l t a k e a s t h e

y a x i s ; t i s t h e t a n g e n t t o t h e w a l l ) . T h e n a c c o r d i n g t o

( 4 . 1 )

H.{B,(!i);Bn}-^Ht, / / „{ />• . . ( ! / ) ;«„}-«„(£/ ) . ( 5 . 4 )

E q u a t i o n s ( 5 . 4 ) a r e c o m p l e t e l y a n a l o g o u s t o t h e u s u a l

e q u a t i o n s of s t a t e n e a r t h e b o u n d a r y b e t w e e n c o e x i s t i n g

p h a s e s , e x c e p t t h a t B n s h o u l d b e r e g a r d e d a s a g i v e n

p a r a m e t e r ( s i n c e i n t h e r e g i o n n e a r t h e s a m p l e s u r f a c e

i t d o e s n o t i n g e n e r a l c o i n c i d e w i t h t h e " b u l k " e q u i l i b -

r i u m v a l u e ) . T h e r e f o r e t h e c o n d i t i o n s f o r a p p r o a c h of

B t a n d B n t o s a t u r a t i o n a s y - ± « ( i . e . , f o r I y I 3 > d ,

b u t of c o u r s e I y I <?C g ) a r e i d e n t i c a l w i t h t h e u s u a l c o n -

d i t i o n H t = H c , w h i c h c o r r e s p o n d s t o e q u a l i t y of a r e a s

o n t h e c u r v e o f H t = H t ( B t ) f o r g i v e n B n , a n a l o g o u s t o

t h e c u r v e i n F i g . 3 , w h e r e H i s r e p l a c e d b y H t a n d B

b y B t . A s a r e s u l t w e g e t a d e f i n i t e c o n n e c t i o n a t i n f i n i t y

(y — ± oo) b e t w e e n H t a n d B n :

Ht=ilK(Bn). ( 5 . 5 )

T h i s c o n d i t i o n i s p a r t i c u l a r l y c l e a r i n t h e i s o t r o p i c

c a s e , w h e n H t i s i n d e p e n d e n t o f B n .

A s p e c i f i c f o r m f o r B t ( y ) a n d H n ( y ) c a n b e g o t t e n i n
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the vicinity of the critical point, where (5.1) holds. The
corresponding formula for the isotropic case was first
found in c u a ] . It is naturally analogous to (4.19) (the
thickness of the domain wall, in particular, is of order
rmaxM"1/Zi where r m a x is the maximum Larmor radius)
and enables us to find the surface energy A at the do-
main boundary:

A — r™i«!L
24 ~[/2n

(5.6)

The "macroscopic" problem consists in explaining
the shapes and dimensions of domains in the lowest ap-
proximation in d/g -C 1, i.e., when d = 0. After assign-
ing the period D of the domain structure, one should
solve the magnetostatic problem; then Eq. (5.5), which
serves as an auxiliary boundary condition on the domain
boundaries, determines the shapes of the boundaries
(they were found in various limiting cases in '•"k-1).

After this, using (2.7) we can determine the sizes of
the domain regions; in the case of a flat plate

p-fl') D = (B-g0)j (5.7)

Finally, calculating the total thermodynamic potential
for a known structure of the field, and including the sur-
face energy at the domain boundaries and minimizing
with respect to D, we determine D. The value of D is
of order " l b ]

DzxV^rL, (i = l —4nx«l, (5.8)

where L is the plate thickness.
From (5.6)-(5.8) the validity of the approximations

is clear:

Far from the critical point, when JJ. ^> 1 and corre-
spondingly Xmax 3> !/47r (cf- F iS- 3)> the computations
become considerably more complicated.[llb:i The do-
main wall has a very complicated form. In going from
Ac to A^, B(y) oscillates and has a series of gradually
damped, narrow and high maxima, and correspondingly
deep minima. The surface energy and domain size are
given in order of magnitude by (5.6), (5.7); but now,
when (i » 1, we must replace \xx/2 by ii1/3.

6. Curve of Absolute Instability for a Uniform and
Periodic Structure

The validity of the expansion of the thermodynamic
potential (analogous to the Landau expansion in the the-
ory of phase transitions) which results from the long
range interaction at distances r ^> a (where a is the
mean separation of charges) enables us to study the
singularity on the curve of absolute instability (where

f\TT
in the uniform case -r=- = 0). Suppose that for given H
and T = To the equation for B, which we write symbol-
ically in the form

t;B} = 0, (6.1)

(6.2)

has the particular solution B0(R), so that

L{T0,H;B0(R)} = 0.

Let us examine the character and stability of the solu-
tion when T = T+ T'. We set B = Bo+ ip. Then

, {Bo (R)} + 4 = 0,

where

H;B0(R)}, b"-L
~6Ll

(6.3)

(6.4)

The variation of T with H fixed has been taken only
as an example. The treatment is completely similar for
fixed T and varied H. The solution and examination of
(6.3) is done the same as for (4.12), and its character is
determined by the presence or absence of a solution of
the homogeneous equation L ^ = 0. For a given H, such
a solution first appears at the point T = T0(H). The set
of such points for different H gives a curve To = T0(H).
The only difference is that the terms in the thermody-
namic potential that are cubic in the amplitude can
either vanish (because of symmetry or at isolated val-
ues of H), or not be present, since, in contrast to (4.12),
the kernel in (6.3) need not be a difference kernel, since
the nonuniformity of B0(R) violates the translational
symmetry of the system. In the latter case the expan-
sion of the thermodynamic potential in A.x = A - Ao
(where A,, is the amplitude of the periodic structure
on the absolute instability curve) and Tx = T - To has
the form

(6.5)

When aTx //3 < 0 there is no minimum of 8^, while for
aTx //3 > 0 there is a relative minimum for Aj
= (-2aTx//3)1/2 and 0t - Bo <~ | T11

3/2. This means that
as we approach the absolute instability curve for a given
external field Ho, the specific heat tends to infinity like
I Tx | ~

1/2. For an isothermal approach to the curve (Ho
= H + Hx) the susceptibility tends to infinity like | Hx | ~

1/2.
There is such a singularity, in particular, at the critical
point for a phase transition of the second kind (cf.
Sec. 2).

7. Phase Diagram

Let us now examine the phase diagram in a magnetic
field, taking account of the appearance of periodic and
domain structures. At high temperatures T ^> KJ2/27T2

the susceptibility associated with the Landau diamag-
netism and the Pauli paramagnetism is small for all
temperatures and a nonuniform structure is impossible
even as a metastable state. (This is easily shown using
perturbation theory.)

As the temperature is lowered, at some temperature
there first appears a local minimum for the nonuniform
field. Then several different cases are possible in prin-
ciple.

The local minimum may first appear for a finite am-
plitude of the inhomogeneity, so that the minimum value
of 0t wiU again guarantee a uniform induction B. The
function #t(A) n a s a t least two minima, between which
there must be a relative maximum. Thus (in addition
to the minimum for uniform induction B, i.e., when
A = 0), #t(A) suddenly acquires a relative maximum and
minimum; the point T = T c where the minimum is
"born" corresponds to a threefold degenerate solution:
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which determines the temperature T c and the amplitude
at the point (Fig. 6a). The appearance of the local mini-
mum shows the possibility of existence of the corre-
sponding phase, though perhaps as a metastable phase,
while its vanishing means absolute instability of such a
phase. The curve of appearance of minima in the T-H
plane thus bounds the region of absolute instability of

the given state (analogous to the curve ( JT-0 = 0 for

the separation of the liquid-vapor system).
If then the minimum of fy, as it drops, reaches the

same value at T = T c as it had in the preceding absolute
minimum when A = 0, there is a separation into a uni-
form (A = 0) and a nonuniform (A * 0) phase, i.e., a
phase transition of the first kind.* When T < Tc the
nonuniform state becomes stable, while the uniform
state is metastable when Tc' < T < T c and absolutely
unstable for T < Tc' (in the last case the singularity
near T = Tc' is the same as above; it should be under-
stood that we are working with fixed H and not T only
for concreteness.

It may, however, happen that even before the sepa-
ration into a uniform and a nonuniform phase (if it oc-
curs at all—since the minimum for A * 0 may begin to
move upward after reaching some temperature), insta-
bility of the uniform state for A = 0 appears. Since, as
already pointed out and demonstrated in Sec. 4, the ex-
pansion of #t(A) contains only even terms in A, this will
indicate a second-kind transition as studied earlier
(Fig. 6b); the minima at ±A correspond to phases with
the same periods and different "starting points" (cf.
Sec. 4). But if the minima of 6>t(A) for different A * 0
coincide, there is a separation into a structure with
different periods.

Since, when we change the external conditions, the
minima on the 9^(A) curves may shift up or down
(though their motion for dixed T and varying magnetic
field is periodic) it follows from (3.2) and the fact that
0t is a superposition of functions periodic in B"1, that
for given T < KJ2/2ir2 the number of transitions of a
given type is ~1/4(e0/T)(v/c)4/ '3 and a variety of differ-
ent combinations of the cases cited can occur. In par-
ticular the new structure may appear at only a single
point (Hoo, To) (Fig. 7 we show the curve of 9^(A) for
two structures I and II).

T>T

FIG. 6

*It is clear from this that the periodic solution with finite amplitude
always first appears as a metastable state, unfavored compared to the
uniform solution.

FIG. 7

Considering all this, we turn to consideration of
Fig. 4, where we show the state diagram of the magnet
in the T-H diagram; the transition to the variables T
and Ho is clear from the relation between Ho and H
given above. In Fig. 4, we have taken into account that
the curve of phase transitions cannot break off at the
periodic structure and may end at the critical point for
a domain structure; the character of the transition to
the domain structure is the same all along the curve
and depends only on the orientation of H (for concrete-
ness Ho was taken perpendicular to the sample surface
in Fig. 4). We also took into account that (in addition
to the periodicity of Xa i n fil) according to (2.8) the
transition curve is bounded from above as well as be-
low in B, and is bounded above in temperature. The
form of the state diagram would be much more com-
plicated in the next approximation in a o / r 2 (a0 is the
interatomic spacing), where the commensurability of
a2 and ehH/c is important (cf. also C19:l).

The singularities on the state diagram were given
in Sec. 2 and demonstrated in Sec. 5.

8. Ultraquantum Case and the Metal-Dielectric
Transition

So far we have been discussing magnetic fields that
are weak compared to the Fermi energy: KJ2 <C e0; this
is the quasiclassical case. Then a knowledge of the
classical dispersion law e = e(p) was sufficient for find-
ing the main quantum corrections to all physical quan-
tities. As a result the experimental study of quantum
effects in this range of magnetic fields was a convenient
means for studying the classical dispersion law. (Thus,
the periods of quantum oscillations were directly deter-
mined by the areas of the extremal and singular sec-
tions of the classical Fermi surface.)

As the magnetic field increases, the associated en-
ergy may become sizable. Such strong magnetic fields
are actually reached in semimetals like bismuth and in
semiconductors with a Fermi energy that is small (be-
cause of the small number of carriers) and usually with
a low effective mass. Generally speaking, when Kf2 ;§> e0,
when magnetostriction essentially changes the crystal
lattice, the energy spectrum for the quantum case cannot
be gotten from the classical spectrum, and only the sys-
tematics of the states is preserved from the quasiclas-
sical case. Since in all attainable magnetic fields both
the classical radius of the orbit and the Bohr radius
V ch/eH are large compared to the lattice constant, in
lowest approximation the degeneracy in P x is also pre-
served (cf. Par. 1). As a result e = e s (pz; H), where
s = 0 , 1 , . . . is a discrete quantum number. Since we can
say nothing beforehand about the distances between the
different discrete levels for fixed p z (in particular the
spin-orbit coupling is not weak), it is meaningless to
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keep the three quantum numbers used earlier—the band
number q, the spin projection a and the number n of the
diamagnetic Landau level.

It is meaningful to keep only the division into elec-
trons and "holes," for which, respectively, the energy
es(Pz) n a s a minimum or a maximum in the energy in-
terval of interest to us. The investigation of the region
of such strong magnetic fields in the "quantum" and
"ultraquantum" cases (when the level separation be-
comes the largest parameter of the problem) is of par-
ticular interest since it enables us, by shifting the band
edge (cf. below) to change the Fermi energy itself, to
affect the number of carriers (when there are several
bands), and to observe anomalies when the Fermi en-
ergy passes through singular values of the energy.

On the other hand the theoretical treatment of such
a case is interesting in principle. The main idea in in-
troducing quasiparticles is to study a small number
(and therefore a weakly interacting system) of excita-
tions, appearing on the background of a given vacuum.
External fields, and in particular a constant magnetic
field, change this vacuum (just as they change the char-
acter of the quasiparticle spectrum, leading to the ap-
pearance of singularities in the spectrum (cf. Sec. 1)).
However, so long as the external fields are small (and
this condition coincides, in the case of constant field,
with the condition for the system to be quasiclassical),
the change in the vacuum can be treated as a small per-
turbation and we may talk about a change of the disper-
sion law for the quasiparticles with "the same vacuum."
But if the vacuum is unchanged the only characteristic
of the quasiparticles is their dispersion law, and it is
natural that in lowest approximation the "new" law of
dispersion in external fields can be obtained from the
"old" dispersion law. This is precisely the procedure
in both classical and quasiclassical theory. Thus the
basic classical equation of motion of the electron in ex-
ternal fields, p = eE + (e/c)v x H can be obtained in a
way completely analogous to the procedure in field the-
ory (cf., for example, CZ9]), if we take into account that:
1) the Lagrangian must be determined uniquely to within
a total time derivative, and the quasimomentum to with-
in a reciprocal lattice vector; 2) the charge on a con-
duction electron is the same as the charge on a free
electron (cf. Sec. 1).

When the level separation is considerably greater
than the Fermi energy, i.e., when the energy associated
with the magnetic field is of the order of the energy as-
sociated with the vacuum, and the external field is not a
small perturbation, finding the new dispersion law which
appears on the background of the new vacuum, from the
old, classical dispersion law is in general not possible
in principle. This means that the problem must be for-
mulated differently (cf. l28>zn). in particular one must
assume that the spectrum of the quasiparticles in the
constant magnetic field is given. One must also assume
that the wave functions (or the matrix elements) are
given.

The problem now consists of, first, understanding
which physical results are independent of the disper-
sion law, and, secondly, finding methods for experimen-
tally reconstructing the quantum Hamiltonian, in par-
ticular, the energy levels—a problem analogous to that
which arose earlier when we were given the dispersion
law e = e(p) in the classical case.

It is natural to expect, as is the situation in all cases
known at present, that the distance between the discrete
levels will grow with increasing H. (Saturation is im-
probable, but trivial, since it means a disappearance of
field dependence in all physical quantities. For the sys-
tematic oscillations with H there is not even a charac-
teristic parameter that would determine the oscillation
period.) Then, since the number of states is conserved
(cf. Sec. 1), a larger and larger number of classical
states will be assigned to each level, so that the density
of states vs(pz; B) also will grow. If the states belong-
ing to different energies are not shifted about by the in-
teraction, fS(PzJ B ) i s connected with £s(PzJ B) by the
formula which follows from the conservation law for the
number of states:

v = v(es;ft), B = B,(P,;B). (8.1)

At absolute zero (T = 0) the shift of the boundaries of
the s branch may "destroy" one of the branches when
passing through the Fermi energy. Then all the elec-
tronic properties of the metal will have singularities
that are smeared out at finite temperatures (cf. izZi).

Let us illustrate this situation first in the simplest
case, when there are equal numbers of electrons (e)
and holes (h) with the dispersion laws

(8.2)
2mh

and spin masses m | jj, which do not change in the mag-
netic field. Then, in'a magnetic field along the z axis,

e = e, +

l«l*
(8.3)

The origins of the electron and hole spectra are
therefore shifted; the distance between the "floor" of
the electron band (eg1111) and the "ceiling" of the hole
band (eg118*) changes:

A = ema*_emin = e2_e, -f bB, (8.4)

and if b < 0, when B = B c , for which A = 0, the bands
diverge, and for T = 0 the metal changes to a dielectric
(an effect that was first predicted by Davydov and Pom-
eranchukC2U). If B is produced by a current through the
sample, we can have the phenomenon of an "intermedi-
ate" or "mixed" state—the separation into metallic and
semiconductor phases.

Let us consider this process in the general case. It
is clear that for B near B c the number of current car-
r iers is always small, so that we are interested only in
the narrow regions near extrema, i.e., ee = ee(pz)
K emin + «(Pz -Pi)2 . % = e&(Pz) « emax-j3(pz -p 2 ) 2

and ye,h(Pz; B) « ^e,h(Pi,z; Bc). As a result, when
B = B c - B', 0 < B ' « B c we find for the numbers of
electrons n e and holes nh and the chemical potential f,
the values

ne = nh^(l—£(BC))1/2, t,(Bc+B') = Z(BK) — yB'. (8.5)

For the thermodynamic potentials we have

e^ne,h(i~t,(Bc))^\B'\3/2. (8.6)

(this is evident for the energy, but the small corrections
to 9 associated with ne ^ are the same for all thermody-
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namic quantities in the corresponding variables i i i i). For
B' > 0, ne = nh = 0 and 8 = 0. Thus, when T = 0, at the
point B = B c there is a phase transition of the "two-and-

a-half kind": the magnetic moment M = --JJJT is continu-
ous, the susceptibility goes to plus or minus infinity
when B = B c - 0 according to the law (-B')~1/2, and the
conductivity goes to zero proportionally to ne ~ (-B)1/2

(x — °° means of course, that separation occurs; cf.
above).

It may, however, happen that the transition from
metal to dielectric proceeds via a phase transition of
the first kind because of annihilation of electron-hole
pairs through their interaction, as is the case under
pressure in the absence of a magnetic field (cf. C24]).

If the number of electrons is not the same as the
number of holes, but one of the spectrum branches goes
out beyond the Fermi boundary, the number of particles
in the disappearing branch goes to zero, nevertheless,
so we can make the same computation in this case, with
the same result—a phase transition of the "2 % kind."

At finite temperatures, low compared with the Fermi
energy, the phase transition is smeared out and re -
placed by an anomaly: near B c the gas of charges in the
disappearing branch becomes nondegenerate and then,
as the energy gap increases, the number of charges
drops exponentially. The features of the electron char-
acteristics near B c were treated in C22»23:| and observed
experimentally in bismuth, antimony and their alloys
in C59-62].

The sharp drop in the relative resistance with in-
crease of magnetic field (dielectric-metal transition)
is clearly shown in Fig. 8 (taken from C62]), and the
change in the character of the magnetoresistance in
Fig. 9 (from lBn).

If the electron and hole levels overlap more and
more as the magnetic field increases, (for the spec-
trum (8.2) this means that in (8.4), b > 0), the numbers
of electrons and holes increase without limit with in-
creasing B. This case permits a constructive compu-
tation only when (8.1) holds. The calculation is of great-
est interest for the case when the main contribution to
the magnetic moment comes from one branch of one of
the zones (electron or hole). Then from the M(B, T) de-
pendence we can reconstruct the e(pz, B) corresponding
to that branch. The computation is rather tiresome, so
there is no point in giving it here.

Finally a case is possible where in sufficiently
strong field only electron or only hole branches remain.
Then, since the number N of charges is conserved, for
B — °° their density of states v — °°, only the states in
a small region of p z near the ground state em m(B) are
occupied, so that*

B) = e™' \ P (ft~/>o)2, v0 (pz, B) :
(8.7)

*It is understood that the dependence on B is connected in particu-
lar with magnetostriction (which may lead to an isomorphous phase
transition of the first kind). The magnetostriction must be taken into
account in determining e0 since n = N/V = vo(pz (j>0) — p0) where V is
the volume of the conductor, is not conserved. But this has no effect
on the order of magnitude of eo> since the compression is not large, so
long as the conductor supports the deformation. In order to disregard
the magnetostriction, we shall regard v as the density of states over the
whole volume (and not per unit volume).

(/3 > 0 if the branch is an electron branch, and § < 0 if
it is a hole branch). The Fermi energy e 0 - e m i n is
proportional to (n/v0)

2 —• 0, so that the gas of charges
is a Boltzmann gas at any finite temperature. Its free
energy is

F ~- —NT In \ exp f — = z J v (pz) dp2,J V i tii
and the magnetic moment at constant volume (found in
™) is

M--—l^-\ :-i—N^- + NT—lnvll. (8.8)
V 'oii } y Off olt ' '

Neglecting the change in volume (p = - -r— = N ——, so
dV oV

that v = v(H,p)), we can, by measuring the magnetic mo-
ment, find the dependence on the magnetic field of the
energy e0 of the ground state and the density of states
v0 in it. These are of course only the beginnings of in-
formation about the quantum Hamiltonian. The develop-
ment of the theory ought to give, in principle, the pos-
sibility of reconstructing the Hamiltonian from the ex-
perimental data, just as we have reconstructed the clas-
sical Hamiltonian (the dispersion law) for a large num-
ber of metals. Formula (8.8) for T = 0 obviously means
that the magnetization is nominal.* We note that Fermi
liquid effects are negligibly small in semimetals and
semiconductors, where the number of charge carriers
is small (cf., for example, C40]), so that this treatment
is consistent.

/Off 2017 MO 4ffff /<kOe
FIG. 8. Dependence of change of resistance p on H for orientation

H || C3 (current i II C2). Bi-Sb alloys; Sb concentration in at%: 1 - 8.8;
2 - 8.9; 3 - 9 . 1 ; 4 - 10.5; 5 - 12; 6 - 15.8.

FIG. 9. Temperature depend-
ence of p for Bi89 s SbiO.s sample,
for: 1 - H = 0;2 -H<HC ;3 -
H>HC.[60]

eft), ohm

*The case of fixed bottom of the band is special. It corresponds to
the absence of the first term in (8.8), and was considered, for quadratic
dispersion, by Rumer.[2S]
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9. Variable Fields. Nonlinear Quantum Pseudoresonance

So far we have considered the static case, where
electrostatics and magnetostatics are separate, and we
can speak of quantum oscillations of the magnetic mo-
ment and of the electrical resistance. In a variable
electromagnetic field one measures one quantity, the
tensor of the total surface impedance, relating the field
intensity on the conductor surface and the total current
passing through it. In good conductors with a high
charge density, retaining the displacement current in
Maxwell's equations is usually an improvement in ac-
curacy (cf. also Part n, Sec. 10 and 11). Thus the total
current is determined by the.intensity on the surface of
the varying magnetic field. In the one-dimensional case
of a conductor filling a halfspace* the impedance Z is
given by the expression

(the subscript t denotes the tangential component, (S)
the surface, n the normal to the surface, E and H the
intensities of the varying fields.

Knowing the tensor Z enables us to find the solution
to the purely external problem of the field in vacuum
with the boundary conditions (9.1) and to express the
complex coefficient of reflection of the wave in terms
of Z. (The standard electromagnetic boundary condi-
tions, continuity of E^ and H | S \ together with (9.1)
give six equations, expressing E ( S ) , H ( S ) , Ej"ef l in
terms of EJnc).

The quantum oscillations of Z are naturally deter-
mined by the quantum oscillations of both the magnetic
moment M and the conduction current density j . Strictly
speaking, in the nonstationary case these two quantities
cannot even be separated. Just as in Sec. 1, we are
considering a typical case of field theory—free charges
in fields E and Bo + B (where B is determined by the
constant magnetic field and B by the varying field).
Then the Maxwell equations are:

rotE=—^- (9.2)

but jtot is related to the density matrix n in the external
fields E and B (cf. t273):

(The physical meaning of this formula is obvious: in the
classical case ev6(r - r(t)) is the density of current pro-
duced at the point r by a charge located at the point r(t).
The formula can be obtained directly in the quasiclassi-
cal case from the definition j = - C6X/6A, where X
= Sp (5^n) is the mean value of the Hamiltonian operator.)

At low frequencies (w <g; v, where v is the character-
istic collision frequency) the system almost succeeds in
"following" the instantaneous values of the varying
fields, and we can, in first approximation, take for M
and j in these formulas their values at the particular
time.

*This case is the one of most practical importance. High conductiv-
ity means short wavelength in the conductor, compared to which all
the characteristic dimensions of the conductor can be taken to be infi-
nite.

T[Hn] =H X n.

In the case of frequencies so low that we have the
normal skin effect, the depth 6 of the skin layer in an
isotropic conductor has the form

The order of magnitude of x was estimated earlier
(formula (2.2)). From the same arguments as in Sec. 2,
one easily estimates the relative magnitude of the quan-
tum oscillations of the conductivity, ACT/CT. Its depen-
dence on T and T is the same as that of x; the contribu-
tion to ACT, as for x, comes from the part (nJ2/eo)

1/2 of
the electrons near the extremal sections, but the factor
(v/c)2 is absent, since ACT, unlike x, is not relativistic
in origin. As a result

at
(9.3a)

Actually the magnitude of ACT/CT may be still smaller,
since a is determined by all the electron groups, while
the usually observed oscillations of ACT are associated
with anomalously small bands.

Comparing (9.3a) and (2.2), we see that

Aa/o
(9.4)

(The estimate (2.2) does not hold when lux > 1» but in
that case the contribution ACT/CT < c l is very small com-
pared to the contribution when lir\ « 1.)

Usually one reaches magnetic fields HJ2 <c eov/c» a n d
the resistance oscillations are determined by the oscil-
lations of the magnetic moment/283 The situation
changes only when we go to sufficiently high frequencies
or to the low-frequency limit. In the low-frequency
range, when 6 > dS"1 3> d (d is the thickness of the con-
ductor), the quantity appearing in (9.1) is the difference
of the values of H^ on the sample surfaces (it determines
the total current) and the estimate shows that the deter-
mining factor is the a oscillations (Shubnikov-deHaas
effect).

At sufficiently high frequencies when the anomalous
skin effect appears, and 6 < r, the magnetic moment is
determined by the varying field only over a small part
of the orbit and x decreases by a factor 6eff/r (̂ eff *s

the effective damping distance for B). When OJT 3> 1,
there is an additional reduction of x by a factor WT,
since the magnetic moment is unable to "follow" the
change in B.* As a result, the oscillations of Z at suf-
ficiently high frequencies are determined by the oscil-
lations of j (cf. C273).

A characteristic feature of the quantum oscillations
in varying fields is the nonlinearity that appears al-
ready at relatively low values of the incident field. When
COT <C 1, according to our remarks the total induction
B = Bo+ B appears in (2.2). Field intensities in the in-
cident wave of the order of the period of the quantum
oscillations, i.e.,

B«B 0 -^ -~ A B - (9.5)

are sufficient to make the nonlinear effects important.
The case of B » AB is especially interesting, since it
leads to a unique pseudoresonance.l341

*It is understood that both of these also reduce the quantum oscil-
lations Aj but they also reduce the classical value of j in the same way,
so that the relative values Aj/j is unchanged.
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To simplify the calculation we assume that the con-
ditions for a normal skin effect are satisfied: 6 > Z,
so that 6 ^> r (where 6 is the skin depth). In this case
the field at distances r, I can be taken to be uniform,
and all the relations are local. In lowest approxima-
tion we can use the formulas obtained for the static
case.

We shall assume that the magnetic susceptibility is
small (i.e., according to (2.2), (v/c)2(e0/h"fi)3/2 <g; 1),
and treat the magnetic moment as a perturbation in the
Maxwell equations. Then, in lowest approximation the
varying electromagnetic field in the metal has the usual
form: E = Eo exp (- z/6) cos (UT- z/6), Hi
= H10 exp (- z/6) cos (a>t - z/6), while in the next approx-
imation the zero-order magnetic moment appears in
the Maxwell equations, i.e., (since we showed earlier
that we can use the static formulas) when ( 2

where 0 = cS/eRH, k = (cS/efiH2) sin a (a is the angle
between the direction of H and the normal to the metal
surface). In order for nonlinear effects to be important
it is necessary that kH1;0 3> 1. In this case the value of
M oscillates rapidly with depth at distances 6/kH1)0

small compared to the skin depth 6. It is therefore nat-
ural that the field intensity at the surface will be deter-
mined only by the value of the magnetic moment on the
surface:

M --Mt, cos (kH,,0 COS at + p).

In particular, the reflection coefficient for the n-th
harmonic is related to the n-th Fourier coefficient of
the expansion of the function cos (kHlj0 cos wt + £), i.e.,

e,, —— \ exp [ 10 cos x—nx)\ dx = exp (— inn/2) Jn (kHt „

It is easily seen that when kHlj0 ^> 1 several cases are
possible. If n > kHlj0, cn decreases exponentially with
increasing n/kH1;0; if n < kH1;0, then cn « n(kH1;0r3/2

x [nkH1;0 - (n + %)ir/2]. Finally, for n = kH1;0, there is
a peculiar pseudoresonance: cn ~ n1^3, the relative
half-width being proportional to n"2^3. As is clear from
our remarks, this pseudoresonance has an essentially
quantum mechanical nonlinear character.

Let us estimate the amplitude of the resonance har-
monic. First, it is proportional to the amplitude of the
magnetic moment, which, for KO > 2TT2T, is of order M
« H(v/c)2(e0/fifl)1/2 (cf. (2.1)). Secondly there is a fac-
tor Vw/a because of the fact that the effect is nonlinear.

The conductivity a appearing in the equations has a
different order of magnitude from the conductivity a0
in the absence of the magnetic field (cf. m). If the sec-
tions of the Fermi surface are closed curves, the cal-
culations show that a as {r/l)a0, if the number of elec-
trons is not equal to the number of holes, and a

2(r/Z)2CT0 if (It is assumed that H is not
parallel to the surface of the sample.)

II. KINETICS

10. Static Skin Effect

Starting from simple physical arguments, we obtain
the formula for the current density j and the uncompen-

sa ted charge dens i ty p' in the conductor. If n i s the
distr ibut ion function and n0 i s the equi l ibr ium d i s t r i b u -
tion function in the absence of the e l e c t r i c f ie ld ,

p ^ | L ^ ( n _ n o ) d p . ( i o . 2 )

(In formula (10.2) we have taken p ' = Oin the equi l ibr ium
s t a t e . )

The external f ie ld c a u s e s a quas ipart ic le having e n -
e r g y e = e(p) to acquire the e n e r g y Ae(p) . It i s c l e a r
that the number of q u a s i p a r t i c l e s now having e n e r g y e
i s equal to the number of p a r t i c l e s that p r e v i o u s l y had
e n e r g y e - Ae(p) , i . e . , n(p) = n0 (e(p) - Ae(p)) , o r , in the
l inear approximation in the f ie ld (which i s a l together
suff ic ient in p r a c t i c e and which i s a l l we shal l c o n s i d e r )

Since in the equi l ibr ium s tate (in the a b s e n c e of the f ield)
there a re no c u r r e n t s or uncompensated c h a r g e s in n o r -
m a l m e t a l s ,

(10.3)

(10.4)

(Mathemat ica l ly , the t e r m with no(e) in the e x p r e s s i o n
for j v a n i s h e s b e c a u s e of the centra l s y m m e t r y of the
function e(p): e ( - p ) = e(p)-)

Cons ider ing that — r - 2 - as 6 (e - e0), s i n c e e0 ^> T,

whi le dp = | e H / c | dedp z dt , we find

^ i 2 ( v A e ) , (10.3a)

= — 2 < A E > - (10.4a)

When there are several bands present the sum goes
over all bands. In the absence of collisions

and so

(10.5)

(10.6)

If the distance which the quasiparticle traverses be-
tween collisions is Ar (this is only an order of magni-
tude estimate)

(10.7)

Thus

Oifti • 2 (vtArk), (10.8)

where the angular b r a c k e t s denote an a v e r a g e over the
F e r m i sur face in the s e n s e of (10.3a) and (10.4a) .

F r o m the formulas we s e e that the change of the con-
ductivity t e n s o r in a constant magnet ic f ie ld i s re la ted
to the change in the path t r a v e r s e d by the e l e c t r o n in a
g iven d irec t ion without c o l l i s i o n . While the length of
th i s path along the magnet ic f ie ld B II z , just a s in the
a b s e n c e of the f ie ld , i s of the o r d e r of the m e a n f r e e
path I (so that cr z z(B) « a z z ( 0 ) ^ a 0—the conductivity
for B = 0), perpendicu lar to the f ie ld A r o « r » ly, and
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the corresponding components ffk in strong field (r <^ I)
are markedly reduced. There is a marked anisotropy:
if either i or k does not coincide with z, o^ < aoy,
y - r / Z - B " 1 , y « l .

From the Onsager symmetry principle we have for
the kinetic coefficients: aik(H) = aki(-H). Then aii(-H)
= ffii(H) is an even function of y and consequently the
linear term in the expansion of <j\\[y) vanishes,

<~ UVV '
The components oxy, Oyx are also "peculiar." They

are obviously determined by the drift in crossed elec-
tric and magnetic fields, and this velocity is equal to
cE/B and is independent of the dispersion law.

Therefore*
oxv=%(±en)±-, (10.9)

where n, the number of carriers in a given band, is
taken with a plus sign for electrons and a minus sign
for holes, since the motion of a hole produces a field
in the opposite direction to a current of electrons. If
ne = nh> in the absence of collisions the drift current
(10.9) is absent, the term linear in H"1 in aXy vanishes,
and

(10.10)

As a result, using the Onsager principle,

(10.11)

= Pol - 6 , , [ ( l ^ ) v a , , ] V . 6 , , [ ( l - ^ ) + T ^ 1 , ] ,
631T"1 . — isaV"1 •

(10.12)
which coincides with the results of the exact calculation
(cf. t 2 ]). (It would not be difficult to give the analogous
arguments and obtain the asymptotic form for a and p
for open surfaces, and the Kapitsa law for polycrystals.
In the latter case one would have to take into account
that when the magnetic field is oriented at an angle
(TT/2) - cp to the axis of the crimped cylinder, e(p) = e
(Fig. 10) the path Ay ss r/(q> + y).

From the formulas we see the difference in principle
between the behavior of a conductor with and without the
magnetic field. In the latter case, all (nonvanishing in
the anisotropic case) components of the conductivity
tensor go to infinity with increasing free path (since
crut ~ 1). In the magnetic field, when I —• °° (so that the
magnetic field automatically becomes strong, r « ; I
-— °°), the components CTXX> ffyy> and for ne = nh, the
components crXy, oyx also, tend to zero, since they are
proportional to I'1 (according to the formulas given
above a0y

2 ~ I (r/J)2 ~ I'1)- There is an especially clear
distinction between the behavior of a bulky conductor
when H * 0 and H = 0 in the case of n e = %: for H = 0
the sample with an infinite free path is an ideal conduc-
tor (resistance p = 0), while for H * 0 it is an ideal di-
electric (p = °°).

FIG. 10

Curiously this leads to a minimum on the curve of
PH(T), where T is the temperature. In fact, so long as
I < r, p ~ r 1 along with I'1 decreases with decreasing
temperature. But when we reach I « r in a given mag-
netic field, further increase of I with decrease in tem-
perature leads to an increase of p ~ I.

In a nonuniform field the drift velocity depends on the
local characteristics of the orbit and the electron and
"hole" currents no longer compensate. As a result

a*v (i)'- (10.13)

where f(l) = 1, f(x) damps to zero over distances of or-
der unity (£ is along the normal to the conductor sur-
face). Near the surface the relation ffii(-H) = aii(H) is
not valid, and so o^x K ffyy ^ yoo-

If the sample is thin (thickness d <g; I) the main con-
tribution, even in the total current, comes, according
to (10.13) from a layer of order r near the surface,
and we have a static skin effect, predicted in L3Oi and
calculated in detail in C15]. The total current is indepen-
dent of the plate thickness.

We now proceed to construct a consistent theory of
the static skin effect. First we point out that even the
basic system of equations in the microscopic treatment
differs from the equations in the macroscopic case. l9 i

In the treatment of geometric effects and their influ-
ence on the current and field distributions in the weakly
inhomogeneous case, the relation between the current
density and electric field E = -V<p (since curl E = 0)
obviously remains the same as in the infinitely extended
metal:

j = aE=— oVip, (10.14)

where a^ is independent of the coordinates.
The fundamental equation for determining the field

distribution in the sample is the second order equation
for <p, the equation of continuity of charge in the static
case:

div j = 0, (10.15)

i.e.,

(V, av)<p = 0. (10.16)
The boundary conditions for this equation guarantee

the equation of continuity of the charge on the surface.
Charges do not pass through the surface of the conduc-
tor (their emission can be neglected to high accuracy),
outside the conductor j = 0, and so

j . = 0 (10.17)

(n is the internal normal to the conductor surface), i.e.,

0. (10.18)

*We are here discussing closed Fermi surfaces. The case of open
Fermi surfaces is treated similarly (cf. [31b]).

(In the general case where there are contacts present,
jn = in> where in is the current brought to the particular
point through the contacts.)
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For known cp the charge density is determined by the
equation

1 1 (10.19)

Because of the high charge density of the electrons
in a conductor, in lowest approximation we may take
(since p '<c p0)

P '=0. (10.20)

In a thin plate (d <C I), and for constructing a micro-
scopic theory even in the general case, the connection
between j and cp must be found from microscopic the-
ory, where, because of the inhomogeneity of the field a
is an operator in the coordinates. The conservation of
charge is guaranteed automatically in a correct micro-
scopic theory, and whatever cp (r), the operator a must
be such that (10.15) is satisfied automatically as a r e -
sult of the form of a.

In the microscopic theory the condition for reflection
of charges from the conductor surfaces must also be
such as to automatically conserve charge on the surface,
i.e., so that (10.17) is automatically satisfied.

As for Eq. (10.20), the microscopic theory naturally
gives not only a relation of j to cp, but also an integral
relation of p ' to cp. As a result (10.20) is an integral
equation for determining <p (and so requires no auxil-
iary boundary conditions).

In connection with the fact that (10.20) is the funda-
mental equation for <p, we give the justification for the
substitution of (10.20) for (10.19) in more detail. From
the definition (10.2) for p ' it is clear that p ' = ezyt,v,
where v s» n/e0 is a characteristic charge density, and
L. is a linear integral operator of order unity": hep « cp
(compare (10.2) with (10.1)). If cp changes over dis-
tances of order X, it follows from (10.19) that hep
ss (\0/\)

2cp, where Xo = (eV4iry )~\ In good metals with
a number of electrons of the order of one per atom, Xo
is of the order of the interatomic spacing 10"8 cm, in
bismuth type semimetals Xo « 10~7-10~8 cm; in extrinsic
semiconductors, even at such low temperature that de-
generacy becomes important, for n s» 1012 cm"3 and an
effective mass m « 10"29 gm, Xo « 10"6 cm (since Xo
»= m"1/'2n~1^8, it depends very weakly on n).

This means that keeping the right side in (10.19) is
only an improvement of accuracy even in the region
where the boundary condition for the electrons scat-
tered from the surface is "developing," so that, in
fact, (10.19) reduces to hep =0, which is formally
equivalent to (10.20). It is clear that the replacement
of E by D in (10.19) cannot change the character of the
estimates made. In varying fields the replacement of
(10.19) by (10.20) is equivalent to neglecting the dis-
placement current. It should be emphasized that p ' dif-
fers from the extremely small hep by a dimensional
factor, so to determine the value of p ' we must, after
getting cp from (10.20), use Eq. (10.19). (This corre-
sponds to the next approximation to the solution of
(10.19).)

The replacement of (10.19) by (10.20) also has a fun-
damental meaning. The point is that, as is clear from
(10.19), Xo determines the depth for attenuation of exter-
nal fields. This means that it is only to an accuracy de-
termined by the ratio Xo/X that we can speak of the re -
sistance as an internal characteristic of the conductor,

V

FIG. 11

independent of external electric fields. (For example,
by bringing a current-carrying conductor between the
plates of a condenser, and changing the potentials on the
condenser plates, one could to this accuracy change the
output of Joule heat in the conductor for a given current
strength and given contacts.)

Mathematically, having determined p ' inside the
sample as a function of cp and the external currents on
the surface, we arrive, according to (10.19), at a
Poisson-type equation, for whose single-valued solution
we should give the potential on the surface. Thus the
complete solution requires either the simultaneous as -
signment on the conductor of the current density and
potential, or giving the "outputs" beyond the conductor
and a treatment of the interior problem.*

We now proceed to the solution of this problem in the
lowest approximation in A/I (i.e., for I = °°) for a plate
0 < ? < d (Fig. 11). To find Ae appearing in formulas
(10.3a), (10.4a), we must determine the character of the
scattering of electrons at the surface. We shall assume
that the scattering is diffuse, i.e., after a collision the
particle "forgets" its prehistory and establishes a
Fermi distribution. (If the magnetic field is not too weak
(cf. Sec. 13), so that the de Broglie wave length is small
compared to the characteristic sizes of surface defects,
this assumption is valid.) But the corresponding distri-
bution is not in general an equilibrium distribution, but
has a different chemical potential. Its value will be de-
termined by the density of reflected particles, given by
the law of conservation of charge on the surface. But
this means identity of the fluxes of incident and reflected
particles, and not of their densities.

For diffuse reflection the energy 6e "in addition" to
e = e0 with which the electron emerges from a point of
the surface rg, is isotropic over angles and (since e
= e0) can depend only on rg. The energy acquired along
the path from rg to r (cf. Fig. 11) in the absence of col-
lisions (I = °°), is, according to (10.6),
-e[<p(r) - cp(rs)], so that

Ae = 6e(rsH-p[q>(rs) — <p (r)] - [h (rs) — q. (r)| e. (10.21)
h (rg) is an unknown function which must be determined
from the conditions for conservation of charge on the
surface, i.e., from the boundary condition guaranteeing
that (10.17) is satisfied.

If at a given "orbital" time t the electron is at the
point r and has a given p z (in the zeroth approximation
in E, t and p z , together with e = e0, uniquely determine
the state of the electron, i.e., its quasimomentum p),
then rg = rg(r, t, p z) and is found by identifying the path

*In particular, in the absence of external fields (except for emfs)
for D = E, because of the continuity of f and 3y/3n that follows from
the Maxwell equations, in determining <p we must require the vanishing
of ip at infinity. Then ' lm „ (Xo (dip/dn)) is finite.
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to the surface and the distance covered by the electron:

(10.21a)

where A is the moment of collision with the surface;
since the orbit when extended formally beyond the sur-
face may intersect the surface at several points, X is
the root of (10.21a) closest to t (less than t); it is clear
that the collision occurs with the surface on which vn

> 0 (where n is the internal normal to the surface.*).
In the case of a plate, Eq. (10.21a) reduces to

(for the definition of <p see Fig. 11).
This is sufficient to determine the difference of po-

tential from (10.24) and the current density from (10.23);
change of h by a constant does not affect them. The
function h(r) (which is needed only when £ = 0, d) can
be written in the form

0 vl(l)>0, I
d v, (X) < 0. J

(10.22)

The function h(rs) uniquely determines the current
density. Substitution of (10.21) in (10.3a) gives

j=2<vMrs)> (10.23)

and the potential <p; from (10.21), (10.20) and (10.4a) it
follows that

<P(r) = (10.24)

Since curl E = 0, Ex and E^ (the choice of axes is shown
in Fig. 11) do not depend on | , so that <p(r) = - Exx - E^rj

Thus, using (10.24), it is convenient to look for

(10.25)

We now determine h(£s). According to (10.17)

wn> = 0, (10.26)

2

h(0)-h(d)

where Xo is given, for electrons colliding with the sur-
face ? = 0, by

l(K) = W), >-<*. (10.22a)

and for electrons colliding with the surface £ = d, by

!(j.0) = |(t) + d, x<t. (10.22b)

From (10.22) it is clear that

vl(t)dt = vl(\)d\, (10.28)

which enables us to simplify (10.27) considerably:

(10.29)

*In the general case, the three equations (10.21a) together with the
equation of the surface G(rs) = 0 determine four quantities: rs (three
components) and X.

-—.= - ^ - ^ - (10-30)

Formulas (10.23), (10.24) (10.27) give the exact solu-
tion of our problem in any magnetic field (arbitrary
magnitude and direction). An exception is cp = 0, when
the result becomes meaningless. This is natural: when
<p = 0 there are always electrons whose orbits are
"shifted" in the plate, and which in this case move
without collisions and guarantee infinite conductivity.

We substitute (10.30) and (10.22) in (10.23):

7 = 2

sin <p

(10.31)

(10.32)

where K(t) is a function of t with period T. We note that
it follows automatically from (10.31) and (10.28) that

From (10.31)

h (1) = O«B (I) Ef, (10.33)

(a, |3 take on the values x, 77) where aa,fl(£) ~ r>

To calculate the current density from (10.31) it is
convenient to use the fact that K(x) is periodic in X with
period T, while X changes by an amount T when £
changes by v"|. We expand I^x*) in Fourier series in §:

then from (10.31)

where the superscript S means that the point is taken on
the surface, while the plus and minus refer, respectively,
to electrons reflected from the same surface (type I in
Fig. 11) or from the opposite surface (type II). Substi-
tuting (10.25) in (10.26), we find

/ .= 2 ia 1TR Va"l
Jo =vaK =

(10.34)

(10.35)

. (10.36)

Let us examine in more detail the case of strong mag-
netic fields: r <gc d.

Noting that vxx = 0 = vyy, £ <vxy ) = - Z/ (vyx) ~ ne

- n n , we find, for d > r ,

(10.37)

Let us explain the physical meaning of this result. If
the number of holes in a metal is equal to the number
of electrons, then j<* = 0, and the current at any depth
is related to terms of the type of (10.36). But because
of the p z integration, these terms oscillate and fall off
rapidly as we move away from the plate surface (be-
cause d 3> r). The main contribution to the total current
when r <§: d comes only from a surface layer with thick-
ness of order r near the surface (to see this one need
only compute the total current in a region far from the
surface of the plate). In lowest approximation in r /d
(i.e., as d - «) the current density on the surface is
zero, at a depth of order r it rises to a value of order
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FIG. 12.

necE/H, and at great depths i 3> r, it damps out, while
oscillating, in proportion to (ro/4) cos (4/r0); r0

= ( V 4 W (Fig- 12).
For just this reason the total current when ne = nn

is independent of the plate thickness and proportional
to r2. The current in "deep" layers of the metal leads
only to small Sondheimer oscillations,l3Z1 treated in
detail in L33\ for which we can get the exact formula
from (10.36). (When d ^> r they are not difficult to
calculate: in (10.36) the main contribution comes from
a region near the limits of the p z integration, i.e., near
the turning points p0.)

The damping of the current in the bulk of the metal,
shown in Fig. 12, is also a static skin effect. It occurs
only when n e = n^ and does not change the dependence
of the resistance on magnetic field. In fact, let us find
the resistance of the plate. To do this we must remem-
ber that even though the plate is long in the direction /j.
(even compared to d) it is still finite, so the total cur-
rent can only flow in the direction £ i fi, %, and J^
= / j^d/x =0 (the equation of continuity in integral form,
guaranteeing absence of a flux of charge through the
boundary of the plate in the fx direction). Since

R = E has the form

R(B, d);:\R(0, d)(±

and is independent of the plate thickness when ne = n^.
So far we have been discussing only the one-dimen-

sional case. From the presentation it is, however, clear
that the method described is applicable [ 3 i a j to a sam-
ple of arbitrary shape with arbitrary arrangement and
form of current lead contacts. The last question is of
particular interest, since it is connected with the focus-
ing of a current in a strong magnetic field. Then the
sample resistance also changes significantly. In par-
ticular, for contact dimensions small compared to r, it
is inversely proportional to the area of the contacts. :3ia:i

The scattering of electrons from surfaces is always
assumed to be diffuse. In semimetals it may be close to
specular (because of the large deBroglie wavelength*).
This leads'3 1^ to the Kapitza law—a linear dependence
of the resistance on magnetic field.

In good metals the reflection is, for this same rea-

*In semimetals there may be still another reason for specular reflec-
tion — the curving of the energy bands near the surface, at a distance of
the order of the deBroglie wave length from the surface: the resulting
potential barrier does not let charges through to it (cf. [69]). But if the
bending of the band forms a potential well, the charges do not pene-
trate from the surface into the bulk of the semimetal. In this case sur-
face levels appear, which can be detected from the resonance they pro-
duce.

son, almost specular for electrons colliding with the
surface at small angles (cf. Sec. 13). As a result there
is a possibility of determining the angular dependence
of the reflection coefficient from the dependence of the
resistance on magnetic field.

We have so far discussed only closed Fermi surfaces.
Open surfaces also lead to the appearance of a static
skin effect; the theory for this case was developed
in C3lb:i. Experimentally the static skin effect has been
studied for cadmium,C52] tungsten/533 indium and alumi-
numtM1 and bismuth.C54'55]

11. Alternating Fields (Classical Case). Low Frequen-
cies

It was shown in the preceding section that even a
weak nonuniformity can significantly change the res is-
tance of a conductor in a strong magnetic field (y <JC 1).
Since the term with the nonuniformity is proportional to
y, while the homogeneous term is proportional to y2, it
is sufficient for the characteristic distance associated
with the inhomogeneity to be of order ry"1 -C I. The in-
homogeneity may occur for various reasons. One of the
simplest ways of getting it is the skin effect. In this
case (as contrasted with the "ordinary" skin-effect,
which is determined by the conductivity in a uniform
field) it is natural to expect a different dependence of
resistance on magnetic field even at very low frequen-
cies, where the "usual" skin depth is of the order of
the free path:

8 » ~\/., Cl ,-^r < I. (11.1)

In good, highly pure, metals at low temperatures, when
I ss 1-3 mm, this corresponds to u>i ~ 1-100 sec.

It is clear from the start that the damping of the
field and current when to > a^ will have a very peculiar
character under the influence of the static skin effect.
The almost uniform electric field, just as in Sec. 10,
produces a current which drops mainly over distances
of the order of the Larmor radius r, as in Fig. 12. Be-
cause of the difference in the damping of the field and
the charge density, at not too high frequencies one can
solve the problem by successive approximations. One
must first determine the strength of the electric field.
So long as it changes over distances large compared to
r (this determines what we mean by "not too high fre-
quencies"), the character of the scattering of the elec-
trons from the surface is unimportant, and the presence
of the surface does not affect the conductivity tensor.
This permits one to continue the electric field into the
halfspace outside the conductor z > 0 and write

)= I 6(\z-z'\)E(z')dz'. (11.2)

As a result, the Maxwell equations in the one-dimen-
sional case

(11.3)

are quickly solved by going over to Fourier components
in the coordinates (where we of course take account of
the jump in E'a at z = 0, associated with the continua-
tion of E a as an even function):
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- k*Ea - 2Ei (0) = ̂  aai (k) Ej (k),

(11.4)

and

au (k) -^2\ cos (kt) au (z) dz, E (k) = 2 jj cos (fcz) £ (z) dz, (11.4a)
o o

where i and j take the values x, y, z. Having deter-
mined E(z) from (11.4), we must write the next approx-
imation—a formula for rapidly falling j (which depends
on the character of the reflection from the surface)
analogous to our procedure in Sec. 10. In the case of
interest, when E changes over distances large com-
pared to r, the term to take account of the surface re -
flection will be the same as in the static case. (Since
the characteristic distance over which a changes is r,
we can assume E to be homogeneous.) Thus the total
current J a is (cf. Sec. 10, n e = nn):

( l - 7 ) ^ a a 3 £ s ( 0 ) , (11.5)

where Zo is given by (11.4), J ^ is independent of u, I,
and q is the coefficient of reflection of charges from the
surface, which in strong magnetic fields at large skin
depths for good metals is probably close to zero (since
the angles at which the charges strike the surface are
not small).

Using the definition of impedance Ea(0) = Za^J^, we
find

neV-a(\-q). (11.6)

The order of ffa/3(k) is easily determined in the same
way as at the start of Sec. 10, if we remember that
tfa/3(k) = aafi(- k)- m lowest approximation, over a wide
range of frequencies, the impedance when q # 1 is inde-
pendent of frequency and coincides with the static r e -
sistance of the plate with I = °° when d — «°.

Without giving the results of the computation for the
whole range of frequencies and magnetic fields, we point
out the peculiar resonance at superlow frequencies,1353

which occurs for ne = nh in a magnetic field normal to
the surface (x, y) of the metal, when the surface coin-
cides with a crystal plane. In this case, because of the
symmetry of the problem, an electric field in the x, y
plane produces a current only in that plane, so that aaz

- aza = °> a n d i n (H-4) E z = °> while oap has the form

When

- = i (11.8)

the determinant of Eqs. (11.4) and (11.7) vanishes, and
the equations no longer have a solution. The reason is
a resonance of one of the principal values of Zo. To
calculate 20 near resonance, we must continue the ex-
pansion of aXy(y,k) = ayx(- r . k ) = °xy(y, - k ) :

cl2). (H-9)

(we point out the meaning of this expansion: it says for
example, that

U = o-o (y"anEx + y2a12Eu + yr'b^Ey + Vr4c12£jv), (11,10)

i.e., for I = °° the current density depends strongly on
the fourth derivative of the electric field with respect
to the coordinates!) The half-width of the resonance is
of order y1/2, the effective attenuation depth of the field
at resonance is ~ ry"1''4. Both the real and imaginary
parts of the impedance 20 (which also means, for spec-
ular reflection of the charges from the surface, Z) in-
crease by the factor y"l/4 at resonance. For reflection
other than specular, the weak spatial dispersion of E
results, as in the static case, in a strong spatial dis-
persion of the current density, which damps over dis-
tances of order r . As a result, in lowest approximation
in y the impedance is independent of frequency and co-
incides with the static resistance of the plate with I = °°
for d — °° and fixed q.C",es] In the next approximation
a dependence on w and a resonant contribution to the
impedance appears; at resonance it is of order y3/4;
the corresponding correction to Z'(B) is of order y1/4.
The resonance is extremely sensitive to the geometry
of the problem (as can be seen by considering the gen-
eral case).

The characteristic feature of the resonance is the
peculiar dependence of the resonance frequency on
magnetic field

ixi>o /
(11.11)

(where a>0 is the plasma frequency). The condition QT
> 1 means that frequencies

are sufficient, which agrees with (11.1).
The resonance is most apparent in the lattices of

cubic symmetry, when a12 = 0 in (11.7) and 0XV is com-
pletely determined by the inhomogeneity of the varying
field. Then the impedance is diagonal for a circularly
polarized wave:

E± = Ex±iEy. (11.13)

Equations (11.4) give

E± = ± ± (11.14)

and at resonance E^ in (11.14) vanishes, so one must
retain EJV.

Of particular interest in the nonresonant region is
the appearance of a skin effect of a new type, different
both from the normal and the anomalous skin effects:
the varying electric field on the one hand, and the vary-
ing magnetic field on the other, fall off over distances
of different orders of magnitude. This skin effect oc-
curs over a wide range of frequencies (or constant
magnetic fields) corresponding to 6 a n ^> r 3> 6n
(where 6n and 6 a n are the skin depths for the normal
and anomalous effects, respectively). Since it is of the
same kind as the static skin effect (cf. Sec. 10), in
which the electric field is uniform, but the current at-
tenuates into the depth of the metal, it is natural to call
it the surface skin effect. The theory of the surface ef-
fect is developed in C87:| (for a half-space) and W8] (case
of a thin plate).
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12. Quantum Oscillations of the Resistance of a Metal
(Shubnikov-deHaas Effect)

As was shown in Sec. 1 of part 1, in sufficiently
strong magnetic fields, when quasistationary diamag-
netic levels can be established,

Qx>2n\ (12.1)

and when the number of levels that play a significant
role is rigorously determined: the smearing out of the
Fermi energy is small compared to the separation be-
tween diamagnetic levels,

SQ>2n2r, (12.2)

quantization in the magnetic field leads to oscillations
in both thermodynamic quantities (de Haas-van Alphen
effect; cf. Sec. 1) and in kinetic quantities, such as the
resistance (Shubnikov-deHaas effect). Let us consider
the latter.

In order to picture the situation arising in this case,
we introduce (following C38a] (entirely formally, merely
for simplicity of calculation) a mean free time r. Then
the quantum kinetic equation for the density matrix n

n-----n0-'-n', (12.3)

(n = no(^o) is the equilibrium density matrix, 36Q is the
Hamiltonian operator in the absence of the electric field)
takes the form

(12.4)

where

3£ = 3Bt, — eEr. (12.5)
In the linear approximation in the electric field, sub-

stituting (12.5) and (12.3) in (12.4), we get
JL[da?0, n'] + jL-_=-L[eE?, »„]. (12.6)

Going over to matrix elements for a known spectrum
and using the fact that S£o and n0 are diagonal, and that

~ [r, n o ] n n - = ~ {«„ (£„•) — «o ( e n ) } rnn-

ft eft e(.- en , en

we find from (12.6)
no(en,) — no(en)

so that
" o ( e n - ) - « o ( e n ) «£"„»•

•£-(*»'-*/.)+4

£>»„-, ( 1 2 . 8 )

( 1 2 . 9 )

Since en' - en « (n' -n)M2, it is clear from (12.1) and
(12.2) that both the first and second factors in (12.9)
have a sharp maximum at n' = n.

We know that the diagonal matrix elements in the
quasiclassical case are equal to the time average of
the classical quantity, t36^ But, as was shown in Chap. I,
Sec. 1, the quantum oscillations are determined by the
sections of the Fermi surface that have an extremal
area, where the mean velocity of the electron vanishes
( s i n c e v x = v y = 0 , w h i l e

I ae \ c ae di c dP\
\ on lPz J 5/jz z>x j t*^!

Thus, it appears that the term which would give the
main contribution to the quantum oscillations drops out,
and that this is related to the uniform averaging over
the orbit, i.e., to the uniformity over space.

Consequently, the terms in (12.8) that are spatially
inhomogeneous, even though they appear small in the
equations, could be decisive for the resistance oscilla-
tions. (This was first pointed out in l3n.)

It is easy to understand that, strictly speaking, there
should be such terms in the kinetic equation, and then it
is clear from our remarks that it may be necessary to
retain them.

To be specific, we consider elastic scattering on im-
purities. In the classical case, conservation of energy
in the collisions is guaranteed by the delta function
6(e - €'), where in lowest approximation we may take
the energy in the absence of the electric field. In the
quantum case where, in crossed electric and magnetic
fields (E i H) stationary states appear, that correspond
to discrete levels for a given pz (z II H), we must write
6 (e - eEyy - e' + eEyy').

Then terms appear (inhomogeneous in the classical
case) whose contribution should be estimated. (The fact
that including the electric field in the collision integral
reduces to these terms was shown by Kosevich and
Andreev"8-1 using Bogolyubov's method."93)

It is clear that the corresponding terms on the right
side of (12.8) are of order (eEr/KJ2)(no/r) (since y « r).
On the other hand, the right side of (12.8) is of order
eEv(no/lifi)(An/no) ~ eEv(no/Kfi)(ffiVeo). Since in the
homogeneous field r plays the role of I in the nondiago-
nal terms in the conductivity, i.e., only the next approx-
imation in (Sir)"1 gives a contribution to the current, the
contribution from the usual right side of (12.8) to the
current is a term of order eEv(no/h"fl)(K$2/eo)(l/ftT).
Overall, the role of the "additional" inhomogeneous
terms is eo/fifl 3> 1 times as important as that of the
"usual" terms.

We emphasize that, as is clear from the above re-
marks, this is entirely due to the homogeneity of the
field. It is easy to see that in a significantly inhomo-
geneous field, in particular for the anomalous skin ef-
fect, one should not include the "additional" dependence
of the collision integral on the electric field (as is con-
firmed by direct computations).

The expression for the quantum integral for colli-
sions with impurities is easily transformed. The sum-
mation in the collision integral runs only over differ-
ences of quantum numbers: the shift of the energy by the
potential energy in the electric field has to be taken into
account, in the linear approximation in E, only in quan-
tities corresponding to the zeroth approximation. As a
result we get (cf. :38])

Aa"" * - i (12.10)

as—ltpz

The oscillations of the chemical potential give a small
contribution to the conductivity oscillations (cf. Sec. 1
of Part I). The other elements of the tensor Aaik can
be calculated similarly.

Thus the oscillations of the conductivity are ex-
pressed in terms of the oscillations of the magnetic
moment Mz, where the oscillation amplitude is deter-
mined in order of magnitude by the classical "mobility
tensor"
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P*) = Si pj = const, px<Px (13.2)
A consistent calculation of the conductivity tensor in a
magnetic field in the quasiclassical, as well as in the
quantum and ultraquantum cases, using diagrammatic
techniques, has been given by Abrikosov.C83:i

The construction of a quantum theory of thermomag-
netic phenomena can be carried through in a similar
quantum theory of galvanomagnetic phenomena, but r e -
quires the inclusion in the quantum case of the magnetic
moment that develops and affects the kinetic coeffi-
cients (in the same way as in the case of a varying field;
cf. Sec. 9, Part I).

13. Alternating Fields (Quantum Case). Surface Levels
and Determination of Coefficient of Reflection of
Electrons from Surfaces

Our whole discussion has been related to the quanti-
zation of the electron energy spectrum in a constant
magnetic field in an infinite sample. But it is of con-
siderable interest to discuss the character of surface
levels, since they can, in particular, give information
about the nature of the scattering of electrons from the
surface of the conductor. It is clear beforehand that the
character of the scattering is determined by the ratio
of the de Broglie wavelength X-Q of the incident charges
and the characteristic size of defects of the surface. In
good metals XQ is of the order of the interatomic spac-
ing, so that for small angles of incidence, the reflection
of electrons from the surface can be regarded as dif-
fuse. This means that the natural width of a level is
surely of the same order as their spacing (since it is
determined by the same frequency) and we cannot speak
of a quantization of the spectrum for such electrons. As
the angle of incidence <p decreases, the de Broglie wave
length in the direction normal to the surface increases
proportionally to q> "1, so that at sufficiently small angles
of incidence the reflection of electrons from the surface
can be regarded as almost specular.

Such a situation arises if the "glancing" electrons
are important. This is just what occurs in the anoma-
lous skin effect, when the effective skin depth 6eff
» (62l)1/3 is small compared to the mean free path I and,
in the absence of a magnetic field, angles q> « (6/Z)2/3

are important/41-1 which may correspond to cp a> 10"3.
In a weak magnetic field (r ^> I) at high frequencies,

angles, cp « (6eff / r ) 2 / 3 (Fig. 13) are important. Thus the
study of the quantization of the orbits shown in Fig. 13
is not of purely academic interest.

In the quasiclassical case the quantization of the lev-
els of electrons colliding with the surface in a magnetic
field parallel to it (for simplicity) is found from the
same arguments as is the quantization in the infinite
case (cf. Sec. 1, Part I), and leads to an analogous re -
sult (cf. for example m )

S(e, p2, Ps)=- (13.1)

(in weak fields the difference between H and B is unim-
portant), where S is the area of the orbit cut out by the
sample surface in momentum space. It naturally de-
pends on the conserved quantity P x , which determines
the position of the orbit (y = (c/eH) (px - Px)), and is
determined by the area of the section (y>0):

The area of the orbit in momentum space differs from
its area in coordinate space only by the factor (eH/c)2

(since it follows from p = e/cv x H that y = (cpx/eH)
+ y0, x = - (cpy/eH) + x0). For small cp, as is clear
from Fig. 13;

y=VmB.x — ax2, Jfa,ax=Zmai<P. a = R'1

(where R is the radius of curvature at the point
). s o that

(13.3)

!/max = -
Quantization of the area of the orbit gives a quantization
of the angles <p:

' 3 nch \l/3

Since R is of the order of the Larmor radius (e :

Since x = vxt ss vot, the period of revolution T«,
= 2Ax m a x /v x = 2R^>n(vx)~\ an<3 the frequencies
of revolution in such orbits are

The spacing of the corresponding levels is

Aen = %Qn.

(13.4)

(13.5)

n

(13.6)

(13.7)

The natural width of the level 6e is determined by the
time for a free path (6e)T « K/T and the deviation of the
scattering from purely specular reflection. If after
each collision the probability for diffuse scattering is q
(q <?C 1) then the number of orbits to lead to practically
complete scattering is (1 - q ) n « V2, n ~ 1/q and (6e)q
f» RI2n/q. Thus the necessary conditions for the exis-
tence of quasistationary levels (13.7) are

}(f,)cf, ^ ( w ) ' 3 ™ '/3 -̂  *' (13.8)

which can be satisfied in weak fields H if q [(WOT)"1^2]
<C 1. For n « 1 Eq. (13.1) gives a crude approximation;
since such n's may be important one can obtain a more

accurate formula for the levels in the case of interest
here (first done in C42]) using the expansion of e
= e (Px» Py) near the point e (px, py) = e0, vy(px, Py) = 0,
vy < 0, or Eq. (13.3), with the substitution

d
dpx

ich 8
eH ~dy

The result is

{-an) = 0, (13.9)

where Ai (x) is the Airy function (Ai"- x Ai = 0).
For the case where the Fermi surface is a cylinder,

(13.7), or the corresponding exact formula (13.9) for
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en - e m , directly determines the frequencies fi of pos-
sible resonances:

which are very small, do not depend on the skin depth,
and are proportional to w3/2 (Rw = en - £m corresponds
to the harmonic number of w relative to the classical
revolution frequency U: <JJ = (n-m)f2). The correspond-
ing magnetic fields are limited both from below (second
condition in (13.8)) and from above, since with increas-
ing H, <p increases ^>H1/3 while for sufficiently large <p
the reflection from the surface becomes essentially dif-
fuse.

In the general case of an arbitrary Fermi surface,
when en and KOnm = en - em depend on pz, resonance
occurs, as in the classical case of cyclotron resonance,
when p z = p0, when the frequency Q, deviates most slowly
from resonance: O'(p0) = 0. It is understood that specu-
lar reflection may, in sufficiently weak magnetic fields,
also affect classical effects, in particular, cyclotron
resonance, which disappears for q = l.C43] For this it
is naturally necessary that q [(6/Z)1/2] <C 1.

The half-width of the resonance is determined by the
natural width of the level (cf. above)

FIG. 14

• « 9 (<P»)-:-(<•«)"• ( 1 3 . 1 0 )

T h e r e l a t i v e h e i g h t o f t h e r e s o n a n c e i s e s s e n t i a l l y d i f -

f e r e n t f o r c y c l i n d r i c a l a n d n o n c y l i n d r i c a l F e r m i s u r -

f a c e s . S i n c e i n t h e l a t t e r c a s e o n l y t h e e l e c t r o n s i n a n

i n t e r v a l A p z / p 0 « ( A a i / t i ) 1 / ! p a r t i c i p a t e i n t h e r e s o -

n a n c e ( s i n c e Q <*> ( p z - p 0 ) 2 ) , t h e r e l a t i v e h e i g h t o f t h e

r e s o n a n c e w i l l b e c o r r e s p o n d i n g l y s m a l l e r .

A n o t h e r i m p o r t a n t p o i n t i s w h e t h e r o r n o t t h e r e s o -

n a n c e o r b i t s h i f t s w i t h i n t h e s k i n l a y e r , s i n c e t h i s ( i . e . ,

t h e q u a n t i t y ( K f i / e o ) 2 / 3 r / 6 ) a f f e c t s t h e e f f e c t i v e p a t h i n

t h e f i e l d a n d t h e r e l a t i v e n u m b e r o f e l e c t r o n s a c c e l e r -

a t e d i n t h e f i e l d . I n t h e q u a s i c l a s s i c a l r a n g e ( n ^ > 1 )

a n e x a c t f o r m u l a c a n b e g o t t e n f o r t h e i m p e d a n c e . W h e n

B w < C T i t l o o k s e s p e c i a l l y s i m p l e , s i n c e w e c a n t h e n

u s e t h e c o r r e s p o n d e n c e p r i n c i p l e , r e p l a c i n g , f o r a r b i -

t r a r y q i n f o r m u l a s ( 9 ) a n d ( 1 0 ) o f U i \ 1 / T b y 1 / T

+ i o ) , a b y ° ° , t h e " c l a s s i c a l " i n t e g r a t i o n o v e r <p b y

a " q u a n t u m - m e c h a n i c a l " s u m m a t i o n o v e r cpn, a n d

t a k i n g E ( / i ) u n d e r t h e i n t e g r a l s i g n . F o r K w > T ,

•j^- is replaced by K(ek+k<) - no(ek)]/(ek+k, - ek),

where k is the set of quantum numbers (n, p z , Px).
It is of particular interest to get the shape of the

resonance curve for arbitrary q(cp) (in the quasiclas-
sical case, this is not difficult, using our remarks
above). Comparison of experiment with theory would
enable one to get information about the form of q (<p).

Actually the transition from a resonance orbit shift-
ing in the skin layer to a nonresonant orbit, which af-
fects the shape of the curve, allows one to determine
R from the relation ymax = R<Pn °° ^eff (where 6eff is
expressed in terms of the impedance), since R<pn
~ R1/3; cf. (13.4). According to (13.6) the resonance
frequencies give vx . Knowing R and vx, we can from
the dependence of the resonance width on n when WT
» q - \ find q(cp) (cf. (13.10)).

A tilting of the magnetic field weakens the resonance
for Pz = 0 (the electrons will penetrate into the depth of
the metal, carrying out nonperiodic collisions with the

FIG. 16

surface of the metal). However, the presence of a new
parameter—the inclination of the field, increases the
information obtainable (especially for resonance when
p z = 0, when there is no drift in the bulk of the metal).

Analogous effects are also possible in superconduc-
tors/4 2 '7 1 1 V. G. PeschanskiiEsi: called attention to the
existence of a classical resonance in weak fields in a
thin (thickness d <C I) rigorously plane-parallel plate
at frequencies corresponding to VRd/v0 = 2irn/ti>, when
H =« (w/n)2. The nature of the resonance is clear from
Fig. 14. This effect can also be used for determining
q {(p), since the resonance has a half-width
[y + q (ya VR/d)]. For finding q (<p) there are other
useful effects, sensitive to the angle of collision of the
electrons with the surface. The search for and study
of these effects, which are of great interest, is essen-
tially only just beginning.

The resonant oscillations described in this section
were discovered by KhaikinC45:1 and then observed by
Koch and Kip:463 and Koch and Kuo.:47] The first clas-
sical explanation, relating the oscillations with elec-
trons that do not collide with the surface, was proposed
in W6:. KhaikinC48] pointed out the decisive role of elec-
trons reflected specularly from the metal surface; van
Gelder:49:l noted the purely quantum character of the
oscillations and obtained the correct frequency depen-
dence of their period; in [42J the resonance period was
discovered and a qualitative theory was given; in :56:

the quantitative theory was given; in iS71 there is a
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quasiclassical computation of the surface levels, an
experimental study of the oscillations in bismuth and
a comparison with the theory. A detailed survey of ex-
perimental and theoretical work on diamagnetic surface
levels was given in [58].

Figure 15 shows the results of the first experimental
observation115-1 of surface oscillations on tin at T = 3.8°K
at a frequency u = 9.4 MHz (H II C41 N II C2, J II C2);
Fig. 16 shows the detailed picture of the oscillations
observed"" in bismuth (T = 1.7 °K, u = 9.7 MHz, H II Cx

1 N II C3). In both experiments, -^j-(In X) was deter-

mined as a function of H (X is the imaginary part of
the surface impedance).
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