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I. INTRODUCTION

IN 1967, Herman and Gray[‘] considered a new type of
stimulated scattering of light (SS), which differed qual-
itatively from those previously known. The mechanism
of this SS is peculiar to absorbing media and is due
entirely to the presence of absorption.

The occurrence of the additional SS in absorbing
media (we shall henceforth use the abbreviation SSA) is
easiest to explain in the following manner. Assume that
two waves propagate in an isotropic medium: a power-
ful laser wave Ef,(r)exp(-iwpt) and a ‘‘signal’”’ wave
Eg(r)exp (-iwgt). If the absorption spectrum is broad
enough and the absorption coefficient g is constant in
all the frequency intervals of interest to us, then the
power Q(r,t) released per unit volume is propor-
tional to the instantaneous value of the square of the
modulus of the total field | E(r, t)|®. Therefore the
expression for Q(r, t) contains the interference term

Q' (v, t) = (cnf/8n) Eg (r) Ef (r) exp (i€¢), (1)

where n is the refractive index and § = w[, - ws.

This term, obviously, accounts for the periodic varia-
tion (with frequency ) of the properties of the medium,
including the change of dielectric constant €.

Without specifying concretely the real processes
responsible for the change of € (these may be the
thermal expansion of the medium, the change of the
populations of the molecular levels, etc.—see Ch. II)
and assuming for simplicity that the fields E,(r) and
Eg(r) are linearly polarized plane waves:

E; (r) o exp (ikpr), Eg(r) oo exp (ikgr),

we write down the connection between 6€ and Q' in
general form

de(r, t) L (%, air) Q' (r, t)

= (cnP/8x) exp (iQt) Eg (r) Ef (r) L (iQ, iq),

2)

where L is a linear operator determined by the prop-
erties of the medium, and q = kg - k..

As a result of the scattering of the laser wave by
the increment 6€¢, there appears in the electric-induc-
tion vector an additional term
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D’: :8eE; (r) exp (—iw t) =
== (cnP/8) (eser) er | Ep (r) # L (iQ, iq) E; (r) exp (— iwy L Q)

3)
where e[, and es§ are polarization unit vectors. Inas-
much as w], - © = ws, the right side of (3) is propor-
tional to the signal field Eg(r)exp(-iwst). We there-
fore have for the components of the total electric-
induction vector at the frequency wg

i X e (E, (4)
where
e~ egdun - (cnB 8m) | By [* (eres) (er): (es)s L (2. iq) (5)

and €, is the dielectric constant of the medium without
the field. Thus, the propagation of the ‘‘signal’”’ wave
in the presence of the laser field can be described by
the effective dielectric constant eielff from (5). The ad-
dition to €, is proportional to 8| EL[Z, i.e., it is es-
sentially connected with the presence of absorption and
increases linearly with increasing laser-field power.
We assume further for simplicity that ey, ii e and

e off — gy (enf Sy | By 2 L (19, iq). (6)

As is weli known, the imaginary part of the dielec-
tric constant is determined by the dissipation of the
electromagnetic energy in the medium. Since
Im €, = cn B/w, it follows from (6) that

Imeoff = (cnP/w) [1-- (0/87) | E, 2 Tm L]. (7)

The quantity Im L can be either positive or negative.
In the latter case, the second term in (7) at low inten-
sities | Ey, |® leads to partial compensation of the ab-
sorption, and it may become larger than the first term
when |Eg,|? increases. The absorption then gives way
to amplification.

For the corresponding threshold intensity of the
laser field Ithr = (cn/8miw) | ET, |*(quanta/cm?sec)
and the gain g ~ Im €®if we obtain from (7)

I (cn/hw) (—w Lm L)L, (8)
g=BI(IL/1E")—11. ©)

From (8) and (9) we get 2 number of remarkable prop-
erties of the considered SS mechanism, which disting-
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FIG. 1. Elementary quantum processes describing the spontaneous
and stimulated scatterings of “ordinary” type. In process a) a laser
quantum is absorbed and a signal quantum is generated, while the ex-
cess energy is transferred to the medium; process b) is the inverse.

uish it strongly from all other (ordinary) types of SS.
Before we proceed to discuss the peculiarities of SSA,
it is useful to recall a number of basic properties of
ordinary types of SS. (For convenience, Appendix 1
contains a derivation of the corresponding formulas.)

The ‘‘ordinary’’ types of spontaneous and corre-
sponding stimulated scattering are described in quan-
tum mechanics by the transition np, ng — ny, - 1, ng
+ 1, where nj, and ng are the numbers of the quanta
of the laser and signal fields. The corresponding
probability is given by the square of the modulus of
the transition amplitude M o» nl‘ﬁz(ns + 1)Y2 (Fig. 1a).
The medium goes over thereby into a state with energy
E, =E, + li(w], - wg) = E; + Q. The probability of
such a transition is given by w = Al (ng + 1), i.e., it
contains two parts: spontaneous AIr, and simulated
AILng. As a result, the following universal connection
exists between the intensity of the spontaneous scatter-
ing and the gain g, for the SS

go=[(27)%/k*} I, (dR/do dw) [1 — exp (— RQ/ET)]; (10)

here dR/dodw is the differential effective cross sec-
tion for scattering of light by a unit volume (dR has
the dimension of cm™), and © = wy, — wg is the fre-
quency difference between the incident and scattered
photons. The last factor in (10) appears as a result of
the balance of the direct (Fig. 1a) and inverse (Fig. 1b)
processes (w], — w§, wS — wI,). Because of this
factor, gain is possible only in the Stokes region
Q>0.

The role of absorption in the case of ordinary types
of SS reduces simply to a decrease of the effective
amplification, so that the true gain is g =g, ~ 8.
Therefore, say in an absolutely transparent medium
(8 =0), the gain of the Stokes component of scattering
takes place for arbitrarily small values of Iy, (i.e.,
ItI_l"r =0). When 8 =0, we have ItLhr ~ B. Therefore,
although g(Iy,) is given by formula (9) also for ordi-
nary types of SS, the value of g does not depend on B
when I, > I"Lt“r .

The SSA process considered above does not have
such properties.

First, according to (8), the threshold intensity I%‘r

of the SSA effect does not depend on 8, and the ampli-
fication of the signal wave has jtself principally a
threshold character. At Ip, > Itﬂ“' , on the other hand,

the gain g for the SSA is proportional to .

Second, depending on the form of the function
L(i®, iq), the gain connected with the SSA can occur in
both the Stokes and the anti-Stokes region. As shown
in Ch. I, in a number of concrete cases the gain is
realized in the anti-Stokes region.
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Third, the SSA phenomenon does not correspond to
any spontaneous-scattering process connected with it
by relation (10).

Relation (10) is derived (see Appendix 1) from the
most fundamental principles of quantum mechanics.
This raises very acutely the question of the very nature
of the SSA effect within the framework of the quantum-
mechanical description, and whether the classical
analysis presented above contradict quantum mechan-
ics. The present article is devoted to a discussion of
this entire group of problems connected with the speci-
fic nature of the SSA phenomenon.

First, in Ch. II, we consider within the framework
of the classical scheme described above the different
concrete SSA mechanisms connected with thermal
conductivity, hypersound, and excitation of individual
molecules. In Ch. III we present a quantum-mechani-
cal description of the phenomenon, It is shown here
that this phenomenon can be described as the result of
a unique interference between the matrix elements of
the first and third orders of perturbation theory. This
in fact is the cause of all the differences from the
ordinary types of scattering. Chapter IV is devoted to
a clarification of the role of absorption in spontaneous-
scattering processes. It is shown that the SSA process
corresponds to a definite noise scattering which does
not vanish at Ig = 0, and therefore plays the role of a
spontaneous process. This scattering, however, turns
out to be proportional to Ii and is connected essen-
tially with the shot noise of the quantum-absorption
process.

Throughout the article, the field of the laser is as-
sumed to monochromatic. A generalization to the case
of a non-monochromatic laser field can be found in!%?],
The result of this generalization reduces to a convolu-
tion of the gain (and also of €eff from (6)) with the
spectrum of the laser. It should be noted that such a
procedure for taking into account the laser spectrum in
the case of large gain (exp (gl) >> 1) is, in general,
insufficiently well founded. We shall not touch upon
this question, all the more since it is not peculiar to
the SSA effect, and arises in practically all stimulated-
scattering problems.

We shall likewise not touch at all upon problems of
propagation and generation of the ‘‘signal’’ field in
space and in time. The status of this question is dis-
cussed in detail in a recent paper by Starunov and
Fabelinskii [2], devoted to a detailed analysis of differ-
ent aspects of stimulated scattering.

II. CONCRETE TYPES OF SSA

In this chapter we discuss briefly three concrete
mechanisms of stimulated scattering induced by ab-
sorption: temperature (entropy) scattering, scattering
in the region of the Mandel’shtam-Brillouin doublet,
and scattering connected with the change of the
polarizabilities of individual molecules as they are
excited.

1. Stimulated Temperature Scattering Connected with
Absorption (STS-II)

The simplest type of SSA is connected with the
heat-induced change of the dielectric constant of the
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medium. We shall consider heating of the medium only
as a result of absorption of light. The corresponding
scattering mechanism is designated STS-II in the
review [2], to distinguish it from scattering occurring
when the medium is heated by the electrocaloric effect
(SRS-I). The STS-I phenomenon pertains to the
“‘ordinary’’ type of stimulated scattering; it is con-
nected genetically by relation (10) with the unshifted
(entropy) component of the spontaneous scattering. We
shall therefore not consider it.

It is customary to refer to stimulated temperature
{entropy) scattering of light in the case when the
changes of the temperature occur at constant pressure,
In order for the pressure to have time to become
equalized it is necessary to satisfy the relation
T >> 1/vac, where vac is the speed of sound in the
medium, 7=|Q|™, and I = [q|™ = |kg - k.| are
the characteristic temporal and spatial scales of the
temperature variation. Thus, we assume that

| Q] <€ Qup, (11)

where QMB = | 4| Vac is the frequency-shift upon the
Mandel’shtam-Brillouin scattering. When (11) is satis-
fied, the change of € is given by the relation

dr

e = (ﬂ)]‘ §7. (12)

ar
and the change of the temperature obeys the thermal-
conductivity equation

aT 1

— eV =—
ot pocy

Q(r, 1); (13)
here k is the temperature conductivity coefficient, and
po and cp are the density and the specific heat of the
medium,

It follows from (12) and (13) that the operator 1.,
which connects 6€ and Q (see formula (2) of the intro-
duction (Ch. I)), is equal to
1 1

a e —iQ T
L= (), i = (ar), oo (14)
where I' =T'(q) = kq® is the damping constant of the
thermal wave with wave vector q = kS - k..

In most cases (8¢/@ T)p < 0, corresponding to
thermal expansion of the medium; then the gain (Im L
< 0) is realized in the anti-Stokes region (Q < 0). For
the threshold intensity we obtain from (8) and (14)

Ilthr .o _puup 2 5-Q2 i (15)

hw ot ®Q
(7).
and the gain is given by the general formula (19). The
minimum value of I (or what is equivalent, the max-
imum gain) is reached at || = I'. The sign of © at
which the gain occurs coincides with the sign of
(ae/BT)p. The frequency dependence of the gain at

I, >» Iglr is shown schematically in Fig. 2a, where the

STS-II phenomenon corresponds to the central part of
the diagram. For comparison, Fig. 2b shows the form
of the gain corresponding to the ‘‘ordinary’’ types of
SS, and the central part of the diagram describes
STS-1. We note that the functional form of g($2) is the
same for STS-I and STS-II; for scattering in the region
of the Mandel-shtam-Brillouin doublet, as will be seen
from the next section, the situation is different.

We note that when light is absorbed by molecules it

may turn out that a noticeable fraction of the absorbed
energy goes into chemical transformations, and only a
fraction 4 <1 goes directly into heat. In this case it
is necessary to substitute in (13) (and also in (20) be-
low uQ in place of Q, and as a result the threshold
intensity increases by a factor p~%.

2. SSA by Sound Waves (Mandel’shtam-Brillouin
Doublet)

Let us consider now the SSA connected with the ex-
citation of sound waves as a result of thermal expan-
sion of the medium in inhomogeneous heating
(exp (iQt + iq-r)). In analogy with the case of thermal
waves considered above, the excitation of sound waves
may be connected with other mechanisms, namely, with
thermal expansion of the medium upon absorption of
light and with the electrostriction effect; the latter
corresponds to ‘‘ordinary’’ stimulated Mandel-shtam-
Brillouin scattering, which we shall not consider.

The change of € in the sound wave can be repre-
sented in the form

68"(3—;)86p(r, t). (16)
The linearized equation of hydrodynamics is

a2p

—(H—szzp, (17)
where p is the pressure. Neglecting the initial damp-
ing (we shall introduce it later), we write

b0 (2) bp1-(42) 55

(18)

here (8p/dp)g = szlc, and the change of entropy &s is
connected with the absorbed power by the relation

o7t [ aQ (e, 1), (19)
where T is the absolute temperature. The equation for
dp(r, t) is obtained by substituting (18) and (19) in (17):

PGV R 9 (S2) v @ e, 0 (20)
we have added here a term proportional to R, describ-
ing the absorption of sound (see, for example,m, Sec.
5). It follows from (20) that the operator L has in this

case the form

Lo AQ up/[iQ (R — Ryp— iROGY)], (21)
where . , .
ap 3

S (%), (%), (22)

QOMB - Vac| 4 - (23)

The effective excitation of the sum occurs at ||
~ QMB- Putting @ =+QMB + A, we obtain from (21)

L=~ (4/2) (iA--D)Y (21a)
in this case the threshold power is equal to
I Qenihaod) 22T (24)

wA
The constant A can be transformed to more conven-
ient variables, using the thermodynamic identities.

First . o 1 "
W(W)p‘*mﬂﬁ)n- (25)
Further

(%), ) (), ().

(26a)
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(), L), (),
In this case the two terms in (26a) describe the
changes of the dielectric constant € due respectively
to the oscillations of the density and of the temperature
in the sound wave. Taking (25) and (26) into account,
we obtain

(26b)

g L), GR)): (27)

The approximate form of the dependence of the gain g
on the frequency shift @ = wy, ~ wg is shown in Fig.
2a. It should be noted that unlike the ordinary SMBS
(see Fig. 2b), for SSA-MB gain takes place both in the
Stokes ( = +MB + A) and in the anti-Stokes

(2 = -QMB + A) regions. Another difference between
SSA-MB and ‘“‘ordinary’’ SMBS is that for SSA-MB the
maximum of the gain occurs not at the center of the
line (A =0), but at the point | A | = I'MB. A clear
explanation of this circumstance is that the thermal
expansion and the electrostriction give rise to sound
waves having a relative phase shift 7/2. The phases
of the corrections to the dielectric constants, neces-
sitated by these two effects, are therefore different
(for ‘‘ordinary’’ SMBS the quantity 6€ is proportional
to i2/(iA +T') as against 1/(ia + ') for SSA-MB),

For greater clarity, we have considered separately
stimulated scattering by isobaric changes of €, i.e.,
by thermal conductivity waves (see Sec. 1 of Ch. II),
and stimulated scattering by adiabatic changes of ¢,
i.e., by acoustic waves. In a more rigorous approach,
these changes must be taken into account simultane-
ously (seel’»?1), Naturally, the results of the rigorous
analysis for |Q | < QMB and for |Q|= |QMB| coin-
cide with those given above.

We note that recent papers!® and (] are devoted to
concrete types of SSA. The authors oft*l consider the
possibility of observing SSA by second-sound waves.
In'®] is discussed the influence of the finite time of
thermalization (conversion of absorbed energy into
heat) on the course of the SSA processes.

3. SSA Following Excitation of Molecules

We now consider the SSA connected with the differ-
ence between the polarizabilities of the individual
molecules in the ground state (a) and in the excited
state (b).

This example is of interest to us also because we

VAN A\
Y Vi

A

I
|
~
Dy Qg =2

b

FIG. 2. Schematic form of the dependence of the signal gain g on
the frequency shift £ = w, - wg at Iy, > I thT: a) for SSA, b) for
ordinary types of stimulated scattering. The simple components cor-
respond to stimulated temperature scattering, and the lateral compo-
nents to the Mandel’shtam-Brillouin doublet.

ZEL’DOVICH and I. I.

SOBEL’MAN

shall use an analogous model in Ch. III below, devoted
to the quantum mechanical description of the SSA phe-
nomenon. For the number np (cm™) of the excited
molecules we can write the equation

a;t" +Tnp=nuQ (r, O/hw; (28)

here the dimensionless parameter u < 1 describes
the efficiency of excitation of the state (b) of interest
to us upon absorption of a quantum, while the constant
I' describes the relaxation of the population from the
level (b) to the level (a).

From (28) we obtain

o u de 1
L= 5 G (29)
,ﬂ““,ﬂ de \-1T2 Q2
T 2 (anb) Q- (30)

As an approximate estimate we can take for 9€¢/dnp an
expression that follows from the Lorenz-Lorentz
formula

(aa—,;):/;n(ab—aa)(n2;2)a, (31)
where wy and ap are the polarizability of the mole-
cule in the states a and b respectively, and n = €2 is
the refractive index. Then (30) takes the form

Iglr n ¢ T2 .+ Q2 )

- (30a)
1 [(n2-F2)/312  4n (op —oty) Qw

We note Mack!®! observed a stimulated scattering
connected with absorption with picosecond pum?ing.
The interpretation of this scattering, given in!®, is
close to the scheme described above for SSA by mole-
cules.

Ill. QUANTUM MODEL OF SSA

As was noted in the introduction (Ch. I) and il-
lustrated by the concrete examples in Ch, II, the SSA
phenomenon differs greatly in its properties from the
“‘ordinary’’ processes of stimulated scattering. This
pertains in particular to violation of the universal
connection between the gain and the cross section for
spontaneous scattering (formula (10)).

This means that the gain of the signal wave in the
SSA phenomenon certainly cannot be due to simple
two-photon scattering processes of the nl,, ng — nr,_;,
ng + 1 type (see Fig. 1), for in the latter case relation
(10) must be satisfied (see Appendix 1).

On the other hand, for any process in which more
than one quantum w], takes part, the square of the
modulus of the matrix elements proportional to n}

o 12L and to higher powers of I1,, in contrast to the
linear dependence g(I,) in (9). Nonetheless, as will
be shown below, the SSA phenomenon with all its char-
acteristic features finds a relatively simple explana-
tion within the framework of the quantum-mechanical
description of the processes of proton absorption and
production.

In this chapter we present a quantum-mechanical
analysis of the scattering of the fields wy, and wg by
an individual atom (molecule) and show that the SSA
effect arises even for such a very simple system in
the case when the frequencies wy, and wg fall in the
absorption line a — b.

Let us consider the increments of the signal-field
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FIG. 3. Absorption of signal quantum in first order of
perturbation theory. The molecule goes over from the state
a to the state b.

e

energy due to the interaction with the molecule. We
shall assume that prior to the turning on of the inter-
action the molecule is in the ground state a. In the
absence of the field wy,, the interaction reduces to
absorption of the photon wg, described by the matrix
element M} = V&Bng"’ (Fig. 3). In the presence of a
strong field, there are added a number of processes,
including:

1) the scattering wy, — wg and wg — wy, by the
ground state of the molecule (see Fig. 1);

2) different multiphoton processes accompanied by
a — b transitions of the molecule (including processes
in which the photons wg are both absorbed and
created).

Processes 1) will not be considered below, since
they correspond to the ‘‘ordinary’’ types of scattering
and have been thoroughly investigated; where necessary,
we shall make use of published results. We shall focus
attention on molecular transitions a — b correspond-
ing to the absorption line, and ascertain the effect to
which the presence of the strong field wy, leads.

Processes 2) alter the matrix element M;‘t; of signal-

photon absorption, inasmuch as the transition (a, ng)
— (b, ng — 1) can now be accompanied by virtual
vanishing and creation of photons wy,. We therefore

have for the matrix element MX;B

M) VinE - Vidnnd (32)
where Vg}?) is the matrix element of m-th order of
perturbation theory; the quantities n1, £ 1 have been
replaced by nr..

In addition, in the strong field wi,, the molecular
transition a — b can correspond not to vanishing but

to creation of a photon wy,. For example, one signal
photon is produced and two w], photons are absorbed

in the third-order process a, ng, nf, —~ b, ng + 1, n1, - 2,

The matrix element of the a — b transition accom-
panied by the production of a photon wg is
MY =Un, (ns+ D42+ ... (33)
Examples of transitions corresponding to V‘ai; and
U{) are shown in Figs. 4 and 5.
The energy increment at the signal-field frequency
wg is
QS = Ao (w(':‘*)__w(—))’ (34)
where W o | MG |*. Using (32) and (33) we obtain,
accurate to terms of third order inclusive,
Qoo —ng { |V 24 20 Re (VP9

-{—ni[IV”)

2

(35)

2_|U(3) 2]}—‘,-nf|U(3)

The first correction for the strong field wy, in (35),
proportional to nyng, is given by the interference of
the terms of the first and third orders. The correction
term proportional to nins contains the difference

FIG. 4. Absorption of a signal
quantum in third-order perturba- b
tion theory (in this case the laser
quantum is virtualty absorbed and L
emitted).

FIG. 5. Emission of a signal s
quantum in third-order perturbation L
theory with absorption of two laser
quanta. z

| V¢ % - | U® |? and, as will be shown below, does not
play an important role in the model under considera-
tion.

Depending on the sign, the interference term can
lead to either enhancement or to weakening of the ab-
sorption. At sufficiently large np, the absorption can
give way to amplification, corresponding to the SSA
phenomenon considered in the introduction (Ch. I).
Indeed, this gain, which is linear in ny, and propor-
tional to the cross section of the ordinary absorption,
has no corresponding spontaneous scattering; the
spontaneous production of the photons wg (at ng = 0)
is proportional here to n},.

Thus, the SSA process can be described in the
language of photon emission and absorption as a change
of absorption as a result of interference of terms of
first and third orders of perturbation theory (see Figs.
3 and 4). We recall that the usual types of SS (and the
associated ordinary types of spontaneous scattering)
are described by the square of a second order term
(see Fig. 1).

Before we proceed to further discussions, let us
obtain concrete formulas describing the processes in
question. Let the molecule have two continuous groups
of levels a and b with a density of states

dN, Ty N, Ts
dF AhAE —Eg)2/me T2y °  dE  ahi(E—Ep)h?] T}

- . (36)

We assume that the absorption in the a — b transi-
tion is the result of a sufficiently weak forbidden
transition, and that the polarizability of the molecule in
the states a and b is determined mainly by the levels
¢, which are dipole-coupled to levels a and b. Under
these assumptions, the contribution of the a — b
transition to the polarizabilities aa and ay, is small:
|6 (a = b) K |@a|ap|, and the quantities ay and
ap are real. We shall henceforth assume also that the
average frequency of the a — b transition coincides
with the frequency of the laser field: (Ep - Ey)/h = wr,.

Let the signal field contain ng quanta and the laser
field ny, quanta, np, 2> 1. It is convenient to express
n, in the final formulas in terms of |EL |

Under the foregoing assumptions, it can be readily
shown that the absorption in the aforementioned ab-



312 B. I.

sorption and emission matrix elements, which corre-
spond to transitions from the initial state a with
energy E,; = E5 + hiv, are equal to

MG = MG O+ MDD = H (ng)s [ 1 — el gl i,

4h(v—QFiTy,) ~ 4R (vFilp)

(37)
() arl)(3) __ 1/2 o | Ey |2 ap| Ep|?
M = MGPD - H (05 + )" [ — g — =] (38)

where the first-order matrix element H is equal to

H =mgp (8ha/V) 272 (39)

Calculating further the probabilities of these transi-
tions with the aid of the standard formulas of pertur-
bation theory and averaging them over the distribution
(36) for the initial state a, we get

dN,
dE,

(40)

N
dE: 35

wm:S ;’dE2|M(‘U|2%8(v$Q~p),
where E; = E; + v and E; = Ep + hu. Substituting
(37) and (38) in (34), we obtain an expression for the
transfer of energy to the signal field. We write this
expression in the form similar to (35):

_. _ noHz T 1
Qs = % Tszwrrzns{l
| EL |2 [ QT (Tp+-3l'g) QT (T --310%)
+ 2 @ T4 I @14 T2 ]
, Mok T 4
HEL P @—| Bl F @} + 5 g | Bl F ()

(41)
we have introduced here the absorption line width for
the a — b transition I' = I'y + I'p, and F(Q) is a
function of the frequency, but its explicit form will not
be needed.

Expression (41) contains two parts: one propor-
tional to ng and responsible for the stimulated transi-
tion, and one independent of ng namely the spontaneous
noise. The first of the terms proportional to ng cor-
responds to the ordinary absorption (the term | V'V |?
from (35)). The second term determines the contribu-
tion of the interference of the matrix elements with the
first and third orders; depending on the parameters
that enter in this term, it may turn out to be either
positive or negative. The term proportional to
ng|EL|*, corresponding to the difference |V¢®|?

- | U®|? from (35), vanishes.

Such an exact compensation in the model in question
is connected with the concrete choice hwy, = Ep — Ej.

As already mentioned, the gain connected with the
SSA arises when the interference term in (41) becomes
larger than the first term. Simultaneously, the term
| M7 |2 is also of the order of the first two. This
term, however, is completely cancelled out in (41) by
the square of the matrix element |M$" |?, which is
responsible for the photon production process.

Thus, the sign and magnitude of the gain are deter-
mined only by the ratio of the first and interference
terms in the absorption probability, terms propor-
tional to ng but not to ng + 1, as would be the case
for the production probability. This indeed corresponds
to the violation of the universal connection between the
spontaneous scattering (the term 1’ in (ng + 1)) and
the gain, All that is left of the matrix element for the
production of the photon wg in (41) is the last ‘‘spon-
taneous’’ term, which is furthermore proportional to
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|EL|*~ Ij,. The spontaneous noise will be discussed in
greater detail in the next chapter.

Let us determine the threshold intensity of the SSA
phenomenon. Assuming, for simplification of the
formulas, that T'y = I'y, we get from (41)

i e @42 Ao
7R T on

(42)

Oy~ Qg

Formula (42) coincides with the result (30a) obtained
for SSA on molecules in the semiclassical analysis, if
I' is taken to mean the relaxation constant®.

In concluding this chapter, let us discuss the rela-
tion between the SSA effect and other strong-field ef-
fects discussed many times in the literature.

1t is well known that in the presence of a strong
field wi, that is resonant with one of the transitions of
the molecule, the interaction of the atom with other
(weak) fields changes in a radical manner: the spectral
lines are split, amplification becomes possible in those
regions where initially absorption takes place, etc. All
these effects, however, are essentially connected with
the saturation of the resonant transition and occur at
intensities
£ (43)

IL?Isat"'%Tifvm ,

where a” is the imaginary part of the polarizability of
the frequency w = wap, ¢ ~ a”w/c is the absorption
cross section, and T, = I'"* and is the time of longi-
tudinal relaxation. A description of these effects is
based on the solution of the problem of the mixing of
states of a two-level system in a strong field.

For the SSA phenomenon, to the contrary, it is im-
portant that the strong field mixes into the levels a
and b all the other levels of the system (the levels ¢
from Figs. 4 and 5). For this reason, the characteris-
tic intensities corresponding to SSA are determined
by other parameters:

¢ 1
oy Jag—ap]| °

I > Ig;\ ~ (44)
If the a — b transition is sufficiently weak (i.e.,

aap < |ag - ap|), then the SSA threshold can be much
smaller than the saturation intensity (43).

Thus, the separation of this effect from all the re-
maining strong-field effects is perfectly justified
physically. For this reason, in a derivation of the
concrete formulas (37) and (38) above, we did not take
into account the contribution of a large number of
transition amplitudes not connected specifically with
the SSA effect, of the type shown in Fig. 6.

For the same reason, we could confine ourselves in
the foregoing analysis only to terms up to third order
inclusive. If we neglect the spontaneous noise and de-
scribe the fields Eg and Ey, classically, then the SSA
theory can be developed in a form analogous to the
theory of other effects of strong fields. Namely, it is
sufficient to write for the density matrix of the mole-

*In the semiclassical analysis it is precisely the longitudinal-relaxa-
tion constant which is important, and the line width is assumed there
to be large and has no influence whatever on the threshold. Such a dis-
parity between the results of this chapter and the quasiclassical model
is connected with the fact that we use an oversimplified quantum
model. For our purposes it was sufficient to demonstrate the existence
of the SSA effect.




STIMULATED LIGHT SCATTERING INDUCED BY ABSORPTION

[+
3 —

L L

Ly L & s

a b
FIG. 6. Examples of transitions whose contributions are either in-
significant (a) or have no bearing on the SSA phenonenon (b).

cule the standard two-level approximation equations
cf. Eq. (28) of Ch. II). On the other hand, for the dipole
moment, in place of the usual expression

(d) = Sp (d p) = dupPoa + dvaPa (45)

it is necessary to assume

(d) = [%aPaa (1) + ctprn (D] E (1) (46)

Whereas (45) describes mixing of states a and b, ex-
pression (46), corresponding to SSA, contains the
polarizabilities, connected with the presence of other
levels c, of the states a and b.

IV. SPONTANEQUS PROCESS CORRESPONDING TO
SSA

From the quantum model of the SSA (see Ch. III,
formula (41)), it follows that Qg does not vanish when
ng = 0. Thus, the SSA process can be set in correspond-
ence to the certain spontaneous scattering process.
This process differs essentially from the ordinary
types of spontaneous scattering, primarily in the fact
that the intensity of the scattered light is proportional
not to the intensity of the pump, but to its square. In
spite of this, we shall use the term ‘‘spontaneous scat-
tering.’”’ As will be shown below, this scattering has
the simple physical meaning which does not depend on
the concrete model of Ch. III.

Within the framework of the semiclassical descrip-
tion, the indicated spontaneous scattering should be
connected with fluctuations 6€ arising in the absence
of a signal wave. In the presence of absorption of a
powerful laser wave, there is always at least one
source of such fluctuations—the analog of the shot
noise connected with the discrete character of the ab-
sorption of energy from the field (the energy is ab-
sorbed only in batches hw). Such a noise can be taken
into account by substituting in the right side of (2)
Q(r, t) in the form

Q(r, 1) =(Q (x, )+ (ho (Q (r, D) * f (r, 1), (47)

where the random function f(r, t) is characterized by
the properties*

F, =0, F@, )@, =6 —r)'—1). (48)

By virtue of (2), such a random energy release leads
to fluctuations of 6€ with { 6e(r, t)) =0 and

*The concrete value of the coefficient f(r, t) can be obtained, for
example, in the following manner. The number of quanta absorbed in
the volume V during a time T is equal to N = [ d3rdtQ(r, t)(hw)™!. By
stipulating the satisfaction of Poisson’s law (N2} - (N)2 = (N), we ob-
tain expression (47).
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Be(r', 1) Be (", ")) = (49)
= IBPLRw/(27)Y) S d°q dQ exp (iqr -+ iQ8) | L (1Q, iq) |2,
where

r=r—1r’,

t=t'=¢, Pp—I ko

The scattering of a monochromatic laser wave by fluc-
tuations of the type (49) is described by a scattering
cross section per unit volume

dR/do do = (1/27%) (wic)? | eset. [ BPLRw | L (19, iq) 2. (50)

Since dR/dodw ~ Py, the power of the scattered light
is proportional to P’i in accord with the statement
made above.

Interest attaches to the value of the spontaneous
noise, expressed in terms of the number of noise
quanta x per mode (see Appendices 1 and 2), Using
formulas (1.3), (6), and (42), we can easily get

1 =
T4 z—1 (ImL)? |eger |2’

1z 1 L
L= -
g

(51)

We have taken here a case when, generally speaking
jes -ei[ =1. It is interesting to note that )» does not
depend on the temperature of the medium and is deter-
mined only by the parameters x and | (Im L)/L|.

The minimum of ) as a function of the power Iy, is
reached at double the threshold (x =2), and is equal to
(at [eg-er|=1)

A(z—2)=]|L|#(Im L) (52)

In all the examples considered by us (see Ch. II)
L~ [T +1(Q—Q)1.

The maximum gain is realized in this case at |Q - Q,|
=TI, corresponding to A = 2. When |Q - ,| > T, the
gain decreases and the noise tends to the maximum
value rmin = 1. The latter circumstance demonstrates
in addition that the semiclassical approach used above
apparently reflects correctly the main properties of
the phenomenon. In any case, it does not lead to a con-
tradiction to the known (see Appendix 2) quantum-
mechanical noise minimum of ‘‘one photon per mode.”’
By way of an illustration of the general formula (50),
let us consider the concrete case of SSA on the thermal
conductivity. Using formulas (14) and (15), we obtain

dR T 1 1 de 2 hoPP © 4 % (2
dodo @ WP T? [;T(,, (a_T)p] 5T (/m)L2 (T) Jeset |*. (53)
As seen from (53),
dRido = 5 do-dRidode ~ [,

i.e., de do is proportional to the characteristic time
To= T

The spontaneous process described by formula (50)
is, in essence, a nonlinear inertial scattering. By
inertia we mean here the fact that for incident light
with characteristic intensity-variation times 7 < I'"},
the intensity of the scattered light Igc(t) depends on
the entire prior behavior of I1,(t') at 0 < —-t' S %,
In other words, in the scattering there become mani-
fest fluctuations of the numbers of the absorbed quanta
accumulated during the time ~7,= I'"%,

If only a fraction of the energy absorbed in each act
goes to heat release, then the cross section from (53)
must be multiplied by w2

In a real situation, the spontaneous nonlinear scat-
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tering (53), as a rule, is small compared with the
linear scattering by ordinary thermal fluctuations of
the quantity €. We present for comparison the cross
section of the linear scattering in the region of the
central component of the Rayleigh line:

dRr r 1 de \2 T3k 1 0] )4 % (2
A L () A (= e
dode w12 (6T ),, b0 G ( o) lewes

(54)

where T, is the absolute temperature and k is Boltz-
mann’s constant.

It is easy to see that the cross sections (53) and
(54) become comparable at a pump intensity P, equal
to

P =2Tpec, Tik/hofp?. (55)

This intensity is quite large, making it difficult to ob-
serve the nonlinear spontaneous scattering. In particu-
lar, as shown by elementary estimates with the aid of
formula (55), difficulties with overheating of the medium
are unavoidable when working with such intensities.

In this connection, a characteristic situation is one
in which the noise us due to the ordinary spontaneous
scattering (54) even in those cases when the decisive
role in the amplification is played by the SSA process.
The effective factor )eff in this case is larger than
given by (51), but smaller than A (SS) = kT/hQ (as
would be the case for ordinary SS at kT > hQ).
Namely, from formula (1.3) of Appendix 1 we obtain

Meft (SSA) ~ 4 (8S) I gy (SSA)/ L s (SS) € A (88S). (56)

The spontaneous process corresponding to SSA on
acoustic waves (see Sec. 2 of Ch. II) is described in
perfect analogy with the spontaneous process described
above, corresponding to SSA on thermal waves; the
same holds also for the remark on the role of ordinary
linear scattering.

The noise source considered above (see formula
(4'7)) in the general case is not at all unique. In various
concrete situations, other types of sources may be
added to it. This is seen, in particular, with SSA by
molecules as an example. It can be shown that the
corresponding spontaneous processes analogous to the
ordinary Rayleigh scattering by a gas of molecules
with effective polarizability aeff = ab — ay and
density np = pgIf,/T. The corresponding extinction
coefficient is
dR/do do = ny, dop,,ido do =

— (&) (@4 T2 BLuT (o — )t ()" esel (% +2)/31.
(57)
The last factor in (57) corresponds to allowance for the
acting field in accordance with the Lorenz-Lorentz
formula. The calculation of the equivalent noise for
the SSA on molecules by formula (1.3) of Appendix 1

yields
2 1 x22 Q2412 1
w4 z—1 Q2 | eget (2 7

(58)

which is 2/u times larger than the value obtained from
the general formula (51). The deviation of |eg-e},]
and of u from unity leads to additional fluctuations,
which by analogy with shot noise can be called separa-
tion noise (cf.!™). For an estimate of the minimal
noise we put u =1 and |eg-ej,| = 1. In this case the
physical cause of the doubling of the noise in (58) com-
pared with the general expression (51) is as follows.
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In the case of SSA on molecules, not only is the
process of molecule excitation discrete (and introduces
by the same token fluctuations), but so is also the
process of their de-excitation. From the formal point
of view this means that the kinetic operator L from
(28) contains itself an additional noise part. It is easy
to see that both indicated sources of fluctuations give
identical contributions to {5e??, and this leads to a
doubling of the noise. On the other hand, in the case of
SSA on thermal and acoustic waves, the buildup of
fluctuations is not accompanied by additional noise.

APPENDICES

1. AMPLIFICATION NOISE AND CONNECTION BE-
TWEEN THE CROSS SECTION OF THE SPON-
TANEOQUS SCATTERING AND THE GAIN IN SS

As is well known, in the absence of an input signal,
the process of stimulated scattering can be regarded
as a result of amplification of the amplifier noise.

This noise corresponds to spontaneous scattering of
the incident pump wave. The relation between the in-
duced and spontaneous parts of the signal-energy in-
crement, for ordinary types of scattering, can be ob-
tained from general principles. The gain for ordinary -
types of SS is therefore uniquely expressed in terms
of the cross section of the spontaneous scattering and
the temperature of the medium. We present the deriva-
tion of the corresponding formulas.

Assume that a ‘‘signal’’ wave propagates in the
direction of the z axis. The intensity of the signal can
be characterized by the flux of quanta IS
(quanta/cm?sec); we introduce also the average occu-
pation number ng of the quantum states of the signal
field. Then

Is=ngvgAN = ngvgk2AkAo/(2n)3 = ng [k2/(21)3]AwAo;

(1.1)

here vg = 8wg/8k is the group velocity of the signal
wave, and AN =k*AkAo/(27)® is the number of modes
per unit volume in the solid angle Ao of interest to us
and in the frequency interval Aw = vgAk, In a real
situation, the values of Ao and Aw are determined
usually by the geometry of the experiment and by the
bandwidth of the amplifier respectively; we do not need
them in explicit form. Moreover, in considering a co-
herent signal wave (i.e., neglecting noise), we can put
Ao =~ 0 and Aw — 0.

The variation of the flux Ig with the coordinate z is
connected with the action of three mechanisms: 1) a
decrease due to the ordinary linear absorption, 2} an
increase due to the spontaneous scattering, and
3) amplification connected with the SS. Accordingly,
we can write

dlg/dz= —BIs+ARI; +gols~g (Is+g1ARIL). .

(1.2)

We have introduced here the resultant gain (with al-
lowance for losses) g = go — 8. The quantity AR

= (dR/dodw)AcAw is the extinction coefficient (i.e.,
the cross section for scattering by a unit volume),
corresponding to spontaneous scattering in a solid
angle Ao and a frequency interval Aw and in a definite
type of polarization (the dimension of AR is ecm™). An
expression of the type (1.2) is valid for all types of SS;




wh

STIMULATED LIGHT SCATTERING INDUCED BY ABSORPTION 315

it is convenient to rewrite it in terms of ng:

dngjds =g (ns+1), h=(L/g) @) k% dR/do do. (1.3)

Here ) is the equivalent number of noise quanta per
mode; the corresponding spectral intensity of the noise
power per mode with a definite transverse index is
hwx, and the minimum value of X compatible with the
principles of quantum mechanics is Amin =1 (see
Appendix 2).

Let us consider the usual types of SS, not connected
with absorption, and neglect first the linear absorption.
In the language of quantum mechanics, such types of
scattering are described by the schemes of Fig. 1a.
The probability of emission of a signal quantum, cor-
responding to such a scheme, is proportional to w'*
~ p,(ng + 1)n1,, where p, is the population of level 1
at equilibrium. The probability of absorption of a sig-
nal quantum is w ~ pyng(ng, + 1) (see Fig. 1b);
when np, > 1, we can approximately put n;, ® np, + 1
~ IL.. As a result, the energy transferred to the signal
wave is proportional to

(1.4)

For an equilibrium medium, however, p,/(p, - ps) = v
+ 1 =1 - exp(-HQ/KT)], where v = [exp ( iQ/KkT)

- 1]’1 is the average number of ‘‘quanta’’ of frequency
Q = wl, - ws at a temperature T. Comparing (1.4)
with (1.3) we obtain for g,

dngldz ~ w® —w ~ I [ng+py (p1—p2)~1].

. (2w)® 4R RQ
gﬂ*’Lvm[i*""P (’“W)J‘

Allowance for the linear absorption leads to the con-
clusion that amplification is possible only when If,

(1.5)

> Ithr, where the threshold pump power is determined
by t%e condition go(ItIl}r) = B:
1 (k2231 B [1 —exp (— hQUET)} L (dR/do dw) 1. (1.6)
The value of x, from (1.3), is then
z hQ ~1 gz I
X:(V"%-Uz—j'f [1—exp(—ﬁ)] Frayal) x:;iflﬂr—‘ (1.7)

From (1.5) and (1.6) there follow a number of important
consequences for the ordinary types of SS. First,
inasmuch as v + 1 > 0 only if © > 0, amplification
(go > 0) is possible only in the Stokes region (Q > 0).
Further, when If, > I%‘r the amplification noise is

determined only by the temperature of the medium and
reaches at low temperature (kT < HQ) the quantum
minimum ) =1. We note that on approaching the
threshold the spontaneous scattering itself does not
experience any singularity; only A, which character-
izes the properties of the amplifier, tends to infinity.
Finally, for ordinary types of SS, the value of x de-
creases monotonically with increasing x = Iy, /I%lr.

2. DESCRIPTION OF NOISE IN QUANTUM MECHAN-
ICS. QUANTUM MINIMUM OF AMPLIFICATION
NOISE

We present for reference purposes the main

premises of the description of noise in quantum mechan-

ics of a mode of an electromagnetic field, Two ap-
proaches are possible here. One of them corresponds
to the Schrddinger picture of quantum mechanics and
was considered in'®. In the present appendix we pre-

sent a description of the Heisenberg picture, following
the fundamental papers of Senitzky'®! and the book of
Louisell'™®), This picture is convenient for a compari-
son with the classical Maxwell’s equations,

The equation for the Heisenberg annihilation opera-
tor a(t) in the presence of linear damping is of the
form

(@i (tydy + (v =7, (2.1)

It is assumed here that the fast dependence on the time
(~exp(-iwt)) has already been separated, and y is
the damping constant. The operator f(t) describes a
random Langevin force and corresponds to an aggre-
gate of quantum and thermal noises connected with the
damping.

We shall show first that neglect of the noi§es leads
to a contradiction. In fact, if {(t) = 0, then a(t)
= a(0)exp(—yt/2), and we would obtain for the com-
mutator

s P
le (1), a* ()] == [a (1), a*(O)] exp (—yt).

{2.2)

But in the correct theory the commutator of 4 and a*
should be equal to unity at any instant of time t. We see
therefore that the noise cannot be neglected even at
zero temperature of the dissipative subsystem (thermo-
stat),
It follows from (2.1) that
a{ty=a (0)exp (—ye/2) |- ‘;
0

arfleyexpi—y(t—ei2). (2.3)
If the dissipative subsystem has a broad spectrum,
then f(t) can be regarded as a §-correlated random
operator process. This means that

Fn=o0,

N . . 2.4
(et f* ey =43 (ty—ts), ({2 F Uy =B (11— ta); ( )

it is easy to see that in this case A=z 0 and B = 0.
Let us assume that the commutators f and " are c-
numbers (and not an operator), i.e., that

[ (), I* (1)1 =C8 (ty—12), C=dA—DB. (2.5)

If we now stipulate that the commutator [a(t)a’ (t)] ve
equal to unity at all t, then we get from (2.3) and (2.5)

[a (), et ()] =exp (—yi)+-Cy 2 [1—exp (— )] =1,
from which it follows that

C=1. (26)

An analogous relation can be obtained by considering
the average number of quanta {n(t)) = (3*(t)a(t)):

(r ()= (a*(t)a (e}

G (8)) = G (O exp (— yt)+ Byt (1—exp (— 0. (2.7)

If at t = 0 the mode was in equilibrium with the
thermostat at a temperature T, then (n(0)) = v

= [ exp (Hwo/kT) - 1]™ and equilibrium should be re-
tained also at t > 0. Hence

(2.8)

Equations (2.4)—(2.6) and (2.8) constitute the simplest
formulation of the fluctuation-dissipation theorem in
the quantum case: the noise intensity coefficients A,
B, and C are proportional to the damping constant .
Attention must be called to the characteristic fea-

B=vyv A=B+}+C=vy(¥+1).
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tures inherent in the quantum description of the noise:
1) Even at zero temperature of the thermostat

(T =0, v =0) there is quantum noise: A=C =y, B =0.

2) It is necessary to observe rigorously the order -
of the operators in the expressions of the type (2.4) for
the averages of the products of the random forces;
namely, the coefficient B corresponds to ‘‘normally
ordered’’ noise, and the coefficient A corresponds to
‘‘antinormally ordered’’ noise, with A = B.

The field energy (the number of quanta in the mode
is determined by the normally-ordered expression
(f) =(a + 4). At zero temperature (v = 0) the in-
tensity B of the ‘‘normally-ordered’’ i.e., energy part
of the noise is equal to zero: B =yv =0. We can
therefore say that at v = 0 the quantum noise does not
excite real oscillations of the mode, and serves only to
maintain the operator [a, a"}] constant (or, what is ap-
proximately the same, to maintain the vacuum fluctua-
tions of the quantities p and ).

If the dissipative subsystem (thermostat) is not in
the equilibrium state, then in principle amplification is
also possible, i.e., ¥y < 0. Such a non-equilibrium
state may be connected with population inversion or,
in our case, with the propagation of a powerful pump
beam in the medium. From the conservation of the
commutation relations we get as before C =y, but now
C<0. Since B=A - C and A = 0, we obtain im-
mediately the minimum value of the energy, i.e.,
‘‘normally-ordered’’ noise of a quantum amplifier:

B>yl if v<o. (2.9)
From (2.7) we find that at the minimum B
@@=V (R E+BlYD =17 (R)+1). (2.10)

This means that the minimum noise of a quantum am-
plifier corresponds formally to an amplification of the
noise energy of one photon per mode. The flux of the
noise power corresponding to this photon is equal to

Pn =gy, (/L) AN =0y, (ho/L) LAK/2n = hodo/2n=hoAf. (2.11)
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We have considered here one-dimensional propagation
with group velocity Vgr = 9w/9k for modes with defi-
nite transverse index; Af is the bandwidth. We note
that this value of Py is twice as large than the so-
called power of the vacuum fluctuations hwaf/2,

More rigorous proofs of this conclusion for arbi-
trary quantum amplifiers are given inf** (on the basis
of the Heisenberg-equation method) and in'?! (on the
basis of the method of quantum characteristic functions).
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