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P. N. Lebedev Physics Institute, USSR Academy of Sciences

Usp. Fiz . Nauk 101, 3-20 (May, 1970)

I. INTRODUCTION

I N 1967, Herman and G r a y [ 1 ] considered a new type of
stimulated scat ter ing of light (SS), which differed qual-
itatively from those previously known. The mechanism
of this SS is peculiar to absorbing media and is due
entirely to the presence of absorption.

The occurrence of the additional SS in absorbing
media (we shal l henceforth use the abbreviation SSA) is
eas ies t to explain in the following manner . Assume that
two waves propagate in an isotropic medium: a power-
ful l a ser wave E L ( r ) e x p ( - i a ; L t ) and a " s i g n a l " wave
E s ( r ) e x p ( - i w s t ) · If the absorption spectrum is broad
enough and the absorption coefficient β is constant in
al l the frequency intervals of interest to us, then the
power Q ( r , t) re leased per unit volume is propor-
tional to the instantaneous value of the square of the
modulus of the tota l field | E ( r , t ) | 2 . Therefore the
express ion for Q ( r , t) contains the interference t e r m

Q' (r, /) ^ (OTp/8jr) E s (r) E£ (r) exp (iQt), (1)

w h e r e η i s t h e r e f r a c t i v e i n d e x and Ω = U>L - <">S-

This t e r m , obviously, accounts for the periodic var ia-
tion (with frequency Ω ) of the propert ies of the medium,
including the change of die lectr ic constant e .

Without specifying concretely the r e a l processes
responsible for the change of e (these may be the
t h e r m a l expansion of the medium, the change of the
populations of the molecular levels, etc.—see Ch. II)
and assuming for simplicity that the fields E L ( T ) and
E s ( r ) a r e linearly polarized plane waves:

E,. (r) cvoexp(ik;,r), E s (r) CNJ exp(iksr),

we write down the connection between δ£ and Q' in
genera l form

^- (εηβ/8π) exp (iQt) E s (r) E J (r) L (ιΏ, iq),

w h e r e . L i s a l i n e a r o p e r a t o r d e t e r m i n e d b y t h e p r o p -

e r t i e s of t h e m e d i u m , a n d q = k g - k L ·

A s a r e s u l t o f t h e s c a t t e r i n g o f t h e l a s e r w a v e b y

t h e i n c r e m e n t 6 e , t h e r e a p p e a r s i n t h e e l e c t r i c - i n d u c -

t i o n v e c t o r a n a d d i t i o n a l t e r m

D ' δεΕ ;. (r) exp (— iaj) =

- (<-ηβ/8π) (eseL) eL j E L (r),» L (iQ, iq) EM (r) exp ( - ίω,,ί ~ iQ

(3)

where eL and es a r e polarization unit vec tors . Inas-
much a s ojL - Ω = wS, the right side of (3) is propor-
tional to the signal field E s ( r ) e x p ( - i w s t ) . We t h e r e -
fore have for the components of the total e l e c t r i c -
induction vector at the frequency a>s

(D»)r-Xe!f(E s ) t , (4)
where

e.f - Mi* -i- («Φ '8π) I EL | 2 (e ;e s) (e,,), (es)k L (iQ, iq) (5)

a n d e 0 i s t h e d i e l e c t r i c c o n s t a n t of t h e m e d i u m wi thout

t h e f ie ld . T h u s , t h e p r o p a g a t i o n of t h e " s i g n a l " wave

in t h e p r e s e n c e of t h e l a s e r f ield c a n b e d e s c r i b e d by

t h e e f fect ive d i e l e c t r i c c o n s t a n t e ^ i f f r o m (5). T h e a d -

lk '

dition to e 0 is proportional to β I E L I , i .e., it is e s -
sentially connected with the presence of absorption and
increases linearly with increasing laser-field power.
We assume further for simplicity that eL II es and

Ε «ff = ε0 - (<·ηβ 8π) | E^ | 2 L (iQ, iq). ( 6 )

A s i s w e l l k n o w n , t h e i m a g i n a r y p a r t of t h e d i e l e c -

t r i c c o n s t a n t i s d e t e r m i n e d b y t h e d i s s i p a t i o n of t h e

e l e c t r o m a g n e t i c e n e r g y i n t h e m e d i u m . S i n c e

Im e 0 = en β/ω, it follows from (6) that

Im ε e f f ^ (<7ΐβ/ω) [ 1 -;- (ω 8π) | Ε,, |= Im L\. (7)

T h e q u a n t i t y I m L c a n b e e i t h e r p o s i t i v e o r n e g a t i v e .

I n t h e l a t t e r c a s e , t h e s e c o n d t e r m i n ( 7 ) a t l o w i n t e n -

s i t i e s | E L I 2 l e a d s t o p a r t i a l c o m p e n s a t i o n of t h e a b -

s o r p t i o n , a n d i t m a y b e c o m e l a r g e r t h a n t h e f i r s t t e r m

w h e n | E L | 2 i n c r e a s e s . T h e a b s o r p t i o n t h e n g i v e s w a y

t o a m p l i f i c a t i o n .

F o r t h e c o r r e s p o n d i n g t h r e s h o l d i n t e n s i t y of t h e

* h ( / 2 2(2) laser field rthr = (cn/βπΚω) | E L | 2 ( q u a n t a / c m 2 s e c )I ( / π ω ) | E L | ( q u a n t a /

and t h e g a i n g ~ I m e e f f we o b t a i n f r o m (7)

Jtht - (en/Sω) ( - ω Ira Ζ,)"1, (8)

g = W J l * ' ) - l l (9)

F r o m (8) and (9) we get a n u m b e r of r e m a r k a b l e p r o p -

e r t i e s of t h e c o n s i d e r e d SS m e c h a n i s m , w h i c h d i s t i n g -
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FIG. 1. Elementary quantum processes describing the spontaneous
and stimulated scatterings of "ordinary" type. In process a) a laser
quantum is absorbed and a signal quantum is generated, while the ex-
cess energy is transferred to the medium; process b) is the inverse.

uish it strongly from al l other (ordinary) types of SS.
Before we proceed to discuss the peculiari t ies of SSA,
it is useful to r e c a l l a number of bas ic propert ies of
ordinary types of SS. (For convenience, Appendix 1
contains a derivation of the corresponding formulas.)

The " o r d i n a r y " types of spontaneous and c o r r e -
sponding stimulated scat ter ing a r e described in quan-
tum mechanics by the t ransi t ion nL, n S —- n L - 1> nS
+ 1, where nj_, and ng a r e the numbers of the quanta
of the laser and signal fields. The corresponding
probability is given by the square of the modulus of
the t ransi t ion amplitude Μ ^ nj^2(ng + 1) 1 / 2 (Fig. l a ) .
The medium goes over thereby into a s tate with energy
E 2 = Ei + K(U>L ~ w s ) = Ει + ΚΩ. The probability of

such a t ransi t ion is given by w = AlL(ng + 1), i .e., it
contains two p a r t s : spontaneous A I L and simulated
AlL n S· As a resu l t , the following universal connection
exists between the intensity of the spontaneous sca t te r-
ing and the gain g 0 for the SS

So = [(2n)W] IL (dR/do da) [1 - exp ( - %QlkT)\; (10)

h e r e dR/dodu> is the differential effective c r o s s s e c -
tion for scatter ing of light by a unit volume (dR has
the dimension of c m " 1 ) , and Ω = wj_, - u>g is the fre-
quency difference between the incident and scat tered
photons. The last factor in (10) appears as a resul t of
the balance of the direct (Fig. l a ) and inverse (Fig. lb)
p r o c e s s e s (U>L — a>g, u>g — O>L). Because of this
factor, gain is possible only in the Stokes region

a > o .
The role of absorption in the case of ordinary types

of SS reduces simply to a decrease of the effective
amplification, so that the t r u e gain is g = g0 - β.
Therefore, say in an absolutely t ransparent medium
(β = 0 ) , the gain of the Stokes component of scatter ing
takes place for arb i t rar i ly smal l values of I I (i.e.,

Ι ^ Γ = 0). When β * 0, we have 1 ^ ~ β. Therefore,
although g(lL,) is given by formula (9) also for ordi-
nary types of SS, the value of g does not depend on β
when I I » l £ r .

The SSA process considered above does not have
such proper t ie s .

F i r s t , according to (8), the threshold intensity ΐ ί^ Γ

of the SSA effect does not depend on β, and the ampli-
fication of the signal wave has itself principally a
threshold c h a r a c t e r . At I I > Ι * Γ , on the other hand,

the gain g for the SSA is proportional to β.
Second, depending on the form of the function

L( ίΩ, iq), the gain connected with the SSA can occur in
both the Stokes and the anti-Stokes region. As shown
in Ch. Π, in a number of concrete cases the gain is
real ized in the anti-Stokes region.

Third, the SSA phenomenon does not correspond to
any spontaneous-scatter ing process connected with it
by relat ion (10).

Relation (10) is derived (see Appendix 1) from the
most fundamental principles of quantum mechanics .
This r a i s e s very acutely the question of the very nature
of the SSA effect within the framework of the quantum-
mechanical description, and whether the c lass ica l
analysis presented above contradict quantum mechan-
ics . The present ar t ic le is devoted to a discussion of
this ent ire group of problems connected with the speci-
fic nature of the SSA phenomenon.

F i r s t , in Ch. II, we consider within the framework
of the c lass ical scheme described above the different
concrete SSA mechanisms connected with t h e r m a l
conductivity, hypersound, and excitation of individual
molecules . In Ch. ΠΙ we present a quantum-mechani-
cal description of the phenomenon. It is shown here
that this phenomenon can be described as the resul t of
a unique interference between the matr ix elements of
the first and third o r d e r s of perturbation theory. This
in fact is the cause of a l l the differences from the
ordinary types of scat ter ing. Chapter IV is devoted to
a clarification of the role of absorption in spontaneous-
scatter ing p r o c e s s e s . It is shown that the SSA process
corresponds to a definite noise scatter ing which does
not vanish at Is = 0 , and therefore plays the role of a
spontaneous p r o c e s s . This scatter ing, however, turns
out to be proportional to 1^ and is connected essen-
tially with the shot noise of the quantum-absorption
p r o c e s s .

Throughout the ar t ic le , the field of the laser is a s -
sumed to monochromatic. A generalization to the case
of a non-monochromatic laser field can be found in [ 1 » 2 ] .
The resul t of this generalization reduces to a convolu-
tion of the gain (and also of £eff from (6)) with the
spectrum of the laser . It should be noted that such a
procedure for taking into account the laser spectrum in
the case of large gain (exp (gZ) » 1) is , in general,
insufficiently well founded. We shal l not touch upon
this question, a l l the more since it is not peculiar to
the SSA effect, and a r i s e s in practically a l l st imulated-
scatter ing problems.

We shal l likewise not touch at al l upon problems of
propagation and generation of the " s i g n a l " field in
space and in t i m e . The status of this question is dis-
cussed in detail in a recent paper by Starunov and
Fabelinskii t 2 1 , devoted to a detailed analysis of differ-
ent aspects of stimulated scat ter ing.

Π. CONCRETE TYPES OF SSA

In this chapter we discuss briefly three concrete
mechanisms of stimulated scatter ing induced by ab-
sorption: t empera ture (entropy) scatter ing, scatter ing
in the region of the Mandel 'shtam-Bril louin doublet,
and scatter ing connected with the change of the
polarizabil it ies of individual molecules as they a r e
excited.

1 . Stimulated Temperature Scattering Connected with
Absorption (STS-II)

The simplest type of SSA is connected with the
heat-induced change of the die lectr ic constant of the
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medium. We shal l consider heating of the medium only
as a resul t of absorption of light. The corresponding
scatter ing mechanism is designated STS-II in the
review f 2 ] , to distinguish it from scat ter ing occurr ing
when the medium is heated by the e lectrocalor ic effect
(SRS-I). The STS-I phenomenon pertains to the
" o r d i n a r y " type of st imulated scatter ing; it is con-
nected genetically by relat ion (10) with the unshifted
(entropy) component of the spontaneous scat ter ing. We
shal l therefore not consider it.

It is customary to refer to stimulated tempera ture
(entropy) scat ter ing of light in the case when the
changes of the t e m p e r a t u r e occur at constant p r e s s u r e .
In order for the p r e s s u r e to have t ime to become
equalized it is necessary to satisfy the relation
τ ^S> Z/vac, where vac is the speed of sound in the
medium, τ = | Ω I"1, and / = | q I"1 = | kg - kL Γ 1 a r e
the character i s t ic t e m p o r a l and spat ia l sca les of the
t e m p e r a t u r e variation. Thus, we assume that

| Ω | « Ω Μ Β , (11)
where Ω Μ Β = 111 Vac is the frequency-shift upon the
Mandel 'shtam-Bril louin scat ter ing. When (11) is s a t i s -
fied, the change of e is given by the relation

& = (-£•) 67". (12)

and the change of the tempera ture obeys the t h e r m a l -
conductivity equation

—
01 pocp

Qlr, t); (13)

h e r e κ is the tempera ture conductivity coefficient, and
p 0 and Cp a r e the density and the specific heat of the
medium.

It follows from (12) and (13) that the operator L,
which connects 6e and Q (see formula (2) of the intro-
duction (Ch. I)), is equal to

- ' B + r , (14)
''Τ

pot·;,
where Γ = F ( q ) = «q 2 is the damping constant of the
t h e r m a l wave with wave vector q = ks - kL.

In most cases (9e/9T)p < 0, corresponding to
t h e r m a l expansion of the medium; then the gain (Im L
< 0) is real ized in the anti-Stokes region ( Ω < 0). For

the threshold intensity we obtain from (8) and (14)

(15)
thr en | ίο'';; ]-2 -I- Q2

\~dTI,,

a n d t h e g a i n i s g i v e n b y t h e g e n e r a l f o r m u l a ( 1 9 ) . T h e

minimum value of Γ™ (or what is equivalent, the max-
imum gain) is reached at | ii | = Γ . The sign of Ω at
which the gain occurs coincides with the sign of
(9e/9T)p. The frequency dependence of the gain at

IL ^* IT**1" is shown schematically in Fig. 2a, where the
STS-II phenomenon corresponds to the centra l part of
the d iagram. For comparison, Fig. 2b shows the form
of the gain corresponding to the " o r d i n a r y " types of
SS, and the centra l part of the diagram descr ibes
STS-I. We note that the functional form of g ( « ) is the
same for STS-I and STS-II; for scat ter ing in the region
of the Mandel-shtam-Bril louin doublet, as will be seen
from the next section, the situation is different.

We note that when light is absorbed by molecules it

may turn out that a noticeable fraction of the absorbed
energy goes into chemical t ransformat ions, and only a
fraction μ < 1 goes directly into heat. In this case it
is necessary to substitute in (13) (and also in (20) be-
low μθ_ in place of Q, and as a resul t the threshold
intensity increases by a factor μ"1.

2. SSA by Sound Waves (Mandel'shtam-Brillouin
Doublet)

Let us consider now the SSA connected with the ex-
citation of sound waves as a resul t of t h e r m a l expan-
sion of the medium in inhomogeneous heating
(exp (ίΩί + iq · r ) ) . In analogy with the case of t h e r m a l
waves considered above, the excitation of sound waves
may be connected with other mechanisms, namely, with
t h e r m a l expansion of the medium upon absorption of
light and with the e lectrostr ict ion effect; the latter
corresponds to " o r d i n a r y " stimulated Mandel-shtam-
Brillouin scatter ing, which we shal l not consider.

The change of e in the sound wave can be r e p r e -
sented in the form

(16)& - - ( - 5 F ) . f i p ( r ' < ) ·

The l inearized equation of hydrodynamics is

where ρ is the p r e s s u r e . Neglecting the initial damp-
ing (we shal l introduce it later), we write

here (9p/9p) s = ν 2 ^ , and the change of entropy 6s is
connected with the absorbed power by the relat ion

fis.-Γ"1 dtQ(r,t). (19)

where Τ is the absolute t e m p e r a t u r e . The equation for
6p(r , t) is obtained by substituting (18) and (19) in (17):

i): (20)

we h a v e a d d e d h e r e a t e r m p r o p o r t i o n a l t o R, d e s c r i b -

ing t h e a b s o r p t i o n of s o u n d ( s e e , for e x a m p l e / 3 1 , S e c .

5) . It fo l lows f r o m (20) t h a t t h e o p e r a t o r L h a s in t h i s

c a s e t h e f o r m

w h e r e
L Λ Ω Μ Β ' [ ! Ώ ( Ω 2 -Ω2

Μ Β-ίΛΩη-)1, (21)

n 'ac ^ fls )f \ °P ' s ' '

ΩΜΒ --faclql- (23)

The effective excitation of the sum occurs at | Ω j
« ΩΜΒ· Putting Ω = ± Ω Μ Β + Δ, we obtain from (21)

L « (Λ12) (ίΔ -;- Γ)" 1 ; (21a)

in t h i s c a s e t h e t h r e s h o l d p o w e r i s e q u a l t o

if.-WnaA)1**^!. (24)

T h e c o n s t a n t A c a n b e t r a n s f o r m e d t o m o r e c o n v e n -
i ent v a r i a b l e s , u s i n g t h e t h e r m o d y n a m i c i d e n t i t i e s .
F i r s t

1 (^P \ 1 / dp \
( ' a c " \ o s I Ρ ΡθΓ;( \ f'i I p

F u r t h e r

U p / i \ up IT \ or I,, \ <fp ), (26a)
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[ ύΤ )ρ 1\ ΟΤ ) ν cc [ ΒΤ JpJ ' (26b)

In this case the two terms in (26a) describe the
changes of the dielectric constant e due respectively
to the oscillations of the density and of the temperature
in the sound wave. Taking (25) and (26) into account,
we obtain

A- — - 3T (27)

The approximate form of the dependence of the gain g
on the frequency shift Ω = O>L - cos is shown in Fig.
2a. It should be noted that unlike the ordinary SMBS
(see Fig. 2b), for SSA-MB gain takes place both in the
Stokes ( Ω = +ΜΒ + A) and in the anti-Stokes
( Ω = - Ω Μ Β + A) regions. Another difference between
SSA-MB and "ordinary" SMBS is that for SSA-MB the
maximum of the gain occurs not at the center of the
line (Δ = 0), but at the point | Δ | = Γ Μ Β · A clear
explanation of this circumstance is that the thermal
expansion and the electrostriction give rise to sound
waves having a relative phase shift π/2. The phases
of the corrections to the dielectric constants, neces-
sitated by these two effects, are therefore different
(for "ordinary" SMBS the quantity δε is proportional
to ίΩ/(ίΔ + Γ ) as against ΐ / ( ϊ Δ + Γ)ίοΓ SSA-MB).

For greater clarity, we have considered separately
stimulated scattering by isobaric changes of e, i.e.,
by thermal conductivity waves (see Sec. 1 of Ch. II),
and stimulated scattering by adiabatic changes of e,
i.e., by acoustic waves. In a more rigorous approach,
these changes must be taken into account simultane-
ously (see^1'2·1). Naturally, the results of the rigorous
analysis for | Ω | <SC ΩΜΒ and for | Ω | » | Ω Μ Β I coin-
cide with those given above.

We note that recent p a p e r s ^ and^ 5 ] are devoted to
concrete types of SSA. The authors of[4] consider the
possibility of observing SSA by second-sound waves.
In'·5·' is discussed the influence of the finite time of
thermalization (conversion of absorbed energy into
heat) on the course of the SSA processes.

3. SSA Following Excitation of Molecules

We now consider the SSA connected with the differ-
ence between the polarizabilities of the individual
molecules in the ground state (a) and in the excited
state (b).

This example is of interest to us also because we

Λ
Μ

a
Λ

3

Λ

Α
Ω Μ Β -S

FIG. 2. Schematic form of the dependence of the signal gain g on
the frequency shift Ω = ωτ^- ω ς at I I > l L t h F ; a) for SSA, b) for
ordinary types of stimulated scattering. The simple components cor-
respond to stimulated temperature scattering, and the lateral compo-
nents to the Mandel'shtam-Brillouin doublet.

shall use an analogous model in Ch. ΠΙ below, devoted
to the quantum mechanical description of the SSA phe-
nomenon. For the number nb (cm"3) of the excited
molecules we can write the equation

- ^ + Γη6 = μ(?(Γ, ί)Μω; (28)

here the dimensionless parameter μ <IC 1 describes
the efficiency of excitation of the state (b) of interest
to us upon absorption of a quantum, while the constant
Γ describes the relaxation of the population from the
level (b) to the level (a).

From (28) we obtain

μ
Κω

dc

7 1

t b I = J U |

(29)

(30)

A s a n a p p r o x i m a t e e s t i m a t e w e c a n t a k e f o r 3 e / 8 n b a n

e x p r e s s i o n t h a t f o l l o w s f r o m t h e L o r e n z - L o r e n t z

f o r m u l a

/«24-2\2 / O 1 \
<Xo) — 5 — , \0l)

where ua a n d ab a r e the polarizability of the mole-
cule in the states a and b respectively, and η = e1^2 is
the refractive index. Then (30) takes the form

(30a)thr
1

b — α-α) Ωω

W e n o t e M a c k [ 6 ] o b s e r v e d a s t i m u l a t e d s c a t t e r i n g

c o n n e c t e d w i t h a b s o r p t i o n w i t h p i c o s e c o n d p u m p i n g .

T h e i n t e r p r e t a t i o n o f t h i s s c a t t e r i n g , g i v e n i n t 6 \ i s

c l o s e t o t h e s c h e m e d e s c r i b e d a b o v e f o r S S A b y m o l e -

c u l e s .

ΙΠ. QUANTUM MODEL OF SSA

As was noted in the introduction (Ch. I) and il-
lustrated by the concrete examples in Ch. Π, the SSA
phenomenon differs greatly in its properties from the
"ordinary" processes of stimulated scattering. This
pertains in particular to violation of the universal
connection between the gain and the cross section for
spontaneous scattering (formula (10)).

This means that the gain of the signal wave in the
SSA phenomenon certainly cannot be due to simple
two-photon scattering processes of the nL, ng — ηχ,.ι,
ng + 1 type (see Fig. 1), for in the latter case relation
(10) must be satisfied (see Appendix 1).

On the other hand, for any process in which more
than one quantum OIL takes part, the square of the
modulus of the matrix elements proportional to n2^
co I2^ and to higher powers of I I , in contrast to the
linear dependence g(lL) in (9). Nonetheless, as will
be shown below, the SSA phenomenon with all its char-
acteristic features finds a relatively simple explana-
tion within the framework of the quantum-mechanical
description of the processes of proton absorption and
production.

In this chapter we present a quantum-mechanical
analysis of the scattering of the fields O>L a n d «S by
an individual atom (molecule) and show that the SSA
effect arises even for such a very simple system in
the case when the frequencies U>L and wg fall in the
absorption line a — b.

Let us consider the increments of the signal-field
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FIG. 3. Absorption of signal quantum in first order of
perturbation theory. The molecule goes over from the state
a to the state b.

energy due to the interaction with the molecule. We
shall assume that prior to the turning on of the inter-
action the molecule is in the ground state a. In the
absence of the field COL, the interaction reduces to
absorption of the photon cog, described by the matrix
element M̂ jJ = Va^ng

/2 (Fig. 3). In the presence of a
strong field, there are added a number of processes,
including:

1) the scat ter ing COL — <*>g and cos — ωτ_, by the
ground state of the molecule (see Fig. 1);

2) different multiphoton p r o c e s s e s accompanied by
a — b t rans i t ions of the molecule (including p r o c e s s e s
in which the photons cog a r e both absorbed and
created) .

P r o c e s s e s 1) will not be considered below, since
they correspond to the " o r d i n a r y " types of scat ter ing
and have been thoroughly investigated; where necessary,
we shal l make use of published r e s u l t s . We shal l focus
attention on molecular t rans i t ions a — b correspond-
ing to the absorption line, and ascer ta in the effect to
which the presence of the s t rong field COL leads.

P r o c e s s e s 2) a l ter the matr ix element M(~> of signal-
photon absorption, inasmuch a s the transi t ion (a, ng)
—• (b, ng - 1) can now be accompanied by virtual
vanishing and creation of photons COL· We therefore
have for the matrix element M(."'

Ar>
M ^ ^ V r + v i ^ P - r . . . , (32)

where V'm > is the matrix element of m-th order ofap
perturbation theory; the quantities nL ± 1 have been
replaced by nL·

In addition, in the strong field COL, *he molecular
transition a — b can correspond not to vanishing but
to creation of a photon COL· F ° r example, one signal
photon is produced and two COL photons are absorbed
in the third-order process a, ns, nL —· b, ns + 1, nL - 2.

The matrix element of the a —- b transition accom-
panied by the production of a photon cos is

A/tt'^tf^Mns + l ) 1 ^ · · · (33)

Examples of transitions corresponding to V{V and

^ab a r e s n o w n m Figs. 4 and 5.

The energy increment at the signal-field frequency
cos i s

9 s =•--So> (ic<-;->-!*;<->), ( 3 4 )

w h e r e w ( ± ) «> | M ^ | 2 . U s i n g ( 3 2 ) a n d ( 3 3 ) w e o b t a i n ,

a c c u r a t e t o t e r m s of t h i r d o r d e r i n c l u s i v e ,

Q ^ - n s { | V ( " | 2 + 2nL Re (V ( 1 )*r< 3 )) -f

Ί | Ί Η
(35)

The first correction for the strong field COL *n (35),
proportional to nLns, is given by the interference of
the terms of the first and third orders. The correction
term proportional to nl ng contains the difference

FIG. 4. Absorption of a signal

quantum in third-order perturba-

tion theory (in this case the laser

quantum is virtually absorbed and

emitted).

FIG. 5. Emission of a signal

quantum in third-order perturbation

theory with absorption of two laser

quanta.

L — ι

L

a

I S

L

a —ι

L

| v ( 3 ) j 2 - | U < 3 ) | 2 a n d , a s w i l l b e s h o w n b e l o w , d o e s n o t

p l a y a n i m p o r t a n t r o l e i n t h e m o d e l u n d e r c o n s i d e r a -

t i o n .

D e p e n d i n g o n t h e s i g n , t h e i n t e r f e r e n c e t e r m c a n

l e a d t o e i t h e r e n h a n c e m e n t o r t o w e a k e n i n g o f t h e a b -

s o r p t i o n . A t s u f f i c i e n t l y l a r g e n L , t h e a b s o r p t i o n c a n

g i v e w a y t o a m p l i f i c a t i o n , c o r r e s p o n d i n g t o t h e S S A

p h e n o m e n o n c o n s i d e r e d i n t h e i n t r o d u c t i o n ( C h . I ) .

I n d e e d , t h i s g a i n , w h i c h i s l i n e a r i n n L a n d p r o p o r -

t i o n a l t o t h e c r o s s s e c t i o n o f t h e o r d i n a r y a b s o r p t i o n ,

h a s n o c o r r e s p o n d i n g s p o n t a n e o u s s c a t t e r i n g ; t h e

s p o n t a n e o u s p r o d u c t i o n o f t h e p h o t o n s cog ( a t n g = 0 )

i s p r o p o r t i o n a l h e r e t o n 2^.

T h u s , t h e S S A p r o c e s s c a n b e d e s c r i b e d i n t h e

l a n g u a g e o f p h o t o n e m i s s i o n a n d a b s o r p t i o n a s a c h a n g e

of a b s o r p t i o n a s a r e s u l t of i n t e r f e r e n c e o f t e r m s o f

f i r s t a n d t h i r d o r d e r s o f p e r t u r b a t i o n t h e o r y ( s e e F i g s .

3 a n d 4 ) . W e r e c a l l t h a t t h e u s u a l t y p e s o f S S (and t h e

a s s o c i a t e d o r d i n a r y t y p e s o f s p o n t a n e o u s s c a t t e r i n g )

a r e d e s c r i b e d b y t h e s q u a r e o f a s e c o n d o r d e r t e r m

( s e e F i g . 1 ) .

B e f o r e w e p r o c e e d t o f u r t h e r d i s c u s s i o n s , l e t u s

o b t a i n c o n c r e t e f o r m u l a s d e s c r i b i n g t h e p r o c e s s e s i n

q u e s t i o n . L e t t h e m o l e c u l e h a v e t w o c o n t i n u o u s g r o u p s

o f l e v e l s a a n d b w i t h a d e n s i t y of s t a t e s

dNa Ta d N b T j ,
π», {[(£-£„)*/* 2J-Γ*} ' dE

j
>,[(E-Eby\hi\ -

W e a s s u m e t h a t t h e a b s o r p t i o n i n t h e a — b t r a n s i -

t i o n i s t h e r e s u l t o f a s u f f i c i e n t l y w e a k f o r b i d d e n

t r a n s i t i o n , a n d t h a t t h e p o l a r i z a b i l i t y o f t h e m o l e c u l e i n

t h e s t a t e s a a n d b i s d e t e r m i n e d m a i n l y b y t h e l e v e l s

c , w h i c h a r e d i p o l e - c o u p l e d t o l e v e l s a a n d b . U n d e r

t h e s e a s s u m p t i o n s , t h e c o n t r i b u t i o n o f t h e a — b

t r a n s i t i o n t o t h e p o l a r i z a b i l i t i e s a a a n d a ^ i s s m a l l :

| δα (a — b) <$C | aa I a b I, and the quantities a a and
ab are real. We shall henceforth assume also that the
average frequency of the a — b transition coincides
with the frequency of the laser field: (Eb - Ea)/R = COL·

Let the signal field contain ng quanta and the laser
field nL quanta, nL ~3> 1. It is convenient to express
nL in the final formulas in terms of | E L | 2 .

Under the foregoing assumptions, it can be readily
shown that the absorption in the aforementioned ab-
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sorption and emission matrix elements, which corre-
spond to transitions from the initial state a with
energy Ei = E a + Kf, are equal to

1
ι ( ν - Ω + ί Γ α ) 4h

( 3 7 )

- 4ft(v-rir6) J ' ( 3 8 )

where the first-order matrix element Η is equal to

H = mab(8nfia>/V)1/2i2. (39)

Calculating further the probabilities of these transi-
tions with the aid of the standard formulas of pertur-
bation theory and averaging them over the distribution
(36) for the initial state a, we get

^a-^, (40)

where Ei = Ea + R^ and E2 = Eb + Κμ. Substituting
(37) and (38) in (34), we obtain an expression for the
transfer of energy to the signal field. We write this
expression in the form similar to (35):

Q _ 2MSSW V 1 J,
v s ft ~ sj2 + r» " s t

, I S i Ι2 Γ aoQrb(ri, + 3rn)
i L (Qs + 4rj)ra

2ft

+ \EI.\*F(Q)-\EL\*F(Q)}-\-2ιχω//2 Γ 1

Λ Ω 2 + Γ2 \EL

( 4 1 )

w e h a v e i n t r o d u c e d h e r e t h e a b s o r p t i o n l i n e w i d t h f o r

the a — b transition Γ = Γ α + r D , and F(n) is a
function of the frequency, but its explicit form will not
be needed.

Expression (41) contains two parts: one propor-
tional to n s and responsible for the stimulated transi-
tion, and one independent of ns namely the spontaneous
noise. The first of the terms proportional to ns cor-
responds to the ordinary absorption (the term | V(1) | 2

from (35)). The second term determines the contribu-
tion of the interference of the matrix elements with the
first and third orders; depending on the parameters
that enter in this term, it may turn out to be either
positive or negative. The term proportional to
ns|Ej_, | 4, corresponding to the difference |V< 3 ) | 2

- | U < 3 ) | 2 from (35), vanishes.
Such an exact compensation in the model in question

is connected with the concrete choice KO>L = Eb - E a .
As already mentioned, the gain connected with the

SSA arises when the interference term in (41) becomes
larger than the first term. Simultaneously, the term
| M^' | 2 is also of the order of the first two. This
term, however, is completely cancelled out in (41) by
the square of the matrix element 1Μ^+> | 2 , which is
responsible for the photon production process.

Thus, the sign and magnitude of the gain are deter-
mined only by the ratio of the first and interference
terms in the absorption probability, terms propor-
tional to ns but not to ns + 1, as would be the case
for the production probability. This indeed corresponds
to the violation of the universal connection between the
spontaneous scattering (the term " 1 " in (ns + 1)) and
the gain. All that is left of the matrix element for the
production of the photon ws in (41) is the last "spon-
taneous" term, which is furthermore proportional to

I E L | 4 ~ I I · T n e spontaneous noise will be discussed in
greater detail in the next chapter.

Let us determine the threshold intensity of the SSA
phenomenon. Assuming, for simplification of the
formulas, that T a = Tb, we get from (41)

.thr e
L " In

(42)

F o r m u l a ( 4 2 ) c o i n c i d e s w i t h t h e r e s u l t ( 3 0 a ) o b t a i n e d

f o r S S A o n m o l e c u l e s i n t h e s e m i c l a s s i c a l a n a l y s i s , if

Γ is taken to mean the relaxation constant*·
In concluding this chapter, let us discuss the rela-

tion between the SSA effect and other strong-field ef-
fects discussed many times in the literature.

It is well known that in the presence of a strong
field «L that is resonant with one of the transitions of
the molecule, the interaction of the atom with other
(weak) fields changes in a radical manner: the spectral
lines are split, amplification becomes possible in those
regions where initially absorption takes place, etc. All
these effects, however, are essentially connected with
the saturation of the resonant transition and occur at
intensities

/ t > / - t ~ - ^ i V , (43)

where a " is the imaginary part of the polarizability of
the frequency ω = «ab, σ ~ a"co/c is the absorption
cross section, and Τι = Γ " 1 and is the time of longi-
tudinal relaxation. A description of these effects is
based on the solution of the problem of the mixing of
states of a two-level system in a strong field.

For the SSA phenomenon, to the contrary, it is im-
portant that the strong field mixes into the levels a
and b all the other levels of the system (the levels c
from Figs. 4 and 5). For this reason, the characteris-
tic intensities corresponding to SSA are determined
by other parameters:

rthr c 1 ( 4 4 )j j Uir V
i- ^ CCA """"' r^-p

\aa-xb\ '

If the a — b transition is sufficiently weak (i.e.,
a a b ^ I a a - a b I), then the SSA threshold can be much
smaller than the saturation intensity (43).

Thus, the separation of this effect from all the re-
maining strong-field effects is perfectly justified
physically. For this reason, in a derivation of the
concrete formulas (37) and (38) above, we did not take
into account the contribution of a large number of
transition amplitudes not connected specifically with
the SSA effect, of the type shown in Fig. 6.

For the same reason, we could confine ourselves in
the foregoing analysis only to terms up to third order
inclusive. If we neglect the spontaneous noise and de-
scribe the fields Es and E L classically, then the SSA
theory can be developed in a form analogous to the
theory of other effects of strong fields. Namely, it is
sufficient to write for the density matrix of the mole-

*In the semiclassical analysis it is precisely the longitudinal-relaxa-
tion constant which is important, and the line width is assumed there
to be large and has no influence whatever on the threshold. Such a dis-
parity between the results of this chapter and the quasiclassical model
is connected with the fact that we use an oversimplified quantum
model. For our purposes it was sufficient to demonstrate the existence
of the SSA effect.
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L
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FIG. 6. Examples of transitions whose contributions are either in-
significant (a) or have no bearing on the SSA phenonenon (b).

cule the s tandard two-level approximation equations
cf. Eq. (28) of Ch. Π). On the other hand, for the dipole
moment, in place of the usual expression

3 + di (45)<d> = Sp (d p) = <

it is necessary to a s s u m e

Whereas (45) descr ibes mixing of s tates a and b, ex-
press ion (46), corresponding to SSA, contains the
polarizabi l i t ies, connected with the presence of other
levels c, of the s ta tes a and b .

IV. SPONTANEOUS PROCESS CORRESPONDING TO
SSA

F r o m the quantum model of the SSA (see Ch. Ill,
formula (41)), it follows that Qs does not vanish when
ns = 0. Thus, the SSA process can be set in correspond-
ence to the certa in spontaneous scat ter ing p r o c e s s .
This process differs essentially from the ordinary
types of spontaneous scatter ing, pr imari ly in the fact
that the intensity of the scat tered light is proportional
not to the intensity of the pump, but to its s q u a r e . In
spite of this , we shal l use the t e r m "spontaneous scat-
t e r i n g . " As will be shown below, this scatter ing has
the s imple physical meaning which does not depend on
the concrete model of Ch. ΙΠ.

Within the framework of the s e m i c l a s s i c a l descr ip-
tion, the indicated spontaneous scat ter ing should be
connected with fluctuations 6e ar is ing in the absence
of a s ignal wave. In the presence of absorption of a
powerful laser wave, there is always at least one
source of such fluctuations—the analog of the shot
noise connected with the d i screte character of the ab-
sorption of energy from the field (the energy is ab-
sorbed only in batches Κω). Such a noise can be taken
into account by substituting in the right side of (2)
Q ( r , t) in the form

r, i)»'/ 2/(r, t), (47)

where the random function f ( r , t) is character ized by
the proper t ies*

(/(r, 0> = 0, </(r', i')/(r", r)) = 6'3)(r' — r") 6 (i' — t"). (48)

By virtue of (2), such a random energy r e l e a s e leads
to fluctuations of 6e with ( 6 e ( r , t)> = 0 and

*The concrete value of the coefficient f(r, t) can be obtained, for
example, in the following manner. The number of quanta absorbed in
the volume V during a time Τ is equal to Ν = // d3rdtQ(r, t)(hco)"'. By
stipulating the satisfaction of Poisson's law <N2 > - <N>2 = <N>, we ob-
tain expression (47).

<δε(Γ',ί')δε(Γ", t"))= (49)

= [β/Ί.ίω/(2ΐι)4] J d3qdQexp(iqr+iQ«)!L(iQ, iq)| 2,
where

r = r' — r\ t = t' = t", PL = IL%w.

The s c a t t e r i n g of a monochromat ic l a s e r wave by f luc-
tuat ions of the type (49) i s d e s c r i b e d by a s c a t t e r i n g
c r o s s s e c t i o n per unit vo lume

dRIdo du> --.- ω/c)41 e sej. |2 β/^δω | L (ϊΩ, iq) |2. (50)

Since dR/doda> ~ P L , the power of the s c a t t e r e d light
i s proport ional to P | in a c c o r d with the s t a t e m e n t
made above.

Interest a t t a c h e s to the value of the spontaneous
n o i s e , e x p r e s s e d in t e r m s of the number of n o i s e
quanta λ per mode (see Appendices 1 and 2). Using
formulas (1.3), (6), and (42), we can easily get

4 x— 1 |e s e L
rthr (51)

We have taken h e r e a c a s e when, genera l ly speaking
| e s · e ^ | = 1. It is interesting to note that λ does not
depend on the t e m p e r a t u r e of the medium and is de ter-
mined only by the p a r a m e t e r s χ and | ( im L)/L | .

The minimum of λ as a function of the power I I is
reached at double the threshold (x = 2), and is equal to
(at | e S . e L | = 1)

λ (χ = 2) = I L |V(Im Lf.

In a l l the e x a m p l e s c o n s i d e r e d by u s ( s e e Ch. II)

(52)

The maximum gain is real ized in this case at | Ω - Ωι |
= Γ , corresponding to λ = 2. When | Ω - Ω ι | » · Γ , the
gain d e c r e a s e s and the noise tends to the maximum
value Xmin = 1 · The latter c i rcumstance demonstrates
in addition that the semic las s ica l approach used above
apparently ref lects correct ly the main propert ies of
the phenomenon. In any case, it does not lead to a con-
tradict ion to the known (see Appendix 2) quantum-
mechanical noise minimum of "one photon per m o d e . "
By way of an i l lustration of the general formula (50),
let us consider the concrete case of SSA on the t h e r m a l
conductivity. Using formulas (14) and (15), we obtain

(53)

A s s e e n f rom (53),

dRIdo = f d<u-dR/dodoi ~ Γ '

i . e . , dR do i s proport ional to the c h a r a c t e r i s t i c t i m e
T 0 = Γ " 1 .

T h e s p o n t a n e o u s p r o c e s s d e s c r i b e d b y f o r m u l a ( 5 0 )

i s , i n e s s e n c e , a n o n l i n e a r i n e r t i a l s c a t t e r i n g . B y

i n e r t i a w e m e a n h e r e t h e f a c t t h a t f o r i n c i d e n t l i g h t

with character i s t ic intensity-variation t imes τ < Γ " 1 ,
the intensity of the scat tered light I S c ( t ) depends on
the ent ire pr ior behavior of I L U ' ) at 0 S - t ' S Γ " 1 .
In other words, in the scat ter ing there become mani-
fest fluctuations of the numbers of the absorbed quanta
accumulated during the t ime ~ τ0 = Γ " 1 .

If only a fraction of the energy absorbed in each act
goes to heat r e l e a s e , then the c ross section from (53)
must be multiplied by μ 2 .

In a r e a l situation, the spontaneous nonlinear scat-
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ter ing (53), as a ru le , is s m a l l compared with the
linear scat ter ing by ordinary t h e r m a l fluctuations of
the quantity e. We present for comparison the c r o s s
section of the l inear scatter ing in the region of the
c e n t r a l component of the Rayleigh l ine:

dR r 1
do d(u

where T o is the absolute t e m p e r a t u r e and k is Boltz-
mann' s constant.

It is easy to see that the c r o s s sect ions (53) and
(54) become comparable at a pump intensity P L equal
to

PL = 2Γρο^,^Α:/ίωβμ2. (55)

Th is intensity i s quite large, making it difficult to ob-
s e r v e the nonl inear spontaneous s c a t t e r i n g . In part icu-
lar, a s shown by e l e m e n t a r y e s t i m a t e s with the aid of
formula (55), d i f f icult ies with overheat ing of the med ium
a r e unavoidable when working with s u c h i n t e n s i t i e s .

In t h i s connect ion, a c h a r a c t e r i s t i c s i tuat ion i s one
in which the n o i s e u s due to the ordinary spontaneous
s c a t t e r i n g (54) even in t h o s e c a s e s when the d e c i s i v e
r o l e in the ampl i f icat ion i s played by the SSA p r o c e s s .
The ef fect ive factor x e f f in t h i s c a s e i s l a rger than
given by (51), but s m a l l e r than x ( S S ) = kT/KS2 (as
would be the case for ordinary SS at kT 3> ΚΩ).
Namely, from formula (1.3) of Appendix 1 we obtain

Xeff (SSA) ~ λ (SS) /flu (SSA)//thr (SS) < λ (SS). ( 5 6 )

T h e s p o n t a n e o u s p r o c e s s c o r r e s p o n d i n g t o S S A o n

acoustic waves (see Sec. 2 of Ch. Π) is described in
perfect analogy with the spontaneous process described
above, corresponding to SSA on t h e r m a l waves; the
same holds also for the r e m a r k on the role of ordinary
linear scat ter ing.

The noise source considered above (see formula
(47)) in the genera l case is not at al l unique. In various
concrete s i tuations, other types of sources may be
added to it. This is seen, in part icular , with SSA by
molecules as an example. It can be shown that the
corresponding spontaneous p r o c e s s e s analogous to the
ordinary Rayleigh scat ter ing by a gas of molecules
with effective polarizability aeff = ab - ota. and
density nb = μβΙι,/Τ. The corresponding extinction
coefficient is

dRldn άω = nb dap3.Jdo du> =

( 5 7 )

T h e l a s t f a c t o r i n ( 5 7 ) c o r r e s p o n d s t o a l l o w a n c e f o r t h e

a c t i n g f i e l d i n a c c o r d a n c e w i t h t h e L o r e n z - L o r e n t z

f o r m u l a . T h e c a l c u l a t i o n o f t h e e q u i v a l e n t n o i s e f o r

t h e S S A o n m o l e c u l e s b y f o r m u l a ( 1 . 3 ) o f A p p e n d i x 1

y i e l d s
2 1 12 Q2-f Γ 2

( 5 8 )

which is 2/μ t i m e s larger than the value obtained from
the general formula (51). The deviation of [ e s • ef, j
and of μ from unity leads to additional fluctuations,
which by analogy with shot noise can be called separa-
tion noise ( c f . [ 7 ] ) . For an est imate of the minimal
noise we put μ = 1 and | e s ·Βι,\ = 1. In this case the
physical cause of the doubling of the noise in (58) com-
pared with the genera l expression (51) is as follows.

In the case of SSA on molecules, not only is the
process of molecule excitation d i sc re te (and introduces
by the same token fluctuations), but so is also the
process of their de-excitation. F r o m the formal point
of view this means that the kinetic operator L from
(28) contains itself an additional noise par t . It is easy
to see that both indicated sources of fluctuations give
identical contributions to ( 6 e 2 ) , and this leads to a
doubling of the noise. On the other hand, in the case of
SSA on t h e r m a l and acoustic waves, the buildup of
fluctuations is not accompanied by additional noise.

APPENDICES

1. AMPLIFICATION NOISE AND CONNECTION BE-
TWEEN THE CROSS SECTION OF THE SPON-
TANEOUS SCATTERING AND THE GAIN IN SS

As is well known, in the absence of an input signal,
the process of stimulated scat ter ing can be regarded
a s a resul t of amplification of the amplifier noise.
This noise corresponds to spontaneous scatter ing of
the incident pump wave. The relat ion between the in-
duced and spontaneous par t s of the signal-energy in-
crement, for ordinary types of scatter ing, can be ob-
tained from general pr inciples . The gain for ordinary
types of SS is therefore uniquely expressed in t e r m s
of the c r o s s section of the spontaneous scat ter ing and
the t e m p e r a t u r e of the medium. We present the deriva-
tion of the corresponding formulas .

Assume that a " s i g n a l " wave propagates in the
direction of the ζ axis . The intensity of the signal can
be character ized by the flux of quanta Is
(quanta/cm 2 sec); we introduce also the average occu-
pation number ns of the quantum states of the signal
field. Then

h e r e vs = 9&;s/9k is the group velocity of the signal
wave, and ΔΝ = k 2 Δ k Δ o / ( 2 π ) 3 is the number of modes
per unit volume in the solid angle Δο of interest to us
and in the frequency interval Δω = ν £ Δ ^ In a r e a l
situation, the values of Δο and Δω a r e determined
usually by the geometry of the experiment and by the
bandwidth of the amplifier respectively; we do not need
them in explicit form. Moreover, in considering a co-
herent signal wave (i.e., neglecting noise), we can put
Δο — 0 and Δ ω — 0.

The variation of the flux Is with the coordinate ζ is
connected with the action of three mechani sms : 1) a
decrease due to the ordinary linear absorption, 2) an
increase due to the spontaneous scatter ing, and
3) amplification connected with the SS. Accordingly,
we can write

We have introduced here the resultant gain (with a l-
lowance for losses) g = g0 - β. The quantity ΔR
= (dR/dodω)ΔoΔω is the extinction coefficient ( i .e.,
the c r o s s section for scatter ing by a unit volume),
corresponding to spontaneous scat ter ing in a solid
angle Δο and a frequency interval Δω and in a definite
type of polarization (the dimension of ΔΒ. is c m " 1 ) . An
expression of the type (1.2) is valid for a l l types of SS;
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it is convenient to r e w r i t e it in t e r m s of ng:

dnsldz = g{ns + X), \ = {IL/g)(2a)*k-*dRldoda. (1.3)

Here λ is the equivalent number of noise quanta per
mode; the corresponding s p e c t r a l intensity of the noise
power per mode with a definite t r a n s v e r s e index is
Κωλ, and the minimum value of λ compatible with the
principles of quantum mechanics is Amin = 1 (see
Appendix 2).

Let us consider the usual types of SS, not connected
with absorption, and neglect first the l inear absorption.
In the language of quantum mechanics, such types of
scat ter ing a r e described by the schemes of Fig. l a .
The probability of emiss ion of a signal quantum, cor-
responding to such a scheme, is proportional to w ( + )

~ Pi(ng + l ) n L , where p i is the population of level 1
at equil ibrium. The probability of absorption of a sig-
nal quantum is w< - ) ~ p 2 n g ( n L + 1) (see Fig. lb) ;
when η ^ > 1, we can approximately put nL ~ nj_, + 1
~ I I . A S a resul t , the energy t rans fe r red to the signal
wave is proportional to

dnsldz — u>(+> —u)<"> — IL [ns + Pi (pi — P2)"1]· (l .4)

For an equilibrium medium, however, p i / ( p i - p 2 ) = ν
+ 1 = [ 1 - e x p ( - S n / k T ) ] , where ν = [exp (ΚΩ/kT)
- I ] " 1 is the average number of " q u a n t a " of frequency
Ω = O>L - ws at a t e m p e r a t u r e T. Comparing (1.4)
with (1.3) we obtain for g0

(2π)»
( 1 . 5 )

Allowance for the linear absorption leads to the con-
clusion that amplification is possible only when I I
> it' 1 1 ', where the threshold pump power is determined
by tfee condition g o ( l £ r ) = (3:

/ * r = [*»/(2π)»] β [1 - e x p ( - ΛΩ/*Γ)]"> (dR/do d<o)-i. ( 1 . 6 )

The value of λ, from (1.3), is then

w * + * > ^ [ > - « p ( - £ ) r - ^ r · ~ 7 j & - ( ι · 7 )

F r o m ( 1 . 5 ) a n d ( 1 . 6 ) t h e r e f o l l o w a n u m b e r o f i m p o r t a n t

c o n s e q u e n c e s f o r t h e o r d i n a r y t y p e s o f S S . F i r s t ,

inasmuch as ν + 1 > 0 only if Ω > 0, amplification
(go > 0) is possible only in the Stokes region ( Ω > 0).
F u r t h e r , when I I 3> I y n r the amplification noise is
determined only by the t e m p e r a t u r e of the medium and
r e a c h e s at low t e m p e r a t u r e (kT <C ΚΩ) the quantum
minimum λ = 1. We note that on approaching the
threshold the spontaneous scat ter ing itself does not
experience any singularity; only \, which c h a r a c t e r -
izes the propert ies of the amplifier, tends to infinity.
Finally, for ordinary types of SS, the value of λ de-
c r e a s e s monotonically with increasing χ = Ι]_,/ή η Γ .

L

2. DESCRIPTION OF NOISE IN QUANTUM MECHAN-
ICS. QUANTUM MINIMUM OF AMPLIFICATION
NOISE

We present for re ference purposes the main
p r e m i s e s of the descript ion of noise in quantum mechan-
ics of a mode of an electromagnetic field. Two ap-
proaches a r e possible h e r e . One of them corresponds
to the Schrodinger picture of quantum mechanics and
was considered i n [ 8 1 . In the present appendix we p r e -

sent a description of the Heisenberg picture, following
the fundamental papers of Senitzky [ 9 1 and the book of
L o u i s e l l t l 0 ] . This picture is convenient for a compar i-
son with the c las s ica l Maxwell 's equations.

The equation for the Heisenberg annihilation opera-
t o r a ( t ) in the presence of linear damping is of the
form

(da (ί)/ίί) + (γ/2) α (!) = /((). ( 2 . 1 )

I t i s a s s u m e d h e r e t h a t t h e f a s t d e p e n d e n c e o n t h e t i m e

( ~ e x p ( - i u > t ) ) h a s a l r e a d y b e e n s e p a r a t e d , a n d y i s

t h e d a m p i n g c o n s t a n t . T h e o p e r a t o r f ( t ) d e s c r i b e s a

r a n d o m L a n g e v i n f o r c e a n d c o r r e s p o n d s t o a n a g g r e -

g a t e of q u a n t u m a n d t h e r m a l n o i s e s c o n n e c t e d w i t h t h e

d a m p i n g .

W e s h a l l s h o w f i r s t t h a t n e g l e c t of t h e n o i s e s l e a d s

t o a c o n t r a d i c t i o n . I n f a c t , if f ( t ) = 0 , t h e n a ( t )

= a ( 0 ) e x p ( - y t / 2 ) , a n d w e w o u l d o b t a i n f o r t h e c o m -

m u t a t o r

= [ o ( 0 ) , n+(0)]exp( — yt). ( 2 . 2 )

B u t i n t h e c o r r e c t t h e o r y t h e c o m m u t a t o r of a. a n d a *

s h o u l d b e e q u a l t o u n i t y a t a n y i n s t a n t of t i m e t . W e s e e

t h e r e f o r e t h a t t h e n o i s e c a n n o t b e n e g l e c t e d e v e n a t

z e r o t e m p e r a t u r e o f t h e d i s s i p a t i v e s u b s y s t e m ( t h e r m o -

s t a t ) .

I t f o l l o w s f r o m ( 2 . 1 ) t h a t

(—yt/2) ( 2 . 3 )

If the dissipative subsystem has a broad spectrum,
then f(t) can be regarded as a δ-correlated random
operator p r o c e s s . This means that

(2 4)

it is easy to see that in this case A > 0 and Β > 0.
Let us as sume that the commutators f and f+ a r e c-
numbers (and not an operator) , i .e. , that

i2), C = A-B. ( 2 . 5 )

If w e n o w s t i p u l a t e t h a t t h e c o m m u t a t o r [ a ( t ) a + ( t ) ] b e

e q u a l t o u n i t y a t a l l t , t h e n w e g e t f r o m ( 2 . 3 ) a n d ( 2 . 5 )

[a (t), > (()] =exp ( — γίΗ-Ογ" 1 [1 —exp (—γί)] = 1,

f r o m w h i c h i t f o l l o w s t h a t

( 2 6 )

A n a n a l o g o u s r e l a t i o n c a n b e o b t a i n e d b y c o n s i d e r i n g

t h e a v e r a g e n u m b e r of q u a n t a ( n ( t ) ) = ( a + ( t ) a ( t ) ) :

(n (t)) = (a+(

{n (t)) = <n(0))exp( —

If a t t = 0 t h e m o d e w a s i n e q u i l i b r i u m w i t h t h e

t h e r m o s t a t a t a t e m p e r a t u r e T , t h e n ( n ( 0 ) ) = f

= [ e x p ( f i o > o / k T ) - I ] " 1 a n d e q u i l i b r i u m s h o u l d b e r e -

t a i n e d a l s o a t t > 0 . H e n c e

B = yy ^ = i i + C = Y ( v + l ) . ( 2 . 8 )

E q u a t i o n s ( 2 . 4 ) - ( 2 . 6 ) a n d ( 2 . 8 ) c o n s t i t u t e t h e s i m p l e s t

f o r m u l a t i o n of t h e f l u c t u a t i o n - d i s s i p a t i o n t h e o r e m i n

t h e q u a n t u m c a s e : t h e n o i s e i n t e n s i t y c o e f f i c i e n t s A ,

B , a n d C a r e p r o p o r t i o n a l t o t h e d a m p i n g c o n s t a n t y .

A t t e n t i o n m u s t b e c a l l e d t o t h e c h a r a c t e r i s t i c f e a -
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t u r e s inherent in the quantum description of the noise:
1) Even at z e r o t e m p e r a t u r e of the thermostat

( T = 0, ν = 0) t h e r e is quantum noise: A = C = y, Β = 0.
2) It is necessary to observe rigorously the order

of the opera tors in the express ions of the type (2.4) for
the averages of the products of the random forces;
namely, the coefficient Β corresponds to "normal ly
o r d e r e d " noise, and the coefficient A corresponds to
"ant inormal ly o r d e r e d " noise, with A ;* B.

The field energy (the number of quanta in the mode
is determined by the normal ly-ordered expression
( n ) = ( a + a ) . A t zero t e m p e r a t u r e {v = 0) the in-
tensity Β of the " n o r m a l l y - o r d e r e d " i .e., energy part
of the noise is equal to z e r o : Β = yv = 0. We can
therefore say that at ν = 0 the quantum noise does not
excite r e a l oscil lations of the mode, and serves only to
maintain the operator [ a , a + j constant (or, what is ap-
proximately the s a m e , to maintain the vacuum fluctua-
tions of the quantities ρ and χ ) .

If the dissipative subsystem (thermostat) is not in
the equilibrium s ta te , then in principle amplification is
also possible, i .e., y < 0. Such a non-equilibrium
state may be connected with population inversion or ,
in our case, with the propagation of a powerful pump
beam in the medium. F r o m the conservation of the
commutation relat ions we get as before C -y, but now
C < 0. Since Β = A - C and A 2 0, we obtain im-
mediately the minimum value of the energy, i.e.,
" n o r m a l l y - o r d e r e d " noise of a quantum amplif ier:

Β > Ι γ I if ν < 0. (2.9)

F r o m (2.7) we find that at the minimum Β

ί<Α(ί)>/<ϋ = + Ι ϊ Ι ( ( « ( Φ + β | γ Ι ) = ΙϊΙ««>+ΐ). (2.10)
Th is m e a n s that the m i n i m u m n o i s e of a quantum a m -
pl i f ier c o r r e s p o n d s formal ly to an ampl i f icat ion of the
n o i s e energy of one photon per m o d e . The flux of the
n o i s e power correspond ing to th i s photon i s equal to

pn = ν (Λω/L) AN = Ug, (ftco/i) Lfik/2n = ίι»Δω/2η= ΛωΔ/. ( 2 . 1 1 )

W e h a v e c o n s i d e r e d h e r e o n e - d i m e n s i o n a l p r o p a g a t i o n

with group velocity v g r = 3w/3k for modes with defi-
nite t r a n s v e r s e index; Δί is the bandwidth. We note
that this value of P n is twice as large than the so-
called power of the vacuum fluctuations ΚωΔί/2.

More r igorous proofs of this conclusion for a r b i -
t r a r y quantum amplif iers a r e given i n [ 1 1 ] (on the bas i s
of the Heisenberg-equation method) and i n [ 1 2 ] (on the
basis of the method of quantum character i s t ic functions).
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