537.311

ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ ФЕРМИ МЕТАЛЛОВ (Справочная таблица)

Ю. П. Гайдуков

В течение последних пятнадцати лет чрезвычайно сильно развились экспериментальные методы исследования электронных свойств металлов. Наибольшее внимание в экспериментальных работах этих лет уделялось энергетическому спектру электронов проводимости металлов — зависимости энергии электронов от их квазиимпульса $\varepsilon = \varepsilon$ (**p**).

Одним из важнейших понятий современный электронной теории металлов является «поверхность Ферми» (ε (\mathbf{p}) = ε_F = const). Поверхность Ферми отделяет занятые электронами состояния от свободных в пространстве квазиимпульсов. Знание геометрии поверхности Ферми и ее характеристик позволяет объяснить многие макроскопические свойства металла, например электрическое сопротивление в магнитном поле. С другой стороны, исследование разнообразных свойств металла позволяет в свою очередь восстановить поверхность Ферми металла. Так, большинство квантовых эффектов несет в себе количественную информацию о площадях экстремальных сечений поверхности Ферми, циклотронный резонанс дает сведения об эффективных массах электронов и скоростях на поверхности Ферми, поглощение ультразвука в магнитном поле и размерные радиочастотные эффекты позволяют определить линейные размеры сечений поверхности Ферми и т. д.

К настоящему времени поверхности Ферми большинства металлов исследованы достаточно подробно. В частности, стало известно, являются ли они замкнутыми или открытыми, определены топологические типы открытых поверхностей Ферми. Определены также и размеры поверхностей Ферми большинства металлов.

Эти знания были получены благодаря не только развитию экспериментальных методов, но и развитию теоретических представлений в этой области физики твердого тела. Итоги проведенных теоретических и экспериментальных исследований энергетического спектра металлов были подведены в обзорах И. М. Лифшица и М. И. Каганова (УФН 69, 419 (1959); 78, 411 (1962); 87, 390 (1965)), М. Я. Азбеля (УФН 98, 601 (1969)) и Дж. Займана (УФН 78, 291, 679 (1962); 79 319; 80, 505, 665 (1963)).

В этих обзорах экспериментальный материал служил лишь иллюстрацией теории. В обзорах отсутствует библиография большинства оригинальных экспериментальных и теоретических работ.

Настоящая работа частично восполняет эти пробелы. По существу, она является своеобразным приложением к обзорам И. М. Лифшица и М. И. Каганова, М. Я. Азбеля и Дж. Займана и дает самые общие сведения о топологии поверхностей Ферми металлов и интерметаллических соединений. В основном эти сведения получены из гальваномагнитных эффектов.

			Метод ис						
Металл	Кристалличе- ская решетка	Топологический тип и другие сведения о поверхности Ферми	гальвано- магнит- ные эффекты	де Гааза— ван Аль- фена и Шубни- кова— де Гааза әффекты	цикло- тронный резонанс	Магнето- акусти- ческий эффект	радио- частот- ный раз- мерный эффект	расчет зонной структуры и срав- нение с экспери- ментом	Примечания
Алюминий	гцк	$n_1 \neq n_2; H < 30$ кэ, закры- тая; $H > 30$ кэ, магнитный	1-4	5-8	9-13	14-17	18	19-21, 324	³¹⁴ (ACƏ)
Бериллий	ГПУ	пробой $n_1 = n_2; H < 50 \kappa_{\theta}$, закры- тая; $H > 50 \kappa_{\theta}$, магнитный пробой в базисной плоскости, открытая; плоская сетка гоф- рированных цилиндров по осям $(\sqrt{2}40)$ и $(40\overline{4}0)$	23	23				24~26	318, 319 (АП) (рис. 1)
Ванадий	оцк	$n_1 \neq n_2$, открытая (?)	27, 28					29	В ²⁷ найдено, что поверхность Ферми гакрытая
Висмут Вольфрам	Ромбоэдр. ОЦК	$n_1=n_2$, закрытая $n_1=n_2$, закрытая	30 27, 48	31-36 49, 50	37, 38 51, 52	39-42	43, 44 53	45~47 29, 54	315 (AC \Im)
Гадолинии Галлий	ГПУ Объемноцентр.	$n_1 = n_2$, открытая; гофриро-	58-60	61	62, 63	64	65	66, 325	320 (AII)
Графит Железо	орторомо. ОЦК	ванный цилиндр вдоль оси с Закрытая, самопересечение $n_1 = n_2$, открытая; простран- ственная сетка гофрированных	72-74	67, 68 74	69, 70			71 75~77	³²¹ (АП) (рис. 2)
Золото	гцк	цилиндров по осям (001) $n_1 == 1$ электрон/атом, $n_2 ==$ = 0; открытая пространствен- ная сетка гофрированных ци- линдров по осям (111) (основ- ное открытое направление) и осям (110) и (100) (вторичные открытые направления)	78, 79	80-82	83	84, 85		86, 326, 327	(Рис. 3)
Индий	Тетрагон.	$n_1 = n_2$, закрытая	4, 87-89	90-92	93	94, 95	96	93, 97	

450

			1	Метод и	сследования	н поверхнос	ти Ферми		
Металл	Кристалличе- ская решетка	Топологический тип и другие сведения о поверхности Ферми	гальвано- магнит- ные эффекты	де Гааза — ван Аль- фена и Шубни- кова — де Гааза эффекты	цикло- тронный резонанс	магнето- акусти- ческий эффект	радио- частот- ный раз- мерный эффект	расчет зонной структуры и срав- нение с экспери- ментом	Примечания
Иттербий	гцк	Закрытая	98	99					По модели свобод- ных электронов поверхность Ферми должна
Иттрий Кадмий	ГПУ ГПУ	Открытая (расчет) n ₁ ==n ₂ ; открытая: гофриро- ванный цилиндр вдоль оси	102, 103	104-106	107, 108	109-112	113-117	100, 101 118, 119	быть открытой (Рис. 4)
Калий	оцк	[0001] $n_1 = 1$ электрон/атом, $n_2 = 0$; $H < 50$ кэ, закрытая, сфера; $H > 50$ кэ, магнитный ичера; $H > 50$ кэ, магнитный	120-122	123	124	125-128	129, 130	131-133, 328	
Кальций	гцк	открытая Открытая (расчет), подобна		134				135, 329	
Кобальт Литий Магний	ГЦК ОЦК ГПУ	поверхности Ферми свинца $n_1 \neq n_2$; закрытая $n_1 = n_2$; $H > 5 \kappa_3$, магнитный прибой в плоскости (0001), от- крытая; плоская сетка гофри- рованных пликимпор по осям	120 136, 137	138-141	142	143144		77 131, 132 145-147	³¹⁴ (АСЭ) (рис. 1)
Медь	гцк	(1210) и (1010); $H > 70 к_{\theta}$, маг- нитный пробой, возникают от- крытые направления вдоль оси [0001] $n_1 = 1$ электрон/атом, $n_2 = 0$; открытая; пространственная сетка гофрированных цилинд- ров вдоль осей (111), подобна поверхности Ферми золота	148-151	80, 82, 152–154	153, 156	85, 157, 158		86, 159, 326, 327	³¹⁶ (АСЭ) (рис. 3)

				Метод ис	1				
Металл	Кристалличе- ская решетка	Топологический тип и другие сведения о поверхности Ферми	гальвано- магнит- ные эффекты	де Гааза — ван Аль- фена и Шубии- кова — де Гааза эффекты	цикло- тронный резонанс	магнето- акусти- ческий әффект	радио- частот- ный раз- мерный эффект	расчет зонной структуры и срав- нение с экспери- ментом	Примечания
Молибден Мышьяк Натрий	ОЦК Ромбоэдр. ОЦК	$n_1 = n_2;$ закрытая $n_1 = n_2,$ закрытая $n_2 = n_2,$ закрытая	47, 48, 160 168, 330 120, 178	49, 161 169 171,336 179	162 172 124	$163, 164 \\ 173, 174$	165	$ \begin{array}{r} 166, 167 \\ 46, 175 - 177 \\ 131, 132, \end{array} $	
патрия	оци	закрытая: сфера						328	_
Никель	ГЦК	$n_1 = n_2$; открытая, простран- ственная сетка гофрированных цилиндров вдоль осей (111), полобия поверхности Ферми	180	181-184				185, 186	(Рис. 3)
Ниобий	оцк	водобла поверхности ферми золота $n_1 \neq n_2$; магнитный пробой, открытая; сетка гофрирован- ных цилиндров вдоль осей	187-189	190				29, 187	(Рис. 5)
Олово	Тетрагон.	$\langle 001 \rangle$, $\langle 110 \rangle$ й $\langle 111 \rangle$ $n_1 = n_2$; открытая: илоская сетка гофрированных цилинд- ров вдоль, осей $\langle 010 \rangle$ и $\langle 110 \rangle$:	191-193	194-197	198-200	201	202, 203	196, 204, 205	³¹⁷ (АСЭ) (рис. 6) (см. также ри- сунки в рабо-
Осьмий	гпу	$H > 50 \ \kappa_{2}$, магнитный пробой $n_{1} = n_{2}$; открытая: плоская сетка гофрированных цилинд- ров, параллельных плоскости (0001) и оси [0001]. магнитный	206						Tax 196 M 197)
Палладий	гцк	пробой n ₁ == n ₂ ; открытая: простран- ственная сетка гофрированных	207	208-210				211, 331	(Рис. 7)
Платина	гцк	цилиндров вдоль осей (001) $n_1 = n_2$ открытая: простран- ственная сстка гофрированных цилиндров вдоль осей (001); подобна поверхности Ферми палладия	136, 212	213-215		216		217	(Рис. 7)

ю. п. гайдуков

452

	1	Метод исследования поверхности Ферми							
Металл	Кристалличе- ская решетка	Топологический тип и другие сведения о поверхности Ферми	гальвано- магнит- ные эффекты	де Гааза— ван Аль- фена и Шубни- кова — де Гааза эффекты	цикло- тронный резонанс	магнето- акусти- ческий эффект	радио- частот- ный раз- мерный эффект	расчет зонной структуры и срав- нение с экспери- ментом	Примечания
Рений	гпу	$n_1 = n_2; H < 30$ кэ, откры- тая: гофрированный цилиндр вдоль оси [0001]; $H > 30$ кэ, магнитный пробой, появляются дополнительные открытые на- правления вдоль осей [0001]	218, 219	190, 220		221, 222		222, 223	(Рис. 8)
Родий Ртуть	ГЦК Ромбоэдр.	и [1010] Закрытая (расчет) $n_1 = n_2$; открытая, открытые направления параллельны осям	226-228	224, 225 229	230			224 231	³²² (АП) (рис. 9)
Рубидий	оцк	$n_1 = 1$ электрон/атом, $n_2 = 0$; закрытая, сфера		123, 232				131–133, 328	
Рутений Свинец	ГПУ ГЦК	n ₁ = n ₂ ; открытая: простран- ственная сетка гофрированных	234, 235, 332	233 236-238	239, 240	95, 241		233 242, 243	(Рис. 10)
Серебро	гцк	цилиндров вдоль осеи (111) $n_1 = 1$ электрон/атом, $n_2 = 0$; открытая; пространственная сетка гофрированных цилинд- ров вдоль осей [111], подобна	244, 245	80, 82, 246	247	85, 248		86, 87, 249, 250, 327, 333	(Рис. 3)
Скандий	Полиморфн. ГЦК, ГПУ	поверяности Ферми золота $n_1 \neq n_2$, закрытая	251					101, 252	Согласно расчету поверхность Ферми должна
Стронций Сурьма	Полиморфн. Ромбоэдр.	Открытая (расчет) $n_1\!=\!n_2;$ закрытая	254	255-260	261	262-266		253 46, 267	оыть открытои

				Метод и					
Металл	Кристалличе- ская решетка	Топологический тип и другие сведения о поверхности Ферми	гальвано- магнит- ные эффекты	де Гааза— ван Аль- фена и Шубни- кора — де Гааза эффекты	цикло- тронный резонанс	магнето- акусти- ческий әффект	радио- частот- ный раз- мерный эффект	расчет зонной структуры и срав- нение с экспери- ментом	Примечания
Таллий	ГПУ	$n_1 \neq n_2$; открытая; две гоф- рированные плоскости (0001), соединенные узкими перемыч- ками вполь оси 100011: $H >$	102, 268, 269, 270	271		272-274		275	(Рис. 11)
Тантал	оцк	>30 κ_{2} , магнитный пробой $n_{1} \neq n_{2}$; магнитный пробой, открытая; пространственная сетка гофрированных цилиндров, вдоль осей (001), подобна	187	190, 276 277	278			29	(Рис. 5)
Титан	ГПУ	поверхности Ферми нисоия n ₁ == n ₂ ; закрытая	279					101	Согласно расчету поверхность Ферми должна быть, открытой
Торий	Полиморфная			280, 281				282	omib oinphion
Хром	оцк	$n_1 = n_2; H > 60 \kappa_{\theta},$ магнит-	279, 283	284-286		287, 288		167, 289	(Рис. 12)
Цезий	оцк	ный просок, открытал $n_1 = 1$ электрон/атом, $n_2 = 0$; закрытая, сфера		123, 290, 291				131, 132, 291	
Цинк	гпу	$n_1 = n_2; H < 2,5 \ \kappa_{\vartheta}, $ откры- тая; гофрированный цилиндр вдоль оси [0001]; $H > 2,5 \ \kappa_{\vartheta};$ магнитный пробой, проявляют- ся открытые направления	102, 292-294	31, 295–297	298-301	111, 112 302-304		118, 119, 305	(Рис. 13)
Цирконий	гпу	вдоль осей (1210) и (1010) Открытая (расчет)	209	306				307	³²³ (АП)
AuSn AuAl ₂	гексаг. ГЦК	открытая Открытая, аналогична по топологии поверхности Ферми	309						(Рис. 3)
AgZn, CuZn PdIn	β-латунь	открытые (расчет)		310				311	
AuGa ₂ AuIn ₂	ГЦК	Открытые, аналогичны по топологии поверхности Ферми	309, 334	312				335	(Рис. 3)
MgZn ₂	Гексаг.	30101a		313					

454

Статья содержит таблицу, рисунки основных типов открытых поверхностей Ферми, обнаруженных экспериментально, и библиографию. Некоторые рисунки выполнены схематично и могут дать лишь общее представление о топологии открытой поверхности Ферми.

В таблице даны: 1) сведения о топологическом типе поверхностей Ферми, о соотношении между числом электронов n_1 и дырок n_2 , и 2) ссыл-

[1100]

[1210]

Сигара (игла, Онстр

"מסמד

D)

ки на основные экспериментальные и теоретические работы, в которых исследовалась зонная структура металлов и сплавов.

В связи с открытием явления магнитного пробоя понятия открытия

Рис. 1. а) Открытая поверхность Ферми («монстр») для бериллия и магния (без учета спин-орбитального взаимодействия электронов) ¹¹⁸; б) образование открытых направлений ($\overline{1100}$) и ($\overline{1210}$) вследствие магнитного пробоя между двумя частями поверхности Ферми — «монстром» и «сигарой» («иглой») для бериллия, магния, цинка. Показано сечение плоскостью [0001], *аа* и *b* – открытые траектории вдоль [$\overline{11001}$ и [$\overline{12101}$].

Рис. 2. Один из вариантов открытой поверхности Ферми железа ⁷⁵. Кривая со стрелками — открытая траектория вдоль оси [001].

и замкнутая поверхность Ферми стали носить условный характер: в магнитном поле замкнутая поверхность может стать открытой и, наоборот, открытая — замкнутой. Поэтому в таблице указана (приблизительно) величина магнитного поля, до которой еще можно считать, что поверхность практически замкнута или открыта.

В приложении нет ссылок на экспериментальные методы, которые либо сами являются объектом исследования, либо не дают дополнительных сведений по сравнению с более простыми методами. Нет также ссылок на методы, не получившие широкого распространения и с помощью которых получена пока еще скромная информация.

Рис. 3. а) Открытая поверхность Ферми золота, меди и серебра 316; б) сечение плоскостью [110]. Видно существование открытых направлений [111], [110] и [001] 244.

Рис. 4. Открытая поверхность кадмия. В базисной плоскости имеются разрывы. Вследствие этого не образуются открытые направления вдоль осей (1210) и (1100) (см. рис. 1, б) ¹⁰⁷.

Рис. 5. Открытая поверхность Ферми для V В группы металлов (V, Nb, Ta) согласно расчетам ¹⁸⁷.

Рис. 6. Открытые поверхности Ферми для олова согласно расчетам (их сущест-вование подтверждено в работах 191, 194, 196; 198, 202, 203). а) Дырочные открытые поверхности в третьей и четвертой зонах 194 (по поводу этих поверхностей см. также рисунки в работах 196, 197); б) сечения открытой электронной поверхности в пятой зоне 205.

Рис. 7. Модель открытой поверхности Ферми палладия и платины ²¹².

Рис. 8. Поверхность Ферми рения согласно расчетам ²²². е_в — открытая в направлении [0001] электронная поверхность (зона 8); h₇ — замкнутая дырочная поверхность (зона 7). Магнитный пробой между e_в и h₇ приводит к образованию открытых направлений вдоль осей (1100).

7 УФН, т. 100, вып. 3

Рис. 9. Открытая дырочная поверхность Ферми ртути в первой зоне согласно расчетам ²³¹. Линии, обозначенные штрихами и пунктиром открытые траектории (см. также рисунки в ²³⁹).

Рис. 10. Открытая электронная поверхность Ферми свинца (третья зона).

а) Линии μ и ρ — открытые траектории ²³⁶, ²³⁷; б) та же поверхность в одной ячейке обратной решетки, выполненная с соблюдением масштаба всех размеров, полученных ¹ экспериментально (М. С. Хайкин, Р. Т. Мина).

Рис. 11. Сечение плоскостью (1010) открытой дырочной поверхности Ферми таллия по модели Гаррисона ¹¹⁸, ¹⁰².

Согласно измерениям диаметр d значительно меньше расчетного: $d_{3\text{ксп}} = 0,1$ (все значения размеров даны в единицах $b = 1,16 \frac{2\pi}{a}$, a = 3,45 Å).

Рис. 12. Поверхность Ферми металлов типа хрома²⁹.

Открытые направления возникают вдоль оси (001) вследствие магнитного пробоя между закрытыми поверхностями 1 и 2.

Рис. 13. Схематическое изображение полностью определенной поверхности Ферми цинка ¹¹⁸, ²⁹⁷.

1 — открытая дырочная поверхность (вторая зона). В отличие от Cd, в базисной плоскости у поверхности нет разрывов, поэтому магнитный пробой приводит к образованию открытых направлений вдоль осей [1210] и [1100] (см. рис. 1, 6); 2 — замкнутые части поверхности, расположенные в различных зонах с учетом магнитного пробоя между (поверхностями а п β («сигара» и «бабочка»; 3 — то же бся учета магнитного пробоя между «сигарой» и «бабочкой».

Немногочисленные работы по аномальному скин-эффекту (АСЭ) и аннигиляции позитронов (АП) помещены в конце списка литературы, а соответствующие ссылки на них даны в таблице в разделе «Примечания». В целом, хотя библиография и не является всеобъемлющей, она достаточно полно представляет основные работы по исследованию поверхностей Ферми металлов.

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. R. J. Balcombe, Proc. Roy. Soc. A275, 113 (1963).
- 2. Е. С. Боровик, В. Г. Волоцкая, ЖЭТФ 48, 1554 (1965). 3. R. A. Parker, R. J. Balcombe, Phys. Lett. 27A, 197 (1968). 4. R. Lück, Phys. Stat. Solidi 18, 49 (1966).

- 4. К. Luck, Frys. Stat. Solid 18, 49 (1900). 5. Е. М. Gunnersen, Phil. Trans, Roy. Soc. 249, 299 (1957). 6. М. G. Priestley, Phil. Mag. 7, 1205 (1962). 7. Е. П. Вольский, ЖЭТФ 46, 123 (1964). 8. W. L. Larson, W. L. Gordon, Phys. Rev. 156, 703 (1967). 9. T. W. Moore, F. W. Spong, Phys. Rev. 125, 846 (1962).
- 10. А. А. Галкин, В. П. Набережных, В. А. Мельник, ЖЭТФ 44, 127 (1963)
- 11. В. П. Набережных, В. П. Толстолужский, ЖЭТФ 46, 18 (1964).
- 12. F. W. Spong, A. F. Kip, Phys. Rev. 137, 431 (1965). 13. Р. Т. Мина, В. С. Эдельман, М. С. Хайкин, ЖЭТФ 51, 1363 (1966).
- 14. П. А. Безуглый, А. А. Галкин, А. И. Пушкин, ЖЭТФ 44, 71

- 20. D. Segarr, Hys. Rev. 121 (1960). 21. N. W. Ashcroft, Phil. Mag. 96, 2055 (1963). 22. H. E. Алексеевский, В. С. Егоров, ЖЭТФ 55, 1153 (1968). 23. B. R. Watts, Phys. Lett. 3, 284 (1963); Proc. Roy. Soc. A282, 521 (1964). 24. T. L. Loucks, P. H. Cutler, Phys. Rev. 133, 819 (1964).

- 25. Т. L. Loucks, Phys. Rev. 134, 1618 (1964). 26. J. H. Terrell, Phys. Rev. 139, 526 (1966). 27. Н. Е. Алексеевский, В. С. Егоров, ЖЭТФ 46, 1205 (1964). 28. К. S. Nelson, J. L. Stanford, F. A. Schmidt, Phys. Lett. 28A, 402 (1968).

- (1960). 29. L. F. Mattheiss, Phys. Rev. **139**, 1893 (1965). 30. R. N. Zitter, Phys. Rev. **127**, 1471 (1962). 31. J. S. Dhillon, D. Shoenberg, Phil. Trans, Roy. Soc. **A248**, 1 (1955). 32. L. S. Lerner, Phys. Rev. **130**, 605 (1963). 33. H. Б. Бранд, Т. Ф. Долголенко, Н. Н. Ступоченко, ЖЭТФ **45**, 4240, (1963).
- 1319 (1963).
- 34. Y. Eckstein, J. B. Ketterson, Phys. Rev. 137, 1777 (1965). 35. C. G. Grenier, J. M. Reynolds, J. R. Subert, Phys. Rev. 132, 58
- (1963).
- 36. R. J. Balcombe, A. M. Forrest, Phys. Rev. 151, 550 (1966).

- 36. К. J. Ваїсот Бе, А. М. гоггезt, Риуз. Кеv. 151, 550 (1966). 37. Као Үі-Нап, Phys. Rev. 129, 1122 (1963). 38. В. С. Эдельман, М. С. Хайкин, ЖЭТФ 49, 107 (1965). 39. D. H. Rencker, Phys. Rev. 115, 303 (1959). 40. А. П. Королюк, ЖЭТФ 49, 1009 (1965); 51, 697 (1966). 41. Ү. Sawada, E. Burstein, L. Testardi, J. Phys. Soc. Japan 21, 760
- 41. 1. Баwada, Б. Багбтоги, Б. Госсана, С. Германа, (1966).
 42. S. Мавс, Ү. Fujimori, Н. Могi, J. Phys. Soc. Japan 21, 1744 (1966).
 43. М. С. Хайкин, В. С. Эдельман, ЖЭТФ 47, 878 (1964).
 44. V. F. Gantmaher, Progr. Low. Temp. Phys. 5, 181 (1967).
 45. L. S. Lerner, Phys. Rev. 127, 1480 (1962).

- 46. А. А. Абрикосов, Л. А. Фальковский, ЖЭТФ 43, 1089 (1962). 47. L. G. Ferreira, J. Phys. Chem. Solids 29, 357 (1968). 48. E. Fawcett, Phys. Rev. 128, 154 (1962).

- 49. D. M. Sparlin, J. A. Marcus, Phys. Rev. 144, 484 (1966).
- 50. R. F. Girvan, A. V. Gold, R. A. Phillips, J. Phys. Chem. Solids 29, 1485 (1968). 51. Е. Fawcett, W. W. Walsh, Phys. Rev. Lett. 8, 476 (1962). 52. Р. Германн, В. С. Эдельман, ЖЭТФ 53, 1563 (1967).

- 53. W. M. Walsh, C. C. Grimes, G. Adams, L. W. Rupp, Proc. IX Conf. Low. Temp. Phys., vol. B, New York, 1965, crp. 765. 54. T. L. Loucks, Phys. Rev. 143, 506 (1966). 55. J. O. Dimmock, A. J. Freeman, R. E. Watson, J. Appl. Phys. 36,
- 1142 (1965). 56. A. J. Freeman, J. O. Dimmock, R. E. Watson, Phys. Rev. Lett. 16, 94
- (1966).
- 57. S. C. Keeton, T. L. Loucks, Phys. Rev. 146, 429 (1966); 168, 672 (1968).
- 58. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 37, 672 (1959). 59. W. A. Reed, J. A. Marcus, Phys. Rev. 126, 1298 (1962). 60. J. A. Munarin, J. A. Marcus, P. E. Bloomfield, Phys. Rev. 172,
- 718 (1968).
- 61. A. Goldstein, S. Foner, Phys. Rev. 146, 442 (1966).
- 62. T. W. Moore, Phys. Rev. Lett., 18, 310 (1967); Phys. Rev. 165, 864 (1968). 63. M. Surma, Acta Phys. Polon. 32, 677 (1967).
- 64. П. А. Безуглый, А. А. Галкин, С. Е. Жеваго, ЖЭТФ 47, 825 (1964); ФТТ 7, 480 (1965).
- 65. A. Fukumoto, M. W. Stradberg, Phys. Rev. 155, 685 (1967).
 66. J. C. Slater, G. F. Koster, J. H. Wood, Phys. Rev. 126, 1307 (1962).
 67. D. E. Saule, J. W. McClure, L. B. Smith, Phys. Rev. 134, 453
- (1964). 68. S. J. Williamson, S. Foner, M. S. Dresselhaus, Phys. Rev. 140,
- 1429 (1965). 69. S. J. Williamson, M. Surma, H. C. Praddaude, R. A. Patten, J. L. Furdyna, Solid State Comm. 4, 37 (1966).

- 70. R. F. O'Brien, S. Foner, Phys. Lett. 25, 310 (1967).
 71. M. S. Dresselhaus, J. G. Mavroides, IBM J. Res. 8, 262 (1964).
 72. W. A. Reed, E. Fawcett, Phys. Rev. Lett. 9, 336 (1962), Phys. Rev. 131, 2463 (1963); 136, 422 (1964).

- 73. A. I s i n, R. V. C o l e m a n, Phys. Rev. 137, 1609 (1965).
 74. A. V. G o l d, J. Appl. Phys. 39, 768 (1968).
 75. S. W a k o n, J. Y a m a s h i t a, J. Phys. Soc. Japan 21, 1712 (1966).
 76. J. H. W o o d, Phys. Rev. 126, 517 (1962).
- 77. L. F. Mattheiss, Phys. Rev. 134, 970 (1964).

- L. F. Mattheiss, Phys. Rev. 134, 970 (1964).
 E. Justi, Phys. Zs. 41, 563 (1940).
 D. M. Гайдуков, ЖӘТФ 37, 1281 (1959).
 D. Shoenberg, Phil. Trans, Roy. Soc. A255, 1 (1962).
 A. S. Joseph, A. C. Thorsen, Phys. Rev. 140, 2046 (1965).
 J. P. Jan, J. M. Templeton, Phys. Rev. 161, 556 (1967).
 D. N. Langenberg, S. M. Marcus, Phys. Rev. 136, 1383 (1964).
 R. W. Morse, A. Myers, C. T. Walker, Phys. Rev. Lett. 4, 605 (1960).
 H. V. Bohm, V. J. Easterling, Phys. Rev. 128, 1021 (1962).
 D. J. Roaf, Phil. Trans. Roy. Soc. A255, 135 (1962).
 E. C. Боровик, ДАН СССР 69, 768 (1949).
 E. C. Боровик, В. Г. Волоцкая, ЖЭТФ 38, 261 (1960).
 H. Гайдуков, ЖЭТФ 49, 1049 (1965).

- 89. Ю. П. Гайдуков, ЖЭТФ 49, 1049 (1965). 90. G. B. Brandt, J. A. Rayne, Phys. Lett. 12, 87 (1964); Phys. Rev. 132, 1512 (1963)
- 91. W. J. O'Sullivan, J. E. Shirber, J. R. Anderson, Phys. Lett. 27A, 144 (1968).
- 92. А. J. Hughes, А. Н. Lettington, Phys. Lett. 27А, 241 (1968). 93. Р. Т. Мина, М. С. Хайкин, ЖЭТФ 48, 111 (1965); 51, 62 (1966).
- 94. J. A. Rayne, B. S. Chandrasekhar, Phys. Rev. 125, 1952 (1962); 129,
- 652 (1963). 95. R. J. Balcombe, E. W. Guptill, M. H. Jericho, Phys. Lett. 13, 287 (1964).

- 96. В. Ф. Гантмахер, И. П. Крылов, ЖЭТФ 49, 1054 (1965).
 97. N. W. Ashcroft, W. E. Lawrence, Phys. Rev. 175, 938 (1968).
 98. W. R. Datars, S. Tanuma, Phys. Lett. 27A, 182 (1968).
 99. S. Tanuma, Y. Ishizawa, H. Nagasawa, T. Sugawara, Phys. Lett. 27 (1967). Lett. 25, 669 (1967).

- 100. Т. L. Loucks, Phys. Rev. 144, 504 (1966). 101. S. L. Altmann, C. J. Bradley, Proc. Phys. Soc. 92, 764 (1967). 102. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ143, 2094 (1962). 103. D. C. Tsui, R. W. Stark, Phys. Rev. Lett. 19, 1317 (1967).
- 104. J. G. Anderson, W. F. Love, Bull. Amer. Phys. Soc. 8, 258 (1963).

- 105. A. B. C. Grassic, Phil. Mag. 9, 101 (1964).
 106. D. C. Tsui, R. W. Stark, Phys. Rev. Lett. 16, 19 (1966).
 107. J. K. Galt, F. R. Merritt, J. R. Klauder, Phys. Rev. 139, 823 (1965).
 108. M. P. Shaw, T. G. Eck, D. A. Zych, Phys. Rev. 142, 406 (1966).
 109. J. D. Gavenda, B. C. Deaton, Phys. Rev. Lett. 8, 208 (1962).
 110. M. R. Daniel, L. Mackinnon, Phil. Mag. 8, 537 (1963).

- 111. D. F. Gibbons, L. M. Falicov, Phil. Mag. 8, 177 (1963).
- 112. B. C. Deaton, Phys. Rev. 136, 1096 (1964).
- 113. N. H. Zebouni, Ř. E. Hamburg, H. J. Mackey, Phys. Rev. Lett. 11, 260 (1963).
- 114. А. А. Марьяхин, В. П. Набережных, Письма ЖЭТФ 3, 205 (1966).
- 115. В. П. Набережных, А. А. Марьяхин, В. А. Мельник, ЖЭТФ 52, 617 (1967).
- 116. R. G. Goodrich, R. C. Jones, Phys. Rev. 156, 745 (1967). 117. R. C. Jones, R. G. Goodrich, L. M. Falicov, Phys. Rev. 174, 672 (1968).
- 118. W. A. Harrison, Phys. Rev. 118, 1190 (1960). 119. R. W. Stark, L. M. Falicov, Phys. Rev. Lett. 19, 795 (1967).
- 120. R. G. Chambers, B. K. Jones, Proc. Roy. Soc. A270, 417 (1962).

- 120. R. G. Cham Berg, B. R. Johres, Floc. Roy. Soc. A210, 417 (1962).
 121. P. A. Penz, Phys. Rev. Lett. 20, 725 (1968).
 122. J. R. Reitz, A. W. Overhauses, Phys. Rev. 171, 749 (1968).
 123. D. Shoenberg, P. J. Stiles, Proc. Roy. Soc. A281, 62 (1964).
 124. C. C. Grimes, A. F. Kip, Phys. Rev. 132, 1991 (1963).
 125. H. J. Foster, P. H. Meijer, E. V. Mielczarek, Phys. Rev. 139, 1849 (1965).

- (1965).
 126. J. Trivisonno, M. S. Said, L. A. Pauer, Phys. Rev. 147, 518 (1966).
 127. T. G. Blaney, Phil. Mag. 17, 405 (1968); 20, 23 (1969).
 128. J. R. Peverley, Phys. Rev. 173, 689 (1968).
 129. J. F. Koch, T. K. Wagner, Phys. Rev. 151, 467 (1966).
 130. P. S. Peercy, W. M. Walsh, L. M. Rupp, P. H. Schidt, Phys. Rev. 171, 713 (1968).
 124. F. S. Heam Phys. Rev. 128, 2524 (1962).
- 131. F. S. Ham, Phys. Rev. 128, 2524 (1962).
- 132. V. Heine, A. Abarenkov, Phil. Mag. 9, 451 (1964). 133. N. W. Ashcroft, Phys. Rev. 140, 935 (1965).

- 135. N. W. ASh Croft, Fhys. Rev. 140, 935 (1905).
 134. J. H. Condon, J. A. Marcus, Phys. Rev. 134, 446 (1964).
 135. S. L. Altmann, A. P. Cracknell, Proc. Phys. Soc. 84, 761 (1964).
 136. H. E. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 38, 1720 (1960).
 137. R. W. Stark, T. G. Eck, W. L. Gordon, Phys. Rev. Lett. 8, 360 (1962); Phys. Rev. 133, 443 (1964).
 28. M. C. Driest, and Law Proc. Rev. Soc. 4276, 258 (4062).
- 138. M. G. Priestley, Proc. Roy. Soc. A276, 258 (1963). 139. M. G. Priestley, L. M. Falicov, G. Weisz, Phys. Rev. 131, 617 1963)
- 140. R. W. Stark, Bull. Amer. Phys. Soc. 11, 169 (1966).
- 140. R. W. Stark, Bull. Amer. Phys. Soc. 11, 169 (1966).
 141. R. W. Stark, Phys. Rev. 162, 589 (1967).
 142. T. G. Eck, M. P. Shaw, Proc. IX Conf. Low. Temp. Phys., vol. B, New York, 1965, crp. 759.
 143. E. W. Hartmann, J. M. Luttinger, Phys. Rev. 151, 430 (1966).
 144. J. B. Ketterson, R. W. Stark, 156, 748 (1967).
 145. L. M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962).
 146. L. M. Falicov, A. B. Pinpard, B. B. Silvert, Phys. Rev. 151, 498.

- 147. L. M. Falicov, A. B. Pippard, R. R. Silvert, Phys. Rev. 151, 498 (1966).

- (1966).
 148. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 37, 672 (1959).
 149. J. Е. Кипzler, J. R. Klauder, Phil. Mag. 6, 1045 (1961).
 150. А. J. Funes, R. V. Coleman, Phys. Rev. 131, 2084 (1963).
 151. J. R. Klauder, W. A. Reed, C. E. Brennert, J. E. Kunzler, Phys. Rev. 141, 592 (1966).
 152. D. Shoenberg, Nature 183, 171 (1959).
 153. A. S. Joseph, A. C. Thorsen, Phys. Rev. 134, 979 (1964).
 154. A. S. Joseph, A. C. Thorsen, E. Gertner, L. E. Valby, Phys. Rev. 148, 569 (1966).
 155. D. N. Langenberg, T. W. Moore, Phys. Rev. Lett. 3, 328 (1959).
 156. A. F. Kip, D. N. Langenberg, T. W. Moore, Phys. Rev. 124, 359 (1961).

- 156. A. F. Kip, D. N. Langenberg, T. W. Moore, Phys. Rev. 124, 359 (1961).

- 157. J. R. Boyd, J. D. Gavenda, Phys. Rev. 152, 645 (1966). 158. R. E. McFarlane, J. A. Rayne, C. K. Jones, Phys. Lett. 24, 197 (1967).
- 159. E. J. Zornberg, F. M. Mueller, Phys. Rev. 151, 557 (1966).
- 160. В. Е. Старцев, Н. В. Волькенштейн, Н. А. Новоселов, ЖЭТФ 51, 1311 (1966).
- 161. G. Leaver, A. Myers, Phil. Mag. 19, 437 (1969). 162. R. Hermann, Phys. Status Solidi 25, 661 (1968).
- 163. П. А. Безуглый, С. Е. Жеваго, В. И. Денисенко, ЖЭТФ 49, 1457 (1965).
- 164. А. А. Галкин, С. Е. Жеваго, Т. Ф. Бутенко, Укр. физ. ж. 13, 1106 (1968).
- (1968).
 165. В. В. ойко, В. Н. Гаспаров, И. Г. Гвердцители, Письма ЖЭТФ 6, 737 (1967); ЖЭТФ 56, 489 (1969).
 166. W. H. Lomer, Proc. Phys. Soc. 84, 327 (1964).
 167. T. L. Loucks, Phys. Rev. 139, 1181 (1965).
 168. A. P. Jeavons, G. A. Saunders, Phys. Lett. 27A, 19 (1968).
 169. M. G. Priestley, L. R. Windmiller, J. B. Ketterson, Y. Eckstein, Phys. Rev. 154, 671 (1967).
 170. J. Vanderkooy, W. R. Datars, Phys. Rev. 156, 671 (1967).
 171. Ishizawa Yoshio, J. Phys. Soc. Japan 25, 160 (1968).
 172. W. R. Datars, J. Vanderkooy, J. Phys. Soc. Japan 21, 657 (1966).
 173. Y. Shapira, S. J. Williamson, Phys. Lett. 14, 73 (1965).
 174. J. B. Ketterson, Y. Eckstein, Phys. Rev. 135 (1965).

- 174. J. B. Ketterson, Y. Eckstein, Phys. Rev. 14, 10 (1965). 175. L. M. Falicov, S. Golin, Phys. Rev. 137, 871 (1965). 176. S. Golin, Phys. Rev. 140, 993 (1965).

- 177. P. J. Lin, L. M. Falicov, Phys. Rev. 146, 441 (1966).
- 178. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 36, 447 (1959).
- 179. M. J. G. Lee, Proc. Roy. Soc. A295, 440 (1966). 180. E. Fawcett, W. A. Reed, Phys. Rev. Lett. 9, 336 (1962); J. Appl. Phys. 35, 754 (1964).
- 181. A. S. Joseph, A. C. Thorsen, Phys. Rev. Lett. 11, 554 (1963).
 182. D. C. Tsui, R. W. Stark, Phys. Rev. Lett. 17, 871 (1966).
 183. D. C. Tsui, Phys. Rev. 164, 669 (1967).

- 184. J. Ruvalds, L. M. Falicov, Phys. Rev. 172, 509 (1968).
- 185. J. Yamashita, M. Fukuchi, S. Wakon, J. Phys. Soc. Japan 18, 999 (1963)
- 186. J. C. Phillips, Phys. Rev. 133, 1020 (1964).
- 187. E. Fawcett, W. A. Reed, R. R. Soden, Phys. Rev. 159, 533 (1967).
- 188. Н. Е. Алексеевский, К. Х. Бертель, А. В. Дубровин, Г. Э. Карстенс, Письма ЖЭТФ 6, 637_(1967).

- стенс, письма жэгФ 6, 657 (1967). 189. W. A. Reed, R. R. Soden, Phys. Rev. 173, 677 (1968). 190. A. C. Thorsen, T. G. Berlincourt, Phys. Rev. Lett. 7, 244 (1961). 191. Н. Е. Алексеевский, Ю. П. Гайдуков, И. М. Лифшиц, В. Г. Песчанский, ЖЭТФ 39, 1201 (1960). 192. R. C. Young, Phys. Rev. 152, 659 (1966). 192. L. C. Anderson, R. C. Loung, Phys. Rev. 169, 606 (4062).

- 192. К. С. Young, Phys. Rev. 152, 659 (1966).
 193. J. G. Anderson, R. C. Joung, Phys. Rev. 168, 696 (1968).
 194. A. V. Gold, M. G. Priestley, Phil. Mag. 5, 1089 (1960).
 195. J. A. Woolam, Phys. Lett. 27A, 246 (1968).
 196. M. D. Staflen, A. R. Vroomen, Phys. Status Solidi 23, 675, 683 (1967).
 197. J. E. Craven, R. W. Stark, Phys. Rev. 168, 849 (1968).
 198. J. F. Koch, A. F. Kip, Phys. Rev. Lett. 8, 473 (1962).
 199. M. C. Хайкин, ЖЭТФ 42, 27 (1962).
 200. М. С. Хайкин, С. М. Черемисин, ЖЭТФ 54, 69 (1968).
 201. T. Olsen, J. Phys. Chem. Solids 24, 649 (1963).
 202. М. С. Хайкин, ЖЭТФ 41. 1773 (1961).

- 202. М. С. Хайкин, ЖЭТФ 41, 1773 (1961). 203. В. Ф. Гантмахер, ЖЭТФ 44, 811 (1963); 46, 2028 (1964); 48, 1576 (1965)
- 204. M. Miasek, Phys. Rev. 130, 11 (1963).
- 205. G. Weisz, Phys. Rev. **149**, 504 (1966). 206. Н. Е. Алексеевский, Н. Н. Михайлов, ЖЭТФ **46**, **1979** (1964); 54, 350 (1968).
- 207. Н. Е. Алексеевский, Г. Э. Карстенс, В. В. Можаев, ЖЭТФ 46,

- 207. H. E. A Tekceebckuu, T. S. Kapctehc, B. B. Mowaeb, ASIQ 46, 1979 (1964).
 208. J. J. Vuillemin, M. G. Priestley, Phys. Rev. Lett. 14, 307 (1965).
 209. J. J. Vuillemin, Phys. Rev. 144, 396 (1966).
 210. F. M. Mueller, M. G. Priestley, Phys. Rev. 148, 638 (1966).
 211. A. J. Freeman, A. M. Furdyna, J. O. Dimmock, J. Appl. Phys. 37, 1256 (1966).

- 212. Н. Е. Алексеевский, Г. Э. Карстенс, В. В. Можаев, Труды Х Междунар. конф. по физике низких температур, т. 3, М., Изд. ВИНИТЙ, 1967. стр. 169.
- 213. M. D. Staflen, A. R. Vroomen, Phys. Lett. 19, 81 (1965).
- 214. J. B. Ketterson, M. G. Priestley, J. J. Vuillemin, Phys. Lett **20, 452** (1966).
- 215. L. R. Windmiller, J. B. Ketterson, Phys. Rev. Lett. 20, 324 (1968).
- 216. R. Fletcher, L. Mackinnon, W. D. Wallace, Phys. Lett. 25, 395 (1967).
- 217. A. R. Mackintosh, Bull. Amer. Phys. Soc. 11, 215 (1966).
- Е. Алексеевский, В. С. Егоров, Б. Н. Казак, ЖЭТФ 44, 1116 218. H. (1963).
- 219. W. A. Reed, E. Fawcett, R. R. Soden, Phys. Rev. 139, 215 (1965).
 220. A. S. Joseph, A. C. Thorsen, Phys. Rev. Lett. 11, 67 (1963); Phys. Rev. 133, 1546 (1964); 150, 523 (1966).
- 221. C. K. Jones, J. A. Rayne, Phys. Rev. 139, 1876 (1965).
- 222. L. R. Testardi, R. R. Soden, Phys. Rev. 158, 581 (1967).
- 223. L. F. Mattheiss, Phys. Rev. 151, 450 (1966). 224. P. T. Colleridge, Phys. Lett. 15, 223 (1965); Proc. Roy. Soc. 295, 458 (1966).
- 225. J. B. Ketterson, L. R. Windmiller, S. Hörnfaldt, Phys. Lett. 26, 115 (1968).
- 226. J. M. Dishman, J. A. Rayne, Phys. Lett., 20, 348 (1966). 227. W. R. Datars, A. E. Dixon, Phys. Rev. 154, 576 (1967).

- 228. J. M. Dishman, J. A. Rayne, Phys. Rev. 166, 728 (1968). 229. G. B. Brandt, J. A. Rayne, Phys. Rev. 148, 644 (1966). 230. A. E. Dixon, W. R. Datars, Solid State Comm. 3, 377 (1965); Phys. Rev. 175, 928 (1968).

- 231. S. C. Keeton, T. L. Loucks, Phys. Rev. 152, 548 (1966).
 232. K. Okumura, I. M. Templeton, Phil. Mag. 7, 1237 (1962).
 233. P. T. Colleridge, Phys. Lett. 22, 367 (1966).
 234. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 41, 354 (1961).
- 235. J. E. Shirber, Phys. Rev. 131, 2459 (1963).

- 236. A. V. Gold, Phil. Trans. Roy. Soc. A251, 85 (1958).
 237. J. R. Anderson, A. V. Gold, Phys. Rev. 139, 1459 (1965).
 238. P. J. Tobin, D. J. Sellmyer, D. J. Averbach, Phys. Lett. 28A, 723 (1969). 239. М. С. Хайкин, Р. Т. Мина, ЖЭТФ 42, 35 (1962). 240. R. C. Young, Phil. Mag. 7, 2065 (1962). 241. A. S. Mackintosh, Proc. Roy. Soc. A271, 1344 (1963).

- 241. А. S. Маскіпі собл. Рюс. Коў. Soc. A271, 1344 (1965). 242. Т. L. Loucks, Phys. Rev. Lett. 14, 1072 (1965). 243. К. Ш. Агабабян, Р. Т. Мина, В. С. Погосян, ЖЭТФ 54, 721 (1968). 244. Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 42, 69 (1962). 245. Н. J. Fink, Phys. Lett. 13, 105 (1964). 246. А. С. Joseph, А. С. Thorsen, Phys. Rev., 138, 1159 (1965).

- 247. D. C. Howard, Phys. Rev. 140, 1705 (1965).
 248. V. J. Easterling, H. V. Bohm, Phys. Rev. 125, 812 (1962).
 249. S. Chatterjee, S. K. Sen, Proc. Phys. Soc. 87, 779 (1966), 91, 749 (1967).

- 249. S. Chatterjee, S. K. Sen, Proc. Phys. Soc. 87, 779 (1966), 91, 749 (1967).
 250. W. E. Christensen, Phys. Status Solidi 31, 635 (1968).
 251. Yu. A. Bogod, V. V. Eremenko, Phys. Status Solidi 11, 51 (1965).
 252. G. S. Fleming, T. L. Loucks, Phys. Rev. 173, 685 (1968).
 253. A. P. Cracknell, Phys. Lett. 24, 263 (1967).
 254. S. Epstein, H. J. Juretschke, Phys. Rev. 129, 1148 (1963).
 255. L. S. Lerner, P. C. Eastman, Can. J. Phys. 41, 1523 (1963).
 256. J. Ketterson, Y. Eckstein, Phys. Rev. 132, 1885 (1963).
 257. G. W. Rao, N. H. Zebuoni, C. G. Grenier, J. M. Reynolds, Phys. Bev. 133, 444 (1963). Rev. 133, 141 (1964). 258. L. R. Windmiller, Phys. Rev. 149, 472 (1966). 259. S. Tanuma, Y. Ishizawa, S. Ishiguro, J. Phys. Soc. Japan 21, 662
- (1966).
- 260. И. Б. Брандт, Н. Я. Миника, Чжэнь Ган-чон, ЖЭТФ 51, 108 (1966).
- 261. W. R. Datars, J. Vanderkooy, IBM J. Res. Developm. 8, 247 (1964).
 262. Y. Eckstein, Phys. Rev. 129, 12 (1963).
 263. O. Beckman, L. Eriksson, S. Hörnfaldt, Solid State Comm., 2,
- 7 (1964) 264. L. Eriksson, O. Beckman, S. Hörnfaldt, J. Phys. Chem. Solids
- 25, 1339 (1964).

- 265. T. Fukase, T. Fukuroi, J. Phys. Soc. Japan 21, 751 (1966).
- 266. А. П. Королюк, Л. Я. Мацаков, ЖЭТФ 52, 415 (1967). 267. L. M. Falicov, P. J. Lin, Phys. Rev. 141, 562 (1966).
- 268. A. R. Mackintosh, L. E. Spanel, R. C. Young, Phys. Rev. Lett. 200. A. R. Mackintosh, L. E. Spanel, R. C. Young, 10, 434 (1963).
 269. J. C. Milliken, R. C. Young, Phys. Rev. 148, 558 (1966).
 270. R. C. Young, Phys. Rev. 163, 667 (1967).
 271. M. G. Priestley, Phys. Rev. 148, 580 (1966).
 272. J. A. Rayne, Phys. Rev. 131, 653 (1963).
 273. Y. Eckstein, J. B. Ketterster, M. C. Priestley, 148, 580 (1966).

- 273. Y. Eckstein, J. B. Ketterson, M. G. Priestley, Phys. Rev. 148, 586 (1966). 274. J. B. Coon, C. G. Grenier, J. M. Reynolds, J. Phys. Chem. Solids 28,
- 301 (1967).
- 275. P. Soven, Phys. Rev. 137, 1706, 1717 (1965). 276. A. C. Thorsen, T. G. Berlincourt, Phys. Rev. Lett. 7, 244 (1961). 277. J. H. Condon, Bull. Amer. Phys. Soc. 11, 170 (1966).

- 211. J. H. Сопаоп, Bull. Amer. Phys. Soc. 11, 170 (1966).
 278. W. L. Dahlquist, R. G. Goodrich, Phys. Rev. 164, 944 (1967).
 279. H. E. Алексеевский, В. С. Егоров, Письма ЖЭТФ 1, 31 (1965).
 280. A. C. Thorsen, A. S. Joseph, L. E. Valby, Phys. Rev. 162, 574 (1967).
 281. D. J. Boyle, A. V. Gold, Phys. Rev. Lett. 22, 461 (1969).
 282. R. L. Gupta, T. L. Loucks, Phys. Rev. Lett. 22, 458 (1969).
 283. A. J. Arko, J. A. Marcus, W. A. Reed, Phys. Lett. 23, 617 (1966); Phys. Rev. 176, 671 (1968).
 284. B. R. Watts, Phys. Lett. 10, 275 (1964).
 285. G. B. Brandt J. A. Bayne Phys. Rev. 132 (1965)

- 285. G. B. Brandt, J. A. Rayne, Phys. Rev. 132, 1945 (1963). 286. J. E. Graebner, J. A. Marcus, Phys. Rev. 175, 659 (1968). 287. W. D. Wallace, N. Tepley, H. B. Bohm, Y. Shapira, Phys. Lett. 17, 184 (1965). 288. W. D. Wallace, H. V. Bohm, J. Phys. Chem. Solids 29, 271 (1968). W. D. Wallace, H. V. Bohm, J. Phys. Rev. 160, 372 (1967).

- 289. L. M. Falicov, M. J. Zuckermann, Phys. Rev. 160, 372 (1967).
 290. K. Okumura, I. M. Templeton, Phil. Mag. 8, 889 (1963).
 291. K. Okumura, I. M. Templeton, Proc. Roy. Soc. A-287, 89 (1965).
 292. W. A. Reed, G. F. Brenner, Phys. Rev. 130, 565 (1963).

- 292. W. А. Кееd, G. F. Бгеппег, Fnys. Rev. 130, 565 (1965).
 293. R. W. Stark, Phys. Rev. 135, 1698 (1964).
 294. A. C. Thorsen, L. E. Valby, A. S. Joseph, Proc. IX Conf. Low. Temp. Phys., vol. B, New York, 1965, crp. 867.
 295. A. S. Joseph, W. L. Gordon, Phys. Rev. 126, 489 (1962).
 296. R. J. Higgins, J. A. Marcus, Phys. Rev. 137, 1172 (1965).
 297. В. А. Вентцель, А. И. Лихтер, А. В. Руднев, ЖЭТФ 53, 108 (1967)

- (1967).
- 298. J. K. Galt, F. R. Merritt, W. A. Yager, Phys. Rev. Lett. 2, 292 (1967).
- 299. В. П. Набережных, В. А. Мельник, ЖЭТФ 47, 873 (1964). 300. М. Р. Shaw, P. J. Sampath, T. G. Eck, Phys. Rev. 142, 399 (1966). 301. J. O. Henningsen, Phys. Status Solidi 22, 441 (1967).

- 302. А. А. Галкин, А. П. Королюк, ЖЭТФ 38, 1688 (1960). 303. D. F. Gibbons, L. M. Falicov, Phil. Mag. 8, 177 (1963). 304. A. Myers, J. R. Bosnell, Phil. Mag. 13, 1273 (1966). 305. W. A. Harrison, Phys. Rev. 126, 497 (1962); 129, 2512 (1963).

- 305. W. A. Harrison, Fuys. Rev. 126, 497 (1962); 129, 2512 (1963).
 306. A. C. Thorsen, A. S. Joseph, Phys. Rev. 131, 2078 (1963).
 307. T. L. Loucks, Phys. Rev. 159, 554 (1967).
 308. D. J. Sellm yer, P. A. Schroeder, Phys. Lett. 16, 100 (1965).
 309. J. T. Longo, P. A. Schroeder, D. J. Sellm yer, Phys. Lett. 25A, 747 (1967).

- 310. J. P. Jan, W. B. Pearson, Y. Saito, Proc. Roy. Soc. A297, 275 (1967). 311. H. Amar, K. H. Johnson, K. P. Wang, Phys. Rev. 148, 672 (1966). 312. J. P. Yan, W. B. Pearson, Y. Saito, M. Springford, I. M. Templet o n, Phil. Mag. 12, 1271 (1965).

- 313. B. W. V e a l, J. A. R a y n e, Phys. Lett. 6, 12 (1963).
 314. E. F a w c e t t, J. Phys. Chem. Solids 4, 320 (1961).
 315. G. E. S m i t h, Phys. Rev. 115, 1561 (1959).
 316. A. B. P i p p ar d, Phil. Trans, Roy. Soc. A250, 325 (1957).
- 317. E. Fawcett, Proc. Roy. Soc. A232, 519 (1957).
 318. A. T. Stewart, J. B. Shand, J. J. Donaghy, J. H. Kusmiss, Phys. Rev. 128, 118 (1962).
 310. B. Shand, J. J. B. Shand, J. J. Donaghy, J. H. Kusmiss, Phys. Rev. 128, 118 (1962).
- 319. S. Berko, Phys. Rev. 128, 2166 (1962).

- 320. R. W. Williams, A. R. Mackintosh, Phys. Rev. 168, 679 (1968).
 321. S. Berko, J. Zuckerman, Phys. Rev. Lett. 13, 339 (1964).
 322. D. R. Gustafson, A. R. Mackintosh, D. J. Zaffarano, Phys. Rev. 130, 1455 (1963).

- 323. R. P. G u p t a, T. L. L o u c k s, Phys. Rev. 176, 848 (1968).
 324. E. C. S n o w, Phys. Rev. 158, 683 (1967).
 325. J. H. W o o d, Phys. Rev. 146, 432 (1966).
 326. S. C h a t t e r j e e, S. K. S e n, Proc. Phys. Soc. (J. Phys. C) 1, 759 (1968).
 327. J. P. Y a n, J. Phys. Chem. Solids 29, 561 (1968).
 328. M. J. G. L e e, L. M. F a l i c o v, Proc. Roy. Soc. A-304, 323 (1968); Phys. Rev. 178, 953 (1969).
 329. B. V a s v a r y, A. O. E. A n i m a l u, V. H e i n e, Phys. Rev. 154, 535 (1967).
 330. J. R. S u b e r t, H. J. M a c k e y, K. L. H a t h c o x, Phys. Rev. 166, 710 (1968).
 331. O. K. A n d e r s e n, A. R. M a c k i n t o s h, Solid State Comm., 6, 285 (1968).

- 332. R. Lück, Phys. Stat. Solidi 18, 59 (1966).
 333. P. E. Lewis, P. Lee, Phys. Rev. 175, 795 (1968).
 334. J. T. Longo, P. A. Schraeder, D. J. Sellmyer, Phys. Rev. 182, 658
- (1969).
 335. J. P. Jan, W. B. Pearson, Y. Saito, M. Springford, I. M. Templeton, Phil. Mag. 12, 1271 (1965).
 336. C. Miziumski, A. W. Lawson, Phys. Rev. 180, 749 (1969).