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tuations of the phase of the wave are valid even at even
larger fluctuations of the level.

To describe the propagation of waves in media with
large inhomogeneities one uses, besides the MSP and
the method of geometrical optics also the method of
parabolic equation (MPE). [ 8~ 1 0 ] This method was re-
cently developed further as a result of the uses of the
so-called Markov approximation.1· " 3 This method
makes it possible to go beyond the limits of the region
of weak level fluctuations (although it is less convenient
than the MSP in those cases when direct interest at-
taches to the statistical characteristics of the phase of
the wave).

All the foregoing methods are constructed from the
very outset as approximate ones. Much interest is
evinced at present to the construction of an exact wave
theory of multiple scattering. In this case equations are
formulated for the average field and for its correlation
function (the Dyson and the Bethe-Salpeter equations.1·3'
7, ι2-»] rp0 k e s u r e > tn ey c a n j j e s o i v e c } o n ]y i n a number

of particular cases, but the general formulation of the
problem as given by them makes it possible to hope for
further refinement of both the concrete results and of
the comparative estimate of the approximate methods.
Among the accomplishments of the general theory of
multiple scattering is, for example, the consistent
wave-theory derivation of the radiation-transfer equa-
tion/ 15i which heretofore was derived on the basis of
purely energy considerations. In other respects, the
approximate methods mentioned above remain the most
effective working apparatus for the investigation of con-
crete problems.
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Yu. A. Kravtsov. Geometrical-optics Method and Its
Gener aliz atio ns.

The method of geometrical optics occupies a definite
place in the wave theory, and it might seem makes no
claim at describing any diffraction phenomena.

However, during the last 10-15 years, the approach
to the method has changed. Many attempts were made
to revise the established concepts concerning the limits
of applicability of the method. An idea is developing, or
has already developed, that the geometrical-optics
method contains much more than an intuitive represen-
tation of lines in space (rays), along which the field en-
ergy propagates, and that the formal solutions of the
geometrical-optics equations contain definite informa-
tion concerning diffraction processes. The present pa-
per is devoted to a review of two extensions of this
kind—the complex form of the method of geometrical
optics and the asymptotic methods of finding the field in
the vicinity of caustics. Both these extensions have
been brought about by problems in which it is neces-
sary to deal with an approximate description of the field
in the presence of caustics. Such problems became
timely recently in optics, radiophysics, plasma theory,
acoustics, and in part in quantum mechanics.

As is well known, in the region of the caustic shad-
ow, light rays do not penetrate and the usual ray ap-
proximation yields a zero value of the field there. Ac-
tually, the field in the shadow region differs from zero,
although it is exponentially small. The complex form of
the ray method is precisely intended for finding the
field in this case. In addition, it is suitable also for the
description of fields in strongly absorbing media.

The "complex" geometrical optics differs from the
ordinary one in that one operates not with real but with
complex rays, which are defined as complex solutions
of the ray equations.1· i~ i i The amplitude and the phase
are then determined in the form of quadratures on com-
plex trajectories. The only difference from the ordi-
nary ray method lies perhaps only in the fact that one
introduces the so-called "selection rules" of complex
rays. According to these rules, out of all the trajec-
tories one selects only the "physical" branches cor-
responding to the damping of the field with increasing
distance from the caustic (for details see c 5 ] ) . By the
same token it becomes possible to describe the diffrac-
tive penetration of the field into the shadow region.
Neither the real nor the complex form of the ray meth-
od is suitable in the vicinity of the caustic, since they
give infinite values of the field. Recently developed
asymptotic methods lift this limitation of the geometri-
cal-optics approximation.

In the method of standard functions one starts from
the fact that the sought solution of the wave problem is
expressed in terms of suitably chosen known functions
with indeterminate arguments and amplitude factors.

In the simplest case of a smooth caustic without
loops and kinks (the so-called simple caustic) it is natu-
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ral to use as the stated function the Airy function v(t)
(more accurately, the Airy function and its derivative in
combination with an oscillating exponential function).c6~8:l

It turns out that the amplitude factors in front of the
Airy function and its derivative, which are to be deter-
mined, as well as the arguments of the Airy function
and the exponentials, are expressed algebraically in
terms of the geometrical-optics solutions (i.e., in
terms of the pair of solutions of the eikonal equation
(Vtpf = e and the transport equation div (Α2νψ) = 0).
At a distance away from the caustic, in the light region,
such a standard solution goes over into a sum of inci-
dent and reflected waves of the ray approximation, while
in the shadow region it goes over to the damped wave of
the "complex" geometrical optics. However, unlike
these geometrical expressions, the standard solution is
finite on the caustic.

For caustics of more complicated form, the standard
formulas can be suitably complicated, but the main "ge-
ometrical" statement remains in force: all the stated
solution parameters to be determined are expressed in
terms of solutions (both real and complex) of the geo-
metrical-optics equations.1 7 '8·1

Similar results are obtained also from the asymp-
totic integral representations proposed by Maslov. I 9 ]

These representations are obtained from an analysis of
the wave problems in a mixed coordinate-momentum
space, but the obtained diffraction solutions also turn
out to be "tied in" with the rays.

In addition, the paper describes briefly two other
more known generalizations of the method of geometri-
cal optics: the method of parabolic equation (the diffu-
sion approximation)1·w '1 1 : and the geometrical theory
of diffraction developed by Keller and his followers.1·1'
1 2 ] In these generalizations, the geometrical "skele-
ton" also plays an exceptionally important role.

1J. B. Keller, Proc. Symp. Applied Math., vol. 8,
McGraw-Hill, New York, 1958, page 27.

2 B . D. Secler and J . B. Keller, J . Acoust.Soc.Amer.
31(2), 192 (1959).

3 J . B. Keller and F. C. Karal, J . Appl. Phys. 31(6),
1039 (1960).

4V. P. Maslov, Dokl. Akad. Nauk SSSR 151, 306,
(1963) [Sov. Phys.-Dokl. 00, 000 (0000)].

5Yu. A. Kravtsov, Izv. Vuzov (Radiofizika) 10, 1283
(1967).

eYu. A. Kravtsov, ibid. 7, 664 (1964).
7 D . Ludwig, Comm. Pure Appl. Math. 19 (2), 215

(1966).
8Yu. A. Kravtsov, Akust. Zh. 14, 3 (1968) [Sov.

Phys.-Acoust. 14, 1 (1968)].
9 V. P. Maslov, Teoriya vosmushchenii i asimptoti-

cheskie metody (Perturbation Theory and Asymptotic
Methods), MGU, 1965

10 M. A. Leontovich, Izv. AN SSSR ser. fiz. No. 8,
16 (1944).

1 1 L . A. Vainshtem, Otkrytye rezonatory i otkrytye
volnovody (Open Resonators and Open Waveguides),
Soviet Radio, 1966.

12V. A. Borovikov, Difraktsiya na mnogougol'nikakh i
mnogogrannikakh (Diffraction by Polygons and Polyhe-
dra), Nauka, 1966.

L. L. Goryshnik and Yu. A. Kravtsov. Correlation
Theory of Radio Wave Scattering in the Polar Iono-
sphere.

The paper is an exposition of the correlation theory
of scattering of radio waves in the polar ionosphere. A
derivation is presented of a general expression for the
SDace-time correlation function of the signals of auroral
radio reflections, taking into account the main features
of the polar ionosphere as a scattering medium and the
main features of the emission and reception of pulsed
sounding signals.

With the aid of the obtained expressions for the sig-
nals of radio reflections and their correlation functions,
three questions are considered: 1) the study of the cor-
relation properties of signals of radio reflections fol-
lowing the emission of either a single short pulse or a
sequence of short pulses, 2) analysis of the operation of
a spectrum analyzer measuring the frequency spectrum
of the fluctuations of the electron concentration in the
ionosphere, and 3) an estimate of the change of the po-
larization of the signal as it propagates and is scattered
in the polar ionosphere.

Comparison of the results of the theoretical esti-
mates of the change of the polarization with the experi-
mental data shows good agreement.

Thus, the developed theory makes it possible to
study, even without specifying concretely a model for
the scattering medium, both some properties of radio
reflections, and some principal possibilities of different
methods of measuring the statistical properties of fluc-
tuations of the parameters of the polar ionosphere. In
addition, the general expression for the space-time cor-
relation functions will undoubtedly be useful for the solu-
tion of the fundamental problem of the study of the au-
roral radio reflections, namely the clarification, on the
basis of the properties and the statistics of the signal of
the radio reflections, of the true structure and the time
behavior of the inhomogeneities of the polar ionosphere.
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Z . I . Feizulin. Propagation of Bounded Wave Beams
in Media with Random Inhomogeneities.

The paper considers two groups of problems: 1) the
calculation of the fluctuations of the amplitude and of
the phase in a spatially-bounded waveguide beam propa-
gating in a medium with random inhomogeneities, and
2) investigation of the influence of the fluctuating me-
dium on the shape of the bounded beam.

The mean value and the correlation characteristics
of the complex phase in a bounded beam of electromag-
netic radiation with a Gaussian amplitude distribution
over the cross section, propagating in a medium with a
fluctuating dielectric constant, are obtained in the ap-
proximation of the method of smooth perturbations.
Values are obtained for the scales of the transverse
correlation of the level of the amplitude for a model of
a medium with a Gaussian correlation function of the
fluctuations, and for a locally-isotropic turbulent model,




