537.11

TOPOLOGY OF FERMI SURFACES OF METALS (Reference Table)

Yu. P. GAĬDUKOV

Moscow State University

Usp. Fiz. Nauk 100, 449-466 (March, 1970)

THE last fifteen years have seen exceptionally rapid progress in experimental methods of investigating the electronic properties of metals. Greatest attention has been paid in the experiments of these years to the energy spectrum of the conduction electrons of the metals - to the dependence of the energy of the electrons on their quasi-momentum $\epsilon = \epsilon(p)$.

One of the most important concepts of model electronic theory of metals is the "Fermi surface" (ϵ (p) $= \epsilon_{\mathbf{F}} = \text{const}$). The Fermi surface separates the states occupied by electrons from the free ones in quasimomentum space. Knowledge of the geometry of the Fermi surface and its characteristics makes it possible to explain many macroscopic properties of a metal, for example the electric resistance in a magnetic field. On the other hand, an investigation of various properties of the metal makes it possible in turn to reconstruct the Fermi surface of the metal. Thus, most quantum effects contain quantitative information concerning the areas of the extremal sections of the Fermi surface, cyclotron resonance yields information on the effective masses of the electrons and the velocities on the Fermi surface, absorption of ultrasound in a magnetic field and the radio-frequency size effects make it possible to determine linear dimensions of the cross sections of the Fermi surface, etc.

By now, the Fermi surfaces of most metals have been investigated in sufficient detail. In particular, it is known whether this surface is closed or open, and the topological types of open Fermi surfaces have been determined. The dimensions of the Fermi surfaces of most metals have also been determined.

These data were obtained not only because of the development of the experimental methods, but also because of the development of theoretical concepts in this field of solid-state physics. The summaries of the theoretical and experimental investigations of the energy spectrum of metals were contained in the reviews of I. M. Lifshitz and M. I. Kaganov (Usp. Fiz. Nauk 69, 419 (1959); 78, 411 (1962); 87, 389 (1965) [Sov. Phys.-Usp. 2, 831 (1960); 5, 878 (1963); 8, 805 (1967)], M. Ya. Azbel' (Usp. Fiz. Nauk 98, 601 (1969) [Sov. Phys.-Usp. 12, 507 (1970)], and J. N. Ziman (Contemp. Phys. 3, 241 (1962); 3, 301 (1962); 3, 321 (1962); 4, 1 (1963); 4, 81 (1963)).

In these reviews, the experimental material served only as an illustration of the theory. The reviews contain no references to the majority of the original experimental and theoretical papers.

The present paper partly fills these gaps. In essence, it is by way of an appendix to the reviews of I. M. Lifshitz, M. I. Kaganov, M. Ya. Azbel', and J. N. Ziman, and yields most general information concerning the topology of the Fermi surfaces of metals and intermetallic compounds. This information has been obtained mostly from galvanomagnetic effects.

The article contains a table, diagrams of the main types of open Fermi surfaces observed experimentally,

		1							
Metal	Crystal lattice	Topological type and other informa- tion on the Fermi surface	Galvano- magnetic effects	de Haas van Alfven and Shub- nikov-de Haas effects	Cyclotron resonance	Magneto- acoustic effect	Radio-fre- quency size effect	Calculation of the band structure and com- parison with exper- iment	Remarks
Aluminum	FCC	$n_1 \neq n_2$; H < 30 kOe, closed; H > 30 kOe, magnetic break-	1-4	5-8	9–13	1417	18	19-21, 324	³¹⁴ (ASE)
Beryllium	НСР	down. $n_1 = n_2$, $H \le 50$ kOe, closed; $H \ge 50$ kOe, magnetic breakdown in the basal plane, open; flat grid of corrugated cylinders along the axes (1210) and (1010).	23	23				24-26	318, 319 (PA) (Fig. 1)
Vanadium	всс	$n_1 \neq n_2$, open (?)	27, 28					29	In [²⁷] it is found that the Fermi
Bismuth Tungsten	Rhombohedral BCC	$n_1 = n_2$, closed $n_1 = n_2$, closed	30 37, 48	31-36 49, 50	37. 38 51, 52	39-42	43, 44 53	45-47 29, 54	³¹⁵ (PA)
Gadolinium Gallium	HCP Orthorhombic	$n_1 = n_2$, open corrugated	58-60	61	62, 63	64	65	66, 325	³²⁰ (PA)
Graphite Iron	BCC	cylinder along the c axis Closed, self-intersection $n_1 = n_2$, open three-dimensional grid of corrugated cylinders along	72-74	67, 68 74	69, 70			71 75-77	³²¹ (PA) (Fig. 2)
Gold	FCC	the axes $\langle 001 \rangle$ $n_1 = 1$ electron/atom, $n_2 = 0$, open three-dimensional grid of corrugated cylinders along the axes $\langle 111 \rangle$ (principal open direction) and the axes $\langle 110 \rangle$ and $\langle 100 \rangle$ (secondary open directional)	78, 79	80-82	83	84, 85		86, 326, 327	(Fig. 3)
Indium	Tetragonal	$n_1 = n_2$, closed	4, 87-89	90-92	93	94, 95	96	93, 97	1

TOPOLOGY OF FERMI SURFACES OF METALS (REFERENCE TABLE)

I ∎-∰e-

. . .

. **.**

Metal	Crystal lattice	Topological type and other informa- tion on the Fermi surface	Galvano- magnetic effects	de Haas van Alfven and Shub- nikov-de Haas effects	Cyclotron resonance	Magneto- acoustic effect	Radio-fre- quency size effect	Calculation of the band structure and com- parison with exper- iment	Remarks
Ytterbium	FCC	Closed	98	99					In accordance with the model of free electrons, the Fermi surface
Yttrium Cadmium	НСР НСР	Open (calculation $n_1 = n_2$, open corrugated cylinder along the [0001] axis	102, 103	104-106	107, 108	109-112	113-117	100, 101 118, 119	should be open (Fig. 4)
Potassium	BCC	$n_1 = 1$ electron/atom, $n_2 = 0$; H ≤ 50 kOe, closed sphere; H ≥ 50 kOe, magnetic breakdown, open	120-122	123	124	125-128	129, 130	131-133, 328	
Calcium	FCC	Open (calculation), similar to the Fermi surface of lead		134				135, 329	
Cobait Lithium Magnesium	BCC HCP	$n_1 \neq n_2$; closed $n_1 = n_2$; H > 5 kOe, magnetic breakdown in the (0001) plane, open; flat grid of corrugated cylinders along the axes (1210) and (1010); H > 70 kOe, magnetic breakdown, open directions occur along the [0001] axis	120 136, 137	138-141	142	143-144		77 131, 132 145-147	³¹¹ (ASE) (Fig. 1)
Copper	FCC	$n_1 = 1$ electron/atom, $n_2 = 0$; open; three-dimensional grid of corrugated cylinders along the (111) axes, similar to the Fermi surface of gold	148-151	80, 82, 152-154	155, 156	85, 157, 158		86, 159, 326, 327	³¹⁶ (ASE) (Fig. 3)
Molybdenum Arsenic Sodium	BCC Rhombohedrai BCC	$n_1 = n_2$; closed $n_1 = n_2$, closed $n_1 = 1$ electron/atom, $n_2 = 0$;	47, 48, 160 168, 330 120, 178	49, 161 169-171,336 179	162 172 124	163, 164 173, 174	165	$166, 167 \\ 46, 175-177 \\ 131, 132, \\ 000$	
Nickel	FCC	closed $n_1 = n_2$; closed, three-dimensional grid of corrugated cylinders along the (11) axes, similar to the Fermi surfaces of gold	180	181-184				328 185, 186	(Fig. 3)
Niobium	BCC	$n_1 \neq n_2$; magnetic breakdown, open; grid of corrugated cylinders along the axes (001), (110), and	187-189	190				29, 187	(Fig. 5)
Tin	Tetragonal	$n_1 = n_2$; open; plane grid of corrugated cylinders along the axes (010) and (110) ; H > 50 kOe,	191-193	194-197	198-200	201	202, 203	196, 204, 205	317 (ASE) (Fig. 6) (see also figures in { ¹⁹⁶ } and [¹⁹⁷]).
Osmium	нср	magnetic breakdown $n_1 = n_2$; closed; plane grid of corrugated cylinders parallel to the (0001) plane and to the [0001] axis, magnetic breakdown	206						
Palladium	FCC	$n_1 = n_2$; open; three-dimensional grid of corrugated cylinders along	207	208-210				211, 331	(Fig. 7)
Platinum	FCC	$n_1 = n_2$; open; three-dimensional grid of corrugated cylinders along the $\langle 001 \rangle$ axes; similar to the Fermi surface of palladium	136, 212	213-215		216		217	(Fig. 7)
Rhenium	нср	$n_1 = n_2$; $H \le 30$ kOe, open: corrugated cylinder along the [0001] axis; $H \ge 30$ kOe, magnetic break- down, additional open directions appear along the axes [0001] and [1010]	218, 219	190, 220		221, 222		222, 223	(Fig. 8)
Rhodium Mercury	FCC Rhombohedral	Closed (calculation $n_1 = n_2$; open, open directions parallel to the axes (100) and (011)	226-228	224, 225 229	230			224 231	322 (PA) (Fig. 9)
Rubidium	BCC	$n_1 = 1$ electron/atom, $n_2 = 0$; closed, sphere		123, 232				131-133, 328	
Ruthenium Lead	HCP FCC	$n_1 = n_2$; open: three dimensional grid of corrugated cylinders along the (11) area	234, 235, 332	233 236-238	239, 240	95, 241		242, 243	(Fig. 10)
Silver	FCC	$n_1 = 1$ electron/atom, $n_2 = 0$; open; three-dimensional grid of corrugated cylinders along the [111] axes, similar to the Fermi surface of	244, 245	80, 82, 246	247	85, 248		86, 87, 249, 250, 327, 333	(Fig. 3)
Scandium	Polymorphic FCC, HCP	gold $n_1 \neq n_2$, closed	251					101, 252	According to calcu- lation, the Fermi surface should be open
Strontium Antimony	Polymorphic Rhombohedral	Open (calculation) $n_1 = n_2$; closed	254	255-260	261	262-266		253 46, 267	
Thallium	НСР	$n_1 \neq n_2$; open; two corrugated planes (0001) connected by narrow necks along the [0001] axis; H > 3(kOe, magnetic breakdown	102, 268 269, 270	271		272-274		275	(Fig. 11)

1 ···

195

	1		Method of Fermi surface investigation						
Metal	Crystal lattice	Topological type and other informa- tion on the Fermi surface	Galvano- magnetic effects	de Haas van Alfven and Shub- nikov-de Haas effects	Cyclotron resonance	Magneto- acoustic effect	Radio-fre- quency size effect	Calculation of the band structure and com- parison with exper- iment	Remarks
Tantalum	BCC	$n_1 \neq n_2$; magnetic breakdown, open; three-dimensional grid of corrugated cylinders along the $\langle 001 \rangle$ axes, similar to the Fermi surface of ninbium	187	190, 278 277	278			29	(Fig. 5)
Titanium	НСР	$n_1 = n_2$; closed	279					101	According to calcu- lation, the Fermi surface should be open
Thorium Chromium	Polymorphic BCC	$n_1 = n_2$; H > 60 kOe, magnetic breakdown, open	279, 283	280, 281 284-286		287, 288		282 167, 289	(Fig. 12)
Cesium	BCC	$n_1 = 1$ electron/atom, $n_2 = 0$; closed, sphere		123, 290,				131, 132,	
Zinc	НСР	$n_1 = n_2; H \le 2.5$ kOe, open; corrugated cylinder along the [0001] axis; H > 2.5 > kOe; magnetic breakdown, open directions appear along the axes (1210) and (1010)	102, 292-294	31, 295-297	298-301	111, 112 302-804		118, 119, 305	(Fig. 13)
Zirconium AuSn	BCC	Open (calculation)	308	306				307	323 (PA)
AuAl ₂	FCC	Open, similar in topology to the Fermi surface of gold	309						(Fig. 3)
AgZn, CuZn	β-brass	Open (calculation)		310			1	311	
AuGa ₂ AuIn ₂	FCC	Open, analogous in topology to the Fermi surface of gold	309, 334	312				335	(Fig. 3)
MgZn ₂	Hexagonal			313					

FIG. 1. a) Open Fermi surface ("monster") for beryllium and magnesium (without allowance for the spin-orbit interaction of the electrons) [¹¹⁸]; b) formation of open directions (1 $\overline{100}$) and (1 $\overline{210}$) as a result of magnetic breakdown between two parts of the Fermi surface-the "monster" and the "cigar" ("needle") for beryllium, magnesium, and zinc. The figure shows the section with the plane [0001], aa, and bb are open trajectories along [1 $\overline{100}$] and [1 $\overline{210}$].

FIG. 3. a) Open Fermi surface of gold, copper, and silver $[^{316}]$; b) intersection with the plane [110]. The existence of open directions [111], [110], and [001] is seen $[^{244}]$.

FIG. 4. Open surface of cadmium. There are discontinuities in the basal plane. As a result, no open directions are produced along the $\langle 1\overline{2}10 \rangle$ and $\langle 1\overline{1}00 \rangle$ axes (see Fig. 1b) [¹⁹⁷].

FIG. 2. One of the variants of the open Fermi surface of iron $[^{75}]$. Curve with arrows-open trajectory along the [001] axis.

FIG. 5. Open Fermi surface for metal group VB (V, Nb, Ta) in accordance with the calculations of [187].

and a bibliography. Certain figures are drawn schematically and can give only a general idea concerning the topology of the open Fermi surface.

FIG. 6. Open Fermi surfaces for tin in accordance with calculations (their existence was confirmed in $[1^{91,194,196,198,202,203}]$). a) Open hole surfaces in the third and fourth zones $[1^{94}]$ (concerning these surfaces see also the figures in $[1^{96,197}]$); b) sections of open electron surface in the fifth zone $[2^{05}]$.

FIG. 7. Model of open Fermi surface of palladium and platinum $[^{212}]$.

FIG. 8. Fermi surface of rhenium according to calculations [²²²]. e_8 -electron surface open in the direction [0001] (zone 8); h_7 -closed hole surface (zone 7). Magnetic breakdown between e_8 and h_7 leads to formation of open directions along the (1100) axes.

The table lists: 1) information on the topological type of the Fermi surface, the relation between the number of electrons n_1 and holes n_2 , and 2) references to the principal experimental and theoretical papers in

FIG. 9. Open hole Fermi surface of mercury in the first zone in accordance with calculations $[^{231}]$. Dashed and dotted lines-open trajectories (see also the figures in $[^{230}]$).

FIG. 10. Open electron Fermi surface of lead (third zone). a) Lines μ and ρ -open trajectories [^{236,237}]; b) the same surface in one reciprocal-lattice cell, performed with conservation of the scale of all dimensions obtained experimentally (M. S. Khaikin and R. T. Mina).

FIG. 11. Intersection of the plane ($10\overline{1}0$) with the open hole Fermi surface of thallium in accordance with the Harrison model [118,102]. According to the experiments, the diameter d is much larger than the calculated diameter: $d_{exp} = 0.1$ (all the values of the dimensions are given in units of b = 1.16($2\pi/a$), a = (3.45Å).

** 📼

which the band structure of the metals and alloys was investigated.

In connection with the discovery of the phenomenon of magnetic breakdown, the concepts of open and closed Fermi surfaces have become arbitrary: in a magnetic field a closed surface may become open and vice-versa. Therefore the table indicates (approxi-

[1070]

FIG. 13. Schematic representation of the completely determined Fermi surface of zinc [118, ²⁹⁷]. 1-Open hole surface (second zone), unlike Cd, there is no discontinuity in the surface on the basal plane, and therefore magnetic breakdown leads to the formation of open directions along the axes $[1\overline{2}10]$ and [1100] (see Fig. 1b); 2-closed parts of the surface, located in different zones, with allowance for the magnetic breakdown between the surfaces α and β ("cigar" and "butterfly"); 3-the same without allowance for magnetic breakdown between the "cigar" and the "butterfly."

FIG. 12, Fermi surface of metals of the chromium type

along the (001) axis as a result of

magnetic breakdown between the

[²⁹]. The open directions arise

closed surfaces 1 and 2.

mately) the value of the magnetic field up to which it can still be assumed that the surface is practically closed or open.

[17:20]

In the appendix there are no references to experimental methods that are either themselves the subject of research or do not give additional information compared with the simpler methods. Nor are there references to the methods that have not gained wide acceptance and with the aid of which only modest information has been obtained so far.

The few investigations of the anomalous skin effect (ASE) and positron annihilation (PA) are placed at the end of the bibliography and corresponding references to them are given in the table in the "Remarks" column. On the whole, although the bibliography is not all inclusive, it represents sufficiently fully the main work done on the investigation of Fermi surfaces of metals.

⁴R. Lück, Phys. Stat. Solidi 18, 49 (1966).

⁵E. M. Gunnersen, Phil. Trans. Roy. Soc. 249, 299 (1957).

⁶M. G. Priestley, Phil. Mag. 7, 1205 (1962).

⁷E. P. Vol'skiĭ, Zh. Eksp. Teor. Fiz. 46, 123 (1964) [Sov. Phys.-JETP 19, 89 (1964)].

⁸W. L. Larson and W. L. Gordon, Phys. Rev. 156, 703 (1967).

⁹T. W. Moore and F. W. Spong, Phys. Rev. 125, 846 (1962).

¹⁰A. A. Galkin, V. P. Naberezhnykh, and V. A.

Mel'nik, Zh. Eksp. Teor. Fiz. 44, 127 (1963) [Sov.

Phys.-JETP 17, 87 (1963).

¹¹V. P. Naberezhnykh and V. P. Tolstoluzhskii, ibid. 46, 18 (1964) [19, 13 (1964)].

¹² F. W. Spong and A. F. Kip, Phys. Rev. 137, 431 (1965).

¹³R. T. Mina, V. S. Édel'man, and M. S. Khaikin, Zh. Eksp. Teor. Fiz. 51, 1363 (1966) [Sov. Phys.-JETP 24. 920 (1960)].

¹⁴ P. A. Bezuglyĭ, A. A. Galkin, and A. I. Pushkin, ibid. 44, 71 (1963) [17, 50 (1963)].

¹⁵G. N. Kamm and H. V. Bohm, Phys. Rev. 131, 111 (1963).

¹⁶K. Fossheim and T. Olsen, Phys. Status Solidi 6, 867 (1964).

¹⁷H. P. Aubauer, Phys. Rev. 155, 673 (1967).

¹⁸J. F. Koch and T. K. Wagner, Bull. Amer. Phys. Soc. 11, 170 (1969).

¹⁹ V. Heine, Proc. Roy. Soc. A240, 261 (1957).

²⁰B. Segall, Phys. Rev. 131, 121 (1963).

²¹N. W. Ashcroft, Phil. Mag. 96, 2055 (1963).

²² N. E. Alekseevskii and V. S. Egorov, Zh. Eksp. Teor. Fiz. 55, 1153 (1968) [Sov. Phys.-JETP 28, 601 (1969)].

²³ B. R. Watts, Phys. Lett. 3, 284 (1963); Proc. Roy Soc. A282, 521 (1964).

²⁴ T. L. Loucks and P. H. Cutler, Phys. Rev. 133, 819 (1964).

²⁵T. L. Loucks, Phys. Rev. 134, 1618 (1964).

²⁶J. H. Terrell, Phys. Rev. 149, 526 (1966).

²⁷ N. E. Alekseevskii and V. S. Egorov, Zh. Eksp. Teor. Fiz. 46, 1205 (1964) [Sov. Phys.-JETP 19, 815

(1965)].²⁸K. S. Nelson, J. L. Stanford, and F. A. Schmidt, Phys. Lett. 28A, 402 (1968).

L. F. Mattheiss, Phys. Rev. 139, 1893 (1965).

³⁰ R. N. Zitter, Phys. Rev. 127, 1471 (1962).

 $^{\rm 31} J. \ S.$ Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc. A248, 1 (1955).

³² L. S. Lerner, Phys. Rev. 130, 605 (1963).

³³N. B. Brand, T. F. Dolgolenko, and N. N. Stupo-

chenko, Zh. Eksp. Teor. Fiz. 45, 1319 (1963) [Sov.

Phys.-JETP 18, 908 (1964)]. ³⁴ Y. Eckstein and J. B. Ketterson, Phys. Rev. 137, 1777 (1965). ³⁵C. G. Grenier, J. M. Reynolds, and J. R. Subert,

Phys. Rev. 132, 58 (1963).

³⁶R. J. Balcombe and A. M. Forrest, Phys. Rev. 151, 550 (1966).

³⁷Kao-Yi-Han, Phys. Rev. **129**, 1122 (1963).

³⁸V. S. Édel'man and M. S. Khaĭkin, Zh. Eksp. Teor.

Fiz. 49, 107 (1965) [Sov. Phys.-JETP 22, 77 (1966)]. ³⁹D. H. Rencker, Phys. Rev. 115, 303 (1959).

¹R. J. Balcombe, Proc. Roy. Soc. A275, 113 (1963).

²E. S. Borovik and V. G. Volotskaya, Zh. Eksp. Teor. Fiz. 48, 1554 (1965) [Sov. Phys.-JETP 21, 1041 (1965)].

³R. A. Parker and R. J. Balcombe, Phys. Lett. 27A, 197 (1968).

⁴⁰A. P. Korolyuk, Zh. Eksp. Teor. Fiz. **49**, 1009

(1965) and 51, 697 (1966) [Sov. Phys.-JETP 22, 701

- (1966) and 24, 461 (1967)].
- ⁴¹Y. Sawada, E. Burstein, and L. Testardi, J. Phys. Soc. Japan 21, 760 (1966).
- ⁴²S. Masc, Y. Fujimori, and H. Mori, J. Phys. Soc. Japan 21, 1744 (1966).
- ⁴³ M. S. Khaĭkin and V. S. Édel'man, Zh. Eksp. Teor. Fiz. 47, 878 (1964) [Sov. Phys.-JETP 20, 587 (1965)].
- ⁴⁴V. F. Gantmaher, Progr. Low. Temp. Phys. 5, 181 (1967).
 - ⁴⁵ L. S. Lerner, Phys. Rev. **127**, 1480 (1962).
- ⁴⁶ A. A. Abrikosov and L. A. Fal'kovskii, Zh. Eksp.
- Teor. Fiz. 43, 1089 (1962) [Sov. Phys.-JETP 16, 769 (1963)].
- ⁴⁷ L. G. Ferreira, J. Phys. Chem. Solids **29**, 357 (1968).
 - ⁴⁸E. Fawcett, Phys. Rev. 128, 154 (1962).
- ⁴⁹ D. M. Sparlin and J. A. Marcus, Phys. Rev. 144, 484 (1966).
- ⁵⁰ R. F. Girvan, A. V. Gold, and R. A. Phillips,
- J. Phys. Chem. Solids 29, 1485 (1968).
- ⁵¹E. Fawcett and W. W. Walsh, Phys. Rev. Lett. 8, 476 (1962).
- ⁵²R. Germann and V. S. Édel'man, Zh. Eksp. Teor. Fiz. 53, 1563 (1967) [Sov. Phys.-JETP 26, 901 (1968)].
- ⁵³W. M. Walsh, C. C. Grimes, G. Adams, and L. W. Rupp, Proc. IX Conf. Low. Temp. Phys., vol. B, New
- York, 1965, p. 765. ⁵⁴ T. L. Loucks, Phys. Rev. 143, 506 (1966).
 - ⁵⁵J. O. Dimmock, A. J. Freeman, and R. E. Watson,
- J. Appl. Phys. 36, 1142 (1965).
- ⁵⁶ A. J. Freeman, J. O. Dimmock, and R. E. Watson, Phys. Rev. Lett. **16**, 94 (1966).
- ⁵⁷S. C. Keeton, T. L. Loucks, Phys. Rev. **146**, 429 (1966); **168**, 672 (1968).
- ⁵⁸N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp. Teor. Fiz. 37, 672 (1959) [Sov. Phys.-JETP 10, 481 (1960)].
- ⁵⁹ W. A. Reed and J. A. Marcus, Phys. Rev. 126, 1298 (1962).
- ⁶⁰ J. A. Munarin, J. A. Marcus, and P. E. Bloomfield, Phys. Rev. **172**, 718 (1968).
 ⁶¹ A. Goldstein and S. Foner, Phys. Rev. **146**, 442
- ⁶¹A. Goldstein and S. Foner, Phys. Rev. 146, 442 (1966).
- ⁶² T. W. Moore, Phys. Rev. Lett., 18, 310 (1967); Phys. Rev. 165, 864 (1968).
 - ⁶³ M. Surma, Acta Phys. Polon. 32, 677 (1967).
- ⁶⁴ P. A. Bezuglyĭ, A. A. Galkin, and S. E. Zhevago,
- Zh. Eksp. Teor. Fiz. 47, 825 (1964) [Sov. Phys.-JETP
- 20, 552 (1965)]; Fiz. Tverd. Tela 7, 480 (1965) [Sov.
- Phys.-Solid State 7, 383 (1965)].
- ⁶⁵A. Fukumoto and M. W. Stradberg, Phys. Rev. 155, 685 (1967).
- ⁶⁶J. C. Slater, G. F. Koster, and J. H. Wood, Phys. Rev. 126, 1307 (1962).
- ⁶⁷D. E. Saule, J. W. McClure, and L. B. Smith, Phys. Rev. 134, 453 (1964).
- 68 S. J. Williamson, S. Foner, and M. S. Dresselhaus, Phys. Rev. 140, 1429 (1965).
- ⁶⁹S. J. Williamson, M. Surma, H. C. Praddaude,
- R. A. Patten, and J. L. Furdyna, Solid State Comm. 4, 37 (1966).
- 70 R. F. O'Brien and S. Foner, Phys. Lett. 25, 310 (1967).

- ⁷¹ M. S. Dresselhaus and J. G. Mavroides, IBM J. Res. 8, 262 (1964).
- ⁷²W. A. Reed and E. Fawcett, Phys. Rev. Lett. 9, 336
- (1962), Phys. Rev. 131, 2463 (1963); 136, 422 (1964). ⁷³ A. Isin and R. V. Coleman, Phys. Rev. 137, 1609 (1965).
 - ⁷⁴A. V. Gold, J. Appl. Phys. 39, 768 (1968).
 - ⁷⁵S. Wakon and J. Yamashita, J. Phys. Soc. Japan 21,
- 1712 (1966).
 - ⁷⁶J. H. Wood, Phys. Rev. 126, 517 (1962).
 - ⁷⁷ L. F. Mattheiss, Phys. Rev. 134, 970 (1964).
 - ⁷⁸ E. Justi, Phys. Zs. 41, 563 (1940).
 - ⁷⁹ Yu. P. Gaĭdukov, Zh. Eksp. Teor. Fiz. 37, 1281
- (1959) [Sov. Phys.-JETP 10, 913 (1960)].
- ⁸⁰ D. Shoenberg, Phil. Trans. Roy. Soc. A255, 1 (1962).
 ⁸¹ A. S. Joseph and A. C. Thorsen, Phys. Rev. 140, 2046 (1965).
- ⁸² J. P. Jan and J. M. Templeton, Phys. Rev. 161, 556 (1967).
- ⁸³D. N. Langenberg and S. M. Marcus, Phys. Rev. 136, 1383 (1964).
- 84 R. W. Morse, A. Myers, and C. T. Walker, Phys. Rev. Lett. 4, 605 (1960).
- ⁸⁵ H. V. Bohm and V. J. Easterling, Phys. Rev. 128, 1021 (1962).
- ⁸⁶ D. J. Roaf, Phil. Trans. Roy. Soc. A255, 135 (1962).
 ⁸⁷ E. S. Borovik, Dokl. Akad. Nauk SSSR 69, 768 (1949).
 - ⁸⁸E. S. Borovik and V. G. Volotskaya, Zh. Eksp.
- Teor. Fiz. 38, 261 (1960) [Sov. Phys.-JETP 11, 189 (1960)].
- ⁸⁹ Yu. P. Gaidukov, ibid. 49, 1049 (1965) [22, 730 (1966)].
 ⁹⁰ G. B. Brandt, and J. A. Rayne, Phys. Lett. 12, 87
- (1964); Phys. Rev. 132, 1512 (1963).
- ⁹¹W. J. O'Sullivan, J. E. Shirber, and J. R. Anderson, Phys. Lett. **27A**, 144 (1968).
- ⁹² A. J. Hughes, and A. H. Lettington, Phys. Lett. 27A, 241 (1968).
- ⁹³R. T. Mina and M. S. Khalkin, Zh. Eksp. Teor. Fiz. 48,
- 111 (1965); **51**, 62 (1966) [Sov. Phys.-JETP **21**, 75 (1965); **24**, 42 (1967)].
- 24, 42 (1967)]. ⁹⁴ J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 125, 1952 (1962); 129, 652 (1963).
- 95 R. J. Balcombe, E. W. Guptill, and M. H. Jericho, Phys. Lett. 13, 287 (1964).
- ⁹⁶V. F. Gantmakher and I. P. Krylov, Zh. Eksp. Teor.
- Fiz. 49, 1054 (1965) [Sov. Phys.-JETP 22, 734 (1966)]. ⁹⁷ N. W. Ashcroft and W. E. Lawrence, Phys. Rev.
- 175, 938 (1968).
- ⁹⁶W. R. Datars and S. Tanuma, Phys. Lett. 27A, 182 (1968).
- ⁹⁹S. Tanuma, Y. Ishizawa, H. Nagasawa, and
- T. Sugawara, Phys. Lett. 25, 669 (1967).
 - ¹⁰⁰ T. L. Loucks, Phys. Rev. 144, 504 (1966).
- ¹⁰¹S. L. Altman and C. J. Bradley, Proc. Phys. Soc. 92, 764 (1967).
- ¹⁰² N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp. Teor. Fiz. **43**, 2094 (1962) [Sov. Phys.-JETP 16, 1481
- (1963)].
- ¹⁰³ D. C. Tsui and W. Stark, Phys. Rev. Lett. 19, 1317 (1967).
- ¹⁰⁴ J. G. Anderson and W. F. Love, Bull. Amer. Phys. Soc. 8, 258 (1963).
- ¹⁰⁵ A. D. C. Grassic, Phil. Mag. 9, 101 (1964).
- ¹⁰⁶D. C. Tsui and R. W. Stark, Phys. Rev. Lett. 16, 19 (1966).

- ¹⁰⁷ J. K. Galt, F. R. Merritt, and J. R. Klauder, Phys. Rev. 139, 823 (1965).
- ¹⁰⁸M. P. Shaw, T. G. Eck, and D. A. Zych, Phys. Rev. 142, 406 (1966). ¹⁰⁹ J. D. Gavenda and B. C. Deaton, Phys. Rev. Lett.
- 8, 208 (1962). ¹¹⁰ M. R. Daniel and L. Mackinnon, Phil. Mag. 8, 537
- (1963).
- ¹¹¹D. F. Gibbons and L. M. Falicov, Phil. Mag. 8, 177 (1963).
- ¹¹²B. C. Deaton, Phys. Rev. 136, 1096 (1964).
- ¹¹³N. H. Zebouni, R. E. Hamburg, and H. J. Mackey,
- Phys. Rev. Lett. 11, 260 (1963). ¹¹⁴ A. A. Mar'yakhin and V. P. Naberezhnykh, ZhETF
- Pis. Red. 3, 205 (1966) [JETP Lett. 3, 130 (1966)].
- ¹¹⁵ V. P. Naberezhnykh, A. A. Mar'yakhin, and V. A.
- Mel'nik, Zh. Eksp. Teor. Fiz. 52, 617 (1967) [Sov. Phys.-JETP 25, 403 (1967)].
- ¹¹⁶R. G. Goodrich and R. C. Jones, Phys. Rev. 156, 745 (1967).
- ¹¹⁷ R. C. Jones, R. G. Goodrich, and L. M. Falicov, Phys. Rev. 174, 672 (1968).
- ¹¹⁸W. A. Harrison, Phys. Rev. 118, 1190 (1960).
- ¹¹⁹R. W. Stark and L. M. Falicov, Phys. Rev. Lett. 19, 795 (1967).
- ¹²⁰ R. G. Chambers and B. K. Jones, Proc. Roy. Soc. A270, 417 (1962).
- ¹²¹ P. A. Penz. Phys. Rev. Lett. 20, 725 (1968).
- ¹²² J. R. Reitz and A. W. Overhauses, Phys. Rev. 171, 749 (1968).
- $^{\rm 123}{\rm D}.$ Shoenberg and P. J. Stiles, Proc. Roy. Soc. A281, 62 (1964).
- ¹²⁴C. G. Grimes, and A. F. Kip, Phys. Rev. 132, 1991 (1963).
- ¹²⁵ H. J. Foster, P. H. Meijer, and E. V. Mielczarek, Phys. Rev. 139, 1849 (1965).
- ¹²⁶ J. Trivisonno, M. S. Said, and L. A. Pauer, Phys. Rev. 147, 518 (1966). ¹²⁷ T. G. Blaney, Phil. Mag. 17, 405 (1968); 20, 23
- (1969).
- ¹²⁸J. R. Peverley, Phys. Rev. 173, 689 (1968).
- ¹²⁹J. F. Koch, T. K, Wagner, Phys. Rev. 151, 467
- (1966). ¹³⁰ P. S. Peercy, W. M. Walsh, L. M. Rupp, and P. H.
- Schidt, Phys. Rev. 171, 713 (1968).
- ¹³¹ F. S. Ham, Phys. Rev. 128, 2524 (1962).
- ¹³²V. Heine and A. Abarenkov, Phil. Mag. 9, 451 (1964).
- ¹³³ N. W. Ashcroft, Phys. Rev. 140, 935 (1965).
- ¹³⁴ J. H. Condon and J. A. Marcus, Phys. Rev. 134, 446 (1964).
- ¹³⁵S. L. Altmann and A. P. Cracknell, Proc. Phys. Soc. 84, 761 (1964).
- ¹³⁶ N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp. Teor. Fiz. 38, 1720 (1960) [Sov. Phys.-JETP 11, 1242 (1960)].
- ¹³⁷ R. W. Stark, T. G. Eck, and W. L. Gordon, Phys.

Rev. Lett. 8, 360 (1962); Phys. Rev. 133, 443 (1964).

- ¹³⁸M. G. Priestley, Proc. Roy. Soc. A276, 258 (1963). ¹³⁹ M. G. Priestley, L. M. Falicov, and G. Weisz,
- Phys. Rev. 131, 617 (1963).
- ¹⁴⁰ R. W. Stark, Bull. Amer. Phys. Soc. 11, 169 (1966). ¹⁴¹R. W. Stark, Phys. Rev. 162, 589 (1967).
- ¹⁴² T. G. Eck and M. P. Shaw, Proc. IX Conf. Low
- Temp. Phys., vol. B, New York, 1965, p. 759.

- ¹⁴³ E. W. Hartmann and J. M. Luttinger, Phys. Rev. 151, 430 (1966).
- J. B. Ketterson and R. W. Stark, 156, 748 (1967).
- ¹⁴⁵ L. M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962).
- ¹⁴⁶ L. M. Falicov and M. H. Cohen, Phys. Rev. 130, 92 (1963).
- ¹⁴⁷ L. M. Falicov, A. B. Pippard, and R. R. Silvert, Phys. Rev. 151, 498 (1966).
- ¹⁴⁸N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp.
- Teor. Fiz. 37, 672 (1959) [Sov. Phys.-JETP 10, 481 (1960)].
- ¹⁴⁹ J. E. Kunzler and J. R. Klauder, Phil. Mag. 6, 1045 (1961).
- ¹⁵⁰A. J. Funes and R. V. Coleman, Phys. Rev. 131, 2084 (1963).
- ¹⁵¹J. R. Klauder, W. A. Reed, C. E. Brennert, and
- J. E. Kunzler, Phys. Rev. 141, 592 (1966).
 - ¹⁵² D. Shoenberg, Nature 183, 171 (1959).
- ¹⁵³A. S. Joseph and A. C. Thorsen, Phys. Rev. 134, 979 (1964).
- ¹⁵⁴ A. S. Joseph, A. C. Thorsen, E. Gertner, and L. E. Valby, Phys. Rev. 148, 569 (1966).
- ¹⁵⁵ D. N. Langenbert and T. W. Moore, Phys. Rev. Lett. 3, 328 (1959).
- ¹⁵⁶ A. F. Kip, D. N. Langenberg, and T. W. Moore, Phys. Rev. 124, 359 (1961).
- ¹⁵⁷ J. R. Boyd and J. D. Gavenda, Phys. Rev. **152**, 645 (1966).
- ¹⁵⁸R. E. McFarlane, J. A. Rayne, and C. K. Jones, Phys. Lett. 24, 197 (1967).
- ¹⁵⁹E. J. Zornbert and F. M. Mueller, Phys. Rev. 151, 557 (1966).
- ¹⁶⁰ V. E. Startsev, N. V. Vol'kenshtein, and N. A.
- Novoselov, Zh. Eksp. Teor. Fiz. 51, 1311 (1966) [Sov.
- Phys.-JETP 24, 882 (1967)].
- ¹⁶¹G. Leaver and A. Myers, Phil. Mag. 19, 437 (1969). ¹⁶² R. Hermann, Phys. Status Solidi 25, 661 (1968).
- ¹⁶³ P. A. Bezuglyĭ, S. E. Zhevago, and V. I. Denisenko, Zh. Eksp. Teor. Fiz. 49, 1457 (1965) [Sov. Phys.-JETP
- 22, 1002 (1966)].
- ¹⁶⁴ A. A. Galkin, S. E. Zhevago, and T. F. Butenko, Ukr. Fiz. Zh. 13, 1106 (1968).
- ¹⁶⁵ V. V. Boĭko, V. N. Gasparov, and I. G. Gverdsiteli,
- ZhETF Pis. Red. 6, 737 (1967) [JETP Lett. 6, 212
- (1967)]; Zh. Eksp. Teor. Fiz. 56, 489 (1969) [Sov. Phys.-JETP 29, 267 (1969)].
 - ¹⁶⁶ W. H. Lomer, Proc. Phys. Soc. 84, 327 (1964).

¹⁶⁷ T. L. Loucks, Phys. Rev. 139, 1181 (1965).

¹⁶⁸A. P. Jeavons and G. A. Saunders, Phys. Lett. 27A, 19 (1968).

- ¹⁶⁹M. G. Priestley, L. R. Windmiller, J. B. Ketterson, and Y. Eckstein, Phys. Rev. 154, 671 (1967).
- ¹⁷⁰J. Vanderkooy and W. R. Datars, Phys. Rev. 156, 671 (1967).
- ¹⁷¹ Ishizawa Yoshio, J. Phys. Soc. Japan 25, 160 (1968).
- ¹⁷² W. R. Datars and J. Vanderkooy, J. Phys. Soc. Japan 21, 657 (1966).
- ⁷³Y. Shapira and J.Williamson, Phys. Lett. 14, 73 (1965). $^{174}J.$ B. Ketterson and Y. Eckstein, Phys. Rev. 140,
- 1355 (1965).
- 175 L. M. Falicov and S. Golin, Phys. Rev. 137, 871 (1965).

¹⁷⁶S. Golin, Phys. Rev. 140, 993 (1965).

¹⁷⁷ P. J. Lin and L. M. Falicov, Phys. Rev. 146, 441 (1966).

- ¹⁷⁸N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp. Teor. Fiz. 36, 447 (1959) [Sov. Phys.-JETP 9, 311
- (1960)].¹⁷⁹M. J. G. Lee, Proc. Roy. Soc. A295, 440 (1966).
- ¹⁸⁰ E. Fawcett and W. A. Reed, Phys. Rev. Lett. 9, 336 (1962); J. Appl. Phys. 35, 754 (1964).
- ¹⁸¹A. S. Joseph and A. C. Thorsen, Phys. Rev. Lett.
- 11, 554 (1963).
- ¹⁸²D. C. Tsui and R. W. Stark, Phys. Rev. Lett. 17, 871 (1966).
 - ¹⁸³D. C. Tsui, Phys. Rev. 164, 669 (1967).
- ¹⁸⁴ J. Ruvalds and L. M. Falicov, Phys. Rev. 172, 509 (1968).
- ¹⁸⁵ J. Yamashita, M. Fukuchi, and S. Wakon, J. Phys. Soc. Japan 18, 999 (1963).
 - ¹⁸⁶ J. C. Phillips, Phys. Rev. 133, 1020 (1964).
- ¹⁸⁷ E. Fawcett, W. A. Reed, and R. R. Soden, Phys. Rev. 159, 533 (1967).
- ¹⁸⁸N. E. Alekseevskii, K. Kh. Bertel', A. V. Dubrovin, and G. E. Karstens, ZhETF Pis. Red. 6, 637 (1967)
- [JETP Lett. 6, 132 (1967)].
- ¹⁸⁹ W. A. Reed and R. R. Soden, Phys. Rev. 173, 677 (1968).
- ¹⁹⁰A. C. Thorsen and T. G. Berlincourt, Phys. Rev. Lett. 7, 244 (1961).
- ¹⁹¹N. E. Alekseevskii, Yu. P. Gaidukov, I. M. Lifshitz,
- and V. G. Peschanskii, Zh. Eksp. Teor. Fiz. 39, 1201
- (1960) [Sov. Phys.-JETP 12, 837 (1961)].
- ¹⁹²R. C. Young, Phys. Rev. 152, 659 (1966).
- ¹⁹³J. G. Anderson and R. C. Joung, Phys. Rev. 168, 696 (1968).
- ¹⁹⁴A. V. Gold and M. G. Priestley, Phil. Mag. 5, 1089 (1960).
- ¹⁹⁵ J. A. Woolam, Phys. Lett. **27A**, 246 (1968).
- ¹⁹⁶ M. D. Staflen and A. R. Vroomen, Phys. Status
- Solidi 23, 675, 683 (1967).
- ¹⁹⁷ J. E. Craven and R. W. Stark, Phys. Rev. 168, 849 (1968).
- ¹⁹⁸ J. F. Koch and A. F. Kip, Phys. Rev. Lett. 8, 473 (1962).
- ¹⁹⁹ M. S. Khaikin, Zh. Eksp. Teor. Fiz. 42, 27 (1962) [Sov. Phys.-JETP 15, 18 (1962)].
- ²⁰⁰ M. S. Khaikin and S. M. Cheremisin, ibid. 54, 69 (1968) [27, 38 (1968)].
- ²⁰¹ T. Olsen, J. Phys. Chem. Solids 24, 649 (1963).
- ²⁰² M. S. Khaikin, Zh. Eksp. Teor. Fiz. 41, 1773 (1961) [Sov. Phys.-JETP 14, 1260 (1961)].
- ²⁰³ V. F. Gantmakher, ibid. 44, 811 (1963); 46, 2028
- (1964); 48, 1572 (1965) [17, 549 (1963); 19, 1366 (1964); 21, 1053 (1965).
- ⁴M. Miasek, Phys. Rev. 130, 11 (1963).
- ²⁰⁵G. Weisz, Phys. Rev. 149, 504 (1966).
- ²⁰⁶ N. E. Alekseevskii et al., Zh. Eksp. Teor. Fiz. 45,
- 448 (1963) and 54, 350 (1968) [Sov. Phys.-JETP 18, 309 (1964) and 27, 188 (1968)].
- ²⁰⁷ N. E. Alekseevskii, G. E. Kartstens, and V. V.
- Mozhaev, ibid. 46, 1979 (1964) [19, 133 (1964)].
- ²⁰⁸J. J. Vuillemin and M. G. Priestley, Phys. Rev. Lett. 14, 307 (1965).
 - ²⁰⁹ J. J. Vuillemin, Phys. Rev. 144, 396 (1966).
- ²¹⁰ F. M. Mueller and M. G. Priestley, Phys. Rev. 148, 638 (1966).

- ²¹¹A. J. Freeman, A. M. Furdyna, and J. O. Dimmock, J. Appl. Phys. 37, 1256 (1966).
- ²¹² N. E. Alekseevskii, G. E. Karstens, and V. V.
- Mozhaev, Proceedings, Tenth Internat. Conf. on Low
- Temperature Physics, v. 3, M. VINITI, 1967, p. 169. ²¹³M. D. Staflen and A. R. Vroomen, Phys. Lett. 19, 81 (1965).
- ²¹⁴ J. B. Ketterson, M. G. Priestley, and J. J. Vuillemin, Phys. Lett. 20, 452 (1966).
- ²¹⁵L. R. Windmiller and J. B. Ketterson, Phys. Rev. Lett. 20, 324 (1968).
- ²¹⁶R. Fletcher, L. Mackinnon, W. D. Wallace, Phys. Lett. 25, 395 (1967).
- ²¹⁷A. R. Mackintosh, Bull. Amer. Phys. Soc. 11, 215 (1966).
- ²¹⁸N. E. Alekseevskii, V. S. Egorov, and B. N. Kazak, Zh. Eksp. Teor. Fiz. 44, 1116 (1963) [Sov. Phys.-JETP
- 17. 752 (1963)].
- ²¹⁹W. A. Reed, E. Fawcett, and R. R. Soden, Phys. Rev. 139, 215 (1965).
- ²²⁰ A. S. Joseph and A. C. Thorsen, Phys. Rev. Lett.
- 11, 67 (1963); Phys. Rev. 133, 1546 (1964); 150, 523 (1966).
- ²²¹C. K. Jones and J. A. Rayne, Phys. Rev. 139, 1876 (1965).
- ²²² L. R. Testardi and R. R. Soden, Phys. Rev. 158, (1967).
- ²²³ L. F. Mattheiss, Phys. Rev. 151, 450 (1966).
- ²²⁴ P. T. Colleridge, Phys. Lett. 15, 223 (1965); Proc. Roy. Soc. 295, 458 (1966).
- J. B. Ketterson, L. R. Windmiller, and S. Hörnfaldt, Phys. Lett. 26, 115 (1968).
- ²²⁶ J. M. Dishman and J. A. Rayne, Phys. Lett., 20, 348 (1966).
- ²²⁷ W. R. Datars and A. E. Dixon, Phys. Rev. 154, 576 (1967).
- ²²⁸J. M. Dishman and J. A. Rayne, Phys. Rev. 166, 728 (1968).
- ²²⁹G. B. Brandt and J. A. Rayne, Phys. Rev. 148, 644 (1966).
- ²³⁰A. E. Dixon and W. R. Datars, Solid State Comm.
- 377 (1965); Phys. Rev. 175, 928 (1968).
- 3, 377 (1965); Phys. Rev. 175, 526 (1965). ²³¹S. C. Keeton and T. L. Loucks, Phys. Rev. 152, 548 (1966).
- ²³²K. Okumura and I. M. Templeton, Phil. Mag. 7,
- 1237 (1962).
 - ²³³ P. T. Colleridge, Phys. Lett. 22, 367 (1966).
- ²³⁴ N. E. Alekseevskii and Yu. P. Gaidukov, Zh. Eksp.
- Teor. Fiz. 41, 354 (1961) Sov. Phys.-JETP 14, 256
- (1961)].
- ²³⁵ J. E. Shirber, Phys. Rev. 131, 2459 (1963).
- ²³⁶A. V. Gold, Phil. Trans. Roy. Soc. A251, 85 (1958).
- ²³⁷ J. R. Anderson and A. V. Gold, Phys. Rev. 139,
- 1459 (1965).
- ²³⁸ P. J. Tobin, J. Sellmyer, and D. J. Averbach, Phys. Lett. 28A, 723 (1969).
- ²³⁹ M. S. Khaikin and R. T. Mina, Zh. Eksp. Teor. Fiz. 42, 35 (1962) [Sov. Phys.-JETP 15, 24 (1962)].
- ²⁴⁰ R. C. Young, Phil. Mag. 7, 2065 (1962).
- ²⁴¹A. S. Mackintosh, Proc. Roy. Soc. A271, 1344 (1963).
- ²⁴² T. L. Loucks, Phys. Rev. Lett. 14, 1072 (1965).
- ²⁴³K. Sh. Agababyan, R. T. Mina, and V. S. Pogosyan,
- Zh. Eksp. Teor. Fiz. 54, 721 (1968) | Sov. Phys.-JETP
- 27, 384 (1968)].

1.0.00

201

- ²⁴⁴ N. E. Alekseevskii and Yu. P. Gaidukov, ibid. 42,
 69 (1962) [15, 49 (1962)].
- ²⁴⁵ H. J. Fink, Phys. Lett. 13, 105 (1964).
- ²⁴⁶ A. C. Joseph and A. C. Thorsen, Phys. Rev., 138, 1159 (1965).
- ²⁴⁷D. C. Howard, Phys. Rev. 140, 1705 (1965).
- ²⁴⁸V. J. Easterling and H. V. Bohm, Phys. Rev. 125, 812 (1962).
- ²⁴⁹S. Chatterjee and S. K. Sen, Proc. Phys. Soc. 87, 779 (1966), 91, 749 (1967).
- ²⁵⁰W. E. Christensen, Phys. Status Solidi **31**, 635 (1968).
- ²⁵¹ Yu. A. Bogod and V. V. Eremenko, Phys. Status Solidi 11, 51 (1965).
- ²⁵²G. S. Fleming and T. L. Loucks, Phys. Rev. 173, 685 (1968).
- ²⁵³A. P. Cracknell, Phys. Lett. 24, 263 (1967).
- ²⁵⁴S. Epstein and H. J.Juretschke, Phys. Rev. 129, 1148 (1963).
- ²⁵⁵ L. S. Lerner and P. C. Eastman, Can. J. Phys. 41, 1523 (1963).
- ²⁵⁶ J. Ketterson and Y. Eckstein, Phys. Rev. 132, 1885 (1963).
- ²⁵⁷G. W. Rao, N. H. Zebuoni, C. G. Grenier, and
- J. M. Reynolds, Phys. Rev. 133, 141 (1964).
- ²⁵⁸ L. R. Windmiller, Phys. Rev. 149, 472 (1966).
- ²⁵⁹S. Tanuma, Y. Ishizawa, and S. Ishiguro, J. Phys. Soc. Japan 21, 662 (1966).
- ²⁶⁰ I. B. Brandt, N. Ya. Minika, and Chen Kuang-
- ch'ong, Zh. Eksp. Teor. Fiz. 51, 108 (1966) [Sov. Phys.-JETP 24, 73 (1967)].
- ²⁶¹W. R. Datars and J. Vanderkooy, IBM J. Res. Developm. 8, 247 (1964).
- ²⁶² Y. Eckstein, Phys. Rev. 129, 12 (1963).
- ²⁶³O. Beckman, L. Eriksson, and S. Hörnfaldt, Solid State Comm., 2, 7 (1964).
- ²⁶⁴ L. Eriksson, O. Beckman, and S. Hörnfaldt, J. Phys. Chem. Solids 25, 1339 (1964).
- ²⁶⁵ T. Fukase and T. Fukuroi, J. Phys. Soc. Japan 21,
- 751 (1966).
- ²⁶⁶A. P. Korolyuk and L. Ya. Matsakov, Zh. Eksp.
- Teor. Fiz. 52, 415 (1967) [Sov. Phys.-JETP 25, 270 (1967)].
- ²⁶⁷ L. M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966).
- ²⁶⁸ A. R. Mackintosh, L. E. Spanel, and R. C. Young, Phys. Rev. Lett. 10, 434 (1963).
- ²⁶⁹J. C. Milliken and R. C. Young, Phys. Rev. 148, 558 (1966).
- ²⁷⁰ R. C. Young, Phys. Rev. 163, 667 (1967).
- ²⁷¹M. G. Priestley, Phys. Rev. 148, 580 (1966).
- ²⁷²J. A. Rayne, Phys. Rev. 131, 653 (1963).
- ²⁷³ Y. Eckstein, J. B. Ketterson, and M. G. Priestley, Phys. Rev. 148, 586 (1966).
- ²⁷⁴ J. B. Coon, C. G. Grenier, and J. M. Reynolds,
- J. Phys. Chem. Solids 28, 301 (1967).
- ²⁷⁵ P. Soven, Phys. Rev. 137, 1706, 1717 (1965).
- 276 A. C. Thorsen and T. G. Berlincourt, Phys. Rev. Lett. 7, 244 (1961).
- ²⁷⁷ J. H. Condon, Bull. Amer. Phys. Soc. 11, 170 (1966).
 ²⁷⁸ W. L. Dahlquist and R. G. Goodrich, Phys. Rev.
 164, 944 (1967).
- 279 N. E. Alekseevskii and V. S. Egorov, ZhETF Pis. Red. 1, No. 5, 31 (1965) [JETP Lett. 1, 141 (1965)].

- ²⁸⁰A. C. Thorsen, A. S. Joseph, and L. E. Valby, Phys. Rev. 162, 574 (1967).
- ²⁸¹D. J. Boyle and A. V. Gold, Phys. Rev. Lett. 22, 461 (1969).
- ²⁸²R. L. Gupta and T. L. Loucks, Phys. Rev. Lett. 458 (1969).
- ²⁸³A. J. Arko, J. A. Marcus, and W. A. Reed, Phys. Lett. 23, 617 (1966); Phys. Rev. 176, 671 (1968).
- ²⁸⁴ B. R. Watts, Phys. Lett. 10, 275 (1964).
- ²⁸⁵G. B. Brandt, and J. A. Rayne, Phys. Rev. 132, 1945 (1963).
- ²⁸⁶ J. E. Graebner and J. A. Marcus, Phys. Rev. 175, 659 (1968).
- ²⁸⁷W. D. Wallace, N. Tepley, H. B. Bohm, and Y. Shapira, Phys. Lett. 17, 184 (1965).
- ²⁸⁸W. D. Wallace and H. V. Bohm, J. Phys. Chem. Solids 29, 271 (1968).
- ²⁸⁹ L. M. Falicov and M. J. Zuckermann, Phys. Rev. 160, 372 (1967).
- ²⁹⁰K. Okumura and I. M. Templeton, Phil. Mag. 8, 889 (1963).
- ²⁹¹K. Okumura and I. M. Templeton, Proc. Roy. Soc. A-287, 89 (1965).
- ²⁹² W. A. Reed and G. F. Brenner, Phys. Rev. 130, 565 (1963).
- ²⁹³ R. W. Stark, Phys. Rev. 135, 1698 (1964).
- ²⁹⁴ A. C. Thorsen, L. E. Valby, and A. S. Joseph, Proc. IX Conf. Low. Temp. Phys., vol. B, New York, 1965,
- p. 867. ²⁹⁵ A. S. Joseph and W. L. Gordon, Phys. Rev. 126,
- 489 (1962).
- ²⁹⁶ R. J. Higgins and J. A. Marcus, Phys. Rev. 137, 1172 (1965).
- ²⁹⁷ V. A. Venttsel', A. I. Likhter, and A. V. Rudnev,
- Zh. Eksp. Teor. Fiz. 53, 108 (1967) [Sov. Phys.-JETP 26, 73 (1968)].
- ²⁹⁸J.K. Galt, F. R. Merritt, and W. A. Yager, Phys. Rev. Lett. 2, 292 (1967).
- ²⁹⁹ V. P. Naberezhnykh and V. A. Mel'nik, Zh. Eksp. Teor. Fiz. 47, 873 (1964) [Sov. Phys.-JETP 20, 583 (1965)].
- ³⁰⁰ M. P. Shaw, P. J. Sampath, and T. G. Eck, Phys. Rev. 142, 399 (1966).
- ³⁰¹ J. O. Henningsen, Phys. Status Solidi 22, 441 (1967).
 ³⁰² A. A. Galkin and A. P. Korolyuk, Zh. Eksp. Teor.
- Fiz. 38, 1688 (1960) [Sov. Phys.-JETP 11, 1218 (1960)].
- ³⁰³ D. F. Gibbons and L. M. Falicov, Phil. Mag. 8, 177 (1963).
- ³⁰⁴ A. Myers and J. R. Bosnell, Phil. Mag. 13, 1273 (1966).
- ³⁰⁵ W. A. Harrison, Phys. Rev. 126, 497 (1962); 129, 2512 (1963).
- ³⁰⁶ A. C. Thorsen and A. S. Joseph, Phys. Rev. 131, 2078 (1963).
- ³⁰⁷ T. L. Loucks, Phys. Rev. 159, 554 (1967).
- ³⁰⁸ D. J. Sellmyer and P. A. Schroeder, Phys. Lett. 16, 100 (1965).
- ³⁰⁹ J. T. Longo, P. A. Schroeder, and D. J. Sellmyer, Phys. Lett. 25A, 747 (1967).
- ³¹⁰J. P. Jan, W. B. Pearson, and Y. Saito, Proc. Roy. Soc. A297, 275 (1967).
- ³¹¹ H. Amar, K. H. Johnson, and K. P. Wang, Phys. Rev. 148, 672 (1966).
 - ³¹² J. P. Yan, W. B. Pearson, Y. Saito, M. Springford,

and I. M. Templeton, Phil. Mag. 12, 1271 (1965).

- ³¹³B. W. Veal and J. A. Rayne, Phys. Lett. 6, 12 (1963).
- ³¹⁴ E. Fawcett, J. Phys. Chem. Solids 4, 320 (1961).
 ³¹⁵ G. E. Smith, Phys. Rev. 115, 1561 (1959).
- ³¹⁶A. B. Pippard, Phil. Trans. Roy. Soc. A250, 325 (1957).
- ³¹⁷ E, Fawcett, Proc. Roy. Soc. A232, 519 (1955).
- ³¹⁸A. T. Stewart, J. B. Shand, J. J. Donaghy, and
- J. H. Kusmiss, Phys. Rev. 128, 118 (1962).
- ³¹⁹S. Berko, Phys. Rev. 128, 2166 (1962).
- ³²⁰R. W. Williams and A. R. Mackintosh, Phys. Rev. 168, 679 (1968).
- 321 S. Berko and J. Zuckerman, Phys. Rev. Lett. 13, 339 (1964).
- ³²²D. R. Gustafson, A. R. Mackintosh, and D. J.
- Zaffarano, Phys. Rev. 130, 1455 (1963).
- ³²³ R. P. Gupta and T. L. Loucks, Phys. Rev. 176, 848 (1968).
- ³²⁴ E. C. Snow, Phys. Rev. 158, 683 (1967).
- ³²⁵ J. H. Wood, Phys. Rev. 146, 432 (1966).

.

- ³²⁶S. Chatterjee and S.K. Sen, Proc. Phys. Soc.
- (J. Phys. C) 1, 759 (1968).

ar la

- ³²⁷ J. P. Yan, J. Phys. Chem. Solids 29, 561 (1968).
 ³²⁸ M. J. G. Lee and L. M. Falicov, Proc. Roy. Soc.
- A-304, 323 (1968); Phys. Rev. 178, 953 (1969).
- ³²⁹ B. Vasvary, A. O. E. Animalu, and V. Heine, Phys. Rev. 154, 535 (1967).
- ³³⁰ J. R. Subert, H. J. Mackey, and K. L. Hathcox, Phys. Rev. **166**, 710 (1968).
- 331 O. K. Andersen and A. R. Mackintosh, Solid State Comm., 6, 285 (1968).
- ³³²R. Lück, Phys. Stat. Solidi 18, 59 (1966).
- ³³³ P. E. Lewis and P. Lee, Phys. Rev. 175, 795 (1968).
 ³³⁴ J. T. Longo, P. A. Schraeder, and D. J. Sellmyer,
- Phys. Rev. 182, 658 (1969). ³³⁵ J. P. Jan, W. B. Pearson, Y. Saito, M. Springford,
- and I. M. Templeton, Phil. Mag. 12, 1271 (1965).
- ³³⁶C. Miziumski and A. W. Lawson, Phys. Rev. 180, 749 (1969).

Translated by J. G. Adashko

1 1