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I. OPTICAL MODEL

LJ NTIL recently, the basis of all the calculations of
elastic scattering of fast particles by nuclei was the
semiphenomenological optical model (see, e.g.,u~3 J).
After the phase shifts are determined from the solution
of the wave equation with an experimentally selected
potential, the scattering cross section σ(θ) is obtained
by simple summation. For example, for scattering of
spinless particles

(1)

(2)

At high energies, when the de Broglie wavelength λ
becomes many times smaller than the dimensions of the
target nucleus, and an appreciable contribution is made
to the sum over I by a very large number of terms, the
sum in formula (2) is conveniently replaced by an in-
tegral, and it is best to use the asymptotic relation

P, (cos θ) « Jo ((21 + 1) sin Θ/2) « Jo (Id), (3)

where J o is the well known Bessel function.
In the high-energy region it is possible to use also

another approximation, namely, to express the scatter-
ing phase shifts in terms of a complex refractive index
K(T, r) = n(T, r) + ik(T, r) , i.e., we can put

rK (Γ, r)dr

where

n(T, r)=,a(T)k(T, r), k(T, r) = Aat(T)d(r),

(4)

(5)

a t is a typical cross section for the interaction between
the scattering particle and the nucleon of the nucleus,
a is the ratio of the real and imaginary parts of the
amplitude of elastic scattering of this particle by the
intranuclear nucleon, and d(r) is the nucleon density in
a target nucleus with atomic number A; this density is
chosen by comparison with experiment. Here and
throughout Τ is the kinetic energy of the scattered par-
ticle in the laboratory frame.

Since the characteristics of the interaction of the
particle with the bound intranuclear nucleon differs
somewhat from the corresponding characteristics of
free-particle interaction, it becomes necessary to in-
troduce into (5) correction factors chosen from a com-
parison with experiment and dependent, generally speak-
ing, on the energy. The large number of adjustment
parameters that must be introduced into the formulas
cannot fail to give rise to an unsatisfactory feeling: the
optical model turns out to be too "attached" to experi-
ment.

The degree of agreement between the optical curve
and experiment is seen in Figs. 1—3. It is particularly

difficult to fit the theoretical curves to the experimental
data at large scattering angles, where higher diffraction
minima and maxima make a contribution. As a rule, if
the experimental data are sufficiently accurate, it is
possible to obtain here only qualitative agreement,
otherwise it is necessary to use too complicated optical
potentials with a large number of parameters, which
change quite irregularly with changing energy of the
scattering particles and with changing type of target
nucleus.

This is particularly noticeable for light nuclei such
as deuterons, helium, etc. To obtain agreement with ex-
periment in this case, it is necessary to choose optical
potentials with a radial dependence that is difficult to
reconcile with what we know from experiments on elec-
tron scattering. For example, in order for the optical
curve to coincide with the experimental data of the
Brookhaven Laboratory on elastic scattering of protons
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FIG. 1. Differential cross section of elastic scattering of protons by

different nuclei (mb/sr, c.m.s.). Circles—experimental data [ 4 ' 6 ] , curves-

optical-model calculation [ 7 ] .

FIG. 2. Differential cross sec-
tion of elastic scattering of pions
(mb/sr, c.m.s.) [ 8 ] . Curves-opti-
cal-model calculation.
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FIG. 3. Cross section of elastic scattering of protons by helium
(b/sr, c.m.s.) [ 9 ] . Dashed line—optical calculation with Gaussian poten-
tial obtained from experiments with scattering of electrons by He4

nuclei. An approximate agreement with experiment can be obtained in
this case only for the first diffraction peak. Solid curve—optical calcu-
lation in the case when the potential is chosen in the form of a Woods-
Saxon function that decreases rapidly in the boundary and has a radius
c= 1.6 X 10'1 3 cm and a diffuseness parameter a = 3.1 Χ 10'1 4 cm.
Dash-dot curve-cross section of Coulomb scattering by the He4 nu-
cleus, calculated from the Mott formula with a Gaussian form factor
obtained from experiments with electron scattering. At angles θ >2—
3°, this cross section becomes negligibly small.

and He4 at an energy Τ = 1 GeV[9], it is necessary to
have a potential with a sharp boundary, whereas experi-
ments with electron scattering indicate that the boun-
dary of the He4 nucleus is highly diffuse. Allowance for
the dimensions of the scattered proton only increases
the effective diffuseness parameter.

The use in optical calculations of a Gaussian poten-
tial taken from experiments on electron scattering does
not reproduce the sharp minimum in the angular distri-
bution at θ PB 24°, and yields at large scattering angles
cross sections that are too high by two or three orders
of magnitude compared with experiment (see Fig. 3).
This is physically connected with the obvious fact that
the diffraction effects and the refraction of the
de Broglie wavelength of the scattered proton become
all the more noticeable, the more inhomogeneous the
scattering and refractive the media.

We see thus that the optical model does not take into
account some very important physical details. To cope
with the situation, let us consider in greater detail the
passage of a particle through a medium made up of in-
dividual scattering and absorbing centers (nucleons).

Π. THEORY OF MULTIPLE DIFFRACTION SCATTER-
ING

In the ordinary optical model the microstructure of
the medium is not considered and the substance is
represented as some continuous medium. We can hope
that a more accurate analysis will enable us to estab-
lish corrections that must be introduced in such an ap-
proximate optical picture and to determine more accur-
ately the limits of its applicability.

We neglect for the time being the dependence of the
interactions on the spins. This is fully justified at high

FIG. 4. Scattering of a particle with momentum k by a system con-
sisting of several nucleons. The positions of the individual nucleons are
determined by the three-dimensional vectors η ; S; are two-dimensional
vectors characterizing the positions of the nucleons in a plane perpen-
dicular to the momentum k (the ζ axis is parallel to k); ρ is the two-
dimensional impact-parameter vector in the same plane; k is the momen-
tum of the scattered particle; θ is the polar scattering angle; the azi-
muthal scattering angle φ, characterizing the rotation of the plane (k,
z) about the ζ axis, is reckoned from the (x, z) plane.

energies, where the spin effects affect significantly only
the details, and do not change the general picture of the
interaction (see Ch. ΠΙ below). The scattering of the
incoming particle from an individual nucleus will be
characterized by a scattering amplitude Λ, but since the
nucleons now need not necessarily be located at the
origin (rj * 0); Fig. 4), the azimuthally-symmetrical
expression (2) is no longer suitable for this amplitude.

To obtain the correct expression, we recall that the
asymptotic wave function after elastic scattering repre-
sents, in the general case, a sum of a plane incident
wave eikz a n ( j a scattered spherical wave with ampli-
tude J(Q, φ):

xV(x)^eih:-^J (<d, (f)eihllr, (6)

— S,m)eim<ePT (cos Θ), (7)

where

1=0 m=-—

1 = fi/k is the de Broglie wavelength in the c.m.s., 6 o m

is the known Kronecker symbol, and P m is an associa-

ted Legendre polynomial of order m. The particular

case of azimuthal symmetry (2) is obtained under the

assumption

tm=e ''Oom- (O)

If we confine ourselves to sufficiently high energies,
when the scattering by the nucleon occurs mainly in the
region of small angles θ and the significant I are very
large, we can use the asymptotic relation between theg yp
polynomial P m and the Bessel function Jm

[10, Hi

η(θ/2)] (9)

(formula (3) is a particular case of this relation).
Taking next into account the integral representation

of the Bessel function

2π

and replacing the summation over / by an integral, we
write the amplitude (7) in the form
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2,-t m

i 0

where ρ = XI is the impact parameter, ip = ξ + φ, and
I

2 »"'" (' + 4-) Stmeim* = e'l
I

·«>.
The function η(ρ, ψ) introduced in this manner will
henceforth be called the "phase."

If the variable ξ is now given the physical meaning
of the angle between the direction of the vector ρ and
the χ axis, then in the region of small angles θ it is
possible to put approximately ρ (k — k')
« 2kp cos(| — ψ + π) sin (θ/2), where k and k' are
respectively the momenta of the incoming and scattered
particles. The scattering amplitude is then written in
the compact form

(10)
A (0, φ) = A (q) - 4 F \ e i (

where q = k — k' is the momentum transfer

Γ(ρ)=1-β«η(Ρ) (11)

is the so-called "profiling function," and the integration
is carried out over the entire plane of the impact
parameter p.

We note that expression (11) can be regarded as the
Fourier transform of the function Γ(ρ): if the ampli-
tude e#(q) is known, this function can be obtained by
taking the inverse transformation

Γ(ρ) = _ 1 _ f e-i<iPJ (q)c22q, (12)

where the integration is over the entire plane perpen-
dicular to the initial momentum k.

Expressions (10) and (11) will serve as a basis for
further calculations of the scattering of the fast particle
by a nucleus*. We shall attempt to express the total
amplitude of such a scattering in terms of the ampli-
tudes for scattering by individual nucleons. The first to
use this approach was Glauber ll2~lil.

A high-energy incident particle can collide with
some single nucleon inside the target nucleus or else
experience successive collisions with several such
nucleons. In those cases when the scattering is through
an angle θ > π/2, repeated scattering by one of these
nucleons is also possible. In addition, since the radius
of the interaction of the incoming particle with the
nucleon can be larger than the distance between the
individual nucleons in the nucleus, it may happen that
the particle interacts simultaneously immediately with
several intranuclear nucleons.

In the general case, the mathematical analysis of

*In the particular case of azimuthal symmetry, when (8) is valid and
consequently the phase Tj(p, ψ) does not depend on ψ, it is possible to
integrate over the angle variable in (10), after which we obtain the well
known expression

\ /0(2>cpsin9/2)(l-eiT1(P))pip,

which coincides with (2) if we make in the latter the asymptotic substi-
tution (3) and take into account the fact that the phase t?(p) is now
twice as large as the phase used in expression (2).

such a picture is a very complicated problem, but it is
possible to obtain significant simplifications by using
the "diffraction approximation."

We shall assume that the scattering from any inter-
nuclear nucleon occurs in such a way as if this nucleon
were to be a small piece of an absorbing and refracting
medium (see Fig. 4). Then, in analogy with the situa-
tion in optics, to determine the scattering amplitude it
is necessary to find only the phase shift. The phase due
to a single nucleon is

χ(ρ)= (14)

where K(r) is the local refractive index, and the inte-
gration is along the particle trajectory. The main point
of Glauber's theory is the assumption that the particle
trajectory deviates insignificantly from a straight line,
and consequently the integration along the curvilinear
path in (14) can be replaced by integration along the
initial motion of the particle z. Thus, the phase shift
due to scattering by any one nucleon turns out to be in-
dependent of the presence of other nucleons. When a
particle moves inside a nucleus having A nucleons, the
total refractive index is

Κ (ι, r,, . . . , rA) = r - r , )

and accordingly the total phase shift is equal to the
sum of the phase shifts due to the scattering by the
individual nucleons:

χ(Ρ, s, sA)= ] (15)

In this case there is no need at all for knowing the de-
tails of the individual interactions of the incoming par-
ticle with the nucleons of the nucleus: the phase shift
χ (̂p — Sj) is determined by the Fourier component (12)
of the scattering amplitude of the incident particle on
the corresponding nucleon. All the partial amplitudes
for scattering by individual nucleons must in this case,
of course, be transformed to some common coordinate
frame, for example, the laboratory frame. In accord-
ance with expression (10), the total change of the ampli-
tude of the incident wave is

8 Α )Φ Η (Γ,

i <22p.
(16)

where

Γ ( ρ , s,, . . . , 8Α) = 1 -

A

i= 1

A

i, j = l
Γ,(ρ-8,)Γ,(ρ-8;)

+ ( ι.Σ= ΐΓ,(ρ-8 ί)Γ ί(ρ-Β ί)ΓΛ(ρ-8Α)+... (17)

is the profiling function of the nucleus, Φ^η and Φΐ are
the wave functions describing the ground state and the
motion of the nucleus before and after scattering. The
physical meaning of the introduction of the wave func-
tions of the nucleus into the amplitude (16) lies in the
fact that the product ΦίΦ^η determines the distribution
of the scattering centers inside the target.

We see that the wave scattered by the nucleus is a
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sum of terms corresponding to the scattering by indi-
vidual intranuclear nucleons, scattering by two nucleons,
either in sequence or simultaneously (in our approxi-
mation there is no difference), scattering by three
nucleons, etc.

One of the main conditions for the validity of such an
expansion is the requirement that the wave propagating
inside the nucleus be little distorted by diffraction ef-
fects; only in this case is it possible to apply formulas
(10) and (11) to each interaction of the wave inside the
nucleus, and to speak of summation of the phases. We
recall that the formulas (10) and (11) pertain to the
scattering of the plane wave and, in addition, in the
derivation of relation (15) it was assumed that the
trajectory of the scattered particle remains almost a
straight line.

In scattering by a nucleon with dimensions r-^, the
diffraction effects begin to come strongly into play only
at distances

d V rN:kL

(*L is the de Broglie wavelength in the laboratory
frame), and therefore the condition for the applicability
of the expansion (17) is the requirement that the
"shadow region" d greatly exceed the dimensions of
the nucleus R:

Since R/r N ~ A l / 3, this is equivalent to the requirement

h L <^4 I : 1 « , i 1 / : ! l ( r 1 3 cm, (18)

which is satisfied already at energies of several hun-
dred MeV.

The assumption that the total refractive index
K(r, Γι, ..., r^) is a simple sum of the refractive indices
for the scattering by the individual nucleons of the
nucleus presupposes that the particle moves quite freely
in the interval between two acts of scattering inside the
nucleus. This, of course, is also only an approximation
of the real process, which is apparently perfectly valid
for the deuterium nucleus, but may lead to additional
errors in the case of heavier nuclei. If we speak in the
language of field theory, then in this case only the
δ function is retained in the total propagator describing
the motion of the particle between two interactions, and
the entire remaining part is discarded.

Another limitation of the theory is the need for con-
sidering only the region of not too large scattering
angles, since relations (10)—(12) have been derived
precisely in such an approximation. As a result, re-
peated scattering by the same nucleon is excluded and
there are no identical factors in the sums of formula
(17).

We see therefore that the picture considered by us
still remains quite approximate in many respects.
There is wide scope here for various refinements and
extensions. Nevertheless, as will be shown below, even
at this stage it is possible to explain many new details
of nuclear interactions and to make an important step
forward compared with the usual optical model.

We now transform expression (16) into a form more
convenient for numerical calculations. To this end we
recognize first that the nuclear wave functions are

<l'in(r, Γ , , ! = - ί ' ΐ " « φ ( Γ , , . . . , r A ) , (U f (r, rA) - eip"<f> (r, r 4 ) ,

where Ρ and P' are the momenta of the target nucleus
before and after scattering,

is a vector determining the position of the mass center
of this nucleus, and φ is the wave function describing
the internal state of the nucleus. We introduce, further,
the relative coordinates r j = r^ — 3i of the nucleons in
the c.m.s. and denote Sj = Sj — s and p ' = ρ — s, where s
is a projection of the vector Λ on the plane perpendicu-
lar to the momentum k of the primary particle. Form-
ula (16) is then written in the form

e^inc = 2^ \ ε'^Ρ \ e' <P~P') - V (ri, · · · - ΓΑ) Γ (ρ, s,, . . ., s.4)
A A

Χ φ (r4, . . . , τΛ) δ ( β - A'1 2 r,·) d"M \[ d?r, = A(q) f e't'+i (P-I"> »d\9f,

i l i l

where

=25» ί eiqP'd2P' J f tt·

xcp(r;, . . . , τΑ)

r i ) Γ ( Ρ ' , • „ . . . ,

(the function Γ , as seen from (17), depends only on the
differences ρ - ŝ  = p ' - sj).

Integrating in this expression over the coordinates
of the mass center, we obtain

6^ tac = (2ji)36±(k-k' + P-P')6[k(P-P')/A:]^(q); (19)

here the δ functions express the momentum conservation
law, and the function jl(q) is the amplitude for the scat-
tering of the particle by the nucleus in the standard
normalization.

With the aid of relations (12) and (17), we can express
the profiling function Γ in terms of the amplitudes of
inelastic scattering of the particle by the intranuclear
nucleons, with relative c.m.s. momenta qi, q2, ..., q^.:

A
i ί* . ρ ( T_j- r jt

2πχ J J Λ ' i A'- L 2τΐί

>' j <T i qf ( p " 8 f U A (qft) d ^ f t J | φ ( Γ ι r A ) δ ( 2 rA/i4 d'r,,. (20)

In this expression we have omitted the prime signs of
the space vectors, since it will be implied henceforth
that all the spatial coordinates in the formulas for the
nuclear scattering amplitudes pertain to the c.m.s. of
the nucleus.

In accordance with our conclusion, all the nucleon
amplitudes in (20) pertain in our case to the laboratory
frame. This is not quite convenient in practice, since in
most experimental and theoretical investigations it is
customary to specify the amplitudes for scattering by a
nucleon in the c.m.s. of the incoming particle and of the
nucleon. As applied to our case, this means that a
separate c.m.s. should be chosen for each amplitude A\,
since the momenta of all the internal nucleons, gener-
ally speaking, are different. It is easy to show, however,
that for a region of not too large scattering angles, when
the recoil effects are insignificant, the scattering am-
plitude in the laboratory frame and the scattering ampli-
tude in the c.m.s. of the incoming particle plus the
nucleon differ only in the fact that the momentum trans-
fer qA must be chosen respectively in the laboratory
frame or in the c .m.s . c i 3 ] :
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ΛΙΛ ι <V)\ Λί-C) , (C)v /ΟΙ \

A\ (q* ) = A\ (qi )· \^l)

Under all the transformations, however, it is necessary
to retain the relation, which is satisfied in the c.m.s.,
between the square of the three-dimensional momentum
transfer q2 and the corresponding value of the 4-momen-
tum transfer t, viz., q2 = - t ; therefore in all the final
formulas the quantity q2 should be interpreted as |t | .

It is furthermore convenient to represent the nucleon
amplitude in the c.m.s. in the form

iff" ι

where

t (q) = ZA-*JP, (q) + (1 - Z A ' 1 ) Jni (q),

i
 (0)} Γ

1
»'

1
" = (

(22)

N) ;
(23)

here i is the imaginary unit, C*N is the ratio of the real
and imaginary parts of the amplitude for the scattering
through an angle θ = 0, which does not depend on the
choice of the coordinate system, and £N i s a constant
known from experiment. This expression is a perfectly
good approximation in the entire considered region of
not too large scattering angles.

The approach to the calculation of the nuclear cross
sections, which is based on formulas (20)—(30), is now
customarily called the theory of multiple diffraction
scattering, or simply Glauber's theory.

We have considered only one of the possible deriva-
tions of the relations of this theory, in our opinion the
simplest one, which makes it possible to explain in the
most lucid form the relation between Glauber's theory
and the usual optical model. There are other detailed
published methods of deriving Glauber's formula: the
diagram method'29'30-1, the method based on the use of
Watson's multiple scattering theory ί33-35:, and a few
others (see, e.g.,C36J). In these approaches, the main
relations of Glauber's theory are considered from
somewhat different points of view, making it possible to
explain more clearly which premises are the most im-
portant for the picture in question and in which direc-
tions this picture can be generalized. The analysis and
comparison of different approaches to Glauber's theory
would be the subject of a separate large review. The
purpose of our review is to describe only the main ideas
of Glauber's theory and to ascertain the extent to which
this theory agrees with experiment. The interested
reader can become acquainted with the more profound
details in the already cited literature.

ΠΙ. NUCLEON-DEUTERON SCATTERING

In order to be able to calculate the nuclear cross
section from (20)—(23), it is necessary to determine
first, with the aid of some model, the density of the dis-
tribution of the nucleons in the nucleus

ΓΑ) = φ* ΓΑ) Φ ( Γ ΓΑ)· (24)

This can be done relatively easy in the case of the deu-
terium nucleus, for which there exists a sufficiently
well developed theory. The cross sections calculated
from Glauber's theory turn out in this case quite sensi-
tive both to the choice of the deuteron wave function and
to the magnitude of the real part of the nucleon ampli-
tude Re ^ N ^ α Ν (F iS s · 5—7). This circumstance can

10 -

FIG. 5. Change of the cross
section of elastic scattering of the
proton by the deuterium nucleus
as a function of the different
choices of the wave function of
the deuteron φ(τ) (mb/sr; labora- 1l>

tory frame) [ 2 0 ] .

Third Moravcsik function
<f(r)~(e •••-e-f)/r,

V f(r)~e-"/r.

/i/,(GeV/c)2

02 0.4 0.6 A/(GeV/c)2

FIG. 6. Cross section for the elastic scattering of a proton by
deuteron at different values of the parameter a (mb/sr; laboratory
frame). Proton energy 1 GeV [ 9 · 2 1 · 3 8 ] . Solid curve—cross section calc-
ulated for the experimental values a p and a n with allowance for the
contribution of the S and D waves to the φ function of the deuteron.

FIG. 7. The same as Fig. 6.
Proton energy 2 GeV [ 2 0 ] . The
cross section calculated in the
impulse approximation is shown
separately (only the term with h
= 1 in the product A [ ] j n 1

k = 1

formula (20)) is retained. The
contribution of the D-wave to the W
φ function of the deuteron is not
taken into account.

10
0.5 /i/,(GeV/c)2
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be used for an experimental determination of all these
quantities. In particular, recently many experiments
with deuterium have been devoted to the measurement
of afĵ f — a parameter that plays a very important role in
the physics of elementary particles l 1 5 1 ; Glauber's
theory gives a sufficiently reliable basis for the analy-
sis of these experiments.

As applied to deuterium, Glauber's theory deserves
special attention also from a different point of view.
As is well known, the main source of our information
concerning the cross sections for the interactions of
elementary particles with the neutron are difference ex-
periments with hydrogen and deuterium. It is very im-
portant here to be able to calculate with sufficient ac-
curacy the correction connected with effects of screen-
ing of the nucleons in the deuterium nucleus i l 6 ] . The
accuracy of calculation of this correction frequently
greatly exceeds the direct cross section measurement
errors . Glauber's theory makes it possible to take
sufficiently correct account of the screening effects'13·1.

From the data on proton-deuteron scattering shown
in Figs. 6 and 7 we can see that the theory of multiple
diffraction scattering is in fair agreement with the
known experimental data in the regions of the first and
second maxima, but for | t | ~ 0.35 (GeV/c)2 the theory
predicts a sharp minimum, whereas experiment reveals
only a change in the slope of the curve.

The situation is even worse with pion scattering
(Fig. 8). In this case the experimental data also reveal
no deep diffraction minimum at |t | « 0.35 (GeV/c)2, and
furthermore exceed noticeably the theoretical values.

The discrepancies between the calculations and ex-
periment still remain in force if attempts are made to
use for the deuteron different forms of spherically-
symmetrical wave functions (see Fig. 5) or, more ac-
curately, to write out the elastic πΝ and NN scattering
amplitudes with allowance for the term with q4 in the
argument of the exponential of formula (23), or finally
to vary the cross sections σ and σ η but leave the deu-
teron cross sections σ ^ and σ ^ unchanged. An attempt

to take into account the dependence of the interactions
on the spins likewise ended in failure: the depth of the
diffraction minimum at | t | » 0.35 (GeV/c)2 decreased in

0.3 OS 01 HI. (GeV/c)2 0.1 0.3 0.5 0.7 /t/, (GeV/c)2

FIG. 8. Cross section for the scattering of rr" mesons by a deuterium
nucleus (mb/GeV/c)2) [2 7·28.3ΐ]. Dashed curve-cross section without
allowance for spin flip solid curve-total cross section, with allowance
for spin effects. The contribution of the D-wave to the ^-function of
the deuteron is not taken into account. The calculations are performed
using the "covariant generalization of the Glauber theory" [ 2 9 · 3 0 ] .

this case, but it was impossible to obtain agreement
with the experimental points ' 1 9 ' 3 7 ' 3 9 ' 4 0 3 .

It is seen from Figs. 6 and 7 that the depth of the
minimum is a very sensitive function of a p and atn-
Calculations have shown that agreement with experi-
ments on proton-deuteron scattering can be obtained by
proposing such a dependence of ap(t) and a n (t), that at

t = 0 the values of a p

 a n d « n coincide with the values
determined from experiments on elastic pp scattering
and from the dispersion relations, and at | t |
~ 0.35 (GeV/c)2 the values a p = -0.6 and an = -1.2
acquire much larger (absolute) values. In this case,
however, the agreement between the experimental and
theoretical data is lost in the case of scattering of pro-
tons by helium (see the next chapter).

Some progress towards improving the agreement be-
tween calculations and experiment was attained by taking
into account the intranuclear motion of the nucleons,
which turns out to be particularly important in the case
of pion-deuteron scattering, owing to the presence of
closely-lying resonances in the πΝ scattering cross sec-
tions'3 2 3 . Apparently, however, the simplest and most
convincing explanation of the discrepancy between the
theoretical and experimental data was recently found by
Michael and Wilkin [37J. They called attention to the fact
that even a small admixture of the D state in the wave
function of the deuteron leads to the possibility of highly
intense transitions between the S and D states precisely
in the momentum-transfer region |t | ~ 0.35 (GeV/c)2,
as a result of which the diffraction minimum of the
theoretical curve becomes smoothed out.

An analogous phenomenon was established long ago
in the case of electron-deuteron scattering; if the D
state of the deuteron is not taken into account, then a
sharp minimum is formed in this case also in the mo-
mentum dependence of the form factor F(t).

Since the spin dependence turns out to be insufficient
for the elimination of the minimum in the theoretical
curve, it can be neglected for simplicity. In this case,
the amplitude ^ s s ' of the elastic scattering of a high-
energy particle by the deuteron nucleus with transition
of the nucleus from a state with spin projection s into a
state with spin projection s' can be written in the form

-«ii - l i p (q) Η Jn (q)[ {Λ (q/2) - \F2 (q/2)/]/2]}

- [F2

/2> ~i'i •*'» Kq/2) - q ' ] {F,

/2) P2 (cos Θ)/Κ2]} q' </q' rfO,
L Ά η (q)l IF, (q/2) + / I

/2)-q'] [Ι·\ (q') + V2 F2 s6)] q'dq'di),

n29] q'rfq'-rt),

here

Λ (q) == } ("2 Η" "-'*) J« (V) dr, F2 (q) - - | w ( 2u - -1= w ) J 2 (qr) dr
*

are the spherical and quadrupole form factors of the
deuteron, u(r) and w(r) are the wave functions of the S
and D states of the deuteron, determined, for example,
i n ' 4 1 ] , and J o and J 2 are known Bessel functions. Details
of the derivation of all the relations can be found

[13,37,40]
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FIG. 9. Cross section of elastic π*Ό
scattering at Τ = 3.51 GeV (mb/(GeV/c)2)
[37,38j Solid a n ( j dash-dot curves-calcu-
lation by Glauber's theory with allowance
for the S and D waves in the deuteron φ-
function, when the contribution of the D
wave is assumed to be equal to 7 and
3.5%, respectively. Dashed curve—calcu-
lation without allowance for the D wave.

O.S/t,/, (GeV/c)2

The results of the calculations are given in Figs. 6
and 9; the improvement of the agreement between ex-
periment and theory is particularly appreciable in the
case of pion-deuteron scattering. The depth of the mini-
mum in the theoretical curve turns out to be practically
proportional to the probability of the D states. This un-
covers interesting possibilities for an experimental
study of the contribution of the D state in the deuterium
nucleus.

IV. NUCLEON SCATTERING BY THE HELIUM
NUCLEUS

For more complicated nuclei we do not have at pres-
ent a good theory, and it becomes necessary to use dif-
ferent, frequently quite crude, model representations.

If we assume approximately that the nucleons in the
nucleus can be regarded independently of one another
(we shall see later that in many cases this is not so
poor an approximation), then the density ρ factors out:

= Π (25)

The amplitude (20) would in this case also have the form
of a product of independent integrals with respect to the
nucleon coordinates r j, were it for the 6-function in the
amplitude. This function can be eliminated with the aid
of the Gartenhaus-Schwartz transformation'17·1. Unfor-
tunately, the resultant expression has, generally speak-
ing, a complicated form and it is frequently preferable
to work directly with an expression containing a δ func-
tion. However, if it is assumed that the nucleons inside
the nucleus are acted upon by a harmonic potential, then
the transformed expression turns out to be quite simple.
In particular, if all A nucleons of the nucleus with rad-
ius R are in the IS state, then

ρ(r) = φ· (r) φ (r) = (πϋ*)'32

 e-"; "' (26)

and the amplitude for scattering by the nucleus is
A

•4 (q) = 2HX β"2Η2"'Λ ί e""></2p { ! ~ Π [ l ~ h \ d* e«- i p*- ( J i i / : ! )V i T* (6)]}

numbers of protons and neutrons (see expression (22)).
Since the expression in the square brackets does not

depend on k, we can rewrite the product in the form of
a sum

after which all the integrals in (27) can be evaluated
analytically and the scattering amplitude becomes ίυί}

(28)

The N-th term in (28) corresponds to scattering with
N-fold collision inside the nucleus (see formula (17)).
From experiments with electron scattering it is known
that the functions (25) and (26) are a good approximation
for the He4 nucleus. In this case all four nucleons
(A = 4) are actually in the IS state, forming a closed
shell.

The results of calculations by formula (28) are com-
pared in Fig. 10 with the experimental data. Good
agreement occurs only in the region of the principal
diffraction peak, and at larger values of q the theoreti-
cal curve passes much lower than the experimental
points. The discrepancy cannot be eliminated by select-
ing the parameters, although the depth of the first mini-
mum is quite sensitive to the value of a.

Let us attempt to improve the agreement between
calculation and experiment by choosing a more compli-
cated expression for the density p. It might be assumed
that just as four spheres attracting each other assume
a stable position such that a hole is produced in the
center of their arrangement, so are the nucleons in the

]}
(27)

where σ̂ ., a, and β are quantities averaged over the

1.2 /i/,(GeV/c)2

FIG. 10. Cross section of elastic scattering of protons by the helium
nucleus (mb/sr; c.m.s.) [ 9 · 1 9 ] . Solid curve-results of calculation for the
density (29), with account taken of the repulsion at the center of the
nucleus. Dashed curve—calculation in accordance with the simpler for-
mula (26). Dotted curve-results of calculation for the density (30),
with account taken of the repulsion at the center of the nucleus and
the nucleon correlation. The influence of the change of the parameter
a on the depth of the first diffraction minimum is shown separately
(for simplicity it is assumed that a = a n = a p ; this part of the calcula-
tions was performed with the density (26) f 1 8 ]).
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Values of the parameters determining the
density ρ(ri, r 2, r 3 , r4) obtained from

the condition of best agreement be-
tween the experimental and the

theoretical cross sections σ(θ) [ 1 9 3

Expression for
density

(2fi)

(2'J)
(30)

R,

10 " c m

1,37

1,32

1,25

0

0

,555

,436

s,
10 1 3

—

0,'.

cm

1

0

1

c

,858

D

—

1

He4 so arranged that ρ is minimal at the center of the
nucleus. This can be regarded phenomenologically as
the result of the joint action of the harmonic potential
considered above and a certain repulsion potential at
the center of the nucleus. The corresponding expres-
sion for the nucleon density is chosen in the form

P(r,, r,, r,, r,J = (29)

where the constants C and γ are chosen from the condi-
tion that the theoretical cross section agree in the best
manner with the experimental one (see the table; an
expression for the amplitude J(q) is obtained in this
case, as can be readily visualized, by a simple modifi-
cation of formula (28)).

It is seen from Fig. 10 that at Τ = 1 GeV it is possi-
ble to obtain in this way sufficiently good agreement
with the experimental points. Noticeable differences are
observed only in the region of the second minimum.
The reason for this is not yet clear. It may be that this
is caused by the fact that the Glauber theory is not valid
at large values of q, or it may be due to spin effects
that are not accounted for in the theory.

Certain authors attempted to attribute the discrepancy
at large q to intranuclear correlations of the nucleons.
In this case the density ρ can be written in the form

P (r,, r2, r3, r4) = [\ e~rk'R* (1 — Ce~y2rk m) [[ (1 — De"'""1 s ' ) , (30)

where Γ , ^ is the distance between two nucleons, and
the value of the parameters is again chosen to obtain
agreement between the theoretical cross section and ex-
periment.

The expression for the amplitude j(q) now becomes
much more complicated. In particular, the Gartenhaus-
Schwartz transformation'17·1 is now of little use and it
is simpler here to deal with an expression containing

/ 4
the δ function δ ( Σ η ,

\ i = l
Substituting the density (30) in the amplitude (20) and

calculating the integrals over all the variable with the
exception of the coordinates of the four intranuclear
nucleons, we obtain

P ( r , , r2, r3, r4 , -4-G3-rG4) δ (r,-t-- r3--r4) d3 (

(31)
where the functions Gi, G2, G3, and G4 pertain respec-
tively to single, double, triple, and quadruple collisions
inside the nucleus. These functions are given by[19:l

G3 = (ί/48π3β4λ) /„/„ (ifpfn-ft-

Jη) " t S 1 2 '

^v [Jpin JpJn {jp In) \ & ^ 5

' (32b)

»'.-3]-i», (32c)

(32d)
here a p t (1 - ia p ) = fp, a n t (1 - iorn) = fn, and

The integration of the δ function in (31) eliminates
the coordinate r 4 (this has already been taken into ac-
count in the expression for G4). Then the remaining
integrand acquires the form of a sum of terms propor-

/ 3 \
tional to the exponentials exp (- Σ a j ^ ^ i ^ ). Such
an integral can be calculated analytically (see t l 9 : l) or
numerically. We have presented formulas (31) and (32)
in order to show how to perform the calculations when
the density ρ has a more complicated form than (26).

The results of the numerical calculations with the
density (30) are shown in Fig. 10. Allowance for the
intranuclear correlations merely shifts the theoretical
curve slightly, and is perfectly negligible within the
limits of the experimental errors . However, if account
is taken of only the correlation and the drop of the den-
sity of the center of the nucleus is disregarded (i.e., if
we put C = 1 in (30)), then the theoretical curve turns
out to be much lower than the experimental points (for
details see [ 1 9 J ) .

It should be borne in mind that since the expression
for the density ρ is fitted only in accordance with one
experiment at a fixed energy T, it is necessary for the
time being to approach with caution the values of the
parameter s listed in the table above as well as to the

0 024 S.iS 0.72 /<,(GeV/c)2

,= (ι!2π>.) (32a)

0 4 β 12 15 f'10"2 6cm2

FIG. 11. Comparison of the "electron" form factor of the He4

nucleus F(q 2 ) = [σ(θ)6 χρ/σ(0)ΜΟ((]1 / 2, determined from experiments
with scattering of electrons (experimental points taken from [ 2 6 ]) with
the "proton" form factor determined from experiments with proton
scattering. Solid curve-values of the "proton" form factor calculated
for the density (30) and the values of the parameters from the table.
The internal structure of the scattering proton is taken into account
with the aid of formulas (33)-(36). Dashed curves—corresponding
values of the "proton" form factor calculated under the assumption
that the nucleon distribution in the helium nucleus is determined by
formula (30) with the parameter C = 1 (i.e., without allowance for the
decrease of the density at the center of the nucleus). We see that in this
case the "electron" and "proton" form factors differ quite noticeably
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very conclusion that the theory agrees with experiment.
For more reliable conclusions it is necessary first of
all to compare the obtained values of the parameters
with the experimental data at several energies T. At
the present time, unfortunately, there are still no such
data. An additional argument favoring the correctness
of the analysis is the fact that the form factor deter-
mined from the experiments with scattering of protons
by the He4 nucleus also explains well the experiments
with electron-helium scattering (Fig. 11).

The fact that practically the same form factor is
used to describe the scattering of electrons and protons
in Glauber's theory is an important feature distinguish-
ing this theory from the optical model.

Generally speaking, one can expect some differences
between the "electron" and "proton" form factors be-
cause the densities of the protons and the neutrons in
the nucleus differ somewhat from each other; however,
these differences are small, particularly if exclusive
account is taken of the distribution of the density inside
the scattering proton itself; the dimensions and the
structure of the electron can then be neglected*.

V. SCATTERING BY CARBON AND OXYGEN NUCLEI

In light nuclei with atomic numbers A > 4, as shown
by experiments with electron scattering, the distribution
of the nucleon density is also well described by an ex-
pression corresponding to a harmonic potential.

If it is recognized that only four nucleons can be in
the S state, and the remainder occupies states with lar-
ger values of I, then

p(r,, . . . , r A ) = j j p s (r A ) Π p P (r 4 ) ; (37)

here the first product describes the S shell, and the
densities Pg(rk) must be chosen in the form (27); the
second product pertains to the remaining A — 4 nucleons
(A < 16) in the P-state with densities

PP (rh) = (2/3π'/2«2) l i f T ' ^ . (38)

After substituting these expressions in (20) and
eliminating the δ function with the aid of the Gartenhaus-
Schwartz transformation, the nuclear scattering ampli-
tude is written in the form

J Π P. ft) Π Ρ* Μ { ' - Π [l-^^

*The nuclear form factor appearing in experiments with scattering
of extended protons is equal to

where
F (q) = j ρ (r)

P ( ' ) = ^ P a (

r=Fn(q)FP(q),

= J p(r f , r2, r3, r4) d3 (r2r3r4)

(33)

(34)

(35)

(the nuclear density p(i1, r2, r3, r4) is symmetrical with respect to per-
mutations of Γι). To describe the proton form factor one can use the
pole expression

FP(q)=[l-j-;qW]-2 (36)
with parameter a = 0.71 GeV/c. We shall return to the question of scat-
tering of extended particles in connection with scattering of nuclei by
nuclei (see formulas (51)-(53)).

Γ . <r,(l-ia) / 1 t>V _.__?«fPi_^ c.-ps.,R2,.,12)-I->-4 | .

(39)
for simplicity the nucleon amplitude (23) is assumed in
this expression to be averaged over the pp and pn inter-
actions.

The integrand in (39) can be expanded in a power
series (using the Newton binomial formula), after which
all the integrals can be calculated analytically[19], how-
ever, the obtained expression is quite complicated.

The calculations simplify greatly if it is assumed
that the nucleus is spherically symmetrical; in this
case (see formulas (10) and (14)) we have

(40)

where q = 2 sin (θ/2)/λ, and the symbol {...} denotes
the expression in the curly brackets in (39). The inte-
gration in (4) can be readily carried out by numerical
methods.

It is possible to obtain a more accurate expression
for the amplitude ^(q) if the coordinates of the nucleons
are antisymmetrized in accordance with the Pauli prin-
ciple during the course of the determination of the den-
sity p(ri, ..., r A ) . For example, in the case of scattering
by C12 and O16, the configuration of the protons and ac-
cordingly of the neutrons has the form (1SI/2)2(1P3/2)4

for C12 and (1S I / 2)
2(1P3/2)4(1PI/2)2 for O16. The harmonic

wave functions of the nucleon in the S and Ρ states are
given by

<Ps(r

cj>P(r: / = 1/2, Jz - 1/2) = φ Ρ (r) ( - Υ10χ+

 : - V'l Υηχ,)Υ3,

J = \'2, / = = -l/2)-q>P(r)(--l/2}V1x+ -Y^tMVi,

J = 3/2, Jz = 1/2) = φ Ρ (r) (]/2 YM+ -- Υ,,χ-)/V3,

/ - 3/2, Jz = - 1/2) = φρ (r) ( - Υ,_,χ+ - Υΐ Ytl)-/.-)lV3,

J = 3/2, Jz = ± 3/2) = φ Ρ (r) YUX±;

1

(41)

here
(r) = ( φ ρ ( Γ ) = (2/3π' 2 (42)

are the corresponding radial wave functions, Y^m are
spherical functions, χ+ are the spin functions of the
nucleons (with the spin directed up or down; the direc-
tion of motion of the primary particles is chosen to be
the ζ axis). The complete antisymmetrical wave func-
tions describing the ground state of the target nucleus
are expressed in terms of the Slater determinant

where ipn(rk) are single-particle wave functions (41).
If we disregard the charge-exchange process, the

influence of which in the high-energy region is small,
then the protons and the neutrons can be symmetrized
separately:

φ ( Γ , , . . . , Γ Α ) = φ<Ρ)(Γ,, . . ., r z ) (44)

~1/2\\fn(Th)\U=1 z, |
(45)

This simplifies the calculations.
Figure 12 shows the results of calculations for the
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FIG. 12. Cross section for the elastic scattering of protons by the
oxygen nucleus (mb/sr) t 9 · 1 9 ] . Curve Α-calculation by Glauber's
theory with antisymmetrical wave function (43) B-corresponding
curve for the case when the density ρ is chosen in the form (37).
Dashed line-cross section calculated in the impulse approximation,
t—square of the transferred 4-momentum.
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FIG. 13. Cross section for the elastic scattering of protons by the
carbon nucleus (mb/sr) [9-1 9]. Curves-calculation by Glauber's theory
for two values of the nuclear radius R (with allowance for the antisym-
metrization of the nucleons (43)).

case of scattering of protons by oxygen (R ~ 1.71
χ 10"13 cm, with allowance for the proton form factor).
We see that theory and experiment are in good agree-
ment; the antisymmetrization of the wave functions turns
out to be relatively unimportant in this case. The calcu-
lations were performed for \a\ = 0.3 (the sign of a is
immaterial); a change by more than 0.1 greatly
deteriorates the agreement between the calculations
and experiment.

There is much worse agreement in the case of scat-
tering by carbon (Fig. 13). If we use for the nuclear
radius the value R = 1.58 χ 10"13 cm, obtained from ex-
periments with electron scattering, then the minimum
in the cross section occurs at too small values of the
momentum transfer, and the calculated value of the
cross section in the region of the second maximum turns
out to be overestimated by approximately 50% compared
with experiment. An attempt to decrease the radius R
so as to obtain agreement between the positions of the
experimental and theoretical minima leads to worse
agreement both at small and at large t. Apparently the
discrepancies are due to the fact that the C12 nucleus is
strongly deformed, so that the expressions used in the
calculation for the density p(ru ..., r A ) are too inaccur-
ate.

In the case of electron scattering, the main contribu-
tion is made by the impulse approximation, when the
scattering cross section is expressed in terms of the
densities of the individual nuclear nucleons. These
densities are spherically symmetrical, and therefore
the results of the calculations depend little on the de-
gree of deformation of the nucleus. In the scattering of
nucleons, an appreciable contribution is made by double
scattering, for example scattering with a transition of
the nucleus to the first excited state and subsequent
scattering to the ground state. Deviations from spher-
icity become in this case very important and should be-
come more strongly manifest in the region of the second
diffraction maximum, where, as we shall show below,
the principal role is played by double scattering.

Calculations performed by Drozdov on the basis of an
approximate model of black ellipsoid'22-1 have shown that
an increase of the deformation actually shifts the theor-
etical curve in the required direction.

An investigation of elastic scattering in the region of
the second diffraction maximum can serve as an impor-
tant source of information concerning the degree of
nuclear deformation (for more details see ).

VI. INTERACTION WITH HEAVY NUCLEI

For scattering by heavy nuclei, it is convenient to
represent the amplitude (39) in a somewhat different
form. For simplicity we again assume that the density
p(ru ..., r A ) is given by (25), i.e., it can be factored,
and in addition it is expressed in terms of Gaussian ex-
ponentials. Then relation (20) can be rewritten with the
aid of the Gartenhaus-Schwartz transformation in the
form

A

Π , (qA) F (q,,)

where the form factor is

and the density functions
condition

}
(46)

satisfy the normalization

We note further that in nuclei with large values of A
the density functions change with increasing A approxi-
mately like I/A— this is well known from experiments
with electron scattering. Therefore, by determining the
function

η ( p ) = ΊΓ S e~m'J ( δ ) F (6) cp6> ( 4 ? )

it is possible to replace the expression in the square
brackets in (46)

/A— k+ΙΑ — k + 2 A— 1\ (ίη)"
\ A A ' ' ' ~A~ I ~~~kT~ (48)

approximately by an infinite series—the expansion of
the exponential

(49)

The expression for the nuclear scattering amplitude
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then assumes the following form, which is convenient
for calculations

J> (q) = ^ e (50)

VII. APPLICATION OF GLAUBER'S THEORY TO THE
INTERACTION OF TWO NUCLEI

Glauber's theory can be generalized also to the case
of interactions of two nuclei. The initial relations of the
theory (16) and (17) will have in this case the form

1Vi*c = 4 f
A+B

Χ Γ (ρ, s,, ..., sA+ii) Φ( >̂ (Γ,, ..., rA) φ£> (ΓΑ+Ι rA+B) JJ d»n d2p,
(51)

Ι ( Ρ ι , 8 , , . . . , (52)

where the function Γ ^ is expressed with the aid of re-

lation (12) in terms of the NN-scattering amplitude
()
All the succeeding relations are likewise generalized

in obvious fashion. In particular, if we use for the
nuclear densities p(A)(r1( ..., r A ) and ρ(Β)(Γι, ..., r B )
factored expressions that depend on Gaussian exponen-
tials, then the nuclear amplitude becomes rid of the δ
functions and the following factor

^RA/iA^Rl/iB (53)

where A and Β are the mass numbers of the colliding
nuclei, appears in front of the integral.

The application of Glauber's theory to the simplest
case of the interaction of two nuclei (to the deuteron
+ nucleus interaction) was considered in 1 2 3 ' 2 5 · 1 .

If we now again proceed to the case of the Ν + nucleus
scattering, then one of the exponentials in (53) vanishes,
and the form factor of the nucleon automatically appears
in the expression for the nuclear amplitude.

Vin. TRANSITION TO THE OPTICAL APPROXIMATION

In conclusion, it is useful to examine in greater de-
tails the manner in which the ordinary optical diffrac-
tion picture appears in Glauber's theory.

Figure 14 shows, with He4 as an example, the contri-
bution made to the scattering amplitude by the terms
due to one, two, three, etc. intranuclear collisions. In a
semi-log scale, the curves corresponding to the Gauss-
ian exponentials assume the form of inclined straight

FIG. 14. Contribution made
to the amplitude for elastic scat-
tering of protons by helium at Τ
= 1 GeV by the terms due to k
intranuclear collisions (in relative
units) [ I 4 ] . The calculations were
performed in accordance with
formula (28), where we put for
simplicity a = 0. The arrows de-
note the points at which the nu-
clear amplitude has a minimum
as the result of the fact that two
terms that make the largest con-
tribution cancel each other.
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FIG. 15. The numbers 1-4 designate the scattering cross sections
calculated with allowance for one, two, three, and four terms respec-
tively in the scattering amplitude

A= 2 (-l)h4th (« = 1,2,3,4).

The calculations were performed with account taken of the real part of
the amplitude of NN scattering a [ " ] .

Οβ 2 , (GeV/c)2

FIG. 16. Relative values of the
coefficients in the expansions (48)
and (49) as functions of the mass
number of the target nucleus and
the number k of the term of the
expansion.

lines. Summing these curves, we see that the first,
principal peak in the angular distribution of the scat-
tered particles is due practically entirely to single
interactions within the nucleus. The mutual cancellation
of the amplitudes resulting from single and double colli-
sions leads to a minimum in the cross section near
q2 = 0.2 (GeV/c)2. For somewhat larger values of q,
in the region of the second diffraction maximum, the
angular distribution is determined practically entirely
by double scattering processes. The mutual cancellation
of the amplitudes Ai and jf3 gives a minimum near q2

= 0.8 (GeV/c)2, etc.
Thus, the diffraction picture in Glauber's theory re-

sults from interference of amplitudes due to different
numbers of intranuclear collisions. This is clearly seen
also in Fig. 15.

On going over to heavy nuclei, we obtain the usual
optical expression for the nuclear amplitude, if we dis-
card in formula (50) the factor exp(q2R2/4A) (we recall
that A is sufficiently large), and the amplitude A(6) is
independent of δ. (The latter is perfectly justified, since
in heavy nuclei, whose radius greatly exceeds the radius
of the NN interaction, the form factor F(6) has a much
larger peak at δ « 0 than the amplitude <Λ<$), the value
of which at δ = 0 can be taken outside the integral sign
in formula (47).

Since formula (50) was obtained under the assumption
that the finite series (48) can be replaced by the infinite
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expansion (49), the deviation of the ratio of the corre-
sponding coefficients in (48) and (49)

A — k+\A —k + 2

from unity is a characteristic of the extent to which the
Glauber theory of multiple diffraction scattering differs
from the optical theory.

It is seen from Fig. 16 that the ratio Δ(Α, k) at k = 1
and 2 is close to unity for all nuclei. This explains why
the first diffraction maximum at small scattering angles
is well approximated in all cases by the optical theory.
At large values of k, the ratio Δ(Α, k) is close to unity
only for heavy nuclei; only in this case is the optical
approximation sufficiently good.
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