УСПЕХИ ФИЗЛИЧЕСКИХ НАУК

МЕТОДИЧЕСКИЕ ЗАМЕТКИ

535 42

ДИФРАКЦИЯ ФРЕНЕЛЯ НА КРУГЛОМ ОТВЕРСТИИ

Используя в качестве источника света газовый лазер, можно не только визуально наблюдать явление дифракции Френеля, но и в рамках лабораторного практикума экспериментально изучать распределение освещенности вдоль оси круглого отверстия, наглядно иллюстрирующее применение метода зон Френеля при решении дифракционных задач ¹, ².

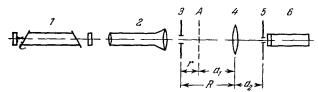


Рис. 1. Схема экспериментальной установки

Основной вывод, к которому приводит теория, заключается в следующем. Освещенность вдоль оси является осциллирующей функцией расстояния от отверстия и определяется числом открытых зон Френеля волнового фронта. Если на отверстие радиуса ρ падает плоская монохроматическая волна, то экстремальные значения освещенности получаются на расстояниях r от отверстия, отвечающих условию

$$\rho^2 = k\lambda r,\tag{1}$$

гле λ — длина волны, $k=1,\ 2,\ 3,\ \ldots$ — число открытых зон Френеля.

Схема экспериментальнои установки приведена на рис. 1. Пучок света от Не — Ne-лазера I коллимируется телескопической трубой 2. На выходном конце трубы

установлена диафрагма 3 с круглым отверстием.

Предварительное расширение пучка трубой позволяет равномерно осветить отверстие центральным участком фронта волны. При этом дифракционная картина обладает осевой симметрией и проявляется наиболее четко. Линза $m{4}$ создает на экране 5 увеличенное изображение дифракционной картины, возникающей в сопряженной с линзой плоскости A. При небольшом, порядка 1.5-2 M, расстоянии между отверстием и экраном в затемненном помещении на матовом экране в проходящем и отраженном свете видно центральное дифракционное пятно, окруженное несколькими чередующимися темными и светлыми кольцами. При перемещении линзы вдоль оси отверстия максимумы и минимумы освещенности сменяют друг друга. Размеры дифракционной картины при указанных ниже параметрах установки оказываются достаточными для осуществления соответствующих лекционных демонстраций. Яркость и контраст картины позволяют, как показывает опыт, осуществить демонстрацию явления по телевидению.

Для количественных измерений непрозрачный экран 5 укрепляется непосредственно на торце фотоэлектропного умножителя (ФЭУ) 6. Малое отверстие в экране вырезает середину увеличенного изображения центрального дифракционного пятна, выполняя роль полевой диафрагмы. Линза жестко связана с $\Phi \Im V$, и при их совместном перемещении в ходе измерений расстояние a_2 между линзой и фотокатодом остается неизменным. Расстояние a_4 от линзы до плоскости A однозначно определяется расстоянием a_2 и фокусным расстоянием используемой линзы, поэтому увеличение дифракционной картины a_2/a_1 оказывается одинаковым для любой плоскости A.

Все элементы установки размещены на оптической скамье. В ходе измерений фиксируются значение фототока и расстояние R от линзы до диафрагмы, необходимое для определения r—расстояния от диафрагмы до исследуемой плоскости A $(r=R-a_i)$. Точность совмещения отверстия в экране с центром изображения дифракционной картины контролируется путем малых поперечных перемещений столика, на котором укреплен ФЭУ. При перемещении фототок проходит через экстремальное значение, которое как раз соответствует правильному совмещению.

На рис. 2 в качестве примера приведены результаты измерения освещенности вдоль оси отверстия диаметром 1,5 мм при следующих нараметрах установки: мощность излучения лазера 1 мвт, длина волны $\lambda = 6328$ Å, увеличение телескопической

Рис. 2. Распределение освещенности вдоль оси круглого отверстия.

трубы 8^{\times} , фокусное расстояние линзы f=60 мм, расстояние $a_2=360$ мм. На графике видна область дифракции Френеля и начало области дифракции Фраунгофера (k < 1). Положение максимумов и минимумов освещенности хорошо совпадает со значениями, вычисленными по формуле (1) *). В соответствии с теорией освещенность в точке на оси, для которой открыта одна зона Френеля, в четыре раза превышает освещенность в близких к отверстию точках, для которых фронт волны можно считать полностью открытым.

Саратовский государственный университет

Л. И. Видро, Ю. П. Башаров, А. Е. Кудряшов

ЛИТЕРАТУРА

1. А. Зоммерфельд, Оптика, М., ИЛ, 1953.

2. Р. Дитчберн, Физическая оптика, М., «Наука», 1965. 3. К. Михель, Основы теории микроскопа, М., Гостехиздат, 1955.

$$E = 4E_0 \sin^2 \frac{\pi \rho^2}{2\lambda r} , \qquad (2)$$

где E_0 — освещенность, создаваемая на отверстии падающей волной. Экстремумы (2) отвечают условию (1), причем все максимумы имеют одинаковую величину и все минимумы равны нулю. По мере уменьшения г максимумы кривой сгущаются. Существенное отличие экспериментальной кривой от теоретической наступает при таких значениях г, когда разрешающая способность используемой линзы в направлении оптической оси 3 оказывается недостаточной для четкого разделения экстремумов.

^{*)} Используя метод Зоммерфельда ¹, можно найти функцию распределения осве-щенности вдоль оси круглого отверстия. Если на отверстие падает плоская волна, то при $r \gg \rho$