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I. INTRODUCTION. CERTAIN ESSENTIAL STAGES OF
THE DEVELOPMENT OF THE THEORY.

The theoretical strength of an ideal crystal lattice,
corresponding to simultaneous breaking of all the inter-
molecular bonds, is very large, altogether one-tenth the
value of Young's modulus. The strengths of real solids
are smaller by several orders of magnitude, this being
usually connected with the existence of lattice defects.
From among the various types of defects, we shall con-
sider here only cracks. Although actually there are not
so many brittle materials (glass, quartz, etc.), the ques-
tion of cracks in brittle bodies is of great practical im-
portance because many seemingly ductile materials
(metals) fail in "br i t t le" fashion. The problem of brit-
tle failure has been paid much attention, particularly
during the last two decades.

In real solids there are always a large number of
cracks. Our everyday experience indicates that so long
as the load applied to a body remains small, the cracks
do not grow and the body retains its bearing strength
even if the load is increased. However, as soon as the
load reaches a certain sufficiently large value, different
for each crack, the latter begins to expand. Cracks may
develop in different fashions. In some cases the cracks
grow very rapidly until the body is completely ruptured,
even if the load is constant but has reached the critical
value, i.e., the state is unstable. In other cases the
cracks expand slowly with increasing load, the growth
stops as soon as the increase of the load is interrupted,
and the dimensions of such stable-equilibrium cracks
are connected in some manner with the load applied to
the body.

The theory of cracks has developed in natural fashion,
as is customary in most fields of physics and mechan-
ics, by expanding and improving existing concepts, by
advancing new ideas, by raising new questions and prob-
lems, and by covering and explaining an ever increasing
circle of details. Modern theory starts with the concept
of the body as a continuous brittle medium that obeys
Hooke's law (the linear connection between the stress
and the strain) up to the breakdown stress, and which
consequently is described by classical theory of elas-
ticity. In earlier papers, Inglis (1913) t l ] and
Muskhelishvili (1919)C2J considered the problem of the
theory of elasticity for a body under the influence of a
tensile load, having a cavity of elliptic cross section,
particularly a thin cut that can imitate a crack. An
analysis of the elastic equilibrium of the body makes it
possible to determine the stress and strain fields, in-
cluding the profile of the elongated cut, but a solution is
possible for a cut of any size. In addition, the profile of
the tip of the crack is rounded (Fig. 1), and the stresses
and strains of the body near the edge of the crack are
infinite for all finite loads and cut dimensions. Since a
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real body can withstand only stresses that do not exceed
a certain limit, it follows that a body weakened by a
crack should fail no matter how small the load.

A way out of this contradiction was pointed out by
Griffith (1920)β ], who laid the groundwork of the theory
of cracks. Griffith was the first to understand that it is
impossible to develop an adequate theory of cracks with
the aid of the concepts of elasticity theory only. It is
necessary to introduce into consideration additional
quantities characterizing the molecular cohesion forces
and the resistance of the material to rupture. The quan-
tity he used was an energy constant, namely the surface
tension γ, i.e., the work necessary for the formation of
a unit of new surface. Griffith considered unstable
cracks in a homogeneous field of tensile stresses and
found the critical value of the stress at which a crack
of given length begins to grow catastrophically. Irwin t 4 ]

and Orowan [5 i greatly extended the class of materials to
which the theory of cracks could be applied, noting that
certain substances that are plastic in ordinary tests be-
have like brittle ones in the case of crack formation.
In such materials the plastic deformation is concentra-
ted in a thin surface layer of the crack, and instead of
the surface tension γ it is necessary simply to use a
certain effective quantity yeff, which includes the energy
consumed in plastic deformation. We note that the quan-
tity yeff, which turns out to be larger by 2—3 orders of
magnitude than γ, has not yet been derived theoretically.

The questions of crack stability, the shape of the tip
of the crack, and the infinite stresses have interested
many physicists and mechanics specialists, who have
attempted to explain the appearance of the physically
unlikely singularities of the tip of the crack, which fol-
low from the theory, namely the rounding-off of the pro-
file and the infinite stresses. This question was dealt
with by Rebinder [ 6 J, Mott t 7 ] , Lifshitz w l , Frenkel ' [ 9 ] ,
Khristianovich (see : i o : l ), and others.

Of very great importance for the mathematical theory
of cracks was Irwin's 1957 p a p e r t l l J , where he connec-
ted in general form the rate of release of elastic energy,
which determines the critical conditions for the start of
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the crack growth, with the so-called coefficient of stress
intensity at the tip of the crack.

The great importance of Irwin's formula lies in the
fact that it serves as the basis for the formulation of a
general method of solving problems involving arbitrary
cracks within the framework of the so-called "energy"
approach. Irwin himself considered principally unstable
cracks, and some of his statements concerning cracks
that grow slowly with increasing load indicate that he
did not understand this process completely.

Starting in 1955, Khristianovich, Barenblatt'12'133,
and their coworkers in the USSR developed a new trend
in the theory of brittle-fracture cracks, based on the
idea advanced by Khristianovich (see'103) that the stres-
ses at the tip of the crack are finite. During the course
of these investigations, Barenblatt analyzed in general
form the question of stable-equilibrium cracks as a
problem in elasticity theory, in which the crack dimen-
sion is determined as a function of the applied load. In
1959, Barenblatt formulated in final form'14'153 a theory
which, first, by virtue of the very formulation of the
problem, encompassed all cases of both stable and un-
stable cracks and, second, contained a different
"strength" (as we shall henceforth call it) approach to
cracks. Instead of the energy parameter (surface ten-
sion) he introduces directly into the elasticity-theory
equations the molecular cohesion forces acting on the
tip of the crack and responsible for the resistance of
the material to rupture. It should be noted that a condi-
tion equivalent to the finite-stress hypothesis was ad-
vanced by Lifshitz'83 (1948) in the related problem of
the propagation of "twins"' 9 3.

The introduction of cohesion forces has made it pos-
sible to explain the reason for the existence of infinite
stresses on the tips of the crack in the solutions typical
of the energy approach, to eliminate in a physically cor-
rect manner these nonrealistic infinite values, and to
explain the detail of the structure (the profile) of the
tips of the cracks, just where the process of the rupture
of material develops.

In the macroscopic sense, both approaches, the force
approach and the energy approach, turned out to be
equivalent, as expected, since the new approach is more
"microscopic" and consequently does not contradict the
older one, but only supplements and refines it. The en-
tire macroscopic effect of the cohesion forces is deter-
mined by a single constant of the material, which de-
pends in integral fashion on the cohesion forces. The
general formulation developed by Barenblatt for the
problem of cracks has contributed, in particular, to a
subsequent formulation of problems within the frame-
work of the energy approach as applied to arbitrary
(stable and unstable) cracks. Leonov and Panasyuk'163

proposed a similar crack model, in which account is
taken of the cohesion forces, but not in as complete and
general a form, although it was presented independently
(very shortly afterwards).

Judging from the literature, Barenblatt's work has
gained wide recognition; its results are used and are
being further extended. This can be seen, for example,
from the fact that Barenblatt's theory is described in
detail and is named after him in some articles in the
seven-volume encyclopedia of fracture'313. The ideas of
this theory, in particular, were applied by Kosevich and

Pastur[17J to the theory of propagation of "twins"—an
important phenomenon essential for the explanation of
the mechanism of plastic deformation.

At the same time, Barenblatt's work has recently
been subjected to vicious attacks on the part of some
authors'25"28·1. The resultant conclusion of the critical
remarks is most concisely stated by the following cita-
tion: ". . . the exposition of the erroneous and formal
concepts of G. I. Barenblatt have occupied in our litera-
ture a place not commensurate with their real signifi-
cance" [ 2 7 ] —we see thus that the situation turned out to
be rather strange.

Since we are dealing with a certain physical phenom-
enon, its understanding, and its theoretical description,
there is undisputed interest in a general examination of
the physical principles and ideas on which modern theory
of cracks is constructed, and the present article has
been written to this purpose. For a better acquaintance
with the problem of cracks we can recommend the re-
view'153 (see also the book003). A more up to date
bibliography can be found in the review1183.

Π. UNSTABLE CRACK (THE GRIFFITH PROBLEM)

Let us consider an infinite body situated in a homo-
geneous field of tensile stresses σ ν ν produced by a uni-
form load ρ = ayy = const applied at infinity. Assume
that the body contains a linear crack of width 21, which
stretches out in the direction of the c axis, perpendicu-
lar to the plane of Fig. 2. It is required to determine
the critical stress p0 at which the crack begins to ex-
pand without limit.

Assume that there is no crack, then the uniformly
stretched body has an elastic energy p2/2E per unit vol-
ume (E is Young's modulus). Assume now that the crack
appears. It opens up under the influence of the tensile
stresses and the stresses in its vicinity weaken (the
material "relaxes"). The characteristic dimension of
this vicinity (shown shaded in Fig. 2) is obviously of the
order of I. Consequently, an elastic energy W is re-
leased, of the order of W ~ (ρ2/2Ε)(2Ζ)2 per unit length
of the crack. On the other hand, when the crack opens
up, work is performed to overcome the cohesion forces
acting between the opposite edges of the cut, and this
work, or the surface energy of the crack, is Π = 2γ · 21
per unit length of the body (we write 2y, since two sur-
faces are produced).

If we disregard the changes in the temperature,

Ρ
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which we assume to be constant, then, apart from a
constant, the free energy F of the body is made up of
the volume elastic energy U and the surface energy Π of
the crack. The spontaneous occurrence of the crack, not
accompanied by work done by external forces, leads to
the following change in the free energy

AF = Δ (U + Π) ---= — W -f Π (p2/2E) 4/2 + iyl.

We see that AF (or F), as a function of I, has a maxi-
mum corresponding to ρ = p 0 ~ (yE/Z) 1 / 2 . The value of
p 0 at which a crack with half-width Ζ ~ yE/po is at
equilibrium is the critical s t re s s . This equilibrium is
unstable, because the free energy is not minimal but
maximal. At ρ > p 0 we have 8F/8Z < 0 and an already
existing crack of given width begins to expand without
limit. At a load below critical we have 8F/SZ > 0 and
the crack should contract*.

Thus, the criterion for unstable equilibrium and for
the s tar t of growth of the crack is as follows:

By means of a more accurate calculation, using the
results of Ing l i s [ " for the quantity W, Grif f i th m found
the exact value of the crit ical s t r e s s

ρο,= [2Ε·γ/π(1-^)Ζ]"2, (2)

where ν is the Poisson coefficient. This formula per-
tains to the case of planar deformation (to which we
shall henceforth confine ourselves), wherein the dis-
placements of the medium in the ζ direction, perpendicu-
lar to the plane of the figure (see Fig. 2), are equal to
zero, and the normal stresses σ ζ ζ differ from zero.
This and all the subsequent formulas can be derived
also for the case of a planar loaded state, when the dis-
placements in the ζ direction are such that there is no
stress σ ζ ζ .

Experiment confirms well the Griffith critical con-
dition p 0Z l / 2 = const. In Griffith's own experiments ί 3 :,
cracks of different widths were made on glass, and the
load at which the glass broke was measured. It turned
out that p0Z ~ 26 kg/cm , corresponding, for exam-
ple, to po = 58 kg/cm2 and 2 Ζ = 0.38 cm.

ΙΠ. COEFFICIENT OF STRESS INTENSITY AND CRI-
TERION FOR CRACK GROWTH

The rate of release of elastic energy with increasing
area of the crack, which essentially determines the
critical conditions, can be readily calculated only in the
simplest cases. In the case of non-uniform loads or in
the case when the crack does not have a simple shape,
the calculation of the elastic energy is a very complica-
ted problem. This difficulty was overcome by Irwin c u l

with the aid of the following device. As already noted
above, the mathematical methods of elasticity theory,
when applied to a loaded body with a thin cut, make it
possible in principle to find the stress field in the body
and the displacements of the points on the surfaces of
the stretched cut, i.e., the profile of the crack. On the
free surface of the crack itself, naturally, there is no

stress (the cohesion forces between the edges of the cut
have not yet been taken into account in the theory), so
that the resultant solution of the equations for the elas-
tic equilibrium, yields a rounded profile for the end (tip)
of the crack (Figs. 1 and 3). For this reason, the strain
of the medium, and consequently also the stress exerted
by the medium at the point O, turns out to be infinite,
and the stress has a discontinuity at this point.

Let us consider some section of the crack near the
end and let the x' axis lie in the plane of the crack and
be perpendicular to its contour. The origin Ο is placed
at the end point of the crack (see Fig. 3). As follows
from the mathematical solution, the asymptotic profile
of edge v(x') and the tensile stress ayy(x') on the con-
tinuation of the plane of the crack, behave at distances
|x' | small compared with the dimensions of the entire
crack like

ayy = N(z'y>l2 + 0{i), (4)

where Ν is a constant. This constant, which has the
dimension dyne/cm3/2, determines completely the
behavior of the stress and strain field at the end of the
crack and plays an important role in the theory. It is
called the coefficient of stress intensity. In the solution
of the equations of elasticity theory, Ν depends on the
loads and on the dimensions of the crack. For example,
in the case of uniform load ρ = const and a crack repre-
senting a strip of width 2Z, we have Ν = p(Z/2)l/2.

Let us assume that the crack has broadened and its
end Ο has shifted to the right a small distance a, such
that the asymptotic formulas (3) and (4) are still valid at
|x' | ~ a. Assume that while this has occurred the boun-
daries of the body, to which the loads are applied, have
remained immobile, so that the external forces perform
no work whatever. Let us find the change of the elastic
energy of the body, which in this case is connected only
with the expansion of the crack. To this end, we draw a
hypothetical cut along the plane of the crack from x' = 0
to x' = a and assume that fictitious "external" forces,
equal and opposite to the true stresses (jyy(x'), are ap-
plied to the surfaces of the cut in such a way that the
surfaces are held together. Assume that these forces
weaken gradually to zero. Then the surfaces move apart
just as gradually to a final new profile Vi(x') = v(x' - a)
(see Fig. 3). The work performed by the fictitious for-

*Real cracks do not close up at subcritical loads. It is possible that
extraneous atoms become concentrated on the surface or else some
transformations occur and prevent the surfaces from joining together.
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ces when the cut opens up is just equal to the change of
the elastic energy of the body. This work is negative,
and consequently the elastic energy decreases. The en-
ergy released per unit volume of the crack in a direc-
tion perpendicular to the plane of the figure is obviously
equal to

) υ (χ' - a) dx =&W = 2 . 1 1 ay

The coefficient 1/2 in front of the integral sign is the
result of the linearity of the connection between the dis-
placements of the surface and the forces as the latter
decrease gradually. The region x' < 0 makes no contri-
bution to the integral, since the surfaces are free in this
case.

As is clear from the derivation itself, the formula is
valid for any small variation of the crack area 6S (in
this case 6S = a · 1), and the release of elastic energy of
the body connected with such a variation, 6W = —6U, is
equal to

It is determined only by the local properties of the
edge of the crack, calculated by the intensity coeffi-
cients N. Formula (5) can be derived also by calculating
rigorously the elastic energy of the body for any con-
crete case, and replacing the combinations of loads and
dimensions, which enter in the formula for the rate of
energy release, by N. Thus, for an infinite body with a
linear crack of width 21, situated in a uniform field of
external stresses p, we have according to Inglis11-1

W = π(1 — i/jp^E"1, i.e.,

dW 2π(1— \

1/2which, together with the expressions Ν = ρ(Ζ/2) and
61 = 6S/2, yields (5). The fact that ρ and I fall out from
the formula for 8W/9Z and are replaced by one quantity
Ν confirms the decisive role of the edge of the crack.

Combining expression (5) with the inequality of the
type (1), corresponding to arbitrary variation of 6S, for
the entire body with the crack

6F = - W + 6Π < 0, 6Π = (6)

Irwin obtained a criterion for the growth (for the "start
of rapid propagation") of the crack

(7)

IV. CASE WHEN THE FORCES ARE APPLIED FROM
INSIDE THE CRACK

The conditipn that the free energy be stationary at
equilibrium, 6F = 0, does not hold in the case when for-
ces are applied from the inside of the crack, since the
entire surface of the crack moves when its area varies,
and the forces perform work. Yet the processes in which
the external forces are applied to the value not from the
outer surface (or not only from the outer surface), but
from the interior of the crack, are of great interest.
These include, for example, the case of splitting of ma-
terial or its rupture from the interior by a gas at high

pressure*. As applied to these cases, the equilibrium
condition must be written in the form corresponding to
the variation of the crack not at constant displacements
of the points where the forces are applied, but at con-
stant forces.

In a reversible process at constant temperature, the
increment of the free energy δ F is equal to the work
done by the external forces 6R. The equality 6F = 6R
means that the internal state of the body is at equili-
brium: if 5R = 0, then 6F = 0, i.e., the free energy is
stationary. Assume that the forces are applied to the
surface of the body; then

ί = f p6u df,

where ρ is the force per unit area, u is the displacement
of the point on the surface of the body from the free
state, df is a surface element, and the integral is taken
over all the surfaces.

When the elastic body is in mechanical equilibrium,
the forces are linearly connected with the displace-
ments. Therefore, in the case of an equilibrium
deformation of the body from the free state (p = 0, u = 0)
to a certain state corresponding to ρ and u, the forces
should grow in proportion to the deformation. As a re-
sult, the elastic energy in this state turns out to equal
half the work of the forces ρ on the displacements u
(the Clapeyron theorem)

U = ±A, A^^pudf. (8)

If the crack grows slightly and its boundaries are not
clamped, but the loads ρ are constant, then the boundar-
ies shift and the forces applied to them perform work
(6R)p = 6fp-u df = 2δϋ. The equilibrium condition

6F = δυ + δΠ =6R takes in this case the form of the
condition for the stationarity of the thermodynamic po-
tential Φ = F - 2U:

(βΦ)ρ = δΠ — ( (9)

Thus, the increment of the area of the crack releases
material to such a degree, that the external forces de-
form the body still more and perform work 6R, which
not only replenishes the energy 6Π consumed in the
formation of the new surface, but is also stored in the
elastic energy of the body, with δΠ = (6U)p = (6R)p/2.

We have calculated above the elastic energy 6W re-
leased when the force-free area of the crack increases
by CS, under conditions when the external forces do not
perform work (when the boundaries are fixed). The
value of 6W is expressed in terms of the stress inten-
sity coefficient by means of formula (5). Let us vary
the same equilibrium crack by an amount 6S at fixed
loads; the elastic energy of the body increases in this
case by an amount (6U)p, which is exactly equal to 6W.
We shall show that this result is valid also if arbitrary
forces are applied to the surface of the crack. In fact,

*It is interesting that the latter takes place in the fracture of trans-
parent polymers such as Plexiglas under the influence of intense laser
radiation. Experiments have shown [20] that bubbles of high-pressure
gas are produced inside the specimens, and the resultant disk-like cracks
develop from the bubble because of the bursting action of the gas pres-
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the increment of the elastic energy upon variation of the
crack with the forces unchanged consists of the incre-
ment 5Ui, which is connected with the opening up of a
new section of the cut and the work 6R done by all the
forces on the displacements of all the surfaces.

But 6Ui, as before, is determined only by the coeffi-
cient of stress intensity, 6Ui = —6W, while 6R, in ac-
cordance with the constancy of the forces and Clapey-
ron's theorem, is equal to 6R = 6A = 26U. Therefore
6U = 6Ui + 6R = -6W + 26U, hence 6U = 6W. Thus, for
any system of forces ρ applied to the body, including
also to the surface of the crack, we have

(«C/)p=const == 6W -= 2π (1 - ν*) (10)

where Ν corresponds to the given system of forces. In
accordance with (9), Irwin's criterion (7) remains valid
always, regardless of whether the forces are applied
from the outside or from the inside of the crack.

V. STABLE EQUILIBRIUM CRACKS AND FRACTURE
OF THE BODY

In the case of a homogeneous field of tensile stresses
and an unloaded surface of the crack, the free energy
of the body at equilibrium is maximal, and therefore the
equilibrium is unstable. One of the attributes of insta-
bility is the fact that the equilibrium (critical) stress p 0

decreases with increasing dimension of the crack (the
width in the planar case). It is clear that if the crack
expands somewhat for some reason, then the applied
stress turns out to be higher than the critical value
corresponding to the new width, and the growth will ac-
celerate. The crack turns out to be unstable in the case
of the sufficiently strong load, if the distribution of the
external forces is such that the stresses produced by
them in the plane of the crack do not decrease (or de-
crease too slowly) with increasing outward distance
from the end of the crack. In this case the total external
tension force on the entire area of the crack increases
in proportion to this area, i.e., the rupturing action of
the load does not weaken sufficiently as the crack ex-
pands.

There exist, however, stable equilibrium states. In
these states, the free energy has not a maximum but a
minimum. It is physically clear that the equilibrium is
stable if the linear dimension of the crack (width,
radius) are not inversely but directly proportional to
the applied loads and the stresses produced by the ex-
ternal forces decrease sufficiently rapidly in the plane
of the crack when the outward distance from its ends
increases. In this case, following a random increase of
the area of the crack, the total tensile force applied to
the entire area increases more slowly than the area
itself, and the growth stops. We can say it differently:
the applied load becomes smaller than the equilibrium
value corresponding to the growing crack.

The process of development of cracks in brittle ma-
terials can be visualized qualitatively as follows. The
material contains microcracks. With increasing tensile
load applied to the body, there is reached at some point
a stress that is critical with respect to a crack of defin-
ite dimension present at that point. The dimension of
the microcrack, naturally, is small compared with the
characteristic length over which the stresses due to the

FIG. 4

external loads change noticeably (Fig. 4). Therefore the
microcrack turns out to be practically in a homogene-
ous stress field. After the critical stress is reached,
the crack becomes unstable and begins to expand rapidly.
However, at some instant its dimension increases to a
value comparable with the characteristic scale over
which stresses vary. If the load is concentrated to some
degree, as a result of which the stresses on the whole
decrease along the plane of the crack, as in Fig. 4, then
the growth of the crack begins to slow down. Under
definite conditions (the loads are concentrated, not too
high, and are applied sufficiently far from the boundaries
of the body), the crack alternately stops growing, be-
comes unstable, and the body can remain in such a state
for a long time if the load remains unchanged. If these
necessary conditions are not satisfied, then the growing
crack reaches the limits of the body, and this can lead
to its destruction. It is important that when the dimen-
sions of the crack becomes comparable with the dimen-
sions of the body, the crack becomes unstable even when
it would be stable under the same conditions and at the
same loads in an unbounded medium.

The foregoing considerations, first clearly formula-
ted by Barenblatt a 4 ] , are completely and fully con-
firmed also by the mathematical solutions obtained like-
wise by him for the first time in t l 4 > 1 5 : i . These solutions,
which demonstrate the regularities of the equilibrium
cracks, were found by Barenblatt with the aid of the
"force" method which will be discussed in Ch. VI. Here
we shall obtain these results on the basis of the energy
approach, since we are already familiar with the energy
method. The gist of the energy method is contained, in
essence in formulas (5)—(7) or (9), but only formulas (6)
and (7), disregarding the stability question, should be
written in the form of equalities corresponding to the
equilibrium state (in the case of stable equilibrium, the
free energy or the thermodynamic potential are maxi-
mal and the sign of the inequality in (6) is reversed).

If we set up, on the basis of the solution of the prob-
lem of elasticity theory for a body with given loads and
with a crack of given shape but of still unknown dimen-
sion, an equation for the coefficient of the stress inten-
sity N, then we get from (7)

«(l-v')£-W !=v (11)

the required connection between the dimension and the
loads.
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Let us consider by way of an example a rectangular
crack (a strip) of width 21, when the loads are symme-
trical both with respect to the plane of the crack and
with respect to the perpendicular plane passing through
the center of the strip. We locate the origin χ = 0 will
be placed in the center of the cut (see Fig. 5). In ac-
cordance with Muskhelishvili's solution'2 '1 9·1, for such a
problem

., (2/)1/2 f p(x)dx
(12)

where p(x) are the tensile normal stresses σ produced
in the plane of the cut by the external loads in the ab-
sence of the cut. Combining (12) with (11) we obtain an
equation for the width of the equilibrium crack:

N = [- Ρ (*) dx (13)

where Κ denotes the quantity

K=lnEy»/(l — v 2 )] 1 / 2 . (14)

The only material constant Κ entering in the depen-
dence of the dimension of the crack on the load seems,
at first glance, a random combination of the other con-
stants E, v, and γ. Actually, however, Κ is not simply a
symbol: it has a definite physical meaning, which will
become clear after we become acquainted with the force
approach in the next chapter.

Let us assume that the stresses are uniform in a
band of width l0 and there are no stresses outside this
band: p(x) = ρ when |x| < l0 and p(x) = 0 when |x| > l0,
with I < I (Fig. 5). Integrating (13), we obtain an equa-
tion for Z(p, h)

ρ (2ίο)
ι/2 = Κ (hll)112 [arcsin (/„«)]-'. (15)

It is easy to show that this equation relative to / has
no real roots if ρ < p 0 = Κ(2/Ζ0)

ι/2Α· This means that
the homogeneous stress ρ applied to the band opens the
cut and transforms it into a crack only in the case when
ρ exceeds the quantity

(i-v^k]"2. (16)

In the limit as ρ = p0, the equilibrium width 2/ is
precisely equal to 2l0, as is seen from formula (15).
When ρ > po and at a fixed width of the strip of applied
stresses 2l0, the equilibrium width of the crack 21 in-
creases monotonically with increasing p, starting with
2lo· In the limit when p > p 0 and I 3> lo, which corre-
sponds to the limit of equal and opposite concentrated
forces Ρ = ρ · 2Z0 per unit length of the strip, applied in
the center of the crack, we have

= p-2l0. (17)

But the value of p 0 determined by formula (16) is none
other than the critical Griffith's stress (2), and the ob-
tained l(p) dependence at l0 = const and 0 < ρ < °° can be
interpreted in full accordance with the qualitative pic-
ture described above. So long as the stresses are
smaller than the critical value for the largest cut still
contained in the homogeneous field, the cut will not open
up. (A cut of smaller width will not open up a fortiori.)
As soon as the stress reaches p0, the cut opens up im-
mediately to a width 21 = 2l0 (instability). With further
increase of the stresses, the crack becomes stable,

-h

Ρ

FIG. 5

since there are no external stresses outside its ends,
and increases gradually with increasing load. A per-
fectly analogous solution is obtained also in the axially-
symmetrical case of a disc-like crack1 1 4 3.

An investigation of equilibrium cracks in a bounded
body1133 (in the problem formulation shown in Fig. 6)
has made it possible to explain important features of the
influence of the boundaries on the crack. Let us con-
sider two limiting cases. If the load is applied very far
from the crack, then the stresses in the plane of the
crack are practically uniform, and after reaching its
critical stress a crack of any dimension becomes un-
stable, so that the body breaks in two. On the other
hand, if the load is applied close to the crack, then it
might seem that we would have a typical case of a stable
crack. It turns out, however, that when the load reaches
a value at which the width of the crack is approximately
equal to half the width of the body, the crack becomes
unstable. In the intermediate cases there are regions of
stability and instability on the equilibrium plot of the
crack dimension vs. the load.

The loss of stability of a large crack is obviously due
to the fact that the limited length of the material separ-
ating the crack from the boundary of the body is in an
overloaded state compared with the stresses that would
be experienced by an infinite body.

VI. INTRODUCTION OF COHESION FORCES INTO THE
EQUATION OF MECHANICAL EQUILIBRIUM

The fact that the stresses increase without limit in
the material near the end of the crack (formula (4)),
which follows from elasticity theory if the surface of the
cut is assumed to be perfectly free, offers evidence that
the solution of the problem in such a "macroscopic"

FIG. 6
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formulation is incorrect in a certain vicinity of the end.
Physically the reason for this circumstance is perfectly
clear. When the substance becomes laminated, the
molecular cohesion forces that are actually in effect
between the opposite sides of the rupturing material are
overcome gradually, i.e., the surface is in fact not free
at the end. Owing to the action of the cohesion forces,
the edges of the crack come close together, forming not
a rounded profile, as follows from formula (3), but a
continuous profile as shown in Fig. 7 (we recall how two
glued pieces of a substance break away from each other).
Therefore the strains and the stresses in the body near
the end are finite.

Actually, the theory based on the energy approach
contains a certain internal inconsistency. The strain
and stress that increase without limit, as follows from
the theory, are described by the equations of the linear
theory of elasticity, which by very definition are valid
only at small strains. At the same time, no account is
taken of the strains and stresses produced in the medium
by the cohesion forces, which really act on the opposite
sides of the cut and are precisely the ones that prevent
the occurrence of unrealistically infinite values. The
work required to overcome the cohesion forces, which
do not enter in the equations of the mechanical equili-
brium of the body, is introduced in the form of a certain
empirical constant in the condition for the stationarity
of the free energy or of the thermodynamic potential,
which must be used to supplement the equations of the
theory of elasticity. This last operation, which goes be-
yond the framework of the concepts of elasticity theory,
makes up for the indicated incompleteness of the initial
mechanical- equilibrium equations.

Better and internally more consistent is the other,
"force" approach to the problem of equilibrium between
the body and the crack. In this approach, the cohesion
forces are introduced into the equations of the mechan-
ical equilibrium of the elastic body from the very out-
set, as external forces with respect to a continuous
medium bounded from the inside by the surfaces of the
crack. In this formulation, the entire problem can be
solved completely on the basis of the static equations of
elasticity theory, such as the equations of equilibrium
of forces in the volume and on the surfaces, with a con-
dition that is natural for any closed problem, namely
that there be no unphysical singularities in the solution,
i.e., that the stresses be finite. No additional energy
conditions have to be introduced in such an approach,
since it is not necessary to introduce the concept of sur-

face energy, which is foreign to the theory of elasticity.
The cohesion forces, which are external with respect to
the elastic medium, do not differ in any way from any
other external forces. They produce strains in the med-
ium, perform positive or negative work upon suitable
displacement of the points of their application, and this
work is transformed (in the algebraic sense) into elastic
energy of the body. When account is taken of the forces
in the equilibrium equation, the surface energy, as work
consumed in overcoming the cohesion forces when the
cut is opened, is separated from the elastic medium. It
is stored by the source providing the cohesion forces,
namely the molecular bonds, which are external with
respect to the surfaces of the crack. The energy bal-
ance in the system "elastic medium plus source of co-
hesion forces," describing the real body in accordance
with the model of an "ideally brittle body," is auto-
matically satisfied, just as in any other "elastic body
plus source of external loads" system.

The "force" approach to the problem of the crack
affords greater opportunities for its investigation, since
it is less "macroscopic" than the energy approach. It
makes it possible to take into account the real addi-
tional deformation of the body, due to the cohesion for-
ces, which is insignificant over the extent of the greater
part of the surface of the crack, but which is very ap-
preciable near its end, where the cohesion forces
change radically the profile and the distribution of the
stresses. Since the cohesion forces decrease very
rapidly with increasing distance between the surfaces,
they act practically only in a small region ~ d near the
end of the crack, where the separation is very small,
so that in the entire remaining "macroscopic" part of
the crack the surface remains free and the profile of
the crack does not differ here from that dictated by the
theory that does not take the cohesion forces into ac-
count. All this is illustrated by Fig. 7, which shows the
true crack profile and stress distribution as well as
those which correspond to complete freedom of the
surface and are extrapolated to the end of the crack.
The true stresses near the end are equal approximately
to the maximum surface density of the cohesion forces,
i.e., to the theoretical strength of an ideally brittle
body. Of course, we go here beyond the accuracy of the
theory, since the linear scheme of elasticity theory is
extended up to very large stresses, which already rup-
ture the material, but this is the model assumed in elas-
ticity theory for an ideally brittle body.

The "force" approach to the problem of a body with
a crack, described above, was developed in the papers
of Barenblatt'14"15-1, which were stimulated by the ideas
of Khristianovichuo] concerning the smoothness of the
joining together of the edges of the crack and the finite
nature of the stresses as a condition with the aid of
which it is possible to determine the dimension of the
equilibrium crack if the loads are given.*

The cohesion forces are effective only in a very
small vicinity of the end of the crack. On the other
hand, in the region where they are actually effective,

These ideas were used by Khristianovich in analyzing certain prob-
lems concerning the expansion of vertical fissures in mountain rocks by
liquids, when the cohesion forces are negligible compared with the lat-
eral pressure of the mountain and the pressure of the liquid.
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the surface density of the forces is larger by several
orders of magnitude than the stresses produced in this
place by the external loads in the absence of a crack,
which obviously are of the order of the real strength
(the material is ruptured as a result of concentration of
the stresses near the end of the crack before the theor-
etical strength is reached). Therefore rupturing loads
have little influence on the profile of the end of the
crack, which is established under the influence of the
much stronger cohesion forces and consequently has a
form that is universal for a given material, independent
of the applied load and of the dimensions of the crack
(the autonomy of the end of the crack). This circum-
stance greatly simplifies the mathematical formulation
of the described ideas.

Let us consider, just as in Ch. V, a rectangular
crack—a strip of width 2/ under symmetrical load
(Fig. 5). The asymptotic expansion of the solution of the
equations of inelastic equilibrium near the end of the
cut χ = I is expressed, as before, by formulas (3) and
(4), in which x' = χ — /, and the constant Ν in the higher-
order terms of the expansion is given by formula (12).
The stress p(x) in formula (12) is, by definition, the
total stress produced in the plane of the cut by all the
external forces when there is no cut. In this case, the
external forces are both the loads and the cohesion for-
ces. Accordingly, we mark with the index t the total or
summary quantities (N ,̂ Pt(x)), and retain the designa-
tion p(x) for stresses produced only by the loads. We
denote the cohesion force per unit area per cut by G
(G > 0)*.

The density of the cohesion forces G depends on the
distance between the edges of the crack, but owing to
the proposed universality of the profile of the end we
can regard G as a function of the distance I — χ from the
end of the crack. The stresses p(x) and G(l - x) act in
opposite directions (the loads tend to open the cut and
the cohesion forces hinder the opening), so that the total
stress is equal to

p,(x) = p(x)-G(l- (18)

From among all the solutions admitted by the equa-
tions of elastic equilibrium and characterized by arbi-
trary values of the constant NJ-, the only ones realized
are those which do not contain physically meaningless
infinite stresses, i.e., the one in which Nj- = 0 and the
first terms of the expansions (3) and (4) vanish. In this
case the profile of the end is given by ν ~ |x'|
= (I — x)3'2 (see Fig. 7). At a short distance away from
the end, the profile gradually is transformed into the one
obtained at the same crack width but without allowance
for the cohesion forces. The condition that the stresses
be finite, Nt = 0, yields an equation that determines the
dimension of the crack. In fact, let us substitute (18)
in (12), separate the terms corresponding to the loads
and to the cohesion forces, and equate the integral to
zero:

= 0; (19)

here Ν is the quantity defined by (12), i.e., the coeffi-
cient of the stress intensity calculated with allowance
for the cohesion forces, and

1 (l — x)dx
) 1/2

Because of the rapid decrease of the function G(l - x)
at distances I - χ ~ d «C I, this integral simplifies and
the quantity NG turns out to be independent of I, namely,
NG = -K/it, where Κ is a constant characteristic of the
given material and having an integral dependence on the
cohesion forces:

Equation (19) takes the form

(2/)' Ρ (*) dx
J2_-rfi·/2 "

(20)

(21)

It yields the dimension of the equilibrium crack.
Comparing the fundamental equations (21) and (13) ob-
tained with the force and the energy approaches, we see
that these equations are identical if the material con-
stants Κ defined by formulas (20) and (14) are identical.
It is obvious that the proof of the identity of these quan-
tities is a proof of the complete equivalence of both ap-
proaches when it comes to determining the dimensions
of the cracks for given loads.

The surface tension γ, which enters in formula (14),
is determined by the work that must be performed
against the cohesion forces if the body is cut by a plane
and the two halves are moved away to infinity without
producing any strains in the volume. In other words, if
y is the normal distance between the parallel surfaces
of both halves, and the cohesion force per unit area is
G(y), then we have for the two surfaces*

(22)

By virtue of the universality of the profile of the
crack, the distance between the edges is a universal
function of the distance t = I — χ from the end: ν = v(t).
Consequently

(22')

If we substitute here the profile of the end of the
crack ν = const · t with the actual value of the constant
and perform certain mathematical transformations, then
we can see that the integrals (20) and (22) are actually
connected with each other by relation (14) (this calcula-
tion can be found in the paper by Willis'213.

The dependence of the dimension of the crack on the
load contains a single material constant K, determined
by the cohesion forces in accordance with formula (20).
It characterizes the resistance of the material to rup-
ture in brittle cracking (the larger K, the larger the
load necessary to produce a crack of given dimension),
and it is natural to call it the cohesion modulus. For an

*We recall that in the formulation of the boundary conditions, in
accord with the general scheme of the linear theory of elasticity, the
external forces are specified on the undeformed boundary, in this cast
on the plane of the still unopened cut.

•Strictly speaking, the lower limit of the integral is not zero but a
distance on the order of atomic dimensions, the same which condition-
ally distinguishes between the concept of an elastically-stretched solid
medium and that of a ruptured material.
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experimental determination of Κ it is possible to use any
formula that expresses the dimension of the crack in
terms of the load, for example formula (17).

VII. FINITE CHARACTER OF THE STRESSES AND
STATIONARITY OF THE ELASTIC POTENTIAL

The static equations of elasticity theory, which con-
stitute equations for the equilibrium of the forces (in-
ternal stresses and those applied from the outside) in
the volume and on the surfaces of the body, constitute a
completely closed system, and if the problem is cor-
rectly formulated they require no supplementation. The
problem of a body with a crack, with allowance for co-
hesion forces in the equations for the equilibrium of the
forces, is perfectly correctly formulated, and the ab-
sence of divergences in the solution is also natural,
just as for any other physical problem in which there
are no reasons for encountering infinities. The finite-
ness condition is not a hypothesis and requires no proof,
just as in dozens of other physical problems, where out
of all the possible particular solutions of equations one
discards those containing unphysical infinities, or,
equivalently, the arbitrary constants of these particular
solutions are set equal to zero. Since the equations of
the theory of elasticity are internally closed, the condi-
tion that the stresses be finite, being a condition that
selects the true equilibrium crack from among the set
of solutions admitted by the equations for the equili-
brium of the forces, should follow also from the energy
principles of the equilibrium of the elastic body, from
which follow the force equilibrium equations themselves.
Let us verify this directly.

In this case the condition for the equilibrium of the
body is the condition of the stationarity of the thermo-
dynamic potential at constant forces, since the varied
surface of the crack is not free. However, as is espec-
ially emphasized above, when account is taken of the
cohesion forces in the equilibrium equation, regarded as
external forces applied to part of the surface of the
body, the surface energy is assigned to a source of for-
ces and does not belong to the elastic medium itself.
Therefore the free energy F or the thermodynamic po-
tential Φ of the elastic medium does not contain the sur-
face energy Π. Apart from constants that depend on the
temperature, we have F = U, Φ = -2U, and the station-
arity condition for the thermodynamic potential upon
variation of the area of the crack with fixed forces (9)
assumes the form of stationarity of the elastic poten-
tial U

( 6 t / ) p = c o n s t = 0. (23)

The general formula (10), in which Ν should be taken
to mean the total quantity Nj- corresponding to all the
forces, loads, and cohesion forces, yields immediately
the condition Nj. = 0 for the finiteness of expressions
(19).

We emphasize that the concept of variation of the
area of the crack at fixed forces has a perfectly exact
meaning, which admits of no leeway in its interpretation.
Thus, if the tip of the crack is shifted and the half-width
of a rectangular crack Ζ increases virtually by δΖ, then
the cohesion forces acting prior to the variation, say on
the section from χ = Ζ — d to χ = Z, remain the same as

before the shift, and in the newly opened section of the
cut, from χ = Ζ to χ = Ζ + I, there are no cohesion forces
after the variation, just as there were none before.

The condition of the stationarity of the elastic poten-
tial (6U)D = 0 denotes physically that in the case of
infinitesimally small virtual expansion of the equili-
brium crack by δΖ, the work performed by the loads,
accurate to small quantities of higher order than δΖ, is
consumed in overcoming the cohesion forces that pre-
vent the displacement of the surface of the crack, and
the body neither acquires nor releases elastic energy
in this case (again accurate to small quantities of higher
order).

It is precisely this aspect of the theory, the question
of the stationarity of the elastic potential, which some-
how was not understood and which took the brunt of the
criticism. This aspect was subsequently extended also
to the condition of finiteness of the stresses' 2 5" 2 8 3 (see
also t 2 9 ] concerning this question).

Contributing to a clear understanding of the internal
properties and the macroscopic equivalence of the
theories based on the energy and on the force approa-
ches is an article by IshlinskiiC 2 2 J, in which, using a
very simple example of a linear crack with constant
loads applied from the inside to a narrower band, and
with constant cohesion forces G acting on a small sec-
tion d at the end of the crack, all the calculations are
carried out in explicit form and to full conclusion. Com-
plete formulas are given for the profile of the crack and
for the distribution of the stresses, the elastic energy
of the body is calculated, and everything is done without
using, as it were, any " theorems" such as the Irwin
formula for the rate of release of energy, or the condi-
tion of stationarity of the elastic potential in the force
approach. The results are obtained by direct calculation
of the elastic energy of the body before and after the
variation of the crack and by letting the variation go to
zero.

Vm. REAL MATERIALS. QUASIBRITTLE DAMAGE

The theory based on introducing cohesion forces in
the equations of elastic equilibrium of a body is in any
case more perfect and more physical than the theory in
which one introduces simply a surface tension, since the
force approach leads to the same macroscopic results
as the energy approach but, in addition, describes quali-
tatively correctly the vicinity of the tip of the crack and
makes it possible to eliminate the unrealistic singulari-
ties of the energy approach. A certain skepticism with
respect to the literal understanding of the results of the
force theory might concern the validity of including in
the gross scheme of the linear theory of elasticity of
short-range forces of molecular nature. However, the
significance of the theory is much greater than indica-
ted, and its results, concerning the structure of the tip
of the crack and its vicinity, have a perfectly realistic
physical meaning for an entire class of materials of
practical importance. As shown by numerical estimates,
in materials such as silicate and organic glasses, the
dimension of the end region of the crack d, where co-
hesion forces act, turn out to be large compared with the
interatomic distances, and this indeed justifies the use
of the macroscopic analysis for this region.
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An estimate of the dimension of the tip region is ob-
tained from expression (20) for the cohesion modulus K.
Obviously, in order of magnitude we have

where G m is the characteristic scale of the cohesion
forces, which is of the order of the maximum value of
these forces and certainly does not exceed the break-
down stress for an ideal (defect-free) material. For
silicate glass, for example, the ideal strength is
approximately 0.05 of Young's modulus Ε = 6.7
χ 1 0 u dyne/cm2. On the basis of the experimental data
obtained by measuring the dimensions of the cracks at
given loads, the surface tension is γ = 2.1 χ 103 erg/cm2

and ν = 0.24. Using formula (14), which connects Κ and
y, we get

d ~ nbylGl, (1 — v2) ~ nyWE (1 - va) ~ 4 • 10~β c m

which exceeds the interatomic distances by two orders
of magnitude.

The dimensions of the end region are even larger in
materials such as organic glass. Thus, in polymethyl-
methacrylate, according to measurements of the crack
dimensions—bands of width 21— under the influence of
concentrated loads Q per unit length applied at the cen-
ter of the band, the cohesion modulus turns out to be
Κ = Q(2Z)l/2 = 1.1 χ 10" dyne/cm3/2 in the range
I = 16-49 cm, with Q « (1.7-2.2) χ 108 dyne/cm 3 / 2 [ 2 3 J .
For this material, Ε = 2.45 χ 1011 dyne/cm2 and, in ac-
cordance with formula (14), yeff = 1.5 χ 105 erg/cm2.
G m can be assumed to be of the order of the yield point,

8 / 2
 V ^

 2
m

G m ~ 7 χ 108 dyne/cm2. Hence d ~
10"2 cm.m ^

Indeed, macrophotography of the cracks shows that the
edges of the crack converge smoothly and the dimensions
of the end region amount to several dozen microns.

Experience shows that the structure of the end reg-
ion of cracks in organic glass has a very interesting
character: the edges of the crack are drawn together by
some thin filaments, fibers of the material, the number
of which per unit area increases with increasing dis-
tance from the end, the cohesion of the edges being
realized, as it were, by tension of these filaments.
Since the nature of the cohesion forces is not discussed
at all in the force approach, the theory can be applied
directly also to the case of cohesion realized by
"stretched filaments." The use of this model has made
it possible to consider the kinetics of the growth of the
cracks in similar material [ 2 4 J . We note that the nature
of the filaments has not yet been explained.

In general, since the rupture of the material occurs
precisely in the end region of the crack, for any analysis
of the mechanism and for details of the destruction
process it is necessary to have correct ideas concern-
ing the structure of the end region, the profile of the
crack, and the distribution of the stresses, something
that cannot be obtained without taking into account the
cohesion forces. Ideas concerning the structure of the
end region are essential for the study of the mechanism
of propagation of cracks under the influence of the load
(growth kinetics of the cracks), and for consideration of
the fatigue strength of the materials (it turns out that,
theoretically, stable cracks grow very slowly even at a
constant load, and the material fails ultimately). All

this attaches special significance to the results obtained
concerning the structure of the ends of the cracks by the
force method.

The possibilities of using the theory of brittle frac-
ture go far beyond the limits of this comparatively nar-
row class of materials that are actually brittle (silicate
glass, fused quartz, and a few others). Experimental
investigations have shown that upon formation of cracks,
individual materials which are perfectly plastic in ordin-
ary tension tests are fractured in such a way that the
plastic deformations are concentrated in a thin layer
near the surface of the crack. The results of experi-
ments on such materials confirm Griffith's formula for
the critical stress p<jZ = const. However, the value of
the effective energy yeff, determined in these measure-
ments from the values of the constant in this formula,
turns out to be much larger than the surface tension,
which, of course, is not known, but which can be estima-
ted from data on the cohesion forces. Thus, for exam-
ple, for U8 carbon steel (E = 2.06 χ 1012 dyne/cm2), ex-
periment yields yeff = 7.5 χ 105 erg/cm2, which is
several hundred times larger than the surface tension.

Thus, all the formulas describing cracks in ideally
brittle bodies can be extended also to "quasibrittle"
bodies, if the constants γ and Κ entering in these form-
ulas are regarded as generalized constants that take
into account the effect of plastic deformations in the
surface layer (the ideas of "quasibrittle" damage, as
already mentioned in Ch. I, where were advanced in the
papers of Irwin and Orowan"'5-1). Measurements of the
equilibrium cracks in metals gave the following values
of the cohesion moduli, on the basis of which we can
estimate the dimensions of the end region. For steel
No. 4330 we have Κ = 2.5 χ 1010 dyne/cm3/2, and for the
2218-T87 aluminum alloy Κ = 1010 dyne/cm3 / 2 C 2 3 J. For
the first of these two materials, Ε = 2 χ 1012 dyne/cm2

and the ultimate strength is σ^ = 1.5 χ 1010 dyne/cm2,
and for the second Ε = 0.8 χ 1012 cm2 and a t = 0.4
χ 1010 dyne/cm2, respectively. An estimate based on the
formula d ~ Κ2/σ| shows that the dimension of the end
region is of the order of several millimeters, so that
the theory of quasibrittle damage is applicable to cracks
much larger than this quantity.

It should be stated that there is still no theory that
takes plastic deformation into consideration and is capa-
ble of explaining the value of the effective energy loss
°eff· We emphasize that the order of magnitude of aeff
cannot be determined from dimensionality considera-
tions, unlike, for example, the approximate order of
magnitude of the surface tension: γ ~ Ea, where a is
the atomic dimension (more accurately, γ « O.lEa).
Besides E, a, or y, the material is characterized by
other quantities having the same dimensionality as E,
namely the shear modulus μ « Ε and the ultimate
strength σ^. Consequently, the effective energy yeff can
be represented in the theory only in the form yeff
= γί(Ε/σ^), where f is some function of the dimension-
less ratio Ε/σ^ or μ/σ ·̂, and it is obviously impossible
to predict beforehand that f has the experimental value
102-103.
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