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I. INTRODUCTION. COOPERATIVITY IN ONE-COM-
PONENT SYSTEMS

A S we know, the atomic structure of the surface and
the internal structure of a growing crystal differ from
the equilibrium structures. For example, different faces
incorporate an impurity in different ways (the sectorial
structure of a crystal’*®!), and the amount of it in the
crystal is not determined by the ordinary phase dia-
gram. The metastable actual structure arising during
growth is highly persistent. All of this is also true of
copolymer chains that maintain a sequential order and
concentration of monomers. Hence, crystallization and
polymerization must be treated not only within the
framework of statistical thermodynamics, but also that
of statistical kinetics. The latter is the topic of this
review.

The atoms on the surface of a crystal are bound by
collective interaction, both in the thermodynamic and
the kinetic sense: the distribution of states (atomic sur-
face configurations) and their rates of variation depend
on the structure of the entire surface. The difficulties
involved in this cooperative kinetics in single-compon-
ent systems, and a fortiori in mixed systems, have led
the theory of crystal growth to develop along the thermo-
dynamic line. Above all, this development has given
rise to the Kossel-Stranskii- Kaishev molecular-kinetic
theory (see[‘"” ). The latter is based mainly on analyz-
ing the energies of different surface particles.
Frenkel’s thermodynamic analysis'®’ of step and sur-
face structure started the practice of accounting for en-
tropy terms and complex configurations, leading to the
concepts of atomically-smooth and rough surfaces.
Barton and Cabrera'®'®’ have taken into account collec-
tive interactions in an elementary surface layer, using
the analogy with the properties of a two-dimensional
ferromagnetic material. They showed that there is a
critical relation between the binding energy and the
temperature necessary for transition from an ordered,
smooth structure to a disordered, rough structure.
Further development of the studies'™** has made it
possible to treat surface fluctuations spanning tens of
interatomic distances,™ to propose criteria for the
existence of any particular surface structure in terms
of entropy of crystallization,'*** to find simple ap-
proximate methods for determining the conditions for
transition from a smooth to a rough surface'®*®) and
to generalize the concept of such a transition to binary
systems, 1251128 {5 propose and study the possibility
of barrier-free motion of a phase boundary,*?!! and to
begin to analyze the surface structure of ionic
crystals.®) All these studies, which have constituted
the bulk of the work on the theory of crystallization,
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have provided a great deal toward understanding the
mechanism of crystallization, but they do not contain a
truly kinetic approach to the problem.

The theory of nucleation has followed such an ap-
proach, starting with the studies of Volmer,®7%%!
Becker and Déring,®®’ and Zel’dovich.”®*! 1t is develop-
ing now,™*’ in particular, along the line of analyzing
non- steady-state processes and different types of
boundary conditions for the distribution function of the
nuclei with respect to numbers of particles. 827,290,301
Collective interaction plays no part in these studies, and
this greatly simplifies matters.

Frenkel ®*! has used the kinetic approach in the
theory of deposition of vapors on a foreign substrate in
connection with the discovery by Semenow and
Chariton®?! of a critical temperature of condensation
of molecular beams. Jackson and Chalmers "’ have
studied in general outline growth from a melt as result-
ing from exchange of molecules between the crystal and
the medium. They assumed the forward and backward
fluxes of particles to be proportional to the usual ex-
ponential factor, while they took the structure of the
surface into account by introducing geometric coeffi-
cients and coefficients of accommodation. Unfortunately,
there is as yet no information on the latter two qualities
expect for qualitative estimates.!*'®]

The development of a consistent statistical-kinetic
theory of crystal growth has been revived in the last
few years. It starts with assigning rates of attachment
of atoms to different configurations on the surface and
rates of detachment of atoms from these configurations.
In contrast with previous studies, they have taken col-
lective interactions into account in one way or another
in the kinetics. In treating one-component systems, they
analyze different spatial configurations, while in treat-
ing many-component systems (the main topic of this ar-
ticle), they analyze configurations that differ in arrange-
ment of different types of particles at a kink. No one
has yet made any simultaneous accounting for both fac-
tors.

One of the central problems in the theory of growth
of one-component crystals is still that of elucidating
the relation of the growth rate to the supersaturation
(or supercooling). The analytical theory of motion of
monomolecular steps having kinks of one particular
sign'®®! has confirmed the well-known hypothesis that
the growth rate depends linearly on the supersaturation
and that there is no critical supercooling required for
growth of a step. The problem of surface growth is
much more complex. Here people have studied most
fully the initial stage, the completion of the first mono-
molecular layer. Kikuchi®®™?*! has made the most
thorough analysis. He started with a hexagonally packed
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surface that was initially atomically smooth, and con-
tained individual immobile, non-volatile impurity parti-
cles (active centers). The rest of the net sites that could
be filled were vacant, and were gradually filled by par-
ticles impinging from the gas. These adsorbed particles
can go back into the vapor, or diffuse along the surface
at a certain rate. Then one must find the time-varia-
tion of the filling of the net.

A generating function was used in'™***? to obtain the
corresponding kinetic equations. It amounted to the
probability of transition of the system to a new point in
configuration space within the time dt, just as the equa-
tions of state are defined in thermodynamics by the par-
tition function (see also®°3¢1),

Figure 1 shows the numerical solution for the equa-
tions for the static situation in which the particle fluxes
to and from the surface are the same. The degree of
filling of the net p is plotted as the abscissa, and the
incident (exchange) flux w, as the ordinate. Each curve
corresponds to a particular value of the density py of
the impurity. A flux ng) corresponding to the point A
permits two densities p of the absorbed layer, corre-
sponding to the points B and G (for py = 0.1). If we start
filling with an empty net, we arrive at B, while we get
to C by starting with an almost full net. The state D is
unstable. One can get onto the right-hand branches of
the curves by using fluxes exceeding the critical value
for the given density of impurity centers (e.g., when
py = 0.2, we must have w, > w(A)). The curves of w.(p)
are raised upward with increasing substrate tempera-
ture. Figure 2 gives the kinetics of filling of a planar
net, in which the dimensionless time w,t has been used.

Another approach has been carried out in®"?, with
numerical solution of the kinetic equations for planar
groupings of atoms of dimensions from 2 to 100 parti-
cles in the surface layer.

Temkin®®! has treated the steady-state process of
growth of a one-component crystal (rather than just the
filling of a single layer). In"®®’, the degree of filling of
the planar nets parallel to the growth front is a function
of the net number n, as counted along the normal to the
front. It varies from 0 to 1, and here the diffuseness of
the front automatically results from the kinetic equa-
tions. The rates of attachment of particles to the crys-
tal were assumed to be identical for all configurations
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FIG. 2. Kinetics of filling of the surface for various densities pj of a
non-volatile impurity.

FIG. 3. Relation of the nor-
mal velocity V of steady-state
growth of a face to the supersat-
uration ¢ for a lattice model. [*]

Mean velocity

05 F-p2

at the phase boundary, while the rate of detachment
~ exp (— eg,/T), where € is the work required per bond
to remove an atom from the crystal into the medium,
gp is the average number of neighbors of an atom in the
n-th net, and T is the energetic temperature. The sur-
face was assumed to be atomically smooth at the outset.
Numerical solution of the kinetic equations showed that
there is a critical supersaturation ~1 necessary for
growth when ¢/T 2 1.2, but practically no barrier when
¢/T < 1.2 (Fig. 3). This is precisely the value that
corresponds in this model to transition from a smooth
surface to a rough one under equilibrium conditions.
The time-dependence of the growth rate proved to os-
cillate with a period corresponding to the filling of a
single layer. The amplitude of the oscillations declines
with increasing roughness (with decreasing ¢/T).
One-dimensional chains are a very simple object for
the statistical-kinetic approach to the kinetics of crys-
tallization of many-component systems. The theory of
their growth is also of great independent importance in
studying copolymerization, on which much literature has
accumulated in the years since the war."* %! Most
often, polymerization involves strong deviations from
equilibrium (Chapter II, Sec. 1). Hence, apparently, in
spite of intensive study, the Problem has been solved
only relatively recently’®*! of growth of a copolymer
chain, taking into account not only random events of
attachment of a monomer to the end of the chain, but
also detachment of these particles at arbitrary rates.
The obtained result (Secs. 2—3) is used in the theory of
copolymerization (Sec. 1), in that of non-equilibrium
incorporation of impurities in crystals (Sec. 5), in that
of formation of a thermodynamically non-equilibrium
atomic structure, in crystal growth (Sec. 6), and also in
the theory of formation of the folded structure of poly-
mer single crystals.®**" The last sections (Secs. 6—8)
of this article will discuss the results of building models
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for the growth of binary chains and crystals on a com-
puter.

II. CHAIN GROWTH

1. The Matrix Method of Describing Polymerization

Let us pose the problem as follows. We have a med-
ium consisting of m types of monomers. Polymer
chains grow in it by attachment of monomers to the ends
of these chains. Growth starts on particles of an initia-
tor (or on activated monomers). Let I, be the probabil-
ity that the first monomer of the chain should belong to
type a@. In polycondensation, growth begins with ordin-
ary monomer particles, and the quantities I, are ex-
pressed in terms of the monomer concentration.'®®’ Let
us denote by w5 the number of monomers of type 8
that are attached per unit time to the ends of chains
ending in monomers of type @, and by w_ , 5 the number
of 3 monomers that detach per unit time from the ends
of chains having « as the next-to-last particle. We shall
assume attachment and detachment to be random events.
Chain growth is stopped by reactions of termination,
disproportionation, recombination, or chain transfer to
a monomer. We shall denote the probability of chain
termination at an « particle by T,. The problem con-
sists in determining the composition of the copolymer
chains (concentrations of components, and correlations
and distributions of different types of monomers along
the chains), the molecular-weight distribution of the
chains, the relation of the chain length to composition,
ete.

Analysis of this Problem began with the studies of
Mayo and Lewis,”®®! Simha, Branson, and Wall,!**>%"
Alfrey and Goldfinger," ! and Stockmayer.™ It has
subsequently been continued by a number of authors
(including cases of stereoregular polymerization %),
The cited studies assumed the probabilities of chain
continuation by attaching particles of a given type to be
fixed. That is, the probability of detachment of particles
was practically not taken into account.* In this approxi-
mation, growth of a copolymer chain is a Markov proc-
ess, which can be expressed most economically in ma-
trix language. This is what we shall use below, mainly
following Frensdorff and Pariser.'®?

Thus, let us assume w_, g = 0, and denote the quanti-
ties

Lag :wﬂlﬂ/(; Wigg + lU+u7-) (1'1)
as the probabilities of irreversible chain continuation.
Here w is the rate of chain termination when term-
inated by the monomer «. The probabilities of termina-
tion are

T, = w+u1'/(§ Wigp + w.H]T).

(1.2)

Here and below, the summations are made over all
types of monomers. The more usual expressions are
obtained by representing the rates of attachment in
terms of the rate constants k B of the reactions and
monomer concentrations [M ‘j:

*The theory of equilibrium polymerization developed in this ap-
proximation for a system of m components uses m? equilibrium con-
stants. [5>%°] It must be replaced by a consistent theory leading at
equilibrium to m equations involving the chemical potentials (Sec. 3).
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Pog = kag [Ms]/(zﬁkas (Mgl +kar), To= kur/(ﬁZ Kap [Ma] + kar).
(1.3)
The probabilities P, form a square matrix P consist-
ing of m?® elements, while the sets I o and T o Are the
row vector (I| and the column vector |T), respectively.
Then the probability of finding a chain of length n is

F(n)= Ea I0,PoyosPasay - - -

ay

Py yanlan =L |T). (1.4)
Since

D PustTa=1, i€, |D=|H—|F|y=|i—P|1), (1.5)
we have

Fy={ | P )y — (T | P = (T }P™1— 2| 1), (1.6)

where |1) is a unit column vector, and 1 is the unit
matrix. If [p;) and (p;| are eigenvectors of the matrix
P corresponding to the eigenvalues a;, i.e.,

[ Ppy=hel poy (pi| Pl=hi(Pi (1.7)
and
(pilpy =1,
then, upon writing the matrix PD in the form PD
= 2] Ip; Xpy 1, we get
F() =X (A=) | ppil 1), (1.8)

o0
One can easily verify that ;Lz 1 F(n) = 1. Hence, the mean

chain length (the degree of polymerization) is

]

n= 3 0 (n)= 2| P (pi| D A—R),
while the mean-square length is

(1.9)

e

[IE

ln*F(n):;u-;—ki)(—xi)ﬂulp[><p,-11>, (1.10)

or, in other words,'®8:%%

ne= 3 ndd | Ty = (| (1 =Py 1, f

(1.11)

8

?:n;‘in?ﬂlf'”“lT):<1J(f+P)(i—f‘)‘zlb- l
If T, = 0, then, as we see from (1.3), the matrix B is
stochastic, and its maximum eigenvalue is unity. Then
n and n? are infinite, as must be the case in a system in
which the chains do not terminate. When T, ~ T is
small but finite, n ~ T™! in order of magnitude.

One can find the concentrations x, (@ =1, 2, ..., m)
of the different components in the polymer most easily
when T, = 0, i.e., for a long enough chain. Since sucha
chain is homogeneous,

(1.12)

-
Ig = Z ToLugp-
Q

Besides obeying this system of equations, the con-
centrations x, obey the normalization condition

D g = 1. (1.13)
The linear system of (1.12) and (1.13) has the solution
2q =Q""/Det Q, (1.14)

where the matrix

Py—1 Py - Py
Q—‘ Py Pymy Pom_y |’
1 1 1



104

while Q311 jg the minor of the a-th element of the last
row. For an infinite chain, 2 Paﬁ = 1. Hence, when we

construct the matrix Q, a unit row can be substituted
for any of the rows of the matrix (then we have to insert
the number of the unit row in place of m in the numera-
tor of (1.14).

Upon determining the concentrations x,, we can
easily find the binary, ternary, etc., distribution func-
tions:

Zop = ToPagy Zagy =T PapPgy, Zayas ... lln:'ralpﬂlﬂzpugaa- . .Pa,,_mn.
(1.15)
The subscripts a,a; ... here and below are equivalent
to ap ... The binary function x, g is the fraction of pairs
of consecutive particles ag, as compared with the total
number of all possible pairs in the chain. The ternary
function x, g, is the fraction of a8y triplets among all
the triplets, etc. The equations (1.15) imply that only
pair correlations exist in the chain, while all the others
can be expressed in terms of them, in view of (1.1).

The mean concentrations of monomers in the con-
glomerate of finite chains are the concentrations of the
monomers in an infinite chain artificially made up from
all the finite ones by the ‘‘head-to-tail’’ principle. Then
the probability of finding a monomer g after « in the
composite chain will be Paﬁ + TaIﬁ' In fact, 8 can

‘‘attach’’ to the composite chain either by the same
mechanism as in finite chains (the probability P, g), or
else, by ending on ¢, followed by a statistically indepen-
dent start with the monomer g (the probability is T I,).
Hence, the formulas (1.12)—(1.15) hold for a system of
finite chains if we substitute P, B P, g+ Talﬁ'

Chains of finite length are characterized not only by
the mean concentrations x,,, but also by the distribution
function f(n, n,). It is the fraction of chains of length n
containing n, particles of type «, with respect to all the
chains of arbitrary length and composition. We can der-
ive the distribution f(n, n a) by using the generating func-
tion

G (s, ny=F1(n) "Z' $"%f (nyna) = F-1 () (I, | B2\ T)

= F ) AT U ped ot | 1),
where F'(n) is a normalizing factor: f(n, n,) F™'(n) is
the fraction of chains containing n, monomers a with
respect to chains of length n; |pg;), (pgjl, and Ag; are
the eigenvectors and eigenvalues of the matrix 158,
which can be obtained by multiplying the a-th column
of P by 5. The generating function makes it possible to
calculate the different moments of the distribution
f(n, ny). For example, the mean number of o particles
in chains of length n is [8G(s, n)/8s] _;, while the mean
. : 3G

square of this number is a/as(s E)sﬂ'

Now, let us illustrate the presented general theory
with concrete results for a binary system
(a, B, ... = A, B). For an infinite chain, according to

(1.12)—(1.15),
Za==Ppal(Pag+ Pga), zg="Psp/(Pag-t+ Pga).
} (1.17)
(1.18)

(1.16)

Zaa=PpaPasl{Pap+Ppa), Zpp=PapPpp/(Pap+ Pga),
Zap==2ps= PapPpa/(Pap- Ppa)-

The length distribution is
F(ry=—a;(1—A) AT+ a2 (1—2) A5,

A. A. CHERNOV

where
Ao ={2—(Pap+ Ppa)—(Ta-+Tp £

£ [(Pap+ Pypa)?+2(Pap—Puas) (Ta—Tp) + (Ta—Te)?1'?Y/2,

a1,2=_;. {1:,: (Pan+Ppa)—U a—1I5) Ta—Tg) }

[(Pan+Ppa)l+2(Pan—Ppa) Ta—Tp)+Ta—Tp2| "2

If the termination probabilities are small in com-
parison with the probabilities of continuation (T, < 1),
then

M1 —(Paplp+ Ppals) Pis+Ppa, A1, a; & 1.

Hence, long chains are distributed according to the
power law:

ay~ 1,

Fmy~ (—h) N, (1.19)

which is equivalent to the distribution of Flory
(see®»*™). When T, = Tg = T, the power law holds for
any n, and is characterized by the value of T alone:

(1.20)

When neither of the polymers can polymerize separ-
ately (Ppp =Ppp=0)and T, < 1,

F () ((Ta-+Ts) (PagPsa)™ V221 &
+[(Ta+Ts) (Ia—15) (—PasPpa)" " /21,
(1.21)
The opposite limiting case in which blocks of identi-
cal monomers are formed (Ppa > Pap, Pgg > Ppa)
is characterized by the distribution

Fiy=T (4 —T)"

F (n) = IaT4P33" + I;TpPER" (1.22)

The system for which Py oPpp = PogPpp occupies a
special place between the two cited limiting cases.
Then, in an infinite chain x5 o = X}, xgg = XB, and x5 g
= XgA = XpXp- That is, the distribution is chaotic with
respect to types of particles. The entire theory in this
case looks as though W g =W, 5'[5” The length distri-
bution is

F () =14 CantPoa —Ua 8 CaTa)] (4 — Py — Pyg) (Pas+ Pos)" "
(1.23)
The general expression for the mean chain length is:

= a4 a3 Pap+PpatisTp+1pTs
N T Tl T Paglat Ppals i Tars 0 (1-24)
while the mean relative variance of the length distribu-
tion is
7E—n?  2(Pap+PpatTatTe)—(PapTp+PpaTa+Tals)
R Pop+Ppa+TaTp+15Ta
PapTp+Ppala+Tals )2_1_
T @PaptPpatIalTpt1sTa
* (1.25)
The relative variance of concentration of the component
A throughout the system can be obtained from the gener-
ating function.'™ For large n and small T, the vari-
ance is

(WA —1)/Ma = Pag (WPya) (2 (Pas+ Ppa) ' — 1] (1.26)

Polymers having an almost regular alternation of mono-
mers (Ppp ~ Pgp ~ 1) are characterized by a small
variance, while polymers having block structures

{Pap: Ppa ~ 1) have a large variance.

While studying the problem of the mean distribution
of concentration in a polymer by using a generating func-
tion of many variables, Hijmans®”? proved in general
form that this distribution is Gaussian.
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A generalization of the presented theory to the case
in which the continuation probabilities are functions of
a large number of subscripts, rather than two, is given
in'®:871 for infinite chains, and for finite chains in'®*1,

It amounts to renumbering the transition probabilities
(e.g., in a binary system) and correspondingly increas-
ing the order of the matrix P.

The ideas that I have presented require some refine-
ment for polycondensation, in which no special initiator
is needed. The process simply involves reaction of the
monomers among themselves and with the polymer
chains, and, hence, the probabilities I, are determined
by the monomer concentrations. Peller'®:%°) has studied
a model in which the total amount of monomer units in
the system is preassigned. The continuation probabili-
ties P, g are also preassigned, and are considered to be
constant throughout the process. If N is the total num-
ber of molecules in the final product (including monomer
and polymer) and X, are the total numbers of monomer
units of type @ in the chains in the free state, then

(X|y=Nn=Nd|(A-P){1). (1.27)
This equation holds if'®®’
d|=N2X|1-P). (1.28)

One can derive the same result by strict balancing with
respect to each type of monomer particle. The mean
chain length in the discussed model of polycondensation
is

n=X|OHI(X|T), (1.29)
since N = (X|T), in view of (1.28) and (1.1). Formulas
characterizing the features of polycondensation, as well
as the features arising upon chain termination by dis-
proportionation and recombination, are contained in'*?,

2. Reversible Chain Growth

Everywhere above, we assumed the chain-continua-
tion probabilities Pyg to be known (Egs. (1.2) and (1.3)).
If the rates of termination w_, g are comparable with
the attachment rates w aB (near equilibrium), then the
concentrations of monomers at the ends and in the in-
terior of each chain differ. Hence, the probability of
attachment of a monomer is no longer the probability of
chain continuation. Consequently, it becomes necessary
to solve the problem in the general formulation given
at the beginning of Sec. 1. We shall begin with analyzing
the growth of an infinitely long chain, assuming the rate
of termination to be zero.

Let us denote a half-infinite chain ending with the
monomer « by (... ), that ending with the pair «p by
(--.@pB), etc. Then the probabilities

Pagy = w+f5v/(w-aﬂ -+ Z w+5v) ,
C.af)>(. . aBy) v

, . (2.1)
define the fraction of cases in which a chain (... @g) adds

on one of the monomers (y), or loses its last particle
(B) (Fig. 4a). Attachment of this particle does not yet
mean that the final chain will contain it, and chain
growth is no longer a Markov process. However, it can
be reduced to the Markov method of conservation func-
tions,®*2%8) which consists in the following.

b
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FIG. 4. Graphical depiction of a binary chain in the process of for-
mation. A horizontal unit segment denotes an A particle, and a vertical
segment denotes a B particle. The solid line denotes the portion of the
growing chain that will never break down in the future. The dotted line
shows the “impermanent” particles that the chain will lose sooner or
later. a) The end of the chain consists of “impermanent’’ particles, and
has the three possibilities indicated by arrows for future movement; b)
the end of the chain made of “permanent” particles can permanently
advance either upward or to the right.

Let us choose arbitrarily N(... aB) chains. In the
process of growth by exchanging particles with the med-
ium, some of them will lose only the particle 8, others
will lose the particles g and a, etc. However, there will
also be those that elongate to infinity in the growth proc-
ess, without having lost any of the particles (... apB) that
they had at the outset. Let us denote the fraction of the
chains of this last type with respect to all those chosen
by U, g, while the absolute number of conserved chains
is NU, 4. What does it consist 0f? In order to have con-
servation of (... ¢f), the next monomer y = A, B, ...
must attach to it and remain forever. In the first round,
NEp @By ﬁy monomers will undergo this operation of

belng immured. The remaining szals-y 1- UB?’)

chains (from among those that d1dn t immediately break
down in the first round) will return ZtsJ the original con-
figuration (... ). Among these, N - Pagy 1- UBy)UaB

chains will be conserved from the second, third, etc.,
rounds. Hence,

Ugp == ?:_Paﬂv [Uﬁv+(1_Uﬁv) (2P (2.2)
Another method of deriving the system (2.2) has been

developed in"®?, This system of m? non-linear equa-
tions amounts to m equations for the quantities

Yo = &4 Bap, Where &g =W, g0Uq g
Dap =Wiqs g PapyUnv/ (qas+ Ev] PayUsy) = Wiapbs/(w_ap-—v8), (2.3)
Hence,
o= § WaapPs (W_up + b6) - (2.4)

The quantity ¥ , means the total flux of particles that
attach forever to (... @}. This flux consists of the fluxes
$,3 of monomers 8. Hence, the fraction of cases in
which the chain (... @) is permanently continued by the
monomer g is

Pop=1cplnp/Par
In a binary system, according to (2.17)

z5 = D505/ (D agPp + Dpatpa)s }

(2.5)

4= DpaPal/ (@aptp— Dpatha),
ZTaa=DaaOpa/(@apts—DPpatpa),
zap = Tpa= Dap@pa/ (P apps+

Tpp=PppD s/ (Pastp+Ppata),
Dpaa)-

(2.6)
Now let us fmd the rate of elongation of the chain. Let
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X q be the fraction of the time during which the chain
ends with particles of type @. Then n aZ)x1 aV+a BUa 8

particles will be attached to the N (... @) chains per unit
time and conserved forever. That is, the mean rate of
directed movement of the end of each chain is

Vzgxlalpa- (2.7)

In order to determine x, o’ Ve note that permanent
attachment of a particle g to a chain ending with the
particle o gives a pair ag in the interior. Hence,

Z1aWiapUap / azﬂ ZyallyaplUap = Z1aPap /Eal ZygPo = Tag. (2.8)

If we sum (2.8) over 8, we get a system of equations
with respect to x,,. In the two-component case we get
Z1a=Qps/ (D 45+ Dpa), Tip= Dap/(Dsp-+ Dya), (2 9)
V= (®ip¥s+ Ppapa)/(Dap+ Dga)- } )
The equations (2.8), together with the conditions
xaﬁf% X/Sa =X %xla = l,andExa= l,is a

o
complete system for determining both X, and x ag’ As

a’

we should expect, the calculations performed in this
way for a two-component system give the same expres-
sions for x,4 as (2.6) does. Evidently, this approach is
another way of solving the problem without explicit in-
troduction of the probabilities P, g

The distribution functions for binary, ternary, etc.
configurations of chain ends can be obtained from rela-
tions analogous to (2.8). Thus,

x‘agq)gv/%] Z18Y8 = Tapy = TapPpy = Iia@uﬂpﬂv/g Z1aVa; (2. 10)

Hence
! Z1gp = T1oDap/ P = Tyallsap/ (W-as 1+ b))

(2.11)

That is, the distribution functions for chain ends are de-
composable into pair products, just as the internal func-
tions x,, g are. However, the correlation is effected here
by the quantities &, /¥ 5, rather than ‘I’aﬁ/‘/’a' If we
solve the equations (2.11) simultaneously with the con-
ditions %) X198 = %18 and %)xla = 1 in the two-compon-
ent case, we get (2.9) again. At equilibrium between the
chain and the medium, when 3, = 0 (see Sec. 3), (2.11)
transforms into the obvious balance equation x_ g%-ap
=X,V op This distinction from (2.11) indicates that
the end distribution function shifts upon deviation from

equilibrium. The relation of the distribution functions
Ea Py which express the relative fraction of cases in
which the pair og sits at the end of the chain and the
functions x, g, which express the fraction of the time
during which the end of the chain is formed by the pair
agis given by the formula

(2.12)

Tiap = Eaﬂ'faﬁ / Z LapTap,
B
where 7, is the mean lifetime of the pair og at the
end of the chain:
(2.13)

Tas = (Woap -+ w+Bv)-1~
L4

We shall now find the diffusion coefficient of the end
of the chain in the process of growth. In order to do this,
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let us write down the equation of motion of the end, i.e.,
the equation for the probability density n(k, t) of finding
the end at a point situated k interatomic distances from
the origin at the moment t of time:

an on 1 a2
Gr= — ) (Fratrap— T1apW-ap) 35 T3 D! (T1a101a8 + T1ap-as) S5

b oh 2.14)
Here the first and second differences in k have bee(n re-
placed by the corresponding derivatives. As we should
have expected, (2.14) is a diffusion equation with drift.
The expression involving —an/ak is the mean transla-
tional velocity of the end, which is equivalent to (2.7).
The diffusion coefficient is

D= azﬁ (Z1aWsap + TiapW-ap)/2 = (V/2) 4 ?_.; ZyalDropW-ap (W-us -+ Pp) L
(2.15)
At equilibrium,
o o O

Dy = GZB T1aWrap- (2-16)

Here and everywhere below, the symbol “Q’’ over a
letter indicates the equilibrium value of the correspond-
ing parameter.

The exact solution derived above of the problem of
polymerization of a many-component system is easily
generalized to the case of interaction between particles
that are more remote from one another than nearest
neighbors.

Lauritsen, Di Marzio, and Passaglia™***! have also
derived an exact solution of the general problem of
growth of a copolymer chain, independently and almost
simultaneously with the author.*%*?**! They started
with a system of stationary kinetic equations

daytdt = B 2w ,an + Dl —
4] k4
—z(ﬁnH) Zj Wiy — 2 x&’ﬁ“’w-ag =0,
(2.17)

d.t%};“/dt = zﬁ’yw+a3 + 2 z‘i’éf*s;")w-sv—zﬁ’éﬁ " 2 UJ+5V—1([H}1)UJ-¢5 =0,

(n) 1:) v (2.18)
etc. Here, Xiq° XEOIB’ etc., are the fractions of the
chains of length n that end at the instant of time t in the
particle a, the pair a8, etc., as compared with the total
number of chains having any lengths and terminations.
Let us assume that: 1) only pair correlations exist in
the distribution of the chains over different end config-
urations:

2 2
alapy —alup elpyag 2, (2.19)

and 2) the distribution function does not depend on n for
long enough chains. A considerable part of!! is devoted
to proving these statements. In terms of probabilities of
conservation for n = «, the first of the assumptions is
simply a consequence of the fact that U, and P, 5 are
functions of two subscripts alone. If we use (2.19) with

n = ©, we can represent Eq. (2.18) in the form

—1
Jop = T1alliap — Trablmah = Tas D) (Wipy— TipyZ1p W-py) = Fiap¥p (2.20)
v

This gives rise to an equation for i, that exactly agrees
with (2.4). Thus both approaches®% lead to identical
results. If the number of components m > 2, then it is
very hard to solve (2.4). Hence, in™" they propose an
iteration method suitable for numerical calculations for
determining ¢ o 38 nli.mmzp((;l » Where

IIJ&") — % w+as\P‘(5"‘” (W +¢(ﬂn»1))—1_ (2.21)
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The flux J g is the fraction of chains (... @) that in-
crease their lengths by unity by adding 3, or the fraction
of chains (... of) immured per unit time (2 J,, g=".

a

Lauritzen and his coauthors have shown that, for any
finite n,

Ity =Tty =

= s (2.22)

and it does not depend on n. Together with (2.20), this
makes it possible to find the steady-state length distri-
bution of the chains:

(n—l)

? Iia w+a6 (w-ap+ )

(2.23)

where

248 = 2w (W )T (2.24)
In a system that permits chains of any length, a steady-
state distribution is never attained if the process begins
with a state that contains polymers of finite length.
However, when a time considerably exceeding n/V has
elapsed, we can speak of a steady-state distribution of
the chains of length ~n and less. As equilibrium is ap-
proached, V — 0, and the stated criterion becomes more
and more rigid.

If we denote

V={|Wapll, Yop=wias/(W-as-+Ps) (2.25)
we have
(2.26)

lx(ln—{—i)\/ — l \'i;n | 1(1“>~

Since zp =23 sz g’ the non-linear operator ¥ has a
B

single eigenvalue. Here the p , are the components of
the corresponding eigen column vector |¢). Hence, the
fraction of the chains of length n is

Al =i 24, (2.27)

where (1] is the unit row vector. Hence, the length dis-
tribution function has the form

= (P 2O (=) 2, (2.28)
while the mean length is
7= (=W 2O (L —E) 2. (2.29)

Let us return now to the general case, taking into ac-
count initiation and termination of chains. Let j_ybe
the number of initiator particles arising per unit volume
and unit time, and w_; be the rate of deactivation of each
center. Further, let w, {, be the rates of attachment (+)
and detachment (-) of the monomer ¢ at the center 1.
The rates w, g characterize chain termination at the
particle o. Then the initial stages of the process are
described by the following conservation probabilities:
1) Uy is the probability that a generated center will never
in the future decompose, so that chain growth will suc-
ceed in starting; 2) Uy, is the probability that the par-
ticle a will never leave after attaching to the initiator,
and finally, 3) U,r = 1, for reactivation of terminated
chains is forbidden. The conservation probabilities obey
equations quite analogous to (2.2) and (2.3):

*We assume that w_oT = 0, i.e., the chain doesn’t regain activity.
In the converse case, the subscript T must denote a state having a cer-
tain lifetime (long in comparision with wqg).
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U= 2 PralUra-+(1—=Ui) Ut =

= S’ Wy ralral (w_r + 2 witaUra) == (91 -+ wirn) lw-s + (1 +w,rp)],

(2.30)
where
Pra ‘“w+1a/(w I+2w+1aTW+IT Py = zw”aUm,
Ure = 2 Pras [Wap+ (1 Uap) Ural + prag = Yot zar__,
B —la +o
(2.31)

where

Drap =Wsap/ (w_1q + % Wiap +Wiar)s
while ¢ , has its previous meaning (see (2.2) and (2.3)).
Thus,
(2.32)

(2.33)

The summation is made everywhere over A, B, ... (with
summation over the state T excluded). By beginning the
solution ‘‘from the end’’, from (2.33), we can find ¥

and then ¥y by (2.32). In terms of these quantities, the
probabilities of irreversible continuation are

Pro = To=wi1eUra/(Yr +wsrr), }

lpl = 2 Wila (% +w+a'r) (w~1zz J‘\" \Pa +w+aT)_17

== D w,ap (Y5 -+ Wipr) @W-ap + Y T wepr) "

Pop =w1apUap/ (Yo +Wiar),
PaTE To= w+on7‘/(1l’a- +w+aT)-
Along with the results of Sec. 1, these quantities give a
complete solution of the problem of the composition of
the chains, the length distribution, etc.
The rate of polymerization, in the sense of the total
number of chains irreversibly created per unit time is

(2.34)

R=jy X
14,

R WitaUlta = jog (Pr+wsrr). (2.35)

At large deviations from equilibrium, Uaﬁ ~ 1, and
Po B does not depend on the supercooling. In the con-
verse case, it is considerably dependent. Eq. (2.33)
does not have a solution ¢, = 0, which would correspond
to thermodynamic equilibrium in the system without
chain termination. Now always ¢ o’ 0. That is, the
chains grow even under thermodynamically unfavorable
conditions (at equilibrium P, g~ T o)+ Evidently, the
physical reason for this phenomenon consists in the
following. In the presence of an initiator, there is
always a certain fraction of polymer chains, owing to
fluctuations in the solution (or the melt). A fraction of
these chains becomes fixed (with probabilities T,), and
drops out of the fluctuational exchange, thus shifting the
distribution. The dead chains are replaced by new ones
by diffusion in size space, etc.: a flux is established in
the system between the monomer reservoir and the out-
put, with a rate determined by the rate of termination.
Under the conditions of a superheated system, this flux
decreases its entropy, and consumes the energy stored
in the active molecules. Since Pyg and T, are compar-
able, the product of the described reaction of ‘‘tunneling
through a potential barrier’’ will be of low molecular
weight. If the dead chains are reactivated, then the
effect will not take place.

3. Analysis of the Growth of a Binary Chain and Its
Relation to Thermodynamics

For a two-component system of infinite chains, the
fundamental system of equations (2.4) acquires the form



108

Pa (Wosa—Wiaa—Va)/ (W_na+Va) = wWeapgPe/(W_ap -+ Ps),

Vg (W-pp —Wspr — Wu)/ (-5 + Vp) = Wipaba/(W_ga +Pa). } 3.1

In a single-component system consisting of particles of
type A, the rates w, ag = 0. Then (3.1) leads to the ob-
vious equalities Y4 = V=w,_p5—W_ap,and D;

= (W, AA + W_aa)/2. The relations appropriate to small

concentrations of the components are analyzed in Sec. 5.
Here we shall treat the general case in which the con-
centrations of the two components are comparable.
First of all, let us consider equilibrium and compare
the kinetic with the thermodynamic formulas. As we
know,'™ the partition function for a chain has the form

Z=( 1 Na¥ [ Nap!) T exp (— (N aean+ Npeas+ 2N 5W) T,
a=A, B a=4, B (3.2)
where N is the total number of particles in the chain
(N > 1), Nj and Np are the numbers of A and B parti-
cles (Ny + Ng = N), Naﬁ is the number of ag pairs, and
W = €pg— [(€pp + €gp)/2] is the energy of mixing. The
term (hy/T)N is the high-temperature (hr < T) approxi-
mation for the vibrational part of the partition function.
Here v is the ‘‘geometric mean’’ ™! frequency of the
thermal vibrations of the particles in the chain. If we
minimize the free energy of the chain, — T In Z, over the
concentration of pairs xpogp = N AB/ N, keeping the num-
bers N, of particles of each type constant, we get the
equilibrium relations for Xy B and X,:

o © O

L —2WT
Zhp/TaaZpp= € .

(3.3)

The chemical potential ., of component @ in the
chain is obtained by minimizing —T In Z over N, under
the condition that the structure of the chain (i.e., the
concentration x 5 g) has its equilibrium value:

B = — (T 1n 24/500) + a4 (7' In hv/T). 3.4)

If 4, is the chemical potential of particles of type a in
the medium, then phase equilibrium between the chain
and the medium will take place when

(oo

' —1,— —€, /T
To/Tue = WWT 1o~ Pac ad/T

(3.5)
When the u ., are fixed, the gonditions (3.3) and (3.5),
along with the equalities 2 Xy8 = 1 and
a

b AB ~ J%B A» determine the equilibrium concentrations

(]
®,):
temperature. In particular, after gaﬁ and ’%a have been

eliminated, (3.5) and (3.3) give a condition for the
equilibrium temperature. This is:

the chain structure (x o ﬁ) , and the equilibrium

[AvT-te Mac=ean) T — 4] [paTte™ “Be o80T 4] = e—2wiT, (3.6)
(0] o)
Now, let us find the relations for the same quantities

Q

Xy % B’ and T from the kinetic equations, bearing in

mind the fact that ¢ , = 0 at equilibrium. In fact, any
particle that has attached to the end of the chain must at
equilibrium leave it sooner or later. That is, U,g = 0.
When the ¢ , are small in comparison with the corre-
sponding rates, the system (3.1) is transformed into a
linear, homogeneous system. The condition that its de-
terminant should be zero is the condition of equilibrium:
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WiABW+BAW-_AAW-HB W_gp

( 1) =o0.

If the left-hand side of (3.7) is positive, then, ¥ o >0,
as we can show by studying (3.1) and the chain grows.
If the left-hand side is negative, the chain decomposes.

s )|

Wiaa

3.7

W_apW-pal¥+sa¥+BB L2Y:J:]

The concentrations ’?a and Jc{)a 8 arise from (2.6) upon
setting ¢, = 0:

(oo}

ZTalTaa = Yo/ Vag = W_aa/Wiqa,
O2 o O
T4p/Taatps= PapDpa/Dss@pp =

=Wy ApWsp AW A AW_pp/W_ AR palyp AW, pp.

(3.8)
(3.9)

If we denote

w~a5/w+aﬁ = v%";eeﬂf‘/T,

(3.8) gives us expressions of exactly the same form as
the thermodynamic relations (3.5) and (3.3), while (3.7)
gives us (3.6), if we assume

& =hT-1e " s/", (3.10)
Consequently,* the quantity €ap introduced in (3.9) ac-
tually has the meaning of the bonding energy of the par-
ticles o and 8. As we see from (3.9), the frequency v is

the mean frequency of vibrations of the particles in the
lattice in the sense of (3.2). As we should expect, the

equilibrium quantities !c()a and £, - in (3.8) depend neither
on the potentials of the particles in the medium nor on
the potential barriers for crystal-medium transition.
They are only functions of the temperature and the en-
ergies €qg.

It is convenient to carry out the study by using the
quantity q = exp(ep o/T) (where 0 < q < 1) instead of the
temperature, and by expressing €, B in terms of €pp:

}

Let us take w+aﬁ = W*cﬁ, where the constant w, charac-

terizes the rate of incidence of particles of any type on
the end of the chain, and ¢ B is the concentration of g
particles in the medium (cp + cg = 1). Then we get
from (3.7) the equation of the liquidus line c5(q), and,

€pp = NEaa, Eap=8pa=MEa4,

2W =(2m —n—1)easa=5E44.

(3.11)

based on (2.6), the solidus line % ,(q):
ca =5 U—ReH (=g (1—¢) ] +

g {[1— R (1— g™ (1 — @) 12— [4Rq™ (R — 1) (1— ¢},

Sa=callca+ g™ (Rg—ca)l, (3.12)

where R = v/w,. Whenw_ apg = Vg the diffusion co-

efficient of the end of the chain Dy = w,.
For an ideal solution in which W = 0 (i.e., s = 0},

ca=(1—Rq") (1— "), 24 = ca/Rg=1— Rq" [Rg(1 — g™ )L,
(3.13)

The phase diagram corresponding to (3.13) has the
form of a ‘‘cigar’’, whose shape and orientation depend
on R and n. When n = 1, it degenerates into a straight
line parallel to the horizontal axis.

Figure 5 shows the phase diagram constructed from
(3.12) for particles A and B that are equivalent but not

*We recall the e becomes more negative as the corresponding
bond becomes stronger.
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identical in properties. That is, €55 = €gg (n = 1), and
€Ac = €pc = 0. Here we have assumed that m = 2,

R = 2, 3, 5. The analogous curves for m =3/2,n=1,

ﬁ = 2, and I?. = 5 (Fig. 6) give a picture of how the phase
diagrams deform as we vary the binding energies, vibra-
tion frequencies, and density of the substance crystal-
lizing out of the mother medium. The latter relation is
determined by the ratio of R to the rate w,: the greater
the total pressure of the two components in the gas phase
is, the greater w, is, and the smaller is R.

The concept of phase diagrams can also be extended
into the kinetic field.'™ Here Eq. (2.6) makes it possi-
ble actually to find these diagrams. The deviation from
equilibrium is carried out by varying any of the param-

o) o
eters q, ¢, and R. For example, each value of R corre-
O
sponds to a liquidus line c5(q, R) and a solidus line

xa(q, l%). Now, if we keep the temperature (q) and the
relative concentrations of the components (cp) constant,
and decrease R, then crystallization will set in, and
produce a chain of composition x4 (q, R) that differs

Q
from gA(q, R) and can be determined from (2.6). The
function xp(q, R) defines a new, kinetic solidus line.
Figure 5 shows such a curve for R = 4 for the values of

¢ and q corresponding to the liquidus line 1% = 5. The
value R = 4 corresponds to an overall increase in the
density of the A and B particles in the medium by ~20%,
the partial composition remaining invariant. A still
greater increase in the density of the substance crys-
tallizing in the medium, with consequent increase in the
deviation from equilibrium, will shift the solidus line
more strongly toward the liquidus. When R — 0, (3.1)
implies that ¥ , — w,, and x4 (q, 0) coincides with the
liquidus line c (g, 0). This latter circumstance is phys-
ically quite clear: all the particles attaching to the end
of the chain never leave it thereafter, composition
selection does not occur, and the chain copies the com-
position of the mother medium, as well as its chaotic
structure: x,5 = X,Xg. An analog of this process is
diffusionless crystallization (see the end of Sec. 6).

9=EXP(EAA/7) R=2,m=2 g=exp(e,/T) .
R=2,m=%,
05
041
03 f=5,m=%,
02 | 1 L 1 0.2 N It L 1
0 02 04 06 08 10 [/ 02 04 08 08 10
A 6z B A 6,z 8
FIG. 5 FIG.6

FIG. 5. Phase diagrams of a system of equivalent particles having
m = 2. The solidus line R = 4 is the kinetic curve corresponding to the
equilibrium diagram R = 5.

FIG. 6. Phase diagrams of equivalent particles for m = 3/2.
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Non-equilibrium composition and structure of the chain
is a substantial effect, which increases with increasing
supersaturation. According to the data of Fig. 5, with a
~ 20% deviation from equilibrium (R = 4) and with

q = 0.3, the composition of the chain deviates from the

equilibrium value (’?A = 0.710) by about 7% (:C(’A = 0.760),
while the concentration difference between the mother
medium (c = 0.920) and the chain varies by about 25%,

ile., (xp— )?A)/(cA— (C:’A) ~ 0.25.

One can easily derive an exact analytical solution of
(3.1), and hence, of the whole problem, with arbitrary
deviations from equilibrium for equivalent particles
satisfying the relations (3.11) with n=1 (epp = €gp),
together with the conditions €p, = €gp and cp =cp
= 0.5. Namely,
ba="Vp=P==
= % {[{(1— Rq— Rq™? + 2Rq (1-- g™ — 2R¢™) " >+ (1—Ryg—Ry™)},

Vb, (3.14)

ZTaa=Tpp= Tyaa=" Tipp = 1/4 (Rq -+ yuw'),

Dr=wy, xp772p- 2a=12=005,

Tap==Tpa = T1ap~"
=1y = 1/4 (Rq-+- ity

The condition of equilibrium has the form 1 + g™ ~*

— 2Rg™ = 0. In particular, these formulas imply that
the chain being produced becomes less ordered as its
rate of growth increases. In the limit as R — 0 or
q—0,  —w,, and X, g — Y. The diffusion coefficient
Dy ~ w, does not depend on the supersaturation. Fig-
ure 7 shows graphs of V/w,, Xpa, and x5 g as functions

of R/R for various temperatures: q = 107, 10, and
107%, and for m = 1 or 2. The physical parameters
corresponding to g ~ 10, m = 1, 2 are: €pp/T =9, or
when T = 0.6 kcal/mole (T ~ 300°K), epgp ~ 5.4 kcal/
mole, R = 10°,

One can get a general analytical solution of (3.1) in
terms of w, aB only in the limiting cases zpy & Y_ap

W_ga =~ V+gqr and zp.}, > Y_aB Y_aa ™ V+ga
The exact theory of copolymerization thus developed

has been tested by simulating the process on a compu-
ter (Sec. 7).

4. Growth of Chains on Templates. Biopolymers

The structure of a solitary copolymer chain is gen-
erated at its growing end. Another process is also of
interest: the growth of one chain on another, where the
sequence of monomers in the new chain depends also on
the structure of the substrate. Such a situation (in the
three-dimensional case) is realized in the crystalliza-
tion of alloys (Sec. 6). If the influence of the substrate
is decisive, the problem of the structure of the new
chain vanishes, for it is a copy of the template-sub-
strate. The latter process is the basis of the replication
and renaturation of nucleic acids. In this case, the rate
of the process and the probability of errors of reproduc-
tion of the template structure remains as the object of
the theory. As we know,!™ ™! a nucleic-acid molecule
is a helix wound together from two polymer chains.
Each chain is built of four types of nucleotides: adenine
(A), thymine (T), guanine (G), and cytosine (C). Adenine
in one chain sits opposite thymine in the other, and
guanine opposite cytosine. As a rule, the probability of
configurations differing from these complementary pairs
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3 a) ¢ R/R

b) #/R
FIG. 7. Dependence on the supersaturation of the growth rate (a)

and the structure (b) of a chain made of equivalent particles (x A = XB=
=0.5).

AT and GC does not exceed 107". Denaturation consists
in breakdown of the double helix into single chains
(strands). This process is cooperative, occurs, in a
narrow range near the melting point, and is reversible.
Apparently, melting can begin either at one end of the
helix or at random sections of the double chain by break-
ing of bonds. The reverse process, renaturation, also
goes through a stage of nucleation, or attachment of the
two strands together, originally by only a few bonds. *®
Further combination proceeds from the site of first
contact, and in particular, from the ends of the chains,
by a zipper mechanism. The tab of the zipper advances,
making random errors, and hanging up in various ways
on different pairs. In replication, the deposition of indi-
vidual nucleotides on the template chain and their poly-
condensation can occur either from one end, or ran-
domly.!™ ™ The rates of deposition (in replication) or
of attachment (in renaturation) are determined by diffu-
sion of nucleotides onto the template chain and by
molecular processes of desolvation of the individual
nucleotides or those linked in a chain. Here people have
discussed exclusively statistical-kinetic processes in
which the rates of the individual events are assumed to
be known. In this sense, the problems listed above are
similar, and totally equivalent for the zipper model.
The approximate calculations of random deposition
for one-component polycondensation'” ™! gtart with the
idea that each cell of the new chain may be either:
1) empty, 2) occupied by a nucleotide adsorbed on the
template, 3) occupied by a nucleotide already incorpora-
ted in the new chain. A fourth state assumes the pres-
ence in the solution near the cell of a nucleotide that
hasn’t yet been joined to it. In'™™! an excited ‘“‘growth
center’’ is involved instead of the latter state. Calcula-
tion for the zipper model is based on kinetic equations
for the concentrations of the cited states of the cells
and higher-order distribution functions (binary and
ternary) for random deposition. The estimates of
Vol’kenshtein and his associates!™’ have shown, in par-
ticular, that the time of replication simply involving

A. A. CHERNOV

deposition of nucleotides amounts to ~ 1 sec, instead of
the experimental ~ 10° sec. Consequently, one has to
take into account the finite rate of the polymerization
process. The corresponding rate constant is of the or-
der of ~10* sec™' in the model used in'™?,

The stage limiting the experimentally observable
rate of renaturation may be the formation of attachment
nuclei.®! The formation of the new chain on the tem-
plate is actually the formation of a new layer on a one-
dimensional crystal. Within the framework of this uni-
fied view, growth from a few centers corresponds to
tangential (layered) growth of crystals, while growth
starting at random points corresponds to normal growth
(i.e., growth along the normal to the substrate), (192!
The former mechanism of crystallization is character-
istic of substances having a large surface energy (in
comparison with kT), when the deviation from equili-
brium is small.®®) The latter is characteristic of small
surface energies of the crystal-medium boundary and
of large supercooling (or supersaturation), when nuclea-
tion is no longer a problem, and the surface becomes
atomically rough. We can assume that an analogous
situation must also occur in the template synthesis of
chains.

The problem of chaotic polycondensation ™!
(normal growth) in a one-component model is analogous
to the well-known problem of bulk crystallization in a
volume, which Kolmogorov®® solved exactly for an
infinite volume as early as 1937, and which Todes ®!!
subsequently developed. The formulation and solution of
the problem in terms of a one-dimensional model con-
sists in the following. Let I(t) (cm™ sec™) be the proba-
bility density of initiation of polymerization (nucleation)
of the second chain at the time t, and V(t) be the rate of
growth of the chain along the template, which is long in
comparison with (V/I)l/ %, We have to find the probability
p(t) that a randomly chosen cell will be occupied at the
instant t by a nucleotide incorporated by polymerization.
The probability dq(t) that polymerization will happen in
a random cell within the time from t to t + dt is, first,
proportional to the probability q = 1 — p(t) that this cell
has remained unpolymerized up to the instant t. Second,
in order that polymerization occur in the interval from t
to t +dt, a nucleus must have been formed at an earlier
time iélterval from t’ tot’ + dt’ at a distance

I=+= fV(t')dt' from the chosen point, in the interval

t
dl = V(t)dt. The latter event has a probability
I(t")dt'V(t)dt. Hence, the probability of polymerization
of the chosen cell within the time from t to t + dt owing
to the fact that a chain has arrived there from some
nucleus is

t 1 t
dg=—2q (V(t) dtI(¢ydt = —2qd g](t’) S v@ydrdy, (4.1)
bl b v

Hence,*

i t
p=1—exp (_zjz(t')dt'SV(t")dt'). (4.2)
0 i
If adsorption of nucleotides onto the template occurs

*The given simple method of derivation can also be extended to the
three-dimensional case, with the well-known result [#°]

p(f)=1—exp {—% S I(t’)[fV(z”) dt”]adt'} )
0 t




GROWTH OF COPOLYMER CHAINS AND MIXED CRYSTALS

considerably faster than polymerization, then their con-
centrations (and hence also the quantities I and V) can be
considered constant. In this case,

p=1-—eIve2 (4.3)
and the characteristic replication time is
T=(IV)~'2, (4.4)

Formation of bonds between the deposited nucleotides
when they combine into the nucleus of a new chain ap-
parently requires not only surmounting of the barriers
involving desolvation and other molecular processes, but
also local twisting of the chains at the site of formation
of the nucleus. The barrier involved in this process is
not yet known.

Approach of the system to thermodynamic equili-
brium (e.g., by raising the temperature to the melting
point) must lead to I — 0, V — 0, in line with the general
principles of crystallization, independently of the mech-
anisms of nucleation and rate of growth. On the other
hand, decrease of temperature and consequent decrease
in mobility of the particles reduces the growth rate, as
has been observed in numerous experiments on crys-
tallization in melts, viscous solutions, and in the solid
phase. Biopolymerization processes can be no excep-
tion, and indeed, the temperature-dependence of the
rate of formation of adenine-uridine helices, as studied
by Ross and Sturtevant,®*’**! is bell-shaped.®*°"! Such
behavior is also characteristic of other renaturation
and replication processes.

Consequently, analysis of the kinetics of formation of
biopolymers near equilibrium requires one to take into
account the reversibility of the individual elementary
events. As applied to one-component chains, such an
accounting has been made in connection with the experi-
ments of ®2"**] by Saunders and Ross,"®’ by Flory,™!
and by other authors.®®*®) The kinetic pattern of the
process has the form ™’

o . w_ e we
AB I 2222 ...

w U U~ W
-1

i:) CNy (45)
Here A and B are the nucleotides forming a two-particle
nucleus of the new chain and their concentrations, c; and
I are the concentrations of chains of length i and AB
nuclei, N is the overall length of the chain, while the
transition rates w, are the same for all stages except
the first, which is characterized by the constants k,,
w_1- We are required to find the number of chains
irreversibly formed in the system per unit time. For
large N, the solution is evidently given by Eq. (2.35),
where j, = koAB, Yile = Vi af = Ww,. With these param-

eters, according to (2.31), (2.30), and (2.35), we have
Ute = (wy —w.) fw,, (4.6)

U= (w,—w ), —w.+w_y),

R = kyAB (1 — w1 — (w. —w.) w?]. (4.7)

The expression (4.7) differs somewhat from the errone-
ous expression given in'®*®’. The factor 1 — w_w?* defines
the supercooling (or supersaturation) in the system. It
vanishes at the equilibrium temperature, and increases
(to unity) with falling temperature. Together with the
exponential decline of ko with the temperature, this fac-
tor gives rise to a maximum on the temperature-depen-
dence of the experimentally observable rate.

W

111

The situation becomes more complicated in many-
component chains, such as nucleic acids. However, one
can find analytical expressions for the rates of growth
of such chains, both by the method of conservation func-
tions,”®? and by using the general formulas of ;[)hysico-
chemical kinetics.'**'**! Wetmur and Davidson'®®' have
performed machine calculations for chains made of two
types of complementary pairs. Let us take up the
analytical theory in greater detail.

Let there be an infinite template chain consisting of
m types of particles. A second chain made of particles
of the same types is growing on it from infinity on the
left. The second chain is generated by random attach-
ments and detachments of particles at its end. The
juxtaposed particles of the first and second chains form
the complementary pairs AT, TA, GC, and CG. Conse-
quently, growth of the second chain on the first is
equivalent to growth of a unitary chain made of ‘‘pair”’
particles with a previously assigned structure. We shall
consider the rates w, , o of formation and decomposition
of pairs (attachment and detachment of pair particles) to
be known.

If complementarity breaks down during the growth of
the second chain on the first (e.g., a loop is formed),
then a mutation has occurred. In the language of crys-
tallization, it is equivalent to capture of an impurity
particle. The problem consists in determining the rate
of growth and probability of mutation.

Let us consider a chain ending in the already-formed
pair particles a,q.. The particle a; is supposed to fol-
low after them, but hasn’t been formed yet
(a1, a2, as ... = AT, TA, GC, CG). In this state, the
chain has only two possibilities: either w3 is produced,
or @, breaks down. The probabilities of these events
are, respectively
Gar00as = W-ayas/ (W—a100 -+ W ases)-

(4.8)
. that the pair o,a.

Pajagag = w+aza3/(w~—u1az + w+on2:13) )

Let us find the probability U, , . ..
1~2%3

that has already been formed on the end of the double
chain will remain there forever, under the condition
that the next particles must be azay ... By a treatment
analogous to that used in deriving the equations (2.2) for
the conservation probability, we arrive at the relation

Ualoz. el T pamzfls [Uolzaa- .. ﬁ* (1 *Uoczug. . ) Uoclfxg, . ] (4'9)

Upon expressing U, , .., analogously in terms of
273

Ua3a4--.’ etc., we get
M-3 R

Uaiaz...:UaMfiaM'_.[l‘*' Z II Wg,o

-1
LW
e iFigg PO

it+2 U“‘\Ian...

Wi,
(4.10)

However, if the zipper locks on the M-th cell, then

w =0 =1, and (4.10) gives th
._am_lam s ( )glve €

conservation function for a finite chain (with a lock at
the end):

2ie1

M-2
—’_iui W
U
TTeM oYM

M—2 k

Uaiqz...aM == [1 -+ kZ l ) Weg.a

-1
i i+iw+°‘

=L el (4.11)
For an infinite chain without a lock, the M — 2 in (4.11)
is replaced by .

The mean rate of elongation of the infinite chain is
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V=11, (4.12)

where 7 is the average time (over all possible chain
configurations) necessary for irreversible advance of
the boundary of the polymerized portion by one pair of
nucleotides (a cell). The time required for irreversible
advance of the boundary from «, to a, in an arbitrarily
chosen configuration aoa,a- ... ay ---,» amounts to

T = -
R Wiayug) ! Kagay gy, ..,

(4.13)

where k is the average (over the assembly of

Qb @, ...
identical chains aoa,a; ...) number of trials for the ir-
reversible transition aoa, + @z — @010z + ... . The
arrow symbolizes the boundary of the polymerized por-
tion of the chain.

The probability that a boundary occuring at the par-
ticle a; will never henceforth return to this site is
The probability of a reversible event,

pozoozlszozla2 e ?
subsequent behavior of the end doesn’t depend on its
prior history, the probablhty of (k — 1) fold return is
1- paoalazua 10z - ) ~!, while the probability that the

end will lie at a; k t1mes amounts to

U .
Poa,a, 0,0,

i.e., returnto @, is 1 — Since the

PosarazUares. .. (1 — pmom,azUalaz)kvl . (4. 14)

The derived distribution function (4.14) over the num-
ber of visits implies that

Zl kPaooyalaas. .

)7‘_1 = (P(zoaszm{zz- L

(4.15)
In order to obtain V, we must still average Toiqe e

over the chain configurations. Let us start with chains
in which the probability Xy, .. ay of the region

]‘unal laz = (1 -paoalazUaluz. ..

a1z --- @M ¢an be represented in the form

Tagy. ..y, = TamTaya,. . Doy o, /Ta,Ta,.. Fay g

In this case, on the basis of (4.13) and (4.15) we have

T:nllljg) E Tagboy. cay . Faygy. ey,
- ag...Ayp
z w hk
a,...qa '—ll 11 )
: 1%y %4y
“tim (i 3] o)
Moo Aoy %2 heti=1 o Cir1%in
M2 1y
z z, 2 Za, a
L33 . o ht1%R42
_ 1%2 1 —arl Ate,
- z Yiaga, 11122: [ E 2 (zak Qa.mz Qahukﬂw*’“hﬂ“kﬂ
a,a. 172 - k=1la,...q +1
1%2 1 %Rri2
ﬂ. ll ‘
M a; l+1
2 ( : ) Q"‘i“M(1+ Z H v
a4 0y Wha g %ih1%ite
. zq \1/2 ¢ T —QM! Zpy
tim [ 3 (22)
== 1 —_— = Y
Moo LS 28 1—0Q /ab Wepy

L]

T%iet%iez

k= 2 (x“x“.u)i/z Q;";‘; (
oy, )
=) (@alap)® zps/weny (1—Q)as -
apv (4.16)
The matrix Q mtroduced here has the elements
Qaﬁ C!B/(x ﬁ) *w_ —ag The last process of
taking a 11m1t in (4.16) is valid when the second term in
the next-to-last expression in (4.16) vanishes when
M — «. The time 7 is infinite, and V = 0, when
Det 11-Qll=0
In the case of two components A and B, the last equa-
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tion reduces to

(1_144"’-.4A) (1 IBB"LBE) . ( Tan )‘2 W-ABW_pa
TaWiga Zpwopn |~ \z4zp

(4.17)
If the sequence of bases in the chain is random, then

Xag = XaXg and the formulas (4.16)—(4.17) go over into
the corresponding expressions of'°’, which were derived
in a somewhat different way. Chains for which

Det 11— Qn>o (i.e., the left-hand side of (4.17) is

greater than the rlght) will grow (for the given values
of w,, B)’ while the others will dissolve (or exist in

equilibrium). Thus, a selection of the structure of the
chains that are reproduced under the given conditions
can occur.

Wetmur and Davidson'®® have averaged the rate
numerically for a random distribution of AT and GC
pairs along the chain. Here the ratio of rates of forma-
tion and decomposition of a given pair did not depend on
the types of neighbors it had (w_ o ﬁ/w +ap depended only

on 8). As many as 2° and 2° possibilities were tried for
the first six or eight pairs. For the remaining cells of
the chain, they used the ratios of rates averaged under
the assumption that the pairs were distributed randomly
at their given concentrations. They used the quantities
W AT/W_AT = 1.04 x 10° exp (8000/RT), and

W, Gc/W-ge = 1.04 x 107 exp (8935/RT), while for the
first pair these ratios were considered to be smaller
by a factor of 34 exp (—~7000/RT). If the chain is com-
posed of repeating sets a,a: ... @, then we have from
(4.11) with M — o,

WiABYrpaA

T
— w ~1
,-I:], "“io‘i+1w+°‘i+1°‘i+2
Ualaz...ay-z T & s
1 —1
+k§‘ igi w—“i“i+1w+°‘i+1ui+2 (4'18)
Qppg =0y,  Qpyp = UAg.

In this case, there is a total of r conservation probabili-
ties, which can be obtained from (4.18) by cyclic permu-
tations of the indices. The rate of growth is

V=l Z wiemla.. el (4.19)
where the summation is performed over all the cyclic
permutations of the indices a,a; ... ap. If the discussed
period of r particles contains rx, g af pairs, then the
numerator of (4.18) for all cychc permutations of indices
is equal to 1 — JIB W_g B/w ta ﬁ) Xap, so that the condi-

tion of equilibrium has the form > Xag Inw

ap
=2x Bln
ap

+af

+og That is, it will be the same for con-
figurations having the same relative numbers of a8
pa[igz;?. The probability of mutation was also estimated
in

The growth rate of a chain having a preassigned
structure can be found also by using a generaliza-
tion'®1%! of 3 well-known method in the theory of
nucleation.®""®! Let us denote by x, the concentration
of chains that have been polymerized as far as the cell
k, inclusive, at a given instant of time. Then the steady-
state flux R of chains satisfies the equations of conser-
vation of chains:

R=2uWiaym,, —Ziheileayo, - (4.20)
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This chain of equalities extends to infinity for chains
that are unbounded on the right (M — =), while it re-
quires a supplementary condition on the cell M if it is
the last one. If we multiply the first of the equalities of
(4.20) by unity, the second by w—a,azwazagl’ and the
k-1
kthby 1 w_ y™', and add the
i=1

results, we can eliminate all the x,y except x,, and x pp:
M2

aioi 1T+ i+ 10i s

—1
—z H w Wia, @ W~
P pogey ™ MM LY Foogeyy TG BT 0%y

R- (4.21)

M—2 &
o );:]1 i-[_-lx TP ICI
For chains that terminate at the cell M, w
— oM -12M
will be zero. The second term in the numerator will
vanish, while the reciprocal of the denominator will be
the conservation probability (4.11). Then (4.21) will be
an analog of the formula (2.35) for chains with an as-
signed structure. It is clear from what I have said that
the conservation probabilities lend a graphic character
here to the Volmer'®"®® procedure of summation of
(4.20) and vice versa. If the chain is infinite on both
sides, and the cell k = 1 is not the origin of the chain,
then the concentration x;, can be calculated as the frac-
tion of the time that the end of the polymerized portion
spends in the cell a, in the sequence ... o1z ... . The
rates of elongation thus obtained coincide with (4.16)
and (4.19).

II. GROWTH OF CRYSTALS

5. Capture of Impurities

Capture of impurities by a growing crystal includes
at least three groups of phenomena: 1) atomic surface
processes: attachment and detachment of impurity par-
ticles at kinks, steps, and other surface configurations;
2) diffusion of impurities in the crystal in its inhomo-
geneous initial distribution; 3) diffusion of impurities in
the mother medium. %21

The least studied feature remains the distribution
coefficient involving the atomic processes at the sur-
face, the kinetic ‘“‘seeding’’ coefficient that figures in all
diffusion problems, and with which this section is con-
cerned.

As experiment has shown, the kinetic coefficient is
crystallographically anisotropic,'*®:**:1°7 and can
either decline or increase with increasing growth
rate. ') This dependence is the principal topic of
the theory.

The capture coefficient is

K =aplc=Jpley (J o+ Jo); (5.1)

Here xp, and ¢ are the concentrations of the impurity in
the crystal and in the medium near the crystallization
front (at distances small in comparison with the charac-
teristic macroscopic diffusion distances), J and Jg are
the fluxes of the main substance (A) and the impurity (B)
into the crystalline phase (the quantity J4 + Jg = Vis
the normal growth rate, if J, and V are expressed in
numbers of particles arriving per atomic site per sec-
ond). The fluxes J, are defined as the mean rates of
attachment and detachment of the two types of particles
for the given surface structure. In turn, the structure of

LR
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the surface (chap. I) depends on the degree of deviation
from equilibrium. With small deviations, we can ex-
press the fluxes phenomenologically within the frame-
work of the thermodynamics of irreversible processes:

o= % %gpllg, (5.2)
Here Aug is the difference of chemical potentials of the
component 8 in the mother medium and the crystal,
while the kg are the kinetic coefficients. An analysis
of relations like (5.1)—(5.2) for binary systems having
no cross terms in (5.2) has been made in'™'®!,

On this basis, phase diagrams have been obtained for
low growth rates and arbitrary concentrations of the
components.

The dependence of the kinetic (non-equilibrium) dis-
tribution coefficient on the growth rate can be easily
derived by assuming that: 1) the rates of attachment
and detachment w, g of impurity particles (units per
atomic site per second) do not depend on the amount or
identities of their neighbors (i.e., on the surface struc-
ture); and 2) the concentration of the impurity on the
surface is the same as the volume concentration (xp).
Then

Jp = 10,56 —W-pTB: (5.3)
and (5.1) and (5.3) imply that
K. “7+BIL':}.”,"V~ (54)

At equilibrium, V = 0, and K = K = w, g/w_p, while
near it
K = Ki(1 4 Vi1, (5.5)

The discussed simple model ignores collective proc-
esses on the growing surface and the ‘“‘immuring effect’’:
it is harder for an impurity particle to return to the
medium if it has failed to leave the surface before being
covered by the intrinsic particles. This effect is grea-
ter with greater growth rates. It manifests a mechan-
ism of crystal growth by numerous trials and errors.
The more trials that are made in finally establishing a
given structural site, the closer the crystal structure is
to the equilibrium structure.

In growth from the melt, the number of trials occur-
ring for each final attachment can be as high as 10° (for
V ~ 107% cm/sec ~ 3 x 107° sec™! and an exchange flux
of ~10'°—10" sec™. In growth from a solution, this
number is considerably smaller, since the activation
energy for attachment of particles is larger, and this
means that the exchange flux is smaller. For an activa-
tion energy E ~ 20 kcal/mole,"*'"! a concentration
cp ~ 107!, and atomic vibration frequencies
v ~10"% sec!and T ~ 650°K, the mean flux to the sur-
face is vcp exp (-E/KT) ~ 10° sec™ . Then, if the growth
rate amounts to ~3 x 107 cm/sec ~ 10% sec™, then the
average number of trials onto the faces will be ~ 10°%,
The rates at steps (and kinks) will be at least one or two
orders of magnitude higher. Thus, actually the number
of trials will be ~10. The numbers of trials will be
larger in growth involving surface diffusion. The num-
ber of trials is approximately equal to the relative
supersaturation at the growth site. If we assume that
the supersaturation at the surface is an order of magni-
tude smaller than in the bulk of the solution, then the
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FIG. 8. a) An impurity atom (strippled) at a kink; b) an impurity
atom covered by an intrinsic atom.

number of trials 10° corresponds to a reasonable super-
saturation of ~1%.

Let us proceed now to calculate for concrete models:
an isolated kink,'*?7%™] apq an assembly of kinks of the
same sign at a step™™! in an approximation involving
small impurity concentration (¢ < 1). We shall assume
that an impurity particle can leave the crystal only
from a position at a kink (Fig. 8a). Occurrence in the
surface layer, the edge of a step (Fig. 8b), or the bulk
of the crystal are equivalent to permanent capture. In
growth at an isolated kink (Fig. 8),

JA=w+(A§)U(A%), JB:w+(A§)U(A§); (5.6)

A
Here and below, w, (aﬁ) are the rates of attachment and
)
detachment of particles at a kink composed of the parti-
A
cles a, A, and u (Fig. 8), while U(aﬁ)is the probability

of its permanent conservation at this kink. Since the

impurity concentration is small, A = u = A, and we can
A

conveniently denote w, (aB >= WiaB: If we calculate the
A

probabilities of conservation by the formulas of Secs.
2—3, we have for small impurity concentration:

K = cWwyapWinn/[(Wsas+w_ap) (Wissa —W-a4) +W-apW _pal.

(5.7)

Let us now express w, g g in terms of the concentra-
tions and the temperature. Let us consider an assembly
of non-interacting kinks. Let ck denote the fraction of
the kinks occupied by impurity particles. At equilibrium,
the flux of impurity particles reaching the kinks is equal
to the reverse flux of particles from the kinks into the

medium. Hence, ¢, =W, op/W_ap.

Further, let us denote by cg and cg the fraction of the
sites in the surface layer and in the edge of a step oc-
cupied by impurity atoms. For these,

O c o0 o o Q o}
W.paCe = Wyaaly, ColCs=Cp/Ce=1W_pa/Wipa.

We can express the same ratios of the equilibrium
concentrations in terms of the binding energies of the
impurity particles to the particles of the crystal and the
medium, or more exactly, in terms of the heat of forma-
tion of the corresponding solid solutions: zero-dimen-
sional for the kinks, one-dimensional for the edges of
steps, and two-dimensional for the surface layer of the
crystal. It is very simple to write down the expressions
for the heats of formation for a lattice model for the
mother medium. As we know, this model assumes that
the particles of the liguid are located on the same space
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lattice as the crystal bordering on it, while the binding
energy (per bond) between the ‘‘solid”’ (s) particles egg
and the “liquid’’ (7) particles ¢;; are assumed to differ.
The energy of a single bond between liquid and solid
atoms is denoted as ¢;g, while the energy of a single
bond of an impurity particle with a ‘“crystalline’’ or
‘‘liquid’’ particle is denoted as €;q or ¢
Transfer of impurity part1c1es from tfle bulk of the

lattice liquid to a state of adsorption on the surface of a
simple cubic lattice requires a work & = (€57 — €5¢)
+ (€75 — €17), since this requires 1nterchange of places
of the impurity particle in question and one of the
¢‘liquid’’ particles bound to the surface by one bond.
The surface energy per unit bond is # = ¢

~ [(egs + €77)/2]. Using these two quantities, we can
express the work required to transfer an impurity par-
ticle from an end row of atoms of a step to a kink or
from the surface layer to the edge of a step. In both
cases, one is bond is replaced by il, and one sl bond by
ss. Hence, ‘the sought energy is

(ﬁil_sis)+ (Ess_esl)=8—2ﬁ~ (5.8)
Hence,
) o oo o
W_pa/ega=celcs :ck/fc)eﬁ e~ (-2 = (5.9)

Finally, we can introduce the distribution coefficients
for a kink, an edge, and a surface: Ky = ¢,/c, Ko =¢ e/
and K = ¢ /c and transform (5.7) into the form

K= Ki(140)/((1 + @+ olo+8,

0= (Wiaa—W_aa)/Wiaa.
(5.10)

If the rate of detachment is proportional to exp (- AE/T),
where AE is the change in energy of the system upon
detachment, then w_ 5 o/W_ ppg ~ £7° for transfer of
particles from a kink to the adsorbed layer, and
W_AA/W_ap ~ £ for kink-to-medium transfers.

w—AAw:AB

With increasing supersaturation at constant tempera-
ture, the capture coefficient of the impurity by a step
increases at small supersaturations for substances for
which the adsorption energy of the impurity is small in
comparison with twice the surface energy of the pure
surface (8 < 2., £ > 1). Conversely, the capture co-
efficient of a strongly adsorbed impurity decreases with
increasing supersaturation (¢ > 2., £ < 1). The ob-
tained result is quite understandable: the probability
that a particle of a strongly-adsorbed impurity will be
conserved at a kink is close to unity even at low super-
saturations. Hence, increasing the supersaturation
simply increases the number of intrinsic particles that
can attach to the crystal in the period of time between
successive attachments of impurity particles. Thus the
capture coefficient declines with increasing supersatura-
tion (cf. (5.4)). However, if the adsorption energy of the
impurity at a kink is small, then the impurity atom will
be captured only when the intrinsic particles succeed
in ““immuring’’ it immediately after it has deposited at
the kink, i.e., at high enough supersaturations. Thus the
capture coefficient increases with the supersaturation.

At low supersaturations (¢ — 0), (5.10) implies that

Kg — Ky /¢ = K. That is, a kink captures the impurity
in an amount corresponding to the equilibrium value for
a step, as must happen in the adopted one-dimensional
model. Nevertheless, under conditions close to equili-
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brium, a step must actually capture the equilibrium
amount of the impurity appropriate to the surface layer
and the interior. The reason for the discrepancy in-
volves the model of an isolated kink. It neglects the fact
that the succeeding rows of particles are deposited along
the edge of the step, thereby transforming edge atoms
into surface-layer atoms. A model taking into account
the movement of the aggregate of kinks on a step avoids
this defect.™™! Equation (5.10) should give a correct
answer at rather large deviations from equilibrium,
since under these conditions each kink acts independently
of the rest.

According to , a step inclined from the (01) direc-
tion on the surface of a simple cubic lattice by a small
angle whose tangent is p will give rise to a capture co-
efficient

[113]

Ke :%k (oYl rwoas(1-Fo)wrlJo+E-
e it—20[(c+Verdp{-opl™.
(5.11)

Q
Here we don’t find that Kg — K as ¢ — 0, such as hap-
pens in (5.10) in treating a single kink. Rather,

Kg — IC{)S, which is physically quite justified.

We can get some picture of the order of magnitude of
the ratio w_pa/W_ pA by assuming each of these rates
to be proportional to exp (—AE/T), where AE is the en-
ergy required to remove the particle. If a kink exchan-
ges particles preferentially with the adsorbed layer,
and the potential barriers are small, then AE_, g
= 2[(ej; — €3g) + (€7 — €7y)] = 2 €. If it exchanges with
the interior of the crystal, then AE_,pg =3 &. If, as be-
fore, we consider an intrinsic particle that has been
transferred from a kink to the adsorbed layer to be
““solid”’, we have AE_p o = 4[(€5 — €55) + (€15 — €7p)]
=44, If we consider it ‘‘liquid,” then AE_pp
= 2(€j; — €gg)- When an intrinsic particle is transferred
into the interior of the mother medium, AE_pa = AH,
where AH is the heat of fusion (or sublimation if the
medium is gaseous).

Kg deviates from the equilibrium value I%s more
rapidly with increasing supersaturation as the density p
of kinks decreases. When £ > 1, the coefficient Kg in-
creases with increasing o, while it declines when £ < 1,
At large supersaturations, the third term in the denom-
inator of (5.11) is small, and the expression (5.11) goes
over into the formula (5.10) for capture by an isolated
kink, as it should. Figure 10 shows the nature of the
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FIG. 9

FIG. 10

FIG. 9. Dependence on the supersaturation of the capture coeffi-
cient of an impurity by a step.

FIG. 10. Surface layer of atoms containing a step and a kink. O —
atoms of the fundamental substance; ©® — impurity atom.
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Kg(o) relation when ¢ > 1 and p is very small (i.e., at
low temperatures).

The derivation of Eq. (5.11) amounts to taking into
account the correlation between an impurity atom on the
edge and the nearest kink to it on the right (kink 1 in
Fig. 10). If, conversely, we take into account the corre-
lation between the edge and impurity atoms and the
nearest kink to the left (kink 2 in Fig. 10), while all
other kinks are considered to be distributed at random,
then we can easily calculate cg, just as was done above.
It turns out that here the K4 (o) relation is the same as
before, but with the quantity p£ playing the role of p.
Thus, for a strongly adsorbed impurity (¢ < 1), corre-
lation with the left-hand (approaching) kink is more sub-
stantial than with the right-hand (departing) kink, but
vice versa when £ > 1.

The treatment given above dealt with inclined steps
having p > 2¢ = 2exp (A/T). The smaller the slope of
the step is, the more Kg deviates from the equilibrium

value I%S with increasing supersaturation ¢. This devia-
tion must be greatest of all for a close-packed (01) step.
In order to estimate the capture of impurity by this step,
we shall assume that p ~ 2¢ in (5.11). In practice, the
kink density on a (01) step is not too small (a typical
value is ¢ ~ 0.1), while the supersaturation ¢ near the
step is usually much less than unity. Under these con-
ditions, the Kq(0) relation is considerably simplified.
O

When £ > 1, we get simply K = K. That is, the cap-
ture coefficient is practically independent of the super-
saturation. When £ < 1, we get

Ko — R0 ooy, (5.12)
where 0o = £*W_ Ap/W_pa- Wheno > oo, one can write
this formula in the form cg = W AR/ (W4 AA — W_ AA)-
This means that all the impurity particles reaching the
kinks are captured by the step. The transition to total
capture of the impurity reaching the kinks takes place
at lower and lower supersaturations as adsorption be-
comes stronger (i.e., as £ becomes smaller). The
quantity o, is extremely sensitive to the value of the ad-
sorption parameter £. Thus, in the case of exchange
between the step and the adsorbed layer, oo ~ £% In
order that the dependence of Kg on ¢ should be consid-
erable at supersaturations of ~1%, it suffices to have
£ =1/3.

In growth from a melt, the quantity
(W, AA — W= AA)/W_ pA, Which plays the role of the
supersaturation, is very small. This is because the
supercooling near the surface is usually small in com-
parison with the equilibrium temperature. On the other
hand, the adsorption energy & here cannot be large.

Hence we should expect that Kg ~ I%S in growth from a
melt. o

Let us find the coefficient Kg within the framework
of the applied model for the case of a condensed med-
ium. We shall consider the general case of an arbitrary
lattice, since the conclusions given above must hold for
any lattice, rather than a simple cubic one alone. Let us
assume in advance that an impurity atom in the interior
of the medium and one located in the crystal will have
the same energy of interaction with an adjacent particle
of the medium and the same vibrational free energy. In
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o}
this case, Kg = exp (n€/2T), where n is the number of
nearest neighbors in the lattice. We can easily general-

o]
ize the formula giving the ratio KS/I%k to the case of an
arbitrary lattice. Namely, if m is the number of inter-
phase bonds per surface atom of the crystal, then

I%s/lgk = ¢~ [(/2)-m] | Thys we get

o
K= elin—mE—m—2m)AYT,

(5.13)

If we assume in (5.13) that m = 0, then we get the
equilibrium distribution coefficient between the bulk of
the phases:

[%zen(‘ﬁ—-:f)ﬂ'. (5'14)

The calculations made above of the non-equilibrium,
kinetic distribution coefficient of impurities stem from
the assumption that the impurity particles incorporated
into the edge of a step or into the surface layer cannot
leave the crystal. Nevertheless, this is not always
s0,!'®) especially for particles having low energy of
adsorption.

This fact can most simply be taken into account by
the factor exp (~a/v7e) exp (—a/V7g), where v is the rate
of growth of the step, V is the normal growth rate, and
Te and 7g are the impurity relaxation times at the edge
of a step and in the surface layer. The activation ener-
gies for relaxation, as determined by the loss of impur-
ity, are: from an edge to the surface ~2 £, from the
edge to the interior 3 g, from the surface layer to the
surface 4 £, and from the surface layer into the interior
5¢€.

If D. is the diffusion coefficient of the impurity in the
crystal1 and h is the height of the step being deposited
(it can also be an echelon of elementary steps), then at
normal growth rates V >> Dj/h, all the impurity cap-
tured by the surface will remain in the crystal forever,
but(gztien VKL Di/ h, diffusional equilibrium must set
in.

Figure 11 shows the experimental variations of the
capture coefficients for aluminum and phosphorus by
the (111) face of silicon growing from the melt.!*1 4
substantial change in capture actually occurs at Va/Di
~ 1 (a~3x10® cm). The plateau corresponding to high

growth rates must be equal to I%s. According to (5.13)
and (5.14),
Ry =g R (5.15)
In the diamond structure, an elementary step on the
(111) face is formed by two atomic layers, of which the
surface layer is only one. Hence the capture coefficient
of an impurity by a step is

Ky = (K + g—‘l?“")/z. (5.16)

Experiment gives IC(> = 0.002 for aluminum in silicon,
and 0.35 for phosphorus.!*'*! Hence, according to (5.16),
the capture coefficients Kyg for a step are respectively
equal to 0.011 and 0.7. The experimental values of the
same quantities corresponding to the maximum values
in Fig. 11 are 0.012 and 0.75. The agreement for the
adopted model is even too good.

Capture of colloidal inclusions and the concept of the
adsorbed layer. We shall take up now capture of colloi-
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FIG. 11. Variation of the capture coefficient of aluminum (a) and
of phosphorus (b) by silicon.[!*]

dal inclusions from the mother medium by a crystal
growing from solution. This process differs consider-
ably from capture of an atomic impurity, but can also be
treated in the spirit of probabilistic notions.

Inclusions of colloidal dimensions (~10°~10"7 ¢m)
can be residues of the mother medium occurring near
the growth front at a distance ~10°—10"" cm. A number
of experiments have indicated that the properties of
boundary layers differ from those of the massive
liquid."**"*) 1n particular, the liquid in a layer of up
to 10°—10" cm is apparently partially ordered at the
boundary with the crystal. Here, according to
Abdrakhmanova and Deryagin,'*!” the time needed to
establish an equilibrium structure in the layer amounts
to minutes. The crystallochemical aspects of the struc-
ture of molecular adsorption have been studied by
Hartman''®! and by Kern and by Monier and their as-
sociates.!'1%-129121 The more strongly the layer of
mother solution is adsorbed on the growing face, the
more slowly this face must grow, and the more strongly
it must caPture inclusions. Indeed, as Petrov has es-
tablished,'?!? capture of inclusions occurs most inten-
sively at the faces of KNO; crystals whose atomic ar-
rangement is most favorable for epitaxy of ice and ad-
sorption of water. Kuznetsov!!?®*?! hag ghown that the
most slowly growing pinacoid face of corundum under
hydrothermal conditions shows the thickest adsorbed
layer of water upon contact with water vapor.

The presented facts permit us to imagine a pattern
of capture of colloidal inclusions as follows. We shall
consider growth in layers for the sake of explicitness.
Atomically smooth regions of the surface are covered
by an adsorbed layer of solution. This partly ordered
layer is inhomogeneous: it must contain regions that are
statistically enriched in some of the components of the
solution, regions adsorbed on defects of the surface,
regions differing from the others in their internal
structure, etc. The lifetimes in the adsorbed state for
all these fragments of the adsorbed film must differ.
Their amounts must be proportional to an exponential
factor containing the corresponding energies u. Appar-
ently, the sizes of the regions can fluctuate from atomic
to colloidal dimensions.

Each new crystalline layer deposited on the surface
clears away and/or partially orders the adsorbed layer.
The steps play the role of ‘‘blades’’ that clear away the
film. If a step finds a more strongly adsorbed region
on its path, then its motion is retarded, and a cavity
remains in the freshly produced layer. This can give
rise to an inclusion. Whether this alternative happens
or not depends on whether the island of adsorbed laver
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can persist until a new growth layer arrives and the
cavity is made deeper, whereupon its disappearance be-
comes even more difficult, etc. If the relaxation time of
the island is 7, its dimension in the direction perpen-
dicular to the growing face is I, and the normal growth
rate of the face is V, then the time required for
“‘immuring’’ the inclusion is //V, while the probability
of this event is exp (—1/V7). To generalize this relation,
one can say that the probability of capture is

~ exp (- Vo/V), where V, is the characteristic rate of
relaxation. The time, and correspondingly the rate, of
relaxation are determined by concrete mechanisms about
which nothing is yet known. In particular, an island can
disappear by being overgrown. The closed step sur-
rounding the island will overgrow it under the influence
of the supersaturation at the growth front and the ten-
dency of the linear energy of the step to a minimum.
The linear energy will play the major role at relatively
low supersaturations in the system and at low V, so that
the overgrowth time will prove to be independent of the
growth rate. In this case, the value of T will depend on
the kinetic coefficient of crystallization at the island-
step boundary. In general, the latter differs from the
kinetic coefficient for other regions of the surface. If
the remaining island is desorbed as a whole (which is
probable only for very small specimens ~ 1077 cm), then
7 is simply its lifetime to the instant of detachment. The
case will also be analogous when the island is struc-
turally rearranged, and perhaps loses a part of its com-
ponents. The list of mechanisms can be easily extended,
but this is hardly necessary yet. In one way or another,
we should expect that

Ve~ e-UT,

(5.17)

where U is the activation energy of the relaxation proc-
ess. Consequently, the concentration of colloidal inclu-
sions

C=Cyexp[—V V14 ul], (5.18)

where C, is constant. That is, we should expect a linear
dependence in the coordinate system 1n C, 1/V, and

In Vg, 1/T. The latter relation is obeyed more exactly
as the ratio u/T becomes smaller in comparison with
In C,/C.

The presented ideas couldn’t be tested until recently
for lack of experimental data. However, recently
Hadjee (see''**!) has made a thorough study of capture
of colloidal impurities by crystals of artificial quartz
growing from hydrothermal solutions containing several
weight percent of Na,CO;. A series of arguments is
given in'®*?! indicating proportionality between the
amount of the Na,O impurity in quartz and the amount of
colloidal inclusions in it.

Figure 12 shows a treatment of the data for the basal
plane of quartz in coordinates of In C and 1/V. The
slope of the obtained straight line determines V; for a
particular value of the temperature.

The temperature-dependence should have been deter-
mined from a set of slopes on the graph of 1n C plotted
as a function of 1/V. Owing to lack of such data, the
quantity used was the temperature-dependence of the
rate beyond which the amount of inclusions in the crys-
tal begins to grow markedly. Of course, this is actually
not a strictly defined rate, but is a narrow range in the
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vicinity of V., as is implied by (5.18). The V.(T) rela-
tion thus obtained is plotted in Fig. 13. The correspond-
ing activation energy is ~ 38.6 kcal/mole. The absolute
value of V,, in the studied temperature range amounts to
(0.4—1.4) x 107" cm/sec.

For comparison, let us recall that the activation en-
ergy for the kinetic coefficient for the basal plane of
quartz in an alkaline solution amounts to 20 kcal/mole,
while it is 14 kcal/mole for the minor rhombohedral
face, and 40 kcal/mole for the major rhombohedral
face. [111]

It is essential to note the strong anisotropy of capture
of inclusions: their amount in the different growth pyra-
mids differs severalfold. Hence, we must associate
capture specifically with surface phenomena. Formation
of colloidal particles in the bulk of the melt, if it hap-
pens, should affect only the total number of inclusions,
i.e., the pre-exponential factor C,.

The film of solvent, together with the impurities,
may be responsible for the existence of a critical super-
saturation required for onset of growth. Namely, the
islands in it may form a palisade of blocks against step
movement."®! Growth also stops when the time for
establishment of equilibrium in the film, which com-
pletely shields the surface, becomes less than the time
that it takes for renewal of the surface, i.e., the time
for deposition of a new layer. %

6. Collective Interaction in Crystallization Kinetics

Let us continue to treat the growth of a three-dimen-
sional crystal by movement of an isolated kink, while
dropping the assumption that the concentration of one of
the components of the binary system is small. Now we
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shall concentrate attention on the dependence of the
atomic structure (i.e., the packing of the different types
of particles into the crystal structure) on the conditions
of crystallization. Of course, such a dependence can be
manifested only as long as the structure of the newly
formed crystal does not change after it is formed. In
particular, a necessary condition for satisfying this
requirement is that the diffusion coefficient in the solid
phase should be small.

The most convenient case for analysis is when the
concentrations of the components in the crystal remain
constant, independently of the conditions of growth. The
simplest example satisfying this requirement is a
binary system of equivalent (but not identical) particles
A and B with rates of detachment that can be represen-
ted in the form

w_ (ag) = ve~ CapT gt/ (6.1)

Here, for the equivalent particles,
€44 =Epp, E€ap=Epa=MEaa, (6.1')
w, (ag):w+. (6.1")

If we consider the lattice to be preassigned (e.g., a
simple cubic lattice), then the structure of the crystal
will be characterized by long- and short-range order in
the distribution of the A and B particles over the sites.
An ideally ordered crystal has alternate A and B atoms
at the sites, and consists of interpenetrating sublattices
1 and 2. As we know, the degree of long-range order 7
is the ratio of the difference of the numbers of A and B
atoms at the sites of sublattice 1 to the total number of
sites of type 1. Each temperature of a growing crystal

has its own thermodynamic-equilibrium value 1(1) of the
parameter. However, the actual order in the crystal
grown at this temperature differs: it depends on the
conditions of crystallization. We can naturally call this
quantity the kinetic value of the long-range order param-
eter.

I the mother medium is disordered with respect to
distribution of A and B particles (gas, liquid, or amor-
phous), while the events of attachment of particles are
random, then the kinetic value of n must be smaller
than the thermodynamic value. Correspondingly, the
kinetic value of the entropy is larger that the
equilibrium value for a given temperature of crystalliza-
tion. When the flux of particles into the crystalline phase
is large in comparison with the counterflux, the crystal
will no longer grow in an ordered form. On the other
hand, if A and B form an ordered alloy with a Curie

temperature T¢, and if '% < T, then the long-range
order parameter will be close to the equilibrium value
when crystallization is slow enough. That is, it will not
differ greatly from unity. Hence, at one particular tem-
perature of the crystal, the latter will have an order
ranging from zero to unity, depending on the degree of
deviation from equilibrium. Will this variation be
smooth or abrupt? To answer this, we turn to Fig. 8.
Each new g particle attaching to a kink will be conserved
there forever or not, depending on the composition of
the kink (the identities of a, A, and u) and also on what
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type of particle (y) will deposit at the kink after it (see
Fig. 8b). In turn, the probability of conservation of this
new particle depends on the probability of conservation
of the next particle that covers it, etc., in addition to its
immediate surroundings. Hence, the probability of fill-
ing a given lattice site is determined by its entire struc-
ture formed up to the given instant, i.e., by a collective
correlational interaction. On this basis, we can natur-
ally expect that there will be a fully determined devia-
tion from equilibrium, with an order-disorder transition
occurring in the growing crystal. That is, a distinctive
kinetic phase transition must occur. The supersaturation
or another parameter characterizing the deviation from
equilibrium will play the role of the temperature.

An approximate theory of the described processes
has been developed in*®’ | and it consists in the follow-

ing. Let x{!) be the probability of finding a particle of
type a at a site of the ith sublattice (i = 1, 2). Then

2D =142, 28 =(1—0/2, } 6.2)
2y =(1— )/2 o =(1+n)/2.
Let us denote
2.3 % % ®
(o) = () - )
Ap » A v it
wy, n u (6.3)
(o) o () - (4) + 3 (1)
n A
The first of these quantities is the probability of
kX
attachment of a y particle to the kink ¢g , while the
A

latter is the probability that this kink will lose the par-

ticle 8. Further, let us introduce the mean probabilities

P and q‘Y | neglecting correlations in the types of
apBy aBy . .

adjacent particles during the averaging:

— ny
[N D40 @), ()
p((m’v ! p(aEx) Xy 'xy, Xy

®hyn
O q(a’é")
*AXR Ap
and analogously for i = 2, replacing the indices of the
sublattices by their opposites in (6.4). Here and every-
where below, the superscript (of the sublattice) refers
to the first of the subscripts (types of particles).

Let us denote by US?S the probability of conservation

(6.4)

&(1)1(1)3,(2%(2»

at a kink of the last particle of the growing series
(... af), with o belonging to the ith sublattice. Further,

let Z)ng, = \Ilg). Both sublattices and both types of par-

ticles are equivalent, and hence

VY = ¥ (6.5)

\Ir(‘) 11;11) .

\I;(") =¥,

Let us assume the elementary rates to be expressed in
the form of (6.1), and note that in this case Pagy = Pog
Then we have, after considerations analogous to those
of Sec. 2, a system of equations for ¥ A and ¥p:

Yall —(Sap+¥a) = = Wa/(Saa+ V),

Vel —(Spa -+ ¥5) 1= ¥Yal/(Sps+ Ya), (6.6)
st -awlh
In an approximation neglecting correlations,
2 xéﬂpéiv) :11(,2)’ (H U(")/\y(2) (6.7)
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Hence, upon taking (6.2) into account, we arrive at a
condition which, together with (6.6), determines 7(q, R),
\I’A(qy R)’ and \I’B(q: R):

A+mMU—=Sap+ Y= —M1—(Sga+ Yp) . (6,8)

In proceeding to analyze the solution, we note that
¥a(q, 1) = ¥p(q, n). That is, the equation

Yalg, 0) =¥p(g, 0)= ¥ ={2—Ssp— Saa)—
(2= Sap—San)? - 4(Sap—Saa (1—=Sap))l'?y2, 0=0,
(6.9)
is a solution of the system (6.7)—(6.8) in the disordered
phase. It is not the only one. It is easier to seek the
other branch separately in the region of small and large
supersaturations.
The equilibrium value of the parameter q = q is de-
termined by the equation

S34S5h— SaBSHA (San—1) (Sza—1) =0, (6.10)

Here a positive value of the left-hand side corresponds
to growth, and a negative value to evaporation.
If the equilibrium temperature is appreciably lower

than the Curie temperature (8 < qg), then a crystal
having n ~ 1 must grow near equilibrium, i.e., an or-
dered phase. Hence, at equilibrium we should expect

o
that Rq*™ ~ 1, where R = v/w,. The probabilities of
detuchment and attachment in (6.3) (and this means S, B

as well) depend only on the ratio R (and also on q and
7). If we assume for an estimate that w, ~ 10° sec™,
which corresponds to direct incidence of particles on
the kink at a pressure of ~10 Torr, and that

v ~ 10" sec™!, we get R ~ 10°. Model experiments have
been performed for R = 10* and R = 10° with m = 2
(eAB = 2eaA). Taking into account the large value of

R, we find as a preliminary that 8 & 1. These consider-
ations indicate that it is expedient to seek a solution by
expanding Saﬁ in a series in (1 — n), taking into account
the smallness of q, as well as of ¥4 and ¥g. The corre-
sponding calculations give

A Ryim__ 2mt2) -
R (6.11)

W, = W, /Rg™,

The condition of equilibrium in the form ¥4 = 0, °
which is equivalent to (6.9), leads to an equation for q:

1__1{23'71 . 5;)4(m*1) (6.12)
and an equilibrium long-range order parameter:
B 1 —afionn, (6.13)

When m = 2 and R = 10%, we easily find that § = 0.215,

7 = 0.998; and when R = 10°, then G = 0.100, % = 0.9998
(in good agreement with the results of model experi-
ments (Sec. 5)).
The growth rate in the approximation under study is:
V=w ¥, =w,{1— Ry —5[R:q2on+2]1}, (6.14)
For m = 2 and R = 10%, Eq. (6.14) gives

1 av -
o —27.9,

whereas the ‘“‘experimental’’ value of this quantity is
~—28.

b
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In the vicinity of the kinetic phase transition, n < 1.
The differences ¥4 — ¥ and ¥p — ¥ are also small,
where ¥ is the solution for a disordered phase in (6.9).
If we linearize (6.6) and (6.8) by using these small
parameters, we get a homogeneous linear system of
equations in W5 — ¥, ¥g — ¥, and 1. The condition for
it to have a solution, namely, that the corresponding de-
terminant & should vanish, gives an equation for the
critical value q.p, i.e., the temperature of the kinetic
phase transition.

Numerical solution for the condition 4 = 0 gives der
= 0.12 for R = 10%, and qcp = 0.035 for R = 10° (m = 2).
In model experiments, the kinetic phase transitions oc-
cur when g¢pr = 0.14 and q,, = 0.046.

Equations (6.6) and (6.8), after they have been expan-
ded up to the third power in 7, ¥5 — ¥, and ¥g— ¥,
inclusive, indicate the way in which the order parameter
vanishes as q — ¢, (@ = q,,). The symmetry proper-
ties discussed above make %he quadratic terms in 7
vanish in the expansion, so that

nZ — w6 =0, (6.15)

where % is a function of q. Hence, in addition to the
solution n = 0, we have also another one:

n= (46", (6.16)

The latter vanishes at the kinetic phase-transition point,
since « generally has a first-order root at q = qc¢yr:

(6.17)

Thus, the degree of long-range order in a kinetic
phase transition vanishes according to the same law as
at a point of thermodynamic order-disorder phase tran-
sition in the Bragg-Williams approximation. It is
a propos to note here that the averaging procedures
used in (6.4) and (6.7) also neglect correlations. In this
sense, they are analogous to the Bragg-Williams ap-
proximation in the thermodynamic theory.

Using the symmetry properties in n and the equality
V=w,WpA¥g/(XpA¥p + xg¥a), we have for |n| < 1:

N~ (T*‘E:I)I ’2.

q- - fer,

. w, v,
= W (@ b) W — a2y, (6.18)

9> 4er;

Here a and b are functions of g and R.
Equations (6.18) and (6.17) imply the existence of a

cusp on the graph of V(q) at q = qer (see below, Fig. 23).

We considered above the situation when c(f < qc, as
is shown schematically in Fig. 14a. The dotted lines in
Fig. 14a show the thermodynamic 7(q) relations, while

the solid lines show the kinetic relations. If ((1) < lod)
then we can expect n(q) relations like Fig. 14b, but these

like Fig. 14c when gq¢ < d. When qce < d, an ordered
phase may not appear at all, although the crystal is
growing in a region where it is stable. The latter is not
very probable under actual conditions, since the crystal
will rearrange even in the solid phase.

The model discussed here of an isolated kink on a
step is too simple, of course, to expect quantitative
agreement between the characteristics derived for it
and a real situation in which there are many kinks and
steps. Furthermore, a crystal actually exchanges parti-
cles not only directly with the mother medium, but also
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with the layer of adsorbed surface particles. The latter
implies an increase in the effective values of the rates
and energies of detachment and attachment of particles,
and an improvement in selection of particles, i.e., ap-
proach to the equilibrium structure.

However, collective interaction still holds in an ac-
tual crystallization, but is manifested only in a more
complex way, owing to the interaction of kinks and
steps. However, since it is precisely the collective
interaction that gives rise to the kinetic phase transi-
tion, it must actually exist. In this regard, we should
consider the behavior of alloys that become ordered
after having formed a disordered crystalline film when
sputtered on a cold enough substrate. We should expect
a kinetic phase transition upon lowering the substrate
temperature for such substances.

The kinetic transition discussed above is an analog
of a second-order thermodynamic transition. Appar-
ently, kinetic analogs of first-order transitions also ex-
ist. These might prove to be transitions from stable
modifications to unstable ones upon increasing the
deviations from equilibrium (supersaturation, super-
cooling) under which the crystal is growing. Here we
should recall the formation of amorphous films of ger-
manium, silicon, antimony, or selenium, when sputtered
on a cold enough substrate. Unfortunately, I know of no
data on the nature of the transition from crystalline to
amorphous modifications as the kinetic conditions are
varied.

a) Diffusionless crystallization. In the general case,
collective interaction determines not only the structure,
but also the composition of the crystal. Hence, the exis-
tence is not ruled out of kinetic phase transitions in the
concentration of one of the components: at growth rates
above a critical value, the distribution coefficient must
become unity, and possess a singularity. Such a situa-
tion would imply a transition to diffusionless crystalliza-
tion, if growth is occurring from the melt.***! Of
course, diffusionless, or more exactly, ‘‘selectionless’’
crystallization can occur from a gas phase as well. A
calculation has been made on the basis of this hypothe-
sis'?* only for a one-dimensional model, which ex-
cludes singularities. As one should have expected, the
positions of the impurity atoms in the one-dimensional
‘‘crystalline’’ chain proved to be correlated at low
growth rates, and they gradually became random as the
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FIG. 15. Elementary plate of a polymer crystal having a single kink
on the edge. The polymer chain is indicated by the dotted lines.

rate was increased. The transition occurred in the reg-
ion where the mean time for irreversible transfer of a
particle from the one-dimensional liquid phase into the
crystalline phase became less than the time for diffu-
sional exchange of places in the liquid phase.

b) Growth of crystalline polymers. Figure 15 makes
evident a typical mechanism of growth of a polymeric
crystalline layer. A new strip is being produced at its
edge by packing of the chain-like molecules, which are
indicated in Fig. 15 by dotted lines. Each new fold is
represented in Fig. 15 by an elongated parallelopiped.
One of the central problems of the theory is the relation
of the mean thickness X of the layer to the conditions of
crystallization. The thermodynamic theory“” deter-
mines A from the free-energy minimum at the tempera-
ture of crystallization. The kinetic approach, ¢
which is briefly discussed below, takes into account
substantially the degree of deviation from equilibrium.

The length of each new segment being packed in a
kink on the edge of the crystal (see Fig. 15) may be
arbitrary, in general, from 0 to «. Hence, growth by
the mechanism reflected in Fig. 15 is identical to the
growth of an ordinary crystal from particles of an infin-
ite number of types. The work required (and this im-
plies, the rates as well) for formation and decomposi-
tion of a segment of length g depends on the lengths of
its nearest neighbors o and A, i.e., w, = w,(@gr). When
A = const., the effect of the substrate is the same for all
positions of the kink, and the problem is reduced to
growth of a chain (Sec. 2) with a continuous spectrum of
types of particles: «, 8, ¥ ... taking on (with varying
probabilities) any values from 0 to «. The results of
Sec. 2 are easily generalized to this case by replacing
the probabilities Xys X etc., by xada, xaBdadﬁ, etc.,
and replacing summation by integration. The fundamen-
tal algebraic equations (2.4) and (1.15) are transformed
into integral equations:

P@) = [ w. (@ B) %) - (@ B)+ v B)1 B,
0

- (6.19)
z(@) = { 2@ ws (@ B) [w- (2, B) + ¥ @) ¥ (2) . J

0

The problem posed by these relations hasn’t been
solved yet. Furthermore, we don’t know the behavior of
a system with rates w, depending on three or four sub-
scripts. However, general considerations and the re-
sults of this section allow us to expect collective effects.
In particular, it is precisely the collective interaction
that must give rise to the experimentally-observed sta-




GROWTH OF COPOLYMER CHAINS AND MIXED CRYSTALS

bility of the thicknesses of polymer crystals, which
differ under different conditions of growth. Consider-
ably simpler models have been studied up to now.
Namely, the pioneering theory of Lauritzen and
Hoffman™®' assumes the lengths of all segments to be
constant and to be identical with the critical size of the
nucleus in the direction parallel to the fundamental reg-
ions of the chains. Frank and Tosi™“®’ have treated the
kinetics of motion of a kink (Fig. 15) by the method of
Volmer *"**) (Egs. (4.20) and (4.21)). They allowed the
height g to vary once, under the condition that A = o

= const. (after the variation, they also assumed that

B = const. = a, A). The rate of motion of the kink natur-
ally depends on g8 and A. Using it as a weighting func-
tion, we can find the mean value of the difference g— a
(over the assembly of identical plates having different
values of 8). The value of A for which this mean
vanishes is adopted in“®! as the mean thickness of the
layer.

IV. COMPUTER SIMULATION OF GROWTH
7. Chain Growth

The simulation program was written to correspond
with a sequence of events occurring upon crystalliza-
tion. It began with selecting a particle o (o = A, B) as
the initial particle. At the first instant of discrete time,
an A particle should have a probability w_ oA / %7 Y108

of attaching to it, and a B particle should have a proba-
bility w+aB/EW+aﬁ' If a B particle has attached, then

three possibilities can be realized in the next step:
attachment of y (y = A, B) with a probability p,, gy °T
detachment of g with a probability q, B The values of

wh
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the eight quantities p , By and the four quantities q,
were found from assigned rates w, ap’ using Egs. (2.1).
Any particular step (attachment of A or B, or detach-
ment of the last particle) was chosen by a random-num-
ber generator. The latter produced at each instant of
discrete time (i.e., at each step) a random number be-
tween zero and unity. This interval was divided into two
parts proportional to the probabilities w, , A / %}W+ aB

andw,_ g /2w to decide the problem of attachment

+af
to the single initial particle a. If the random number
was in the left-hand part of the interval, an A particle
was added (written in memory), and a B particle if in
the right-hand part. For chains having two or more
particles, the interval (0, 1) was divided into three parts
proportional to p, BA> PagB: and q, g Simultaneously,
a tally was taken of the number of cases in which
the end was formed of any particular pair. Thus the
quantities x _ , were determined. Analysis of the chain
in the intervals between steps gave the quantities Xy
and X, g as averages over the entire chain including its
end. The latter introduced no appreciable error into the
result when the chain length (usually ~ 10° particles)
appreciably exceeded the dimensions Dc/ V of the region
subject to fluctuations. The chain grew to a length of
10* in 2—3 minutes of machine time on the IBM 7094
(the time increases with decreasing supersaturation).
The first group of initial parameters provided for a
test of (3.14) for

Wy ap = WCq, w, =2, Ca=cp==0,5,
K
W_gp = veab', €AA=Epp; E€ap=128,4, (7.1)
v=3, R=3/2, g=:0,3.

The results of the experiments, together with the

Vpa;::n:)_f *a *B *AB *Ba
eters
(formula exp. theor. exp. theor. exp. theor. exp. theor.
number)
0.500 0.500 0.297 0.297
7.1 0.499 | 0.500 | 0.501 0.500 0.294 0.296 0,295 0.296
0.500 0.500 0.297 0.297
0.606 0.394 0.296 0.269
(7.2) 0.603 | 0.608 | 0.397 0.392 0.270 0.270 0.270 0.270
0.621 0.379 0.278 0.278
0.621 0 379 0.278 0.278
0.868 0.132 0.115 0.115
(7.3) 0.877 0.123 0.110 0.110
0.877 0.123 011t 0.142
Value of x x v  Mean number of
parafii- AA BB steps for attach-
eters ment of one
(formula | exp. theor. exp. theor. exp. theor. | particle (experi-
) mental)
0.202 0.203 0.913
(7.1) 0.204 0.204 0.206 0.204 0,940 0.943 3.5
0.202 0.203 0.913
0.336 0.125 0.424
(7.2) 0.333 0.338 0.126 0.122 0.423 0.406 10.5
0.342 0.101 0.340
0.345 0.100 0.339
0.753 0.017 0.304
(7.3) 0.766 0.013 0.303 9.5
0.766 0.011 0.278
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values calculated from (7.1), are given in the first row
of the table, which contains values of x,, X, 3, and V.
The rate expresses the mean number of particles attach-
ing per unit time. The time scale is determined by the
rate w,. The last column of the table contains the ex-
perimental numbers obtained by dividing the number of
particles in the chain by the total number of attachments
and detachments required to build it. The second row of
the table corresponds to the values (in the notation of
(3.11)):

Wiap=1,

n=1,

W_qap :VﬂeeuB/Tv
m=2, vg=4.

q=0,7, vyi=2, (7'2)
The lack of symmetry in the properties of the particles

is expressed here in differing ‘‘vibrational frequencies’’
vg. The third row also provides for dissymmetry in the
rates of incidence:

Wyaa=1, wy4p5=0,7, wypa=0,2, w,pp=0.3,
W_gg=vge"B' T, m=2 n=1, (7.3)
a=005,  vi=1.5, v5—6.

The theoretical values for cases (7.2) and (7.3) were
found by numerical solution. Several trials were made
for each set of parameters, with different values of the
starting point in the random-number generator program.
Hence there are several numbers in all the columns
containing experimental data. The table indicates good
agreement between the calculated and experimental
values, and again confirms the exactness of the devel-
oped theory.

%wjﬁ % :
R

l<——— 99 particles —
FIG. 16
FIG. 16. A kink at the edge of a two-dimensional crystal.
FIG. 17. Cyclic edge conditions in the construction of a two-dimen-
sional net on a computer lead to building a helical structure.

FIG. 17
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8. Growth of a Binary Net

In these experiments, a binary two-dimensional crys-
tal grew by motion of a single kink along its edge (Fig.
16). When the kink had advanced to the right to the end
of a horizontal row of atoms, the program provided for
possibility of attachment of new particles to the begin-
ning of the next row, so that growth of the crystal took
place by winding a row of atoms upon itself (Fig. 17).
The rates of attachment and detachment obeyed the
equations

wi(of) =1, w_gg=welBTT 5 _q o (8.1)

A A
This predetermined the equivalence of the A and B par-
ticles and the actually-observed equality of their concen-
trations (xp = xg = 0.5). The object of study was the
order of distribution of the particles over the lattice
sites.

The program for motion of a kink was written in the
same way as that for motion of the end of a chain (Sec.
7). However, the rates now depended on three indices
(see (8.1)). The growing crystal consisted of rows of 99
particles each (see Fig. 16). Crystallization began with
ordered and disordered seeds having different concen-
trations of A and B, and consisting of ~300 particles
(~ 3 rows). The parameter varying from trial to trial
was the ratio R = y/w,. For a constant vibration rate v,
this meant a change in the vapor pressure in the sys-
tem. The temperature T of the crystal was assumed
constant: g = 0.1.

The experiments showed that equilibrium of a dis-

(o]
ordered seed with the medium occurs at Ry = 6.15
O
x 10° (Rg' = 1.54 x 10™*), while an ordered seed does not
O
change in dimensions for a rather long period when R,

= 9.774 x 10° (B;" = 1.03 x 10™). This phenomenon is
quite natural, and is explained by the difference in
chemical potentials between an ordered and a disordered
crystal. Correspondingly, the equilibrium vapor pres-
sure over an ordered crystal is less than over a disor-
dered crystal. Here the relative difference between
these pressures (the relative supersaturation that the

FIG. 18. A two-dimensional crystal grown at a supersaturation of
~ 14%.
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FIG. 19. A two-dimensional crystal grown at a supersaturation of
~ 230%; a) on an ordered seed; b) on a disordered seed.

one crystal could create over the other) (ﬁa‘ ~ RaY/R3!
was quite appreciable, being ~50%.

The relation of the crystal structure to the rate of
crystallization (or the supersaturation) was determined
in experiments with ideally ordered seeds. The struc-
tures of the two-dimensional crystals are shown in
Fig. 18—20, which are photocopies of the printout of the
machine. The numerals 1 indicate particles of type A,
and the numerals 2 indicate particles of type B. The
crystal, a region of which is shown in Fig. 18, was
grown at R™ = 1,17 x 10™, i.e., at a supersaturation of
~14%. This region is practically completely ordered.
Its only defects are two misplaced atoms and a small
(5-particle) antiphase domain. At R™' = 3.3 x 10™*, which
corresponds to a supersaturation of ~230%, the crystal
now contains a considerably higher density of boundaries
of antiphase domains (Fig. 19a). When R™' = 10 x 107,
i.e., at a vapor pressure ten times as high as the
equilibrium pressure, the density of domain boundaries

is so great that it is almost impossible to discern
ideally-ordered regions of dimensions greater than ten
interatomic distances (Fig. 20). It is evident from what
I have said that it is practically impossible to grow a
perfect crystal (in the sense of lacking domain boun-
daries) on a disordered seed, since growth on this seed
begins only at supersaturations that ensure an apprecia-
ble density of defects.

In growth on a disordered seed, the domain boun-
daries run directly from the seed into the body of the
crystal. However, the mean density of boundaries at a
sufficient distance from the seed does not depend on how
many defects it has (Fig. 19b).

Single domains (arising at supersaturations of
20—30%) have the form of bands stretched out at a
small angle to the direction of motion of the crystalliza-
tion front, as we see in Fig. 21 (in this case, we mean
by the front the row of atoms along which the kink
moves). Sometimes a domain tapers off before the end
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of the crystallization, but considerably more often, it
continues to the edge of the crystal (Fig. 21). The elon-
gated shape of the domains is quite natural: approach of
two boundaries implies approach of their exit points on
the growth front, and an increase in the local density of
surface energy. Hence, it has a low probability. The
interaction between the exit points of the boundaries at
the growth front, which determines the mechanism of
this repulsion, is purely correlational, and is effected
by the kink.

With decreasing supersaturation, the radius D./V of
correlational interaction increases. This means also
that the width of each domain strip must increase in
proportion to Dy/V (D, is the diffusion coefficient of the
kink). While each domain will be practically completely
ordered, the order of the crystal as a whole will ap-
proach zero as its dimensions increase.

Figure 22 shows the relation of the rate of motion of
the kink to the ‘‘vapor pressure’’ in the system, i.e.,
the parameter R™! = w,/v. The velocity of the kink was
calculated as the number of particles deposited per total

=

o ey o 0o R
R e b b e Sl B W 7 0

-

e

A. A. CHERNOYV

time caloulated h . aB\, (afB
me calculated by the machine, E,)SN()\)T(A)’

where N( ﬁ) is the number of cases in which the kink

a
A
is formed by the triplet ®°. The effect of a single anti-
phase domain on the growth rate could be traced in a
trial with R™ = 1.25 x 10™ (a supersaturation of ~20%):
the velocity of the kink was 0.318 before the domain had
appeared, but 0.297 afterward.

9. Growth of a Three-Dimensional Crystal

The main content of the experiments described below
on three-dimensional crystallization was to test the
hypothesis of kinetic phase transitions (Sec. 6).

Crystallization in the three-dimensional case was
also simulated by motion of a single kink along a step
(see Fig. 8). The probabilities of attachments and de-
tachments were determined by the expressions (6.3),
while the time of crystallization was calculated, as in
Sec. 8, by the formula

FIG. 20. A two-dimensional crystal grown at a supersaturation of
100%.

FIG. 21. A solitary domain in the form of a strip at a supersatu-
ration of 25%.
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2 N

afxAxw
© (i) = (w- (o) + % we (B

The program for motion of the kink applied not only
cyclic conditions in going from row to row within a
given layer, but also from layer to layer: the last row
of the preceding layer was considered to adjoin the first
row of the next layer. Each row consisted of 99 parti-
cles, and each layer of 49 rows, i.e., of 4851 particles,
while the entire crystal had 32 layers, i.e., 1.5 x 10°
particles. Under the described cyclic conditions, the

(ePim).
where

180+
160 +
140
120 -

100
sk FIG. 22. Rate of motion of the
601 kink as a function of the vapor
Wk / pressure in the system.
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geometric shape of the crystal is a torus having one
kink on the surface.

The three-dimensional crystallization was performed
with equivalent particles A and B, since it was assumed

that w,{aB | = W, for any o, 8, k, and A:

% )T
w. (ag — velSaprexpteag)/T
EAB:33A225AA: 2535.

Two series of trials were run for two fixed values of the
ratio R = y/w,: 10% and 10°. The sought quantities were
the velocity of motion of the kink and the degree of long-
range order 1.

Figure 23 shows the results for R = 10°. The 75(q)
curve clearly shows the existence of a critical value
der = 0.1385 at which 7 vanishes. That is, transition
occurs from an ordered to a disordered phase. The
trial for R = 10° gives q., = 0.046. Equ111br1um between

the crystal and the medium occurs at q = 0.215 for

R =10%, and § = 0.10 for R = 10°. Since both of the
corresponding equilibrium temperatures are below the
Curie temperature, the crystals at equilibrium and near
it are almost completely ordered.

The binary correlation function (x5 g/xpxpg) — 1,
which determines the degree of short-range order, has
a cusp at q = q,,, (Fig. 24).

10 MCAYER N
081 .

FIG. 24. Short-range order as 06 .
a function of the temperature of 04l
crystallization. B
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FIG. 25. The ninth layer of a 32-layer
three-dimensional crystal grown by shuttle
motion of a single kink.
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The structure of a crystal grown at low supersatura-
tions is highly perfect. As in the two-dimensional case,
it is disturbed only by isolated atoms occurring in
foreign sites, as well as by small antiphase domains.
The number of these defects increases with increasing
supersaturation. Figure 25 shows the ninth layer of a
crystal grown at g = 0.16 for R = 10*, and having 5
= 0.947. The regions filled with zeroes have a perfect
structure. The domain boundaries are sketched in. The
domains that extend into the previous layer are indica-
ted by arrows to the left, while arrows to the right are
drawn from those that extend into the next layer. New
volume domains begin most often with the formation of
nuclei, or planar domains of two or three, or much more
rarely of five or six particles. The shape of the domains
is rather isometric. For example, the number of parti-
cles in the cross-section of domain No. 2 by the growth
front varies thus: 6, 11, 11, 4. Domain No. 1 ends in the
layer shown in Fig. 25, and has 2, 9, 8, and 6 particles
in the previous layers. The reason for such substantial
difference in shape of domains in two- and three-dimen-
sional crystals consists in the fact that, in the latter
case, a single domain emerges at the growth front with
a closed contour that tends to contrast its length (i.e.,
the surface energy of the domain wall) upon growth of
the next layer. This leads to rapid tapering-off of vol-
ume domains.

The number of domains declines rapidly with in-
creasing dimensions. If domain formation obeyed the
thermodynamic theory of fluctuations (the theory of
nucleation), then we should expect the logarithm of the
density of domains of a given size to decline linearly as
their surface energy increases. However, the decline
is actually slower. This is still another confirmation of
the inapplicability of a purely thermodynamic treatment
to the problem of the defect content of a growing crys-
tal.

The velocity of motion V(q) of the kink is shown in

Fig. 23. In the region of values q ~ q, where 1 ~ 1 and
varies slowly, the growth rate increases almost linearly
with decreasing q. However, as we approach q.p, the
growth rate increases more slowly, while the function
V(q) has a cusp at q = . Apparently, the reason for
this consists in the fact that the decrease in the long-
range order 7 in the regionq 2 Qer increases the
chemical potential of the crystal. In turn, this reduces
the effective supersaturation in comparison with the
value corresponding to 7 ~ 1 and the given value of q.
After 7 has vanished, the crystal structure varies
slightly, and only with regard to short-range order.
Hence, the V(q) relation for q < q¢r resumes its previ-
ous almost-linear trend.
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