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1. INTRODUCTION

1.1. Fundamental Hypotheses

1.1.1. Laws of conservation and of symmetry play
a fundamental part in present-day hadron physics.
Arguments based on symmetries and conservation laws
enable us to make predictions about the mass spectrum
of hadrons and the amplitudes for various processes
without considering the dynamics of strong interactions
(SI).

In the general case the existence of a symmetry of
the Hamiltonian means that the levels of the system are
degenerate. If, for example, a particle moves in a cen-
trally symmetric field, so that the Hamiltonian is in-
variant under rotations around the center, the energies
are degenerate for states with a fixed value of the orbi-
tal angular momentum and various values of the projec-
tion of the angular momentum along one of the coordi-
nate axes. The transformations of the group inter-
mingle these states with each other.

A well known example of a symmetry in elementary-
particle physics is the isotopic invariance of SI. It turns
out that mesons and baryons with different electric
charges and the same values for the other quantum
numbers are grouped in families of particles which are
called isotopic multiplets. The strong interactions re-
main unchanged under isotopic transformations which
intermingle the states within a multiplet. Examples of
isotopic multiplets are the proton and neutron, the Ή*,
π°, and τΓ mesons, and so on.

Isotopic invariance is not rigorous. For example,
the masses of the proton and neutron differ by 1.3 MeV,
and those of charged and neutral pions by 4.6 MeV. The
ratio of these mass differences to the characteristic
masses for the strong interactions is of the order of
1/100 to 1/1000 and can serve as the parameter for
the symmetry breaking. Ordinarily mass differences
within isotopic multiplets are ascribed to the electro-
magnetic interaction.

Since the isotopic symmetry explains all experimen-
tally known cases in which particle masses are equal
to within a few million electron volts, it is clear that
the strong interactions have no symmetry higher than
the isotopic one. It is possible, however, that there
exist additional approximate symmetries with break-
ing parameters of the order of 1/10, so that the mass
splittings within the multiplets are of the order of 100
MeV. Much attention has been given to the search for
such symmetries.

In particular, a number of results have been obtained
in recent years, the best known being the Adler-Weiss-
berg relation, C1»2] which indicate that the strong inter-
actions are approximately invariant with respect to
some group of transformations which includes along

with the isotopic transformations transformations which
mix states with different parities. The fundamental
ideas whose development led to these results were put
forward in papers by Nambu and his collaborators l3~51

and by Gell-Mann and his collaborators.[e~8:i

1.1.2. Let us examine how one can construct the
multiplets of a group which includes transformations
with parity change. As an example we take the multi-
plet which includes the nucleon—a particle with mass
m = 940 MeV and spin and parity τ*· The same multi-
plet must include a state with the opposite parity. For
the usual realization of the symmetry this state is a
particle with the quantum numbers \~.

Nambu i3 i pointed out a possibility for constructing
multiplets which is quite different in principle. If there
were to exist a massless pseudoscalar particle, then a
state with the quantum numbers \~ could be formed by
a stationary nucleon and a pseudoscalar meson with
zero energy. Since in this case the transformations
which change the parity add to the state a meson with
zero energy, the other terms of the multiplet are:
nucleon plus two mesons with zero energy, nucleon
plus three mesons, and so on. Another example of a
multiplet is the succession of states: vacuum, one
meson with zero energy, two mesons with zero energy,
and so on. We remark that in the general case for a
continuous group of transformations there exist two
possibilities for realizing a symmetry: with one-par-
ticle states and with many-particle states. From the
mathematical point of view the first possibility cor-
responds to linear representations of the group and
the second to nonlinear representations.

Let us now see which of these possibilities gives
the better correspondence with the experimental mass
spectrum in the case of a group which includes trans-
formations with parity change. The resonance with
quantum numbers \~ which has mass closest to that
of the nucleon and could be its partner in a multiplet
is the resonance N*(1480), so that the mass splitting
is about 500 MeV. The situation is no better for other
particles, say τι mesons. The corresponding scalar
meson, if it indeed exists, apparently has mass « 700
MeV.

In the case of a nonlinear realization of the symme-
try it is necessary, as we already noted, that there ex-
ist a massless pseudoscalar particle. No such particle
has been found experimentally. The minimum mass is
that of the ττ meson (μ = 140 MeV). If we regard this
quantity as small in comparison with the characteristic
mass m char o f the strong interactions, we can try to
identify the π meson with the required particle. We
adopt this hypothesis throughout what follows.

The hypothesis that the ratio M / m c n a r is small may
seem paradoxical at first sight, since it is often as-
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sumed that μ ~ m c n a r . There are, however, some ex-
perimental facts which indicate that 140 MeV can in
some sense be regarded as a small quantity. For ex-
ample, as the square of the momentum transfer varies
from zero to μ2 the charge form-factor of the proton
changes by about 4 percent. There are also theoretical
predictions based on treating μ/να.^^ a s small which
agree well with experiment. We mention only the Kroll-
Ruderman relation for the amplitude at threshold for
photoproduction of π mesons. Therefore the assump-
tion μ/mchar <C 1 is not obviously senseless, although
in adopting this assumption we cannot expect accuracy
better than say 10 percent. Furthermore it cannot be
excluded that regarding μ/mchar a s a small quantity
may be permissible in some cases and not in others.

In view of these stipulations, let us return to the
consideration of the symmetry in question and assume
that μ = 0. As is well known, in addition to the spectra
the symmetry determines relations between the ampli-
tudes for processes which differ by the replacement
of particles by others from the same multiplet. For
example, owing to isotopic invariance the difference of
the amplitudes for elastic scattering of n' and n* me-
sons by protons is equal to 21/i2 times the amplitude for
charge exchange between π~ mesons and protons.

In our present case a single multiplet contains states
with different numbers of π mesons with zero energy.
Therefore there are relations between the amplitudes
for processes with different numbers of "soft" π me-
sons. These predictions are analogous to the low-energy
theorems for reactions involving soft y-ray quanta,
which also connect1·10·1 the matrix elements for processes
with different numbers of particles—radiative and non-
radiative.

The low-energy theorems for processes involving
photons or mesons correspond to the invariance of the
theory with respect to nonlinear transformations of the
fields (so that states with different numbers of particles
are combined in a multiplet). In the case of the electro-
magnetic interaction these nonlinear transformations
are gauge transformations of the fields with variable
phase factors.

1.1.3. Let us go on to the description of the group
structure of the symmetry in question. It is a remark-
able fact'11·1 that this structure is almost uniquely de-
termined by the spectrum of the particles: the existence
of the isotopic multiplets and of the triplet of massless
π mesons.

As is well known, the structure of a group is given
by the commutation relations between the generators—
the operators for infinitesimal transformations. In this
connection let us recall that the invariance of the Hamil-
tonian &e with respect to a group of transformations
means that the commutators of the Hamiltonian Si with
the generators of the group are equal to zero. In other
words, the generators are time-independent and are
operators corresponding to conserved quantities.

Since the symmetry we are considering includes
isotopic invariance, the list of generators includes the
generators V1 (i = 1, 2, 3) of the isotopic group, for
which the commutators are well known to be

[V, V] = ieik'V. (1.1)

A group whose generators obey these commutation re-
lations is denoted by SU(2).

Our group also includes transformations with change
of the parity of the state. As was noted earlier, these
transformations in particular change the vacuum into a
π meson, a particle with isospin unity. Therefore the
corresponding generators form an isotopic vector A*
(i = 1, 2, 3). This means that

[V\ A"] = iei>"A·. (1.2)

Let us now consider the commutators [A1, Ak]. Owing
to the antisymmetry with respect to the indices i, k,
these commutators can be written in the form

[A1, Ak] = ieik'V'. (1.3)

where the V1 are operators independent of the time. If
the V1 are not identically zero, they can be regarded as
the generators of certain transformations which do not
change the parity. There are two possibilities: Either
these transformations are new ones, or else they coin-
cide (to within a factor) with some already known, i.e.,
with the isotopic transformations.

We shall show that the assumption that there exist
"new" operators V4, which are not the same as the
generators of isotopic rotations, is in contradiction
with experimental data. In fact, in the case of linear
representations this assumption contradicts the fact
that there is no degeneracy in the mass spectrum of
the particles which is not explained by the isotopic in-
variance. In the case of the nonlinear representations,
in which the operators mix one-particle and many-
particle states, there would have to be a triplet of
massless scalar particles, which also contradicts ex-
periment. ^

Accordingly we have shown that the operators V*
are proportional to the generators V* of the isogroup.
If the proportionality coefficient is not equal to zero,
the generators A* can be normalized so that

[A\ A") = ieik'V. (1.4)

This relation gives the final determination of the
group structure. If the generators A1 commute with
each other, we have a different group. The choice be-
tween the two is made on the basis of a more detailed
consideration of the experimental consequences. In
view of the results of such a consideration, we rule out
the possibility that the commutator [A*, A ]̂ is equal to
zero, and adopt Eq. (1.4).

The commutation relations (1.1), (1.2), and (1.4) can
be rewritten in the form

[(Ff ± (Vh ± Ak)/2) = wikl (V ± ·} (1.5)

On comparing these with Eq. (1.1) we see that the oper-
ators (V1 ± Α*)/2 are the generators of two independent
groups SU(2). This is expressed by saying that the
symmetry group is the direct product SU(2) ®SU(2).

Naturally the group SI(2) ® SU(2) also has represen-
tations with a finite number of particles in the multi-
plet. For example, this is the symmetry of a system
of interacting massless nucleonsm (see also Sec. 1
of Chapter 8), in which the operators (V1 + Α*)/2 and
(V' — Ai)/2, which correspond to the isospins of mass
zero nucleons with left-handed and right-handed helici-
ties, are separately conserved.

One could imagine that "originally" there were
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massless nucleons; therefore not only the commutation
relations but also the group representations were sim-
ple. The interaction brought it about that the nucleon
acquired a mass and a massless π meson appeared;
there was a rearrangement of the multiplets, while
there was no change in the commutation relations of
the generators, since the interaction does not break
the symmetry. Such a rearrangement is called spon-
taneous symmetry breaking/4'12'13-1 although this does
not mean that the symmetry is not exact.

1.1.4. Let us now consider the connection between
the symmetry of the strong interactions and the prop-
erties of the weak and electromagnetic interactions of
hadrons. We shall elucidate this connection with the
example of isotopic symmetry.

The generators V* (i = 1, 2, 3) of the isogroup can
be represented in the form of space integrals of the
zeroth components of vector currents v^:

V = j v\ (t, x) dfx. (1.6)

The time independence of the operators V* corre-
sponds to conservation of the currents vj^:

On the other hand, in the electromagnetic and weak
interactions (we here have in mind the weak interaction
of leptons with hadrons without change of strangeness)
also involve vertain vector currents, which in general
have no relation at all to the currents v^ introduced
above. It is usually assumed/8'14-1 however, that it is
precisely these currents in Eq. (1.6) which appear in
the electromagnetic interaction (more exactly, in its
isovector part) and the weak interaction of hadrons,
and this is verified experimentally.

When we include a group of transformations which
change the parity, conserved axial currents aĵ  (i = 1,
2, 3) appear. We shall assume1·3'7'8-1 that these currents
determine the axial part of the weak interaction be-
tween hadrons and leptons without change of strange-
ness.

We can now inquire about the selection rules obeyed
by the matrix elements of the currents v^ and a}^. We
assume that the currents are components of isotopic
vectors. In other words, their commutators with the
generators of isotopic rotations are of the form

[V\ vfi)= ϊειι (1.8)

The transformation properties of the operators ν μ
and aμ with respect to the group SU(2) ® SU(2) are de-
termined by the form of the commutators of the currents
with the operators (V1 ± Ai)/2. We shall assume1·83 that
these are analogous to the commutation relations for
the corresponding generators, i.e.,

We note that the weak current ΐ μ without change of
strangeness is of the form ΐ μ = νμ + aμ and accord-
ing to (1.9) satisfies the condition

lV* — A*, ίμ] = 0. (1.10)

It is easy to understand the relation (1.10) in the
framework of simple models in which the group repre-
sentations are linear. In such models the generators

(V1 + Ai)/2 and (V1 - Ai)/2 are composed of left-
handed fields (1 + y5)*/2 and right-handed fields
(1 — γ5)Φ/2. The hadronic weak current, in analogy
with the leptonic current, is constructed from left-
handed fields only, and this leads to the relation (1.10).

With this sort of approach there is an obvious ex-
tension of the commutation relations to the case of the
current i? which causes leptonic interactions of had-
rons with change of strangeness, AS = ± 1 . Assuming
that this current is also made up of left-handed fields,
we get

\V1-A\ ]̂ = o. (l.ii)

This relation, together with a hypothesis about the
isotopic properties of the operator i^ (usually i§ is re-
garded as a component of an isospinor), determines the
transformation properties of i^ with respect to the
group.

1.1.5. In concluding this section we list once again
the fundamental hypotheses whose consequences are
considered in the present paper.

I. In the limit of vanishing pion mass the SI Hamil-
tonian is invariant with respect to transformations
which mix states with different parities. i3~5i The gen-
erators A* (i = 1, 2, 3) of these transformations, which
we shall also call axial charges, are independent of the
time (for μ* = 0).

If the commutator [A1, Ak] is different from zero
(see the discussion in 1.1.3) the operators A1 can be
normalized so that

[A1, Ah]-=ieiklV', (1.12)

where V* are the generators of the isotopic rotations.
The relation (1.12) closes the algebra of the vector

and axial charges and means that the symmetry group
of the strong interactions is SU(2) <8 SU(2)/83

The generators Ai can be represented as space inte-
grals of the zeroth components of conserved (for μ2 = 0)
axial currents a l :

4'(i) = J d=X (i, x),
(1.13)

The matrix elements of the currents aμ acquire a
direct physical meaning through the second main hy-
pothesis.

Π. It is assumed that the axial currents a* = a1 ± a2

associated with the SU(2) ® SU(2) symmetry of the
strong interactions are identical"'7'83 with the axial
currents of the weak interactions of hadrons with lep-
tons without change of strangeness.

To determine the transformation properties of the
currents with respect to the group it is necessary to
prescribe their commutators with the generators of
the group. We include assumptions about the form of
these commutators in Hypothesis ΠΙ.

ΠΙ. Hypotheses about the transformation properties
of the Hamiltonians of various interactions with respect
to the group SU(2) ® SU(2)/8'15] In the case of the weak
interactions we shall assume that

[V'-A1, «wl--=0, (1.14)

where <S5fw is the Hamiltonian for both nonleptonic and
leptonic weak interactions (the operators V1 - A* do
not act on the lepton fields).



76 Α. Ι. VAiNSHTEIN and V. I. ZAKHAROV

For the commutator of the electromagnetic current
ίμ with A1 we assume

lAi,U] = ie"!a'll (1.15)

(we recall that the current j μ is of the form of an iso-
scalar current and the third component of an isovector
current).

In the derivation of certain relations it is possible
to include a "semistrong" interaction which breaks
the SU(2) ® SU(2) symmetry and in particular is respon-
sible for the nonzero mass of the IT meson. For the
Hamiltonian <ii?Dr of this interaction we shall assume
that

[A\ [A\ (1.16)

We note that if the symmetry is broken the operators
A1 are time-dependent. It is assumed, however/83 that
the interaction that breaks the symmetry is such that
the equal-time commutation relations are not changed.

Hypotheses Ι—ΠΙ allow us to calculate the amplitudes
for processes involving π mesons at a nonphysical point
where the four-momentum of the π meson1' is equal to
zero. In order to connect the amplitude at this point
with experimentally measurable quantities one uses
Hypothesis IV.

IV. Extrapolation formulas. l i n If there are no sin-
gularities of the amplitude in the range of π-meson
energies Ε π ~ μ, or if the contribution of any such
singularities to the amplitude is for some reason
small, the hypothesis that the π-meson mass is small
leads to a representation of the amplitude as a poly-
nomial in the momentum of the π meson. If there are
indeed singularities in the region in question, their con-
tribution is taken into account separately. For exam-
ple, in the amplitude for πΝ scattering one must deal
separately with the contribution of the nucleon pole
diagram.

1.2. Purpose of this Review

There have been many papers on the consequences
of the hypotheses I—IV formulated above, and the re-
sults have aroused lively interest. One usually gets an
idea of the correctness or incorrectness of physical
theories from the answers to two questions: How sim-
ple and beautiful are the basic ideas ? How broad a
range of experimental facts does the theory describe,
and how good is the agreement between theory and
experiment ?

Evidently a widespread opinion about the hypotheses
in question (they are often called briefly the hypothesis
of partial conservation of axial current) is that the
foundations of the theory are not comprehensible and
are of the nature of a recipe, but on the other hand the
consequences receive excellent experimental support.

It seems to us that the situation is rather the re-
verse. The concept of a spontaneously broken symme-
try is simple and beautiful (although it is possible that
the foregoing exposition has not convinced the reader
of this), while the number of verified predictions is
small. However, the existing experimental confirma-

"'Hereafter when we speak of momenta of particles we mean their
four-momenta.

tions (the Goldberger-Treiman and Adler-Weissberg
relations) are rather impressive, and when the clarity
of the basic assumptions is taken into account they give
us hope that the theory will stand the test of time.

Of course further comparison of experimental rela-
tions with experimental data will be of decisive impor-
tance. Therefore our main attention in this review will
be given to deriving on the basis of Hypotheses I—IV
formulas for the amplitudes for specific processes and
to comparing these relations with experiment. To keep
the details of the calculations from obscuring the main
idea, we would like to emphasize here that the treat-
ment of all processes is essentially the same, and
roughly speaking can be divided into two stages.

First, one calculates the theoretical value of the
amplitude for π-meson momentum equal to zero. The
answer is always unique if Hypotheses Ι—ΠΙ are adopted.
There is a simple recipe for the calculation, based on
relations analogous to Ward's identity in electrodynam-
ics. Use is made of a reduction formula for the ampli-
tude. The derivation of the reduction formula can be
found in various books, e.g., Lm. But a reader who
accepts this formula as "natural" will have no diffi-
culty with what follows.

The second step in the treatment of any process is
to extract from the existing experimental data the value
of the amplitude at the nonphysical point where the mo-
mentum of the π meson is zero. The amplitude can be
continued to this point, provided that there exists a
simple analytic expression which gives a good descrip-
tion of the behavior of the amplitude in the region of
small pion energies. To find such formulas and com-
pare them with experiment is a separate problem, in
general unrelated with the SU(2) ® SU(2) symmetry.
The question of the extrapolation formulas for the am-
plitudes for specific processes is discussed in the sec-
tions dealing with them.

In the treatment of each process we have tried to
expound the results obtained as fully as possible. It
seemed to us that this could be done, since the method
of derivation of the theoretical relations is a rather
standard one. Here it should be emphasized that we
are considering only the consequences of Hypotheses
I—IV, and shall not discuss the hypothesis of vector-
meson dominance, the dispersion sum rules, SU(3)
® SU(3) symmetry, and so on, for which also there
is an extensive literature.

To make the review really complete, we must of
course not only discuss individual reactions in detail,
but also look through all possible processes which in-
volve "soft" pions. If we do not consider processes
which are fantastic from the experimental point of
view, there is a limited list of such processes.

Moreover, it turns out that for some processes
Hypotheses I—IV do not lead to any new consequences.
For example, the amplitude for the decay ω —- 3π must
be equal to zero in the limit of zero momentum of any
one of the π mesons. But this condition always holds,
independently of the correctness of any hypotheses,
owing to the kinematics of the decay. We shall not dis-
cuss such cases here.

The processes considered in this paper are listed
in the next section, but we shall at once remark that in
our opinion at least two further reactions could also be
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considered: the production of a π meson in a neutrino
experiment, ν + Ν — 1 + N+ 77,cie»leJ and the produc-
tion of a π meson in πΝ collisions, 7rN — 2πΝ. The
description of these processes is omitted mainly for
lack of space, and we confine ourselves to referring
to the original papers.

We shall now make some remarks about the nature
of the exposition. The subject matter of the review is
extensive, and in many places the exposition is rather
brief. For the most part this review is a "working
paper" rather than a popular introduction to this branch
of physics. We have tried to derive and formulate the
results with a degree of rigor not inferior to that of the
original papers.

The parts written in most detail are Sees. 2.1 and
2.2, 3.1 and 3.2 in Chapters 2 and 3. Here essentially
all necessary methods of calculation are expounded.
In particular, the treatment of the amplitude for πΝ
scattering (Sec. 3.2 in Chapter 3) can serve as a
"model" for the description of any other process. An
acquaintance with these sections (except Subsection
3.2.7) and with the introduction to Chapter 4 is in our
opinion enough for the reader who is interested only
in the way the results are derived. In the other parts
we have avoided repetition, and all of the calculations
which do not differ from ones already encountered are
treated concisely.

We have tried to include in this review all necessary
information from the phenomenological description of
the reactions considered. As a rule these are given at
the beginnings of the respective chapters, together with
the notations. We hope that these sections will not de-
ter the reader from reaching the subsequent sections
which have more content.

We remark that the phenomenological information
is here given in summary style. Therefore in each
case we give references to textbooks and papers in
which the details can be found. As a rule, it will suf-
fice to know the phenomenology of strong and EM pro-
cesses to the extent of Nishijima's book/2 1 3 and that
of weak processes, from Okun's book.1223

1.3. Plan of the Review. Literature

As already stated, our main attention in this article
is given to the specific consequences of our particular
hypotheses. Discussions of broader questions, beyond
that in the introduction, are found in Sec. 1.2 of Chapter
1, on the breaking of SU(2) ® SU(2) symmetry, and in
Chapter 8, which gives a brief description of a way of
deriving the consequences of Hypotheses I—IV which
is quite different from that used in the main part of
this article.

The main basis for the division into chapters is the
ascription of the various processes to particular inter-
actions. The type of interaction is important in princi-
ple, since in the comparison of the predictions of the
theory with experiment one is testing assumptions about
the structure of the Hamiltonians of the various inter-
actions in relation to the group SU(2) ® SU(2).

In Chapter 2 we consider the weak processes: β de-
cay of the neutron, μ capture by protons, and neutrino
reactions; in Chapter 3, strong processes: ττΝ and τπι
scattering, and the decay χ — 2πη; in Chapter 4, EM
processes: photoproduction and electroproduction of

i: mesons; in Chapter 5, leptonic decays with change
of strangeness: K;3 and K^ decays; in Chapter 6, weak
nonleptonic interactions: the decays Κ — Sir and decays
of hyperons; in Chapter 7, the decay η — 3π (it is as-
sumed that this process is due to a virtual electromag-
netic interaction).

The bibliography does not pretend to be a complete
one. Only those papers are listed whose results are
given in the review. There are no references at all to
papers which consider the same processes but start
from different, even if very similar, hypotheses (for
example, hypotheses of partial conservation of axial
current with change of strangeness).

During the writing of this article a number of mono-
graphs and reviews has appeared, C23~28] which deal with
similar ideas and can be recommended to the reader.
A distinguishing feature of these articles in compari-
son with the present one is that they discuss also
"adjacent" branches of physics, such as dispersion
sum rules and the symmetry SU(3) ® SU(3).

In conclusion we give some references to papers on
questions touched on in our review but not presented
in sufficient detail. The quark model and the derivation
of the commutation relations between currents and
charges are well treated by Adler and Dashen in an
authors' commentary on a collection of papers. [ 2 4 3 For
the study of these questions we can also recommend the
clearly written papers of Gell-Mann.C8] Phenomenologi-
cal Lagrangians satisfying SU(2) 8) SU(2) symmetry are
not considered in adequate detail in our review; this
lack can be supplied by a review by Gasiorowicz and
Geffen.C283 We also may mention a detailed article by
Gell-Mann and LeVy.t73 Finally, it should be kept in
mind that not all authors base their treatments on the
concept of spontaneous symmetry breaking. Subtrac-
tionless dispersion relations are often used to derive
the same results. That approach is essentially equiva-
lent to the one adopted in the present review, but in our
view it is of a more formal nature, and therefore is not
used here. It can be found in other reviews, for exam-
ple in the book C243, or in the original papers.1-29'73

In this paper we use the following notations:

i = ffo7o — ay, τ = ^ - .
0 _

0 a 0 1

2. PARTIAL CONSERVATION OF AXIAL CURRENT

In this chapter we consider the consequences of the
conservation of axial current in the limit of zero pion
mass for various weak processes. In Sec. 2.1 we shall
derive the Goldberger-Treiman relation, which con-
nects the axial /3-decay constant with the lifetime of
the charged π meson; in Sec. 2.3 we obtain some r e -
lations for the amplitudes of neutrino-induced reac-
tions; and in Sec. 2.4, a relation for the effective
pseudoscalar constant in the process of μ capture by
protons.

Using the example of the matrix element of the
current aμ between nucleon states we shall show that
when the pion mass is taken into account the divergence
of the axial current is different from zero and satisfies
the relation 1 2 9 ' 7 3

όμ4=(μ%)φ 1 (i = l, 2, 3), (2.1)
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where c is a constant. This equation is commonly
spoken of as the hypothesis of partial conservation of
axial current. The general question of the breaking of
SU(2) Si SU(2) symmetry is discussed in Sec. 2.2.

2.1. The Goldberger-Treiman Relation

2.1.1. Let us consider the matrix element between
nucleon states of the weak current without change of
strangeness, ϊμ = νμ + aμ, which occasions some weak
processes: l 3 O i β decay of the neutron, η —• pe'v, μ cap-
ture by protons, μ" + ρ —- η + ν, and the interaction
between neutrino and proton, ν + ρ — η + μ. The am-
plitudes for these processes can be written in the form

M=(G/Y2)lii(p\v^^-a^\n), /μ = ιϊ,γμ(1 + γ5)«ν, (2.2)

where G is the weak interaction constant, G = 1.01
x 10"5mp2, and uv and u; are lepton wave functions.

We shall be interested in the matrix element of the
axial current a* = ajj + ia2^, which is described by two
independent form-factors g(k2) and h(k2):

Μ μ = (ρ Ι α μ | n) = g (fc2) ΐΓ2νμγ5«ι - h (/c2) uz ky.ujt^

where u l f u2 are the wave functions of the initial and
final nucleons, which have momenta ft, p 2 (k = p l f - p 2).
There is no term \x& & μν^-υ^-ι in (2.2); this term has
positive G parity, opposite to the G parity of the terms
retained. We assume that for the operator aμ the quan-
tum number G is equal to — 1.

Hypotheses I and Π, as formulated in Chapter 1,
lead to a relation between the form-factors g(k2) and
h(k2). According to these hypotheses the axial current
is conserved in the limit of zero pion mass (μ2 = 0).
In this limit the longitudinal part of the matrix element
Μμ must be zero, and this gives the very important
equation"'

[ 3 :

g (A·2) = k--h (k"-). (2.3)

By using this equation we can write the matrix element
Μμ in the form

M|i = g (*2) [«W- ( W * 2 ) ] «2VvV5"l- ( 2 · 4 )

The pole at k2 = 0 in this expression is due to the fact
that conservation of the axial current is possible only
if a massless pseudoscalar particle exists.C 1 2 > 1 3 ] This
is not surprising, since, as discussed in Chapter 1, the
SU(2)<8 SU(2) symmetry can be exact only in the limit
μ 2 = 0 .

It is clear that a nonvanishing pion mass causes the
pole to be shifted to the point k2 = μ2. If we regard the
pion mass as small, we can neglect the change of the
residue at the pole and write Μμ in the form13·1

g (k2) {ίΓμν-ί (2.5)

The pole contribution to the amplitude is calculated
directly, starting from the diagram of Fig. 1. This dia-
gram gives for g (k2 = μ2)

8(V?)^hgrlmVZ, (2.6)

where g r is the constant of the πΝΝ interaction, g2. /Air
= 14.6, m is the mass of the nucleon, and ίπ is the
constant of the τι •— μν decay, defined as

<01 α μ (0) | jr> = *·/„*„. (2.7)

FIG. 1

Neglecting the difference between g ^ 2 ) and g(0), we get
for the axial constant gA the result

gA ^ g (& = 0)«fn g r / m γ 2. (2.8)

This equation was first derived in C 3 1 ] and is called the
Goldberger-Treiman relation. In the derivation of this
relation we have used the conservation of axial current
for μ2 = 0 and the assumption that μ ζ is small.

2.1.2. Let us now compare the Goldberger-Treiman
relation with the experimental data. The experimental
values of gA and g r are gA = 1.18 and gf. /Air = 14.6,
and the constant f̂  is connected with the probability
of the decay n — μν in the following way:

ιυ(π->- μν) = (G2/V8n) ™μ [ 1 - «/μ 2 ) 2 ], (2.9)

where G is the weak interaction constant, G = 1.01
x 10~5mn2. The experimental value of w (π —• μν) isup ·

107
-1 2)3.85 x 10 sec , and this gives

/π = 0.93μ. (2.10)

The resulting values of the right and left sides of
(2.8) are 1.35 and 1.28, respectively. Accordingly, the
error in the Goldberger-Treiman relation is about 10
percent. In deriving it we have neglected terms of or-
der M2/mchar in comparison with unity. From the com-
parison with the experimental data it follows that in this
case m c n a r is relatively small: m c n a r ~ 3μ.

2.2. Breaking of the SU(2) ® SU(2) Symmetry

2.2.1. It is easy to see that inclusion of the mass of
the π meson in the pole contribution to the matrix ele-
ment for β decay has the result that the matrix element
of the current aμ is no longer transverse, as follows
from Eq. (2.5):

We shall show that this nonconservation of the axial
current can be written in the form of the operator
equation

<V*J = (μ'/ή φ+, (2.12)

where φ* is the renormalized operator of the charged
π-meson field, (π+ |ι^+ |0) = 1, and the constant c has the
value c = l/f^· » g r/2 1 ' 2mgA· In fact, the matrix ele-
ment of φ* between nucleon states is

{p I <p+ | n) = - (*2 - μ 2 )" 1 (ρ | ;+ | »> = - [i V2gr (fc2)/(/c2 - μ2)] 5,γ5«,,

(2.13)

where f̂  = - (D - μζ)φ*, and g r(k2) is equal to g r for
k2 = μ2. If, as in the derivation of the Goldberger-
Treiman relation, we neglect the dependence of the
functions gr(k2) and g(k2) on their argument in the re-
gion k2 ~ μ2, Eqs. (2.11) and (2.12) are equivalent.

The reason for the operator equation (2.12) can also

2)If no special reference is given, experimental data are taken from
the tables of ["].
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be demonstrated intuitively in a different way. Let us
separate out from the axial current ajj, the term respon-
sible for the decay of the π meson:

« ί = ί ; - ί μ ί ν , (2.14)

where {0 |a* | π") = 0. For zero pion mass the axial cur-
rent is conserved, which gives

Π φ = — ί (2.15)

If we assume that as the π meson's mass is changed
its source remains the same as for μ2 = 0, then the
equation for the operator φ takes the form

( α - μ 2 ) φ = -c (2.16)

and when we use the definition (2.14) we arrive at the
relation (2.12).

It is very important to emphasize that Eq. (2.12) does
not contain any additional information beyond the hy-
pothesis of the conservation of the axial current in the
limit μ2= 0. It expresses only the trivial fact that the
pole corresponding to the π-meson intermediate state
is at k2 = μ2 and not at k2 = 0.

In fact, if we look at an arbitrary matrix element of
the divergence ^μaμ of the axial current, then for k2

— μ2 the only contribution to it is that of the π-meson
pole, and Eq. (2.12) holds independently of any assump-
tions. L331 For k2 Φ μ2 the matrix elements of the pion
field operator φ have no physical meaning and Eq. (2.12)
can be regarded as the definition of φ.

Therefore in itself the assertion that the divergence
of the axial current is proportional to the field does not
lead to any consequences at all. The intrinsic meaning
of Eq. (2.12) is that the axial current is conserved for
μ2 = 0. Along with the assumption that μ2 is small this
allows us to make predictions for various quantities.
In what follows we shall use Eq. (2.12), not Eq. (1.13),
in order immediately to take into account the nonzero
pion mass in the pole denominators.

2.2.2. Equation (2.12) is a convenient starting point
for the discussion of the general question of the break-
ing of SU(2)® SU(2) symmetry, since the amount by
which the divergence of the axial current differs from
zero can serve as a measure of the symmetry breaking.

By means of (2.12) the matrix element of the operator
9μaμ between the hadron states A and Β can be repre-
sented in the form

(B1<?μαμ (0) \A)^- [ 3 - μ 2 ) ] Τ (ΛΑ - » Β ) + Ο (μ2), ( 2 . 1 7 )

where k = pjj — PA, Τ (πΑ — Β) is the amplitude for the
strong process π + A —• B, and 0(μ2) is a term of order
μ2 which does not contain the pion pole. The first term
in the right member of (2.17) is separated off because
in it the parameter μ2 is "made dimensionless" by the
quantity (k2 — μ2), which can also be small if k2 ~ μ2.
Therefore in the region k2 £ μ2 the symmetry is
strongly broken. This breaking can be taken into ac-
count exactly, however,

As for the terms Ο(μ2) in (2.17), nothing is known
about them in the general case. The magnitude of these
terms goes to zero for μ2 — 0, but can be rather con-
siderable for the actual value of μ2. In particular, the
terms Ο(μ2) led to a violation of the Goldberger-Trei-
man relation by about 10 percent.

If we do not consider detailed dynamical models, the

only way of getting some specific idea of the contribu-
tion Ο(μζ) is to prescribe the transformation properties
of the operator φ with respect to the group SU(2)
<8 SU(2). Starting from model arguments'·7·1 and consid-
erations of simplicity, we shall assume that

[A\ θμαμ]~δ'«. (2.18)

We emphasize that a nonvanishing ^μaμ means that
the strong interactions contain an admixture of a
"semistrong" interaction which breaks the symmetry
and in particular is responsible for the appearance of
the pion mass. If we use the relations

u^0=Jd>«U(t,*). i£~iA\m, (2.19)

the assumption (2.18) can be formulated as a hypothesis
about the properties of the HamiltoniandXikr of the
"semistrong" interaction,

[A\ [Ah, $et"]]~&ilt. (2.20)

2.2.3. Accordingly, the corrections owing to the
breaking of the SU(2)® SU(2) symmetry can be roughly
divided into two categories.

First we must take into account the explicit depen-
dence on μ in the phase volumes and the contributions
of the nearest singularities, located at distances of the
order of μ. These corrections can make a contribution
of the order of unity.

Second, by using the group properties of the Hamil-
toniana^k1", one can sometimes manage to find the rela-
tively small corrections to quantities which depend
weakly on μ2.

The special care which must be taken in dealing with
the nearest singularities is of course not a specific fea-
ture of the SU(2)® SU(2) symmetry. For example, the
isotopic relations for the small-angle scattering ampli-
tudes are strongly violated owing to exchange of a pho-
ton. The difference is that the SU(2)® SU(2) symmetry
is much more strongly broken than the isotopic sym-
metry, and singularities located at distances of several
hundred million electron-volts can turn out to be
"nearest" ones.

2.3. The Adler Relation for Neutrino Reactions

2.3.1. A beautiful possibility for testing the relation
(2.17) in inelastic neutrino reactions ν + A — 1 + Β
was pointed out by Adler.C34] He showed that if the
lepton that is produced moves in the same direction as
the neutrino the amplitude for the reaction is propor-
tional to the matrix element of the divergence of the
axial current, and thus, according to Eq, (2.17), to the
amplitude for the strong process πΑ -» Β.

The proof of this statement is based on the fact that
when the lepton mass is neglected the lepton factor

2μ = «η>μ(ΐ-!-γ5)«ν (2.21)

is proportional to the momentum transfer k = (pv— p^).
Therefore the only part of the hadron factor that ap-
pears in the answer is the matrix element of the diver-
gence of the weak current, 9μ(νμ + aμ). The vector
current is conserved, and we have left only the diver-
gence of the axial current. If the neutrino and lepton
move in the same direction, then k2 « 0 and we can
use only the first term in the expression (2.17) for the
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divergence of the axial current. The final expression
for the cross section of the neutrino reaction is as
follows:

(2.22)

where k0 = (W2 - m% + MZ)/2W and k ,̂
= (mA + 2m A E , , - W*)/2W; mj, mA, and W are the
lepton mass and the invariant masses of the states
A and B.

2.3.2. Adler's formula (2.22) is far from exhausting
all the consequences of Hypotheses I—IV for the neu-
trino experiment. For example, in the reaction ν + Ν

1 + Ν', where Ν and Ν' are nucleons, one can check
^ 2 2

Eq. (2.3), = g(k2), which follows from the con-
2 2

servation of axial current for k2 3> μ2. In the region
k2 ~ μ2 this relation must be replaced by g(k2)
= (k 2 - M')h(ka).

Moreover, in inelastic neutrino reactions at small
values of the momentum transferred to leptons one can
use a generalization of the Goldberger-Treiman rela-
tion, Eq. (2.23), which enables us to express the matrix
element (Β | aμ | A) of the axial current in terms of the
amplitude for the strong process π + A — B:C3B]

(B | H \A) = (i/c) μ»)]} Τν, (2.23)

where k^T,, is the amplitude for the reaction π + A — B.
Additional relations arise in cases in which the states

A, B contain "soft" is mesons,Lai but we shall not discuss
them in detail. The method for derivation of such rela-
tions is expounded in the following chapters.

2.4. The Effective Pseudoscalar Constant in μ Capture

Besides the β decay of the neutron and the scatter-
ing of neutrinos by nucleons, there is another physical
process described by the matrix element (2.2) of the
axial current; this is μ capture by a proton, μ + ρ
— η + ν. Unlike the β decay of the neutrino, this pro-
cess enables us to measure the form-factor h(k2). The
experimental determination of this form-factor for k2

£ μ2 is of great interest for comparison with theoreti-
cal predictions.

To derive these predictions we write the function
h(k2) in the form

V2) <*« - μ2)" (2.24)

where we have separated out the contribution of the n-
meson pole diagram (see Fig. 1) and denoted the re-
mainder by r(k2).

For k2 ~ μ2 the pole term is of order μ"2 and must
give the main contribution owing to our assumption that
μ2 is effectively small. This assertion has already
been used in the derivation of the Goldberger-Treiman
relation. Keeping only the pole contribution, we get for
the effective pseudoscalar constant for the capture of
a slow μ meson by a protonΙ3β] (the value of k in this
process is kz = -k 2 = -ηΐμ[1 + (πΐμ/m)]"1)

-k^ « 8.85.

(2.25)
We emphasize that the prediction (2.25) is based only

on the hypothesis of the smallness of the pion mass. The
expected accuracy of this prediction, as in the case of

the Goldberger-Treiman relation, is of the order of 10
percent.

Using the conservation of axial current (for μ2 = 0),
we can get a more precise prediction for the constant
gp. i37'3Bi The entire uncertainty in the calculation of
gp is due to the contribution r(k2), since the pole term
is known exactly. Since the quantity r(k2) is relatively
small, it suffices to calculate it with the "usual" 10
percent accuracy in order to predict the value of gp
to one-percent accuracy.

In the approximation adopted

/•(-*;) «Γ(Α«=0,μ* = 0), (2.26)

and the quantity r (k2 = 0, μ2 = 0, can be expressed in
terms of the radius of the axial form-factor dg(k2)/dk2

at kz = 0. For this purpose we must expand g(k2) and
h(k2) in (2.3) in powers of k2. The result found for gp
is

= - 8 . [dg (k*)/dkl\ | M = 0 . (2.27)

An analysis of the data on the neutrino experiment leads
to the estimates i m

dg(k*)/dk*(at fc« = 0) = (0.4-1.1 G e V (2.28)

The corresponding correction to the pole value of gp
ranges from 1.5 to 14 percent. We note that the sign of
the correction is evidently already definitely fixed.

Testing the relation (2.27) is very difficult. At the
present time the constant gp has been measured to
about 40 percent accuracy. l*°3 It must be kept in mind,
however, that no other predictions based on Hypotheses
I—IV that could pretend to one-percent accuracy have
as yet been found.

3. SOME STRONG PROCESSES INVOLVING 17 MESONS

3.1. The Adler Self consistency Condition

A direct consequence of the partial conservation of
axial current is that the amplitude for a strong process
is zero for zero pion momentum if there are no contri-
butions to the process from pole diagrams correspond-
ing to the emission of a π meson from an external line.
We shall give a proof of this assertion, which is called
the Adler selfconsistency condition,C41] and shall ex-
amine1423 for the example of the decay X(960) — η2π
to what sort of consequences this condition leads.

3.1.1. In what follows we shall make frequent use
of a reduction formula.tlT1 According to this formula,
in particular, the amplitude for a process A — Β + π,
where A and Β are arbitrary states of hadrons, can
be represented in the form

M(2n)W(p2 + q-pl)= - j dxe1" (Ε}-μ*)<Β\-φ(χ)\Α). (3.1)

Here p w p2 are the momenta of the states A and B, and
q is the momentum of the π meson. The reduction for-
mula (3.1) defines the amplitude off the mass shell as
the corresponding Green's function multiplied by the
reciprocal (D — μ2) of the free-particle propagator.
It is clear that the quantity defined in this way coin-
cides for q2 = μ2 with the amplitude for the process
A — Bit, since in this limit we have left in the right
member of (3.1) only the part of the Green's function
which is proportional to (q2 — μ2)"1.
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FIG. 2

Replacing the π-meson field in (3.1) by its expres-
sion (2.12) in terms of the divergence of the axial cur-
rent, and integrating by parts, we get

Μ (2π)4ό* (p2 + q - pt) = - ~ j dxelqx (Π - μ2) {Β \ 5μ«μ (χ) | -4) =

In the right member of Eq. (3.2) we have dropped the
so-called surface terms, i.e., expressions of the type of

For x0 -» ± °° the operator ψ (χ) is the same as the
free-field operator with mass μ. Therefore such an
expression can be different from zero only for q2 = μ2.
In the general case the surface terms contribute to the
amplitude only for definite values of q2 that correspond
to the masses of particles which have the quantum num-
bers of the operators in question.

Since the amplitude is a continuous function of q2

we can take as the amplitude on the mass shell the
limit of the expression (3.2) for q2 = μ2. Then the ques-
tion of surface terms does not arise, and we omit them
everywhere in what follows.

We note that the explicit dependence of the right
member of (3.2) on q2 and μ2 is essentially fictitious.
To verify this, we must separate off the contribution
of the diagram that contains the π meson pole (Fig. 2).
Formally this can be done simply, by using the form
(2.15) for expressing the partial conservation of axial
current. Substituting (2.15) in (3.1), we get

M{2n)"64(P2-'rg-pi) --- - icg» \ dxeiqx (Β | ΐμ | A), (3.3)

where the matrix element (B | ί μ | A), unlike (Β | ί μ | A),
does not contain the π-meson pole.

Equation (3.3) allows us to find the amplitude Μ for
zero momentum of the π meson. For q — 0 in the
right member of (3.3) the only contributions are from
pole parts of the matrix element ( Β | £ μ | A) which cor-
respond to diagrams in which the axial current is con-
nected with an external line. We shall analyze the case
when there are such diagrams in Sec. 3.2, using the ex-
ample of πΝ scattering. If there are no such diagrams,
the amplitude must go to zero for q = 0:

M(A- (3.4)

Equation (3.4) expresses the content of Adler's self-
consistency condition.

3.1.2. As an example let us see to what experimen-
tal consequences this condition leads in the case of the
decay X — η2π. It is assumed that X(960) is a pseudo-
scalar meson with isospin zero.

If we assume that the matrix element for this decay
is linear in the energies, it can be represented in the
form

where we have taken into account the Bose statistics for
the π mesons, which means that Μ is symmetric in the
pion momenta qx and q2.

The vanishing of the amplitude when the momentum
of one of the π mesons goes to zero leads to the rela-
tion

/ + ?μ2 = 0, (3.6)
and the matrix element in the physical region of the de-
cay can be written in the form

»η2π)= const (1 + ocy). (3.7)

where Υ = ( 2 T / T m a x ) - 1, Τ is the kinetic energy of the
η meson, and

πι*-πι η ) ! + 2μ'>]= -0.43. (3.8)α = -[(™ ζ-™η)*-

The sign of a is apparently confirmed by the existing
experimental data,"3·1 but the statistics are insufficient
for the determination of the absolute value of α .

The theoretical accuracy of the prediction (3.8) for
the quantity a is evidently not high. In fact, we have
assumed that it is legitimate to treat the amplitude as
linear in the energies of the π mesons; i.e., we have
assumed that the characteristic mass of the strong in-
teractions is much larger than Ev. But this can scarcely
be satisfied with good accuracy, since in the case in
question E f f varies over a rather wide range—from zero
to 340 MeV (when the momentum of "the other" π me-
son is zero). In this sense the most favorable case is
that of threshold 7rN scattering, for which the physical
region of variation of the π meson's energy is closest
to the point ΕΉ = 0.

3.2. πΝ Scattering at Low Energies

Hypotheses I—IV (see Chapter 1) allow us to derive
a number of consequences for the amplitude for πΝ
scattering at low energies, which are discussed in the
present section. The plan of the exposition is as fol-
lows: in Subsection 3.2.1 we present the necessary in-
formation from the phenomenological description of
πΝ scattering; in 3.2.2 we discuss the consequences
of the Adler selfconsistency condition; in 3.3.3 the
isotopically odd part of the amplitude is calculated;
the results obtained are compared with experiment
in 3.2.4 and 3.2.5; and the extrapolation formulas and
their experimental testing are discussed in 3.2.6.

3.2.1. Phenomenology of πΝ scattering (cf., e.g.,
t 2 1>3 4 1). The isotopic structure of πΝ scattering is de-
scribed by two independent amplitudes T+ and T":

where Φ 1 ( 2 and <ji>1)2 are isotopic functions for nucleons
and π mesons, the index 1 referring to the initial and 2
to the final state; τ = σ/2 are the isospin matrices.
The quantities T* are connected with the amplitudes
for the processes π ± ρ — π ± ρ and the scattering am-
plitudes T 3 / 2 and T 1 / 2 in states with total isotopic spin
•f and \ by the relations

Γ+ = (7V,, + Γπ+ρ)/2 = (Γ1/2 + 2Γ3/2)/3
Τ~= ( 7 - π - ρ - Γ η + ρ ) / 2 = (Γι/ζ — 7-3/2)73.

(3.10)

We write the spatial structure of

Μ (Χ - * η2.-ι) = / > g (?, (3.5)

in the form

«., (3.11)
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where ux, ua are the wave functions of the initial and
final nucleons with momenta p u p 2; k and q are the mo-
menta of the initial and final mesons. The amplitudes
C* and B* are functions of the variables ν and t:

v = (k + q) (p^p2)/im = k(Pl + p2)!2m = q (Pi+p2)/2m, t = (k-q)K
(3.12)

The crossing symmetry conditions can be written in the
following way:

Cr±(v,i) = ±C ± (-v , i), β±(ν, <) = =FB±(-v, t). (3.13)

In what follows we shall consider the threshold val-
ues of the amplitudes C± and B* and of the first deriv-
atives of C* with respect to ν and t. These quantities
(or, more exactly, their real parts) are expressed in
terms of the phases of the s and ρ waves by the equations

the other particles on the mass shell), and to calculate
the limit of the amplitude we use the relation (3.3):

Τ—•_ , k). (3.21)

ac
at

C = 4π [ 1 + (μ/m)] α, 5 = 8nm [af — α 3 -f (l/4m2)a],

d£? 8π/η / p j _ λ ^ 3 ι α \
dv m -j- jx \ 3 2/ίί LI / '

2π Γ ο ί » , ο.. : 3 μ Μ . , m—μ . , 2 .. _,η
™+μ

(3.14)

where a is the scattering length and b is the radius of
the s waves, and ax, a3 are the scattering lengths of the
ρ waves in the states with total angular momentum \
and -f (the isotopic indices are omitted). The scattering
lengths and radii are connected with the scattering phase
shifts of the s and ρ waves by the relations

(3.15)

where q is the three-dimensional momentum in the
c.m.s.

We need to separate the amplitude for πΝ scattering
into pole and nonpole parts Tp and T:

T = Tp + f, (3.16)

where by the pole part we mean the contribution of nu-
cleon pole diagrams, with the vertex for the πΝΝ inter-
action taken in the form — ίΦγ μγΒν!?8 μψ, f = g r/2m

= (1.01 ± 0.01)μ~\ If we_take the vertex in a different
form (for example, ig r *y 5 T*^), the resulting pole dia-
grams will differ from those with the pseudovector cou-
pling by terms which contain no pole, and the question
reduces to a redefinition of T.

We give the expressions for the pole contributions to
the amplitudes C ± and Β±, and also the values of these
contributions at the threshold of the scattering:

1, (3 1 ? )

,011μ-ι.

(3.18)

(3.19)

, (3.20)

where

and in the calculation of the threshold values (μ/2ΐη)ζ

is neglected in comparison with unity.
3.2.2. After these preliminary remarks let us now

examine to what consequences the hypothesis of con-
servation of axial current leads. For this purpose we
let the momentum of one of the mesons go to zero (with

For q— 0 we need consider in the right member only
the pole part of the matrix element of the axial current,
corresponding to the diagrams of Fig. 2, which is sin-
gular for q — 0. Equation (3.21) expresses the Adler
selfconsistency condition for the πΝ scattering ampli-
tude. For small q the axial vertex which occurs in the
diagrams of Fig. 2 is of the form gAϋYμYdi• [see Eq.
(2.5)]. After being multiplied by qμ this vertex is iden-
tical with the pseudovector vertex of the πΝΝ interac-
tion, since c = 21/2f/gA· Therefore the right member

•of Eq. (3.21) coincides, for q — 0, with the pole part
Tp of the amplitude, as defined by Eq. (3.16), and for
the nonpole part Τ we get

We shall discuss the experimental consequences of this
relation in Subsection 3.2.5.

3.2.3. Equation (3.22) states that the constant term
in the expansion of the nonpole part of the amplitude
for πΝ scattering in a power series in the momenta of
the π mesons is equal to zero. We shall now find the
terms of the expansion which are linear in k or q.

To calculate the linear terms we must consider the
limit of the amplitude as the momenta of the two π me-
sons go to zero. To do so we write a reduction formula
with respect to the two π meson fields, replace them
with the divergences of axial currents, and integrate
by parts:

Γπ+ρ (2π)4 64 (Pi + k-pi — q)^--

= i ^dxdy exp (~ikx+iqy) (Πχ-μ 2 ) (ϋ ,-μ 2 ) (Ρζ ΙΤ {<f (y) φ + (χ)} | p,) — -

- » i c 2 j dx dy exp ( - ifcc + *'?</) <Pz I [ ^ (y). <4 M l δ (z« - y«)

+ ih [«μ (x), «ϋ (υ)) δ {*>- y) + Kq,T Κ (χ), α~ν (y)} | ρ,).

(3.23)
In the integration by parts in (3.23) we have taken into
account the fact that the operations of time ordering
and differentiation with respect to time do not commute;
it follows from the definition of the Τ product that

Τ {ψ (y) 3μαμ (*)}= θ ( z ° - V°) d*a» (χ) Ψ (ν) + Θ (y°-x°) φ (y) δμαμ (χ),

(3.24)
where

, xf> > 0,

Taking the derivative outside the sign of the Τ product
and using the fact that (9/3x°) 0(x°) = δ(χ°), we get

0(x)]. (3.25)

We have used this equation in the derivation of (3.24).
It is clear that in letting k and q go to zero we must

give separate attention to the singular contributions of
one-particle intermediate states. There are such terms
in the last term in the right member of (3.23). It is
easily verified that for the case of pseudovector πΝΝ
coupling they are identical with the pole part of the am-
plitude for πΝ scattering. The proof of this is com-
pletely analogous to the proof given in 3.2.2.

As for the contributions of many-particle states to

Vqy<p2l
 T{aju(x)aiXy)} I Pi). m e Y a r e obviously quan-

tities of second and higher orders in k and q. Therefore
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the equal-time commutators of the zeroth components
of the axial current with each other and with the diver-
gence of the current, which arise in the right member
of (3.23), give the nonpole part of the amplitude to and
including terms linear in k and q.

If we set k = q = 0 (with also k0 = q0), the exponen-
tials in the relation (3.23) are equal to unity, and the
nonpole part of the amplitude can be expressed in terms
of commutators containing the axial charge:

(2π)4ό*(/,, + &-_ρ2_?)Γπ+ρ— -^ic2 J dt{(p2\[A-(t), A+(t)\ (3.26)

+ iko[A+{t),A-(t)\\Pl)}.

We shall show that the first term in Eq. (3.26) is as-
sociated with the isotopic amplitude T+. To do this we
differentiate the commutator of the axial charges

lA+'.t),A-(t)]^2V3 (3.27)

with respect to the time:

(t), A' (<)] + [A* (t),A- {ή] = 0. (3.28)

The expression for the amplitude for π~ρ scattering can
be obtained from (3.26) by interchanging the indices " + "
and " - " . It follows from (3.28) that the first term in
(3.26) remains unchanged by this interchange and con-
sequently belongs to the isotopically even part of the
amplitude. This term, by the way, is relatively small,
since it is proportional to μ2 (for μ2 = 0 the axial cur-
rent is conserved and A = 0).

The second term in (3.26) is proportional to the
commutator [A*, A~], which obviously changes sign on
interchange of the isotopic indices, and therefore gives
the value of the isotopically odd part of the amplitude
when the meson momenta go to zero:

(0) —- (p212V3 | Pl)dt

t = c*^u2ul(2n)*6* (0),
(3.29)

where we have used covariant normalization of the
states, (p2lpi) = (Pio/m)u2u1(2ff)363(p2- px). We thus
get for the amplitude C" :

3.2.4. Two ways of comparing this relation with ex-
periment have been proposed. One can assume [ 4 5 ' l e :

that the expression (3.30) is valid right down to"the
threshold of πΝ scattering and thus predicts the scat-
tering length. We shall consider this in detail in the
next section.

Another possibility C 1 ' 2 ] is to use the dispersion re-
lation for the amplitude C" at t = 0. As is well known,
this relation is

c- (ν)
; + 4- dv"- (3.31)

where σ± are the total cross sections of the π±ρ inter-
action and k is the three-dimensional momentum of the
pion in the laboratory reference system. Substituting
the expression (3.30) for C" in the left member of
(3.31) for ν •— 0 and using the explicit form (3.18) for
the pole term Cp, we arrive at a relation first obtained
by Adlerc i ] and by Weissberg:C2:

1~"ϊ5~= '1|ί'$ΓΑ : [ σ + ( ν )~σ-< ν>1· (3.32)

where we have used c = gr/21^2mgA· This relation
agrees excellently with the experimental value gA
= 1.18.

We emphasize that Eq. (3.32) is approximate, since
the dispersion relation holds for the physical amplitude,
i.e., for k2 = q2 = μ2, and the expression (3.30) for C" is
derived for k, q — 0. Accordingly, the dispersion rela-
tion allows us to take into account the dependence of
C" /v on vz, but not that on k2 and q2, which we have
neglected.

3.2.5. Since near threshold vz ~ k2 ^ q 2 ~ μ2, we can
assume that in this region the quantity C/v depends not
only on q2 and k2, but also on ιΛ Then we get for the
isotopically odd scattering length t 4 5 1 Ht 4 5 ' 1 H

{ [ (^)]} [ (^)]
(3.33)

where the numerical value of the constant c is taken
equal to

and the small contribution of the pole diagram (~ 10"3μ~ι)
has been dropped. We note that here and in what follows
we have taken the kinematic factors into account exactly,
without neglecting terms of order μ/m.

The theoretical value (3.33) is to be compared with
the experimental data on the scattering lengths,

a' = (0.086 ± 0.005) μ"1 «, or = (0.093 + 0.005) μ"1 «,

and we see that there is very good agreement between
theory and experiment.

Let us now proceed to the consideration of the iso-
topically even amplitude. As was already pointed out
in 3.2.4, the constant term in the expansion of C* in
powers of k and q is equal to zero (more exactly, is
~ μ2) owing to Eq. (3.22), and the expansion of C+ be-
gins with terms quadratic in k and q. From the explicit
expression (3.17) for the pole term in C+ we see that it
is also quadratic in μ near threshold. It follows that
the isotopically even scattering length must be small
in comparison with the isotopically odd length, which
is linear in μ [cf. Eq. (3.33)]:

ο

+/α-<1. (3.34)

The experimental data confirm this prediction of the
theory:

a* := - (0.002 ± 0.006) μ"1 " , n+ - - (0.011 ± 0.005) μ"1 «.

3.2.6. We have derived the predictions (3.33) and
(3.34) essentially by using extrapolation formulas for
the amplitude for πΝ scattering. Namely, we have as-
sumed that the amplitude is the sum of a pole term,
which is treated exactly, and nonpole terms, which we
expanded in a series, keeping only the first term of the
expansion. It is clear that an independent checkM7:l of
the extrapolation formulas is of interest, and we devote
the present subsection to this.

We consider the amplitude for πΝ scattering in the
region ν ~ t 1 / z ~ μ. If the amplitude had no singularities
in this region the assumption that the pion mass can be
treated as small would lead to a representation of the
amplitude as a polynomial in ν and t. The singularities
in the given region are due to nucleon pole diagrams,
to scattering by way of the isobar N*(1236), and also to
two-particle intermediate states (threshold singulari-
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ties). In the calculation of the scattering lengths no ac-
count was taken of the contribution of the isobar (reso-
nance in the ρ wave), since we were considering the am-
plitude for zero three-dimensional momenta of the par-
ticles. We shall now derive the sum rules for the am-
plitudes of the ρ waves, and in this case the contribu-
tion of the isobar must be dealt with separately. As for
the contribution of the threshold singularities, it is pro-
portional to the square of the amplitude near threshold
and is small, since the πΝ scattering lengths are small
(see Eqs. (3.33), (3.34).

Keeping these remarks in mind, and taking into ac-
count the requirements of crossing symmetry, we fi-
nally write the extrapolation formulas for the ampli-
tudes C*, B* in the following form:

C^ = Cl^C+

s, + cX + 4{kq) + ct^ + O({k, ?}3), (3.35)
q}3), (3.36)

(3.37)
qY), (3.38)

where the indices ρ and 33 refer to the contributions of
the nucleon and the isobar, and Cf, c~, and b" are the
coefficients of the expansion; O({k, q} n ) denotes terms
of order η in k, q. Besides the higher terms of the ex-
pansion, the quantities 0({k, q}n) include imaginary
parts of the amplitudes and nonanalytic terms associ-
ated with the threshold singularities.

Just as in the case of the contribution of the nucleon
pole, we must define more precisely what is meant by
the contribution of the isobar in Eqs. (3.35)—(3.38). To
describe the particle with spin -§ we shall use the
Rarita-Schwinger formalism, i.e., describe it with a
quantity Ψ μ (μ = 0, 1, 2, 3). In this formalism the prop-
agator is of the form

(pz-M*)-1 {{P+M) [-?μ.+(νμϊν/3) -f ((ν,Α - ΥνΛ0/3Λ/)+ (2iy,/3M»)l
- 2 (Ρ"- -Λί2)/3Μ2 [γμ/>ν - ΥνΡμ + (Ρ + Μ) ϊ μ γ ν ]},

(3.39)
where Μ is the mass of the isobar and Ρ its momentum.

Finally, we take the vertex of the πΝΝ* interaction in
the form

λΨ μΨ0 μφ, (3.40)

where the constant \ j j * + + _ p f f

+ is equal to 2.16μ~1,
which corresponds to the isobar's width Γ = 120 MeV.

We emphasize that the contribution of the isobar to
the TTN scattering amplitude is calculated ambiguously,
since, as is well known, a particle with spin 4 off the
mass shell contains an admixture of states with spin y.
These states give a contribution not containing a reso-
nance denominator, which overdetermines the coeffi-
cients of the expansion in (3.35)—(3.38). The choice of
the propagator in the form (3.39) has a simple physical
meaning: the scattering through the isobar does not
contribute to the s wave amplitude at the threshold.

It is particularly important to keep in mind the pos-
sible uncertainty in the calculation of the contribution
of the pole terms, owing to the fact that in what follows
we shall derive some relations by dropping all the
terms of the series except the pole terms. It is clear
that this is permissible only if the result actually does
not depend on the choice of the nonpole parts of the
isobar propagator and the interaction vertices.

Let us now examine the relations between observ-

able quantities to which the extrapolation formulas
(3.35)—(3.38) lead without any additional hypotheses
and assumptions. We shall confine ourselves to listing
the predictions for the amplitudes of the s and ρ waves,
regarding which there are more or less reliable data
from phase-shift analyses. As can be seen from (3.14),
this restriction means that we can examine the thresh-
old values of the following quantities: C*, B*,

The most interesting test is that of the expansion
(3.36) for the amplitude C", since it has been used for
calculating the isotopically odd scattering length. It
follows from (3.36) that in the approximation adopted
the single coefficient c", together with the pole terms,
determines both the threshold value of C" and the
threshold value of the derivative BC~/dv. Eliminating
c", we get

\ dv V / |ν=μ
_£Z) : Idc~ c~\

ν Ι ρ ν = μ V <ϊν ν /
(3.41)

We note that although the contribution of the isobar
to the amplitude C" depends on the nonresonance part
of the propagator of the particle with spin -f and there-
fore is not uniquely determined, this ambiguity drops
out of the difference of dC'/Bv and C'/u.

Generally speaking the relation (3.41) should have
about the same accuracy as the prediction (3.33). In
fact, the terms retained in (3.41), i.e., the pole terms,
are of the order of μ°, and those dropped owing to
crossing symmetry are of order μ2. If we were con-
sidering not the invariant amplitudes, but the actual
phases of the s and ρ waves, i.e., quantities having no
definite crossing symmetry, the accuracy of the pre-
dictions would be poorer, ~ μ. A comparison of the
relation (3.41) with experiment is given in Table I, and
shows that the agreement is good.

The expansion (3.35)—(3.38) also allows us to find
the threshold values of B+ m'iai and BC'/at, which to
the approximation considered are expressed in terms
of the pole terms. These relations also agree well
with experiment. The predictions for the quantities
8C~/9t and B+ also satisfy the requirement that they be
independent of the choice of the nonpole part of the prop-
agator. We get practically the same result whether they
are calculated by means of the propagator (3.39) or by
the dispersion method with the isobar width neglected.

In the case of the amplitudes B" and 3C*/at the pole
contributions are not uniquely determined and one can-
not get predictions for them. In Table I the contribu-
tion of the isobar is calculated by means of the propa-
gator (3.39) and is given for the sake of completeness.
Finally, the quantity 9Ο+/9^, as can be seen from Table
I, is mainly given by the contribution of the isobar,
which in this case is unambiguous. However, it is hard
to estimate the relative sizes of the isobar contribution
and the neglected nonpole terms to 9C+/9^ theoretically,
and therefore it is not clear what error to expect owing
to the omission of the nonpole terms.

3.2.7. Accordingly, we have examined the amplitudes
for TTN scattering and found confirmation for all three
main hypotheses (Ι, Π, and IV in the introduction) used
in the soft-pion method: a) that it is possible to expand
the amplitudes in powers of the momenta of the π me-
sons; b) the conservation of axial current for μ2 = 0;
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Table I.
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Quantity

C+

c-
B~l2m
B+/2m

dv

ac~ c-
dv ν

ac*
at
ac-
at

Nucleon contribution
(ν=μ)

— /2μ*//η=— 0,15*)
/2μ3/2™2 = 0,01

/2μ2/2πι3 = 0,002
— 2/ 2 /μ= — 2,04

2/3μ/™ = 0,30

— 4/2=—4,09

— = 0,15
m

— /2/μ (1 4- μ/2τι) =
=--- — 1,10

Contribution of isobar
(ν=μ)

0

0

0,22λ2 = 1,02
— 0,10λ2=—0

0,63λ2 = 2,92

— 0 , 1 4 λ 2 = — 0

0,17λ2 = 0,78

— 0 , 0 5 λ 2 = — 0

*A11 quantities are given in the system of units μ

49

,67

,23

Theoret-
ical pre-
diction

^ 0

1,44
—

- 2 , 5 3

3,22

—4,76

—

- 1 , 3 3

= h=c= 1..

Experimental value

from

—o,
1,

0,

— 2 ,

3,

—4

1

— 1

η
03

24

75

42

65

89

88

42

from

—0

1
0

—2

3

—4

1

—1

,46,

,13

,34

,84

,41

,72

,75

,91

,37

c) the assumption (3.27) about the form of the commu-
tator of the axial charges.

3.3. πττ Scattering

In the present section we examine the consequences
of Hypotheses I—IV for the ππ scattering amplitude.
Our procedure is approximately the same as in the
case of πΝ scattering. A special feature here is the
necessity of including the "semistrong" interaction,
which breaks the SU(2)® SU(2) symmetry. The main
results were obtained in a paper by Weinberg,cie] and
his review in a report at the Vienna Conference"01

can be recommended for more detailed information
on the matter and for the bibliography.

3.3.1. In this introductory subsection we shall pre-
sent the necessary information about the phenomeno-
logical properties of ττπ scattering (a more detailed
exposition can be found, for example, in the book C 5 1 ] ) .

The invariant amplitude for the process 7f(qx) + w(q2)
—' "'("'Qs) + ν(~<ί<ί) which satisfies the requirements of
crossing symmetry and isotopic invariance is of the
form

T = (?*) (<f3q>4) A (?1, q2; q3, q,) _ (φ,φ,,) ( φ ^ ) Λ (?1ι ?3. ?2> ? t ). : .

P4) (<Fz<p3) A (qu ? 4 ; <72, ? 3 ) ,

(3.42)
where φι (i = 1, 2, 3, 4) are the isotopic wave functions
of the π mesons, and A(qlf q2; q3, q4) is an invariant
function of the momenta of the particles which is sym-
metric with respect to the interchanges qx —— q2;

We assume for A(q1; q2; q3, q4) an expansion in
powers of the momenta, and confine ourselves to the
quadratic terms in this expansion (for a discussion of
this hypothesis see 3.3.6 and 3.3.7). Then

A (?i, ?2; qa, ?t) =-- α -Ι- β [( ? 1 + q2y - μ2] -f γ [9J -j- q\ + q\ + q\ - 3μ2]

where α, β, γ are coefficients in the expansion.
In this approximation the nonvanishing phase shifts

are 60)2 for s waves in states with isotopic spins Τ = 0,
2 and 61 for the ρ wave; these are expressed in terms
of the invariant amplitudes for the process in the fol-
lowing way:

Ebjq = (1/32π) TO --- = (1/32π) [371 (JI+JT —> π»π°) - Γ (ΐχ+π+ —>• π + π + ) ] =

(3.44)

Eb2lq = (1/32π) Τζ •--- (1/32π) Τ ( π + π + -

(3.45)

£6,,y = T,/96nq- cos θ = (1/96π?2 cos θ) [ IT (π+ΐχ° -» π+π°) —

— Τ (JX+JI+ —> Jt+ji+)] — β/24ΐιτ

(3.46)
where Ε, q, θ are the energy, the absolute value of the
three-dimensional momentum, and the scattering angle
in the c.m.s.; g = α + ·χμ2.

We introduce the scattering lengths a0 2 and ax of the
s and ρ waves, and parameters b characterizing the de-
pendence of the s waves on the energy

•Εδο, 2/7 « μ α ο , ζ + q2b0,2,
(3.47)

3.3.2. From the assumptions of a quadratic expansion
of the amplitude and of crossing symmetry three rela-
tions follow for the parameters we have introduced,

β/4π = b0,. - 2b., ,=, 6α, = ( 2 ο 0 - 5«2). (3.48)

None of these relations can at present be checked ex-
perimentally.

3.3.3. The Adler selfconsistency condition (see Sec.
3.1) has the consequence that the amplitude is zero when
the momentum of one of the mesons is zero and the
other mesons are on the mass shell. This means that
the coefficient a in (3.43) must be equal to zero:

a = 0. (3.49)
The condition (3.49) does not in itself lead to any re-

lations between observable quantities, in contrast with
the case of πΝ scattering. This is due to the fact that
we are taking the dependence of the amplitude on the
masses into account, and in the physical region the
amplitude involves only the combination a + γμζ. We
must take the dependence on the masses into account
because, as follows from Eqs. (3.43) and (3.49), the
total amplitude near threshold is a quantity of the or-
der of μ2.

3.3.4. To derive the consequences of Hypothesis II
it is convenient to consider the concrete process ^ ( q j
+ π°^2) -* T°(-q3) + ir*(-q4); the amplitude for it is

Π"+™°-^«ο*+)=β[(?ι^?2)2-μ21-γ[?? + ?2 + ^ + <7|-3μ2]. (3.50)

We take qx = - q , = q, q2 = - q4 = ρ, ρ2 = μ2 and let q go
to zero. As in the case of πΝ scattering, the partial con-
servation of axial current gives for q0 —- 0 (q = 0)
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(2π)4 δ4 (0) Τ (π+π« - » π°π+) - »

- » ic2 ]/2 f Λ <π+1 [A3 (i), Λ+ (ί)] + i/c0 [Λ3 (ί). 4 + (011 π°>

(3.51)
Using for the commutator of the axial charges Eq.

(1.4), [A3(t), A+(t)] = V3, and the relat ion <π*| π+>
= 2ρο(2π)3 δ3(0), we get from a comparison of Eqs .
(3.51) and (3.50)

β = 2ο2, (3.52)

(2a)*o*{0)w.* = ic*V2^ dt(tf\lA*(t), Α+(ί)]\π<·). ( 3 > 5 3 )

Equation (3.52) determines the absolute magnitude of the
parameters appearing in Eq. (3.48).

3.3.5. Accordingly, after using the same hypotheses
as in the consideration of the amplitude for πΝ scatter-
ing, we have one unknown coefficient γ left in the ex-
pansion (3.43). For massless π mesons this coefficient
does not occur in the expression for the amplitude on
the mass shell. For μ2 Φ 0 this is not true, owing to
the breaking of the SU(2) ® SU(2) symmetry. As has
already been pointed out, at energies of the order of
the pion mass the term proportional to γ in Eq. (3.43)
in general makes an important contribution.

The coefficient γ is determined from the additional
assumption (2.18) about the properties of the interaction
that breaks the SU(2) ® SU(2) symmetry: [A^t), Ak(t)]
~ δ*. Then [A3(t), A+(t)] = 0, and

γ = 0, (3.54)

which together with the condition (3.49) leads to the fol-
lowing relation:

7α2=-2α0. (3.55)

For the scattering lengths a0>2 we have finally

ao = Q.2\Cl, αζ=—Ο,Οδμ-1. (3.56)

3.3.6. We note that although the scattering lengths
are small, according to Eqs. (3.44), (3.45) the s-wave
phase shifts increase rapidly with the energy. For ex-
ample, for total energy 500 MeV δ0 is about 35°. It must
be kept in mind, however, that we have everywhere ne-
glected the imaginary part of the ππ scattering ampli-
tude, which is not small for δ0 = 35°. Therefore this re-
sult can be regarded only as an estimate of the quantity

The existing experimental data evidently lead to
large ππ scattering lengths (a0 ~ Ιμ" 1), which contra-
dict the prediction (3.56). Values of the scattering
phase shifts have been obtained from analyses of the
reactions πΝ — 2πΝ,Ε52: and decays Κ — 3π,£53:ι and
Κ — 2πβν.ίΜ1 It is not clear, however, how reliable
data on the scattering lengths are which are obtained
by these indirect methods.

3.3.7. In conclusion we shall make some remarks
concerning the hypotheses used in the derivation of the
relations (3.56). The main one is the assumption that
the amplitude can be written in the form of the polyno-
mial (3.43). In particular this means that the contribu-
tion of threshold singularities is neglected, which is
permissible only for small scattering lengths. There-
fore we can judge the correctness of Hypotheses I—III
from comparing the theoretical predictions derived in
this section with experiment only in cases in which the
experimental scattering lengths are actually small. We

recall that in the case of πΝ scattering the condition
that the scattering lengths be small was satisfied.

The expansion (3.43) can also fail if the amplitude
has a pole at a distance ~ μ from the threshold. The
width of the corresponding resonance could also be of
the order of μ. We note that a strong s-wave interac-
tion of π mesons would not affect the predictions we
already know for the amplitude for πΝ scattering. In
fact it is essential to include this interaction only in
calculating the quantity 3C+/9t, for which we cannot
obtain any predictions at all.

4. PHOTOPRODUCTION AND ELECTROPRODUCTION
OF π MESONS

In this chapter we come to the consideration of pro-
cesses caused by electromagnetic or weak interactions.
The main difference from strong processes is that
these interactions break the SU(2) ® SU(2) symmetry
even in the limit μ2 = 0.

In what follows we shall often use the reduction for-
mula for the electromagnetic or weak process A —• Βπ

Μ = {Βπ I SB (0) \A) = — i f dxeiqx (Q - μ2) (Β | Τ {3£ (0) φ (χ)} \ Α),

(4.1)

where SS is the Hamiltonian of the interaction. Carry-
ing out the same operations as in the derivation of Eq.
(3.23) we get for the value of the amplitude Μ for zero
pion momentum the result

Μ - ^ ic \ dxei<ix {B | Τ {δμαμ (χ) Μ (0)} | Α) =

=-- ic (Β | [3£ (0), Α (0)] \Α) + cq». ^ dxei!>x (Β \ Τ {αμ (χ) 36 (0)} \Α),

(4.2)
i.e., the amplitude at this point is expressed in t e r m s of
the commutator of the axial charge A with the Hamilto-
nian (in the second t e r m only the pole contributions need
be taken into account). Using definite assumptions about
the form of these commutators and the extrapolation
formulas for the amplitude, we can obtain from (4.2)
predictions for experimentally measurable quantities.

4 .1 . The Photoproduction of π Mesons

In this section we consider the amplitude for photo-
production of π mesons from nucleons near threshold.
In Subsection 4.1.1 we prove the Kroll-Ruderman theo-
r e m / 9 1 according to which the photoproduction ampl i-
tude is described, up to and including t e r m s of zero
o r d e r in the photon momentum k, by pole and contact
d iagrams . This s tatement is a par t icular case of a
theorem of L o w , l i n in proving which we shall follow.11183

In 4.1.2 it is shown that it follows from conservation of
axial c u r r e n t that the t e r m s in the nonpole p a r t of the
amplitude which a r e l inear in the photon or pion m o -
mentum a r e equal to z e r o . C 5 5 ' 1 8 1 In 4.1.3 we make a
comparison of the resu l t s with the available exper i-
mental data.

4.1.1. For definiteness we consider the production
of a π* meson from a proton

>« + π+. (4.3)

The amplitude for this p r o c e s s can be written in the
form

Τ (yp->• rai+) =- £%Μ μ = — βεμ <rat+1 ) μ (0) [ ρ), ( 4 , 4 )
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where

•a A \ n

FIG. 3

where εμ is the polarization vector of the photon, ίμ(0)
is the operator of the electromagnetic current of the
hadrons, and β2/4π = 1/137.

In the matrix element Μ μ it is convenient to sepa-
rate out the contributions of the pole diagrams (Fig. 3):
the nucleon terms M? and Μ μ , the π-meson term Μ μ ,
and also the contact term Me which is obtained from
the pseudovector JTNN vertex by the substitution 9 μ

— 9 μ + ieA:

Λίμ = Μ£ + Μ2 + Λ/ϊ + Λ^ + Μμ. (4.5)

The explicit expressions for these contributions are
as follows:

= // 1/2 uzqy5 q- m)"1 [ γ μ - (kV2m) σμ

lA = ifV2ui

(4.6)

(4.7)

(4.8)

(4.9)

where p l f p 2 are the momenta of the initial and final
nucleons, q is the momentum of the π meson, and
kP»n are the anomalous magnetic moments of the
proton and neutron.

The Kroll-Ruderman theorem essentially states
that the matrix element Μμ is linear in the momentum
of the photon, and if we regard this momentum as
small at threshold we can neglect the term Μ μ in
(4.5). The proof is based only on the requirement that
the vertex for photon emission be transverse. It is
easily verified that the sum of the pole and contact
terms satisfies the transversality condition separately,
so that the^condition kj1M(I = 0 must be satisfied. Let
us expand Μ μ in a power series in the photon momen-
tum k. Since all of the contributions to the amplitude
that are singular at k —• 0 have been removed, the
quantity Μμ(0^ must be finite. Then, because the con-
stant vector Μμ(0) and the arbitrary vector k-μ are
orthogonal, we have Μμ(0) = 0. In other words, the
expansion of Κίμ begins with terms linear in k.

We can calculate the cross section for photoproduc-
tion with some accuracy by keeping only the first four
terms in (4.5). The accuracy of the prediction can be
improved if, as in the case of πΝ scattering, we make
use of the properties of the amplitude with respect to
the crossing transformation. To insure that the form-
factors have a definite parity under this transforma-
tion, we must examine the sum Μ μ of the amplitudes
for photoproduction of π* mesons from protons and of
iT mesons from neutrons. The crossing properties
of the amplituees for production of neutral mesons
are the same as for the sum of the amplitudes for
production of charged mesons.

The expansion of Μ in terms of invariant amplitudes
is given by four independent form-factors Vj (i = 1, 2,
3, 4):

T | 2 = 4 - l ,

η 3 = - 1 ,
(4.10)

Ομ = — ίε

The form-factors Vj depend on the invariant variables
t = (k- q)2 and ν = (k + q)(px + p2)/4m. The numbers ??i
give the parities of the corresponding form-factors with
respect to the crossing transformation:

Tf(v, t) = ±ri,Vt (-ν, ί).

It follows from (4.10) that in the approximation which
is linear in k and q we need take into account only the
contribution of the form-factor Vj to the photoproduction
amplitude, and this contribution is the same for the
cases of production of it* and if mesons. The zeroth-
order terms are of opposite signs, and therefore the
coefficient Vi(0,0) drops out of the expression for the
sum of the cross sections for production of charged
mesons :lia>92

- pn + μ)2 (4.11)

where the rapidly varying factor k/| q| in the left mem-
ber is due to the phase volume (k and | q| are the abso-
lute values of the three-dimensional momenta of the
photon and the π meson in the c.m.s.).

4.1.2. So far we have used only gauge invariance.
We shall show that it follows from conservation of axial
current that Vj(0,0) = 0.

To do so we use Eq. (4.2), where we must substitute
ΐ μ (0) for &e(0) in the present case. For the commutator
of the current with the axial current we assume (see
Chapter 1)

lA-(0),U(0)] = at(0). ( 4 # 1 2 )

For the limiting value of the amplitude for q —· 0 we
get from (4.2), (4.5), (4.12), and (2.5)

Μ; + Μμ^Μμ->ί71/2ΰ2{γμγ5-[ί;μΛ/>2~μ3)]γ5}«ι, (4.13)

where we have used the fact that the nucleon pole con-
tributions to the photoproduction amplitude and to the
second term in (4.2) are equal.

From the explicit forms of Μ μ and Μ μ , Eqs. (4.8)
and (4.9), it follows that

Μμ->0, 7,(9-0)^0. (4.14)

This result can be formulated in another way, as the
prediction that the quantity Vj is small compared with

since according to (4.14) the expansion of V̂  begins
with terms quadratic in the momenta, and VI is only
linear in k and q. The statement (4.15) is analogous to
the prediction (3.34) about the ratio of the isotopically
even and isotopically odd scattering lengths.

Using the relation (4.14), we can calculate up to
quadratic terms not only the sum of the cross sections
for production of charged mesons, but also the sepa-
rate cross sections, and also the amplitude for produc-
tion of neutral mesons, which according to the Kroll-
Ruderman theorem contains only terms of first and
higher orders in k.
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We note that the relation (4.2) for the commutator
of the axial charge and the electromagnetic current is
equivalent to the assumption of the minimum electro-
magnetic interaction." To verify this, we write the
amplitude for photoproduction somewhat differently
from Eq. (4.2):

)

= - Γ dxe'o* ( Q - μ2) <» Ι φ " (*) I yp),

(4.16)
where we have used the reduction formula with respect
to the π-meson field. Since a photon is involved in the
process, we must write the hypothesis of partial con-
servation of axial current, Eq. (2.12), with the electro-
magnetic interaction included to first order in the
charge. The assumption of minimum electromagnetic
interaction means that in (2.12) we replace 9μaJ by
^μaμ ± eAμaμ:; we then get

(2π)« δ4 (0) Τ (yp - » ηπ+) - + - lee \ dxe-iqx <n | -4μ (χ) α μ (ζ) | yp)

-icq» f dxe-i^(n\a-^(x)\yp),

(4.17)
which, as is easily verified, is identical with the pre-
vious result (4.13).

4.1.3. Let us now compare our results with experi-
ment. The theoretical and experimental values of the
cross section for production of it* mesons at threshold
are

{ π Τ } ρ » (4.19)

and are in excellent agreement.
The prediction about the ratio of the threshold cross

sections for production of π* and π" mesons is also well
confirmed:

e x p

- 1.265* 0.075«.(4.21)

It must be admitted, however, that owing to Eq. (4.11)
only one of the predictions (4.18), (4.20) can be regarded
as a consequence of current algebra, since the sum of
the cross sections for production of it* and π" mesons
can be determined from only gauge invariance and the
hypothesis that the amplitude can be expanded in a
power series in the momenta.

It is very interesting to compare with experiment
the predictions about the size of the cross section for
production of neutral pions, which is determined by the
linear terms and cannot be calculated without using the
result (4.14). According to existing experimental es-
timates"1"

whereas the theoretical value is

( 4 · 2 2 >

< 4 · 2 3 >
It must be kept in mind, however, that in the experi-

mental determination of the cross section one uses an
extrapolation of data obtained at energies at which the

FIG. 4

contribution of the ρ wave is at least an order of mag-
nitude larger than the contribution of the s wave, with
which we are concerned here.

If we keep the zeroth-order terms in the amplitude,
then to this accuracy we can find not only the threshold
value of the cross section, but also the energy-depen-
dence of the cross section near the threshold. In Fig. 4,
taken from B e ] , the theoretical curve (solid line) is
compared with the experimental data. Since the zeroth-
order terms are determined from the requirement of
gauge invariance, the comparison of this prediction
with experiment tests only the possibility of expanding
the amplitude in a series. We cannot take the linear
terms into account in calculating the energy dependence
of the cross section, because we have not considered
the contribution of the isobar, which is of the same
order as the linear terms. In the calculation of the
threshold value of the cross section—the amplitude of
the s wave—it is not essential to take the isobar into
account.

Accordingly, the comparison with experiment shows
that the main features of photoproduction at low ener-
gies are satisfactorily described by the theory. But the
relation (4.14), which is of more interest to us, cannot
be tested on the basis of the existing experimental data.

4.2. Electroproduction of π Mesons

In this section we obtain theoretical predictions for
the amplitude for electroproduction of it mesons for
small values of the relative three-dimensional momen-
tum of the final nucleon and meson. In Subsections
4.1.1 and 4.1.2 we consider the case of small momen-
tum transferred to the leptons, and in 4.2.3 the case
in which this momentum is relatively large, of the
order of a BeV/c.

4.2.1. In the one-photon approximation the amplitude
for electroproduction can be written in the form

Τ (e~p -» e-nn+) = (inalk2) μ, 1

, j

where vx a are the wave functions of the initial and final
electrons and k is the momentum transferred to the
electron (the momentum of the virtual photon).

If the momentum transfer is small, of the order of
μ, the amplitude for electroproduction can be expanded
in a series in k and q. It follows from the results ob-
tained in the preceding section that up to terms linear
in q the matrix element Μμ is given by the sum of the
pole and contact diagrams. Explicit expressions for
the contributions of these diagrams are given in Eqs.
(4.6)—(4.9). In this approximation there is no differ-
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ence between the amplitudes for photoproduction and
for electroproduction.

4.2.2. It is clear that in order to obtain predictions
specific to the case of electroproduction, we must con-
sider the dependence of the amplitude on k2. Accord-
ing to (4.2) and (4.12) the terms proportional to k2 in
the expansion of the nonpole part Μμ can be expressed
in terms of the derivative of the axial form-factor g(k2)
of the nucleon with respect to k2. The dependence of
the pole diagrams on k2 is due to the electric radii of
the particles.

Therefore in second order in k and q the only re-
maining theoretically uncertain terms are those pro-
portional to both k and q. But these terms are the
same, to our approximation, for the cases of photopro-
duction and of electroproduction. Therefore in study-
ing the process of electroproduction we can take the
terms proportional to both k and q into account phe-
nomenologically, expressing them in terms of the quan-
tities (V,, V4, Β ν , / β ΐ ^ β

Keeping these things in mind, we can easily derive
an expression for the matrix element Μμ which is
correct to and including terms of second order in q
and k:" 8 J

Μμ =-- - if V2 u2 {qy, (p\ + q- m)"1 [γμ (l--Fp (0) k') - (k"/2m) a^kv\

4- [7,Λ (0) k"- - (k"/2m) σμν/£τ) (ρ, - q — m)'1 qys

+ (q-~k)y!il(r1-ky--μ-Tι[(2q-k)ίι+2F•lι(0){q|ιk"--k|1(kq))}

- γ μ γ 5 - [F'v (0) - F n (0)] λ·μ<?7ό - (g' (0)/gA) y5 (kjc -yjc)} it,

4 (0) ?σ + W3 (0) γ5 (γμ (qk) - q^k) + iv-^i- »„
(4.25)

where F^O), Fp(0), and Fn(0) are the values of the
derivatives of the respective form-factors of the pion,
proton, and neutron with respect to k2 at k2 = 0. We
note that Eq. (4.25) applies only to the production of
a n meson in the s wave, since we have not considered
the contribution of the isobar. In this case the contri-
bution of the form-factor V4 can be neglected.

4.2.3. For small momenta of the virtual photon tests
of the consequences of the conservation of axial current
are made difficult by the fact that the main part of the
matrix element is determined simply by the require-
ment of gauge invariance. In the case of electropro-
duction, however, one can select events in which the
π meson produced is at rest relative to the final nu-
cleon, and k is large. Then the conservation of the
electromagnetic current does not (sic) allow us to find
the amplitude with any accuracy, and Eq. (4.2) deter-
mines the matrix element Μμ with accuracy up to terms
linear in the small momentum q:lml

Λ/μ = i [g (k*),;gA] fV2u2 ^-(kjc/k*)] V 5 u , -

- if Υ2 u, {qy, (p 2 + q~- m)" 1 [ γ ^ ΐ (λ-2) - Vtfna^kvFi (A:2)]

-! • [Υμ/Μ (*2) — 1Umov.vk^Fl (k°-)\ (p, — g — m)-tyy5} u,,

(4.26)

where FP'2

n(k2) are the charge and magnetic form-factors
of the proton and neutron, and g(k2) is the axial form-
factor. We note that the expression (4.26) is transverse
only with accuracy up to the neglected terms, which are
linear in q. In the calculation of Μμ one should, in gen-
eral, also include separately the contribution of the iso-
bar N*(1236). But this contribution is small at the

threshold for meson production, of the order of 10
percent.

Generally speaking the relation (4.26) can be applied
for arbitrary k2. In the region of asymptotically large
k2, however, when the form-factors FP»^(k2) become
small, it can happen that the terms linear in q fall off
more slowly with increasing k2, so that it is essential
to include them and (4.26) does not hold.

A complete test of (4.26) is obviously difficult, pri-
marily because of the necessity of first determining the
axial form-factor g(k2). One can therefore try to re-
verse the problem and regard (4.26) as the basis for
determining g(k2) from experiments on electroproduc-
tion. The legitimacy of expanding the amplitude in a
series in the momentum q could be tested by comparing
with experiment the predictions for the cross section
for production of neutral π mesons, which in the ap-
proximation considered is expressed solely in terms
of the contribution of pole diagrams and does not con-
tain any quantities not now known. Besides this, Eq.
(4.26) imposes serious restrictions on the spin struc-
ture of the amplitude for production of charged π me-
sons, and this also offers possibilities for testing
(4.26).

5. LEPTONIC DECAYS OF Κ MESONS

In this chapter we consider the following processes:
Κ —• Iv (K/2 decays), Κ — irlv (K/3 decays), Κ — τι-nev
(Ke4 decays), where I denotes a muon or electron and
ν a neutrino.

Section 5.1 contains the necessary information from
the phenomenology of these decays, which can be found
expounded in detail in c22»30»8" Sections 5.2 and 5.3 give
derivations of the theoretical predictions for the form-
factors describing the K/3 and Kg4 decays. [ β 2 'β 3 ] In Sec.
5.4 we discuss the extrapolation formulas for the form-
factors, and in Sec. 5.5 we compare the results obtained
with experiment.

5.1. Phenomenology of Leptonic Decays of Κ Mesons

Leptonic decays of Κ mesons are caused by the weak
hadron current with change of strangeness, i§ . It is
usually assumed that i^ is a component of an isotopic
spinor.

5.1.1. K/2 Decay. The matrix element for this de-
cay is determined by a single constant fj^:

4)uvyli(l^y!i)ul, (0 | ξ \ Κ) = ifKPy (5.1)

where Uj,, u/ are the wave functions of the leptons, ρ μ

is the momentum of the Κ meson, and G = (1.01 ± 0.01)
x 10"5mp

2. The probability of Κ μ 2 decay is connected
with ί κ in the following way:

w(K+-± \i*v)^(G^%ma)mlmK\\-(mllml)Y-. (5.2)

5.1.2. Kj3 Decays. The matrix elements for K/3 de-
cays depend on two independent functions f± (k2), where
k2 is the square of the momentum transferred to the
leptons:

+ Vs) «i.

(nr | ξ > [/+ () (j, + q)lirf ( ) ( ρ ? ) μ ] ,

(5.3)
where p, q are the momenta of the Κ and IT mesons. The
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contribution of the form-factor f. to the amplitude is pro-
portional to the mass of the lepton, and in the case of
K/3 decay it can be neglected. Κ we further assume that
the function f+(k2) does not depend on its argument in the
region considered [0 < k2 < (mg — μ) 2 ] , then a measure-
ment of the total probability of K ŝ decay allows us to
find the quantity f + :

w (K* ) = (G2/! m\l2- 768π3) 0.58. (5.4)

The ratio f./f+, which is usually denoted by | , can be
found from the probability of Κμ3 decay (two solutions),
or from polarization experiments.

5.1.3. Ke4 Decays. The matrix element can be writ-
ten in the form

Μ = (Gl V2) <ππ | φ | K) !ν\>μ (1 + Vs) u,,

|ί|!|Λ:+> = - ι{(? 4 . + ?-

+ (p—?+—q-

(5.5)

where p, q+, q_ are the respective momenta of the K+,
π*, and if mesons and the arguments of the functions
f!,..., f4 are omitted. The contribution of the form-
factors f3, f4 to the decay probability is numerically
suppressed, and if we regard f j and f2 as constants we
can write for the decay probability

/;.0,0296+ /|.0,0029). (5.6)

The ratio ί χ/ί 2 can be determined from analysis of an-
gular distributions.

5.2. The values of the amplitudes for K;3 and Kg4

decays for zero pion momentum are given by Eq. (4.2)
where for $e we must substitute the operator !„·. Since
the π meson cannot be emitted from an external line,
in this case a K meson line, the second term in the
right member of (4.2) is equal to zero. For the com-
mutators of the current i§ with the generators of the
group SU(2) 8) SU(2) we assume (see Introduction)

[y· ^ / s ]=0. (5.7) ^

When we use this relation Eq. (4.2) leads to the fol-
lowing limiting value for the matrix element of Κμ3

decay:

lim <n° | ζ | K+) = ic V2 <01 [ξ, V3] \ K+)

= (id V2) (01 ίμ I K+) = -cfKpJ V2,

(5.8)
where we have operated on the product of wave func-
tions with the generator Vs of the isotopic group3' and
have used the definition (5.1). It follows from (5.8) that

h(mlc) + f-(mfo = cfK. (5.9)

Analogously, we get for the form-factors of Ke4 decay

/3 |ϊ+=ο = ο, (5.10)

(/i-/0,+-o=0, (5.11)

(/i + /2),.= o = 2<:/+, (5.12)

/a|,_=o = c(/+ + /_). (5.13)

3 )The phase factors are chosen in such a way that V+ | K+ > =
1 + = | K O + > ! _ V 3 | K ± > = ± I K ^ 1= 0, V 1 |

' Ι ΤΓ >, V± 17T+ > = ± 2 / 2 Ι π 0 >, V3 Ι -η* > = 0,= 0,V I

V3

the book I22 ]) of a choice of phases which gives the opposite sign to the
state Ι π+ >.

Ι π* > = ± | π* >. We note that use is often made (in particular in

FIG. 5

5.3. In order for the conditions (5.9)—(5.13) to yield
predictions for the amplitudes in the physical regions
of the decays it is necessary to use some sort of ex-
trapolation formulas for the form-factors. The sim-
plest possibility is as follows: The quantities f±, fx, f2

do not depend on their arguments, and the form-factor
f3 equals a constant plus the contribution of a diagram
with the 77K scattering block, as shown in Fig. 5 (this
diagram contributes only to f3). We now explain the
last assumption. The isotopically odd part of the am-
plitude for πΚ scattering can be calculated in precisely
the same way as the isotopically odd part of the am-
plitude for πΝ scattering was calculated in Sec. 3.2. It
is not hard to verify that the contribution of the dia-
gram of Fig. 5 to f 3 is given by

(1/2) c + - q.) ( 2 p - q + - q_)]/[(p - g+ _ ? _ ) * _ (5.14)

It can be seen from this expression that, depending
on whether the momentum that goes to zero is q+ or q_,
this contribution varies by the amount c2ij£, which ac-
cording to (5.13), is comparable with f3. Moreover, if
we determine the constant part of f3 from (5.13), then
the relation (5.10) at once follows from the assumption
that the entire dependence of f3 on the momentum is
due to the contribution (5.14), so that the hypotheses
about the form of the extrapolation formula and about
the commutators of the current i^ with the vector and
axial charges are selfconsistent.

Finally, the simplest solution for the form-factors
f is

+ 1 = cfK/}+, ft = h = cU, f, = (ο2ίκί2) - {(?+-?-) p/2 i(p-q+-q_)* -m'K)}

(5.15)
the quantity f+ remains undetermined and must be taken
from experiment.

5.4. We emphasize that the question of the form of
the extrapolation formulas cannot be solved theoreti-
cally in the framework of the hypotheses we are con-
sidering. Therefore the assumption that the form-
factors f±, f1( and f2 are constants is not at all neces-
sary and is rather due to the lack of experimental data
and the desire to obtain predictions for even a rough
comparison with experiment. At present there are
only experimental estimates of the dependence of f+
onk1.2 [64]

/+ ( (0) [1 + 0,023 (/£2/μ2)]. (5.16)

We see that as k2 varies from 0 to mfj the value of
ft changes by about 30 percent. It is clear that effects
of this order ought to be taken into account.

5.5. Let us now compare the solution (5.15) for the
form-factors of the Kj3 and Ke4 decays with experiment.
If we take the probability of the decay K* — μ* ν to be
4.0 χ 10β sec"1, then we get for the probability of the
decay K+ — π+77*ε+ the value

w(K* Ο Ι = 1,6·103 s e c " (5.17)
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which is to be compared with the experimental value

w(K+ - * n+n-e+v)exp=(2.6±0,3).103Sec"1 (5.18)

The discrepancy between theory and experiment is about
30 percent in the amplitude.

For the ratio of the form-factors ίλ and f2 we have

(/lZ/sOtheor 4- (/l//2)exp^0.8±0.365. (5.19)

We can also predict the value of the ratio ξ of the
form-factors f_ and f+ in Κ μ 3 decay:

1 + 1=1.3. (5.20)

There have been many papers on the experimental de-
termination of the quantity ξ, but the situation is still
rather unclear and we find it difficult to suggest any
final value for ξ. Nevertheless it is important to point
out that the majority of the results contradicts the pre-
diction (5.19) and gives ξ = - (0.5—1). A detailed re-
view of the experimental papers can be found in a r e -
port by Rubbia (CERN, 1969).cee]

Improvement of the experimental data on the quan-
tity ξ and the dependences of f± on k2 is a matter of
great interest. We point out that in comparing theoret-
ical predictions with experiment it may be necessary to
use a more realistic parametrization of the form-fac-
tors.

6. NONLEPTONIC DECAYS OF Κ MESONS AND
HYPERONS

6.1. The Rule ΔΤ = \

6.1.1. The hypothesis of the existence of SU(2)
® SU(2) symmetry of the strong interactions is also
useful in the discussion of weak nonleptonic interac-
tions only in case the Hamiltonian of these interactions
has definite transformation properties with respect to
the group SU(2) ® SU(2). As has already been said,
these properties are characterized by the form of the
commutation relations of the Hamiltonian 36 with the
generators of the group.

The commutators of 36 with the vector generators
determines its isospin structure, about which we make
no hypotheses. We shall only assume that the bare weak
interaction involves particles of left-handed helicity;
this means that (see Chapter 1)

[V'-,4\ 36)-= 0. (6.1)

An example of a theory in which Eq. (6.1) holds is the
well known model of the weak interactionsC 1 4 ] according
to which the Hamiltonian 36 is equal to a product of
charged currents.

6.1.2. Suppose the bare Hamiltonian does not satisfy
the rule Δ Τ = \, as, for example, in the model of
charged currents. It will be shown[15'β7~β9:ι that never-
theless the relation (6.1) enables us to explain the sup-
pression of some transitions with ΔΤ > \, if we con-
fine ourselves to the first terms in the expansions of
the amplitudes for weak processes in powers of the
momenta.

The proof of this assertion is based on the calcula-
tion of the limiting values of the amplitudes by means
of Eq. (4.2). Let us first consider the s-wave ampli-
tudes in hyperon decays. The pole diagrams (Fig. 6,
a,b) give a contribution, as is easily verified, onto the

a)

ρ waves, and therefore in calculating the amplitudes
of the s waves there is no second term in (4.2). Ac-
cordingly, we get, for example for the decay Λ — ρπ"

Ms (Λ |, = l ) = ic (p | [S6V*] | Λ> = - ic (η \ 3£ | Λ), (6.2)

Ms (Σ+ -»• ηπ+) = —ic [Υ 2 {η\36\Σ<>) + {ρ\36\ Σ+>],

Ms (Σ+ - * JOT») = iclYl (p | 36 | Σ+>,

Ms (Σ- -» BUT) = ic "|/2 (η \ 36 | Σ»),

which leads to the relation1·87-1

Ms (Σ+ -» η

where we have used the fact that V+|A) = 0, V~|p) = |n).
An analogous formula holds for the amplitude Mg

(Λ —· ni7°). The matrix element (N|<$?|A) comes solely
from the part of the Hamiltonian that changes the iso-
spin by \. Therefore, if we neglect the change of the
amplitude as we go from q = 0 to the physical value of
q, the amplitudes for the decays Λ — ρπ~ and Λ — ηπ°
must satisfy the rule ΔΤ = \ even if the Hamiltonian
3C contains terms with ΔΤ = •§·. The same argument
can also be applied to the s-wave part of the decays
Η — Απ.

In the case of the Σ hyperons we get for q = 0

(6.3)

Σ+ -* ρπ») = 0, (6.4)

which differs from the prediction of the ΔΤ = \ rule by
the sign of the amplitude Mg (Σ* — ηπ+). Therefore if
the Hamiltonian satisfies the rule ΔΤ = \ the amplitude
Ms (Σ* —- nit*) must be equal to zero. But if 36 contains
transitions with ΔΤ > \ there is in general no reason
to expect that this amplitude will be small. Experimen-
tally Mg (Σ* —• ηπ+) ss 0, which is hard to explain in the
framework of our hypotheses if ΔΤ Φ \.

6.1.3. The amplitude of the ρ wave in hyperon decays
is experimentally of the same order of magnitude as
that of the s wave. At first glance it may seem that this
contradicts the assumption that the pion mass is small
on the scale of masses of the strong interactions, since
the amplitude of the ρ wave contains a kinematic factor
q and in actual cases | q | ~ μ. This is actually not so,
since there exist diagrams in which the "comparison"
mass is small. For example, the contribution of the
pole diagrams, shown in Fig. 6, a, b, is proportional to
I/Am, where Am is the difference of the baryon masses
and Am ~ μ.

A quantitative treatment shows that the ρ-wave am-
plitude cannot be satisfactorily described if we confine
ourselves to baryon intermediate states. This discrep-
ancy may be due to the necessity of including the con-
tribution of the K-meson pole diagram (Fig. 6, c). We
shall assume that this is so and show that in the frame-
work of the pole model the ρ-wave amplitudes must
satisfy the rule ΔΤ = \.

The isotopic selection rules for the amplitudes cor-
responding to the pole diagrams are determined by the
properties of the weak Κπ and BB' transitions (Β, Β'
= Λ, Σ, Hi N). Terms with ΔΤ = -| could contribute only



92 Α. Ι. VAiNSHTEIN and V. I. ZAKHAROV

to the amplitudes for Κπ and πΝ transitions. From (6.3)
and the experimental fact that the amplitude Mg (Σ*
— ηπ*) is zero it follows that the ΔΤ = ·£ rule holds for
ΣΝ transitions. For the Κπ vertex this rule follows
from (4.2), which says that in the limit of zero pion
momentum the amplitudes for the transitions Κ — π
and Κ meson to vacuum are proportional. It is obvious
that only terms with ΔΤ = •£ contribute to the latter
amplitude.

Accordingly, in the framework of the pole model the
ΔΤ = \ rule must be satisfied for the p-wave ampli-
tudes of hyperon decays. Unfortunately, this model can-
not be tested in a reliable way, since the constants for
Κπ transitions and K-meson interactions with hyperons
are not known.

6.1.4. Let us now proceed to the discussion of non-
leptonic decays of Κ mesons. The scheme of the proof"51

of the ΔΤ = \ rule for the decays Κ —· 2π, 3π is analo-
gous to the case of hyperon decays: using the relation
(4.2), we can connect the amplitudes for these decays,
in the limit of vanishing momenta of the π mesons, with
the matrix element for the transition of a K meson to
vacuum, to which any part of the Hamiltonian with ΔΤ
> \ does not contribute.

There is a complication owing to the fact that one
must consider separately the contribution of the pole
diagrams (Fig. 7), which depends strongly on the mo-
menta of the mesons and cannot be expanded in a series
in these momenta. The change of the isotopic spin in
the pole diagrams is determined by the vertices for the
transitions Κ —• π and Κ meson to vacuum, which, as
stated above, satisfy the rule ΔΤ = \. Therefore in-
clusion of the pole diagrams does not change our con-
clusions about the isotopic structure of the amplitudes.

6.1.5. Accordingly, using Hypotheses I—IV of Chap-
ter 1, we can establish the ΔΤ = \ rule for decays of
Κ mesons and for the s waves in decays of Λ and Ξ
hyperons. In the framework of the pole model the ΔΤ
= \ rule for the amplitudes of the ρ waves follows from
the Δ Τ = \ rule for the amplitudes of the s waves.

The assumptions we have used, however, apparently
do not allow us to explain the great accuracy with which
the rule ΔΤ = \ is obeyed. Moreover, as we discussed
earlier, the zero value of the amplitude Mg (Σ + —• ηπ*)
is more likely evidence that the ΔΤ = -§• rule for the de-
cays is not due to the involvement of π mesons in these
processes. Further information about the nature of this
rule can be obtained in the study of the decays Κ — 3π.

6.2. The Decays Κ — 3π

6.2.1. In the preceding section we used a successive
reduction of all the π meson fields to connect the am-
plitude for Κ — 3 π decays with the amplitude for tran-
sition of a K meson to the vacuum, and in this way ex-
plained the suppression of transitions with ΔΤ > \.
However, interesting results appear already at the first
step: Eq. (4.2) enables us to connect the amplitudes for
Κ — 3π and Κ — 2π decays, which can be measured
experimentally. Accordingly, one can calculate the
probabilities and slopes of the π-meson spectra in
Κ — 3π decays. We can not only explain the approxi-
mate validity of the rule ΔΤ = \. but also predict the
degree of its violation in decays Κ — 3π, by express-

« - * - ^ - *
^

FIG. 7

ing it in terms of the amount of the transitions with
ΔΤ > γ in the decays Κ —· 2π. In the present section
we derive these predictions for the amplitudes of Κ
— 3 π decays " ν 1 " 7 " and discuss the assumptions
used in this argument.

6.2.2. Theoretically, as always, we can find the
value of the amplitude for zero momentum of one of
the Ή mesons. Let us examine, for example, the de-
cay K+ — I ' I V . Equations (4.2) and (6.1) give for
the amplitude for this decay

^π+π+π-1 Si \ K*),3=o = ic <π+π+1 [SB, A*] | K+) = ic Υ2 <π+π» | SB \ K*),

(6.5)
(π+π+ΐτ | SB \ K+)qi=0 = ic (n+jr | [SB, A~) | K+)

= ic {<π+ΐτ \Se\Ka) — Y2 <π+π° ]SB\K+)},

(6.6)
where q3 is the momentum of the π" meson and qx is that
of one of the π+ mesons. In deriving Eqs. (6.5) and (6.6)
we have applied the operator V" to the product of wave
functions.

Let us assume, further, an expression for the am-
plitude linear in the energies of the π mesons. When
the identity of the π* mesons is taken into account this
is

where ρ is the momentum of the Κ meson.
Using Eqs. (6.5) and (6.6), we can easily find the co-

efficients a and b, and thus completely determine the
amplitude. We must note from the very beginning, how-
ever, that the assumption about the form of the expan-
sion is a very strong one, not checked experimentally
to the needed accuracy, and we shall therefore return
to a discussion of it in 6.2.4.

Accordingly, in the framework of the assumption
(6.7) the matrix element for the decay K+ — π+π+π" is
completely determined. We can treat the other decays
in an entirely analogous way. The final result can con-
veniently be put in the form

(3n\SB\K) = y(l + ay), (6.8)

where y = (2E3 - Ex - Ε2)/ΐηκ, Ε3 being the energy of
the "odd" π meson and Ex and E2 the energies of the
"even" mesons;

<π+π+ΐτ I S£ | K*} = (ic Y2/3) (π+π-1 Si \ K{) [ 1 + (1 — 66) y\, "

(π°π°π+1 SB \ K*) =

= (icY2/6) <π+π-1SS | Kl) (1 + Θ) {1 - 2 [1 + (36/ [1 + θ])1},

= — (ic Υ2/6) (π+ΐχ-1 SB I K\) (1 — 26) {1 + 2 [1 (6.9)

<JI°JI°JI 0 \S6\K\)=— (ic Υ2/2) <π+π"|S€ \K\) (1 -f θ — 26),

= (ic V2/2)<π+π"\$Β\Κ{)(£π+ - £ „ _ ) (2 Υ2Θ — 36). j

The parameters θ and δ in (6.9) characterize the devia-
tion from the rule ΔΤ = -£ in the decays Κ — ITS and are
defined as follows:



P A R T I A L CONSERVATION OF AXIAL C U R R E N T 93

δ = <π+π° I SB | Κ*)!(π+πΓ \ 36 \ K\),

° I SB | K\) - (π+π-1 S£ | X?> + 2 (π + π 1 <% | K\).

The quantity θ is equal to zero if the Hamiltonian Si
does not contain any transitions ΔΤ = -f. The absolute
value of the parameter δ is known from experiment:
|δ| = 1/22. The sign of δ can be found from the ratio
of the probabilities of the decays K̂  — 2ττ° and K̂
— τί*τΓ, if we make the additional assumption that
θ = 0 [see also the discussion below, after Eq. (6.11)].
Then

1 - 2δ = (π°π° \St \ Κ{)1 (π+π~ | ffl \ K\),

and the experimental data favor δ > O.[773 In the nu-
merical calculations we take δ = 1/22.

If we neglect electromagnetic corrections and iden-
tify the matrix elements of the Hamiltonian of nonlep-
tonic interactions with the amplitudes of the physical
processes, then the formulas (6.9) allow us to connect
transitions with a given change ΔΤ of the isotopic spin
in Κ — 377 and Κ —» 2ττ decays. (The isotopic analysis
of the Κ — 3ττ decays from the phenomenological point
of view is given, in particular, in the papers." 8 3)

First, it is clear that since transitions with ΔΤ = \
do not contribute to the amplitudes for Κ — 2π decays,
the amplitude from such transitions must be zero also
in the case of Κ — 3π decays. This condition leads to
the relation

2γ (K+ 3.1»)
- = 0 .y (Κ+ —> π+π+n-) 3γ («Γ} —* π+jl-jt») "" ' " '

The transitions with ΔΤ = -f in K — 3π decays can
be connected with the ratio of the amplitudes for differ-
ent modes of decay of a given Κ meson (K+ or K°). Ac-
cording to (6.9) we have

_2γ(Α+
- 1 = θ . (6.11)

y (Kg - » 3πθ)
3γ (Χξ -τ» π*π-π·

This relation allows us to obtain from the existing data
on Κ — 3π decays a limit on the possible value of Θ,
θ < 0.05—0.1, from which it follows, in particular, that
the contribution of the interaction with Δ Τ = •§ to the
amplitude for the decay K+ — π*π° does not exceed 10
to 20 percent.

The contribution of transitions with Δ Τ = -§ has its
strongest effect on the magnitude of the ratio of the
slopes of the spectra in the decays K+ — •Π*Ή*ΤΓ and
κ+ - * W "

σ(Κ+
2σ(Κ+ • π + π + π ~ ) 2σ (Χ+

,1-^35
; ι—βδ -1.56. (6.12)

The Δ Τ = \ rule makes these ratios unity.
Finally, the amplitude with Δ Τ = \ gives the main

contribution to the absolute value of the amplitude of
any of these processes.

6.2.3. In comparing predictions about violations of
the ΔΤ = \ rule with experiment we must keep in mind
the uncertainty associated with the inclusion of the
electromagnetic mass differences of the π and Κ me-
sons.1·793 The reason for the uncertainty is that instead
of the parameter y in (6.8) one can introduce a differ-
ent quantity, for example

i/'=-(l/2mK)[2(p-<?3)
2-(p-?i)2-(P-?2)2J. (6.13)

In the limit of isotopic symmetry the masses of π*
and π° mesons are equal and y = y'. If, on the other

hand, we take account of the mass splitting, then when
y' is reduced to y terms appear in the constant part of
the amplitude proportional to the electromagnetic mass
differences of pions and kaons. Therefore different
forms for writing the matrix elements lead to different
predictions for the probabilities. This means that the
predictions for the ratio of the quantities y cannot be
tested to an accuracy better than 5 percent. In this
connection we note that an uncertainty in testing pre-
dictions of the value of the product γσ, which is asso-
ciated with the electromagnetic mass differences of
the particles, arises only when terms quadratic in y
are included, which have been assumed small in the
derivation of (6.9) [see also the discussion after Eq.
(6.14)].

In connection with the above-mentioned difficulty in
testing the rule ΔΤ = \ with data on decay probabilities,
it is of particular interest to compare the ratios (6.12)
with experiment, since in this case the predicted effect
of a violation of the ΔΤ = -§· rule is large. It can be
seen from Table Π, which gives the experimental data,
that at present we cannot exclude the possibility of a
50 percent violation of the rule ΔΤ = \ in the ratios
of the slopes of the pion spectra in the different decays.

We emphasize that the prediction (6.12) is based on
the assumption that the weak-interaction Hamiltonian
contains transitions with ΔΤ = •§, which in particular
are responsible for the decay K̂  — π+π°. If it turns
out that the ratio

— σ (A'+ - > π + π°π 0 )/ 2σ (Λ'+ - > π + ι τ Ί Ο

is close to unity, this will be a serious argument in
favor of an electromagnetic origin of the decay K*

+ 0

— 7Γ ir .

Table II also shows comparisons with experiment
for the absolute values of y and σ for one of the decays
(K+ —· TTW~ ), where they are most accurately known
experimentally. It is seen that there is good agree-
ment between the theoretical predictions and experi-
ment.

6.2.4. This agreement with experiment is in the
final analysis the only argument in favor of the validity
of the expansion (6.7), which was fundamental to the
derivation of all of these results. Regarding this ex-
pansion one must keep in mind the following remarks:

a) We have neglected terms quadratic in the mo-
menta of the π mesons. First there are the terms
proportional to q2, which in principle cannot be found
from experiment. Since the value of the main terms
is ~mj^E jr, the error caused by neglecting the depen-
dence on q is in general of the order of μ 2/ηΐκΕπ ~ \.
Second, we have not included terms of second order in
the energies of the π mesons. Since we are using the

σ (A

σ (A

σ (A

σ
σ

Quantity

*- —> JI+JX+

+ — * π + κ

(Α'5->π
(Α+^π

π - )

Table Π.

ΔΤ = 1

1,6
1

1

1

Theory

'2 ΔΤ

1
0

1

1

></.

,6
73

,56

Experi-
ment [80]
(January,

1969)

1,92+0,01
0,85+0,04

0,77+0,12

1,30+0,12
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expansion (6.7) in a region of pion energies ranging
from zero to πικ/2, it is necessary that the "compari-
son" mass for the additional power of the energy be
much larger than πικ/2. The terms quadratic in the
energy can in principle be measured experimentally.
If we write the matrix element in the form

Μ — l + ay + xy2. I0.14J

then in order that there be no great change in the pre-
dictions it is necessary that τ satisfy the relation τ
s 0.1. The available experimental data"·80·1 give only the
upper limit τ £ 0.5.

b) In the treatment given in Subsection 6.2.1 it was
assumed that the amplitudes for Κ — 2π and Κ — 3π
decays are real. In particular this means that we ne-
glect the phases δ0)2 of the scattering in states with
total isotopic spins 0 and 2 at a total energy equal to
the mass of the Κ meson. Indirect experimental data
give 60 » 35°.:52] If we regard this value of δ0 as cor-
rect, the neglect of the imaginary part of the amplitude
is unjustified. We therefore point out that the assump-
tion that δ0 is small is used only in calculating the am-
plitudes for transitions with ΔΤ = \ in the decays Κ
—• 3π. The predictions about the slopes of the spectra
follow from the fact that the part of the amplitude with
ΔΤ = \ is zero when the momentum of a particular π
meson is zero, and their proof does not depend on the
assumption that δ0 is small. In the calculation of the
amplitudes with ΔΤ > \ it is assumed that δ2 is small,
not δ0. Therefore if the expansion (6.7) is valid only
for the part of the amplitude with ΔΤ > \ the predic-
tions about the degree of violation of the ΔΤ = \ rule
are practically unchanged.

7. THE DECAY η — 3ff

7.1. In the present chapter we consider the amplitude
for the decay η —• 3π. It will be shown"·813 that in the
limit of exact SU(2)® SU(2) symmetry of the strong
interactions this decay is forbidden and its matrix
element is equal to zero. If we take into account the
"semistrong" interaction which breaks the symmetry
it is possible to calculate C42>82: the slope of the π-meson
spectrum in the decay η -*• π*π~Ή°, which turns out to
be in excellent agreement with experiment.

Conservation of G parity is violated in the decay
η — 3π, and therefore it is assumed that this process
goes in second order in the electromagnetic interac-
tion. The matrix element for the decay can then be
written in the form

= - £ (3it| ΐ) M0)}h>, (7.1)

where Όμν(χ) is the propagation function of the photon
and j μ is the EM current of the hadrons.

We assume that the amplitude Μ for the decay η
— TTVTT0 is a quadratic function of the momenta:

M = a + b(pqo) + d(ql + ql) + fql (7.2)

where p, q+, q_, q are the respective momenta of the
η, τι*, τί, and π mesons. In the physical region of the
decay the expansion (7.2) assumes a linear dependence
of the amplitude on the energies of the π mesons. As
in the case of the K-meson decays, the assumption
about the form of the expansion of the amplitude is ex-

tremely important and needs further experimental test-
ing. The difference from the Κ — 3π decays is that we
explicitly take into account a dependence of the ampli-
tude on q2. At the same time the neglect of the terms
quadratic in the energies can be justified (or refuted)
experimentally.

We shall show that the amplitude Μ given by (7.1)
is zero in the limit of zero momentum of one of the Ή
mesons (the other particles are on the mass shell).
Using a reduction formula, for example for the π*
meson, and integrating by parts, we get for the limit-
ing value of the amplitude

Μ = (ieV2) <π-π·| j dx dye'"+vβμν (χ) ( D i ) _ μ > )

Χ Τ {/μ (x) U (0) φ " (y)} | η ) -» - (CA/2) <jrji° I
5+-.0

Χ )dxDllv(x)T{j)i(x)[jv(0), A- (OH + l^ix) A- (x°)] jv(0))\n).

(7.3)

The commutator of the axial charge with the electric
current, which appears in (7.3), is equal to the axial
current [see Eq. (4.12)]. It follows from considerations
of G parity that only the product of the commutator and
the isoscalar part of the electromagnetic current con-
tributes to the expression (7.3). Therefore the total
isospin of the τΓ and π° mesons must be unity, and this
is forbidden by the requirement of Bose statistics, since
the orbital angular momentum of the mesons is equal to
zero. Therefore the entire amplitude is zero. If the re-
duction is applied to the π° meson the commutator
[j,,(0), A3(0)] is itself equal to zero. Accordingly, two
relations are obtained for the parameters of the ex-
pansion in Eq. (7.2),

One further condition on the constants of the expan-
sion can be obtained by considering the amplitude Μ for
zero momentum of the π° meson when one of the charged
π mesons (for definiteness, the π") is off the mass shell.
Using the reduction formula for the π" and v° mesons

Μ = (eV2) {π* \jdxdy dz e 1 <«-iH-«o*> ΰ μ ν (χ)

we find for q0 = 0

Μ =- - ( (ql - μ2) ΰ μ ν (x)

(7.5)

4 terms with the commutator i'V- ^31 = >·(7.6)

We now use the assumption that the equal-time com-
mutator of the axial charge with the pion field, [Α1, φ^],
is proportional to δ* (i,k = 1, 2, 3) (see discussion in
Sec. 2.2 of Chapter 2). Then [/(y), A3(y0)] = 0, and Μ
= 0 for q° = 0, q2. = μ 2 and arbitrary qf. It follows from
Eq. (7.2) that

a = d = 0. (7.7)

The relations (7.4) and (7.7) determine the amplitude
Μ to within a numerical factor, and in the physical re-
gion for the decay we get

where Τ is the kinetic energy of the it meson and Q is
the energy released.
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Accordingly, the theoretical value of the slope of the
pion spectrum in the decay η — ιτ+π"π° is attieoj.
= -2Q/m7j = -0.49. The experimental value is aexp
= - 0.478 ± 0.038.C83]

We note that the expansion does not apply to the pole
diagram with an η meson in the intermediate state,
which must be treated separately. It can be shown,
however, that including it does not change the result.
This is because the amplitude for πη scattering, which
is involved in this diagram, is zero for zero pion mo-
mentum owing to the Adler self consistency condition.
Therefore the contribution of the pole term in the phys-
ical region is described up to a constant factor by Eq.
(7.8) and does not change the prediction as to the slope
of the spectrum.

7.2. It can be seen from (7.8) that the amplitude for
η -—• 3JT decay goes to zero for μ2 = 0. In this respect
the situation in the decays η —- 3π is different from
that in the weak transitions Κ -*• 3JT (see Chapter 6),
where the mass of the π meson was neglected. The
decays η -— 3π are rather to be compared with the
strong process rrV —• Λ ° , which also has an ampli-
tude proportional to μ2.

The decay η —- 3π is due to symmetry breaking,
and therefore provides a possibility of testing the as-
sumption (2.18) about the properties of the symmetry
breaking interaction. At present the prediction about
the slope of the pion spectrum in the decay η — π*ττ~π°
is the only experimentally tested consequence of this
assumption.

8. THE CONSTRUCTION OF INVARIANT AMPLI-
TUDES

This chapter gives a brief exposition of the way
consequences of the SU(2)® SU(2) symmetry can be
derived by constructing so-called phenomenological,
or effective, Lagrangians. C84'85: l The word "phenom-
enological" as applied to a Lagrangian means that in
calculating amplitudes on the basis of the Lagrangian
one is to be guided by certain simple rules, which in
the main reduce to the dropping of diagrams with
closed loops. It will be shown that in this way we can
derive the predictions for the amplitude of π Ν scat-
tering which we have previously given (see Sec. 3.2
of Chapter 3).

Although effective Lagrangians do not enable us to
obtain new results, an acquaintance with them can be
useful for understanding the SU(2)® SU(2) symmetry,
and in some cases it enables us to find the answer for
an amplitude quickly. The point is that the method for
deriving results adopted in the main part of this re-
view is rather formal. In the discussion of effective
Lagrangians we get a closer acquaintance with the non-
linear representations and with the ideas which were
expounded in Chapter 1.

The first section (Sec. 8.1) of this chapter is partly
of a supplementary nature. Here we also give a very
simple example of the realization of the symmetry for
interacting massless nucleons. m In the second section
we shall construct and write out explicitly the Lagrang-
ian for interacting π mesons and nucleons which satis-
fies the requirements of SU(2)Si SU(2) symmetry.1·8 8 '7 '
84,85]

8.1. The Case of Massless Nucleons

We shall show that massless nucleons can form a
linear representation of the group SU(2) <8> SU(2). We
take the Lagrangian in the form

.·£ =-- - ίψ a-ψ - κψινΜΎμΨ -f γΨϊμΜ'ΐνίψ, (8.1)

where ψ is a spinor in ordinary and isotopic spaces and
κ and γ are constants. The first term in (8.1) corre-
sponds to the free fields, and the second describes the
interaction.

The Lagrangian (8.1) is invariant under isotopic
transformations

όψ —- ίτδιιψ, (8.2)

where 5u is the parameter of an infinitesimal rotation
in isotopic space.

We define the increment Sc4> (bracket operation) as
follows:

where 6L 2 correspond to transformations with param-
eters 6ux 2. The fact that we have a group means that
6Q<P is some transformation of the group, and we denote
its parameter by 6MQ.

In particular, for the isotopic group the parameter
of the bracket operation of two transformations with
parameters δ\ι1 and 6u2 is

6iic--[6u»6ui], (8.4)

which corresponds to the commutation relations for the
generators of the group,

[V\ (8.5)

The Lagrangian (8.1) is also invariant under axial,
i.e., parity-changing, transformations with parameter
6v:

δψ = ίτδνγ5ψ.

If we introduce left and right helical nucleons

(8.6)

then the states ^ L R transform among themselves:

«!>!. = * [(flu+ δν)/2]ψΙ,, δψΒ = ΐ[(διι-δν)/21ψΒ. (8.7)

From a comparison of these relations with (8.2) it is
clear that we have obtained two independent groups of
left and right isotopic spins defined by the parameters
(5u + δν)/2 and (6u - δν)/2. This formulation also ex-
presses the fact that the symmetry group of the La-
grangian is the direct product SU(2) ® SU(2). The states
$L a n d Φκ form the representations (0, -f ) and (-£ , 0) of
this group (the numbers in the parentheses denote the
magnitudes of the left and right isotopic spins).

8.2. The Effective Lagrangian of the πΝ and nit Inter-
actions

Let us now consider the case of real, not massless,
nucleons. The transformations (8.6) take a nucleon into
a state with a different parity. In the case of a nucleon
with mass m Φ 0 we cannot construct such a state if
there are no other particles, and the symmetry SU(2)
® SU(2) must be violated for free nucleons. It is also
easy to verify this directly by calculating the variation
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of the mass term ΐαψφ in the transformations (8.6); this
variation is not equal to zero.

We shall assume, as in the main part of the review,
that there exist massless mesons and that the axial
transformations take a nucleon into a state nucleon plus
meson. Let us find out how the nucleon and meson fields
must transform in order for a SU(2) ® SU(2) symmetry
of the strong interactions to exist.

For an infinitesimal rotation in isotopic space de-
fined by the parameter 5u the increments of the fields
are given by

δψ = ίτδιιψ, δφ = — [διιφ]. (8.8)

For an axial transformation with parameter δν we
assume that the increment of the nucleon field is

δψ = ί/0Τ[φδν]ψ, (8.9)

where τ[φ χ δν] is the triple scalar product of the vec-
tors τ, φ , and δν, and f0 is a constant. We shall deter-
mine the transformation law of the pion field φ later
from the condition that the group exist.

The action of the commutator of two axial transfor-
mations with parameters δνχ and δν2 on a nucleon field
must reduce to a vector transformation with the param-
eter 6u = [δνχ χ δν2]. This condition leads to the follow-
ing equation for the variation of the meson field:

δοψ = ix [δν2δν,] ψ = if ο {[(δ2φ) δν,] - [(δ,φ) δν2]} τ ψ -

(8.10)
where (δ1>ζφ) is the increment of the meson field. It is
clear from (8.10) that δφ must contain a constant part
corresponding to a displacement of the field, and terms
quadratic in φ :

(8.11)
The constants α, β, γ can be determined from (8.1),

and we finally get for δφ the result

δφ = (δν/2/ο) + /ο [ φ (6vq>) - (6νφ2/2)]. (8.12)

By a d i rect calculation one can verify that the t r a n s -
formations on φ defined by (8.12) themselves satisfy
the group property . We note that the choice of the form
of the transformations (8.9) and (8.12) is not unique.
One can l ist al l of the possibi l i t ies by s tar t ing from a
linear representat ion of the group, the so-called σ
m o d e l . t 7 ] However, the various forms of the t rans for-
mation reduce to each other by canonical t rans forma-
tions and a r e physically equivalent. 1 8 7 3

A distinguishing feature of the transformations (8.9)
and (8.12) is that they a r e nonlinear. For example, in
the expression in (8.12) for the increment of the JT-
meson field the displacement fo6v/2 corresponds to
a mixing of the pion field with the vacuum under axial
t ransformations, and the t e r m s quadratic in φ c o r r e -
spond to mixing with two-pion s t a t e s . Owing to the
nonlinearity of the transformations derivatives of the
fields t ransform differently from the fields themselves,
and therefore the various invariants of the group SU(2)
® SU(2) a r e character ized by the numbers of derivatives
they involve.

Differentiating (8.12), we get the transformation law
for the derivative of the meson field

Instead of 8μφ it is convenient to introduce the quan-
tity

<tV = |Vp/(l + /S<p2), (8.14)

whose increment for axial transformations is given by

Ψ̂μ — /θ Ι[δνψ] φ μ ] . (8.15)

This transformation, like the transformation (8.9), is
analogous to an isotopic rotation with the parameter 6u
= ίο[^δν]. Therefore it is clear that if we do not include
higher derivatives in our treatment invariant combina-
tions of ψ and φμ can be constructed in precisely the
same way as in the case of isotopic symmetry.

In particular, the product ψμψμ is an invariant of
the group SU(2) Si SU(2), and the phenomenological La-
grangian for processes involving π mesons only can
be represented in the form

) —δν(δμφφ)]. (8.13)

The f irst t e r m of the s e r i e s corresponds to the kinetic
energy of the π meson, the second to ππ scatter ing, the
third to the p r o c e s s 2π — 4π, and so on.

In the approximation for the amplitudes which is
quadratic in the momenta of the par t ic les the Lagrang-
ian 3?π is uniquely determined. On the other hand, if
for example we allow fourth-order t e r m s in the pion
momenta, then we can construct additional invariants
{<Ρμφμ){φυφν) and (φμφν)(φμφν), which descr ibe p r o -
cesses with four or more mesons .

In order to derive relat ions for the amplitudes of
various p r o c e s s e s , s tar t ing from the Lagrangian (8.16),
we must take into account al l perturbat ion-theory dia-
g r a m s in lowest order in the constant f0. It is easi ly
verified that these a r e contact d iagrams, in which all
the mesons a r e emitted from a single point, and dia-
g r a m s with 7r-meson poles . Diagrams with a larger
number of π mesons in the intermediate state a r e
quantities of higher order in f0. Since the relations ob-
tained follow from SU(2) ® SU(2) symmetry alone, the
fact that lowest-order perturbat ion theory is used is
unimportant. The predictions for the rat ios of ampl i-
tudes of various p r o c e s s e s remain valid in a r b i t r a r y
o r d e r in f0.

At f i rst glance such a recipe for calculating ampli-
tudes may seem unusual and unconvincing. Therefore
it is helpful to point out the extremely close analogy
with the calculation of the amplitudes for radiative
p r o c e s s e s . In order to find the amplitudes for rad ia-
tive p r o c e s s e s in the zeroth-order approximation in
the photon momentum, we can proceed in the following
way. We write out the Lagrangian of the strong inter -
actions, which is the sum of the free t e r m s , the vertex
p a r t s , and the amplitudes of al l possible p r o c e s s e s in-
volving physical constants. We get the effective La-
grangian for radiative p r o c e s s e s if we replace 9 μ by
8μ ± ιεΑμ in this express ion. To calculate the ampl i-
tude for a radiative p r o c e s s it i s necessary to take the
sum of contact and pole d iagrams. It is c lear that it is
not necessary to i terate the s trong-interact ion Lagrang-
ian, and the ent i re procedure has no relation to the
question of constructing a renormal ized theory of the
strong interact ions.

The justification of this sor t of recipe for calculat-
ing radiative p r o c e s s e s is the conservation of the e l e c -
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tromagnetic current, or the Ward identity for these
processes. The proof is given in Sec. 4.1 of Chapter 4
for the case of photoproduction of π mesons. The re-
cipe described above for calculating the amplitudes of
processes involving soft pions can be justified by means
of relations analogous to Ward's identity, as has been
done in the main part of this review. Accordingly, the
two methods are equivalent, and the choice between
them is determined by considerations of convenience.

As an illustration of the method of invariants we
shall reproduce the results derived in Chapter 2 for
the amplitude for πΝ scattering. For this purpose let
us find out what invariant of the group describes the
isotopically odd part of the amplitude for πΝ scatter-
ing. In the approximation linear in the pion momentum
the nonpole part of the amplitude is of the form

e-ψγμτ [5 μ φφ] ψ, ( 8 · 1 7 )

where c~ is the constant introduced in (3.36).
We calculate the variation of (8.17) under the trans-

formations (8.9), (8.12), (8.13) and confine ourselves to
the lowest order in fn:

6 {ίΓψνμτ [0μφφ1 Ψ} = - (<r72/0) ψγμτ [δν δμφ[ ψ. (8.18)

This change of the amplitude can be compensated by the
variation of the kinetic term in the free Lagrangian

δ [ίψγμ θμψ] = /οι|™μΤ [δν 5 μ φ ] ψ. (8.19)

By comparing (8.18) and (8.19) we find that c" and f0

must obey the condition

<r-2/?,, (8.20)

which is the same as the result (3.29) if

U=-ciVi. (8.21)

Equation (8.21) follows from the explicit form of the
axial current corresponding to the Lagrangian &Έ. We
shall not go into this in more detail. The vanishing of
the nonpole part of the isotopically odd part of the am-
plitude for πΝ scattering follows from the fact that the
quantity ψψφζ cannot be made into an invariant.

There are also pole diagrams that contribute to the
amplitude for πΝ scattering. To calculate then we must
write the vertex of the πΝΝ interaction in invariant
form. It is clear that the combination

-/ΨΥμΥ5τ<Γμψ (8.22)

does not change under the transformations of the group.
This can be seen from the fact already mentioned that
the axial transformations of the quantities ψ and ψμ are
formally the same as the isotopic transformations if
we take 6u = fo[^6v]. The first term of the expansion
of (8.22) in a series in f0 gives the pseudovector πΝΝ
coupling. The next term of the expansion corresponds
to the contact diagram for the process πΝ —• 2πΝ.

We give the final result for the Lagrangian of pions
and nucleons, which is invariant with respect to the
group SU(2) ® SU(2) (everywhere except in Χπ we con-
fine ourselves to the first-order terms in the pion
momenta):

X = X" + XN + = (φμ/2) - ψ ( - id + m) ψ

— /ΪΨΥμ* [<P<Pu) ψ.

9. CONCLUSION

In Chapter 1 we formulated four hypotheses whose
consequences are considered in the present review.
In conclusion we shall list the main predictions whose
agreement with experiment sustains our belief in the
correctness of these hypotheses.

As for the extrapolation formulas (Hypothesis IV),
they are used in the derivation of all the predictions,
and we shall not discuss this. In any case it is desir-
able (and in principle possible) to test the extrapola-
tion formulas independently of the other hypotheses.
At present such a test can be made in the case of πΝ
scattering (see the sum rules for the p-wave ampli-
tudes in Sec. 3.2 of Chapter 3), and partially in the
case of photoproduction of π mesons at threshold
(see the predictions for the zeroth-order terms in
the photon momentum in Sec. 4.1 of Chapter 4).

Now, the main results are the following:
1) the Goldberger-Treiman relation (see Sec. 2.1

of Chapter 2); this is based on Hypotheses I and Π.
2) The smallness of the isotopically even πΝ scat-

tering length confirms the Adler selfconsistency con-
dition, which follows from Hypothesis I (see Sees.
3.1-3.3 of Chapter 3).

3) The prediction (3.33) for the value of the isotop-
ically odd πΝ scattering length, which is equivalent to
the Adler-Weissberg relation (see Sec. 3.2 of Chap-
ter 3); this is based on Hypotheses I and Π.

One can also describe, with various degrees of
agreement with experiment, the decays Kjs, Kg4

(Chapter 5), Κ — 3π (Sec. 6.2 of Chapter 6), and
η — 3π (Chapter 7). Here definite assumptions (Hypoth-
esis ΠΙ) are used about the transformation properties of
the interaction Hamiltonians responsible for the decays
with respect to the group SU(2) Si SU(2). For a final elu-
cidation of the degree of agreement between theory and
experiment in the case of these decays it is very impor-
tant to get more accurate forms of the matrix elements
in the physical region in order to test the extrapolation
formulas.

We see that the number of verified results is small.
Let us also list the predictions that have been derived
in this review and which cannot be well tested at pres-
ent because the experimental data are inadequate:

1. The relation (2.3) between the axial form-factors
of the nucleon, which can be tested in the reaction ν + Ν
•— Ν' + I at large values of the momentum transferred
to the lepton.

2. The Adler relation (2.22) for inelastic neutrino
reactions.

3. The generalized Goldberger-Treiman relation
for inelastic neutrino reactions, Eq. (2.23), which holds
for small momentum transfer to the leptons.

4. The relation (2.27) between the size of the effec-
tive pseudoscalar constant in μ capture by protons and
the radius of the axial form-factor of the nucleon.

Agreement of these four predictions with experiment
would allow us to be finally convinced of the existence
of axial currents which are conserved (in the limit μ2

= 0) (Hypotheses I and II). The assumption (1.4) about
the form of the commutator of the axial charges and
the hypothesis (1.16) about the properties of the "semi-
strong" interaction could be tested in the study of ππ
scattering.



98 P A R T I A L CONSERVATION OF AXIAL C U R R E N T

5. The predictions for the low-energy parameters
of scattering—the scattering lengths of the s and ρ
waves and the radii of the s waves, calculated in Sec.
3.3 of Chapter 3. In the derivation of these relations
the further assumption was made that the scattering
lengths are small.

The transformation properties of the electromag-
netic current of the hadrons and the weak interaction
Hamiltonian (leptonic and nonleptonic) can be eluci-
dated by comparing with experiment the predictions
listed as points 6.—10.

6. The relation (4.15) between the form-factors
Vi and V^, which describe the production of charged
π mesons from nucleons, The definition of the quan-
tities Vf is given in Eq. (4.10) and the text preceding
it.

7. The relation (4.25) between the amplitudes for
photoproduction and electroproduction of π mesons at
threshold, the electric radii of the π meson and of nu-
cleons, and the radius of the axial form-factor.

8. The relation (4.26) for the amplitude for electro-
production of π mesons for large values, of the order
of GeV/c, of the momentum transferred to the electron
and small relative momentum of the nucleon and the
meson. The relation connects the amplitude for elec-
troproduction with the electromagnetic and axial form-
factors of the nucleon.

9. The relation (5.9) for the form-factors which de-
scribe the decay Κ — πμΐΛ The definition of the form-
factors is given in Eqs. (5.1) and (5.3).

10. The prediction (6.12) for the amount of deviation
from the ΔΤ = -§• rule in decays Κ — 3ττ (see also Table
II). In the derivation of these predictions the additional
assumption was made that the decay K+ — π+π° is due
to a bare weak nonleptonic interaction with ΔΤ = -§.
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Note added in proof (December 26, 1969). A consistent use of the
requirements of crossing symmetry allows us to derive low-energy
theorems on the cross sections for photoproduction of π mesons from
nucleons with better accuracy than appears from the exposition of
Chapter 4. We shall list these theorems (all of these results are derived
in the limit of zero three-momentum of the π meson):

1) The ratio of the cross sections for production of π" and π* mesons
is given by

Since the neglected terms, 0(μ 3), are small quantities of high order, this
relation should hold with very good accuracy, about 1 percent.

2) The cross section for production of π° mesons from protons is
given by

Comparison of this with Eq. (4.23) shows that inclusion of the terms
linear in μ is important.

The cross section for production of π" mesons from neutrons is

( MK 6apn
cmep

The low-energy theorem for the electroproduction process can be
formulated for the cross section, and not for the amplitude only, as was
done in Subsection 4.2.2. Namely, we get the following predictions for
the squares of the matrix elements of the interaction of transverse and
longitudinal quanta; for k2 ~ μ2 they should hold to about 1 percent
accuracy.

» = l*,l« [1+2*. (-il-^-gij)] ,Hm

where k0 = μ - (μ2 - k2 )/2(m + μ), g' = dg(k2 )/dk2 ||k2 _ Q. and the quan-
tities |M~|2 and γ can be expressed in terms of the experimental value of
the threshold cross section for photoproduction of π+ mesons:

k da

(m-1-μ)3

The quantities |ΜγΙ2 and |M]J2 written out above determine the
cross sections for the reactions ep -* e'nir* and π"ρ -»· ne* e'.For example,
for the cross section for the electroproduction reaction we have

da
(ep -»- e

3 2 π 1 !

2 /ι (ει , ε2, θ ) ] ,

where

+ 2,~ (β,-ea)*-**

( Q .

1") (_2fc2)
(ε,—82)2_A2 (6,_62)2 '

— Α3 = 4ει62 sii-(4)
(ei, e2 are the energies of the initial and final electrons, θ is the angle of
scattering of the electron, and q is the momentum of the jr meson). All
quantities referring to electrons are given in the laboratory coordinate
system, and those characterizing hadrons are in the c.m.s. of the final
nucleon and π meson.

A more detailed exposition of these questions can be found in a
paper by the present writers which has been sent to press under the title
of "Low-energy Theorems for the Amplitudes for μ Capture and the
Electromagnetic Production of Pions."
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