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I. GENERAL PHYSICAL PRINCIPLES

1. Brief Summary of the Fundamental Results

A HE purpose of the present review is to describe in
detail the quantum-mechanical theory and the results
of calculations of electronic energy spectra and the
equation of state of crystalline solids in a wide range
of pressures and temperatures. The described method
makes it possible to consider all pressures, as well
as temperatures below 100,000°K.

At very high pressures (more than 100 million atm)
and temperatures (higher than 0.5 keV), good results
can be obtained for the equation of state by the statisti-
cal Thomas-Fermi and Thomas-Fermi-Dirac theories,
which constitute a quasi classical approximation to the
self-consistent-field method. These theories have been
perfected in the well known papers of Feynman,
Metropolis, and Teller [ 1 ], and of Latter t 2 ] . At the same
time, it is well known that the results of calculations
by the statistical theory differ noticeably from the ex-
perimental data for the dependence of the pressure on
the density in the region of small degrees of compres-
sion δ =ρ/ρο (p — density of the compressed substance,
po—normal density of the substance).

Kirzhnits [ 3 '4 1 and Kalitkin[5] succeeded in construct-
ing a Thomas-Fermi model with allowance for quantum
and exchange corrections (the TFC method). The cal-
culations performed by this procedure have noticeably
improved the agreement with the experimental data
obtained by Al'tshuler et al . [ 6 ] by investigating the
properties of substances with shock waves. From
other theoretical investigations, dealing with matter at
high pressures, mention should be made of the work of
Abrikosov[7] and Carr [ 8 1 on hydrogen.

At normal densities, and also at small compressions
(δ ~ 1—2), the TFC model becomes, generally speak-
ing, useless, since in this region it is impossible to
neglect the shell structure of the atoms constituting
the crystal lattice. In addition, in the derivation of the
equations for the quantum corrections in the TFC
model it was assumed that the corrections are small,
and the calculation resulted in large correction terms.
Indeed, statistical methods are incapable of explaining
the sharp fluctuations of the normal densities of sub-
stances over the periodic system, the possible devia-
tions of the pressure curve p(p) from smoothness, the
electronic-type phase transitions, the anomalously
large values of the electronic specific heats of transi-
tion metals, etc.

It should be noted that the feasibility of phase transi-
tions that depend on the redistribution of the electrons
among the shells was predicted by Fermi and traced
theoretically by Sternheimer in cesium19-1.

I. M. Lifshitz [10] investigated the anomalies of the
electronic coefficient of compressibility and other
electronic characteristics of metals at large pressures
near the "electronic-transition" singular point con-
nected with the change of the topology of the Fermi
surface as the latter is continuously deformed.

The need arose for a more accurate quantum-
mechanical investigation of the electronic structure of
a solid at different compressions. Since the initial
purpose of our investigation was to obtain data on the
equation of state in solids (we are referring to the
pressure, electronic specific heat, the distribution of
the electron density, etc., i.e., quantities that appar-
ently depend little on the true form of the cell), it was
natural to make some simplifying assumptions. We
therefore did not consider molecular and valent crys-
tals having complicated structures.

We begin with the closest packing, since at high
pressures the complex structures have a tendency to
go over into structures with closest packing. As always
in such cases, the band theory is used, based on two
assumptions: first, it is assumed that the crystal can
be represented by an ideal periodic structure with im-
mobile nuclei; second, it is assumed that each electron
moves independently in a periodic potential, which
takes into account on the average the interaction be-
tween the electron and remaining crystal (the one-
electron approximation). The complete wave function
of the system of electrons is then expressed in terms
of the one-electron wave functions, each of which is
written as a product of a spatial part and a spin part.

The one-electron wave functions are determined by
using the Hartree approximation, i.e., the influence of
the exchange interaction on the wave function is disre-
garded. The Hartree equation for the wave function of
the electron is the Schrodinger equation in a self-con-
sistent periodic potential V(r). In the general case
V(r) describes the interaction of a given electron both
with the nucleus and with the electrons of the cell un-
der consideration, and with the nuclei and electrons of
other cells.

For crystals with a high degree of symmetry (body-
centered lattice, face-centered lattice), the contribu-
tion made to the potential by electrons of cells other
than the given cell is approximately cancelled by the
contribution of the nuclei*. It suffices therefore to
consider the Hartree equation in a given cell. It must
be borne in mind here that the potential itself depends
on the sought wave functions (for bands of sufficient

•Seitz [ u ] estimated the contribution of the deviation from spheri-
cal symmetry in the charge distribution for a body-centered lattice of
ions with a smeared homogeneous distribution of the negative charges
and obtained an exceedingly negligible correction to the energy.
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width, considering the equation for the one-electron
function with given k, we take into account in the poten-
tial electrons with arbitrary k', without discarding the
contribution of the narrow region near k' = k, since
this contribution is negligibly small.)

It is known that solutions in a periodic potential
should satisfy the Bloch conditions, which follow from
the translational symmetry of the crystal. Thus, the
complete Hartree problem in a crystal reduces to a
solution of an equation in one cell with periodic bound-
ary conditions. It is necessary to bear in mind that
even when the potential is specified, the solution of the
Schrodinger equation for different crystal structures is
a very laborious problem, entailing a large volume of
computational work. Recently, many approximate
methods were developed for the solution of the wave
equation in a crystal (see the reviews^12"141). We empha-
size that in these papers the dependence of the pressure
on the density was not calculated. The calculations were
performed for normal density of solids, and the poten-
tial was constructed in accordance with the data of
calculations for isolated atoms, obtained with the aid
of the Hartree and Hartree-Fock approximations.
These complicated methods are important for the study
of the structure of the Fermi surface of metals and
semiconductors for different types of crystal lattices.

All this is important for the solution of subtle prob-
lems connected with electric and magnetic properties.
However, for strongly compressed metals, the Hartree
potentials of isolated atoms cannot be used, since they
are remote from the true potential acting on the elec-
tron in a compressed crystal. In crystals with a high
degree of symmetry, at high pressures, there should
be realized any one of the close-packing lattices. In
this case, the unit cell is close to a sphere. Therefore
to calculate the pressure in the compressed crystal we
consider it advisable to use the Wigner-Seitz method
of spherical cells (the unit cell is replaced by an
equivalent sphere). This well known approximation,
which does not provide great accuracy in the descrip-
tion of the energy band structure of the crystal and of
the Fermi surface, turned out to be very useful for our
purposes since, on the one hand, it simplifies greatly
the calculations and uncovers possibilities for large
scale computation, and, on the other hand, it does not
spoil a number of singularities in the behavior of
ρ (ρ), in the character of the filling of the bands, or in
the behavior of the electronic specific heat, the results
in many cases being in good agreement with the experi-
mental data.

The wave functions and the potential are determined
in the Hartree approximation by the method of succes-
sive approximations. The initial approximation most
frequently is the Thomas-Fermi potential of the com-
pressed atom. From the obtained wave functions of the
initial approximation, one determines the effective po-
tential of the next approximation. The process of suc-
cessive approximations terminates when the next po-
tential differs little from the preceding one. It should
be noted that the aforementioned iteration process
(simple iterations) diverges as a rule. It is therefore
necessary to use special methods for improving the
convergence of the iteration process. In addition, the
calculation starts with an improved initial approxima-

tion of the potential. Specifying the density of the sub-
stance, the atomic weight A, and the atomic number
Z, we obtain after the end of the process of successive
approximations the "self-consistent" potential and the
wave function of the electrons, and also the distribution
of the electron density and the electron occupation
numbers in the energy bands. The possibility of cal-
culating the pressure makes it possible to get along
without using experimental data and to determine the
normal density of the matter theoretically (at ρ = 0).
Whereas the statistical theory leads to a monotonic
increase of the normal density of substances with in-
creasing Z, the quantum-mechanical theory repre-
sents correctly the oscillations of the normal density.
For example, for potassium the calculated normal
density is 0.68, as against 3.95 g/cm3 given by the
statistical theory (the experimental normal density is
Po = 0.865 g/cm3). For iron, the difference is smaller,
6.03 g/cm3 calculated against 5.15 g/cm2 according to
TFC (experimental—7.8 g/cm3).

It was already noted that one of the results of the
calculation is the determination of the energy band
structure for different compressions δ, i.e., the de-
pendence of the energy Ei on the quasimomentum k.
In the spherical-cell approximation the energy depends
only on the absolute value of the quasimomentum k.
After obtaining the electron energy spectrum Ei(k),
the bands are filled up to the maximum Fermi energy
Ep, starting from the given number of electrons Z.

In this problem, the quasimomentum k has a pre-
ferred direction. Therefore the projection of the mo-
mentum on the k direction is a conserved quantity,
unlike the total angular momentum, which is not con-
served. By virtue of this, the wave function is a super-
position of harmonics with different values of the or-
bital angular momentum, but with the same value of m.
It is reasonable, however, to assign for classification
purposes an index l0 to a definite energy band, taking
this to mean the value of I of the level to which the
band goes over as ρ —• 0. We shall henceforth use the
band designations 4s, 3d, 3p, 4f, etc. precisely in this
sense. Each band splits into subbands with different
values of m < l0, so that the index i denotes the ag-
gregate of the three quantum numbers nZom. (We note
that the states m and -m are physically equivalent,
so that we can confine ourselves only to the case
m > 0). For example, the 3d band splits into three
subbands 3d0, 3dl, 3d2, which coincide at k = 0, and
the 3p band splits into two subbands 3p0 and 3pl.

At m = 0, a maximum of two electrons can be pres-
ent in the subband, and at m s* 0, the maximum is four
electrons. To find the potential it is necessary to know
the wave functions of all the electrons, including the
internal ones, for which it is possible to neglect the
broad band, since it is very small, Hartree 1 1 5 1 already
called attention to the low sensitivity of the internal
electronic layers of the atom to perturbations of the
potential in the process of successive approximations.
The situation is similar in a crystal. Therefore the
wave functions of the internal electrons and their con-
tributions to the potentials are calculated only once
(for the initial approximation) and are not changed in
the subsequent process. Special calculations have fully
confirmed the validity of this statement.
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To determine the dependence of the pressure on the
density in solids, one usually first calculates the energy
of the body, and then its change following the change of
the configuration of the body (for example, of the dis-
tances between nuclei). This method calls for knowledge
of the energy of the body for two closed configurations.
Since the change of the energy of the body is negligible
compared with the absolute value of the energy even at
large compressions, such a method of calculating the
pressure calls for a very high energy-calculation ac-
curacy. Our purpose therefore is to obtain a direct
formula for the pressure in solids. The expressions
for the force acting on the nucleus, in the form of an
integral over the wave functions of the configuration in
question, was obtained by Feynman [ 1 6 ] for the case of
molecules.

It turns out that for solids it is also possible to ob-
tain an expression for the pressure in terms of the
wave functions of the system in the state under consid-
eration. The expression so obtained contains an inte-
gral over the surface of the unit cell of the crystal
(kinetic pressure) and the Coulomb (mainly exchange-
correlation) interaction between the electrons in differ-
ent cells (exchange pressure), while the Coulomb inter-
action within one cell is excluded f 1 7 '1 8 1.

Calculation of the exchange part of the pressure
directly from the wave functions is a very complicated
matter. In the case of large compressions, the formula
obtained for the exchange pressure goes over into the
well known formula for the free electron gas. There-
fore, as a rule, we shall henceforth, use for estimates
of the exchange pressure the free-electron-gas approx-
imation

Pa = -eWV3n3a'o;

here a0 is the Bohr radius and W the difference be-
tween the Fermi energy and the potential on the bound-
ary of the cell. This means that we assume all the
electrons having an energy higher than the potential on
the edge of the cell to be almost free.

In all the calculations considered by us, the wave
functions were obtained in the Hartree approximation.
Recently, V. G. PodvaPnyi obtained the wave functions
for iron by taking into account the exchange interaction
of the electrons in one cell, which apparently consti-
tutes the principal part of the exchange interaction of
the electrons. Such a formulation of the problem has
made it possible to obtain an integro-differential equa-
tion for the radial function, which, as before, does not
depend on the vector k. Because of this circumstance,
the general scheme for calculating the energy bands
remained the same as before (we recall that the bound-
ary conditions depend on k). We note that in the calcu-
lation of the radial density matrix no account was taken
of the dependence of the radial functions on the quasi-
momentum. As shown by a special experiment, this
limitation is not very important. The potential was
chosen to be the Hartree self-consistent potential. We
present the main results. The configuration of the
E(k) curves was in the main retained, and the width
of the bands changed slightly (for example, for 3dO at
6 = 2 the width is 0.787 in place of 0.082 according to

Table I

6

0.746
1.073
2.005
4.000

"kin(H)

0.239
1.836

10.278
53.613

Ρ kin (HF)

0.103
1.541
9.459

50.896

Pkin(H)/pk i l l(HF)

2.320
1.191
1.086
1.053

Hartree)*. In Table I we give the values of pkin (in
106 atm) in the Hartree-Fock (HF) approximation (un-
der the indicated limitations), and pk i n calculated in
the Hartree (H) approximation. We see, as expected,
that the relative contribution of the exchange decreases
strongly with increasing compression.

It should be noted that the computation time (even
without self-consistency) is increased by approximately
seven times compared with the calculation in the
Hartree approximation.

Thus, the results of this investigation confirm fully
the advantages of using the Hartree approximation in
calculating the wave functions.

So far we have considered only the temperature
Τ = 0. At higher temperatures, the thermal energy and
the thermal motion of the electrons become significant,
especially in the reduction of data on the dynamic com-
pressibility of metals by shock waves. With the aid of
the quantum-mechanical theory that takes into account
the character of the occupation of the concrete bands,
it was possible to uncover interesting singularities in
the course of the thermal energy and the thermal pres-
sure as functions of the density and of the temperature,
something that could not be observed within the frame-
work of the statistical theory. With the aid of the ap-
paratus of the quantum field theory, an equation of the
Hartree-Fock type was obtained for nonzero tempera-
tures . Knowledge of the eigenvalues of this equation
suffices for the calculation of the thermal energy, the
thermal pressure, and the associated Gruneisen coef-
ficient of the electrons ye. At temperatures Τ < 105°K
it is possible to use as the eigenvalues the values of the
band energies obtained at Τ = 0.

We now proceed to a brief description of the most
interesting results for different metals. We note first
that within the framework of the described method it is
possible to obtain accurately the different compressi-
bilities and the normal densities of elements whose
atomic numbers differ by unity, for example titanium
and vanadium, nickel and copper. The main peculiari-
ties of lead, namely the large compressibility and the
small normal density (11.4 g/cm3) compared with other
metals with large Z, are well described by the theory.
This is explained by the fact that in lead there are only
two electrons in the 6d band. With Dy and Nd as ex-
amples, a sharp change in the character of the com-
pressibility with increasing density was observed; this
change is characteristic of many rare-earth elements.
Recently this was also demonstrated experi-
mentally [ 1 9 " 2 I ] .

Allowance for the individual peculiarities of the

*In this review we use atomic units: the length unit is the Bohr
radius a0 = tf/me2, and the energy unit is e2/a0 = 27.23 eV.
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filling of the energy bands makes it possible to reveal
irregularities in the cold-pressure curve and phase
transitions of the electronic type. If the irregularity on
the pressure curve has a nonmonotonic character (of
the Van-der-Waals type), this means that a jump of the
density occurs here (first-order phase transition). One
of the most pronounced examples of a phase transition
connected with electronic realignment upon compres-
sion is the density jump in potassium. It appears theo-
retically at a pressure of 0.18 million atmospheres.
The possibility of such a phase transition in alkali
metals was considered qualitatively by Arkhipov[22].
Alekseev1-231 obtained by calculation a phase transition
with a density jump in K, Rb, and Cs, the calculated
transition pressure for Rb and Cs being close to the
experimental one. In calcium, just as in potassium, a
transition of the electrons from the 4s band to the 3d
band was observed upon compression, leading to the
appearance of a plateau on the cold-pressure curve
(see Fig. 21 below). However, apparently because of
the inaccuracy of the method, the intersection of the
4s and 3d bands was obtained at δ =1.4. Thus, the
metallic properties of calcium at normal density
(δ = 1) are not represented by us quite accurately. The
rare case of tangency of completely filled and unfilled
bands within the 3d band was observed in solid argon
compressed by a factor of more than 2.5[28]. At lower
degrees of compression, the solid argon is a dielectric
and the six external electrons are in the 3p band. It
was recently revealed experimentally that the shock
adiabat of vanadium has a noticeable kink, whereas the
shock adiabat of the neighboring element titanium has
no kink^0'24·1. Our results are in reasonable agreement
with this fact.

A very interesting electron realignment is observed
in aluminum. It consists of a change in the direction of
the 3d0 subband upon compression, causing a bend to
appear on the cold-pressure curve. The thermal energy
of the electrons is represented in the form Εχ = φΤ2/2,
and the thermal pressure in the form ργ = yeExp (here
φ is the coefficient of the electronic specific heat and
y e is the Gruneisen coefficient). It is well known that
ψ (δ) is proportional to the density of the electronic
states on the Fermi surface, and ye i s connected with
the rate of change of φ (δ). It is obvious that ψ and y e

depend very strongly on the structure of the electron
bands. Therefore the developed theory and the calcula-
tions based on it explain both the anomalously large
values of the electronic specific heat of transition
metals, and also the very large difference (by a factor
of 12 times) between the specific heats of nickel and
copper at low temperatures. In some cases, the density
of the electron levels increases upon compression,
leading also to negative values of y e. This interesting
phenomenon was observed in Al and K. The depend-
ences of φ and y e on the density and on the tempera-
ture, observed by us, are in good agreement with the
experimental data, for example, for Ni and Fe [ 2 s : l.

In conclusion we wish to mention the predicted
changeover of nickel into a dielectric at a relative
compression δ = 5 and a pressure of 120 million
atmospheres[29]. The cause of this phenomenon is that
the nickel atom has 28 electrons, i.e., precisely the
number of electrons that would be filled by levels with

η £ 3 if their arrangement would not differ from the
hydrogen-like arrangement.

Actually, the 4s band in metallic nickel under nor-
mal conditions lies below the 3d band, and the 3d band
is therefore not filled. With increasing density, as we
shall show, the 4s band rises rapidly, leading near
δ = 5 to a situation wherein all the bands with n < 3
are filled, and nickel can become a dielectric. It should
be noted that this phenomenon vanishes at δ > 15,
since an overlap of the 3p and 4d bands takes place.

The calculations presented in this review were per-
formed over six years with electronic computers. The
description of many questions touched upon here can
be found in Gandel'man's dissertation1-261. Some results
of the calculations were published earlier, namely the
data on iron, aluminum, and potassium1-271 and on solid
argon[28].

We are very grateful to Academician Ya. B. Zel'
dovich for great interest in the work during all its
stages, and also to L. V. Al'tshuler, N. A. Dmitriev
for a discussion.

2. Hartree Self-consistent Field in a Crystal

As already noted in Sec. 1, the complete Hartree
problem in a crystal reduces to a solution of an equa-
tion with Bloch's periodic boundary conditions in one
cell. In this case the equation takes the form

;
(1)

Here Ψί(χ) is the one-electron wave function; the inte-
gration is carried out over the cell under considera-
tion. By the quantum-state number i is meant the
aggregate {n, m, k}. The quantum numbers η and m
were defined in Sec. 1, η denoting for brevity the set
nZ0.

Inside the cell, the solution of Eq. (1) will be sought
in the form of an expansion in spherical harmonics
(eight harmonics are used)*:

;m (*) = Σ i'A-ml (k) f, [E-m (k); r] Υ L (θ, φ). (2)

The polar axis for the spherical harmonics is
chosen to be the direction of k (k° is the unit vector
of this direction); r, θ, and φ are the spherical co-
ordinates of x.

To obtain the equation for the radial function f/(r),
we substitute (2) in (1), multiply the equation by
i Y*;m( θ, φ), and integrate over the angle variables
θ and φ . After simple transformations we obtain an
equation for the function f/(r)

(3)

where

v°('< Ο /M

I V if
if

r<r',
r>r',

1, m = 0,

It must be borne in mind that we are considering
throughout the case of compensated spins, so that

*E. S. Pavlovskii and V. A. Tarasov (private communication) have
shown by calculation that eight harmonics suffice in the case when there
is no potential ("the empty-cell test").
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formula (4) includes the factor 2 as a result of summa-
tion over the spins. By k we always mean the dimen-
sionless quantity kr0, where r 0 is the cell radius.
Integration with respect to k is carried out over all
the filled states, i.e., those lying below the Fermi
surface. Starting from the fact that the volume of the
unit cell in k-space is equal to (2π)3(47ΓΓο/3)"1, we
readily obtain the maximum possible value k0

= (9π/2)1/3 = 2.418.
The function fj(r) is best normalized as follows:

j f | ( r)r 2 dr = 1. To satisfy the normalization condition
0

of the function k̂nm> i t i s necessary to satisfy the

condition £
l=m

= 1.

The coefficients A(k) can be found by using the
boundary conditions. In the Wigner-Seitz approxima-
tion, Bloch's boundary conditions connect the values of
the function and its derivative at diametrically opposite
points of the sphere r = r 0:

ψ(Γ0, θ,

ike S0 ^Ψ ί
dr ro, η—θ, π+φ J

(5)

Substituting the expansion (2), multiplying (5) by
i~l Y*im(6, φ), and integrating over the angle variables,
we get

2 A-ml. (k) o,,.m (*) fi- (r0) = 0, if / i s odd,
l'=m

^ m , . ( * ) a , , . m ( A : ) - ^ - = 0, if: i|is even.
(6)

where the coefficients are

«ii-m (*) = /''-' j YtmYi-me-ik"»<>dQ.

With the aid of the expansion of a plane wave in
spherical harmonics and Gaunt's formula we can cal-
culate all these coefficients.

The system (6) has nontrivial solutions if the de-
terminant of the system differs from zero. Solving Eq.
(3), we compile beforehand a table of values of the
function fj(r) and of its derivative on the boundary of
the cell for trial values of E. Since an 'm are func-
tions of k, the determinant of the system (6) is a
function of Ε and k. The vanishing of the determinant
yields the sought connection between the energy and
the quasimomentum (Enjomik)).

To calculate the potential V(r) [Eq. (4)] it is neces-
sary to know the radial functions of both the outer and
the inner electrons. The use of the computation scheme
described by us is not suitable for the radial functions
of the inner electrons, since these functions are local-
ized near the nucleus. Consequently, starting with a
certain point, the true values of the function become
negligibly small, and as a result of the inaccurate
knowledge of the eigenvalue and of the inevitable errors
in the numerical calculations we find ourselves with an
exponentially growing solution. To find the eigenvalues
and the functions f/(r) of the internal electrons, we use
a procedure based on an exact solution of Eq. (3)
jointly with the use of the quasiclassical approxima-
tion. The energy eigenvalue is obtained from the con-

dition for the smoothness of the joining of the two
pieces of the curve.

By way of the initial approximation for the potential,
at sufficiently large degrees of compression, it is
natural to choose the Thomas-Fermi potential of the
compressed atom at Τ = 0. It is not advantageous to
confine oneself to only the initial approximation, since
this leads to an appreciable deviation from the exact
solution of the problem. For example, calculations
show that in Dy at δ = 2 we have pkin =0.719 for the
last approximation and pjun = 2.92 for the initial ap-
proximation, and at δ = 4 we have pkin = 7.52 as
against 13.85.

Even in those cases when the Thomas-Fermi poten-
tial is a good approximation to the "self-consistent"
potential, the iteration process diverges as a rule (we
have already noted this circumstance in Sec. 1).
Particularly large difficulties arise when δ ~ 1, and
the statistical potential becomes a poor initial approxi-
mation, and furthermore there exist additional factors
contributing to the divergence (for example, the insta-
bility of the d-band in the approximation process*).
The difficulties arising in this case have led to two
mathematical problems:

a) how to change the calculation procedure to make
the successive-approximation process convergent;

b) how to find an improved initial approximation.
Thus, in essence, we deal with the solution of the

equation

φβ(ΐ) = Λφ«Μ. (7)

where A§ is a nonlinear operator describing the aggre-
gate of the actions described above, χ is the spatial
variable, φ§ is a potential, and δ is the relative
density.

In our calculations of the potential of the self-con-
sistent field we employ the following procedure. With
the aid of the initial (zeroth) approximation cp° we ob-
tain the energy bands and a new approximation φ1.
Specifying δ1, we find ψ2. We seek a new approximation
in the form φ3 = βφ1 + (1 - β)φ°, where the number β
is determined from the formula

j f ( Δ φ 1 - Αφ')"- χϊ dx, = φ» φ"

Using the ψ3 obtained in this manner, we find φ4 and
φ5 = βφ4 + (1 - β)ψ3, etc. The number β remains un-
changed in the process of obtaining the new approxima-
tions, t

Let us assume that the initial approximation φ° is
sufficiently close to the solution; then the operator in
(1) can be linearized:

Apparently, even such an approximation gives an idea
of the general character of the iteration process. In
this case we would deal with a linear inhomogeneous
equation. It can be shown that in the linear case the
method employed by us is one of the variants of the
gradient method.

"Thus, filling of 5d takes place for Dy in the zeroth approximation,
whereas in the first approximation 4f becomes filled.

t Experiment has shown that in the case of poor convergence or di-
vergence of this process, attempts to recalculate β do not improve the
situation.
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Calculations with the aid of the described procedure
were carried out for many elements (Fe, Al, K, Pb,
etc.) at different degrees of compression. To obtain
satisfactory results it suffices, as a rule, to use 3—5
computing approximations. The number of approxima-
tions increases at δ ~ 1. In these cases, the ^-process
frequently even diverges. The other method employed
by us consists essentially of constructing a new ap-
proximation from one obtained with the aid of two
numbers determined from the condition that the error
be minimized. Particularly useful is a procedure in
which the new approximation is sought in the form
"ψ = φη + y(<pm - φη), where

y--= — f Δφ" (Λφ™ — Λφ") χ- dx I f (Αφ7" — Δφ") 2 χ2 dx.

This procedure makes it possible to use approxima-
tions obtained during different stages of the process.
The convergence of the successive-approximation
process can be determined by the condition mn "C m0,
where m0 = J(A<pn)2x2dx. If a solution has already been
obtained for some degree of compression 6, an im-
proved initial approximation in the vicinity of δ can be
constructed using the Thomas-Fermi potential and the
known solution, by making use of the fact that the ratio
of the functions changes in this vicinity less strongly
than the functions themselves.

3. Derivation of the Formula for the Pressure at
Τ = 0. Thermal Energy and Thermal Pressure of
the Electrons

We use the general quantum-mechanical formula for
the derivative of the current with respect to time^30·1

(all the quantities are regarded as functions of the time
and of the coordinates of all the particles—both nuclei
and electrons):

γ
* an. λν —= - ^ ( - ψ ·

.ψψ·

„,
θψ ay' θψ· \

(8)
where q a n denote the μ-th coordinate of the particle
a, and * ( t , q) is the wave function of the system of
particles.

We integrate Eq. (8), taken for the μ-th coordinate
of the n-th particle over the configuration space of all
the remaining particles:

here

d Γ χ ι (* ^ η μ .λν , Γ dU „ ,»„, ,
^n \ iniidXn— — 7, \ dxn— 1 Ψ Ύ dxn\OT Ι μ ^ J J <>ί7λν J °Ίηιι

>-, ν

ί/— — y. z * Z j 3 t / - ν ζ ζ g / ι ι

The first integral in the right side vanishes if the
index λ does not pertain to the n-th particle. On the
left side is the μ-th projection of the force density fn

acting on the n-th particle.
We introduce the notation

j Ι Ψ Ντηη = Tnm (q, ,'),

where dT n m is an element of configuration space with-
out the coordinates of two particles. After summing

(9) over n, we obtain an expression for the total force
density:

Γμν (Q)

n . j Q
vTd?'·

where

and Ω is the volume of the entire space.
Let us find the force acting on a certain selected

volume ω (for example, the unit cell of the crystal):

= - § 2 dq j dqTnJ (q, q>) -±--±- -^1-

{nv} is the normal to the surface of the cell, rn j(q, q')
is the probability that the n-th particle is at the point
q and the j-th particle at the point q'. yn(<l)
= J | * | 2dTn is the probability that the n-th particle is
at the point q. The difference

I*; (?, ?') — Yn (q) Vj (?') = —fnj (q, q')

describes the exchange phenomenon. The density of the

electric charge is p(q) =Z/znVn(q)·
η

We now break up the integral J dq in (10) into two
parts:

f dq' and f dq'.
ω Ω—ω

The first part yields zero, since when q is re-
placed by q' and vice versa the integral equation re-
verses sign. Although the total force Έμ is equal to
zero, we can separate from (10) the force Ffe") ex-
erted on a given cell g by any other cell h, and also
the surface forces. It is precisely in terms of these
two quantities that we shall express the pressure
henceforth. It is convenient to separate the second
term in the right side of formula (10) into two terms:

~~ ί dq ί dq' 4 : "ΰ=7Τ

We now use the fact that the nuclei can be regarded
as immobile. The terms due to the nuclei in the tensor
Τμι/iq) vanish, and we are left only with the contribu-
tion from the interaction of the nuclei in electrostatic
term of (11). However, for electrically neutral cells
with sufficiently good symmetry, this entire term can
be neglected, as already mentioned in Sec. 1. Thus,
only the electron terms remain in the expression for
the force Έμ.

We introduce the following convenient notation: Ν
is the total number of elect -ons

P(?) = 2V«(S)=JV J | Ψ (9l, q2 qN)\2dT2...dxN,
η

Γ (?, <?') = 2 Γι, (β, 9 ') = TV (ΛΓ- 1) j I Ψ (?, , ' , g3 qx),, dx3 , . d T

P(S. ?') = W j Ψ·(?', ? 2 , . . ., qN) Ψ ( ? , ? 2 , . . . , gw)dT s . . . dxN.

In t h e s e equat ions we used the a s y m m e t r y of the wave
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function *(qi, q 2 , . . . ,qN)· The stress tensor μ
is expressed in terms of the density matrix in the
form

·, q)
qp dqv

q) -, q)

Jdqp c

Substituting (11) and (10) and omitting the first term,
we obtain the force acting on the g-th cell

To calculate the pressure it is necessary to find the
work done by the forces between cells in the case of
uniform expansion of the body in all directions in a
ratio 1 + a. The obtained change of the system energy
6E must be divided by the change of the volume 5V
= 3αω per cell, multiplied by the number of cells, and
the sign of the quotient must be reversed. The work of
the surface force is equal to the average value of
Τ μ μ ^ ) on the surface of the cell, multiplied by the
change in volume. The contribution made by this force
to the pressure will be called the kinetic pressure and
denoted

The work of the Coulomb forces
the form

is written in

where R g n is the distance between the centers of the
g-th and h-th cells. The contribution made by these
forces to the pressure will be called the exchange
pressure and denoted

Pex =-(1/6(0) 2 F ' 0 · " 1 ^ , .
ΙιφΟ

The index zero denotes the cell under consideration.
Thus, the total pressure is

(17)

(18)

The derivation presented here was first published in
a paper by GandeFman [18]. In a paper by Dmitriev t l 7 ],
the result obtained here for pressure was derived in
another way: perturbation theory was used to calculate
directly the small change of energy resulting from a
small change in the volume. We shall be interested in
the future in the particular case when the wave func-
tion of the system is represented in the form of a de-
terminant of single-electron functions 0i(q). In this
case it is easy to obtain the well known formulas

IV JV

ρ (?. ?') = .Σ Ψ* (?') Ψι (?). ρ (?) = .Σ Ι ψΐ (?) Ρ,

Γ (?, ?') - ρ (?) ρ (?') = - 1 Ρ + (?, ?') Ρ - 1 ρ- (?, ?') Ρ;

Here p* is the part of the density matrix for electrons
with one direction of the spin, p" is for electrons with
opposite spin direction. Then the formula for
takes the form

- 2 . (19)

On the basis of the approximation of spherical cells
and using formula (2), we obtain (after averaging over
different directions of the quasimomentum) the follow-
ing formula for the kinetic pressure in atomic units
(e2/aj = 2.93 x 10 8atm)*:

A-ml (k) {[/!„

(20)

It is seen from (20) that the contribution of the inner
electrons to the kinetic pressure is negligible, since
the radial wave functions fnm/(k, r 0 ) on the surface of
the cell are very small for these electrons.

We shall now touch upon the question of the thermal
energy and thermal pressure of the electrons. The
reader interested in details is referred t o [ 1 8 ] .

The electronic specific heat C j is expressed in
terms of the eigenvalue of the energy Ei(k) as follows:

where '

The chemical potential μ is determined from the
normalization condition

$f, = N. (21')

where Ν is the number of electrons. We recall that
summation over i denotes summation over the bands
and integration over the quasimomentum.

In our case we get after elementary transformations,

(22)

h° k*x- dk

dT
Wdk (23)

here x^m = [En m (k) - μ]/Τ. The condition for the
calculation of μ is

*0

Ϊ m 0

Knowledge of the specific heat enables us to find the
thermal energy

τ
ET=\cTdT

and the thermal pressure

Table II. Occupation numbers of
electrons in the states n/

0=1

1

0
1
2
3

.01

:ido

0.650
0.235
0.009
0.077

I

0
1
2
3

ί

310

0.303
0.152
0.152
0.088

—j

=2,44

3di

0.023
0.153
0.010

0.091
0,002

*The pressure in all the calculations is in units of 106 atm.
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dET

Using the definition of φ and ye (see Sec. 1), we
can obtain the simple formula

d In φ φ (24)

where φ = (1/Τ) $φ dT. At low temperatures ψ ~ φ

and y e = - θ In <p/9 In δ.

II. RESULTS OF INVESTIGATIONS OF THE PROPER-
TIES OF CERTAIN METALS AT HIGH PRESSURES
AND TEMPERATURES

The theory developed in Ch. I served as the basis of
the calculations which we shall now analyze.

1. Aluminum

Since aluminum exhibits very unusual properties
upon compression, the calculations for it were per-
formed in particular detail: δ = 0.658, 1.01, 1.01, 1.48,
1.96, 2.44, 2.95, 3.5, 4.18, 5.5, and 7.

In the aluminum atom we have the configuration
Is22s22p63s23p, and the 3d level lies 0.148 atomic
units above the 3p level1-2·1. In aluminum metal, how-
ever, the outer electron is in the 3d band and not in
3p. To be sure, the 3d0 subband, in which the outer
electron is located, is directed downward and at large
k the wave function of the electron contains a large
admixture of s and ρ states. This fact is demonstrated
in Table II. At normal density (p 0 = 2.7 g/cm3), the
outer electron is located in the 3d0 subband, with kj
= 1.919, so that the 3dO band is half-filled. A charac-
teristic feature is that upon compression the width of
the subband 3dO decreases, while the subbands 3dl
and 3d2 broaden. At δ = 1.01, the distance from the
Fermi energy Ε ρ to the edge of 3d0 is 0.033 atomic
units, at δ = 1.48 this distance amounts to only 0.018
atomic units, and at δ = 1.96 only 0.003 atomic units.

We observe here a very curious electron realign-
ment, consisting of the rotation of the direction of 3d0
upon compression. It is seen from Fig. 1 that Ep al-
ready intersects all three subbands of 3d simultane-
ously at δ = 2.44, and 3d0 is even intersected three
times. With further compression, Ejr already inter-
sects immediately all three subbands of 3d, and their
width increases with increasing compression. This
peculiar realignment of the bands is of very great im-
portance for the explanation of the properties of the
Gruneisen coefficient of the electrons in aluminum, as
will be shown later.

Figure 2 shows the cold-pressure curve ρ(δ). At
normal density, there is an error of about 0.5 million
atm in the pressure, and holds up to compressions
δ ~ 2.5. Beyond this, the calculated pressures are
higher than those obtained by the TFC method. For
example, at δ = 5.5, the statistical value is 25.7
million atm as against 35.6 million atm in accordance
with our calculation. At δ = 10 the pressure curves
coalesce completely.

As seen from Table III, at first the contribution of
3s and 3d to the pressure are approximately the same,

and with increasing density the contribution of the
filled 3s band is much more significant.

On the cold-pressure curve one can see clearly the
bend in the region δ ~ 2, connected with the electronic
realignment described above. Proceeding to the
thermal properties of Al, it should be noted that here
φ/2 depends little on the temperature in almost the
entire compression region, with the exception of the
realignment region, where the structure of the 3d0
band changes strongly. This occurs in the region
δ w 2—3. At low temperatures and at normal density,
the calculated value is φ/2 = 26.58, which yields
φ = 518 erg/g-deg2.* This agrees well with the experi-
mental value 500 erg/g-deg2.

The density of the electronic states on the Fermi
surface first increases (at small δ), reaches a maxi-
mum at δ » 2.4, and then it begins to decrease when
the subbands of 3d go simultaneously upward and their
width increases with increasing δ. This leads to the
appearance of a region of negative y e at 1 < δ < 2.4,

0 05 1.0 1.5 2.0 2.5 A

Table ΠΙ. Contributions to the kinetic pressure from
different bands in Al

8

1.01
1.48
1.96
2.44

2p

—0.012
—0.062
— 0 168
—0.317

3s

0.376

1.278
2.825
4.905

'id

0.700
1.648
3.005
3.930

δ

2.95

3.50
5.50
7.00

2,

—0
—0
—0
+ 1

>

5?,?,
713
293
782

3s

7.980
12.01
35.25
58.20

3d

4.455
5.88
12 98
19.11

*To obtain ψ in the cgs esu system it is necessary to multiple
value of>/2 by 9.4 X 56/A.

our
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T- 0.004

Al

FIG. 3

to the passage of y e through zero, and to a rapid
growth of ye i-n the region of positive values (Fig. 3).

The presence of a region of negative ye

 a n d of an
inflection in the cold-pressure curve can lead to a ro-
tation of the shock adiabat of Al to the right at 6 « 2.
As shown by the experimental data published in [ 3 1 ) 3 2 ] ,
such a rotation of the shock adiabat indeed takes place
near δ « 2. Subsequently, on going over to the region
of large positive values of ye, one should expect the
rotation of the shock adiabat to the left. Using as an
example Al, which always was regarded as a "s imple"
metal from the point of view of the thermal properties
of the electrons, we see that upon compression a char-
acteristic change is observed in the 3dO band, and en-
suing anomalous properties of ye. Therefore one can-
not speak of Al as a "s imple" metal, as would follow
within the framework of the statistical theory. We note
that the obtained structure at δ = 1 in Al differs little
in the spherical approximation from the more exact
data of Segall [ 3 5 ].

2. Iron

Let us examine the energy structure of a typical
representative of the transition-metal group, iron. The
calculations were carried out in the compression range
0.75 < δ < 8 (see [ 2 7 ]). The picture of the electron
spectrum for the normal density is as follows: the
filled 4s band is located below the 3d band, where 3d2
is completely filled, while 3dO and 3dl contain two
electrons each. We note that the relative arrangement
of the bands 4s and 3d is the same as the arrange-
ment of the corresponding levels in the Fe atom. Upon
compression, the energy structure experiences a
characteristic change—"departure of the 4s band."
In the case of a threefold compression, the 4s band is
partly filled and overlaps 3d. The value of the overlap
is 0.35 at.un. At 6 = 4 , the overlap decreases to 0.14,
and a negligible fraction of electrons is located in 4s.
With further compression, the 3d band drops and be-
comes completely filled, and the 3p band is partly
filled and contains four electrons in place of six.
Figure 4 shows the calculated plot of ρ(δ), and also the
experimental curve of Al'tshuler et a l . [ 6 ] and the curve

20

1 Ζ 3

FIG. 4

4 S

Χ. β

Γ \ ^

0.004
0.007
0.010
0.025
0.040
0.070
0.100

0 . 7 4 6

1.434
1.483
1.607
1.810
1.716
1.462
1,278

Table

1.073

1.439
1.387
1.369
1.379
1.386
1.282
1.169

2 . 0 0 5

0.953
1.018
1.068
1.032
1.004
1.040
1.189

IV

3

0.572
0.571
0.566
0.550
0.660
0.810
0.923

I

0.509
0.507
0.497
0.400
0.388
0.605
0.764

5

0.397
0.395
0.378
0.260
0.192
0.308
0.449

calculated by Kalitkin by the TFC method [ 5 ]. The re-
sults are closer to the experimental data than the TFC
curve.

We note that when 5 < 2 the contributions of the 4s
and 3d bands to the kinetic pressure are approximately
equal, and the principal role is played by the contribu-
tion of the 3d band. At large compressions (6 > 4) the
contribution of 3p also becomes significant. Let us
describe briefly the thermal properties of the electrons
in Fe. At δ = 1, Ep passes somewhat below the sub-
band 3d3 (0.012 at.un.), which is completely filled.
Therefore φ/2 is smaller at Τ < 0.012 at.un. than at
higher temperatures, when the excitation of the sub-
band 3d2 comes into play. Calculation of φ/2 has
shown it to have large absolute values of this quantity,
an inherent property of transition metals at low tem-
peratures and at normal density, and also the variation
of φ/2 with temperature, which is characteristic of
transition metals. In Table IV is given the value of ye

in Fe. We deal here with the usual case, when the
density of the electronic states on the Fermi surface
decreases with increasing density of the material, and
consequently ye is positive. It is seen from the table
that in the region 6=1—2 and at high temperatures,
ye in Fe is close to unity, which is in good agreement
with the experimental data. ye decreases with in-
creasing 6.

3. Nickel and Copper

Nickel has two electrons more than iron. The upper
band is also the 3d band. Calculations were performed
for degrees of compression δ equal to 0.75, 1, 1.5, 2,
3, and 5. At 6 = 1 (Fig. 5), the 4s band and the 3d2
subband are filled. Ef intersects the subband 3dl at
kjr = 2.25, which is close to the edge of the subband.
This circumstance produces a very large density of
the electron states at the point of intersection. The



ELECTRONIC ENERGY SPECTRA 65

1.5 -

0.5 10 1.5 20

FIG. 7

2.5

0.5 1.0 1.5 2.0

FIG. 6

2.5 k

ο mi
0.007
O.olo
0.02.Ί
0 010
0.070
ο. loo

•5=0.75

2.027
1.792
1.611
1.441
1.473
1.506
1.297

Table

1. 0

.470

.484

.504
416

.408

.295

.185

V

,.:,

.012

.132

.216

.396

.379

.298

.195

12.0

0.12il
0. 706
0.806
1.364
1.487
1.415
1.303

3 . (1

i.2.".i;
2.71-4
2.723
3 629
3.601
2.SI17
2.230

average number of electrons in the 3d0 and 3dl sub-
bands is respectively 0.77 and 3.23. At δ = 2, the total
width of the 3d band increases strongly (0.73 at.un. as
against 0.29 at 6 = 1 ) , but the character of the arrange-
ment of the bands remains the same. At δ = 3 (Fig. 6),
a realignment of the band takes place. The Fermi sur-
face is inside the 4s band, which contains only 0.5
electrons. Figure 7 shows the picture of the electron
bands for δ = 5, demonstrating the start of the trans-
formation of the metal into a dielectric, which was
discussed by us in detail in Sec. 1 of Ch. I.

Let us examine now the thermal properties of
nickel. Within the framework of our metal, we are
able to explain the observed large ratio of the coeffi-
cients of the electronic specific heat φ/2 of nickel
and copper. At a temperature 0.002 at.un. (~600°K),
this ratio equals 11.4 as against the experimental
11.23. The absolute value φ/2 for nickel at this tem-
perature is 165.9 in our units, or φ = 1488 erg/g-deg2.
This is also in fair agreement with the experimental
value 1240. The large value of φ/2 at low tempera-
tures in the case of nickel is attributed, just as in the
case of other transition metals, to the large density of
the electron states on the 3d band near the Fermi
surface. In Ni near the Fermi surface in the subband
3dl, the density of states is very large. In Ni, however,
φ/2 decreases strongly with increasing temperature,
since all the 3d subbands begin to be excited. A strong

temperature dependence of φ/2 takes place even at
higher compressions, since in this case Εγ is close
to the edge of 3dl. In the region of δ ~ 5, in connec-
tion with the transformation into a dielectric, a sharp
decrease of φ/2 is observed with increasing density.
This exerts a strong influence on the course of the
Gruneisen coefficient ye, a s shown in Table V. We see
that y e is much larger at δ = 3 than at δ = 2. At
6 = 3 the 3d band is almost filled and the opportunities
for electron excitation are slight. The value of y e at
low temperatures and normal density is close to 1.5,
and at high temperatures close to 1.0, in reasonable
agreement with experiment.

In the Cu atom, the Μ shell is completely filled
and one (outer) electron is located at the 4s level,
while the gap between the levels 4s and 3d is equal
to 0.23 at.un., whereas in the Fe atom 4s lies 0.13
at.un. below 3d, and the minimal gap between these
levels occurs in the Ni atom.* Our calculations have
shown, however, that in Fe, Ni, and Cu at normal
density the 4s and 3d bands overlap, but the Fermi
surface lies inside the 3d band. Nonetheless, calcula-
tions at densities below normal give grounds for as-
suming that on going over to the case of an isolated
atom we obtain the just-described arrangement of the
levels of these three elements. Indeed, calculation for

"These data are taken from the calculations of Latter [2 ]
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Cu at δ = 0.3 gave a gap with ~0.16, with 4s situated
above 3d.

The calculations in Cu were made for δ =0.75,
1, 1.5, 2, 3, and 5. Figure 8 (δ = 1) shows that the sub-
band 3d0 contains one electron. In this period, the
density of the electron states is low. Here we already
have a larger admixture of ρ states. For example, at
k = 2 we have the following values of the coefficients
Aj(k): Ao =0.006, Ax = 0.610, A2 = 0.779, and A3

= 0.081.
At normal density, the electrons from the 3d and

4s bands are distributed among the states with differ-
ent orbital angular momenta I in the following manner:
n0 = 0.70, ni = 1.03, n2 = 9.09, and n3 =0.03.

It is interesting to note that the same arrangement
of the 4s and 3d bands as in our spherical approxima-
tion was obtained in Segall's calculations'·331 for Cu,
at normal density, performed by the Green's-function
method (Kohn and Rostocker).

The arrangement of the bands in the case of 1 < δ
< 3 is the same as at 6 = 1 , but their width is naturally
larger. At δ = 5 (Fig. 9), the outer electron is located
in 4s.

Figure 10 shows plots of the cold pressure against
the density, p(p), for Fi, Ni, and Cu. We see that the
p(p) curve of Cu lies lower than that of Ni. Such an
arrangement of the pressure curves agrees with the
experimental data, although our values are somewhat
higher than the experimental values of the cold pres-
sure in the region δ ~ 1, primarily because of the

JdO

2.5 k

Cu
S-5.0

EF

-

1 1

7

/ 3dO y

Ml/

_ J 1 1

rather crude estimate of the exchange pressure. The
error in the determination of the normal density in Cu
is the same as in Ni (~30%) (Table VI).

An investigation of the thermal properties of the
electrons in Cu has shown less abrupt changes of
φ/2 than in Ni. At Τ = 0.001 and δ = 1 we have
φ = 131 erg/g-deg2, which is in good agreement with
the experimental value 110 erg/g-deg2.

At small δ, the φ/2(Ύ) curves have a characteris-
tic maximum: φ/2 increases with increasing excitation
of the filled subband of 3dl at Τ > 0.002, and begins
to decrease at Τ > 0.02, when the 3d2 subband is also
excited.

Upon compression, this maximum decreases in
magnitude and shifts towards higher temperatures. We
note that y e depends little on the temperature
(0 < Τ < 0.2) when 1 < δ s 3, and changes in the in-
terval 0.9 < y e < 1.4. It should be borne in mind that
in calculating φ/2 for Fe, Ni, and Cu at high temper-
atures, starting with 0.04, it is necessary to take into
account the bands lying above the Fermi surface. Such
a band in these metals is 4d.

4. Silver

The energy structure of silver is very similar to
the picture of the bands in copper, the only difference
being that the upper band is 4d rather than 3d, and
the role of 4s is played by 5s. Figure 11 shows a
picture of the bands in Ag at δ = 1. The outer electron
is in the subband 4dO (kF = 1.919), and in the s state
we have 0.037 electrons, while in the ρ state we have
0.297 electrons, and in the d state 0.643 electrons.
The width of 4dO in Ag is much larger than the width
of the corresponding 3d0 subband in Cu, and therefore
the effective mass on the Fermi surface is smaller in
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Table VI. Contributions made to
the kinetic pressures by the var-

ious bands of Cu

0 0.5 1.0 1.5 2.0 2.5 k

FIG. 9

6

0.75
1
i . 5
2
3
5

4s

0.145
0.433
1.880
4.293

11.050
44.000

3dt)

0.118
0.262
0.929
2.231
8.626

26.944

3 d l

0.314
0.672
2.031
4.263

11.960
43.745

—0.043
—0.033

0.210
0.804
3.291)

15.429
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silver than in copper. According to our calculation, the
effective mass in Cu is larger by 1.44 times than in
Ag, in good agreement with the experimental data [ 3 4 ] .
Just as an upward shift of the 4s band is observed in
copper upon compression, an analogous shift is ob-
served in Ag for the 5s band. Even at δ = 2.5, the
outer electrons are located in 5s and the 4d band
strongly overlaps the 5s band.

Figure 12 shows the cold-pressure curve in silver.
Calculation yields a value ~22% for the error of the
normal density. Table VII illustrates the distribution
of the kinetic pressure among the states with different
I, and also of the total kinetic pressure among the
bands, at δ = 1 and δ = 2.5.

5. Titanium and Vanadium

Interest in Ti and V is due primarily to the fact
that their d shells contains few electrons (2 and 3,
respectively).

The electron bands calculated by us for titanium
are given in Fig. 13 (δ =1.5) and Fig. 14 (δ = 2.0),
where δ =ρ/4.5. Accordingly, the electron structure
of vanadium is shown in Fig. 15 (δ =1.5) and in Fig.
16 (δ = 2.0), where δ =ρ/6.08. Both metals are char-
acterized by an upward shift of the 4s band. Table
VIII shows clearly the decrease of the number of elec-

trons in the 4s with decreasing density of either Ti or
V.

This abrupt change in the number of electrons oc-
curs in a narrow region of densities. In Ti, the start
of the realignment takes place at ρ ~ 7.9 g/cm3, and
in V at ρ ~ 9.1 g/cm3, although the value of δ in the
realignment region is larger for Ti than in V. The
cold-pressure curves p(p) of both metals are shown
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Table VII

0
1
2
3

Ρ kin

5s

0.128
0.189

—0.158
0.009
0 177

6

4dO

0.018
0.172
0.075
0.013
0.294

= 1

4tii

0.079
0.398
0.035
0.582

•'id2

-0.271
0.068

-0.130

5s

1.25
4.27
0.53
0.09
8.24

6—

idO

2.10
1.78

—0.09
0.14
4.11

2.5

4 d i

2.11
5.05
0.34
8.22

4d2

-0.18
0.72
1.20
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Table Vm. Number of electrons in bands ΠΙ. APPENDIX

1. Potassium

is

Μ

Ti

1.5

2
2

1,75

1.938
0.062

2

0.098
3.902

3

4

V

1,5

2

3

1,75

0.131
4.869

2

0.083
4.917 5

in Fig. 17. The bend in the indicated region of the
electronic realignment is clearly seen in this case.

Table IX shows the contributions made to the kinetic
pressure by the bands 4s and 3d.

The subbands 3dl and 3d2 give a monotonic in-
crease of the kinetic pressure upon compression. A
different picture of the behavior of the kinetic pres-
sure takes place in the subband 3d0 and in the band 4s.
Whereas the contribution to the kinetic pressure from
the 4s band decreases sharply in a narrow region of
densities, the contribution of 3d0 increases sharply,
i.e., there occurs, as it were, a "transfer of pressure"
from 4s to 3d0. Then the pressure in 3d0 decreases,
and the principal role in the pressure begins to be
played by the subbands 3d2 and 3dl.

Calculations yield different compressibilities for
Ti and V. Shock adiabats of Ti and V were recently
obtained[24>28]. The shock adiabat of V has a kink at
δ = 1.58, and that of Ti has no kink. However, it seems
to us that it would be incorrect to conclude therefrom
that there is no electron realignment in Ti. In our cal-
culations, the difference between Ti and V was mani-
fest in the fact that the kinetic-pressure curve of Ti
is smoother than the corresponding curve for V. As
we shall see in the case of Nb, the shock adiabat, while
having a small kink, differs noticeably in shape from
the cold-pressure curve, owing to the role of the
thermal pressures of the electrons and of the lattice.
In the case of titanium and vanadium, the different
values of the electron Gruneisen coefficient, resulting
from the somewhat different character of the electron
realignment, lead apparently to a hardly noticeable
kink in Ti and a more clearly pronounced kink in V. It
seems to us that this is just a case where the absence
of a kink in the experimental shock adiabat still does
not mean that there is no realignment of the electron
bands upon compression of the substance.

In conclusion, we present for comparison the aver-
age radii (in Bohr radii) of the different orbits (1=0,
1, 2) for different degrees of compression on the Fermi
surface in Ti and V (Table X).

A study of the change of the properties of Κ with
changing density has led to certain unexpected results.
Recognizing that Κ can be easily compressed and that
agreement with the results of the statistical theory sets
in at large degrees of compression, we have carried
out calculations for the region of values δ = 0.75, 1, 2,
3, 4, 5, 6, 8, and 10 (see [ 2 7 ]). At normal density, the
outer electron of potassium, as expected, is in the 4s
band, with kF = 1.919. The 3p band is very narrow
and is far from 4s. The 3d band is above the Fermi
energy. Following a threefold compression, the previ-
ously unfilled 3d band begins to overlap the 4s band
and is partly filled. We shall show later that the ano-
malous thermal properties of the electrons in Κ are
essentially connected with this overlap. At δ = 5, a
change takes place in the arrangement of the bands
4s and 3d, and the 4s band is already on top and is
practically unfilled. At δ =10, the 4s band does not
play any role at all in the filling.

Let us proceed to estimate the exchange pressure.
For alkali metals, it is well known that the distribution
of the electrons is close to uniform. It seemed advis-
able to us to use a formula expressing the exchange

Table IX

6

Ti: 4s

3d0
3di
3d2

V: 4s

3dO
3il
3d2

1.5

2.60
0.08
0.16
0.30
3.46
0.18
0.32
0.58

1.75

3.35
0.12

0.22
0.46
0.36
4.49
0.44
0.91

2

0.30
3.10
0.39
0.95
0.47
5.66
0.62
1.46

2.25

0.33
2.67
0.60
1.58
0.38
5.16

0.97
2.53

2.5

0.20
2.27

0.79
2.24

4.35

1.33
3.74

3

1.82
1.16
3.73

3.20
2.16

7.01

3.5

1.66
1.54
5.52

3.16
2.91
10.49

Table X

1.5
2
3

Ti

0

2.02
1.80
1.46

1

1.87
1.54
1.14

2

1.66
1.51
1.32

V

0

1.86
1.55
1.32

1

1.74
1.42
1.04

2

1.44
1.33
1.18

1 ψ
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Table XI

6

1.5

2

3

4

6

3p

—0.054
(6)

—0.081
(6)
0.016
(6)
0.459
(β)

2.630
(β)

4s

0.556
(1.9)

0.828
(1.455)

0.890
(0.724)

0.026
(0.008)

3d

0.001
(0.1)

0.085
(0.545)

0.449
(1.276)

1.425
(1.992)

2.398
(2)

pressure in terms of the electron density. This is the
well known formula for exchange pressure in a free
electron gas:

Pex =-i0M2/28)4/3

Pe

4/3(in un. of 10e atm).

The exchange pressure in Κ was calculated from
this formula, where p e were chosen to be the values
of the electron density on the boundary of the cell.
Figure 18 shows the dependence of the cold pressure
on l/δ. The curve shows a minimum at 1/6 = 0.21
and a maximum at l/δ = 0.29. This is evidence of the
presence of a first-order transition, and actually a
jump of the density is observed at constant pressure.
This constant-pressure line is drawn in the figure with
allowance for the condition that the areas I and II be
equal. This yields a pressure of 0.18 million atm and
a large density jump (by a factor of 2). Although the
accuracy of the calculation of Ρβχ(δ) is insufficient to
guarantee the correctness of these figures, since this
phenomenon is connected with realignment of the elec-
tron bands, there is no doubt that such a phase transi-
tion is possible. The reliability of the electronic phase
transition is verified also by the experimental con-
firmation, to be discussed later, of the predicted region
of negative and small positive electron Gruneisen coef-
ficients connected with the realignment of the bands
upon compression.

Stager and Drickamer [ 3 6 ] reported anomalous growth
of the electric resistance of potassium in the pressure
region under consideration, thus confirming the pres-
ence of electron realignment.

We now turn to the data on the thermal properties
of the electrons in K. In the region 1 < δ < 3, the co-
efficient φ/2 depends little on the temperature. At
6 = 1 and lower temperatures, the calculated value is

ψ/2 = 33.58, which yields φ = 456 erg/g-deg2 and is
in satisfactory agreement with the experimental value
540 erg/g-deg2. In the band realignment region, where
the 4s and 3d bands overlap, the coefficient ψ/2 de-
pends more strongly on the temperature, decreasing
by a factor of 2 when Τ changes from 0.004 to 0.100.
Particularly great interest attaches to the appearance
of the region of negative y e in the range 2 < δ < 4,
precisely where electron realignment takes place.
Calculations show that the absolute value of y e

 m the
negative region decreases with increasing temperature.
The reason for the appearance of negative ye i·8 that
the 3d band begins to overlap the 4s band after com-
pression by a factor 3—4, and this leads to an increase
of φ/2 upon compression. Subsequently, at 6 > 4,
when 4s is very little filled, y e becomes again posi-
tive, since the density of the electron levels on the

tu
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Fermi surface in the 3d band already decreases with
increasing δ.

When the temperature increases to 0.05—0.1 at.un,
the calculated value of y e reverses sign and assumes
the value 0.15 in the interval 2.5 < δ < 3.5.

The Hugoniot adiabat calculated from the given
values of y e

 and from the extrapolated section of the
cold curve is in reasonable agreement with experi-
ment [ 3 7 ] . At the same time, the large starting values
(ye = 0.5) of the Gruneisen coefficient of the electrons
did not make it possible to interpret unambiguously the
dynamic experiment. All this shows that knowledge of
the changes of the structure of the energy bands of
metals upon compression is essential for the interpre-
tation of the data of the dynamic experiment. The suc-
cess of the theory in the interpretation of the dynamic
experiment increases the reliability of the predictions
of the phase transition in K.

2. Calcium

In the Ca atom the configuration is
Is22s22p63s23p64s2 and the ground term IS. Therefore
the metallic properties of potassium can result from
the overlap of the 4s and 3d bands. Many calculations
were performed (δ = 1, 1.5, 2, 2.25, 2.5, 2.75, 3, 3.5,
4, 4.3, 4.5, 4.8, 5, 5.5, 6, and 7) which made it possible
not only to establish the transition of the electrons to
the 3d band, but also to analyze in detail the electron
realignment, which, just as in K, consists in the fact
that the states in the 4s band, starting with δ = 4, are
not filled with increasing compression ("departure of
the 4s band"). Owing to the inaccuracy of the method,
we were unable to obtain a normal density overlap of
the 3d and 4s bands. The gap between these bands at
δ = 1 is 0.074 at.un.

Figure 19 (δ = 1.5) shows the position of the upper
bands in Ca, when the width of the energy overlap of
3d and 4s amounts to 0.014. It is seen from Table XI
that the number of electrons in the 3d band is 0.1. With
further compression, the number of electrons in 3d
increases, and the 4s band tends to rise above the
Fermi energy, so that at δ > 4 it no longer takes part
in the filling. One of the stages of this process is seen
in Fig. 20.

Figure 21 shows ρ(δ) (cold pressure). We see here
clearly a region of almost constant pressure, connected
with the aforementioned realignment. In Table XI are
given the contributions from different bands to the
kinetic pressure in Ca. The numbers in the parentheses
are the electronic occupation numbers.

It can be established that the main contribution to
the pressure is made by the electrons in the s- and
p-states. It is seen from the table that starting with
δ ~ 4 the contribution to the pressure from the 3p
band increases sharply. This is a consequence of the
fact that at such degrees of compression the gap be-
tween the 3d and 3p bands decreases strongly (at
δ =4 the gap is equal to 0.398 at.un., at δ = 7 the gap
is 0.116 at.un.) Upon subsequent compression, a new
realignment of the bands takes place, and the 3p band
turns out to be higher in energy than the 3d band. The
electrons previously in the 3p band occupy vacant
places in the 3d band.

Measurements of the energy structure of Ca upon
compression could not fail to influence the behavior of
ye. In view of the fact that we have described in detail
the connection between the electron realignment and
the behavior of the electronic Gruneisen coefficient in
K, we note only that the dependence of y e on the
density and temperature is similar in Ca and in K.

3. Niobium

The electronic structure of the transition metals of
the fifth period of the periodic system and its change
upon compression will be illustrated with Nb as an
example. The calculations were performed in the
region 0.75 < δ < 5. In the Nb atom, 28 inner elec-
trons form a closed shell Is22s22p63s23p63d10, and the
remaining 13 electrons are at the levels 4s, 4p, 4d,
and 5s. The levels 4s and 4p are completely filled.
According to data [ 2 ], the 5s level is deeper than 4d.
In Nb metal (p 0 = 8.58 g/cm3) at normal density
(Fig. 22), an energy overlap of the bands 5s and 4d

OA '

0.5 1.0 1.5 2.0 2.5 k

FIG. 23

3 &

FIG. 24

Table XII

5s
4<iO
4rfl
4ii2

6 = 1

-

2,000
0.192
0.635
2,173

"kin

1.175
0.060
0.117
0.191

6=1,5

0.086
1.712
0.578
2,624

Ρ kin

0.209
2.364
0.359
0,893

6 = 2

"

0,001
0.866
0,600
3.533

"kin

0,008
1.985
0,900
2.912
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takes place, and the Fermi surface intersects only the
4d band. Just as in the case of other transition metals,
electron realignment is observed in Nb upon compres-
sion: first the overlap of the bands 5s and 4d in-
creases, and then the 5s band turns out to be higher
than the Fermi energy. Figure 23 and the electronic
occupation numbers listed in Table ΧΠ clearly demon-
strate this process.

In Table ΧΠ are given also the contributions of the
bands to the kinetic pressure. Although at δ = 1 the
5s band lies lower than the Fermi energy, the pres-
sure in it is much higher than the pressure in the 4d
band. Subsequently, the contribution of 5s to the pres-

2.0 2.5 k

FIG. 25

sure decreases rapidly, this being connected with the
already described electron realignment.

The cold-pressure curve (Fig. 24) has a noticeable
inflection in the region 1 < δ <1.75.

The most characteristic of the thermal properties
of Nb is the presence of large values of the electronic
Gruneisen coefficient in a wide range of densities and
temperatures, which is also connected with the indi-
cated change of the energy structure. This causes the
shock adiabat to deviate strongly from the cold-pres-
sure curve to the left at δ < 1.5, and near δ =1.5
there is a characteristic kink of the adiabat.

4. Lead

It is of considerable interest to investigate the equa-
tions of state of heavy elements. Greatest attention is
paid in this case to Pb, distinguishing features of which
are the large compressibility of the relatively low
normal density (11.4 g/cm3). Calculations of the elec-
tronic spectrum for Pb were made at the following
values of δ :0.75, 1.0, 1.5, 2.0, 3.0, and 5.0.

Lead has four electrons on top of the filled configura-
tion Is22s22p63s23p63d lo4s24p64d lo4f145s25p65d10, which
consists of 78 electrons. These four electrons are
distributed in the bands 6s and 6d. It is seen from
Fig. 25, that at δ = 1 the 6s band is filled. The two
other electrons are in the 6d band, with only 0.206
electrons in the 6dl subband. However, in spite of the
designation 6d, in fact the greater part of the electrons
in this band are in s- and p-states. Table XIII for the
relative degrees of compression δ = 1 and δ = 3
clearly confirms this fact. Indeed, out of the two elec-
trons of the 6d band, 1.3 are in the ρ state and 0.43 in

Table ΧΙΠ

Pe

6<J0

6d0
6<J1

6 = 1

0

0.427

0.128

1

1.133
0.164

0.110
0.034

2

0.089
0.005

0.041
0.002

3

0.106
0.027

0.031
0.008

6 = 3

0

0.591

1.752

1

0.258
0.304

0.782
0.999

2

0.280
0.013

1.166
0.064

3

0.321
0.161

0.513
0.268

Table XIV. Dependence of the pressure on the density
of Pb

0
1
1

6

.75
00

.50

w

0.220
0.302
0.470

!>

- 0
—0
—0

ex

.152

.287

.697

"kin

0.204
0.510
1.590

Ρ

0.052
0.223
0.893

δ

2.00
3.00
5.00

0
1
1

w

649
001

.745

V ;x

—1.326
— 3
—9

159
596

3
1?..
52.

kin

832
467
629

2
9

43

V

506
.308
033

Table XV. Contributions of the individual bands to the
kinetic pressure in Pb

δ

0.75
1.00
1.50

5d

—0.021
—0.056
—0.146

6s

0.037
0.131
0.608

6dO

0.144
0.332
0.948

0.044
0.103
0.180

β

2.00
3.00
5.00

5 d

—0.001
1.928

16.750

6s

1.506
4.715

18.190

6dO

1.888
4.352
8.430

....

0.438
1.472
9.260
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the s state. The arrangement of the bands at δ =1 is
conserved in the entire range of relative compressions.
To be sure, many more electrons are in the states
with 1=2 and 3 already at I =3, and this increases
the number of electrons in the subband 6dl.

Tables XIV and XV give data on the cold pressure
in lead.

The main feature of Ft», the very large compressi-
bility, is well described theoretically. At a compres-
sion by two times, the pressure in Pb is 2.5 million
atm, whereas in Cu", Fe, and in Ni it is 8 million,
7.4 million, and 10.5 million atm. respectively at the
same twofold compression.

Calculation at δ = 1 yielded a pressure of 0.223
million atm, i.e., a rather small value. The error in
the normal density is approximately 30%, and the cal-
culated density at ρ = 0 is even smaller than the ex-
perimental value p0 = 11.4 g/cm3. Although Pb is a
heavy element, the s and ρ electrons in the 6d band
can be easily compressed. In Table V we give the
contributions made to the kinetic pressure by states
with different /(p/) in the subbands 6dO and 6dl. As
always, the relative role of the s states is largest here.
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