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I. INTRODUCTION

JL HE solution of many theoretical and practical prob-
lems in optics, radio engineering, communication
theory, detection theory, and many branches of science
and technology is based on the use of Fourier-analysis
methods. Among the various applications of these
methods, we can single out a large group of problems
connected with the need of analyzing two-dimensional
functions.

In optics, two-dimensional Fourier transforms are
used to explain theoretically processes of image forma-
tion, image transmission, and methods of acting on
images11"31. The transformation formulas make it pos-
sible, for example, to represent in mathematical form
the diffraction phenomena with the aid of which image
theory is constructed, namely to establish the analytic
connection between the distribution of the amplitudes
of the optical oscillations on the pupils and the distri-
bution of the amplitudes in the image. The existence
of such a connection uncovers wide possibilities for
apodization—acting on an image by varying the ampli-
tude distribution on the pupil [ 4 ].

The study of the apodizing action of various dia-
phragms, filters with variable transmission, and other
devices that limit the pupil, reduces to the determina-
tion of the distribution of the amplitudes in the diffrac-
tion image. This problem, as well as the inverse
problem, namely the determination of the form of the
apodizing filter for a specified diffraction pattern, is
solved with the aid of the direct and inverse Fourier
transformations. Similar problems are solved in radio
engineering, when the form of the directivity pattern of
an antenna is determined for a specified distribution of
the currents in the antenna aperture, or the current
distribution is determined from a specified directivity
pattern [ 5 ].

Two-dimensional Fourier transforms are very use-
ful in the analysis of the formation of images of ex-
tended objects [ 3 ]. In this case one uses the transforma-
tion property, according to which the transform of a
function describing the distribution of the illumination
in the image is equal to the product of the transforms
of the functions characterizing the brightness of the
object and the scattering spots of the optical system.

Fourier analysis is used extensively in the design
of optimal optical detection systems [ 6 > 7 ]. In this case
it is necessary to know the space-frequency Fourier
spectra of the objects to be detected, and the energy
space-frequency spectra of the random field of bright-
ness distribution, against the background of which the
detection is carried out. Data on the space-frequency

spectra of images of symbols and figures are used to
develope image recognition systems. [ 8 ]

In television, spectral analysis of the images is
used to determine the frequency and statistical charac-
teristics of television signals [9~11].

Finally, new methods for estimating photographic
systems are based on the use of so-called "frequency-
contrast characteristics," which are also determined
with the aid of Fourier transforms [ 1 2 ].

This list can be continued, but it suffices to explain
the recent increased interest in the development of
apparatus methods for obtaining two-dimensional
Fourier transforms.

To obtain two-dimensional Fourier transforms in
any of the aforementioned problems, it is necessary to
be able to evaluate, by one method or another, two-
dimensional integrals of the form

/(/>,<?)= ^ / (X, Y)e-i<P*+er>dX dY, (1)
(S)

where f (X, Y) is a real function of the coordinates X
and Y, specified on the area S. In the case when X
and Y are spatial coordinates, the function f(P, Q) is
called the two-dimensional space-frequency spectrum
of the Fourier function f (X, Y), and P and Q are the
spatial wave numbers corresponding to the axes X and
Y. The function f(P, Q) is complex, since it contains
information on the phase shifts of the individual har-
monic components relative to a point inside S, chosen
to be the origin. Expanding in (1) the exponential factor
in accordance with Euler's formula, we can represent
f(P, Q) in the form of an exponential function:

)) I «>•»№.«, (2)

(3)

(4)

where the modulus of the spectrum is

\f (P, Q)\ = VJlos(

the argument (phase) of the spectrum is

(5)

(6)

•Deceased.

a n d i n t u r n t h e c o s i n e c o m p o n e n t of t h e F o u r i e r e x -

p a n s i o n i s

^cos (P, Q)=\\f (X, Y) cos (PX + QY) dX dY

a n d t h e s i n e c o m p o n e n t i s

•fan (P>Q)=Hf (X, Y) sin (PX + QY) dX dY.

In s o m e p r o b l e m s it i s n e c e s s a r y t o c a l c u l a t e t h e

s q u a r e of t h e F o u r i e r s p e c t r u m

[/ {P, <?)]' = / (?. Q) f* (P> <?) = !/ (P, Q) I2; ( 7 )

H e r e f*(P, Q) d e n o t e s t h e funct ion c o n j u g a t e t o f ( P , Q ) .

In t h i s c a s e t h e i n f o r m a t i o n c o n c e r n i n g t h e p h a s e i s

l o s t .
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The two-dimensional spectrum f(P, Q) can be de-
termined analytically from the specified function
f(X, Y) by simple means only if the latter can be ap-
proximated by a product of sufficiently simple functions
that depend on a single coordinate; for functions of
arbitrarily complex form, and all the more when
f(X, Y) represents a random field, the calculation of
the spectrum f (P, Q), even with the aid of electronic
computers, entails great difficulties or becomes im-
possible. At the same time, this problem can be solved
relatively simply with the aid of optical-electronic
devices that analyze the photographic images of two-
dimensional functions. Optical systems, by their very
nature, have two degrees of freedom (this is their
main advantage over electronic systems, which have
only one degree of freedom), and therefore make it
possible to integrate simultaneously with respect to
two variables, i.e., with respect to an area.

An example of an optical system that realizes a
two-dimensional Fourier transform is the setup for
the observation of Fraunhofer diffraction'3'13', consist-
ing of a coherent-light source, a collimator, and an
objective. By placing the analyzed image between the
collimator and the objective, it is possible to observe
in the focal plane of the objective a diffraction pattern
in which the illumination distribution is proportional
to the square of the modulus of the Fourier spectrum
of the investigated image. The main methodological
shortcoming of this method lies in the impossibility of
measuring the phases of the spectrum. It is also in-
convenient in practice, since it requires very long ex-
posures for the photography of the diffraction pattern1141,
or else highly sensitive recording photoelectric de-
vices, or finally the use of powerful light sources-
lasers. Registration of two-dimensional Fourier spec-
tra is possible also by holographic methods'15'161, the
hologram of the spectrum containing information on the
moduli and phases of the harmonic components, but
methods of separately extracting this information from
the holograms are unknown as yet.

Other methods are based on a direct physical reali-
zation of integration by means of formula (1). The gist
of these methods reduces to producing, by some optical
device, a periodic distribution of illumination on the
analyzed photographic image, and then gathering the
light flux passing through the image, which is propor-
tional to the product of the distribution of the illumina-
tion by the distribution of the transmission coefficient
over the image, with the aid of a lens on a photographic
receiver (integration). Obviously, in this case a source
of incoherent radiation is used.

The first samples of photoelectric spectrum ana-
lyzers'17 '191 were intended for the analysis of one-
dimensional functions, but even in these instruments
the investigated one-dimensional function f (x) was in
fact represented by a "two-dimensional" method:

a) either on a photographic plate (film) in such a
way that the transmission coefficient Tt at each point
along the x axis varied in proportion to the value of
the function in identical manner for all values of y,
i.e.,

Tt(z,y) = Tu(x) = c,f(x) for a<x<b, 0<y<c

b) or else in the form of a template of the analyzed
function, made of opaque material; in this case

1, 0<y</(z),

(Fig. lb).
The methods of producing a harmonic distribution

of the illumination varied. For example, in one of the
first spectrum analyzers[17] they used a long photo-
graphic film with a set of images of harmonic functions
of multiple frequency, prepared in accordance with the
method a). In another instrument'18' they used a
photographic film with an image of a harmonic function,
the frequency of which varied smoothly along the film.
The coefficient of transmission of the photographic
film, with allowance for the dc component, is described
by the expression

r
h <x, y) = c2 cos (px + 8) + c3.

The light flux gathered by the receiver is propor-
tional to the two-dimensional integral of the product
Tt(x, y)Th(x, y)

c b b
Fe (P) = C4 ^ § Tt (x, y) Th(x, y) dx dy = c^Ci ^ / (x) cos (px + 8) dx + cb.

0 o a
By measuring Fg(p) at values 9=0, n/2, v, 37r/2,

it is possible to exclude the constants and to obtain the
sine and cosine components of the Fourier transform
of the function f(x). Obviously, the same result is ob-
tained if the image of the function f (x) is prepared by
the method b). In this case

Tt(x,y)Th(x,y)dxdy

Th(x,

A technically better method of producing the harmonic
distribution of the illumination is described in'19'201,
where they used an optical system consisting of a glass
disc with a harmonic raster, a narrow slit, and a sys-
tem of spherical and cylindrical lenses. The variation
of the period of the distribution of the illumination of
the sample was effected by rotating the disc, and the
position of the disc relative to the rotation axis was
determined by the value of 9. in^21'221 are described
methods of producing harmonic illumination with the
aid of periodic rasters superimposed on each other at
a certain angle.

As already noted, recently, mainly in connection
with the development of methods of statistical analysis

b x
y

b x

(Fig. la); FIG. 1
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of random fields, a need arose for apparatus realizing
the Fourier analysis of two-dimensional functions.

A two-dimensional function can also be specified in
the form of a photographic image made by method a),
but in this case the transmission coefficient T(x,y) is
a function of two coordinates:

T(x,y) = cf(x,y),

and its spectrum is accordingly a function of two co-
ordinates (p and q). In "two-dimensional" spectrum
analyzers, as in "one-dimensional" ones, a periodic
distribution of the illumination is produced on the
analyzed sample; different values of the wave numbers
p and q are obtained by varying the wavelength of this
distribution and by rotating the sample relative to the
direction of its spatial orientation. In essence, the
principal difference between "two-dimensional" and
"one-dimensional" spectrum analyzers lies in the fact
that provision is made in the former for rotating the
samples. The two-dimensional spectrum analyzers de-
scribed in the literature, as before, differ in the
methods used to produce a periodic distribution of il-
lumination. Thus, besides schemes with harmonic
raster illuminators^23^, recently instruments were de-
veloped with more perfect although also more compli-
cated illuminators. For example, in some of them, the
illuminator is a Michelson interferometer [24~26]. The
constancy of the contrast in the picture of the distribu-
tion of the interference fringes when the frequency of
the fringes is changed, and the possibility of covering
a large frequency band without additional readjustment
of the equipment are the main advantages of these
devices. These are obtained, however, at a high cost:
it is necessary to employ in the instrument quasi-
monochromatic light sources, thus inevitably leading
to small light fluxes at the output of the interferometer,
and as a consequence, to the need of using highly sensi-
tive recording elements; such instruments are quite
sensitive to temperature and mechanical vibrations, and
are difficult to adjust and to set up.

m[27,28] a r e descr ied instruments with a polariza-
tion illuminator. It consists of a source of quasimono-
chromatic light, two Wollaston prisms placed between
the analyzer and the polarizer, and two half-wave
plates. The prisms are mounted in mounts that are
rotated in opposite directions. The periodic picture of
dark and light fringes is produced as a result of inter-
ference of the components of the ordinary and extra-
ordinary rays, which are separated by a second
polarizer (analyzer); the spatial frequency of the
fringes changes when the angle of the relative rotation
of the optical axis of the Wollaston prisms is changed.
As in the preceding case, the light fluxes at the output
of the polarization illuminator cannot be very large,
and in addition, it is impossible to produce an inter-
ference picture of large dimensions with the aid of
Wollaston prisms. Such illuminators are most con-
venient for the analysis of small-structure distribu-
tions, for example for the investigation of the spectrum
of the graininess of photographic emulsions.

In[23] is described a setup in which the space-fre-
quency spectrum is measured by scanning the image
with a long narrow slit, and by subsequently analyzing
the signal from the output of a photocell with an elec-

tronic analyzer. The optical-mechanical parts of such
a setup differ little from those of a raster setup, but a
more complicated electronic device is necessary to
separate the signal.

The foregoing cited articles essentially exhaust the
bibliography on two-dimensional spectrum analyzers.
In spite of the fact that various spectrum analyzer
schemes have been published, the actual apparatus in
use, as can be judged from this material, consists ap-
parently of all the isolated samples of instrument
models, the constructions of which and the results of
measurements performed with them, are little known.
In addition, as a rule the articles are devoted to de-
scriptions of instruments intended to solve some one
particular problem of interest to the authors; they
therefore do not give an idea of the wide possibilities of
using two-dimensional spectrum analyzers in a great
variety of physical and technical investigations.

The indicated circumstances have stimulated us to
present in the present review a detailed description of
a two-dimensional spectrum analyzer with a raster il-
luminator, developed by us, and measurement results
illustrating the possible applications of such instru-
ments. Using the rastrum spectrum analyzers as an
example, we can demonstrate most simply and clearly
the fundamental principles of optical-electronic methods
of realizing two-dimensional Fourier transforms.
This is done without cluttering up the exposition by de-
tails of the illuminator schemes, which are based at
times on rather subtle optical phenomena.

II. OPERATING PRINCIPLE OF A RASTER OPTICAL-
ELECTRONIC SPECTRUM ANALYZER

As already noted optical-electronic spectrum ana-
lyzers process photographic images of two-dimensional
functions of brightness distribution, current distribu-
tion, etc. However, this does not limit their capabili-
ties, for under certain conditions it is possible to
change over from the image spectra obtained with the
aid of the spectrum analyzers to the spectra of the
functions themselves. To this end it is necessary first
that the linear dimensions in coordinates X and Y
differ only in scale (y) from the dimensions on the
image in coordinates x and y respectively, i.e., the
following conditions must be satisfied

Further, the connection between the values of the func-
tions f (X, Y) at the point (X, Y) and f(x, y) at the
corresponding point (x, y) should be linear, i.e., if
f (x, y) is a photograph on a plate, then the transmission
coefficient T(x, y) of the photograph and the function
f (X, Y) must be connected by the relation

and p should be small. We shall henceforth put p = 0.
Under these conditions, the spectrum of the initial
function

(9)
where f(p, q) is the two-dimensional space-frequency
spectrum of the image, and p and q are the spatial
wave numbers corresponding to the axes x, y, with
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and a is a constant.
Without discussing in the present review methods of

linear registration of the function f (X, Y) on photo-
graphic plates, we proceed to consider the operating
principle of a raster spectrum analyzer.

The simplest construction is that of the spectrum
analyzer intended for the measurement of the modulus
(or the square of the modulus) of the space-frequency
Fourier spectrum of images of definite functions,
which interest attaches to the spectrum of the function
as a whole, and of its mean value and its variable part.
This case includes, in particular, diffraction problems
in optics and radio, problems of apodization with the
aid of filters that introduce no phase shifts, etc.

Let us consider the action of the optical spectrum-
analyzer scheme shown in Fig. 2.* Light from the
source 1, with the aid of an illuminator consisting of
condenser 2 and a narrow long split 3, passes through
a raster 4 having a periodic transparency distribution,
and falls, in the form of a system of alternating light
and dark fringes, on the analyzed object 5. The object
is mounted on a frame rotating around the optical axis.
The light flux passing through the object is gathered by
a condenser 6 on a photocell 7. The condenser is
placed in such a position, that the image of the slit of
the illuminator is projected on the cathode of the photo-
cell: in this case, the image will not shift over the
photocathode regardless of the position of the sample
or of the raster. To decrease the influence of aberra-
tions of the condenser and of the inhomogeneity of the
distribution of the sensitivity over the photocathode on
the measurement result, sometimes an intermediate
diaphragm and an additional condenser are used, as
shown in Fig. 2.

Let us find an expression for the flux directed by
the condenser on the photocell. To this end we intro-
duce in the object plane two systems of coordinates, a
fixed one £,Oi\, connected with the fixed base of the
instrument, and a moving one xOy, which is connected
with the frame in which the object is mounted. The
moving system of coordinates can rotate (together with
the frame) relative to the stationary system around a
common center which coincides with the optical axis
(Fig. 3).

The raster made in the form of a periodic grating
consisting of a system of transparent and opaque
strips that lie parallel to the illuminator slit, can be
moved along the optical axis between the slit and the

5 e

FIG. 2

FIG. 3

frame. Depending on the pitch of the raster A (Fig. 2)
and its position, which is determined by the distance
from the slit to the raster I and to the object L, a
system of dark and light fringes of definite width is
produced on the object. The law governing the distri-
bution of the illumination in this periodic system of
fringes is a complicated function, the form of which
depends not only on the indicated geometrical factors
but also on the influence of the half-shadows (owing to
the finite width of the slits), the diffraction of light by
the element of the raster, errors in preparing the
raster, etc. We represent this function by a Fourier
series in the stationary coordinate system, recogniz-
ing that the raster lines are parallel to the y axis:

£(£. •n) = Eo + Ei cos (kl)+...+E, cos (ikl) r . . . (10)

H e r e k = 277/x i s t he s p a t i a l wave n u m b e r , E o i s t he
a v e r a g e va lue of t h e i l l u m i n a t i o n , a n d E i i s t he a m p l i -
t ude of t h e i - t h h a r m o n i c .

We now i n t r o d u c e t h e m o t i o n of t h e r a s t e r in a
d i r e c t i o n p e r p e n d i c u l a r to t h e o p t i c a l a x i s (and to t he
s t r i p s of t h e r a s t e r ) wi th a c o n s t a n t v e l o c i t y v r . We
t h e n ob t a in for t h e i l l u m i n a t i o n d i s t r i b u t i o n m o v i n g
o v e r t h e ob jec t t he e x p r e s s i o n

£(£, T), t) = E0 + Eico8{kt + wt) + E2cos2(kl + <i>t)+..., (11)

w h e r e w i s t h e c y c l i c t e m p o r a l f r e q u e n c y .
To ob t a in t w o - d i m e n s i o n a l s p a c e - f r e q u e n c y s p e c t r a ,

p r o v i s i o n i s m a d e for r o t a t i n g t he ob jec t (with t h e a id
of t he r o t a t i n g f r a m e ) r e l a t i v e to t he d i r e c t i o n of t h e
i l l u m i n a t i n g f r i n g e s . T h e m o v i n g s y s t e m of c o o r d i n a t e s
r o t a t e s t o g e t h e r wi th t h e o b j e c t . T h e c o o r d i n a t e s x a n d
y of t h e m o v i n g s y s t e m a n d | of t he s t a t i o n a r y s y s t e m
a r e c o n n e c t e d by the t r a n s f o r m a t i o n

£ = x cos i|) + y sin ifp,

w h e r e ip i s t he ang le of r o t a t i o n of t h e m o v i n g a x i s
r e l a t i v e to t h e s t a t i o n a r y one ( s ee F i g . 3 ) .

T h e d i s t r i b u t i o n of t h e i l l u m i n a t i o n in t h e m o v i n g
a x i s i s

E(x, y, t) = (12)

w h e r e

*This scheme was developed by N. S. Shestov in 1961 and indepen-
dently by Uberoi f23] in the U.S.A., who published a similar scheme in
1962.

f = p, k sin t f=? .

Subs t i t u t i ng t h e va lue of k a n d i n t r o d u c i n g t h e no t a t i on

we ob t a in

5p = - ! ^ a n d 9 = - ^ .
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It follows from Fig. 3 that xx and xy are the projec-
tions of the wavelength x of the illumination distribu-
tion on the axes x and y, and consequently p and q
have the meaning of spatial wave numbers correspond-
ing to the axes x and y.

The (integrated) light flux gathered by the condenser
is proportional to the product of the distribution of the
illumination E(x, y, t) by the distribution of the trans-
mission coefficient T(x, y) over the object:

9, t)= x, y, t)T(x, y)dxdy

= E0^T(x, y)dxdy + E, §§ T (x, y) cos (px+ qy +at) dxdy+ ...,
(S) (S) (13)

where S is the area of the analyzed sample. The first
term of the series is the mean value of the flux. In the
integrand of the second term, we expand the cosine of
the sum into components, and obtain

r p p^i (P» ?» t) = Ei\ coscdt \\ T {x, y) cos (px -j- qy) dx dy
(S)
-sincoi \\T(x, y) sin (px + qy) dx dy~j . (14)

(S)

Taking into account the notation used in (2)—(6), ex-
pression (14) takes the form

•MP. 9> t) = E,[JmB(p, q) cos at —JBla(p, g)sinco(]

= £,|/(p, q) | cos [to* -cp(p, q)\. (15)

Here |f(p, q) | is the sought modulus of the space-time
Fourier spectrum, and <p(p, q) is the phase of the
spectrum.

The signal at the output of the photocell with sensi-
tivity e is

U = eF(p, q, t).

It contains the dc component and the ac components
with frequencies u,2u, 3u... We note that the ampli-
tude of the second harmonic of the signal is propor-
tional to the modulus of the Fourier spectrum for the
second spatial harmonic of the illumination distribution,
the amplitude of the third harmonic of the signal is
proportional to the modulus of the spectrum for the
third spatial harmonic, etc. If a narrow-band amplifier
tuned to a frequency f = w/27T, with a gain K, is
placed behind the photocell, then the signal at the out-
put of such an amplifier will be

q , 0 = , 9 ) | c o s ( e o « - q > ) , ( 1 6 )

s i n c e t h e d c c o m p o n e n t a n d a l l t h e h a r m o n i c s e x c e p t

t h e f i r s t w i l l n o t b e p a s s e d b y t h e f i l t e r .

T h u s , w h e n t h e r a s t e r m o v e s , t h e s i g n a l a t t h e o u t -

p u t o f t h e t u n e d a m p l i f i e r v a r i e s h a r m o n i c a l l y , a n d t h e

a m p l i t u d e o f t h e o s c i l l a t i o n s i s p r o p o r t i o n a l t o t h e

m o d u l u s o f t h e F o u r i e r s p e c t r u m o f t h e i n v e s t i g a t e d

o b j e c t , w h i c h i s s e c u r e d i n t h e f r a m e .

I t i s e a s y t o d e m o n s t r a t e a v e r y i m p o r t a n t p r o p e r t y

o f t h e r a s t e r s y s t e m , n a m e l y t h a t t h e f r e q u e n c y o f t h e

f i r s t h a r m o n i c o f t h e s i g n a l a t t h e o u t p u t o f t h e r e -

c e i v e r d o e s n o t d e p e n d o n t h e p o s i t i o n o f t h e r a s t e r .

I f x i s t h e w a v e l e n g t h o f t h e d i s t r i b u t i o n o f t h e i l l u m i -

n a t i o n i n t h e p l a n e o f t h e o b j e c t , a n d T i s t h e p e r i o d

o f t h e o s c i l l a t i o n o f t h e i l l u m i n a t i o n a t t h e g i v e n p o i n t s

o f t h e i m a g e i n t i m e , t h e n b y r e g a r d i n g t h e r a t e o f

d i s p l a c e m e n t v o f t h e i l l u m i n a t i o n p i c t u r e o v e r t h e

sample as the rate of displacement of a constant-phase
line, we obtain

i i ">•

T '

F r o m F i g . 2 w e g e t

. = A - j - a n d v = v , - y - ,

h e n c e

2 J I „ I " i I

I f t h e v e l o c i t y v r o f t h e r a s t e r i s c o n s t a n t , w e h a v e

w = c o n s t . B e c a u s e o f t h i s p r o p e r t y o f t h e r a s t e r

s c h e m e , w e c a n u s e t h e a d v a n t a g e s o f n a r r o w - b a n d

a m p l i f i c a t i o n o f t h e a l t e r n a t i n g c u r r e n t . W h a t i s

p a r t i c u l a r l y i m p o r t a n t , i t i s p o s s i b l e t o u s e r a s t e r s

w i t h a n y p e r i o d i c ( n o t n e c e s s a r i l y h a r m o n i c ) t r a n s -

p a r e n c y d i s t r i b u t i o n .

I n t h e g e n e r a l c a s e t h e t w o - d i m e n s i o n a l s p e c t r u m

i s t h e s u r f a c e o f c o m p l i c a t e d f o r m . A n i d e a o f t h e

f o r m o f t h i s s u r f a c e , d e p e n d i n g o n t h e c o m p l e x i t y , c a n

b e o b t a i n e d u s i n g a l a r g e r o r s m a l l e r n u m b e r o f v a l u e s

o f t h e s p e c t r u m a t d i s c r e t e p o i n t s ( d i s c r e t e v a l u e s o f

p a n d q ) o r f r o m a s e t o f r a d i a l ( t h e a n g l e o f r o t a t i o n

i> i s f i x e d , a n d t h e r a s t e r m o v e s a l o n g t h e o p t i c a l a x i s ) ,

o r c i r c u l a r ( t h e p o s i t i o n o f t h e r a s t e r i s f i x e d a n d t h e

o b j e c t i s r o t a t e d a b o u t t h e o p t i c a l a x i s ) s e c t i o n s o f t h e

s p e c t r u m ( F i g . 4 ) . W e n o t e t h a t i t s u f f i c e s t o r o t a t e t h e

o b j e c t i n t h e i n t e r v a l f r o m z e r o t o 1 8 0 ° , s i n c e t h e t w o -

d i m e n s i o n a l F o u r i e r s p e c t r u m i s s y m m e t r i c a l w i t h

r e s p e c t t o t h e o r i g i n :

l ( p , ? ) = / * ( - p . - 9 ) a n d / ( p , - ? ) = / * ( - ? , 9 ) ,

f r o m w h i c h

1 / < P , q ) \ = \ f ( - P , - 9 ) 1 \ f ( P , ~ q ) \ = \ f ( - P , 9 ) 1

a n d

< P ( P > 9 ) = — < p ( — p . — 9 ) . < p ( / > . — 9 ) = — < p ( — P . ? ) •

T o c a r r y o u t a b s o l u t e m e a s u r e m e n t s , t h e i n s t r u m e n t i s

c a l i b r a t e d b e f o r e h a n d a g a i n s t o b j e c t s w i t h k n o w n

s p e c t r a .

T h e m a i n f a c t o r l i m i t i n g t h e t e c h n i c a l c a p a b i l i t i e s

o f t h e r a s t e r s p e c t r u m a n a l y z e r i s t h e v a r i a t i o n o f t h e

c o n t r a s t i n t h e i l l u m i n a t i o n d i s t r i b u t i o n , d u e t o t h e

d i f f r a c t i o n o f t h e l i g h t b y t h e e l e m e n t s o f t h e r a s t e r ,

a n d c o n s e q u e n t l y t o t h e v a r i a t i o n o f t h e a m p l i t u d e o f

t h e f i r s t h a r m o n i c o f t h e s i g n a l , a s a f u n c t i o n o f t h e

p o s i t i o n o f t h e r a s t e r o n t h e o p t i c a l a x i s . T h e i n f l u e n c e

o f d i f f r a c t i o n c a n b e e s t i m a t e d b y u s i n g t h e e x p r e s -

s i o n s f o r t h e r a t i o o f t h e h a l f - w i d t h o f t h e c e n t r a l d i f -

F I G . 4
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fraction maximum rd of a transparent strip to the
wavelength x;

£ —1)1
I

By specifying the permissible relative braodening
( r d A ) and the pitch A of the raster, we determine the
maximum dimension L, and consequently the region of
the spatial frequencies that can be covered by a given
instrument. Obviously, to decrease the influence of
diffraction it is best to use a light source with an in-
tense shortwave radiation xi and rasters with a large
pitch. In measurements of very high precision it is
possible, by analyzing an object with a known spectrum,
to determine for all values of I the correction coeffi-
cients and to take them into account in the reduction of
the recorded spectra. It should be noted that interfer-
ence methods of producing a periodic illumination
distribution are free of this limitation.

III. DESCRIPTION OF SPECTRUM ANALYZER.
INVESTIGATION OF THE SPACE-FREQUENCY
SPECTRA OF DEFINITE FUNCTIONS

The described operating principle is the basis for
the raster spectrum analyzer constructed by us. An
overall view of the instruments is shown in Fig. 5. The
construction of the instrument made it possible to
analyze images obtained on photographic plates and
films measuring 60 x 60 mm. The objects were
mounted in a frame, which could be rotated about the
optical axis in a range of 118°. A glass raster with a
rectangular grid of lines with a period A = 0.4 mm
was moved smoothly along the optical axis between the
slits of the illuminator (width of slit 0.05 mm) and the
frame in a range from 10 to 180 mm, corresponding to
the range of variation of the spatial wavelength x from
0.6 to 11.2 mm or wave numbers k from 10.8 to
0.56 rad/mm.

The motion of the raster in a direction perpendicu-
lar to the optical axis was with the aid of a cam with a
profile in the form of a bilateral Archimedes spiral.
Such a cam ensures a constant velocity of motion of the
raster with small loss of time for reversing the direc-
tion of motion. The raster velocity v r was ~100
mm/sec.

The spectra were registered on paper charts of an
automatic recorder specially built into the instrument.
Rotation of the automatic recorded drum could be per-
formed, at will, either in synchronism with the rota-

tion of the frame (circular sections) or with the dis-
placement of the raster along the optical axis (radial
sections). In the former case the spectrum was regis-
tered as a function of the rotation angle ip with a scale
0.85 mm/deg, and in the latter case the spectrum was
a function of the wave number k (rad/mm). The scale
of the recording was 31.9 mm/(rad/mm).

The use of linear and quadratic detectors, and also
of a logarithmic amplifier, made it possible to register
the moduli of the spectra in linear, quadratic, and
logarithmic scales. The relative error of the measure-
ments in this model was 1—2%.

To illustrate the operation of the spectrum analyzer
let us consider plots of spectra of very simple definite
functions, representing diaphragms (pupils) of various
shapes with constant value of transmission T(x, y)
within the limits of the diaphragm aperture.

Returning to formula (14), we get an expression for
the spectrum of such definite functions, bearing in
mind the constancy of T(T(x, y) = T = const):

Fi (p, q, t) = EtT cos B i \ \ COS (px + qy) dx dyL t) J(S)
— sin u>t • ? ? sin (px + qy) dx dy\ = Et \ f (p, q) \ cos (<oi — <p),

(S)
i.e., the form of the spectrum |f(p, q) | will be deter-
mined in this case only by the form of the contour
bounding the area S over which the integration is
carried out. If S is symmetrical with respect to the
axes x and y, then, recognizing that integrals of odd
functions between symmetrical limits vanish, we get

(S)

The solution of this equation, for example in the
case when the contour is a circle of diameter D1(
yields

= s r ^ i i i 2 , a s )

where S is the area of the circle, Ji(zx) is a Bessel
function of the first kind,

and k is the spatial wave number. It is known at the
same time that the illumination E(ip) produced in the
focal plane of the objective by a beam of rays dif-
fracted at an angle ip, on a circular aperture of diame-
ter D2, is given by the expression

(18')

FIG. 5

where Eo is the illumination at the center of the dif-
fraction pattern

— k D2 • ^ 2 n -°2 r

Xi i s t h e w a v e l e n g t h o f t h e l i g h t , r i s t h e d i s t a n c e f r o m

t h e c e n t r a l m a x i m u m , a n d F i s t h e f o c a l d i s t a n c e o f

t h e o b j e c t i v e . F r o m a c o m p a r i s o n o f ( 1 8 ' ) w i t h ( 1 8 ) w e

s e e t h a t | f ( k ) | 2 d e s c r i b e s , a c c u r a t e t o a c o n s t a n t f a c -

t o r , t h e d i s t r i b u t i o n o f t h e i l l u m i n a t i o n i n t h e d i f f r a c -

t i o n p a t t e r n o b s e r v e d f r o m a n a p e r t u r e o f r o u n d f o r m .
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Equating zy and z2, we can find the scale factor y.

whence

Dt F " (19)

It can be shown[4] that a similar relation exists be-
tween the arguments of functions describing the spectra
and the form of the diffraction pattern also for pupils
of all other shapes. Thus, plots of spectra of pupil
images make it possible to determine uniquely the
form of the diffraction pattern from such pupils.

Figure 6 shows plots of the radial sections of the
spectra of one and two rectangular pupils (slits) of
different dimensions. The plots are logarithmic. The
logarithm of the modulus of the spectrum of two slits
of equal width 2r0, located at a distance 2d, is con-
veniently represented in the form

4f)|- (20)

The constant c depends here on the dimension of
the slits and on the gain of the amplifier. For conven-
ience in comparison, spectra on the same plots were
recorded at equal values of c.

In expression (19), the term log(l/| k |) does not
depend on the dimension and on the number of the slits,
and always serves as the envelope of the spectra. In
the plots, the envelope (dashed line) is constructed
from the calculated data.

Adding to the envelope the next term, we obtain the
form of the spectrum of one slit (curves 1), and then,
taking the last term into account, we obtain the spec-
trum of two slits (curves 2). The second diagram from

. ... v_. r

the top shows in addition the noise of the apparatus
with the gain increased by a factor of 10.

Similar spectra of one round aperture (curve 1) and
two such apertures (curve 2) are shown in Fig. 7. In
this case the plot of the envelope is given by
log( l / /TkT) .

In the first variant of the spectrum analyzer, the
structural features determined the minimum value of
k =0.56 rad/mm (x = 11.2 mm) at a raster pitch
A = 0.4 mm, as a result of which, at large diaphragm
dimensions, a part of the spectrum near the central
maximum may not be registered, but on the other hand,
the high orders of the spectrum will be well represented
(see, for example, Fig. 6a). By analyzing diaphragms
of the same shape but of smaller width, it is possible
to record in greater detail the region of the spectrum
near the central maximum (Fig. 6b, curve 1); in prin-
ciple, the origin of the plot can be conveniently close
to the center of the diffraction pattern.

Figure 8 illustrates the form of circular sections
(for two values of k) of the spectra of a radial target
pattern consisting of 36 pairs of transparent and
opaque sectors.

Figure 9 shows a section of a two-dimensional spec-
trum of a diaphragm consisting of regularly arranged
circular apertures. For the sake of clarity, the plots
were recorded with shifted zero levels. Naturally, the
form of the apertures and their location are of no im-
portance at all for the analysis process.

The presented illustrative material apparently
demonstrates quite convincingly the great possibilities
of optical-electronic spectrum analyzers with respect
to the study of diffraction phenomena. With the aid of
these instruments it is possible to investigate just as
easily diffraction pictures from either one aperture of
any arbitrary shape and arbitrary dimension, or from
an aggregate of apertures of different shapes and
dimensions, arbitrarily oriented on a plane.

The spectrum analyzer is very convenient for the
investigation and choice of apodizing diaphragms. In[29]

is calculated the shape of a diaphragm intended to in-
crease the resolving power of objectives by redistribut-

• ig\f(")\

F I G . 6 F I G . 8
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ing the energy in the diffraction orders, at which the
first lateral maximum should vanish. We have pre-
pared such a diaphragm and plotted its spectrum (Fig.
10, curve 1). For comparison, the same figure shows
the spectrum of the diaphragm in the form of a square
of equal area (curve 2). The curves agree well with
those calculated in [ 2 9 ] ; the presence of a weak maxi-
mum in a first order is due to the insufficiently accu-
rate construction of the diaphragm.

Taking the inverse Fourier transform, i.e., finding
the form of the function from the specified spectrum
(representing a curve determining the desirable form
of the spectrum), it is possible to determine the form
of the corresponding apodizing diaphragm. In order to
illustrate the possibility of using the instrument to
solve similar problems, we have obtained the direct
and inverse Fourier transforms of a very simple func-
tion in the form of a triangle.

To this end, we first recorded the spectrum of a
diaphragm in the form of an isosceles triangle (direct
transform). We recall that the spectrum of the triangle
is described by the function

We prepared a diaphragm (Fig. 11) corresponding to
this plot, with a contour consisting of a central lobe and
two side lobes of the spectrum of the triangle. We then
plotted the spectrum of this diaphragm, i.e., the in-
verse transform, yielding the initial function. The ob-
tained spectrum is shown by the solid line in Fig. 11.
The curve corresponds sufficiently well to one branch
of the triangle; the smooth transitions to the zero line
and to the axis of the triangle are due to the fact that
in the construction of the diaphragm no account was
taken of the higher-order maxima in the spectrum.

The dashed line of Fig. 11 shows the form of the
function whose spectrum has only one central maximum
without secondary diffraction maxima. This function is
a result of the transformation of the same diaphragm,

o

Sn
J v y w ;? ? ^ >
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b u t w i t h t h e s i d e l o b e s c o v e r e d . I t s h o u l d b e n o t e d t h a t

t h e c u r v e s o f F i g . 1 1 w e r e o b t a i n e d a f t e r i n t r o d u c i n g

c e r t a i n i m p r o v e m e n t s i n t h e i n s t r u m e n t , w h i c h m a d e i t

p o s s i b l e t o s t a r t t h e p l o t t i n g w i t h k = 0 . 1 4 .

It i s p e r f e c t l y o b v i o u s t h a t t h e s p e c t r u m a n a l y z e r

c a n b e u s e d f o r t h e i n v e s t i g a t i o n o f m o r e c o m p l i c a t e d

c a s e s o f a p o d i z a t i o n , i n w h i c h n o t o n l y t h e f o r m o f t h e

d i a p h r a g m i s c h o s e n , b u t a l s o t h e t r a n s m i s s i o n c o e f -

f i c i e n t o v e r t h e a p e r t u r e o f e a c h f r a m e i s v a r i e d , i . e . ,

a m p l i t u d e f i l t e r s a r e u s e d , o r e l s e b o t h s i m u l t a n e o u s l y .

T h e p o s s i b i l i t y o f o b t a i n i n g t h e i n v e r s e F o u r i e r

t r a n s f o r m s o f f u n c t i o n s o f a r b i t r a r y s p e c i f i e d f o r m i s

h i g h l y p r o m i s i n g f o r t h e c h o i c e o f a p o d i z i n g f i l t e r s .

H o w e v e r , t h e s i m p l e s t s p e c t r u m a n a l y z e r m a k e s i t

p o s s i b l e t o s o l v e t h i s p r o b l e m o n l y f o r t h e c a s e w h e n

t h e a n a l y z e d f u n c t i o n s h a v e n o n e g a t i v e v a l u e s . T h i s

d i f f i c u l t y c a n b e c i r c u m v e n t e d i n p r i n c i p l e b y i n t r o d u c -

i n g i n t o t h e i n s t r u m e n t a d e v i c e m a k i n g i t p o s s i b l e t o

s e p a r a t e t h e s p e c t r a o f t h e p o s i t i v e a n d n e g a t i v e p a r t s

o f t h e i n v e s t i g a t e d f u n c t i o n s , O n e s u c h m e t h o d i s t o

u s e " t w o - c o l o r " i m a g e s o f t h e f u n c t i o n . I n t h i s c a s e ,

t h e p a r t s o f t h e d i a p h r a g m c o r r e s p o n d i n g t o t h e p o s i -

t i v e a n d n e g a t i v e f u n c t i o n s s h o u l d t r a n s m i t b e a m s o f

l i g h t o f d i f f e r e n t s p e c t r a l c o m p o s i t i o n . T h e s e b e a m s

a r e s e p a r a t e d b e y o n d t h e c o n d e n s e r a n d a r e d i r e c t e d

t o t w o p h o t o r e c e i v e r s . T h e b e a m s c a n b e s e p a r a t e d

w i t h t h e a i d o f a s p l i t t i n g p l a t e o r a b i p r i s m w i t h t w o

a p p r o p r i a t e o p t i c a l f i l t e r s . T h e d i f f e r e n c e b e t w e e n t h e

s i g n a l s o f t h e p h o t o r e c e i v e r s p r o p o r t i o n a l t o t h e d i f -

f e r e n c e o f t h e s p e c t r a o f t h e p o s i t i v e a n d n e g a t i v e p a r t s

o f t h e i n v e s t i g a t e d f u n c t i o n i s r e g i s t e r e d b y t h e a u t o -

m a t i c p l o t t e r o f t h e i n s t r u m e n t .

F o r m a n y p r o b l e m s i t s u f f i c e s t o k n o w t h e m o d u l u s

o f t h e F o u r i e r s p e c t r u m , b u t c a s e s a r e p o s s i b l e , w h e n

i t i s n e c e s s a r y t o m e a s u r e a l s o t h e p h a s e s o f t h e s p e c -

t r u m . T h e m e t h o d m e a s u r i n g t h e p h a s e < ^ ( p , q ) f o l l o w s

f r o m f o r m u l a ( 1 6 ) : i t i s n e c e s s a r y t o f o r m i n t h e i n -

s t r u m e n t a s i g n a l w i t h p h a s e w t a n d d e t e r m i n e t h e

p h a s e d i f f e r e n c e o f t h e s i g n a l s

| (tut — cp) — co« | = <p.

T o t h i s e n d i t i s p o s s i b l e , f o r e x a m p l e , t o m o u n t a

n a r r o w s l i t o v e r t h e f r a m e w i n d o w i n t h e o b j e c t p l a n e ,

d i r e c t l y o v e r t h e o p t i c a l a x i s ; t h e l o n g s i d e o f t h e s l i t

s h o u l d b e p a r a l l e l t o t h e l i n e s o f t h e r a s t e r . T h e l i g h t

f l u x p a s s i n g t h r o u g h t h e r a s t e r a n d t h e s l i t i s g a t h e r e d

b y c o n d e n s e r o n a s e p a r a t e p h o t o r e c e i v e r . R e c o g n i z i n g

t h a t i n t h e s t a t i o n a r y c o o r d i n a t e t h e s l i t i s s y m m e t r i c a l

w i t h r e s p e c t t o t h e l i n e £ = 0 , w e o b t a i n a n e x p r e s s i o n

f o r t h e f l u x p a s s i n g t h r o u g h t h e s l i t :
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•Ps/(0, TI, t)Ssi=E0Ssi+EiSsicosa>t+ .... (21)

where Ssl is the area of the slit.
By placing behind the photoreceiver an amplifier

tuned to the frequency f = u/2w, we obtain at the am-
plifier output a signal with phase wt at any position of
the raster on the optical axis. The phase difference of
the signals from the outputs of the resonant amplifiers
of the channels with the object and with the slit can be
measured with the aid of an ordinary electronic phase
meter whose output signal is independent of the input-
signal amplitudes, but is proportional to the phase
difference of these signals. In formulas (16) and (21)
it is also necessary to take into account the initial
phases, which are determined by the position of the
image of the raster relative to the center of the object
and the central line of the slit at the instant of the start
of motion of the raster. However, if the slit is suffic-
iently narrow and is installed directly over the center
of the object, which coincides with the optical axis, the
initial phases will be equal and will cancel out upon
subtraction in the phase meter. It is possible to check
the equality of the phases by using the signal from the
slit and the signal from a control object in the form of
a similar slit, located at the center of the frame.

To obtain a reference signal with phase wt, it is
possible to use also a separate photoelectric channel
with its own light source and receiver. The optical
axis of this channel should be strictly parallel to the
optical axis of the channel with the object. The raster
for both channels should be common. The distance be-
tween the optical axis of the channels should be equal
to an integer number of raster periods—in this case
no initial phase difference of the signals is produced.
Examples of plots of the phase of the Fourier spectrum
simultaneously with the modulus of the spectrum are
shown in Figs. 12 and 13. Figure 12 shows the spec-
trum of a rectangular aperture 16 mm wide, located
almost symmetrically relative to the optical axis of
the measuring channel (the shift does not exceed 0.1
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m m ) . O n t h e u p p e r c u r v e i s s h o w n a s e c t i o n o f t h e

m o d u l u s o f t h e s p e c t r u m , h a v i n g t h e f o r m | s i n z / z | ,

a n d t h e l o w e r o n e s h o w s a s e c t i o n o f t h e p h a s e , w h i c h

f o r t h i s f u n c t i o n a s s u m e s a l t e r n a t e l y t h e v a l u e s 0 ° a n d

1 8 0 ° o n i n t e r v a l s l y i n g b e t w e e n t h e z e r o e s o f t h e m o d u -

l u s . F i g u r e 1 3 s h o w s t h e s p e c t r u m o f a r e c t a n g u l a r

a p e r t u r e 1 0 m m w i d e , s h i f t e d r e l a t i v e t o t h e o p t i c a l

a x i s b y 0 . 9 m m . I n t h i s c a s e , i n a c c o r d a n c e w i t h t h e

s h i f t t h e o r e m , t h e p h a s e o f t h e s p e c t r u m w i l l c o n t a i n

a t e r m t h a t i n c r e a s e s l i n e a r l y w i t h t h e f r e q u e n c y . T h e

p r o p o r t i o n a l i t y c o e f f i c i e n t i s e q u a l t o t h e v a l u e o f t h e

s h i f t , w h i c h i s w e l l c o n f i r m e d b y t h e p r e s e n t e d p l o t .

I V . I N V E S T I G A T I O N O F T H E S P A C E - F R E Q U E N C Y

E N E R G Y S P E C T R A O F I M A G E S O F R A N D O M

T W O - D I M E N S I O N A L F U N C T I O N S

S o f a r w e h a v e d i s c u s s e d t h e q u e s t i o n o f m e a s u r i n g

s p e c t r a o f d e f i n i t e t w o - d i m e n s i o n a l f u n c t i o n s . L e t u s

c o n s i d e r n o w t h e p o s s i b i l i t y o f u s i n g a s p e c t r u m a n a -

l y z e r t o i n v e s t i g a t e s p e c t r a o f i m a g e s o f r a n d o m t w o -

d i m e n s i o n a l f u n c t i o n s , d e s c r i b i n g , f o r e x a m p l e , t h e

d i s t r i b u t i o n o f t h e b r i g h t n e s s o v e r t h e s u r f a c e o f t h e

s u n , t h e e a r t h , a c l o u d l a y e r , o r a w a t e r s u r f a c e , t h e

d i s t r i b u t i o n o f t h e t r a n s m i s s i o n c o e f f i c i e n t o v e r t h e

p l a n e o f u n i f o r m l y e x p o s e d p h o t o g r a p h i c m a t e r i a l , o r

t h e c o e f f i c i e n t o f r e f l e c t i o n f r o m a m a t t e s u r f a c e , t h e

d i s t r i b u t i o n o f t h e t r a n s m i s s i o n c o e f f i c i e n t o f t h e t u r b u -

l e n t l a y e r o f l i q u i d o r g a s , e t c .

O n e o f t h e m o s t w i d e l y u s e d c h a r a c t e r i s t i c s o f

r a n d o m f u n c t i o n s i s t h e s p a c e - f r e q u e n c y e n e r g y s p e c -

t r u m o r p o w e r s p e c t r u m . U s u a l l y , i n t e c h n i c a l a p p l i c a -

t i o n s , i n t e r e s t a t t a c h e s t o t h e p o w e r s p e c t r u m o f t h e

f l u c t u a t i o n s o f r a n d o m p r o c e s s e s , i . e . , t o t h e e n e r g y

s p e c t r u m o f l o c a l r a n d o m o s c i l l a t i o n s o f t h e v a l u e s o f

t h e f u n c t i o n r e l a t i v e t o t h e a v e r a g e l e v e l , a v e r a g e d

o v e r t h e a r e a , n a m e l y t h e d c c o m p o n e n t o f t h e p r o c e s s .

L e t a s e c t i o n o f a r e a S o o f a r a n d o m f i e l d , w h i c h

w i l l b e a s s u m e d t o b e s t a t i o n a r y a n d e r g o d i c , b e d e -

s c r i b e d b y t h e f u n c t i o n
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(A', Y); (22) transmission function Tf(x,y), we get in lieu of

Here fSo is the dc component and fso(S, Y) is the
fluctuating component. Then the spectrum of the power
of the fluctuations of the random field is determined by
the relations

G(P, <?)=
S

s~o
(23)

In practice, one analyzes the realizations of sections of
the field having finite dimensions So. Averaging a
large number ( N » 1) of spectra from different sec-
tions of the field yields an estimate of the power spec-
trum of the entire field, in the form

,v
7vV2 l/soi(p. <?)|2- (24)

The transmission function of the analyzed photo-
graphs of the section of the random field will, in accord-
ance with (22), be of the form

T0(x, y) = T-.-T(x, y).

In this case we obtain in lieu of (14) the following
expression for the flux gathered by the condenser on
the photoreceiver:

FI (P. q, t) = cos {px
(So)

T (x, y) cos (px -r

qy + at) dx dy

at) dx dy.

If the frame has a symmetrical form, we have

Fi(p, q, I) = E tf cos at f ? cos (px -J- qy) dx dy
(So)

+ E, cos [at — tpso (p, g)] | fs0 (p, q) I = Ft f f „, (25)

where | fgo(p, q)l and c?S0(p, q) are the modulus and
argument (phase) of the spectrum of the transparency
fluctuations.

It follows from (23) and (24) that as a result of the
measurements it is necessary to obtain an undistorted
value of the quantity |f(so(P, q)|. The first term Ft in
(25) describes the spectrum of the dc components, and
its form, as we already know (see (17)) is determined
by the form of the frame. In this case it will distort
the measured fluctuation spectrum. To decrease this
distortion, it is possible to use apodizing filters either
in the form of diaphragms of different shapes, or
amplitude filters, which in this case are of great inter-
est, since their application does not lead to a decrease
of the investigated area of the realization. Let us con-
sider the action of an apodizing amplitude filter for the
case when the frame is a rectangle with area So

= 2xo2yo. Without the filter, Ft for a rectangle is given
bv

z7 c^c sin PXQ sin qyn /ofi\

At high frequencies, a function of the type sin z/z tends
to zero, and consequently the distortions due to Ft will
be small. At low frequencies, the distortions can be
quite large, particularly if account is taken of the fact
that the amplitudes of the individual harmonics of the
spectrum are always small compared with T.

By placing over the object a filter with a specified

y)cos (px+qy) dxdy. (27)

By choosing Tf (x, y) we can obtain upon integration
a function that decreases with increasing frequency
much more rapidly than (sin pxo/px0) (sin qyo/qyo).
It is obvious that Tf(x, y) should have a maximum at
the center at x = 0 and y = 0, and should drop off
monotonically towards the edges of the frame. Under
these conditions, the filter influences most strongly
the value of the dc components, and has less of an
effect on the "semantic" content of the image, charac-
terized by T(x, y).

Let us use a filter with a transmission function in the
simple form

Tf {X, Ij) ^ COS ̂ --COS-^-. (28)

For this filter we obtain

Ft ,t = ElTS0cosat- xo( — 1)COS qy0 (29)

Figure 14 shows the transmission functions of the
frame window with and without filters, and Fig. 15
shows their calculated spectra (in relative units) for
the particular case when q = 0, i.e., for spatial har-
monics whose wave crests are parallel to the y axis.
It is clearly seen that when the filter is used, the
relative magnitude of the side maxima compared with
the fundamental maxima decreases; for example, at
the frequency p' marked on Fig. 15, the amplitude of
the side maxima is decreased by a factor of 10 by a
filter of the type (28). The best results can be ob-
tained with filters having a nearly-bell-shaped trans-
mission function. For example, at the same frequency,
the magnitude of the side maxima for filters with

Tf(x,y) = cos^.cos'^- (30)

decreases by approximately 200 times (see Fig. 15).
Different types of apodizing filters are considered

in articles devoted to apodization[4)30].
It should be noted that the use of filters decreases

not only the magnitude of the side maxima compared
with the fundamental maximum, but also the absolute
value of the fundamental maximum. Thus, for the filter
(28), the amplitudes of all the harmonics of the spec-
trum decrease to a value 0.405, and for the filter (30)
they decrease to 0.18 of the value obtained when the
analysis is carried out without a filter. This makes it
necessary to use more powerful light sources in the
illuminators, and amplifiers with large gain.
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a oj uz

FIG. 15

Let us consider now the influence of the filter on
the measured spectrum of the fluctuations. When the
filter is used, we get in lieu of FM

q, t) = x, y)Tt{x, y)cos(px + qy + co«)dxdy, (31)
(So)

which yields, for example for the filter (28),

g, t) =

(So)

(So)

(So)

(So)

(So)

(So)

(So) (32)
We put

~T~ I'M cos ~r " 1 cos ~T~" 3 cos ̂ ""4 cos}:=;i'ci

-^-{/isln + ̂ 2sln + ̂ 3sln+Asln} = ̂ si

Then (31) can be represented in the form

. q)\cos[at — <pso(P, (33)

It follows from (32) and (33) that when the filter (28)
is used the value of the fluctuation spectrum of the
wave numbers (p, q) is the arithmetic mean of the
values of the spectrum for (p ± 7r/2x0, q ± ir/2y0), and
that the instrument registers at its output already the
result of the averaging. The action of filters with a
transmission function different from (28) is similar,
but the number and position of the wave numbers in
the vicinity of (p, q), for which the values of the spec-

tra are averaged, and the weight factor with which the
value of the spectrum at the given point enters in the
total result, will vary in accordance with the type of
Tf(x, y).

We note that the averaging effected by the instrument
is equivalent to the smoothing of the spectrum of a
given object or, in other words, to measurement of the
spectrum with a worse resolution.

The use of the filter thus leads to a certain deteri-
oration of the resolution of the analyzer, but this effect
produces even favorable results in the analysis of
random functions, for this increases the averaging of
the random oscillations in the spectrum of one image,
and consequently it is necessary to have a smaller
number of spectra of different images to obtain statis-
tical estimates. The resolving power of two-dimen-
sional spectrum analyzers is characterized by a figure
on the pOq plane. The dimensions and shape of the
figure are determined by the chosen resolution criter-
ion, by the dimensions and form of the frame, and in
the presence of an apodizing filter also by the law
governing the distribution of the transparency over the
filter. Any cross section of this figure, passing through
its symmetry center, is a linear resolution in a given
direction, determined in the same manner as for the
one-dimensional case. The question of a rigorous
definition of a resolution criterion for the two-dimen-
sional case is not perfectly clear at present.
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