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INTRODUCTION

I N solids, as in a gas plasma, the carrier energy dis-
tribution function deviates under the influence of a
strong electric field from the equilibrium distribution
function. "Heating" of the electron (or hole) takes
place. This phenomenon is the basis of a large number
of interesting physical effects. The most important of
them is the nonlinearity of the current-voltage charac-
teristic (CVC) of a solid in a strong field. The strong-
est manifestation of this effect is the appearance of a
decreasing section on the CVC, in which the differen-
tial conductivity a^ =dj/dE is negative. A character-
istic is defined as S-shaped if the current density is a
multiple-valued function of the field (Fig. 1), and as
N-shaped if the current is a single-valued but non-
monotonic function of the field (Fig. 2).

The decreasing branch of the CVC results in this
case from definite singularities of either the energy
spectrum of the carriers (electrons and/or holes), or
their interaction with the lattice vibrations, with the
impurities, and with one another. A study of the con-
crete mechanisms leading to a decreasing branch on
the characteristic is in itself an important problem of
solid-state physics. Interest in this group of phenomena
has become particularly intense since the discovery of
microwave generation in certain semiconductors—the
Gunn effect. It turned out that there is a direct connec-
tion between this effect and the N-shape of the CVC of
the material in which it is observed.

In this review we deal only with homogeneous con-
ductors. We do not consider, for example, the tunnel
diode, which is an interesting system with an N-shaped
characteristic. The point is that in homogeneous semi-
conductors the presence of a decreasing branch on the
CVC leads to phenomena that cannot arise in lumped
elements. The principal feature of homogeneous con-
ductors is that their stationary states with homogene-
ous field and current distributions, corresponding to
the decreasing branch of the characteristic (a^ < 0),
are unstable against inhomogeneous fluctuations'1'2'.
The development of this instability results in an in-
homogeneous distribution of the current over the cross
section ("pinching" of the current) in the case of
S-shaped characteristic, and an inhomogeneous distri-
bution of the field in the form of moving regions
(domains) of strong or, conversely, weak field is pro-
duced in the case of N-shaped characteristics'3 '41.

The instability leads to different effects in semicon-
ductors with S-shaped or N-shaped characteristics.
We shall see, however, that these effects have many
common features, so that we are actually dealing with
a unified group of phenomena.

The plan of this review is as follows: We consider

first the main mechanisms of S-shaped and N-shaped
characteristics, assuming in the discussion that the
distributions of the current and the field in the sample
are homogeneous. Indeed, as shown in Ch. 2, the homo-
geneous states corresponding to the decreasing CVC
branch are unstable against inhomogeneous perturba-
tions. It is important to determine precisely which per-
turbations possess the largest growth increment (Ch.
2). This facilitates the determination of those states
with inhomogeneous current or field distribution, into
which the semiconductor goes over as a result of the
instability (Ch. 3 and 5). Among the possible inhomo-
geneous distributions, it is necessary to find the most
stable ones (Ch. 4 and 5) and use them for the interpre-
tation of the experimental data. In Ch. 4 we consider
certain applications of the described phenomena.

1. MECHANISMS OF OCCURRENCE OF VOLUME S-
AND N-SHAPED CHARACTERISTICS

1.1. Superheating Mechanisms

This name can be given to a number of mechanisms
based on the change of the characteristics scattering
times of the momentum (Tp ) and energy ( r e ) of the
carriers with increase of their effective temperature
(at a fixed concentration n). Some of these mechanisms
pertain to semiconductors in which the impurities are
fully ionized and the momentum scattering occurs

FIG. 1. S-shaped current-voltage
characteristic,

FIG. 2. N-shaped current-voltage characteristic.
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principally on the impurity ions (or on carriers with
relatively low mobility[7]; see below). Use is made of
the rapid increase of r p of the electrons with increas-
ing temperature of the electron gas.

The stationary values of the electron temperature T
are determined by equating the specific Joule power
jE acquired by the electron from the field (j—current
density, E—field) to the specific power P transferred
to the electrons to the phonons. When r p <C Te (this
condition will be discussed later), the drift velocity v
is small compared with thermal electron velocity VT-
The specific electric conductivity a =j/E and the
power P are then functions of only the electron tem-
perature T (and also the concentration n). The equa-
tion

(1.1)

determines the function T(E), meaning also the form
of the CVC j =CT(T(E))E. We represent <r(T) and P(T)
in the form

nce(T-T0) (1.2)

here m is the effective electron mass, nee is the
specific heat of the electron gas, and To is the temper-
ature of the lattice (of the phonons), which frequently
can be regarded as constant.

For a given E, Eq. (1.1) may have more than one
solution. If the temperature is a triple-valued function
of the field in a certain field interval from Ec2 to Eci,
then the characteristic has an S-shaped form (see Fig.
1).

Let us find the condition under which CT^ < 0. The
expression for a^ = dj/dE follows from (1.1) and (1.2):

_ (dPldT) + m(doldT) 1 — [1 — (TaIT)\ d In(yrp)/d InT ,.. .
W ^ * / . 1 n i . ? m \ inn t t _ t i m \ " j f 4 /rri / f i v i _ T » __ t .. _ \ 1 .1 1 . _ m • \ " * • ^ /

(dPldT)—B?(daldT) 1 —[l-(ro/r)]<Jln(T,T,)/dlnr
If the characteristic is S-shaped, then a^ becomes

infinite at each reversal of the sign (in field Eci and
EC2; Fig. 1), and consequently the denominator (1.3)
vanishes. The latter occurs if da/T > 0, i.e., the
electric conductivity increases with the heating. The
differential conductivity is negative in the electron
temperature interval in which

d I n ( T e T p )

d l n T

This inequality can be satisfied if
d In (TeTp)

(1.4)

(1.5)

The possible occurrence of an S-shaped character-
istic as a result of variation of r p and TQ with T was
indicated by A. V. Gurevich[6]. He considered an elec-
tron gas interacting with free ions and neutral mole-
cules. In collisions with ions, as is well known (see,
for example/5 ' ) ,

e
dlnT

(1.6)

a n d i n c o l l i s i o n s w i t h n e u t r a l m o l e c u l e s

d I n T j , a i n T e 1

d l n T = d l n T - = 2 ~ '

(1.7)

are determined by scattering from ions.
In semiconductors, when the electrons are scat-

tered by charged impurity centers, as in the scattering
by ions in a gas plasma, we have r p oc T3 / 2 . The en-
ergy scattering by impurities is usually neglected (at
a small atomic concentration of the impurities), since
the impurity atoms are not free. Bok[7] considered a
case when carriers with small effective mass and
large mobility, which make the main contribution of the
current, scatter energy on carriers with large effec-
tive mass (for example, electrons on holes), and the
latter rapidly transfer the energy to the phonons. Then
r e c c T V 2 (cf. (1.6)).

In scattering from the deformation potential of the
acoustic lattice vibrations, r p and r e satisfy Eq.
(1.7)[8]. Thus, a semiconductor in which the scattering
of energy or momentum is from "heavy" carriers and
from the deformation potential, is from this point of
view a perfect analog of the systems investigated by
A. V. Gurevich[6]. The S-shaped CVC observed by
Bok in p-NSb at 20°K[7] is related by the author to the
mechanism proposed by him.

In piezoelectric crystals, the acoustic lattice vibra-
tions produce not only a deformation potential but also
a piezoelectric potential. In scattering from that po-
tential we have Te cc x1 /2 [9 )10 ] , so that the role of the
piezoelectric scattering of the energy increases with
decreasing temperature, compared with the role of
scattering by the deformation potential (see (1.7)). In
piezoelectric semiconductors at low temperatures,
when the electron momentum is scattered by the
charged impurities and the energy by the piezoelectric
potential of the phonons, the CVC can have a decreasing
section, since d In (T e r p ) /d In T =2 (see (1.5))[1°].

It follows from (1.3) that cr̂  reverses sign in this
case at TCi =2T0. The corresponding field (Fig. 1) is

In a plasma with Coulomb scattering of the momen-
tum, the electrons with sufficiently high energy are on
the average continuously accelerated by the field. This
phenomenon is called electron runaway (see the re -
views[5>11] ). The characteristic runaway field, in which
this process affects the bulk of the (thermal) electrons,
is of order of

The ratio E C i / E r a ~ (T p / r e ) 1 / 2 <C 1, and in fields
~ECi the fraction of runaway electrons with energies
much higher than thermal is exponentially small. We
can therefore expect that runaway will not influence the
occurrence of a decreasing branch of the CVC*. At
sufficiently high average electron energies, higher than
TCi, the scattering by optical phonons and by the de-
formation potential becomes appreciable, and this leads
to a new reversal of the sign of a<j (in a field Ecz; see
Fig. 1).

The CVC of a semiconductor placed in a quantizing
magnetic field (KO>H 3> T, WJJ =eH/mc—cyclotron

We see that condition (1.5) is satisfied if r p and Te

Effects such as electron runaway in the absence of collisions between
electrons were discussed by Bass [18] and by Levinson [12].
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frequency) has a decreasing section if the carrier
momentum is scattered by acoustic phonons or (and)
by impurities, and give up the energy to the acoustic
phonons[i3].

In a magnetic field, the motion of an electron in a
plane perpendicular to the field, as is well known, is
quantized*14'151. If T <Cfiu>n and the electron gas is
not degenerate, practically all the electrons are in the
oscillator ground state (below the Landau band). The
scattering of electrons by the lattice vibrations differs
greatly in this case from the scattering in the absence
of a magnetic field or in a "classical magnetic field"
(T » fiu>H )• Since the wave function of the electron in
the Landau ground band is concentrated (in the (x, y)
plane normal to the field) in a region of the order of
the "quantum length" AH = (B/mwH )V2> it emits and
absorbs phonons with wave-vector components fi in
the (x, y) plane on the order of A.!1. The energy of such

' 1 2phonons is ~Rs |fj. | ~ (ms'fiuH)1'2, where s is the
speed of sound, and does not depend on the energy of
the electrons (or on their temperature T). On the
other hand, in the absence of a magnetic field the char-
acteristic wavelength of the emitted phonons is of the
order of the De Broglie wavelength of the electron, and
the energy is ~ (ms 2T) l / 2 , i.e., smaller by a factor
(T/KcuH)l/2 than when h«H » T. For this reason, the
time Tp of energy scattering by the electrons in a
quantizing magnetic field is smaller than in the ab-
sence of the field, but increases rapidly, like T3/2, with
the electron temperature1101.

In the case of scattering by the deformation and by
the piezoelectric potentials of the lattice vibrations,
the probability of scattering depends differently on the
phonon energy. This is precisely why the temperature
dependence re(T) at H =0 is different for these two
scattering mechanisms. On the other hand, in a
quantizing magnetic field the characteristic phonon
energies do not depend on T and the corresponding
times r e depend on the same manner on T( r e <* T3/2 ).

In a quantizing longitudinal magnetic field (j II H ),
the time of momentum scattering by a charged impurity
is Tp cc T3/2 [16], and the time of scattering by the de-
formation potential is OCT 1 / 2 [ 1 6 ] , SO that the condition
(1.5) is satisfied (S-shaped CVC).

In a transverse magnetic field, the form of the CVC
depends on the measurement regime. As is well known,
two measurements regimes are possible: with zero h
hole current (jy =0) and with short-circuited hole cur-
rent (Ey =0). The differential conductivity a<j is given
by formula (1.3), in which a should be replaced by
p^x cc Tp in the former case and by ffxx ^ T"1 in the

latter (we assume that tt>HTp » 1 )• Since Tp increases
with T in a quantizing transverse field (like T3/2 in
scattering by ions and by the deformation potential116-1),
then the characteristic in the absence of a hole current
has an S-shape[I3)10>17], and an N-shape in the case of a
short-circuited hole current in the same material
(axx decreases rapidly with the field)[13'17"19].

At very high electron temperatures, the condition
T <g. KU>H is ultimately violated. In addition, strong
energy scattering by optical phonons sets in. There-
fore a,j becomes positive.

Let us make a remark concerning the possibility of

using the concept of effective temperature. The method
of effective temperature can be correctly utilized in
the cases when the frequency of the interelectron colli-
sions T"1 is larger than the reciprocal energy relaxa-
tion time Tg1[5]. We have seen that the superheating
mechanism of the occurrence of the S-shaped CVC is
realized most frequently when the scattering of the
momentum is by a charged impurity, and the energy is
given up to the acoustic phonons. Since the momentum
scattering by the impurity is predominant, the time of
momentum relaxation by phonons is larger than Tp,
and all the more Te > Tp (the inelasticity of the scat-
tering by acoustic phonons is small). The time of r e -
distribution of energy among the electrons as a result
of collisions between them is Tee ~ (Nj./n)Tp, where
Ni is the concentration of the scattering centers [ 5 ] .
Generally speaking, Nj > n owing to the possible com-
pensation of the impurities (at low compensation Tee
~ Tp, and consequently Tee <C Te. In this case the
symmetrical part of the electron distribution function
in a strong field is close to Maxwellian with a certain
temperature T larger than the temperature of the
crystal lattice To.

The conclusion of the presence of a decreasing sec-
tion of the CVC in a quantizing magnetic field is not
connected with the presence of electron-electron colli-
sions and with the Maxwellian form of the energy dis-
tribution function[13'171.

S-shaped CVC were observed in the purest samples
of n-InSb (n ~ 1013-1014 cm"3) at helium temperatures.
At H =0 the carrier density does not depend on T.
Therefore the S-shape observed at H =0 and To
< 2.5°K[20'21] is apparently connected not with the
breakdown of the impurities but with the superheat
mechanism, namely with scattering of the momentum by
the impurity and the scattering of the energy by the
piezoelectric potential of the acoustic phonon[10]. In a
magnetic field, the S-shape is much more strongly
pronouncedf22"24^. It can be connected not only with
the action of the above-described mechanism of
Kazarinov and Skobov[13>17], but also with breakdown,
i.e., with ionization of neutral donors, the levels of
which are split from the continuous spectrum by the
strong magnetic field. The effect of transition from
the S-shape characteristic to the N-shaped charac-
teristic when the measurement regime in a trans-
verse field is changed, which was observed in[19], is
evidence that the negative resistance is due to the
superheating mechanism. In[120], the nonlinearity of the
CVC of n-InSb at helium temperatures is connected
with shock excitation of the electrons from the impurity
band into the conduction band, and the dependence of
the resistance of the electric and magnetic fields at
53 °K is connected with the mechanism of Kazarinov
and Skobov.

1.2. The Ridley-Watkins-Hilsum mechanism[2>25>26]

In a number of semiconductors (GaAs, InP) the con-
duction band has a minimum at the center of the Brill-
ouin zone, and in addition several minima located sym-
metrically at a certain distance from the center and
having a higher energy compared with the central one
(Fig. 2). It is significant that the effective mass of the
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electrons in the upper valleys is much larger than in
the lower valley. The large value of the effective mass
leads to a small mobility. This is due not only to the
explicit dependence of /i on m, ju. = eTp/m: the mo-
mentum scattering time decreases with increasing mass
as a result of an increase in the density of state.

We denote by n(C) and ju.<0) the concentration and the
mobility of the electrons in the lower valley, and by
n(1) and /x(1> the same quantities for each of the v
upper valleys. Let A be the difference between the
energies of the upper and lower minima. If the lattice
temperature is To "C A, then in weak electric fields
almost all of the electrons are concentrated in the
lower valley, n(0) =n, and n(1) =0. With increasing
electric field and electron temperature, an ever in-
creasing number of electrons goes over into the upper
valleys with JU(1) <C JLI<0), the specific electric conduc-
tivity

a = e (|i"W» + v|i<»n<») = enp'°' 1 - ^ ' f " ™(i) (1.8)

decreases rapidly with increasing field, so that start-
ing with a certain field the current density also de-
creases with the field (a^ < 0). Ultimately, in very
strong fields, the decrease of a with increasing field
should slow down or should stop completely; the current
will again increase with increasing field. On the whole,
the CVC should have an N-shape (Fig. 2). Semiconduc-
tors in which the CVC is connected with the mechanism
described above are called for brevity two-valley semi-
conductors.

The most investigated from this point of view is
GaAs. In this material the upper minima are located
on the [100] axis. Their number is not known exactly
{v =3 or 6), A = 0.35 eV. The effective mass in the
lower valley m(0) = 0.07m0, and in the upper valleys
y2/3m<i) _j_2ni0. The mobilities in the customarily
employed materials are p.<0) = 5 x 103 cm2/V-sec and
M(1) 102cm2/V-sec[26)27:l. The current begins to de-
crease with increasing field at E = 3 x 103 V/cm[3°~33].

Let us make a rough estimate of the characteristic
dimensions, starting from the following model. We
assume that the electrons have Maxwellian energy dis-
tributions in all the valleys. The temperature T of the
light electrons is larger than the lattice temperature
To, and that of the heavy ones coincides with To be-
cause of the large frequency of collision with the pho-
nons. Then, when T <^i A, we have

vn^^jvJV^ / _ A\ (1.9)
n<0) = JV<0> BXV \ T I'

where N(1) and N(0> are the effective numbers of
states, the ratio of which is (m (1 )/m (0 ) )3/2 and is large.
Substituting (1.9) in (1.8) and calculating the differential

conductivity, we find that a<j reverses sign when

FIG. 3. Energy structure of GaAs (sche-
matic).

N»
vJV<l> exp / 4 \ _ AA dlnT- l . (1.10)

We have put here JI<0) » /x(1). As shown by calcula-
tion1331, d hi T/d In E ~ 1. When the parameters are
suitably chosen, Eq. (1.10) has two roots T/A, corre-
sponding to the fields Eci (smaller root) and EQZ
(larger root) on the N-shaped CVC (Fig. 2). At a large
value of i/N(1)/N<0), the smaller root T/A is small.
This means that the electron temperature in a field
Eci equal to the threshold field is lower than A, and
the number of heavy electrons is smaller than the num-
ber of light electrons by a factor ~T/A. In GaAs we
have uN{1) + N (0) ~ 60, and therefore T/A ~ %. It is
possible that this is cause why the concentration of the
light electrons, measured by means of the hole coeffi-
cient near the threshold field[34'124] does not change
noticeably.

As seen from (1.10), when A decreases the electron
temperature corresponding to the threshold field de-
creases, and hence also the value of EC i itself. The
decrease of EC i was observed experimentally. The
value of A was varied in[35] by applying pressure, and
in[36] by replacing the arsenic atoms in the GaAs by
phosphorus.

A theoretical calculation of the CVC of two-valley
semiconductors is a difficult task, because many
parameters characterizing the scattering of the elec-
trons are in essence unknown. Concrete calculations
for GaAs under certain simplifying assumptions were
performed in[33)37]. The parameters of N-shaped CVC,
obtained in these investigations, did not differ greatly
from each other.

Direct measurement of j(E) in constant fields above
threshold (Eci) is impossible by virtue of the resultant
instability (see Ch. 2). The measurement time should
be shorter than the time of instability development, but
longer than the time of establishment of the electron
energy distribution, which determines the form of j(E).
Gunn and Elliott[29] applied to the sample short pulses
(0.25 x 10~9 sec) of a strong field. It turned out that the
CVC continued to decrease up to ~20 kV/cm, and the
differential mobility ad/en beyond the threshold field
is equal to 300 cm2/V-sec. The latter result does not
agree with the data of almost all the other investiga-
tions (see below). The slope of the decreasing section
of the CVC of n-GaAs turned out to be higher (Fig. 4).

In the experiment of Ruch and Kino^^ the electrons
were injected in a sample of isolating GaAs by a
pulsed method with the aid of an electron gun. The
form v(E) of the CVC was determined from measure-

FIG. 4. Dependence of the drift
velocity of the electrons in n-GaAs on
the field when the latter is homogene- „
ously distributed over the sample. The
plots are taken from: l-[38], 2-[32],
3and5-[39],4-[30].
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ments of the dependence of the time of passage of the
pulse through the sample on the applied field.

In many experiments [J8~41] the electrons were
heated by a strong microwave field. The dependence of
the conductivity in additional weak constant fields on
the amplitude of the alternating field was measured and
used to reconstruct the form of the static CVC. The
CVC was measured by other methods in[30)31]. In all
the indicated experiments, it was found that the CVC
continued to decrease up to the strongest applied fields
(~20 kV/cm), and there are no reliable observations of
a second increasing section of the CVC.

In Ge under uniaxial deformation, the degeneracy of
the hole bands in the center of the Brillouin zone is
lifted. Two "new" hole bands are produced with el-
lipsoidal equal-energy surfaces. The energy gap be-
tween them is proportional to the deformation. Follow-
ing compression along the [ i l l ] or [100] axis, the ef-
fective mass in the compression direction (which coin-
cides with the direction of the electric field) is larger
in the hole band that has the larger energy[111J. There-
fore the CVC of compressed p-Ge can have an N-
shaped form[2]. The generation of oscillations in p-Ge,
connected with this effect, was observed by A. A.
Kastal'skii and S. M. Ryvkin[88].

1.3. Recombination and Ionization Mechanisms

In an impurity semiconductor with one type of car-
rier (for example, conduction electrons) the stationary
carrier density is determined by the recombination
equilibrium: the number of electrons excited from the
impurity atoms into the conduction band per unit time
is equal to the number of electrons captured by the im-
purity atoms from the band. By heating the electrons,
a strong electric field shifts the recombination equili-
brium and consequently changes the stationary carrier
density. This leads in many cases to the occurrence
of a decreasing branch of the CVC. The most investi-
gated two effects are the occurrence of an N-shaped
CVC in semiconductors in which the carriers are cap-
tured by repelling centers, and of an S-shaped CVC in
the case of low-temperature impurity breakdown in
compensated semiconductors.

Let us consider for concreteness n-Ge doped with
Au and compensated with an element of group V. The
electrons are captured by the Au2" ions, and the
thermal motion of the lattice excites the electrons
from Au3" into the band:

Au2~4-e~ ~^ZL Au3~.

The Au2" ion binds the conduction electrons (the energy
of excitation into the band is 0.04 eV), but at large dis-
tances the electron is repelled by the Coulomb field of
the ion. Therefore the electrons with higher energy
have a greater probability coming closer to the center
without being captured. Heating of the electron gas
leads to an increase of the capture velocity and to a
decrease of the stationary concentration. Thus, in Ge
at 20°K the coefficient of capture of the electrons by
Au2" increases from 2 x 10"12 cm3 sec"1 in weak fields
to 3.5 x 10 9 cm3 sec"1 in fields on the order of several
kV/cm[42>43]. The dependence of the cross section of
carrier capture by the repelling center on the tempera-

ture and on the field was calculated inf44].
If the carrier capture coefficient increases suffic-

iently rapidly with increasing field, the CVC may be-
come N-shaped[45]. The effect was observed in Ge
doped with Au[46'43] and then in Ge doped with copper
(capture by Cu2" ions)[47].

Boer148-1 observed phenomena connected with the
N-shape of the CVC in CdS. To explain the N-shape,
the following model was proposed[49]. Assume that the
conductivity in the semiconductor is determined by
electrons that be combined with holes on deep centers.
In weak fields, the holes are at shallow levels (close
to the valence band). A strong field ionizes these levels,
so that the holes go over to deep recombination centers.
This increases the rate of recombination of the elec-
trons and decreases their concentration.

The change of the recombination equilibrium as a
result of heating of the carriers can lead to an occur-
rence of not only N-shaped but also a S-shape CVC. A
known example is the low temperature breakdown in
germanium and silicon doped with shallow impurities
and compensated[50~53]. In these materials, the concen-
tration of the carriers and the current increase with
increasing field. If the sample is connected in a circle
with a large load and the current increases then the
electric field, reaching a certain value E c ("break-
down initiation field"), it decreases jumpwise to Es
(Fig. 5). With further increase of the current, the field
remains unchanged, so that the observed CVC is verti-
cal. Accordingly, E s is called "the field necessary to
maintain the breakdown". The indicated features of the
observed CVC are connected with the pinching of the
current (see Ch. 5).

The carrier density and the electric conductivity in-
crease with increasing field, owing to impact ioniza-
tion of the impurities and to the decrease of the rate of
carrier capture by the ionized impurity centers (the
cross section for capture on attractive impurities de-
creases with increasing electron energy[54]). There is
still no meeting of the minds concerning the concrete
mechanism producing the decreasing branch on the
characteristics of compensated semiconductors'^ 50 )55 '56]).
It is clear, however, that the non-unique dependence of
the electron density on the field can occur only when
the form of the distribution function of the electrons by

FIG. 5. CVC of Ge doped with In and strongly compensated with Sb.
Sample 2 is doped more than sample 1. Temperature 4.2°K. The circles
and triangles correspond to pulsed measurements. Sample length 0.048
cm; contact diameter 0.1 cm.
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energies depends on the degree of ionization of the im-
purity (and not only on the field)[57].

2. INSTABILITY OF HOMOGENEOUS STATES WITH
NEGATIVE DIFFERENTIAL CONDUCTIVITY

In the very first theoretical investigations of semi-
conductors with negative volume differential resistance,
it was concluded that the homogeneous states with a^
< 0 are unstable'1'2'281. In systems with N-shaped CVC,
in which the characteristic times of the processes de-
termining the form of the CVC are smaller than the
Maxwellian time T ^ ~ e/4ir | cr̂  |, the fluctuation of the
charge disappears within a time on the order of TM if
ad > 0, and increases with an increment ~lCTdl if a^
< 0. However, considering the behavior of small per-
turbations, we can not only determine the stability of
the system, but also obtain many important character-
istics of the possible instability. The method used in
this case for the investigation is well known (see, for
example/581). The initial equations are linearized for
perturbations having the form, for example, of plane
waves, exp(ik-r - iwt), and from the condition for the
existence of nonzero solutions, one obtains the depend-
ence w(k). The latter determine the characteristic
wavelengths of the increasing or damped perturbations,
their velocity, and the time of instability development.
In particular, we are interested in the direction of the
wave having the largest growth increment. Knowing the
dispersion relation a>(k), we can establish the charac-
ter of the instability—whether it is absolute or convec-

[5a59]
The form of w(k), of course, depends on the con-

crete system, i.e., on the concrete equations describing
the system. A rather wide class of systems can be
regarded by using the effective-temperature method.
According to this method, the symmetrical part of the
electron distribution function has under non-equili-
brium conditions the form of a Maxwellian function
with a certain temperature T (see Sec. 1.1). In the
case of low inelasticity of the collisions between the
electrons and the phonons, the asymmetrical part of
the distribution function can be expressed with the aid
of the Boltzmann equations in terms of the symmetrical
part t5 '60]. This makes it possible to obtain expressions
for the current density j and for the energy flux den-
sity j e :

> = (T) nTy + Py + a"T> ~ xVT'<

(2.1)

(2.2)

here CT(T) = efx(T)n and K(T) are the specific electric
conductivity and the thermal conductivity of the elec-
trons, /i is the mobility, p =nT the pressure, v =j/ne
the drift velocity, and a s t =e - 1d In |u/d In T is the
part of the differential thermal emf connected with the
collisions. Expressions (2.1) and (2.2) are valid at
frequencies u> that are small compared with the colli-
sion frequency T " 1 .

The first term in the expression for j is the field
current, and the second comprises the diffusion and
thermoelectric currents. The energy flux density jg
is best represented in the form (2.2), since the flux
of the internal energy (first term), the flux connected

with the work of the pressure forces (second term),
and the heat flux (the last two terms) are then clearly
separated.

The concentration of the electrons and the tempera-
ture T( r , t) should satisfy the continuity and the en-
ergy conservation equations

c I — I —(- div i =̂  0« /o o \
I at I ^U1VJ u> (2.3)

T° »P +divje —jE + P = 0. (7 4)
In this form, the equations pertain to conditions in

which the recombination of the carriers and the impact
ionization of the impurities and of the valence electrons
can be neglected. For example, in n-GaAs under con-
ditions when stationary domains are observed, the elec-
tron concentration is most frequently constant.

Usually the systems under consideration satisfy the
inequality k2623> 1, where k is the reciprocal of the
characteristic scale of the inhomogeneity of the elec-
tric field and 5 =c(2irou)~1 is the depth of the skin
layer at the characteristic frequency w. In this case
the solenoidal field can be neglected (curl E =0), and
E can be determined from the Poisson equation

TO); (2-5)

Here and below, the field is assumed positive if it is
directed along the electron drift.

In various concrete cases, the system (2.1)—(2.5)
can be simplified.

2.1. Superheat Instability

Let us consider semiconductors in which r e »
(in n-InSb, where an S-shaped CVC is observed at
helium temperature1-20"241, this condition is usually
satisfied). As we shall show, in this case the charac-
teristic frequencies are w < '''e1' a n d t n e characteris-
tic wavelengths k"1 are larger than or of the order of
the length of the scattering of energy by the electrons
I ~ vip(TpTe)

1/2, where VT is the thermal velocity.
Therefore WTM <C 1, klj) <C 1 (here lj) is the Debye
screening length), and the electron gas can be regarded
as incompressible, i.e., the electron density in (2.1)—
(2.4) is constant.

Let us first analyze qualitatively the stability of a
semiconductor with S-shaped CVC. If the field E in the
sample is fixed and is between Ec2 a-nd Eci, the semi-
conductor can be in three homogeneous states with dif-
ferent values of the current density (for example, ji,
j 2 , and j 3 in Fig. 1). The state with ffd < 0 (j = j2) is
unstable against homogeneous perturbations (independ-
ent of the coordinates)^6'31, and the semiconductor goes
over into one of the stable states. On the other hand, if
the current in the sample is fixed (by the load resist-
ance), then the homogeneous stationary state is unique
and is stable against homogeneous perturbations even
when c^ <0 . It is, however, unstable against inhomo-
geneous perturbations that do not change the total r e -
sistance of the sample and are not connected with the
external circuit. Let us assume that a homogeneous
electron temperature fluctuation 6T has been produced
in the sample in the direction of the current. In one
part of the cross section 6T > 0 and in the other 5T
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< 0, so that the total resistance and the current remain
unchanged. Since the field is not solenoidal, the fluc-
tuation, which does not depend on x (the Ox axis is
parallel to the current) does not perturb the field com-
ponent Ex (this is precisely the "working" field com-
ponent that makes a contribution to the Joule heat). The
current density at each point changes by (dcr/dT)Ex6T,
and the rate of change of the electron-gas energy
changes by

If the characteristic is S-shaped, the sign of the ex-
pression in the brackets is opposite the sign of ad (see
(1.3)). When v^ < 0, the fluctuation 6T causes such a
change in the difference j • E - P, as to produce fur-
ther growth of the fluctuation amplitude. In one part of
the sample (where the initial 6T > 0) the temperature
increases, and in the other (6T < 0) it decreases. We
note that in the case of an N-shaped CVC (da/dT < 0)
the fluctuation that is homogeneous along the current
will always attenuate.

In the opposite limiting case, when the perturbation
6T is homogeneous over the cross section of the sam-
ple, but varies along the current, the current density
remains unchanged: 6j =0, by virtue of the continuity
of the current. The field, however, changes by 6EX
= (dff"VdT)j6T, and therefore the rate of change of the
electron-gas energy changes by

It follows from (1.3) that in the case of a S-shaped CVC
such a fluctuation always attenuates, and in the case of
an N-shaped characteristic it increases if a^ < 0.

Thus, the perturbations that break up the sample into
layers (pinches) stretched along the current grow in a
semiconductor with an S-shaped CVC, and in the case
of an N-shaped characteristic the growing fluctuations
break the sample up into regions with different values
of Ex , but with homogeneous cross sections. It is pre-
cisely these fluctuations which have, in each case, the
largest increment. The latter can be seen also from
the dispersion equation, which is obtained by lineariz-
ing Eqs. (2.1)—(2.4) with allowance for the incompres-
sibility of the electron gas:

h r - E* {-w) ^w~J"l

where

kx =-- kl-r = k± -f

The thermal conductivity (which corresponds to the
last term in (2.6)) leads to a damping of the short-wave
perturbations with a wavelength smaller than

(2.7)dP -1-1/2.-*•*"•[*•.(-£•)--£]
In order of magnitude, lc is the energy scattering
length, vx (TeTp)1/2. According to the data of[21], this
length is ~10~2—10~3 cm in n-InSb at helium tempera-
tures.

The largest growth increment (~Te
1) is possessed by

long-wave perturbations. In such perturbations, in the

case of an S-shaped CVC (kx =0) we have Re w(k) =0,
i.e., the instability is aperiodic and absolute. In semi-
conductors with S-shaped CVC, the growth increment
of the long-wave perturbations is of the order of Tg1

regardless of the relation between TĴ  and re, i.e., it
is of the order of the reciprocal time of establishment
of CVC.

The above-considered superheat instability is well
known in a gas plasma1-41. As applied to a plasma of
superconductors with various ratios of their parame-
ters, it was investigated f606317^

2.2. Instability in Two-valley Semiconductors
In this case the experiments are performed usually

on samples with not too large a conductivity (to avoid
heating and breakdown), so that the largest of the char-
acteristic times is Maxwellian. It exceeds the energy
relaxation time and the time of the intervalley transi-
tions, Therefore the electron gas cannot be regarded
as incompressible.

We present first a qualitative explanation of the
instability. Assume that an electron-density fluctuation
has been produced in a current-carrying semiconductor,
in the form of a dipole layer: the concentration in-
creases in one region and decreases by the same amount
in the neighboring region located "farther down" in the
electron drift direction. Inside such a dipole layer, the
field increases. If the differential conductivity is nega-
tive, the current inside the dipole layer decreases. As
a result, the initial increase of the concentration of the
electrons increases still further (more electrons flow
into this region than out). The region in which the con-
centration decreased initially, loses still more elec-
trons.

Let us obtain the dispersion equation for the growing
perturbations. Owing to the insufficiently large electron
concentration, the frequency of the interelectron colli-
sions is not large enough to make the electron energy
distribution function Maxwellian. The effective-tem-
perature approximation cannot be used; to describe the
considered phenomena in two-valley semiconductors it
would be necessary to solve the kinetic equation for the
light and heavy electrons, with allowance for the in-
homogeneity of the field and of the concentration. Such
a program, however, is difficult to perform. It is rea-
sonable to consider approximate models.

In particular, we can expect the effective-electron-
temperature approximation to give the correct picture
of the phenomena in two-valley semiconductors also in
the case when the interelectron collisions are insignif-
icant. The model in which the electron distribution
function in a two-valley semiconductor is regarded
Maxwellian with a certain single effective temperature
T was investigated by McCumber and Chynowetht?2].
It was assumed that the equilibrium between the valleys
is established more rapidly than the electron tempera-
ture, so that the ratio of the concentrations of the heavy
and light electrons is a definite (exponential) function
of T at the same point. The temperature satisfies the
energy conservation equation (it is incorrectly written
out in[72]). The system of equations, even in these ap-
proximations, is too complicated for an analytic inves-
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tigation of the nonlinear solutions. The equations in[721

were therefore solved numerically.
An analytic description of waves in a two-valley

semiconductor was presented in[64"68] on the basis of
model equations. The gist of the model consists in the
following:

In the expression (2.1) for the current density, the
mobility /i(x) is assumed to be an explicit function of
the field E(x) (even in the spatially-inhomogeneous
case), and furthermore such that the drift velocity
fx(E)E is an N-shaped function of the field E. In addi-
tion, the diffusion coefficient is assumed to be a func-
tion of the field, D(E), and the thermal current is
neglected. In final analysis it is assumed that

n-. (2.8)

Actually the mobility averaged over both types of elec-
trons (light and heavy) is more readily determined by
their effective temperature. The latter, on the other
hand, is not a function of only the field E at this point,
since the diffusion current makes a contribution to the
heating. Neglect of the diffusion current and of other
gradient terms in the equation for the effective temper-
ature (or of the corresponding terms in the equation for
the energy distribution function) leads, in the calcula-
tion of the current j , to an error of the same order as
the diffusion current, which is retained in (2.8). There-
fore expression (2.8) can be regarded only as a model
expression. Nonetheless, this expression, together with
(2.3) and (2.5), describes qualitatively correctly the
physics of the phenomena (this will be discussed later).

We have verified earlier that in a semiconductor
with an N-shaped CVC and ffd < 0, the largest growth
increment is possessed by waves that depend only on
the coordinate along the current. We shall therefore
assume all the quantities as a function of only one co-
ordinate (and of the time). In this case (see (2.3) and
(2.5)), the current in the external circuit, divided by
the cross section area of the sample, jext> *s eQu a l to
the sum of the densities of the conduction current and
of the displacement current:

(2.9)0E
dt

Linearizing Eqs. (2.5), (2.8), and (2.9), we obtain the
dispersion equation

co(k) = «y — l~^~ d— ' \c.LV)

where a^ =enod(ji.E)/dE. The meaning of the first two
terms is quite simple. The charge fluctuation attenu-
ates (when ad > 0) or grows (when a^ < 0) within the
Maxwellian time* and is carried away by the electron
stream with the drift velocity of the unperturbed motion.

The last term in (2.10) describes the suppression of
the short-wave perturbations by the diffusion. The
question of the role of the diffusion is not obvious, since
an inconsistency was admitted in the derivation of (2.10),
namely, as noted above, in writing down the model

equation (2.8), practically no account was taken of the
influence of the gradients of the different quantities
(including the concentration) on the effective tempera-
ture and on the mobility. However, the stability against
small perturbations can be investigated also without
resorting to the assumptions that lead to expression
(2.8) for the current. in[62>69>117] there were considered
several different models of a semiconductor with N-
shaped CVC. The obtained dispersion relations co(k)
have the same form as (2.10), and differ only in factors
on the order of unity preceding Dk2.* This agreement
makes the use of the model equation (2.8) more justi-
fied.

S. I. Anisimov, V. I. Mel'nikov, and E. I. Rashba
proposed a different for an analytic investigation of the
waves in a two-valley semiconductor'115-1. In expression
(2.8) for the current density, JI and D are assumed to
be functions not of the field but of the power received
on the average by one electron from the field, and
equal jE/n = evE. The assumed expression for j , like
(2.8), is not rigorous, but seems to be more justified
physically.

The results obtained with all the three foregoing
models coincide qualitatively.

We shall show below that as a result of the instabil-
ity of the homogeneous field distribution in the sample,
stationary waves are produced, with a velocity equal to
the drift velocity of the electrons, just as the velocity
of the perturbations under consideration. According to
(2.10), the fastest to grow, within a time ~ | a^ | "1, are
the long-wave perturbations; accordingly, long-wave
harmonics predominate in the spectrum of the station-
ary waves. Since the minimum value of k is determined
by the sample length lx, the frequency of the oscilla-
tions produced in the sample can be estimated by putting
k = lx in (2.10), namely Re = v/lx. It follows also from
(2.10) that no oscillations will be produced in a sample
of sufficiently short length Zx, and this sample is stable
against the considered perturbations even if a^ < 0.
There are two reasons for this. If lx < ZD(CT/ICTd I )V2>
where ZJJ =(De/4ii<r)1/2 is the Debye screening length,
then the instability is suppressed by diffusion. On the
other hand, if lx is smaller than the characteristic
length the fluctuation growth Zdr(CT/lffdl )> where the
"drift length" is Zdr =v(e/4?rcr) (the drift length within
the Maxwellian time), the fluctuation is carried over
the system before it has a chance to grow appreciably.
If lx is smaller than the larger of the lengths ZD or
ZJJP, the system is stablet. One should expect the char-
acteristic dimension of the stationary wave occurring
as a result of the instability (domain length) to be of
the order of the larger of the lengths ZD or Zdr.

We note that in those cases when the Maxwellian time is much shor-
ter than the characteristic time T of the establishment of the CVC (for ex-
ample the time of energy scattering, etc.), the growth increment of the
considered perturbations is of the order of r'1.

Blotekjaer [70] pointed out that it is incorrect to assume the relation
M(x) = M(E(X)). By a linear analysis of the stability he found that the dif-
fusion does not suppress the short-wave perturbations when o^ < 0. How-
ever, the assumption n(x) = ju(v(x)) on which he based the calculation is
incorrect, and consequently the deduced role of the diffusion is in error.
t Strictly speaking, it will be stable also against the considered pertur-

bations that are not connected with contacts of the sample. Perturbations
are also possible in which the total charge is changed inside the sample
(with the compensating charge on the contact) These include also pertur-
bations that are not carried away by the electron drift.
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The rat io a = /dr /^D °* the drift and the Debye
lengths determines the type of instability (absolute or
convect ive [ s a ] ) . Indeed, the evolution of a field pe r tu r -
bation that had a 6-like form at t =0 and was localized
at the origin, is described by the expression (t > 0)

) = J _ f exp [ikx- «o (k) t] dk. (2.11)

Substituting here (2.10) and integrating, we find that at
the point x =0

6E(0, t) = *£•)] • (2.11a)

When a > 2 \a^/a | 1 / 2 the fluctuation attenuates at the
point of i ts initial localization even when a^ < 0 and
the instability is of the drift type. In the opposite case ,
a < 2 |CTd/CT |1/2> the instability is absolute.

The conclusion that a system with not too large
dimensions is unstable, was confirmed also exper i -
mentally. Usually in GaAs we have a > 1 and, if the
sample length is lx < Ifa, stationary moving waves do
not have t ime to form in it. The lat ter inequality is a
condition for the product of the electron concentration
by the sample length n0 lx* • A numerical calculation
based on the t empera tu re model [ 7 2 ] gives for the c r i t i -
cal value n o /x in GaAs at room tempera ture a value
3 x 1011 cm' 2 .

If the condition lx < Ifa is not satisfied, then the
instability produces in the semiconductor a stationary
wave of large amplitude—domain of increased r e s i s t -
ance, and the current decreases (the Gunn effect [ 7 3 ]) .
The motion of the domains leads to generation of cur-
rent oscillations in the external circuit . In h igh- res i s t -
ance semiconductors , in which lx < l^, the current
fluctuations actually a r e not observed!7 4 1 . Such s a m -
ples a r e used to intensify the osci l lat ions.

= A(N-Nd, eff),
(2.14)

In the stationary state n =B n^gff, and T is a decreas-
ing function of the field E. Therefore the differential
conductivity

"'-"i'+iwi) (2-15)

reverses sign in sufficiently strong fields.
Generally speaking, in an inhomogeneous field, the

capture coefficient A is not a function of the field alone
at the same point. We confine ourselves to the case
when the characteristic length of the inhomogeneity
I » ip, where ZJJ is the length for screening by the
free electrons and, in addition, I is much larger than
the energy scattering length (the latter is usually the
case). Then the diffusion and thermoelectric currents
can be neglected, and we can assume that A =A(E).
For simplicity we consider the case r S> r^ ,* when
the displacement current in (2.9) can be neglected and
it can be assumed that

/eIt = en\iE. (2.16)

We linearize Eqs. (2.14) and (2.16) and the Poisson
equation. The dispersion equation takes the formt67]

= ( ^ L + / ^ L ) (1+-^- ) (2.17)

The largest growth time in a time ~ T is possessed by
the long-wave perturbations. Perturbations with a
wavelength shorter than lc (cr/|acll), where

ic = I) _J_ f_E_V/2, (2-18)

2.3. Recombination Instability

Let us consider a semiconductor in which there are
impurity atoms with concentration N, capable of cap-
turing one electron each. We denote the concentration
of the impurity atoms capturing the electron by nt, the
concentration of the free electrons will again be de-
noted by n. The change of the concentration nt with
time is described by the kinetic equation

^- = An(N-n,)-Bnt. (2.12)

The coefficient of thermal or optical generation B is
assumed to be constant; A is the coefficient of electron
capture by the impurity. The charge density is

(2.13)P = « ) — eNit eff,
where Nd eff is the "effective donor concentration."
(In the case of Ge doped with Au and compensated
with a donor of group V (so that 2NAu < Ny < 3NAu)
we have nt = NAu an(^ Nd eff = N V ~ 2N^U.) We
eliminate nt from (2.12) and (2.13). Usually n
- Nd, eff- Then

N

attenuate already when
the short waves is

< 0. The phase velocity of

(2.19)

and is much shorter than the drift velocity. Thus, for
Ge doped with Au, at To =20°K and n =109 cm"3, we
obtain Vpn/v ~ 10~10 (the parameters for the calcula-
tion were taken from[431, in which recombination insta-
bility was observed). The small value of this ratio is
connected with the capture of the carriers by the immo-
bile centers. We note that the perturbation drift veloc-
ity vphT is always smaller than lc.

The instability considered here must not be con-
fused with the recombination instability considered by
Konstantinov and Perel ' [ 1 1 6 ] . The latter can occur in
semiconductors with sufficiently large concentration of
minority carriers, at drift velocities exceeding certain
threshold value. This instability is not connected with
heating of the carriers, and consequently with the pres-
ence of a decreasing section on the CVC of the semi-
conductor.

An analogous condition was first obtained from other considerations
by Kroemer ["].

A linear theory of recombination instability, for an arbitrary ratio
T/TM , was presented by Ridley [7S ].



890 A. F VOLKOV and Sh. M. KOGAN
u

3 . STATIONARY WAVES OF FINITE AMPLITUDE IN
SEMICONDUCTORS WITH N - S H A P E D CVC

T h e g r o w t h of s m a l l p e r t u r b a t i o n s in t h e h o m o g e n e -
o u s s t a t e wi th CTJJ < 0 i s l i m i t e d by n o n l i n e a r e f f e c t s .
It can be e x p e c t e d t h a t t he new flow of t he s e m i c o n d u c -
t o r p l a s m a , r e s u l t i n g f r o m t h e d e v e l o p m e n t of t h e i n -
s t a b i l i t y , i s a s t a t i o n a r y w a v e , in wh ich the e f fec t ive
t e m p e r a t u r e and t h e f i e ld a r e func t ions of t he a r g u m e n t
x ' = x - c t , w h e r e C i s t he c o n s t a n t v e l o c i t y of t he
w a v e . In t he s y s t e m of c o o r d i n a t e s x ' c o n n e c t e d wi th
t h e w a v e , t he s t a t i o n a r y w a v e s a r e s o l u t i o n s of n o n -
l i n e a r but o r d i n a r y d i f f e r e n t i a l e q u a t i o n s . We s h a l l now
i n v e s t i g a t e t h e m .

3 . 1 . Initial Equations

We r e w r i t e E q s . (2 .8) , (2 .9) , a n d (2.5), a s s u m i n g a l l
q u a n t i t i e s to be func t ions of x ' a n d t . Af te r e l i m i n a t i n g
n ( x ' , t ) a n d go ing o v e r to d i m e n s i o n l e s s q u a n t i t i e s , we
ob ta in t he fo l lowing equa t ion fo r t h e f i e ld :

H e r e

\ = (x — ct)llD(E2), i\ = tlTM(E2), lD(E2) = (eD/4nmn())
1/2

i s t h e s c r e e n i n g length for t h e f ie ld E 2 ( see be low) ,

tM (£J) = [

The field E2 is described by the condition j e x t
= j(E2) (Fig. 2). The lower index denotes differentiation
with respect to the corresponding argument.

For stationary waves, there is no time derivative in
the right hand side of (3.1), and the equation for
takes the form

dU

d%[\~u(%)\

(3.2)

(3.3)

Let us find an analogous equation for stationary
waves in the case of the recombination mechanism of
the N-shaped CVC. After eliminating p and n from
(2.14) and (2.16) and from the Poisson equation, we ob-
tain an equation in the form (3.2), in which

(3.4a)

(3.4b)

(3.5)) [.-«•№)]:

|3 = (r/Tg)1/2, j = e EB N̂ êff is the current density
as a function of the field in the case of homogeneous
distribution (N-shaped curve, Fig. 2; see (2.14)).

Since we are considering stationary waves, we
should assume that the length of the sample is much
larger than the characteristic scale of variation of the
field in the wave. We can then speak of waves in an
unbounded medium. It is required that the solutions be
bounded at infinity.

FIG. 6. The potential U(&). In the case of an N-shaped CVC: 1 - j0 <
< Jext < Jci ; 2 - J e x t = J o ; 3 - Jca < Jext < Jo • In the case of an S-shaped
characteristic, £ should be replaced by 0 / 0 2 : 1-EO < E x < E c , ; 2 - E x =
= E O ; 3 - E C 2 < E X < E O .

3 .2 . F o r m s of Stationary W a v e s

E q . (3.2) i s in t he f o r m of a n equa t ion of m o t i o n of
a p a r t i c l e in a f ie ld wi th p o t e n t i a l E (which d e p e n d s on
t h e " c o o r d i n a t e " %) u n d e r t h e in f luence of a f r i c t i o n
f o r c e , t h e coef f ic ien t K of which can be e i t h e r p o s i t i v e
o r n e g a t i v e . T h e p o t e n t i a l U(&) a t d i f fe ren t v a l u e s of
t h e c u r r e n t j e x t ( i . e . , d i f f e ren t E 2 ) i s shown s c h e m a t i -
c a l l y in F i g . 6. In t he i n t e r v a l of v a r i a t i o n of j e x t
f r o m j C 2 to j C i , t h e p o t e n t i a l U h a s t h r e e e x t r e m a ,
s i n c e t he equa t ion j ( E ) = j e x t h a s in t h i s c a s e t h r e e
r o o t s : E 1 ; E 2 , a n d E 3 ( s ee F i g . 2 ) . When j e x t c o i n -
c i d e s wi th j c i (or JC2), t he po in t s E i and E 2 (or E 2

a n d E 3 ) c o a l e s c e . T h e p o t e n t i a l U h a s in t h i s c a s e
only two e q u i l i b r i u m p o i n t s .

We deno te by j 0 t h a t va lue of j e x t a t wh ich ( F i g . 6,
c u r v e 2 )

U (i?i)= U ((53), 7ext= /o' (3.6)

When j e x t > j 0 ( cu rve 2 ) , we h a v e U( S j < U( g 3 ) , a n d
c o n v e r s e l y when j e x t < j 0 ( c u r v e 3) we h a v e U( &i)
> U( S3).

Let u s i n v e s t i g a t e t he m o t i o n of t he " p a r t i c l e " a s
a funct ion of t h e p a r a m e t e r s . T h e p o s s i b l e t r a j e c t o r -
i e s a r e b e s t r e p r e s e n t e d in t h e p h a s e p l ane ( I , %t)
( s e e [ 7 6 ] ) .

At l a r g e p o s i t i v e v a l u e s of s , t he " f r i c t i o n coeff i -
c i e n t " K i s l a r g e a n d t h e " p a r t i c l e " d r o p s f r o m the
e q u i l i b r i u m point 'ML o r %3 of t he " s a d d l e " a n d
r e a c h e s a point 8 = 1 (E = E 2 ) , wh ich in t h i s c a s e i s a
s t a b l e n o d e . T h e f o r m of t h e p h a s e t r a j e c t o r i e s d e -
s c r i b i n g s u c h a m o t i o n c a n be o b t a i n e d by n e g l e c t i n g
t h e " i n e r t i a of t he p a r t i c l e " (

*, (dU/d%) /o 7\
6£ = -g • \"'l/

We no te tha t a t l a r g e v a l u e s of s t he coef f ic ien t K i s
p o s i t i v e t h r o u g h o u t .

So lu t ions of t h e t ype (3.7) a r e e l e c t r i c - f i e l d w a v e s
of t h e s h o c k t y p e , which b r i n g t h e s y s t e m f r o m t h e
u n s t a b l e s t a t e wi th E = E 2 in to a s t a b l e s t a t e wi th
E = E i o r E 3 (when j C 2 < j e x t < j c i ) * 167\ When j e x t

= Jc i ( o r 3c2)> s u c h w a v e s t r a n s f e r t h e p a r t i c l e f r o m
one s t a b l e s t a t e t o a n o t h e r (Ex in to E 3 in to E i ) . A
r i g o r o u s a n a l y s i s of t h e c o r r e s p o n d i n g equa t ion can
be found in [ 7 7^.

With f u r t h e r d e c r e a s e of s , t h e " f r i c t i o n " d e c r e a s e s
and the i n e r t i a b e c o m e s a p p r e c i a b l e . T h e r e a r e a l s o
v a l u e s of s a t which the " p a r t i c l e " e x e c u t e s s e v e r a l

These waves, which exist when S has a continuum of values, are ana-
logous to waves investigated in the theory of chain reactions.



SEMICONDUCTORS WITH NEGATIVE D I F F E R E N T I A L CONDUCTIVITY 891

oscillations before "settling" in S2 = 1. The corre-
sponding solutions are shock waves with oscillating
fronts, and transfer the system from the unstable state
into one of the stable ones[67]. Far from the front of
such a wave, the field is homogeneous and corresponds
to the decreasing section of the characteristic (E =E2).
Small perturbations in this region increase, making the
wave unstable.

When s decreases, it reaches a value at which the
"particle," moving from one equilibrium point, falls
into another equilibrium point (for example, from £3
into ^i). The corresponding wave transfers the sys-
tem from one stable homogeneous state to another
stable homogeneous state: from E : into E3 or E3 into
Ei*. It has the form of a traveling depletion layer, or
respectively accumulation layer, of the electron den-
sity compared with n0. (These solutions were obtained
by Cope land in a numerical analysis of stationary
waves[79].) At each value of uext in the interval from
j c 2 to j c l , either wave can propagate, but their veloci-
ties are generally speaking different. When j e x t is
close to jC i , the depletion waves corresponds to a
descent of the particle from the level V('S3) to the
level U(i?i) (Fig. 6, curve 1), and the accumulation wave
corresponds to an upward rise of the particle. In the
latter case, the "friction" and consequently also the
wave velocity (see (3.3)), should be smaller (in princi-
ple s can be negative).

When j e x t is close to j c 2 , the velocity of the accumu-
lation wave, to the contrary, is larger than that of the
depletion wave. There exists a unique value of jext, a t
which the velocities of the depletion and accumulation
waves coincide. We shall show below that for the sys-
tems considered by us this value of j e x t coincides with
jo (3.6).

Let us assume that the current in the sample is
specified, and that on a certain segment the field is
equal to E3, and outside the segment to Ei. If jext
> j 0 , then the leading front of the field distribution
will move more rapidly than the trailing edge, and the
region in which the field is equal to E3 will expand.
When j e x t < jo, to the contrary, the region in which the
field is equal to Ei will expand.

We emphasize once more that in the propagation of
the stationary waves considered above, the average
field in the sample varies, so that these waves cannot
be realized at a fixed voltage across the sample.

There exists a value of s such that the particle
moving from %i (when j e x t > jo) in a potential well
under the influence of an alternating-sign "friction
force" will return to the point &lm The "work of the
friction force" in such a motion is equal to zero:

o (3.8)

The condition (3.8) is obtained from Eq. (3.2) by multi-
plying the left side of this equation by &| and integrat-
ing over the period of the motion. The corresponding
trajectory F on the phase plane is a closed separatrix

(Fig. 7a). Near SL we have '6^ =c1)2 ( £ - %x), where
Ci and C2 are the characteristic roots of the singular
point £i, and have opposite signs. The asymptotic
form 8(£) as £ — ±°° is given by

The field goes through a maximum, from which it de-
creases in both sides exponentially to E : (Fig. 8). Such
waves are called solitary waves in the theory of waves
on water. They can exist also in a collisionless
plasma[80] and in magnets[81].

Solitary waves in semiconductors with N-shaped
CVC are called in the literature domains or dipole
waves. The latter is connected with the fact that the
volume charge in such waves represents a steadily
moving dipole layer (Fig. 8a).

It is of interest to trace the change of the form of
the domain as a function of the current jext in the
sample[64)65'67'68]. When j e x t > jo, the solitary wave is
a narrow strong-field domain (of increased resistance).
The width of such a domain is proportional either to
Zrj or Z(jr (see below), and in the case of the recom-
bination mechanism, it is proportional to Zc- When
Jext =Jo, broad domains can exist[64'68], in which one
front is a depletion layer and the other an accumulation
layer, and the distance between the fronts is large
compared with their effective thickness (Fig. 8b). Such
a domain corresponds to the motion of a particle from
Si to S3 and back (Fig. 6). The phase trajectory (Fig.
7b) goes through two singular points. When j e x t devi-
ates from jo, the domain width decreases very sharply
and the domain becomes narrow.

If j e x t < j 0 , the solitary wave is a narrow domain
of weak fields (of decreasing distance); the field out-
side the domain is equal to E3.

We note that the domain velocity can be only posi-
tive (the domain moves in the electron drift direction).
Only in this case is the "friction" K of alternating
sign and condition (3.8) can be satisfied.

Let us investigate the existence of solutions in the
form of a stationary field distribution (s =0). Unlike

FIG. 7. Phase trajectories: a) of nar-
row domains and of oscillating waves,
Jo <Jext<Jci;b) of layer waves (1^ or
F2) and a broad domain (Xi + F2), jext

Similar waves were considered in the theory of combustion (the ther-
mal regime of combustion). The existence of such waves and the unique-
ness of their velocity are proved in a paper by Ya. B. Zel'dovich [78 ].

a) b)

FIG. 8. Distribution of the fields (solid curve) and of the space charge
(dashed curve) in the domain, a) Narrow domain, b) broad domain.
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the moving stationary layer waves (s * 0), they can be
observed when a given voltage is applied across the
sample. The equation describing the stationary distri-
butions in two-valley semiconductors is of the form
(3.2) with

side the domain), Eq. (3.2), at which K and U are
given by expressions (3.3), can be integrated and the
form of the phase trajectories can be found184'681:

In this case the friction does not reverse sign, and as
already indicated, there are no distributions in the
form of domains. Only a distribution in the form of a
space-charge layer with a monotonic variation of the
field is possible. At large values of a, the "inertia"
( §££ in (3.2)) can be neglected and the phase trajec-
tories given by (3.7). Then the distribution in the form
of a space-charge layer separating the stable homo-
geneous phases (with E =EX and E =E3) is possible
only when jext = Jci (Ei at the cathode) or j e x t = jc2
(E3 at the cathode). At very small a (the particle
moves with almost no friction), for the existence of a
layer solution it is necessary that jext be close to j 0 .
Thus, when a increases the current density at which a
solution exists in the form of a stationary layer separat-
ing two stable phases either increases from j 0 to j c i
or decreases from j 0 to jC2-

In the case of the recombination mechanism, the
equation for the stationary distributions (which follow
from (2.14), (2.16), and the Poisson equation) is of
first order: there is no "inertial" term. Consequently,
under the assumptions made above (Sec. 2.3), the sta-
tionary layers exist only at jci and jc2. Theoretically,
stationary layers of the distribution (with allowance for
diffusion) were considered in[82>83].

3.3. Velocity and Form of Gunn Domains

The different models of a two-valley semiconductor
leads to different values of the domain velocity. It is
shown in[68J that Eq. (3.2) has solutions in the form of
domains (or periodic waves) only for a single value of
the dimensionless wave velocity s = 1.* This means
that in the "field" model (ji = ju(E); see Sec. 2.2) the
domain velocity is equal to the drift velocity of the
electrons outside the domain:

c = v(Ei) = v(E1). (3.9)

It is interesting that exactly the same result is ob-
tained in the model in which /i = /J.(vE)[115] (see Sec.
2.2). On the other hand, in the "temperature" model[72]

the domain velocity is 10% larger than v(Ej . It is,
however, easy to establish that the equality (3.9) should
take place regardless of the model, if almost complete
depletion of the electron concentration takes place on
the domain front. In the depletion region, the total
current coincides with the displacement current
(e/4;r)(9E/8t). By virtue of the stationary behavior of
the wave, this current coincides with the current out-
side the domain enov(Ei). On the other hand, it equals
(e/4Tr)c(3E/3x), which equals enoc by virtue of the
Poisson equation. From this we get (3.9).

Let us consider in greater detail the solutions (3.2),
which describe the domains. When s =1 (domain
velocity equal to the drift velocity of the electrons out-

a-ig5 - <x-» In | a^ + 11 + U (g) - U (gmln) = 0; (3.10)

Here U( Smin) i-s the integration constant, having the
meaning (in the analogy with a moving particle as used
by us) of the potential energy at the turning point. The
phase trajectories are shown in Fig. 7. The trajector-
ies close to F represent series of domains, and those
close to g2 = 1 represent waves in which the field
oscillates weakly about E2. In this case the singular
point %2 is a center.

We obtain the wave amplitude from (3.10), putting
g£ = 0, i.e, from the equation

tf(Smln)=tf(S,n«). (3.11)

which assumes in dimensional quantities the form
EmaT

D(E) (3.11a)

*See, however, next page concerning Ref. 90.

If D does not depend on E, then one can call Eq.
(3.11a), when applied to single domains (Emin. Ex for
the strong-field domain, Emax = E3 for the weak-field
domain), the equal-area rule'64].

In a broad domain with a flat top, whose fronts are
layer waves traveling with the same velocity, we have
Emin = Ei and Emax =E3. The condition (3.11) coin-
cides in this case with definition (3.6) of the current
density j 0 .

Let us consider now the shape of the domain, when
a < l (for example, large electron density)

In | ag6 +1 |s* ag6 — (~) a2gf.

Then, as follows from (3.10), the domain is represented
by a symmetrical phase trajectory

The characteristic dimension of the domain is the
Debye length ID, and its form is symmetrical. If
a » l and the domain amplitude is not too small, then
its form is strongly asymmetrical, and the character-
istic dimensions of the leading and trailing edges differ
greatly. Indeed, when %^ > 0 (trailing edge), the
logarithmic term in (3.10) can be neglected. We see
that the characteristic width of the trailing edge is of
the order of ID/01- When f ^ < 0 (leading edge), Eq.
(3.10) is satisfied if the logarithm is a large negative
quantity. Consequently,

a f 5 ar - l . (3.13)

This means that on the leading front of the domain the
charge density is constant and is equal to the charge
density of the impurities, and the concentration of the
free electrons is close to zero.

Thus, the field on the leading front increases
linearly over a length alD ='dr> anc* decreases rapidly
on the trailing edge. The domain has the form of a
right triangle. As expected from the linear analysis
(Sec. 2.2), in the case when the instability is absolute
(a C l ) , the characteristic scale of the field inhomo-
geneity coincides with ID, and in the case of convective
instability (a ^> 1) it coincides with Ifc.



SEMICONDUCTORS WITH NEGATIVE DIFFERENTIAL CONDUCTIVITY 893

3.4. The Gunn Effect

In 1963, Gunn, in a study of the effects of hot elec-
trons in gallium arsenide, observed that when a field of
~3 kV/cm is applied to an n-GaAs sample, coherent
oscillations are produced in the sample, with a fre-
quency inversely proportional to the sample length[73].
Later, Gunn established experimentally that these
oscillations are connected with the passage of strong-
field domains through the sample, and measured their
shape[34]. The domain motion in two-valley semicon-
ductors and the phenomena created by this motion are
called the Gunn effect.

When a voltage V is applied to a sample of a semi-
conductor with N-shaped CVC, such that the average
field E = V/lx corresponds to the decreasing branch
of the CVC (ECi < E <EC 2 ; Fig. 2), a strong-field do-
main is produced in the sample (if the product nolx in
the sample is sufficiently large; Sec. 2.2). During the
time of development of the domain, the current in the
circuit decreases and remains unchanged when the
domain becomes stationary. Reaching the anode, the
domain vanishes. The current in the circuit then in-
creases approximately to jC i (see Fig. 2). The picture
then repeats. The characteristic time variation of the
current is shown in Fig. 9.

In sufficiently homogeneous samples, the domain
is produced at the cathode. In measuring the static
field distribution in the sample prior to the occurrence
of the oscillations, it was observed that a strong-field
region, in which the domain is produced, exists at the
cathode[a4]. Since the domain velocity equals the drift
velocity of the electrons outside the domain (Sec. 3.3),
the frequency of the generated current oscillations is
f = v/Zx

[73]. In GaAs at room temperature we have
v ~ 107 cm/sec. At lx =360 JJ., the frequency of the
current oscillations shown in Fig. 9 is 2 x 10a Hz.

The form of the domain in n-GaAs was first meas-
ured by Gunn[34>118] (see also [S5]). At small domain
voltage drops Vd (see (4.12a)), the form is symmetri-
cal with increasing Vd, the length of the leading front
increases compared with the length of the trailing edge,
and at large Vd the ratio of these lengths is

•3-4.
[118]

A n e s t i m a t e s h o w s t h a t a > 1 i n t h e m a t e -

r i a l s c u s t o m a r i l y e m p l o y e d i n t h e s e e x p e r i m e n t s , s o

t h a t o n e c a n s p e a k of a q u a l i t a t i v e a g r e e m e n t of t h e

c o n c l u s i o n s o f t h e t h e o r y ( s e e t h e p r e c e d i n g s e c t i o n )

w i t h e x p e r i m e n t .

A t l a r g e V d , t h e d o m a i n b e c o m e s u n s t a b l e , a f a c t

u s u a l l y c o n n e c t e d w i t h s h o c k i o n i z a t i o n . I n G u n n ' s e x -

p e r i m e n t 1 ^ 1 8 1 , i t b e g a n a t V d = 4 7 7 V . T h e m a x i m u m

f i e l d i n t h e d o m a i n w a s i n t h i s c a s e ~ 1 3 0 k V / c m ( h e

u s e d a s a m p l e 2 6 0 n l o n g , w i t h n = 2 . 7 x 1 0 1 4 c m " 3 a n d

ju. = 8 0 0 0 c m 2 / V - s e c i n w e a k f i e l d s ) .

W i t h i n c r e a s i n g v o l t a g e o n t h e s a m p l e ( w i t h t h e d o -

m a i n ) t h e s t a t i o n a r y v a l u e of t h e c u r r e n t d e n s i t y

d e c r e a s e s a n d a p p r o a c h e s a s y m p t o t i c a l l y a c e r t a i n

c o n s t a n t v a l u e 1 - 8 4 ' 1 1 8 1 . T h e l a t t e r c a n b e a p p a r e n t l y

i d e n t i f i e d w i t h j 0 — t h e c u r r e n t d e n s i t y i n t h e p r e s e n c e

of a b r o a d d o m a i n ( S e c . 3 . 2 ) . H o w e v e r , m e a s u r e m e n t

of t h e d o m a i n f o r m h a s s h o w n t h a t u p t o t h e h i g h e s t

a t t a i n a b l e v o l t a g e s V d , t h e m a x i m u m f i e l d c o n t i n u e s

t o i n c r e a s e w i t h i n c r e a s i n g V d , a n d t h e d o m a i n d o e s

n o t h a v e a f l a t t o p (no b r o a d d o m a i n i s o b s e r v e d i n

G a H s ) . W e n o t e t h a t w e a k - f i e I d d o m a i n s w e r e l i k e w i s e

n o t o b s e r v e d .

W h e n t h e v o l t a g e o n t h e s a m p l e i n w h i c h t h e s t a -

t i o n a r y d o m a i n m o v e d w a s r e d u c e d , i t w a s o b s e r v e d

t h a t t h e d o m a i n v a n i s h e s a t f i e l d s E s m a l l e r t h a n

E c i [ 1 2 5 ' 1 1 9 ] . w i t h i n c r e a s i n g s a m p l e v o l t a g e , t h e c u r r e n t ,

a s a l r e a d y m e n t i o n e d , d e c r e a s e s , m e a n i n g t h a t t h e

d r i f t v e l o c i t y of t h e e l e c t r o n s o u t s i d e t h e d o m a i n a n d

t h e v e l o c i t y of t h e d o m a i n i t s e l f d e c r e a s e s ( S e c . 3 . 2 ) .

T h i s i s c o n f i r m e d b y e x p e r i m e n t [ 8 4 ) 1 1 8 ] .

C u r r e n t o s c i l l a t i o n s c o n n e c t e d w i t h t h e o c c u r r e n c e

of d o m a i n s w e r e o b s e r v e d , b e s i d e s i n G a A s , a l s o i n

I n P , C d T e [ 8 6 ] , Z n S e [ 8 7 ] , p - G e [ 8 8 ] a n d n - G e [ 8 9 l

3 . 5 . F o r m a n d V e l o c i t y of R e c o m b i n a t i o n D o m a i n s

In t h e d e r i v a t i o n of t h e e q u a t i o n f o r t h e r e c o m b i n a -

t i o n s t a t i o n a r y w a v e s ( 3 . 2 ) , ( 3 . 4 ) , ( 3 . 5 ) ) i t w a s a s s u m e d

t h a t /3 <C 1 . T h e r e f o r e t h e w a v e f o r m c a n b e o b t a i n e d

b y i n t e g r a t i n g ( 3 . 1 2 ) . I t i s s y m m e t r i c a l , a n d i t s c h a r -

a c t e r i s t i c d i m e n s i o n , i n a c c o r d w i t h t h e c o n c l u s i o n s of

t h e l i n e a r t h e o r y ( S e c . 2 . 3 ) i s of t h e o r d e r of Z C ( E Z ) .

T h e e x p r e s s i o n f o r t h e v e l o c i t y i s o b t a i n e d f r o m

( 3 . 8 ) b y s u b s t i t u t i n g i n i t '&% f r o m ( 3 . 1 2 ) :

T h e v e l o c i t y of t h e s t a t i o n a r y w a v e d e p e n d s b o t h o n i t s

a m p l i t u d e ( § m i n a n d I m a x ) a n d o n t h e f o r m of U ( %)

( i . e . , i n t h e f o r m of t h e C V C ) . A t s = 1 + p , t h e c o e f -

f i c i e n t i s K ( S 2 ) = 0 ( s e e ( 3 . 5 ) ) a n d t h e p o i n t g 2 i s a

c e n t e r . A s s e e n f r o m ( 3 . 1 4 ) , t h e d o m a i n v e l o c i t y ,

g e n e r a l l y s p e a k i n g , d o e s n o t e q u a l 1 + p , a n d t h e p o i n t

g 2 ( u n l i k e i n t h e G u n n d o m a i n s ) i s n o t a c e n t e r .

In t h e c a s e of t h e r e c o m b i n a t i o n m e c h a n i s m , s e r i e s

of d o m a i n s a n d w e a k l y o s c i l l a t i n g w a v e s a r e a l s o p o s -

s i b l e . H o w e v e r , t h e i r v e l o c i t y a t e a c h j e x t d e p e n d s o n

t h e a m p l i t u d e i n a c c o r d a n c e w i t h ( 3 . 1 4 ) . T h e d e p e n d -

e n c e of t h e v e l o c i t y of t h e w e a k l y o s c i l l a t i n g w a v e s

( c l o s e d p h a s e t r a j e c t o r y c l o s e t o S 2 ) o n t h e a m p l i t u d e

w a s i n v e s t i g a t e d in' '90-1 b y t h e V a n d e r P o l m e t h o d .

H o w e v e r , t h e n o n l i n e a r i t i e s i n t h e e q u a t i o n s f o r t h e

s t a t i o n a r y w a v e s w e r e n o t t a k e n i n t o a c c o u n t c o r r e c t l y .

I t w a s i n c o r r e c t l y c o n c l u d e d t h a t p e r i o d i c w a v e s w i t h

s * 1 a r e p o s s i b l e i n t h e a s s u m e d m o d e l of t h e t w o -

v a l l e y s e m i c o n d u c t o r . T h e w a v e s i n t h e f o r m of w e a k

o s c i l l a t i o n s of t h e f i e l d a b o u t E 2 a r e o b v i o u s l y u n s t a b l e ,

s i n c e t h e d i f f e r e n t i a l c o n d u c t i v i t y of t h e m e d i u m i s

n e g a t i v e f o r p e r t u r b a t i o n s w i t h a w a v e l e n g t h m u c h

l a r g e r t h a n t h e p e r i o d of t h e o s c i l l a t i o n s .

T h e v e l o c i t y of w a v e s i n t h e f o r m of a s e r i e s of

d o m a i n s ( p h a s e t r a j e c t o r y c l o s e t o t h e s e p a r a t r i x F i n

F i g . 6 ) , n a t u r a l l y , d i f f e r s l i t t l e f r o m t h e v e l o c i t y of t h e

s i n g l e d o m a i n . T h i s c a n b e v e r i f i e d b y u s i n g a s a n e x -

a m p l e t h e d o m a i n s a t j e x t — J c i - m t h i s r e g i o n of c u r -

r e n t s , t h e C V C c a n b e a p p r o x i m a t e d b y t h e p a r a b o l a

FIG. 9. Form of the Gunn current
oscillations in n-GaAs [ 8 6 ] .
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Jci " (y2)JEE(Eci)(E - EJ2 . Then

(3.15)

Substituting (3.15) in (3.12) and (3.14), we obtain the
form of a single domain of small amplitude

and its velocity

(3.16)

(3.17)

The point g2 is in this case an unstable focus. At
^min close to %u the velocity of the waves (which have
the form of a series of domains) is given by the equa-
tion (see (3.14) and (3.15))

»-*! 45 ,„ „ . , „ a.,3/2 (3.18)

Since ?min ~ &i depends exponentially on the distance
between the domains in the series, the velocity of such
waves practically coincides with si.

As seen from (3.4a), (3.14), and (3.17), the velocity
of the recombination domains is of the same order as
the velocity of the recombination waves in the linear
theory (2.19), and consequently is much smaller than
the drift velocity of the electrons.

Recombination domains in CdS were observed by
Boer and co-workers[91 '101]. Later on, domains were
thoroughly investigated in Ge: Au[43'92] and Ge: Cu[47].
They were observed in GaAs[93] and in InSb[94]. The
qualitative features of the phenomena connected with
the occurrence of motion of domains are the same as
in two-valley semiconductors.

Experiments reveal a dependence of the velocity of
the recombination domains on the free-carrier density.
Thus, with increasing illumination, the velocity of the
domain in Ge: Au changed from 3 x 10"5 to ~0.5 cm/sec
(with n changing by four orders of magnitude ) [43] , and
in Ge: Cu, from 21 to 75 cm/sec, with n changing by
one order of magnitude[951. At present, however, the
experimental and theoretical values of the domain
velocity do not agree. In particular, the experimentally
observed dependence of the domain velocity on the free-
carrier density has not been satisfactorily explained.

Many experiments have shown that moving domains
are produced only when the density exceeds a certain
critical value. At lower densities, a stationary distri-
bution is observed, in the form of a space-charge layer
(see Sec. 3.2). The observed CVC has in this case a
horizontal section1831.

4. STABILITY OF STATIONARY WAVES. APPLICA-
TIONS OF THE GUNN EFFECT

4.1. Stability of Stationary Waves

In the preceding section we have found that at each
value of the current j e x t there exist different station-
ary waves. Not all are stable. To investigate the sta-
bility of the stationary waves, we linearized Eq. (3.1)*
for small deviations from the stationary distribution

88G. T|)=g(£, ti)-gcm(!) = 6g(£)exp(-J,T|). (4.1)

We shall assume first that the current in the external
circuit remains unchanged, 6jext = 0, i-e-> either the
impedance Vext o f t n e external circuit is large, or the
perturbation is such that it does not change the resist-
ance of the entire sample. The linear equation obtained
from (3.1) for 6E(£) by means of the substitution

( 4 '2 )

is reduced to the canonical form

(H—k)y> = 0, (4.3)

(4.4a)

(4.4b)

To simplify the exposition we assume that D does not
depend on the field. This limitation does not affect the
results.!

Equation (4.3) has the form of the Schrodinger equa-
tion. To obtain the concrete form of the potential V(£ )
it is necessary to substitute in (4.4) the solution (3.2)
which describes that stationary wave, whose stabilities
they investigated. For a layer wave, V(£) has the form
of a potential well, and for a domain it has the form of
two potential wells (Fig. 10). The stationary wave is
unstable if the eigenvalues of the operator H include
negative ones (x. < 0).

Differentiating (3.2) with respect to 4, we can
verify that the function f(£) ^ is an eigenfunction of
H, corresponding to a zero eigenvalue. The meaning of
this is obvious: the perturbation 6 $ oc g£ is a small
displacement of the wave. The wave is in indifferent
equilibrium with respect to such a perturbation. If the
wave is of the layer type, then gg does not reverse
sign and consequently F(ij)g£ is a function of the
ground state of H, and zero is the lowest eigenvalue.
Therefore the layer wave is stable in the stabilized-
current regime[68].

In the case of a domain 8% reverses sign once, and
therefore the eigenvalue (\ i = 0) corresponding to the
function F(£) 8% is not the smallest one. There exists
one negative eigenvalue Xo < 0: the domain is unstable
in the given-current regime[68]. We shall see below

FIG. 10. Form of the potential V(£) for the case of a single domain.
The dashed line shows the field distribution in the domain E(x') - E,.

*Up to now, only the stability of stationary waves in two-valley semi-
conductors was investigated. The methods used for these investigations,
generally speaking, cannot by applied directly to the problem of the sta-
bility of recombination waves.

t An investigation of the stability of stationary waves in the Gunn ef-
fect (in the general case D = D(E)) is due to Knight and Peterson [68].
They used the idea of the general method developed earlier by Zel'dovich
and Barenblatt I96 ] using a plane flame front as an example.
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that in the given-voltage reg ime , a single domain is
s table .

Waves in the form of two and more domains a re
unstable independently of the external circuit . Let us
consider two domains, in this case the f irs t four eigen-
values x a r e obtained as a resul t of the " sp l i t t ing" of
the first two levels of the single domain (Xo < 0 and
\ i =0). A zero eigenvalue descr ibes the shift of both
domains in one direction. A nea r - ze ro negative eigen-
value descr ibes domains that come together or move
apar t . The minimum x = Xo corresponds to a broaden-
ing or a narrowing of both domains, and a level close
to it corresponds to broadening of one domain and
narrowing of the other . The lat ter perturbation does
not change the res i s tance of the sample and has
X * Xo < 0. As a resul t of the growth of such a pe r tu r -
bation, one of the domains vanishes . Instability of two
domains was observed experimentally by Gunn[103].

Let us make a r e m a r k concerning the investigation
of the stability of layer waves. The condition that the
perturbation be bounded was imposed on the function
6 S(4). On the other hand we investigated the spectrum
of the equation for the function !/>(£), which differs from
6 8 by a factor F(£) (see (4.2)). For layer waves and
for domains, we have Ug = 0 as 2; — ± » . The behav-
ior of F ( | ) at infinity is determined by the exponential
exp (k 1 ( | ) , where kx = ( s - l ) a / 2 . For domains ( s =1)
the exponent ki vanishes, and the conditions for the
boundedness of 6 % and ip coincide, and our analysis
remains in force. But for layer waves ( s * 1), the
function ip may even increase at infinity, but not more
rapidly than exp( | kiij | ) . It follows from (4.3) that at
infinity, where Ug = 0 and #£ = 0> the function $(£)
increases exponentially or attenuates like exp(k2ij),
where

11/2 (4.5)

For layer waves, which take the sample from a stable
homogeneous state into another stable homogeneous
s ta te , M'6% ( ± « ) < 0 and | k 2 | > | kj | for al l x < 0.
Therefore the solutions ip(£), which increase at infinity
and correspond to x < 0, must be discarded (only solu-
tions attenuating at infinity should be retained). Thus,
in this case the boundedness of tp follows from the
boundedness condition of 6E. The foregoing conclusions
concerns the stability of layer waves pertains precisely
to such waves (E x — E3 or E3 — E J .

For layer waves that change the system from an
unstable state into a stable one (E 2 —• Ex or E3), we
have Ugg ( g2) < 0 and therefore , far from the layer,
in the homogeneous unstable phase, we have | k21
< | ki | in a certain interval of negative x. Solutions of
(4.3) that grow at infinity a re admiss ible , and since they
correspond to x < 0, the waves in question a re un-
stable*, as follows also from simple physical consid-
erat ions (see Sec. 3.2). The instability of waves ana-
logous to these considered here (but not s tat ionary)
was demonstrated by McCumber and Chyoweth by
numerical calculation'721 .

4.2. Impedance of Sample with Domain

The stability against perturbations that change the
current in an external circuit (5j6xt * 0) i-s best in-
vestigated by calculating the differential impedance
Z ( « ) of the sample [ 8 8 ] :

( 4 - 6 )

(S—cross section of sample) . To calculate Z, we
linearize Eqs. (2.5), (2.8), and (2.9). The resultant
equation differs from (4.3) by having a t e rm
(6Jext / Jex t )F(4) in the r ight-hand s ide . The " r e -
s p o n s e " tj) is expressed simply in t e r m s of the eigen-
functions ipn a n d eigenvalues Xn of the operator ft.
Substituting this expression in (4.6), we obtain

The instability of such waves was proved by a quasiclassical method
by V. M. Eleonskii[97].

The t e r m s in (4.7) correspond to different modes
6<?n =F'1ipn- m the case of a domain, the fundamental
mode (n = 0) r ep resen t s i ts compression or expansion.
The mode corresponding to the first excited state de-
sc r ibes a smal l displacement of the domain without a
change in form (see above): it makes no contribution to
Z(w). Thus, Z(w) has one pole in the upper half plane.
The impedance can be represen ted in the form

z (co ) = fio(l_!T^_)-1^Zl(co), (4.8)

where Ro < 0. The first t e rm coincides with the first
t e rm of the sum (4.7) (n =0); Zx is the contribution
made to the impedance by the discrete levels with
n > 2 (if they exist at a l l ) and by the continuous spec -
t rum. Since the region of the domain itself makes a
smal l contribution to the t e r m s corresponding to the
sta tes of the continuous spectrum (of the order of the
width of the domain to the width of the sample) , the
sum over such s ta tes reduces approximately to the
impedance of the homogeneous regions of the sample
outside the domain

Zun = fl»n (1 — iuRvnC)-1; (4.9)

Here R u n > 0 and C a re the res i s tance and capacit-
ance of the homogeneous regions . If we neglect the
contribution from the d iscre te levels , then Zx = ZUn-
To prove the stability of the domain, we shall use only
the fact that the imaginary part of Z(a>) has a capaci-
tive charac ter at all frequencies a>, i .e. , the sign of
ImZ coincides with the sign of w. We note that the
equivalent circuit of the domain impedance (the first
t e r m in the right side of (4.8)) consists of a res is tance
Ro < 0 connected in para l le l with a capacitance
C =l/RoXo.

To ascer ta in the stability against perturbations that
change the res i s tance of the sample , we use the roots
of the equation (Kirchhof's law)

/((o)=Z(o)) + i?elt = 0. (4.10)

We assume the load res i s tance to be purely active. The
domain is stable if the function f(u>) = Z(a>) + Rext of
the complex variable w has no zeroes in the upper
half-plane. According to the argument principle (see,
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for example,[98]), the difference between the number of
zeroes N and number of poles P of the function f(o>)
in the upper half plane is equal to the increment of the
argument (divided by 2fl) on the function f(w) on going
along the contour C around the upper half-plane, i.e.,

. (4.11)

The number of poles P, as established above, is equal
to unity.

We draw in the plane f the contour C', which maps
the contour C. The point w = 0 corresponds to the
point Z(0) + Rext o n the real axis. We consider first
the case Z(0) < 0. At small load, R e x t < I Z(0)| , the
point w =0 corresponds to a negative real solution
(Fig. 11). With increasing frequency, f goes over into
the upper half plane (the reactive part of the imped-
ance is a capacitance). When co — °° we have f(co)
-* Rext > 0. When w < 0 we obtain a curve that is
symmetrical with respect to the real axis, so that the
contour C' surrounds the point f =0. Then Ac arg f
= -2n, and consequently f(a>) does not have any zeroes
in the upper half plane (the domain is stable). If the
load is large, Rext > I Z(0)| , then the contour C' does
not encircle the point f =0 (see Fig. 11), and f(w) has
one zero in the upper half plane (the domain is unstable).
Obviously, when Z(0) > 0 the domain is unstable r e -
gardless of the load (the contour C' does not encircle
the point f =0). Thus, in the regime in which the vol-
tage on the sample is fixed, the stability of the domain
is determined by the sign of Z(0), i.e., by the slope of
the static CVC of the sample with the domain.

4.3. Current-voltage Characteristic of Sample with
Domain

To find the form of the static CVC of a sample with
a domain, it is necessary to find the dependence of the
average field in the sample E = V/Zx on j e x t :

£ = £l(/ext) + J^xt I , (4.12)

where Ei is the field on the left growing branch of
CVC of the semiconductor (see Fig. 2), and

Vd= \ [E(x)-Ei]dx (4.12a)

has the meaning of the excess voltage drop on the
domain. The Vd(Jext) dependence is determined, in
particular, by the concrete form of CVC for a homo-
geneous field distribution j(E). The qualitative behav-
ior of Jext(^) c a n . however, be explained in general
form.

If the current j e x t is close to j C i , it is possible to
use (3.16) for the distribution of the field in a small-
amplitude domain. Integrating (3.16) over the length of

the sample and going over to dimensional quantities,
we obtain

E = Ecl |l—a ( ~'f5tJ +6 (-p-)fl3/2 (1 — ̂ ) }• (4.13)

The last term on the right is the voltage of the domain,
divided by lx. It is small at small ljy/lx> anc* Jext(E)
passes barely below the rising branch of the CVC of
the homogeneous sample.

In the other limiting case, when jext approaches j 0 ,
the maximum field in the domain and its width increase,
so that the average field in the sample increases with
decreasing jext- On the whole, the static characteristic
of the sample with the domain Jext(E) should have the
form shown schematically in Fig. 11. When jext < jo,
the characteristic is constructed in analogousjnanner.

When the voltage (i.e., E) increases up to E =Eci,
we get the CVC of the homogeneous sample. With fur-
ther increase of U, a domain of finite amplitude is
produced in the sample, and the current drops jump-
wise (transition a — c in Fig. 12). The stability re -
gime is hard (the difference between the regimes of
the occurrence of instability in a plasma is discussed,
for example, in [99]). In the entire segment bed (Fig. 12),
the characteristic Jext(E^) is a decreasing one, i.e.,
Z(0) < 0, and the domain is stable (see above). Do-
mains exist also when E < ECi segment be). When the
voltage on the terminals of the sample with the domain
is decreased, the current grows along the curve cb
and increases jumpwise at the point b (generally
speaking, the point b can be very close to the CVC of
the homogeneous sample). Thus, the CVC of a sample
with domain, Jext(E), exhibits hysteresis. The do-
mains on the segment ab of the characteristic are un-
stable (Z(0 )>0) .

The jumpwise decrease of the current and the oc-
currence of a strong-field domain was observed in
many experiments. With further increase of the voltage
on the sample, the current in the external circuit de-
creases, approaching the horizontal asymptote, and
the domain broadens. A domain is observed also at
E < ECi; it vanishes when E~ reaches a certain mini-
mum vaiue[

M.10°.101.125 '119[.
If the load is not very large, a stationary field dis-

tributions (Sec. 3.2) can also exist besides the domains.
For these, the minimum eigenvalue of H is zero. The
corresponding term in the impedance (see (4.7)) is
proportional to i/u>. This means that the observed
CVC is horizontal: with increasing voltage, the "wall"
shifts without a change of the current. If an investiga-
tion of the stability is made, analogous to that made for
the domain, then it turns out that the stationary distri-

FIG. 11. Contour C' in the complex plane f. Solid curve: Z(0) < 0,
Rext< IZ(0)|. Dashed curve: Z(0)> 0, Rext> IZ(0)|.

FIG. 12. CVC of a sample with a domain. The dashed line shows the
decreasing section of the CVC in the case of a homogeneous field distri-
bution.
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bution is stable. In the experiment, the stationary dis-
tribution of the field and the horizontal CVC are ob-
served only at carrier densities below a certain
threshold. At higher concentrations, domains
arise1-95'30'1021. This regularity has not been theoretically
explained.

4.4. Generation and Amplification of Oscillations in
Two-valley Semiconductors

The Gunn effect is used for the generation of micro-
wave oscillations. The frequency of the resultant
oscillations is determined mainly by the time of travel
of the domain from the cathode to the anode, /x/v. It
varies somewhat with the frequency of the resonant
circuit to which the sample is coupled[103]. At the
present time, Gunn generators with output power
340 mW under continuous operation (at frequency
8 GHz) and 615 W in the pulsed mode (at frequency
1.1 GHz) have been constructed. The largest efficiency
reached in the pulsed mode is ~25%[1O4]. The main
shortcoming of Gunn diodes is the decrease of power
with increasing oscillation frequency. This is con-
nected with the fact that to increase the frequency it is
necessary to increase the length of the sample, on
which the output power depends.

Copeland proposed another scheme for the genera-
tion of oscillations with the aid of a semiconductor with
N-shaped CVC[105]. A strong constant field Eo, exceed-
ing the threshold value Eci, is applied to the sample,
placed in a resonator. The value of Eo, the amplitude
of the microwave field Ei, the oscillation frequency f,
and the electron density n are chosen such that no
domains are produced in the sample, but at the same
time, the differential conductivity of the sample is neg-
ative during an appreciable fraction of the period of
the oscillations (ad < 0), and consequently work is
performed by the dc source on the microwave field.
The total field in the sample, comprising the bias field
Eo and the microwave field, should exceed during a
definite working part of the period (6n < 1) the value
of Eci (in this case CTJJ < 0), and should be smaller
than Eci during the other, idling part of the period
(a(j > 0). During the idling part of the period, the vol-
ume charges which have grown during the working part
of the period, are dissipated.

The operating principle of the Copeland generator
imposes definite limitations on the possible values of
Eo, Ei, f, and n. Following Copeland, we present quali-
tative estimates explaining the limitations on f and n.

Since the instantaneous growth increment of the
space-charge fluctuations is -4ira^/e, they grow dur-
ing the working part of the period by

times, and decrease during the idling part by a factor
exp(yp/TMof); here TMo = e/4ir en/io and /i0 are the
Maxwellian time and the mobility in weak fields,

Md = CTd/en is the effective differential mobility, and
T = 1/f is the period of the oscillations. On the whole
during the period, the space charge does not grow if

Yn -> yn- Since the field in the sample is actually in-
homogeneous, this inequality should be satisfied with a
certain margin. In addition, Gn cannot be too large.
Otherwise domains will be produced in the sample.
Copeland assumed in the numerical calculations[105]

V p~y">l , - ^ - < 5 . (4-14)

These inequalities limit the permissible values of
TM0*-> anc^ consequently the ratio n/f. If T^[of is too
small, a domain will have time to form in the sample
during the working part of the period. If it is too
large, then a large value of yn is necessary for the
operation of the device (see (4.14), i.e., a large idling
part of the period is required. The efficiency of the
device is then small. Copeland estimates have shown,
in agreement with experiment, that in n-GaAs at room
temperature the described generation regime takes
place if

2.io*<y<2-iO5 sec/cm3

The generation method proposed by Copeland is
called the limited space charge accumulation (LSA)
mode. The oscillation frequency of the Copeland
generator is determined by the resonator and (unlike
the Gunn generators) is not connected with the travel
time of the domains through the sample. Therefore in
the LSA mode there are no limitations on the length
of the sample, and it becomes possible to obtain high
power at very high frequencies. At the present time a
continuous power of 30 mW was reached at frequencies
44 and 88 GHz[106], and a power of 630 W in the pulsed
mode at ~10 GHz[1071. Copeland generators exceed all
other solid-state devices with respect to power and
frequency.

There are two known methods of amplifying oscilla-
tions with the aid of two-valley semiconductors^10-1.
In the first, samples with /x i , 'dr ( s e e Sec. 2.2) are
used, in which no oscillations are generated. The real
part of the impedance of such samples is negative at
the frequency V/Zx

[72 ' loa '109]. The signal is either ap-
plied to the sample and is amplified upon reflection
from it, or else is fed to a small near-cathode part of
the sample and is picked off (in amplified form) from
the near-anode part).

In amplifiers of the second type, the length of the
sample is larger than the drift length. In such a sam-
ple, domains are produced. The signal fed to the sam-
ple, in which the stationary domain moves, is ampli-
fied as a result of the fact that the real part of the
impedance of the sample is negative up to a certain
maximum frequency (see (4.8)).

5. STATIONARY CURRENT DISTRIBUTIONS IN SEMI-
CONDUCTORS WITH AN S-SHAPED CHARACTER-
ISTIC1611

5.1. Current Layers and Pinches

We have seen (Sec. 2.1) that in homogeneous states
with o,} < 0, the perturbations that increase most
rapidly are those which are independent of the coordi-
nate x in the current direction. We can therefore expect
the development of the instability in the sample to give
rise to stationary (the phase velocity of the perturba-
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tions with the largest increment is zero) temperature
and current-density distributions that depend on the
coordinates y and z. These distributions are de-
scribed by the equation of heat conduction with a non-
linear source, which follows from (2.2) and (2.4):

a*e dp' dp + d& ~~ (5.6)

(5.2)

The character of the possible distributions is sim-
plest to explain by considering the one-dimensional
case, i.e., layered distribution ®(y). Then the equation

_n (5.3)
_

dy*
"3e

has the form of the equation of motion of a particle
without friction in a field with potential U(®). In the
field interval from EC2 to ECi (see Fig. 1), the poten-
tial U(@) has three extrema at the points ®i, ®2, and
®3, which are roots of (1.1). The electron "tempera-
tures" ©i < ®2 < ©3 correspond to three possible
homogeneous stationary states of the semiconductor at
a given field Ex , at which the currents are equal to j l f
j 2 , and j 3 (see Fig. 1). The form of the potential U(®)
is shown in Fig. 4 (the value of % should be replaced
by ®/®2). The potentials U(®i) and U(®2) coincide
(curve 2 in Fig. 6), i.e.,

(5.4)

at a single value of the field Ex, which we shall denote
by Eo.

The form of the phase trajectories is given by the
"energy integral" of Eq. (5.3)

(5.5)

where ®m is the minimal or maximal value of the
"temperature" ® in the distribution. When Eo < E x
< ECi, the separatrix F (it is necessary to replace t
by ® and %%, by d®/dy in Fig. 5) represents a narrow
layer with increased temperature and current density.
Outside this layer, the "temperature" equals ®i, and
the current density is ji . The width of the layer is the
order of the electron energy scattering length (2.7).
Trajectories close to F depict the distribution in the
form of a series of such narrow layers, and those close
to ©2 depict distributions in the form of weak oscilla-
tions of the temperature about T2 and of the current
about j 2 .

When EC2 < Ex < Eo, the separatrix which passes
in this case through ®3 describes a narrow cold layer
in a hot phase.

Only when E x = Eo can two stable homogeneous
phases exist: cold (®i, j x ) and hot (®3, j 3 ) . Such a dis-
tribution corresponds to the trajectory ®i or ®2 in
Eq. 7, which passes through two singular points
"saddles") ®i and ®3. The width of the transition layer
between the phases ("wall") is obviously of the order
of lc. If Ex is very close to Eo, there exists a solu-
tion in the form of a single layer with ® = ©3 or
= ©i, with a width much larger than lc.

For distributions with axial symmetry ®(p) (cur-
rent pinches), Eq. (5.1) takes the form

This equation cannot be integrated, but it follows
from it that the classification established above for
the layers remains in force also for single pinches.
If the radius of the pinch is very large, then we deal
with the coexistence of two stable homogeneous phases;
to the extent that the boundary can be regarded as
practically plane, the condition for the existence of the
pinch of a very large radius is E x = Eo.

Eq. (5.6) differs from (5.3) in the presence of
"friction" with a coefficient that depends on the " t ime"
p. A narrow hot pinch surrounded by a cold plasma
with "temperature" ®i corresponds to motion of a
particle from the point ®(0) to ®1. Owing to the "fric-
tion" we should have U[®(0)] > U(®i), and this means
that Ex > Eo.

Eq. (5.1) for the stationary distribution ®(y, z) is
the Euler equation for the functional

(5.7)

i.e., the stationary distribution © (y, z) corresponds
to the extremum of the "action" * .

It was assumed in[3] that the stationary state of the
sample corresponds to the minimum of entropy in it.
It can be verified that in the systems under considera-
tion the production of entropy differs from * (and the
corresponding Euler equation differs from (5.1) and
(5.2)), so that the assumption made in t3] is incorrect.
It was found in'-3'' that E x =EC2 in the stationary state
(see Fig. 1). However, at EC2 the points ®2 and ©3
coalesce, the potential U(®) has only two equilibrium
states, and there is no solution corresponding to layers
(pinches). Analogously, in the case of an N-shaped CVC
at the jext = JC2 there are no solutions in the form of
domains.

5.2. Stationary Waves

In semiconductors with S-shaped characteristics,
stationary waves of the electron temperature and of
the current can propagate in a direction transverse to
the current. In such waves, the temperature depends
on the coordinate y and the time t like T(y - ct),
where c is the velocity of the wave. The equation for
®(y - ct) differs from (5.3) in the term (ncec//c)
(d@/dy), which has the meaning of a "friction force."
These waves can have the form of shock waves, which
transfer the system from an unstable homogeneous
state (®2) into a stable state (®! or ®3); they are un-
stable, as are the analogous waves of the field in the
case of an N-shaped CVC. For each value of E x in the
interval from Ec2 to EC1 there exists a wave that
transfers the system from a stable state into a stable
state. At Ex = Eo, the velocity of such a wave is ob-
viously equal to zero, and the wave reduces to a sta-
tionary distribution. Temperature and current waves
with c * 0 can be realized only in the given-voltage
regime, and not in the given-current regime, since
they changed the total current in the sample. We
note that such waves transfer the system into a homo-
geneous state with ® = ©3 when Ex > Eo, and into a
state with © = ®! when Ex < Eo. In both cases, the
final states correspond to an absolute minimum of * .
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5.3. Stability of Stationary Distributions

Let us consider the stability of stationary inhomo-
geneous distributions against smal l perturbations 6©
that do not depend on x. (The more general case has
not been considered.) In the case of stat ionary layer
distributions the equation

60 (y, z, t) = 60 (j/) exp (ikzz — It)

is obtained from (2.2) and (2.4):

where

8=8 (i/)

(5.8)

(5.9)

(5.9a)

In (5.8) it is assumed that 6EX = 0, i .e . , either the
voltage is fixed or the perturbation does not change the
res i s tance of the sample (for example, k z ^ 0). It is
again easy to verify (cf. Ch. IV) that d@/dy is the
eigenfunction of the Hermitian operator H with zero
eigenvalue. It follows therefore that the monotonic d i s -
tr ibutions of the tempera ture and of the current (two
stable phases at E x = E o ) a re s table . For a narrow
layer, the minimum eigenvalue of H is negative also
at smal l k z < 0, and the narrow layer is unstable
(unlike the single domain in the case of an N-shaped
charac ter i s t ic ) . The corresponding perturbat ions, in
the forms of necks , tend to break up the layer into in-
dividual current pinches.

Current pinches, including thin ones, a r e stable
against perturbations 6©m(p) exp (inup) with m ^ 0,
which do not change the res i s tance of the sample . In-
deed, the equation for 6® m (p ) is

(//("•)_nCeA)6e ra=o> (5-10)

£<•"> = _ - l - | ( P ^ ) ^ [ 9 = e m + -?£. (5.10a)

At the same t ime, the derivative d@/dp is an eigen-
function of H U ) with zero eigenvalue. If d@/dp does
not r e ve r s e sign, then \ > 0 at m > 1.

5.4. Differential Admittance

Let us calculate the differential admittance and use
the obtained expression to investigate the stability
against perturbations with m = 0. We assume that in
the sample , besides the constant field E x , the re is
also a smal l al ternating field 6EX exp( - iwt ) . We de-
note the amplitudes of the changes of the current den-
sity and of the electron tempera ture by 6Jx(p, w) and
6T(p, w). The admittance is equal to

The equation for 6T(p, w) differs from (5.10) (m =0)
in the presence of a r ight-hand par t :

(tfo(p)_»<:„ —)86(p, u) = 2oEJ>Ex(a). (5.12)

We denote by r\n and (nce/«;)Xn the eigenfunctions
and the eigenvalues of H<0> (we assume for simplicity
that n c e A does not depend on the t empera tu re , mean-

ing also on the coordinate). The functions 7jn describe
different modes, independent of the angle, of the pe r -
turbation of the pinch and of the surrounding plasma.
The ground-state function TJ0 corresponds to a thicken-
ing or to a thinning of the pinch, i .e . , to a change of i ts
rad ius .

Let us find 6T from (5.12) in the form of an expan-
sion in ?7n, and substitute it in (5.11):

Z"1 (0)) = -j- - (5.13)

here

Since the minimum eigenvalue of H(1) is equal to zero ,
we have x0 < 0. Thus, Z'l(u) has at least one pole in
the upper half-plane of o>.

For a sample with a current pinch of large radius
p 0 , greatly exceeding the thickness of the transit ion
layer between the pinch and the surrounding cold
plasma (p0 3> lc), the admittance can be calculated in
explicit form [ 1 1 2 ] :

Z-1(c0) = Z-1(c0)+Z31(0j)-;-ftc-
1 h-rJ^-\~l; (5.14)

here ZV and Z31 a r e the differential admittances of
the cold plasma and of the pinch, regarded as homo-
geneous conductors with c ross sections TT(R2 - pi) and
•npl respectively, and with e lect r ic conductivities Ufa
and ad3 (see (1.3)), and

A = _ W f a . - c V (5-15)

is the negative res i s tance connected with the change of
the radius of the pinch when the current changes, i .e . ,
with the displacement of the pinch wall. In (5.15), the
thickness

(5.16)

2F4 \ 0(6) d8

is of the order of the thickness of the pinch wall
(I ~ lc ); 0i and a3 a r e the e lect r ic conductivities of
the cold and hot plasma at E x = Eo. The frequency is

63

T~\
(5.17)

where T is of the order of the t ime of dissipation of the
energy in the homogeneous plasma. The quantity L c

= R c /Xo has the meaning of the inductance connected
with the inert ia of motion of the pinch wall. The equiva-
lent circuit of a sample with a large-radius pinch
consists of paral lel-connected impedances Z1( Z3, and
the "wall impedance ." which represen t s the circuit
made up of R c < 0 and L c .

To investigate the stability of the pinch against pe r -
turbations that change the res i s tance of the sample, let
us find the roots of Eq. (4.10). When R e x t = 0, i .e . , In
the given-voltage reg ime , the pinch is unstable, since
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Z(w) has a zero in the upper half plane (Z 1(u>) has
there a pole - ix 0) . When Rext * 0, the investigated
equation can be represented in the form

- 0 . (5.18)

We have found above that Z'^co) has at least one pole
in the upper half plane when a current pinch is present
in the sampe. If the pinch radius is large (p0 S> I),
such a pole is a solitary one. Indeed, in this case
| Xol is a small quantity (see (5.17)) and we cannot
expect to find even one more negative level in the po-
tential well -u"[®(p)] (5.10).

In the investigation of the stability of the pinch it is
necessary to bear in mind that its contribution to the
imaginary part of Z ' ^OJ) has an inductive character
(oiImZ''(ii))>0). In the case when Z '^w) has only
one pole in the upper half plane, the zeroes of g(w)
(5.18) are investigated in exactly the same manner as
the stability of the domain (Sec. 4.2). The conclusions
are also similar. If Z'^O) < 0, then the current pinch
is stable when Rext > | Z(0) |, i.e., in the given-current
regime. But if Z(0) > 0, the pinch is unstable inde-
pendently of the load. Thus, the current pinch is stable
only on the decreasing part of the CVC of the sample
with the pinch.

5.5. Current-Voltage Characteristic

Qualitatively, the form of the CVC of a sample with
a pinch can be explained in rather general form. The
current density averaged over the cross section is

1='=it(Er)+J^M, (5.19)

where ji(Ex) is the current density on the lower
branch of the S-shaped CVC, and

(5.20)

is the excess current in the pinch. So long as the pinch
wall is far from the boundaries of the sample
(R - p0 3> ĉ ), the current Ip does not depend on the
sample radius R.

It follows from (5.6) that in fields Ex that are close
to Eci, the amplitude of the pinch jmax - ji is small.
It can be shown that it is proportional to (EC1 - Ex)1 / 2 .
But with increasing ECi - Ex , the effective area of the
pinch decreases in exactly the same manner, and there-
fore the current Ip does not depend on Ex or on the
order of JciZc2- K follows from this and from (5.19)
that in samples with a large cross section (R2 ^> lz)
the CVCf(Ex) near ECi lies somewhat higher and
parallel to the lower branch of the S-shaped ji(Ex)

FIG. 13. CVC of a sample with a current
pinch. The dashed line shows the decreasing sec-
tion of the CVC in the case of uniform current
distribution.

curve, i.e., it is increasing, Z(0) > 0. (Fig. 13).
On the other hand, in fields that are sufficiently

close to Eo, the statistical impedance of the sample
with the pinch is negative and the CVC is decreasing.
Indeed, near Eo there can exist only a large-radius
pinch po 2* I. The "excess" current in such a pinch is

Ip = np\lh(Ex) — h(Ex)]. (5.21)

Differentiating ji(Ex)S + Ip with respect to Ex and
comparing with expression (5.14) for Z'^O), we find
that with increasing p0 the field Ex approaches Eo
like

I
Po '

(5.22)

At sufficiently small Ex - Eo, the main term in Z-1(0)
is the negative conductivity of the wall

so that Z'^O) < 0. The absolute value of | Z(0) | is small
and the CVC is close to vertical Ex = Eo.

It follows from the foregoing that the CVC of the
sample with small transverse dimensions ( R > i ) has
in the presence of a current pinch the form shown
schematically in Fig. 13. Only the stationary states on
the decreasing section, Z(0) < 0, are stable (see Sec.
5.5). With increasing current in the sample, in the
regime with the large load near j = jci, the field de-
creases jumpwise. When the current is increased fur-
ther, the CVC approaches the vertical line Ex = Eo. If
the pinch produced after the field jump has initially a
large radius, then the CVC is vertical (Ex = Eo) al-
ready when j > jC i . On the vertical section, the current
increases as a result of the increase of the pinch
radius. If the current is decreased, then the jumplike
increase of the field occurs at j < j c l , i.e., hysteresis
takes place (see Fig. 13).

Let us examine the most important particular case,
when the radius of the sample is sufficiently large
compared with I, so that

Under this condition, the impedance Z(0) of the
sample with the pinch passes through zero in a field
Ex close to Eo, i.e., when the pinch has a large radius
Po ^> I (this follows from (5.14)). No thin pinches are
produced, since the entire decreasing (i.e., stable)
branch of the CVC corresponds to thick current
pinches. The entire branch observed in the presence
of the pinch is close to vertical, Ex =E0.

Current-voltage characteristics with a break in the
voltage and with a vertical section were observed in
n-InSb[22j241, and in germanium in low-temperature
breakdown1501 (Fig. 5). McWhorter has established
that the collapse of the voltage in the breakdown is
connected with the occurrence of a current pinch,
namely, the conductivity of the sample in the direction
perpendicular to the current remains unchanged during
the breakdown*. Current pinches under breakdown
conditions were investigated in[113].

In some semiconductors, the CVC has a complicated

McWhorter's work is described in [113].
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form: it is N-shaped in one region of the currents
(fields), and S-shaped in another. For example, in
n-CdTe, when the field is increased, domain motions
connected with the N-shaped characteristics is first
observed, followed, at a definite average field in the
sample, by a jumpwise increase of the current and a
drop of the voltage. This gives rise to glowing pinches
that are elongated in the direction of the current. The
glow is due to the recombination of the electrons and
the holes produced in the breakdown of the semiconduc-
t o r [ 1 M ] .

5.6. Alternating-current Behavior

The properties of a sample with a current pinch
when a small alternating signal is applied are de-
scribed by the differential admittance (5.13). The dy-
namic characteristics of samples with current pinches
were not investigated experimentally. Nonetheless, it
is of interest to discuss the frequency dependence of
the admittance Z ' ^ O J ) , from which one might deter-
mine the characteristics of the pinch. We shall do so
using as an example a sample with a large-radius
current pinch, when the static CVC is close to vertical.
In the corresponding expression (5.14), the frequency
| Xo I —' (1/PO)2T~1 <^ T'1, where T is the characteristic
time of energy dissipation in the homogeneous plasma.
Therefore the dispersion of the admittance is much
narrower at low frequencies w <K T'1. The motion of
the pinch wall, which determines the static current-
voltage characteristic, is rapidly "turned off" with
increasing frequency. One can therefore speak of
" iner t ia " of the wall, corresponding to an inductance

L c.
The real part of the impedance vanishes at a fre-

quency
1/2 (zr1 (0)-r zr №r1/2,

which is larger than |xo|, but still smaller than r"1.
When

the oscillations of the wall can be neglected in general;
the electric conductivity is simply made up of the
electric conductivities of the pinch and of the surround-
ing cold plasma.

5.7. Analogies with Phase Transitions

The result suggests a number of analogies between
the behavior of systems with negative differential re-
sistance and with phase transitions, for example in the
liquid-gas system. The Van der Waals isotherm,
plotted in "average density of both phases—pressure"
coordinates, is similar to the S-shaped dependence of
the current density on the field. The states on the de-
creasing branch with cr̂  < 0 are unstable, similar to
the states on the same branch of the isotherm on which
9p/3 V > 0. Just as in the case of the phase transitions,
the long-wave perturbations are the fastest to increase.
The conditions for the equilibrium of broad stable
regions, U(©i) = U(®3), is similar to the thermody-
namic condition for phase equilibrium, which calls for
equality of their chemical potentials ji. The condition

for the extremum of the thermodynamic potential of the
system corresponds in our case to the condition for the
extremum of * (5.7), in which—U plays the role of ii.

Notice should also be taken of the analogy between
the effects of motion of the wall of a current pinch
under static or dynamic variation of the current and
the sample, and the effect of motion of the domain walls
is ferromagnetic and in ferroelectric substances.

6. CERTAIN PROBLEMS
In conclusion, we note certain unresolved problems

in the physics of semiconductors with negative differ-
ential conductivity.

There are at present too few experimental data on
semiconductors with S-shaped CVC to permit a com-
parison with the existing theory. In addition, almost all
the observed S-shaped CVC and current pinches are
connected either with breakdown or with injection from
contacts. At the same time, there is no satisfactory
theory of breakdown accompanied by occurrence of an
S-shaped CVC, and particularly the theory of pinching
of the current in breakdown and injection.

The influence of the magnetic field on the instability
in semiconductors with negative differential conductiv-
ity has hardly been investigated. In particular, it is to
be expected that under definite conditions magnetic
striations can arise in a semiconductor, similar to the
magnetic striations in a weak ionized gas plasma[121'1231.

It is interesting to ascertain whether a generation
similar to the Copeland generator can be based on a
semiconductor with an S-shaped CVC.

No traveling layer waves, weak field domains, or
(in two-valley semiconductors) broad domains with
flat tops have been observed as yet. The reason why a
stationary layered distribution of the field (Sees. 3.2
and 3.5) exist only at carrier densities smaller than a
certain critical value, and a moving domain is pro-
duced at a higher density, remains unexplained.
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