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JM.ELTING occupies a special position in the general
system of phase transitions as a universal physical
phenomenon that can be observed for virtually any sub-
stance. In this respect, melting can be compared with
boiling, which is just as universal. Even more essential
is still another special feature of melting, for which
there exists no analog, namely, the fact that melting
represents a result of competition between two con-
densed and yet fundamentally different states of matter:
liquid and solid. Obviously, this phenomenon cannot be
disregarded and has been the subject of painstaking
studies by many investigators, which have resulted in
accumulating a large number of experimental findings
and empirical generalizations concerning melting and
crystallization (see, e.g.,113)- Despite its abundance,
however, the accumulated experimental material has not
yet adequately contributed to developing some acceptable
theory of melting that could unify the known facts and
predict some new aspects of this phenomenon. Aside
from the known difficulties of a rigorous statistical ap-
proach to the problem of phase transition in general,
such a situation is chiefly attributable to the lack of
sufficiently suitable models of molten state that could
qualitatively reflect reality faithfully [2~4]. It is perfectly
obvious that under these conditions research into the
effect of pressure on the melting temperatures is of
major interest and may lead to the discovery of new and
possibly unexpected effects.

The present review is an attempt to expound and, to
some extent, critically generalize the experimental
material on the melting of substances at high pressures.

1. ELEMENTARY INFORMATION ON MELTING
Melting, like crystallization, occurs at strictly de-

fined temperatures and is accompanied by abrupt chan-
ges in volume and entropy. It is worth noting that the
melting process is distinguished kinetically by a major
feature, namely, by the fact that when a crystal is heated
from the surface, its superheating above the melting
point is virtually impossible and in these conditions
melting always commences at the surface of the crystal.
The decisive role of the surface is here indubitable and
it essentially lies in reducing to zero the activation en-
ergy for the formation of a surface nucleus (thin liquid
film) [2 '5].

This feature of melting, when considered outside
its relation to kinetic conditions, has prompted many
investigators to assume that a solid at its melting point
is absolutely unstable163.

First of all, it must be observed that any substance
not in internal equilibrium cannot be in equilibrium with
any other substance. However, observations of the co-
existence of the liquid and crystal at the melting point
leave no doubt that this coexistence is of an equilibrium
nature. Further, there exist proofs that if a crystal is

heated from the inside, so that its surface is colder than
its interior, superheating can be accomplished£7'8:.
Similar results can be obtained during melting under
pressure at a constant temperature [8 : .

Thus, melting represents a typical first-order phase
transition with metastable states existing on both sides
of the transition point, and the transition point itself is
determined by the equality of the corresponding thermo-
dynamic potentials. Like other first-order phase tran-
sitions, it is governed by the Clausius-Clapeyron equa-
tion

dT
IF AV

AS '
(1)

w h e r e T and P a r e t h e m e l t i n g t e m p e r a t u r e and p r e s -
s u r e , AV and AS a r e t h e c h a n g e s in v o l u m e and e n t r o p y
d u e t o m e l t i n g . T h e e n t r o p y of t h e l iqu id p h a s e i s a l w a y s
g r e a t e r * t h a n t h e e n t r o p y of t h e c r y s t a l and h e n c e t h e
c h a n g e in e n t r o p y upon m e l t i n g i s a l w a y s p o s i t i v e :

A5 m e l t >0. (2)

T h e c h a n g e in v o l u m e upon m e l t i n g m a y be e i t h e r
p o s i t i v e o r n e g a t i v e and h e n c e , a s fo l lows f r o m (1) and
(2), t h e s l o p e of t h e m e l t i n g c u r v e d T / d P a l s o m a y dif fer
in s i gn and i s e n t i r e l y d e t e r m i n e d by t h e s i gn of t h e
c h a n g e in v o l u m e .

T o p r o v i d e a n i dea of t h e o r d e r of m a g n i t u d e of t h e
c h a n g e s in v o l u m e and e n t r o p y upon m e l t i n g , T a b l e I

Table I

Element

Lithium

Sodium
Potassium
Rubidium
Cesium
Aluminum

Copper
Silver
Gold
Lead
Magnesium
Zinc
Cadmium
Indium
Tin

Antimony
Bismuth
Germanium
Gallium
Argon
Krypton
Xenon

Crystal structure

Body-centered cubic

Face-centered cubic

Hexagonal closed-
packed

Tetragonal face-centered
Tetragonal body-centered

Rhombohedxal
Cubic diamond
Rhombic
Face-centered cubic

iV/V

0.0165
0.025
0.0255
0.025
0.026
0.060
0.0415
0.038
0.051
0.035
0.041
0.042
0.040
0.020
0.028

—0.0095
—0.0335
—0.05
—0.032
—0.144

0.151
0.151

AS, cal/mol-deg

1.59
1.68
1.65
1.79
1.69
2.74
2.30
2.19
2.21
1.90
2.31
2.55
2.44
1.82
3.41

5.25
4.78
6.28
4.41
3.35
3.36
3.40

dT/dP, deg/kg-cm 2

0.0032
0.0084
0.0166
0.0183
0.0252
0.0054
0.0032
0.0044
0.0058
0.0081
0.0062
0.0036
0.0052
0.0042
0.0031

—0.00078
—0.0035
-0.0026
—0.0020

0.0255
0.0322
0.0398

One of the exceptions to this rule is associated with the ordering of
nuclear spins in liquid He3 at extremely low temperatures [9 •10 ] .
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Table H

Element

Lithium
Sodium
Potassium
Rubidium
Cesium
Aluminum
Copper
Silver
Gold
Lead
Magnesium
Zinc
Cadmium
Indium
Tin
Antimony
Bismuth
Germanium
Gallium
Argon
Krypton
Xenon

Solid State
Tempera-
ture, °K

100*
100

40
20.5
8S

Coordination
Number

8
8
8
8
8

12
12
12
12
12

6+ti
6 ! (i
6—6
4-1 8

4-! 24 4
3-1 3
3-!-3

/£1 • 2+2+2

12
12
12

Interatomic
distance, A

3.03
3.72
4.iO
4.87
5.24
2.86
2.55
2.88
2.88
3,49

3.19—3.20
2,66 • 2.1.0
2,97-1 3,29
3.24 - 3.37

3.02-1 3 .17-3.76
2.87-- 3.37
3.10 : 3.47

2 'i4
2.444 2.71 —

j - 2.74 ' 2.80
3.83
3.95
4.40

Tempera-
ture, °K

453.7
373
338
313
303
973

1373
1323
1350
623
033
733
623
433
505
938
558

1273
293

86.3
117

Liquid state

Mean co-
ordination
Number

9,5
9.0
9.0
9.5
9.0

10.6
11.5
11.0
11.0
11.7
10.0
10.8
8.3
8.5
8.2
6.1
7.6
8.0

11.0

8.2
8.5

- 8 . 3

Temperature in this column is specified only whenever it markedly
differs from room temperature.

Mean Inter-
atomic

distance, A

3.15
3.82
4.(i4
4.97
5.31
2.96
2.56
2.86
2.85
3.38
3.35
2.94
3.06
3.30
3.26
3.12
3.35
2.7
2.77

3.9
4.02
4.43

presents the corresponding data for a number of ele-
ments. It also lists the initial slope of melting curves,
calculated as the ratio AV/AS in accordance with Eq. (1).

Moreover, it is worthwhile to compare certain struc-
tural characteristics of solids and the corresponding
liquids. To this end, Table n presents information on the
number of nearest neighbors or the coordination number
of atoms in solids and liquids, as well as on the shortest
interatomic distances. It is worth recalling that the
fundamental differences existing between the structures
of liquids and crystals make this comparison highly
arbitrary, if only because the very concept of the coor-
dination number has a different meaning for crystals
and for liquids m .

The principal source of information on liquid struc-
ture is the radial distribution function, which can be
calculated from the data on the scattering of x rays and
neutrons by the liquid. The radial distribution function
g(r) determines the probability of finding a liquid parti-
cle at a distance between r and r + dr from another fixed
particle, and is specified by the relation

AW{r)-g(r)4nr2dr

The function g(r) oscillates with damping about the value
of unity and it usually displays two or three distinct
maxima, pointing to the existence of short-range order-
ing and determining the mean distances from a given
fixed particle to particles located in the first, second,
etc. coordination spheres. The number of particles in
the corresponding coordination spheres can be calcula-
ted with the aid of the integral

§ g (r) 4nr2 -y dr,

where r i and r2 are the coordinates of the minima of the
function g(r).

In contrast with the above, the radial distribution
function in crystals displays a pronounced discontinuous
nature, so that the probability of finding atoms outside
fixed positions is practically zero.

Nonetheless, we shall speak of the similarity of or,
conversely, difference between the structures of liquids
and crystals, but we shall construe thereby only the
similarity of and difference between the mean coordina-
tion numbers and interatomic distances.

When Tables I and n are both simultaneously exam-
ined, interesting correlations between the liquid struc-
ture due to melting and the variations in thermodynamic
properties can be perceived. On melting of substances
with closely packed structures the coordination number
in the liquid acquires a lower value than in the crystal,
while interatomic distances do not change markedly. The
volume jump then reaches 4—15% and is to a large ex-
tent determined by the coordination number in the liq-
uid. On melting of substances with relatively loose
structures, on the other hand, a distinct tendency toward
a rise in coordination number and a decrease in volume
change manifests itself. In cases where the coordination
numbers increase significantly (which naturally is pos-
sible only for the originally highly loose structures),
moreover, the sign of the volume jump may be reversed;
then, in accordance with the rules of sphere packing, the
interatomic distances also increase.

The material presented in the tables demonstrates
that the changes in thermodynamic and structural prop-
erties during melting are to a sufficient degree individ-
ual and therefore we cannot assume the existence of
some universal law, such as the law of corresponding
states, that could apply equally to the melting of any
substance.

However, laws of this kind may exist for individual
groups of elements or compounds with a common nature
of interaction and common crystallochemical features.
Moreover, it is conceivable that, given extremely high
pressures at which all substances acquire some one of
the close-packed structures and the interaction between
atoms will be determined only by the repelling part of
the interaction potential, the melting phenomenon must
display certain common basic features both as regards
the shape of the melting curve and as regards the varia-
tion in various thermodynamic properties during melt-
ing. In all likelihood, it is the hope to discover these
fundamental properties of melting that prompts the in-
vestigators to study the melting of substances under
increasingly higher pressures. A major stimulus in
this respect is also the striving to solve a number of
geophysical and technological problems.

2. BASIC THEORIES OF THE BEHAVIOR OF THE
MELTING CURVE AT HIGH PRESSURES
At present there still does not exist a universally ac-

cepted and rigorously substantiated theory of the behav-
ior of the melting curve at high pressures. The existing
fundamentally intuitive theories mostly reduce to ideas
of unlimited rise in melting temperature with rise in
pressures and of conservation of the thermodynamic
characteristics of melting as a first-order phase transi-
tion under even the highest pressures. At the same
time, the old hypothesis that the melting curve, like the
boiling curve, terminates at the critical point still en-
joys wide currency tl9"22J.

Let us recall that, generally speaking, two types of
critical points at which the first-order phase transition
terminates may be considered133-1: 1) critical point of
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the first type, analogous to the critical point on the boil-
ing curve, above which there does not exist any continu-
ity of properties of the system; 2) critical point of the
second type, at which the first order phase transition
switches to a second-order phase transition.

The impossibility of the critical point of the first
type in melting is at present sufficiently obvious and can
be substantiated by the arguments proposed in 1937 by
L. D. Landaut23J. The absence of long-range order in
liquids results in their complete isotropy, whereas crys-
tals are always anisotropic. Hence, the transition from
liquids to crystals entails the disappearance of a number
of symmetry elements. But since a gradual disappear-
ance of elements of symmetry is impossible, a gradual
transition from liquid to crystal state also is impossi-
ble.

As for the possibility of existence of the critical point
of the second type, here the situation is less clear. The
melting theory of Lennard- Jones and Devonshirel2i:

predicts the existence of this point, but the shortcomings
of this theory are so substantial that its predictions can-
not be accepted as arguments.

L. D. Landau considered this question by his well-
known method of expanding the thermodynamic potential
in powers of a small parameter and arrived at the con-
clusion that the critical point of the second type cannot
exist on the melting curve1233. But this conclusion
clearly is valid only to the extent that the assumption of
the possibility of expansion of the thermodynamic poten-
tial in the neighborhood of the transition point is valid.
Since AV = 0 and AS = 0 are necessary conditions for the
existence of critical points of the first and second types,
this problem can be logically resolved by considering
the variations of AV and AS along the melting curve.
The corresponding experimental material will be pres-
ented in the next chapter but, to anticipate the matter
somewhat, it must be stated that the experimental situa-
tion is not favorable to the idea that AV and AS both turn
to zero at some one final pressure. This conclusion was
first most clearly formulated by P. Bridgman t25:.

It should be noted that, despite the mention of the ex-
istence of melting curves with a negative slope (dT/dP
< 0), we shall not consider these curves in our discus-
sion. This is not accidental, since even P. Bridgman in
his time established that substances with a negative
slope of the melting curve—he had termed melting
curves of this kind "anomalous"—undergo phase transi-
tion with rise in pressure, whereupon their melting
curve acquires a positive slope1261. Modern studies
confirm this regularity (see later pages). It is not our
aim to trace the entire history of this question and hence
we shall not consider various hypotheses that are merely
of historical interest. Practically the entire material
concerning the various theories of melting curves can
be found in Bridgman's reviews'25'26-1. However, for
reasons which will become clear later on, we shall dwell
for the moment on Tammann's hypothesis of the tem-
perature maximum on the melting curve t27]. Tammann
based his arguments on his theory of the molecular
structure of liquids. He assumed that, owing to their
non-ordered structure, liquids under high pressures
can occupy a smaller volume than solids. The experi-
mentally established fact that liquids are more com-
pressible than the corresponding solids was adduced in

favor of Tammann's argument. Tammann had succeeded
in discovering a maximum on the melting curve of
Glauber's salt Na2SO4 • 10H2O, which further strength-
ened his conviction of the validity of his hypothesis.
However, his opponents pointed out that Glauber's salt
behaves as a two-component system and its "melting
curve" actually represents the line of a three-phase
equilibrium. In particular, Bridgman persisted in his
idea of the unlimited rise of the melting curve with rise
in pressure. Ultimately, Bridgman's elegant experimen-
tal studies enabled him to consolidate in science his
theory of the behavior of the melting curve. Such had
been the state of the question in the late 1930s.

It must be noted, however, that the technical level of
experiment at that time did not make it possible to in-
vestigate substances with melting points exceeding
200—250° C and the maximum pressures then attainable
in the laboratory were limited to 30,000 kg/cm2. There-
fore, the variety of substances investigated had been
very limited. In the postwar years, on the other hand,
high-pressure technology has been making extremely
rapid progress owing chiefly to such stimuli as the de-
mand for artificial diamonds. Methods of creating pres-
sures reaching as much as 100,000 kg/cm2 have been
developed, in a combination with temperatures of the
order of 2000° C, on using plastic solids as the pressure-
transmitting media[28J.

Special mention should be made of the development
of methods for determining the melting points of trans-
parent substances under conditions of shock compres-
sion[38].

The possibilities of the old method—the creation of
hydrostatic pressures by compressing gases or liquids—
also have been markedly expanded, owing to the intro-
duction of heaters inside high-pressure chambers, which
made it possible to attain much higher temperatures.
Such great methodological advances considerably broad-
ened the stream of new information, including also new
information on the melting of various substances under
high pressures. One of the most interesting results of
recent research into phase equilibria under high pres-
sures was the discovery of temperature maxima on the
melting curves of a large number of substances (see
later). It is highly intriguing that these curves display
the same regularity as the melting curves with negative
slope. Beyond the maximum, i.e., in the region of pres-
sures corresponding to a negative slope of the melting
curve, solids undergo a phase transition whereupon the
slope of the melting curve becomes positive. Thus the
totality of the experimental data known at present makes
it possible to divide the T-P diagrams of monocompon-
ent systems into three types, as illustrated in Fig. 1.

It is noteworthy that monatomic substances such as
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FIG. 1. Three types of phase diagrams of monocomponent systems
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solidified noble gases, noble metals, etc. which already
have a close-packed structure under normal conditions,
in all likelihood can undergo a phase transition only at
extremely high pressures. Clearly, transition of this
kind will be conditioned by changes in the electronic
structure of atoms, collectivization of electrons and
nuclear transformations[5]. Hence, on confining atten-
tion to the pressure range of the order of
104—106 kg/cm2, we cannot presuppose the absence of
any transformations in these substances that might dis-
tort the ideal course of the melting curve. For this very
reason, in our present attempt to elucidate the basic
laws of melting, we shall consider only close-packed
and similar substances whose melting curves, within the
limits of experimental data, display a continuous rise
with rise in pressure. Melting curves with a negative
slope and with temperature maxima, which we shall
term "anomalous," are considered separately.

3. MELTING OF SUBSTANCES WITH CLOSE-PACKED
STRUCTURES

We have already pointed out above that the melting
points of a substance with close-packed or similar
structures rise with increase in pressure. The rate of
this r ise, or the magnitude of the derivative dT/dP,
ranges within very broad limits. Some idea of the initial
slopes of melting curves can be derived from Table I.
On the whole, it may be noted that at atmospheric pres-
sure the highest dT/dP is displayed by substances with
a large molar volume and weak interatomic forces. Fig-
ures 2—3 present the melting curves of a number of ele-
mentary substances. It must be immediately noted that

FIG. 2. Melting curves of Ar, Kr
andXe[29]

FIG. 3. Melting curves of
metals [30>31]

it is not our purpose to expound here the available
numerical or graphic material on melting curves. This
material and the pertinent bibliographical references
can be found in recent reviewsC33~35].

It can be seen from Figs. 2—4 that the slope of the
melting curves decreases with increase in pressure,
i.e., d2T/dP2 < 0. This points to a more rapid decrease
in the volume jump than in the entropy jump along the
melting curve.

It is interesting to note that the melting curves of
many substances have at present been traced up to tem-
peratures greatly exceeding the critical-point tempera-
ture. This can be readily ascertained by comparing the
critical temperatures for Ar, Kr and Xe, which are 87.3,
119.8 and 165° K, respectively, with the melting curves
of these substances shown in Fig. 3.

The information that can be extracted solely from
knowing the P- T coordinates of melting is not very con-
siderable, but nevertheless it warrants the conclusion
that the general pattern of the melting curves remains
unchanged up to the highest pressures corresponding to
a nearly twofold compression of the substance (Fig. 4).
Moreover, since melting, like any other first-order
phase transition, is reflected by the continuity of some
properties, it can be stated that this continuity persists
throughout the experimentally investigated range of
pressures. Nevertheless, it cannot as yet be confidently
stated that the application of still higher pressures will
not affect the nature of this phenomenon.

We shall now consider the variation in the volume
jump AV and entropy jump AS along the melting curve.
It must be emphasized that some caution must be ap-
plied when investigating the pressure dependence of AV
and AS and, a fortiori, when extrapolating these varia-
bles beyond the limits of experimental pressures. The
point is that the measurement of AV along the melting
curve is an intricate problem that is compounded by
difficulties of a fundamental nature. The measurement
errors are very large and in some cases may reach
30%C36]. By way of an example, Fig. 5 presents the tem-
perature dependence of the volume discontinuity during
the melting of mercury according to Bridgman's data
and the more thorough measurements by V. S.
Bogdanovt36:. It can be seen that the course of the two
curves is markedly dissimilar, although their absolute
values are similar. Even greater caution must be pre-
served when considering AS, since this quantity, as a
rule, is derived from known values of dT/dP and AV in-
stead of being directly measured.

In this connection, it seems reasonable to us, when
examining the behavior of AV and AS along the melting
curve, to confine attention only to the experimental re-
sults in which the variation in these quantities has been

FIG. 4. Melting curves of Cu,
Ni and Pb (derived from data on
shock compression [32])

30 40 5U
P,103 kg/cm2
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2Ztl\ZW ZW ZSH ZBO Z70 T'K
FIG. 5. Temperature dependence of volume discontinuity during the

melting of mercury [36 ]. •—Bridgman's data; O-V. S. Bogdanov's data
t 3 6 ] .

traced over a broad range of values. Figures 6—10
present the corresponding data in the coordinates
(AVm/Vs) - P and (AS/R) - P, where AVm is the volume
discontinuity during melting, Vs is the current volume of
the solid at the melting point, and R is the gas constant.
On these plots the values of solid-phase volume at the
melting point also are presented along the pressure
axis in order to provide an idea of the degree of com-
pression of the substance.

We note that when elucidating the common features of
the variation in some quantity along the melting curves
the isotopes of helium should perhaps not be considered
by way of an example, since the behavior of these iso-
topes is largely determined by zero-point energy. More-
over, in view of the closeness of the melting points of
helium to absolute zero at low pressures, the manifesta-
tion of Nernst's heat theorem is essential here and hence
the entire behavior of thermal characteristics must dif-
fer from the ordinary. However, there is reason to hope
that so far as volume properties are concerned the
situation is more favorable.

0.15

OJO

0ff5

W ZZ4
zn zej //Knan'/raole

37MS 35JS 33.7 , cm3/mole
FIG. 6. Pressure dependence of relative volume discontinuity during

melting of Ar, Kr and Xe [29 ].

am

0JI5
№4

lZ!t3 1W

T27S 71Z2 1DJZ ^"'H

FIG. 7. Pressure dependence of relative volume discontinuity during

melting of He 3 (O) and He" (•) [ 3 7 ] .

R e t u r n i n g t o o u r d i s c u s s i o n of t h e p l o t s i n F i g s .

6 — 1 0 , w e c o n s i d e r f i r s t t h e v a r i a t i o n i n A V m / V s . It c a n

b e s e e n t h a t A V m / V s d e c r e a s e s v e r y r a p i d l y a t l o w

p r e s s u r e s . T h i s e f f e c t i s s a t i s f a c t o r i l y e x p l a i n e d b y t h e

e a r l y o b s e r v a t i o n s of B r i d g m a n C 2 5 ] , w h o e s t a b l i s h e d t h a t

t h e c o m p r e s s i b i l i t y of l i q u i d s u n d e r l o w p r e s s u r e s

g r e a t l y e x c e e d s t h e c o m p r e s s i b i l i t y of t h e c o r r e s p o n d -

i n g s o l i d s . H o w e v e r , B r i d g m a n a l s o p o i n t e d o u t t h a t

a l r e a d y u n d e r p r e s s u r e s of t h e o r d e r of s e v e r a l t h o u s -

a n d k g / c m 2 t h e c o m p r e s s i b i l i t y of l i q u i d s c o m e s

m a r k e d l y c l o s e t o t h e c o m p r e s s i b i l i t y of s o l i d s . H e n c e ,

i t c a n b e s e e n i n F i g s . 6 — 1 0 t h a t a s p r e s s u r e i n c r e a s e s

t h e r a t e o f v a r i a t i o n i n A V m / V s d i m i n i s h e s a p p r e c i a b l y ,

a n d i t i s h i g h l y p r o b a b l e t h a t t h i s r a t i o t e n d s t o a c o n -

s t a n t v a l u e . T h i s i s e s p e c i a l l y c l e a r l y e x e m p l i f i e d by

t h e h e l i u m i s o t o p e s a n d N a C l * , w h o s e b e h a v i o r c a n b e

t r a c e d u p t o e x t r e m e l y h i g h d e g r e e s of c o m p r e s s i o n

( F i g s . 7 a n d 1 0 ) .

S o f a r a s t h e v a r i a t i o n i n t h e e n t r o p y d i s c o n t i n u i t y i s

c o n c e r n e d , t h i s d i s c o n t i n u i t y a l s o r a p i d l y d i m i n i s h e s

u n d e r l o w p r e s s u r e s a n d i n t h e c a s e of C u , A l a n d N a C l

(cf . F i g s . 8 a n d 1 0 ) i t r a p i d l y r e a c h e s a n e a r l y c o n s t a n t

v a l u e . F o r n o b l e g a s e s t h e r e s u l t s a r e n o t a s d e f i n i t e ,

but t h e l i m i t i n g d e g r e e of c o m p r e s s i o n r e a c h e d i n t h e i r

c a s e i s m u c h s m a l l e r t h a n f o r C u , A l a n d N a C l . N e v e r -

t h e l e s s , e v e n t h e s e s u b s t a n c e s t o o d i s p l a y s o m e t e n -

d e n c y t o w a r d s a t u r a t i o n (cf . t h e c u r v e of A r i n F i g . 9 ) .

M7\3,[l

F I G . 8 . P r e s s u r e d e p e n d e n c e

o f r e l a t i v e v o l u m e d i s c o n t i n u i t y

a n d e n t r o p y d i s c o n t i n u i t y d u r i n g

m e l t i n g o f A l a n d C u . D e r i v e d

f r o m d a t a o n s h o c k c o m p r e s s i o n 4Kf-p

[ 3 2 ] O a n d X - A S / R ; • a n d A

" A V m / V s . m i

am

№

a

Ll

ism

w

w

^ _

1.5

m i

ZO P,W6 bar

cm3/g

№70

F I G . 9. P r e s s u r e d e p e n d e n c e o f e n t r o p y d i s c o n t i n u i t y d u r i n g m e l t -

i n g o f A r , K r a n d X e I29 ].

A s i s k n o w n , N a C l is n o t a s u b s t a n c e w i t h a c l o s e - p a c k e d s t r u c t u r e ,

b u t w e d e e m e d i t p o s s i b l e t o u s e h e r e t h e f i n d i n g s o f [ 3 8 ] , s i n c e t h e y

p o i n t t o t h e a b s e n c e o f a n y p e r t u r b i n g e f f e c t s o n t h e m e l t i n g c u r v e a t

p r e s s u r e s o f u p t o 1 0 6 k g / c m 2 .
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/Jbar

052 a.37 qzs
FIG. 10. Pressure dependence of relative volume discontinuity and en-

tropy discontinuity during melting of NaCl. Derived from data on shock
compression [3S ].

Thus, the available experimental material, though
highly limited, demonstrates that the quantities AVm/Vg

and AS do not tend to zero. Moreover, the assumption
that

m > const,

as
const (3)

becomes highly likely, and we have no choice but to con-
clude that, in the words of Bridgman penned many years
ago [25]: " . . . We must recognize that the experimental
data available at present point to a high probability that
the melting curves of all substances rise without limit
at a gradually decreasing rate until the pressure rea-
ches a value at which phenomena of a completely new
kind will arise "

Here it is appropriate to consider the recent study
by Ross and Alder [39:, which concisely presents the
calculations of the melting curve of argon by the Monte
Carlo method. As is known[40], the Monte Carlo method
can be used to directly calculate the configuration
integral by means of numerical integration over a ran-
dom ensemble of points, and hence the solution of the
problem requires only specifying the function of inter-
molecular interaction. The results of these calculations
are presented in Table III and in Figs. 11 and 12.

Figure 11, in which the experimental and theoretical
isotherms at 108.15°K are compared, shows that the
Monte Carlo method is in good agreement with experi-
ment. As can be seen from the table, the calculations
can be extrapolated to extremely high pressures and
temperatures (~4x 106 bar and >104oK) and, in all
likelihood, the behavior of real argon may differ from
the behavior dictated by the calculations owing to the
deviation of the interaction potential from additiveness
at high temperatures and pressures [ 4 1 ] . Hence, in a
certain sense, the described "machine" experiment is
even of a greater value than a real experiment, since it
allows tracing the "pure" line of the phenomenon.

Table m

Tm,°K

83.81
108.15

2440
12200

Pm.kbaj

1.01+0.08
292+10

3970+30

'Experimental result

Vs, cm
3/mole

24.61 *)
24.40+0.12
ll.4-iiO.12
5.815+0.015

izaa

Z3 24 ZS ZS ZT Zi „
(Jcm3/mole

FIG. 11 FIG. 12
FIG. 11. Comparison of experimental isotherm of argon with the

isotherm calculated by the Monte Carlo method at 108.15°K [39]

FIG. 12. Relative volume discontinuity and entropy discontinuity
during melting of argon according to the Monte Carlo method [39 ]

The principal conclusions of the aforementioned study
are presented in Fig. 12 which shows the temperature
dependence of the melting entropy AS/Nk and relative
change in volume AVm /V s during melting: it is dis-
tinctly seen that AS and AVm /V s tend to the asymptotic
limit and hence the conclusions of this Monte Carlo
study confirm the conclusions drawn from real experi-
ments .

4. THE SIMON EQUATION

In 1927 F. E. Simont42], while investigating the possi-
bility of extrapolating melting curves to the high-pres-
sure region, attempted to find some melting-curve
parameters that could be linked to the physical proper-
ties of coexisting phases. He transformed the Clausius-
Clapeyron equation to the form of

d In P AH
d\nT P&V

(4)

where AH is the heat of melting and, on deriving in the
right-hand part of Eq. (4) the dimensionless quantity
AH/PAV, he investigated the behavior of that quantity
along the melting curve. On studying the available data,
Simon discovered that all melting curves presented in
the coordinates In P - In T become straight lines at high
pressures. Moreover, most of these straight lines were
parallel to each other. Naturally, in the region of low
pressures the linear relationship between In P and In T
was upset. But as it turned out, for any substance it is
possible to select a characteristic quantity a which,
when introduced as an addend under the pressure logar-
ithm, makes the relation of In (P + a) to In T linear re-
gardless of pressure. This implies the following equa-
tion of the melting curve

(5)In (P + a) = C In T + b,
or

where a and C are constants, To is the melting point at
atmospheric pressure. When melting curves are inves-
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tigated in a region close to the triple point, Eq. (5) must
be rewritten as

P—Po (6)

where Po and To are the coordinates of the triple point.
This equation and its modifications have been termed

the Simon equation. It is perfectly obvious that relations
(5) and (6) can be rewritten as follows:

(7)d In (P + a)
dlnT a)AV y->

Equation (7) implies a linear dependence of the ratio
AH/AV on pressure143 '443, and hence knowledge of the
melting parameters (T, P, AV and AH) even at a single
point makes it possible to determine the constants in
Eqs. (5) and (6) and to derive the melting equation for
the substance investigated.

Simon interpreted the constant a as a quantity deter-
mined by the relation

,dE\ _T[EJ\ _p (8)

where E is the intrinsic energy. The quantity (3E/3V)T
is often termed the intrinsic pressure. From Eq. (7)
it is readily concluded that the melting pressure of a
substance at absolute zero will be P = - a . On the other
hand, relation (8) implies that at absolute zero the in-
trinsic pressure (3E/3V)T = - P . Thus we indeed find
that the quantity a can be characterized as "intrinsic"
pressure which at absolute zero is identical in both
liquids and solids. Simon found that the quantity a deriv-
able from his equation satisfactorily correlates with the
corresponding quantity of intrinsic pressure derived
from the Van der Waals equation for liquids[45:i (cf.
Table IV).

Table V presents by way of an example the values of
the constants in Simon's equation for certain substances.

As shown by experience of as much as 40 years, the
Simon equation satisfies, as it were, the requirements
which we can pose to an equation pretending to the name
of the equation of the melting curve. It is equally suit-
able for interpolation and extrapolation. The example
with He4 is highly instructive. Langer146-1 found that at
77.3°K He4 does not solidify under a pressure of 14,140
± 200 bar. Attempting to compare his finding with the
data of other investigators, he extrapolated the results
Of i«,4a] w i t h t h e a i d o f t n e g i m o n equation and found that

Table IV

Substance

Ar
Kr
Xe
Ag

Substance

H2
HD
D2

a, 103 kg/cm2

2.087
2.345
2.576

79.6

Derived from
Van der Waals

equation

260
345
440

Derived from
Simon equation

237
318
407

Table V

c Substance
1

1.593
1.617
1.589
2.39

Au
Zn
In
Pb

a, 103 kg/cm2

110
61.2
36.5
32.9

c

2.08
2.4
2.3
2.405

at 77.3°K the melting pressure of helium is 14,135 and
14,285 bar. Surprising as it may seem, such an excel-
lent agreement was obtained on extrapolating in one case
from 3500 bar and in the other, from 5000 bar. Mention
should also be made of the study by Babb[34: who calcu-
lated the parameters of the Simon equation for prac-
tically every substance whose melting coordinates are
known in the published literature. The number of these
substances proved to be fairly large (>200) and, as it
was discovered, all the melting curves except the
"anomalous" curves can be described with the aid of
Eq. (5). However, there also exist indications that some
melting curves deviate from the Simon equation. For
example, Goodwin'493 states this with respect to hydro-
gen in a region close to the triple point.

V. LAW OF CORRESPONDING STATES AND THE
SIMON EQUATION

From Table V, which presents values of constants in
the Simon equation, it can be seen that certain substan-
ces, e.g., noble gases, are characterized by nearly the
same constant C.

We rewrite the Simon equation as

(9)

where

P* = — T* — ~
« To •

T h e n i t i s c l e a r t h a t t h e m e l t i n g c u r v e s o f a l l s u b s t a n c e s

h a v i n g t h e s a m e c o n s t a n t C w i l l b e r e f l e c t e d b y t h e s a m e

c u r v e . H e n c e t h e S i m o n e q u a t i o n m a y b e t e r m e d t h e l a w

o f c o r r e s p o n d i n g s t a t e s C 4 5 ] .

O n t h e o t h e r h a n d , i t i s k n o w n t 5 0 ] t h a t f o r s u b s t a n c e s

o f t h e n o b l e g a s t y p e i t c a n b e a s s u m e d t h a t t h e t o t a l

i n t e r a c t i o n e n e r g y d e t e r m i n i n g t h e s y s t e m s t a t e r e p r e -

s e n t s t h e s u m t o t a l o f t h e p a i r - i n t e r a c t i o n e n e r g i e s

UN ( g i , . . . , ? „ ) = 2 ®(\<li — 1i\)- ( 1 0 )

T h e i n t e r m o l e c u l a r p o t e n t i a l * ( r ) i n r e l a t i o n ( 1 0 )

m a y b e w r i t t e n a s t h e p r o d u c t o f s o m e e n e r g y c o n s t a n t

e a n d t h e f u n c t i o n o f t h e d i m e n s i o n l e s s a r g u m e n t r / a 0 :

O ( r ) = « p ( - U . ( 1 1 )
\ a0 /

T h i s i s e x e m p l i f i e d b y t h e L e n n a r d - J o n e s p o t e n t i a l ,

w r i t t e n a s

< D ( r ) = 4 e { ( . * . ) » _ ( . * . ) • } . ( 1 2 )

T h e q u a n t i t i e s e a n d a 0 m a y b e u s e d t o i n t r o d u c e m o l e -

c u l a r u n i t s f o r v o l u m e a 0 , t e m p e r a t u r e e / k , p r e s s u r e

e / a 3 ) a n d e n e r g y e .

I n t r o d u c i n g t h e d i m e n s i o n l e s s q u a n t i t i e s

T* = = _Z_ p* _ a%p (13)

we can be confident that for substances with the same
kind of the potential *(r) there exist the universal state
functions

P* (T*, V*), E* (T*, V) (14)
and hence the thermodynamic properties of this group
of substances, expressed in molecular units, will prove
to be identical. We shall not specially consider here the
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influence of quantum effects on melting, but nonetheless
let us note that relations (14) hold true only in the class-
ical limit. In the quantum case the above equations of
state are written as

p*(T*, v, A) and£"(r», v, A), (15)

where A = h/a0Vme is a dimensionless parameter char-
acterizing the magnitude of quantum effects in the sys-
tem and representing the ratio of the de Broglie wave-
length of the system particles to a characteristic length
a0 equal to the collision diameter. Moreover, the very
form of the function (15) depends on the statistical law
obeyed by the given system.

Figure 13 shows "adjusted" melting curves of noble
gases. The values of the molecular units of pressure
and temperature, calculated under the assumption that
the potential (12) is valid, are given in Table VI :51].

Figure 13 indeed demonstrates that the law of corre-
sponding states holds true for Ar, Kr, and Xe in part
for Ne. The adjusted melting curves of He3 and He4

deviate from the totality, showing that the behavior of
these substances can no longer be explained from the
classical standpoint.

It is patently obvious that the empirical parameters
a and To of the equation and the molecular units of pres-
sure and temperature must be proportional to each
other, since both these parameters and these units can
be used to construct the adjusted melting curve. Table
VI confirms in general this conclusion. In this connec-
tion it would be an attractive goal to relate in some
manner the dimensionless parameter C in Simon's equa-
tion to the dimensionless quantities characterizing the
interaction potential. As we shall see later, a relation-
ship of this kind apparently does exist.

VI. THE LINDEMANN EQUATION

The semiempirical Lindemann equation (cf.t52>53:l)
often represents the basis for investigating the melting
of substances at high pressures'54 '551 . Hence it would
be worthwhile to consider here some questions regard-
ing this equation.

In 1910 Lindemann"2-1 suggested that melting occurs
when the neighboring atoms begin to collide, i.e., when
the oscillation amplitude reaches one-half of the inter-
atomic distance. The relation conventionally termed the
Lindemann equation

m e72 / 3
 = c , (16)

(where m is the mass of the atom, V is the volume, ® is
the Debye temperature, and C is the Lindemann con-
stant, proportional to the oscillation amplitude) is read-
ily derived from the well-known relation linking the
total energy of a harmonic oscillator to the oscillation
amplitude if the oscillator frequency is identified with
the Debye frequency.

Substance

Ne
Ar
Kr
Xe

m̂ol'
kg/cm2

233.6
410.9
456.0
455.3

TmOl- °K

35.6
119.49
166.67
225.3

Table
... kg/cm3

1037.53
2087
2345
2576

VI
a/pmol

4.44
5.080
5.143
5.658

T of triple
point, SK

24.56
83.81

115.743
161.362

Ttr/Tmol

0.690
0.701
0.694
0.716

FIG. 13. Melting curves of no-
ble gases, expressed in "adjusted"
coordinates [sl ]•

w
*
a.s

DM

0.4

02

1

-

1 Ne

1

Kr
-

-

1
B 7 Z 3 Pr

As it turned out, the quantity C from Eq. (16) is in-
deed nearly constant for many substances and depends
little on the nature of the interaction forces (Table VII).

However, the numerical value of the ratio of oscilla-
tion amplitude to interatomic distance at the melting
point is much smaller than the value proposed by
Lindemann. An analysis carried out by PinesC58] shows
that at the melting point the mean square displacement
of atoms from the equilibrium state amount to about
one-eighth of the interatomic distance.

GilvarryC59] (see also [2]) reformulated Eq. (16) in
terms of the volumetric modulus of elasticity and the
Poisson ratio. According to Gilvarry, Eq. (16) may be
rewritten as

RTm = QkmVm, (17)

where R is the gas constant, T m is the melting tempera-
ture, k m is the volumetric modulus of elasticity at the
melting point, V m is the volume of the solid at the melt-
ing point, and n = (SmC)2 (where S m = f(o), a is the
Poisson ratio, C is the Lindemann constant).

Gilvarry's calculations also show that the quantity C
is nearly constant for substances with elementary struc-
tures.

Thus, the available material warrants, as it were, the
claim that at the melting point the relative oscillation
amplitude of atoms reaches some critical value. What
is the physical meaning of this claim? Can we agree
with those investigators who, following Lindemann, take
Eq. (16) to be the melting criterion? Clearly, not. At
any rate, vibration instability should correspond to the
absolute stability limit of the crystal but not to the
equilibrium point of the crystal-to-liquid transition. An
excellent example confirming the absence of any direct
relationship between melting and the oscillation ampli-
tude is the behavior of He4 along the melting curve160-1.
The specific properties of helium cause its zero-point

Table VE

Parameters of
Lindenmen
equation

Tm, °K

c

Cu«)

1356
315
134

•After [S6]
••After ["]

Ar*)

1233
215
140

An*)

1336
170
142

Ar**)

84
69

139

Kr**)

116
58

152

D2 •*)

18.7
102
130



824 S. M. STISHOV

energy to markedly exceed the thermal energy along the
melting curve. As a corollary, the zero-point oscilla-
tion amplitude of helium atoms also exceeds the ampli-
tude of the thermal oscillations. On the whole, the ratio
VuV'a (where Vu1 is the mean square amplitude and a is
the interatomic distance) is not constant along the melt-
ing curve and greatly exceeds the corresponding values
inherent in other substances at the melting point (cf.
Table VHI).

Recently Dugdale[57] verified yet again, on the basis
of new measurementsC81], the applicability of the
Lindemann relation to the melting of He4. Table DC
presents the values of the parameter C from Eq. (16)
for He4 (hep) at various volumes.

It can be seen from Table IX that the Lindemann
parameter C changes markedly along the melting curve,
gradually coming close to a value characteristic of
"classical" substances (cf. Table VII).

The material cited above can only signify that gener-
ally speaking the oscillation amplitude does not corre-
late with melting and hence the Lindemann equation re-
quires a new interpretation. It is not surprising, how-
ever, that in the classical sense there exists a universal
relationship between the melting temperature and the
oscillation amplitude, since both these quantities can be
expressed in terms of interatomic forces. We are thus
justified in regarding the Lindemann equation solely as
a law of corresponding states. Lennard-Jones and
Devonshire[24] and subsequently Dombt62:1 have outlined
the paths for proving this assumption.

It is perfectly obvious that, given the validity of Eq.
(16) over a broad range of pressures, on using a suffi-
ciently satisfactory equation of state, a melting curve
equation of the Simon type can be derived with a purely
phenomenological interpretation of the constants enter-
ing in it. This has been accomplished by Salter[54] on
the basis of the Gruneisen-Gilvarry equation of state t55 :

derived from the empirical Murnahan equation. These
calculations definitely deserve attention and may be
highly useful, but the validity of the extrapolation of the
relations derived inCS4J andtS5] to the high-pressure reg-
ion can never be guaranteed.

VII. MELTING IN A SYSTEM OF SOLID SPHERES AND
THE EQUATION OF THE MELTING CURVE

The function $(r) of the interaction between particles
in a system of solid spheres may be written as

Table VIH

O (r) =
cp(r) =

°o when r<a,
when r>a.

(18)

In Fig. 14 this function is compared with the real
function of molecular interaction. It can be seen that
interaction in real substances markedly differs from
interaction in the system considered. However, at high
temperatures at which the kinetic energy of the parti-
cles greatly exceeds the energy corresponding to the
minimum of the potential energy of the interaction, the
properties of real molecular systems are largely deter-
mined solely by the repelling part of the potential.
Hence, if the potential energy increases at a sufficiently
fast rate with decrease in interatomic distances, solid

Molar vol-
ume, cm

21.18
20.0
18
IB
14
12.5
11.5
10.5

V
distance

Melting
Tempera-
ture T, °K

0
2.12
3.4
5.35
8.65

13.1
17.65
23.55

e, °K

21
24
31.5
42.5
57.0
76.3
92.5

114

Tm'e

0.0
0.088
0.108
0.126
0.152
0.172
0.191
0.207

Zero-point
energy,
cal/mole

46.9
53.6
70.4
95.0

127.0
170.0
207.0
255.0

Thermal ener-
gy, cal/mole

0
0.17
0.49
1.19
3.18
6.43

11.2
17.8

Ratio
o = /u2/a

0.310
0.303
0.277
0.251
0.228
0.212
0.201
0.190

Ratio a *

0
0.067
0.074
0.077
0.083
0.086
0.088
0.089

is the ratio of the amplitude of thermal oscillations to the interatomic

Table K

11.0
11.6
13.1
14.4
18.3
20

Tm,°K

20.3
17.0
11.05
7.85
3.17
2.15

e <vm)

123
109
82
66
38.5
28.5

0.165
0.156
0.135
0.119
0.091
0.073

c

121
119
117
113
115
105

spheres can represent a satisfactory simulacrum of
certain properties of real systems in the presence of
high densities and temperatures. It is practically obvi-
ous that in the presence of high densities when a3/V
~ 1, the system of solid spheres can exist in two funda-
mentally different states:

1) The "crystalline" state with long-range order
such that the sphere centers are statistically located at
the nodes of a periodic spatial lattice.

2) The non-ordered "gas-dense" or liquid-like state
such that the statistical spatial correlation of the
spheres exists only over a distance of the order of sev-
eral sphere diameters.

It is interesting to note that for solid spheres in
liquid-like state the radial distribution function highly
resembles the corresponding function in real monatomic
liquids18".

Despite the obviousness of these two states of the
system investigated at high densities, the nature of the
transition between these states could not be determined
for a long period of time1643. This problem was finally
resolved as a result of the "machine" experiments con-
ducted by the Monte Carlo method[65] as well as by
means of direct integration of the classical equations of
motion1663. The results of the "machine" experiments

a I

FIG. 14. Particle interaction function.
— interaction in system of solid spheres;
— in real system.
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made it possible to establish that the transition between
liquid-like and crystalline states of the solid spheres
represents a first-order phase transition. A proof of
this is the occurrence of discontinuities in the corre-
sponding isotherms characterizing the relation P(V)x>
with distinct regions of "superheated" and "super-
cooled" states. However, in view of the small number
of particles used in the experiments described (N s 500),
alternating jumps of the system from one state to the
other were observed instead of the coexistence of both
phases in the transition region; such a coexistence was
obtained by Alder et al. [87] in their investigation of a
two-dimensional system consisting of 870 solid disks.
Since the number of particles needed to form a sector
of any one phase of a given size is much smaller in the
two-dimensional case than in the three-dimensional, the
investigated system of 870 solid disks was much more
effective than the system of 500 solid spheres. Figure
15 shows an isotherm of the system of solid disks, in
the coordinates PA0/NkT and A/Ao, where Ao is the area
of the system in the state of closest packing. Two seg-
ments of the isotherms, corresponding to different pha-
ses and linked by a Van der Waals loop can be seen.
The pressure in the coexistence region is calculated
with the aid of the known rule of "equal areas ."
Clearly, as the dimensions of the system increase the
Van der Waals loop will get flattened into a straight
line. In view of the specific features of the equation of
state of this system, the jump A A/Ao in area during
melting is independent of temperature and amounts to
0.046. The corresponding change in entropy AS/Nk dur-
ing melting also is constant and equal to 0.36. The
equation of the melting curve is

(19)

Similarly, for the melting of solid spheres we can
write

const. (20)

A marked feature of the considered systems is that
the relative instability of each phase occurs in the
presence of a rigorously specific and temperature-inde-
pendent ratio of the overall size of the phase to the size
proper of the particles.

By way of an example, let us point out that phase co-

existence in the solid disk system is observed when
1.312 > A/Ao z- 1.266. Clearly, it is these numbers, too,
that determine the corresponding boundaries of relative
stability of the ordered and non-ordered states. Here
also mention should be made that a most important fea-
ture of the mechanism of the melting of solid particle
systems is collective motion, which in the two-dimen-
sional case reduces to sliding between series of parti-
cles.

It is worthwhile to compare the results of the study
of melting in model and real systems. During melting
in a system of solid particles the following relations
apply:

- = const,
AS = const

for oo > p > o (21)

(m and n are constants).
In real systems it is highly probable that

AF,,,—̂— > const,

AS —> const
It is conceivable that if the real particles had solid
nuclei, the analogy between melting in the system of
solid particles and melting in real systems under ex-
tremely high pressures would be complete.

Assuming an identical melting mechanism in both
real systems and solid-particle systems, it is possible
with the aid of Eq. (20) to gain an idea of the limiting
form of the equation of the melting curve of a real sys-
tem [4 '69] .

And indeed, we rewrite Eq. (20) as follows:

• = const, (22)

w h e r e V e f f i s t h e e f f e c t i v e t e m p e r a t u r e - d e p e n d e n t v o l -

u m e of t h e r e a l - s y s t e m p a r t i c l e .

C l e a r l y , V e f f c a n b e d e r i v e d f r o m t h e c o n d i t i o n

w h e r e * ( r ) i s t h e i n t e r a c t i o n p o t e n t i a l . T a k i n g t h e f o l -

l o w i n g t y p e of p o t e n t i a l

®{r)~4r. (24)

f o r t h e i n t e r a c t i o n f u n c t i o n i n t h e s y s t e m , i . e . a l l o w i n g

o n l y f o r p o w e r - l a w r e p u l s i o n , w e h a v e

Vett ~T~Vn*). ( 2 5 )

It f o l l o w s f r o m ( 22 ) a n d ( 25 ) t h a t

P~TiH3/n). (26)

C l e a r l y a t e r m c h a r a c t e r i z i n g t h e p o t e n t i a l p r e s s u r e

of t h e s y s t e m m u s t b e i n t r o d u c e d i n t o E q . ( 2 6 ) . T h e n E q .

(26) w i l l r e s e m b l e t h e S i m o n e q u a t i o n

Recently Kraut and Kennedy [70 ] proposed an empirical formula
relating the melting temperature to the solid-phase volume:

Tm = 1 + m AF

where AV/V 0 = (V o - V) /V o is the relative volume compression; T o is
the melting temperature for the volume; m is a constant. Then, following
the assumption that V/V e f f = const at the melting point , the Kraut-Ken-
nedy relation should reflect the temperature dependence of the effective
volume of particles. In this connect ion, it seems highly unlikely that the
relation cited above has universal validity.
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r = bl + * p o t ) i \&>)

a n d , a s w e e x p e c t e d , t h e e x p o n e n t i n t h e S i m o n e q u a t i o n

i s n a t u r a l l y r e l a t e d t o t h e d i m e n s i o n l e s s p a r a m e t e r n

c h a r a c t e r i z i n g t h e i n t e r a c t i o n p o t e n t i a l . N o t e t h a t t h e

q u a n t i t y 1 + ( 3 / n ) i s n u m e r i c a l l y t o o s m a l l , s i n c e f o r

n o b l e g a s e s , i n w h i c h i n t e r a c t i o n c a n b e d e s c r i b e d b y a

p o w e r - l a w p o t e n t i a l w i t h n = 1 0 — 1 2 , t h e r e q u i r e d v a l u e

o f C ~ 1 . 5 — 1 . 6 i s n o t r e a c h e d . C l e a r l y , i f t h e f o r c e s o f

a t t r a c t i o n a r e p r o p e r l y a l l o w e d f o r , t h e e x p o n e n t w o u l d

h a v e b e e n m o r e c o r r e c t , s i n c e h e r e i t i s p r e s e n t e d a s a

q u a n t i t y i n v e r s e l y p r o p o r t i o n a l t o t h e s l o p e o f t h e p o t e n -

t i a l .

I t i s r e a d i l y s h o w n o n t h e b a s i s o f ( 2 1 ) t h a t t h e r e l a -

t i o n s

= const and AS -= const (28)

apply at the limit of the purely repelling forces at any
pressure. Naturally, for a real system we are justified
in disregarding the forces of attraction only at ex-
tremely high temperatures and hence relations (28) may
be regarded as asymptotic for systems with attraction.
This conclusion completely tallies with our earlier em-
pirical conclusions (cf. (3)).

VIH. "ANOMALOUS" MELTING CURVES

There exist substances whose volume diminishes
upon melting. This may be exemplified by water, bis-
muth, gallium and a number of other elements and com-
pounds (cf. also Table I). The slope of the melting
curves of these substances, as implied by the Clausius-
Clapeyron equation (1), is negative. Figures 16—18
present examples of the phase diagrams of substances
of this kind. As shown by experiments :25J, the compres-
sibility of the liquid phase of these substances continues
to exceed the compressibility of the corresponding
solids. Hence the absolute value of the volume jump on
melting increases with rise in pressure. A consequence
of this is the progressive increase in the absolute value
of the slope dT/dP of the melting curve. This is clearly
seen in Fig. 16, which presents the phase diagram of
bismuth. Thus, the "anomalous" melting curves, like
their rising counterparts, are concave with respect to
the pressure axis. In this case, however, this signifies
an increasingly rapid fall in melting temperature with
pressure. On this basis, BridgmanC25] assumed that the
"anomalous" melting curves are an indicator of the ap-
proaching instability of the crystalline phase. Bridg-
man's conclusion is corroborated by aforementioned

The equality of thermodynamic potential for a first-order phase
transition implies

AF A.E AS
AV ~ AV + AV

P= • -T,

w h e r e F i s t h e f r e e e n e r g y , a n d E i s t h e i n t r i n s i c e n e r g y . A s s u m i n g t h a t

t h e t h e r m a l p a r t s o f i n t r i n s i c e n e r g y a r e i d e n t i c a l f o r t h e l i q u i d a n d t h e

s o l i d , w e d e n o t e A E / A V = P p o t , w h e r e P p o t i s t h e p r e s s u r e a s s o c i a t e d

w i t h p o t e n t i a l e n e r g y . C l e a r l y , P p o t c a n b e r e p r e s e n t e d b y t h e s u m P p o t
= P p o t + P p o t ( T ) , w h e r e P p o t i s t h e p o t e n t i a l p r e s s u r e a t a b s o l u t e z e r o

w h i l e P p o t ( T ) i s t h e p o t e n t i a l p r e s s u r e t h a t d e p e n d s o n m e l t i n g t e m p e r a -

t u r e o w i n g t o c h a n g e i n v o l u m e . T h e n t h e m e l t i n g p r e s s u r e w i l l b e w r i t -

t e n a s P = — P p o t — P p o t C O + _ ^ J L T , a n d h e n c e , f o r a m o r e r i g o r o u s d e r i -
A V

v a t i o n o f t h e S i m o n e q u a t i o n , i t r e m a i n s t o b e p r o v e d t h a t P p o t ( T ) ~

~ T m , A S / A V ~ T m ~ ' ( m i s a q u a n t i t y c h a r a c t e r i z i n g t h e i n t e r a c t i o n

p o t e n t i a l ) .
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o b s e r v a t i o n s i n d i c a t i n g t h a t s u b s t a n c e s w i t h " a n o m a l -

o u s " m e l t i n g c u r v e s s o o n e r o r l a t e r g e t r e a r r a n g e d

i n t o m o r e d e n s e p h a s e s w h o s e m e l t i n g c u r v e s a r e c h a r -

a c t e r i z e d b y a p o s i t i v e s l o p e .

T h e m a t e r i a l p r e s e n t e d i n T a b l e s I a n d I I i s s u f f i c i e n t

t o c o n c l u d e t h a t " a n o m a l o u s " s u b s t a n c e s d i s p l a y , a s a

r u l e , a l o o s e c r y s t a l l i n e s t r u c t u r e s w i t h l o w c o o r d i n a -

t i o n n u m b e r s w h o s e s t a b i l i t y i s d e t e r m i n e d b y r i g i d

o r i e n t e d b o n d s . H e n c e t h e r e e x i s t s t h e f u n d a m e n t a l

p o s s i b i l i t y o f f o r m i n g f r o m p a r t i c l e s o f a g i v e n s i z e a

m o r e d e n s e o r d e r e d o r n o n - o r d e r e d s t r u c t u r e . P r o p e r l y

s p e a k i n g , t h i s p o s s i b i l i t y c o m e s t r u e d u r i n g t h e m e l t i n g

o f " a n o m a l o u s " s u b s t a n c e s a n d , a s w e p o i n t e d o u t a b o v e ,

t h e s t r u c t u r e o f m e l t s o f t h e s e s u b s t a n c e s ( c f . T a b l e I I )

i s c h a r a c t e r i z e d b y h i g h e r c o o r d i n a t i o n n u m b e r s c o m -

p a r e d w i t h s o l i d s a n d h e n c e a l s o b y a m o r e c o m p a c t a r -

r a n g e m e n t o f t h e p a r t i c l e s . T h i s r e s u l t s i n a c o r r e -

s p o n d i n g b e h a v i o r o f t h e r m o d y n a m i c p r o p e r t i e s : d e -

c r e a s e i n v o l u m e d u r i n g m e l t i n g a n d a n a n o m a l o u s l y

h i g h v a l u e o f m e l t i n g e n t r o p y ( c f . T a b l e I ) . I t m u s t b e

e m p h a s i z e d t h a t t h e e q u a t i o n s o f S i m o n ( 5 ) a n d L i n d e -

m a n n ( 1 6 ) a r e n o t s a t i s f i e d f o r s u b s t a n c e s w i t h " a n o m -

a l o u s " m e l t i n g c u r v e s .

I t s h o u l d a l s o b e n o t e d t h a t t h e p r e s e n c e o f a l o o s e -

p a c k e d s t r u c t u r e i s n o t a s u f f i c i e n t s i g n o f " a n o m a l o u s "

b e h a v i o r . A s a n e x a m p l e , c o n s i d e r t h e m e l t i n g o f I n 2 T e 3 .

T h e c r y s t a l l i n e s t r u c t u r e o f t h i s s u b s t a n c e r e p r e s e n t s a

d e f e c t i v e s t r u c t u r e o f t h e s p h a l e r i t e Z n S t y p e , c o n t a i n i n g

1 / 3 v a c a n c i e s i n t h e c a t i o n s u b l a t t i c e . N e v e r t h e l e s s ,

d u r i n g i t s m e l t i n g I n 2 T e 3 i n c r e a s e s i n v o l u m e : 7 4 ] a n d i t s

m e l t i n g c u r v e s h o u l d h a v e a p o s i t i v e s l o p e .

N o w c o n s i d e r t h e a f o r e m e n t i o n e d m e l t i n g c u r v e s w i t h

t e m p e r a t u r e m a x i m a . T h i s q u e s t i o n i s o f s p e c i a l i n t e r -

e s t i n c o n n e c t i o n w i t h T a m m a n n ' s h y p o t h e s i s b u t , a s w e

w e r e a b l e t o a s c e r t a i n , t h i s h y p o t h e s i s l a c k s a n y r e a l

f o u n d a t i o n s a n d , o b v i o u s l y , t h e e x i s t e n c e o f t h e s e

m a x i m a c a n b e e x p l a i n e d w i t h o u t c o m i n g i n t o c o n t r a d i c -
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tion with the general conclusions drawn in the preceding
sections.

In 1959 Bundy [ 7 5 ], while investigating the melting
curve of rubidium, discovered that under pressures of
>40,000 kg/cm2 the originally positive slope of the
melting curve became negative. Bundy's astonishment
was so great that he placed a question mark on the plot
of the melting curve of rubidium. Now that G. C. Ken-
nedy et al. have published their studies"6'77-1 we can
state that the question mark on Bundy's plot was quite
logical. As it turned out, Bundy's findings were erron-
eous, but nevertheless, as shown in'7 6 '7 7-1, the melting
curve of rubidium does have a maximum, though at much
higher pressures. In 1959, however, Bundy's study had
acted as a major stimulus to research. In 1962 maxima
on the melting curves of cesium and tellurium were dis-
covered practically at the same t i m e [ 7 8 ' 7 9 : . This was
followed by a large series of studies reporting on the
presence of maxima on the melting curves of barium [ 8 0 ] ,
europium [ 8 1 ], antimony1 8 2 3, sulfur t 8 3 ], selenium1 8 4 3, the
tellurides of antimony, bismuth and lead [ 8 5 ' 8 6 ] , nitrate
and nitrite of potassium t 8 7 ' a 8 ], sodium chlorate c 8 9 ], and
lithium chromate [ 9°3. Figures 19, 20 and 21 present ex-
amples of phase diagrams of substances with maxima on
their melting curves.

The results of the studies cited above demonstrate
that the maxima on the melting curves represent a suffi-
ciently widespread phenomenon inherent in a broad
variety of substances. Again, as in the preceding case,
we can state that one of the most characteristic features
of the phase diagrams with maxima on melting curves
is the presence of a phase transition, such that the maxi-
mum is necessarily followed by the triple point: crystal
I—crystal II—liquid (cf. Figs. 19—21), whereupon the
melting curve again acquires a positive slope.

What are the physical causes conditioning the pres-
ence of the maximum?

The Clausius-Clapeyron equation (1) implies that
&V = 0 at the maximum point of the melting curve.
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Direct measurements of the volume discontinuity along
the melting curve, performed for potassium nitrate 1 9 4 3

and cesiumC 9 5 ], confirm this conclusion (Figs. 22 and
23). On the other hand, we already ascertained that in
the normal case, i.e., for continuously rising melting
curves, AV does not tend to zero. We are thus forced to
assume that the occurrence of maxima is associated
with volume anomalies that may take place in the liquid
or solid. To avoid contradictions with the laws of
thermodynamics, however, it can only be concluded that
the temperature maxima on the melting curve arise
owing to an anomalous decrease in the volume of the
liquid along that curve.

To clarify this statement, it is worthwhile to consider
the phase diagram of cerium (Fig. 24), which is, more-
over, of interest in itself. As shown by numerous stud-

ies [96-99], the phase transition in solid cerium discov-
ered by Bridgman[253 at high pressures is apparently
associated with an electronic transition and is accom-
panied only by a decrease in the cell parameter of the
original face-centered cubic structure. On moving along
the curve of equilibrium between a and y phases, a de-
crease in the volume and entropy discontinuities is ob-
served and, in all likelihood, these discontinuities dis-
appear entirely at pressures and temperatures exceeding
18,000 kg/cm2 and 300°C. Thus the experimental situa-
tion points to the existence of a critical point on the
curve of the y-Ce — a-Ce equilibrium and, since the
phases a and y have the same symmetry, this critical
point must pertain to the first of the types considered
above. It is conceivable that here, as in the case of the
critical point on the boiling curve, anomalies of com-

FIG. 22. Pressure dependence of
molar volume discontinuity during
melting and of the slope of the melt-
ing curve for KNO3 I9*]

P, kg/cm2
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303 325 350 375 400 425 450 ill T, °K
FIG. 23. Unit volume discontinuity during melting of cesium as a

function of temperature [95].

pressibility and other properties, extending far beyond
the critical point, should be expected. Considering now
the melting curve of cerium, we see that it displays a
minimum and that the continuation of the equilibrium
curve of phase transition intersects the melting curve
of cerium precisely in the region of the minimum. Thus
in this case the relationship between the anomaly on the
melting curve and the anomalous behavior of one of the
phases coexisting along that curve is obvious.

No less obvious is that the analogous process occur-
ring in a liquid would lead to a maximum on the melting
curve. Useful information can be extracted from an ex-
amination of Fig. 1 and Tables I and II. It can be ascer-
tained that during the melting of "normal" substances
the structure of the liquid is , in a certain sense, similar
to the structure of the corresponding solid at least so
far as interatomic distances and—up to a point—coor-
dination numbers are concerned. Properly speaking,
this fact is the basis of the quasicrystalline models of
liquids. But for substances with a negative slope of the
melting curve a correspondence of this kind does not
apply and the structure of the liquid displays sharply
different characteristics. Since a melting curve having
a maximum contains both an ascending branch (with
dT/dP > 0) and a descending branch (with dT/dP < 0),
the foregoing considerations warrant the assumption that
a change in the liquid structure occurs in the region of
the maximum, resulting in the additional compression of
the liquid phase which, in its turn, results in reversing
the polarity of AV.

The phase diagram of cesium (Fig. 19) is a conven-
ient object for demonstrating this assumption. At
atmospheric pressure and normal temperature cesium
has a body-centered cubic structure. On investigating
the compressibility of cesium Bridgman11003 discovered
two phase transitions at 23,000 and 45,000 kg/cm2, ac-
companied by a decrease in volume by 1.5 and 11%,
respectively. Bardeen"013 suggested that the phase
transition in cesium at 23,000 kg/cm2 is associated with
the rearrangement of this element into a face-centered
structure. As for the transition under 45,000 kg/cm2,
E. Fermi advanced the hypothesis that this pertains to
the transition of an electron from the state 6s to the
state 5d, which ensues in a corresponding change in vol-
ume. Fermi's hypothesis was corroborated by the cal-
culations of SternheimerC1023. Subsequently both these
theories were experimentally proved.

Hall et al.[1033 discovered with the aid of x-ray struc-
tural analysis that at 23,000 kg/cm2 the bcc lattice of
Cs indeed is converted to a fee lattice and at
45,000 kg/cm2 the parameter of the face-centered cell
of the structure of cesium abruptly decreases, thus
demonstrating an abrupt decrease in atomic dimensions.
The same study by Hall et al. also reported on the dis-

FIG. 24. Phase diagram of
cerium ["]

50 50 70 80
P, W3 kg/cm2

covery of yet another phase of cesium, whose structure
has not as yet been identified.

On again considering the question of the maxima, we
note that the melting curve of Cs-II (cf. Fig. 19) repre-
sents a unique phenomenon in the sense that, except for
a narrow region, it displays a negative slope. Hence,
the volume of Cs-II diminishes during melting. But, as
we know, Cs-II has the most close-packed structure of
all the possible structures of this element, and hence it
cannot be expected that the liquid can form a more com-
pact structure given the same atomic dimensions. Thus
we are forced to assume that in liquid cesium there oc-
curs an electronic transition analogous to the transition
occurring in the solid cesium. A situation of this kind
can also be expected for other substances with maxima
on their melting curves. Naturally, we do not mean that
the transformations in various liquids are of an elec-
tronic nature—that is a very rare phenomenon in the
presence of moderately high pressures. In liquids with
a complex structure there exists a sufficient number of
possibilities for manifesting excess compressibility and,
so far as the final result is concerned, it does not mat-
ter whether the additional decrease in volume was due
to electron transition or to a change in the nature of the
packing. For example, in the case of tellurium, the
chain structure of the solid phase is to some extent
inherited by the liquid'1041. In liquid tellurium, as in
solid tellurium, each atom has two nearest neighbors at
a distance of ~2.9 A. Clearly, liquid tellurium can at
least be transformed to a pure coordination liquid with
a corresponding volume effect.

The question of the dimensions of the P-T regions
in which transformations occur in various liquids is of
great interest. This question can be more concretely
formulated as follows: Does there exist a mechanism of
additional compression throughout the region of exis-
tence of a given liquid such that its entire compression
curve can be termed anomalous, or does this mechanism
manifest itself only in individual segments of that curve
pertaining to narrow regions of pressures and tempera-
tures ? This problem has been investigated for liquid
cesium and liquid tellurium191'92'1053. As it turned out,
these two substances behave in a completely different
manner each. In liquid tellurium[105: measurements of
electrical resistance revealed anomalous sectors separ-
ating the region of existence of tellurium into individual
fields with different activation energies of conductivity,
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with the anomaly sectors being extremely narrow and
occupying not more than 1000—1500 kg/cm2 in pressure
and about 15° C in temperature. In liquid cesium[91>92]

on the other hand, it was not possible to isolate any
singularities pointing to localized transformation. Using
certain indirect data, Stishov et al.1921 concluded that
transformation in liquid cesium occupies an extremely
broad range of pressures which extends from 10,000 to
~ 25,000 kg/cm2. It appears that here the decisive fac-
tor is the nature of the interaction forces, and while in
liquid tellurium, which still has rigid covalent bonds,
the transformations resemble to some extent phase
transitions, in cesium-like substances the transforma-
tions may get "blurred" over a broad range of pres-
sures. Recently Rapoport[1061 attempted to describe a
"cesium type" transformations on the basis of a two-
liquid model, utilizing the theory of regular solutions.

In conclusion, it is important to point out that, in all
likelihood, the temperature maxima on the melting
curves are a specific manifestation of distinctive proc-
esses in liquids, associated with the regrouping of the
component particles of liquids. In view of the fact of a
close structural correspondence between liquids and
their corresponding solids, it is conceivable that these
transformations in liquids represent to some extent a
reflection of phase transitions in solids.

Generally speaking, a complete agreement between
the coordinates of the corresponding transformations in
liquids and solids cannot be expected. Hence transform-
ations in liquids may occur both at lower and at higher
pressures than transitions in solid phases. Moreover,
then the transformations in liquids cause a rapid de-
crease in the slope of the melting curves but, as is
readily inferred, the occurrence of a maximum is possi-
ble only when the transformation in the liquid phase oc-
curs ahead of the transformation in the solid phase.
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