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JN UCLEAR spin diffusion plays an important role in
the relaxation and the dynamic polarization of nuclei in
a nonmetallic diamagnetic crystal with small concentra-
tion of magnetic impurity (seea"3]). Investigations of
nuclear spin diffusion have gained greatly in interest in
connection with the fact that the method of dynamic
polarization (the so-called solid effect) turns out to be
a most powerful method of obtaining a polarized proton
target.

The concept of nuclear spin diffusion was introduced
in14'5-1. The nuclear spin diffusion was further devel-
oped in'8"103.

In this review we summarize the results of the theory
of relaxation of nuclei in nonmetallic diamagnetic crys-
tals containing a relatively small amount of paramag-
netic atoms, and compare the results of this theory with
the experimental data published since 1964 (earlier ex-
periments were considered in our review131). At the end
of the review we consider the role of the dipole-dipole
reservoir of magnetic ions in the process of relaxation
of nuclear spins.

We present the main results of the diffusion theory
of nuclear magnetic relaxation in the case of a nuclear
spin equal to 1/2C9'33. The nuclear relaxation time Tn
(the relaxation time of the total nuclear magnetic mo-
ment of the sample) is given by the formulas*

(la)

(lb)NDb for b < 8.

In these formulas N is the concentration of the magnetic
ions and R is the radius of the sphere occupied by one
magnetic ion, with

-5-fl»iV = l. (2)

C is given by the formula

(3)

Further, S, g, and ye represent respectively the
effective spin, the g-factor, and the gyromagnetic ratio
of the magnetic ion, /3 is the Bohr magneton, y n is the
gyromagnetic ratio of the nucleus, T is the correlation
time of the quantity Sz (the z axis is chosen along the
direction of the external magnetic field H), and wn = ynH
is the frequency of the nuclear resonance.

) Almost everywhere in the article, the symbols ">" or "<" mean
"appreciably larger than" and "appreciably smaller than" respectively.

We note that the time of direct relaxation of the
nucleus, due to the magnetic ion located at a distance r
away from it, is given by the expression Tdir(r) = r e /C.
We note also that in the derivation of formula (3) it was
assumed that the correlation function of Sz is exponen-
tial with a correlation time T.

In most of the experiments performed to date, the
condition rynH 3> 1 is satisfied. In this case we can
use in lieu of (3) the simpler formula

r 2 (rf)2 S (S-•-1) (A)

The quantity b in (1) is given by

6 = 0,68 f-£Y (5)

D is the coefficient of diffusion of the nuclear spin, at a
distance from the magnetic ion such that the shift of the
nuclear Zeeman frequency, due to the local field of the
magnetic ion, is negligibly small. If we neglect the ef-
fects of angular anisotropy, then D is given by the form-
ula

D = l-£, (6)

where a is the distance between the neighboring nuclear
spins and T2 is the time of the transverse nuclear re-
laxation. The values given for the numerical coefficient
I in most papers are 1/30 and 1/50. Our estimates show
(see I3]), however, that this value is underestimated. In
particular, for a simple cubic lattice we obtain I » 1/12.
We note that a detailed calculation of D was performed
in [11]. The numerical estimates were made for a simple
cubic lattice. If we neglect the weak anisotropy, then we
obtain D = 0.15 Ryn/a. But for a primitive cubic lattice,
neglecting anisotropy, we have:3] T2 = 0.65 a2/h>n- We
thus arrive at formula (6) with I sr 1/10.

Formula (lb) was obtained within the framework of
the square-well model for a diffusion barrier. 6 is the
radius of the diffusion barrier and is given by the form-
ulas

^i-Y a for x > r 2 or ShyeH>kT,

2StB'(^L')Ta f o r

(7a)

(7b)

B s is the Brillouin function, and a = 1/4—1/3.*
K, in particular, T < T2 and Sh>eH < kT, then

More accurately, a = 1/4 if we consider the barrier for spin diffu-
sion, and a = 1/3 if we consider barrier for spin transitions caused by a
resonant radio-frequency field [3 ]. These two quantities will be denoted
by 5 (1/4 and 6 (1/3), respectively.
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(7c)

We denote by T̂  and rg the spin-lattice and spin-spin
relaxation times of the magnetic ion. The value of 77
depends on T and H, and also on N.* TS is practically
independent of T and H, but depends on N.

The assumption that the correlator Sz depends ex-
ponentially on the time is well confirmed by experiment
in the case when the reorientation of the magnetic-ion
spin is due to interaction between the ion and the lattice.
However, it is not clear beforehand whether the assumed
exponential dependence is valid in the case when the spin
reorientation is due mainly to spin-spin interaction.

Melikin1133 calculated the second and fourth moments
of the Fourier component of the correlator Sz for the
case when the reorientation of the spin of the magnetic
ion is due to spin-spin interaction. The formula obtained
for the ratio M4/M2 shows that at a relative magnetic-
impurity concentration smaller than 1—2%, the depen-
dence of the Fourier component of the correlator on the
frequency is Lorentzian (more accurately, it can be said
that this dependence is given by a cut-off Lorentzian
curve with a cutoff frequency much higher than wn),
which leads to an exponential dependence of the correla-
tor on the time. For a cubic crystal and S = 1/2 we ob-
tain for TS the expression!

where f is the relative concentration of the magnetic
impurity, K is a coefficient of the order of unity, which
depends on the time of the lattice and on the orientation
of the external field relative to the crystal axis. For a
primitive cubic lattice in the case of an external field
directed along [100] we have K = 1.8.

Let us assume that [8,1].

i-= -*- + -*-• (9)

If 77 < Tg, we have T s 77, but if TS < T^, then we have
T s TS. It must be recognized, however, that in the case
Tg < T^, the dipole-dipole reservoir of the magnetic ions
may become heated upon relaxation of the nuclei. This
possibility will be disregarded for the time being (see
Ch. VIII).

The criterion for the validity of the aforementioned
result is given by

a < max (b, b)<R. (10)

For the dependence of Tn on N, H, and T we obtain (in
the case when rynH ^> 1)

According to the Kronig—Van Vleck theory of spin-lattice relaxa-
tion, TJ should not depend on N. According to experiment, on the other
hand, r; at first remains constant with increasing N, and then decreases
(for example, in the case of ruby, T[ begins to decrease at a chromium
concentration of approximately 0.03 at.%). Details on spin-lattice re-
laxation and on the dependence of TJ on N can be found in the mono-
graph!12].

'In the review [3 ] we used, for a rough determination of the order
of magnitude of rs, the formula

[TnaN-'x^H1'2 for 6>'fi,

TnaN-HH2& for b<b.

For an arbitrary value of TynH, we obtain

r ^ ' - i [ i i ias^ i . ] 1 ' 4 for

TnaN-1 -S3 for b<6.

(lla)

(lib)

(12a)

(12b)

Recognizing that T decreases with increasing tem-
perature (if 77 < Tg) or remains constant (if Tg < Tj),
we find that the dependence of Tn on H at a certain tem-
perature (when the condition TynH s 1 is satisfied) can
have a minimum.

If b > 6, then we can say that we are dealing with the
case of relaxation by limited diffusion; on the other hand
if b < 6, then we say that fast diffusion takes place. The
transition from the first region to the second occurs
when the field is increased if the temperature is con-
stant, and when the temperature is decreased if the field
is constant.

For arbitrary values of b/5 we have for Tn the form-
ula

WF

where*
2x13/l (x)

'5/4 i + 'i/iW
») '

(13)

(14)

We note that the formula for Tn can be reduced to the
form[15J

'-3/4
(15)

Finally, if we have also extraneous relaxation of the
nuclei (i.e., relaxation due not to the magnetic ions under
consideration but to other causes) with a partial relaxa-
tion time T^, then Tn is given by

(16)

In the derivation of (3) we did not take into account
the fact that when the magnetic-ion spins are strongly
polarized the probability of relaxation of the nuclear
spins should decrease. Therefore formula (3) is valid
only if Sh>eH < kT.

An analysis presented in[15: shows that if SKyeH
> kT, then an additional factor [3S/(S + l)]Bg(ShyeH/kT)
appears in the right side of formula (3), leading to an
additional growth of Tn with increasing H/T. In the
case when S = 1/2, this factor coincides with the factor
1 — Po introduced in[18'17] (Po—degree of spin polariza-
tion of the magnetic ion). Incl5] there was also obtained
an approximate formula for the dependence of the radius
of the diffusion barrier 6 on H/T and T/T 2 :

where 0 = 30-50 (see[18]).

For a primitive cubic lattice R3 = 3a3 /4fff; thus, (8) leads to a value of
Ts which is smaller by one order of magnitude than given by formula (8a). Ip(x) = i"PJp(ix), where Jp is the Bessel function.
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At sufficiently large H/T, formula (17) goes over into
(7a). At sufficiently small T /T 2 , formula (17) goes over
into (7b). On the other hand, at sufficiently large T /T 2
formula (17) coincides with (7a) only in the case S = 1/2.
On the other hand, if S > 1/2, then the limiting value
of 6 at large T / T 2 depends, in accordance with (17), on
H/T.

In1173, the relation between Tn and T̂  was considered
for the case when an appreciable role is played in the
spin-lattice relaxation of the magnetic ions by the
phonon bottleneck effect. The concept of the diffusion-
barrier radius 6 is meaningful only as an order of mag-
nitude estimate. This is connected, first, with the fact
that the diffusion barrier is not rectangular; second,
when introducing 5 we have neglected the anisotropy
effect (see below). Further, in obtaining the value of the
radius of the diffusion barrier we have equated the
value of the local field, produced at a distance 6 by the
magnetic ion (or the difference of the local field at dis-
tances 6 and 6 + a) to the local field produced by the
neighboring nucleus. Finally, the value of the local field
itself was assumed equal to the ratio of the magnetic
moment to the cube of the distance. Further, in formula
(8) for TS , the numerical coefficient K is known only for
one particular case. It follows therefore that if either
the condition 6 > b or the condition TS < TJ is satisfied
(or both together), our results cannot claim to yield the
absolute values of Tn with great accuracy. They should
give the correct dependence of Tn on the magnetic-ion
concentration, on the temperature, on the external field,
and the correct order of magnitude.

II

In the general case D is a symmetrical tensor of
second rank, and its components depend on the orienta-
tion of the crystal relative to the external field. How-
ever, in the case of a cubic single crystal, and also of a
polycrystalline sample or powder, D reduces to a scalar
quantity.

In the review article133 we presented a formula (4.11)
based on perturbation theory, giving the dependence of
D for a cubic crystal on its orientation (see also1-193).
We note that two papersl10'111 are devoted to a quantum-
statistical derivation of the Bloembergen spin-diffusion
equation. In these papers, expressions were obtained
for the tensor of the spin diffusion coefficient. The ex-
pression obtained inu o ] for D takes into account the ef-
fects due to the diffusion barrier. In the absence of the
barrier and in the case of a cubic crystal, this expres-
sion for D reduces to formula (4.11) of[3]. On the other
hand, the result obtained in t l l ] does not reduce in the
case of a cubic crystal to this formula. However, as
indicated above (see Ch. I), the results almost coincide
after averaging over the angles (at least for a primitive
cubic lattice).

The diffusion barrier is in fact anisotropic. For the
dependence of 6 on ii> (the angle between the vector join-
ing the magnetic ion with the nucleus and the direction
of the ion spin) we havec3J

value ti>o = cos"1^-1'2) = 54.7°. It is clear that at low
temperatures, for angles t? close to t?0, we have 6 < b,
and for other directions 6 > b. Therefore the spin diffu-
sion near the magnetic ion will occur mainly in direc-
tions lying inside a narrow cone.

m

Blumberg[8] has shown that after strong saturation
the relaxation of the total magnetic moment of a sample
may not be exponential for small values of the time t.
Let us analyze this question in greater detail.

Assume that a radio-frequency field saturating the
NMR is applied to the sample. We denote by 2A the
probability, per unit time, of the reorientation of the
spin of the nucleus under the influence of this alternat-
ing field. We have (see, for example/33)

A = Tynh\g(H-—j , (19)

where w is the frequency, 2hi the amplitude of the radio-
frequency field (applied perpendicular to the main field),
and g(H - w/yn) a function giving the NMR line shape,
the integral of which is normalized to unity.*

Assume that at the instant of time t = 0 the saturating
field is turned off; in order for the relaxation of the
total nuclear magnetic moment 3K(t) of the sample be
exponential with a relaxation time Tn given by formulas
(1), it is necessary that the spin diffusion play an impor-
tant role. This in turn requires that grad M not be too
small when r > max(b, 6) t (r—distance to the nearest
magnetic ion). It follows therefore that the relaxation of
TO(t) will be exponential in the case when no complete
saturation of the resonance takes place at r s max(b, 6).
Since the quantity r e /C gives the time of direct relaxa-
tion over a distance r , we find that (Ct) is the distance
from the magnetic ion, which the direct relaxation
reaches within a time t.

When r < 6 we have M(r, t) = Mo for all t. There-
fore, if b < 6, no matter how large A, the relaxation of
TO(t) will be exponential for all t. Indeed, M changes
from a value equal to Mo to a small value when r « 6,
and therefore the spin diffusion is turned on immediately
after the saturating field is removed.

The relaxation of 5K(t) is exponential for all t also
when 6 < b, but 2A < C/b6; indeed, in this case there is
no complete saturation of the resonance when r = b.

On the other hand, if 6 < b and 2A > C/b2, then the
relaxation of 3H(t) at small t will not be exponential.
Indeed, at the initial instant of time after the saturating
field is turned off, at r = b, there is almost complete
saturation, and therefore there is practically no spin
diffusion. The relaxation becomes exponential only when
t > b6/C, i.e., after the process of direct relaxation
reaches a distance b from the magnetic ion. This case
was considered by us in [32, but the qualitative considera-
tions used there lead to an inexact result when t < 6 6 /C

• 11 — 3cos2< (18)

where the constant depends on the angle between the ion
spin and the external field.

According to (18), 6 vanishes at the so-called magic

*An important role is played in the NMR saturation by the presence
of the nuclear dipole-dipole reservoir [20 ]. We can disregard this circum-
stance, however, since we are interested below in the relaxation of the
nuclei after the saturating field is turned off.

t M(r, t) is the component of the nuclear magnetization along the z
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We therefore present a more rigorous analysis.
Assume that the conditions 6 < b and 2A > c/66 are

satisfied. At the instant t = 0, in the entire sample,
with the exception of spheres with radii 6 around all the
magnetic ions, complete saturation of the nuclear reson-
ance takes place. When t < b6/C, we can neglect the
diffusion term in Eq. (5.1) oft3], and we obtain

where n is the concentration of the nuclei. But

dM
dt = -Cr-S{M-Mo).

Recognizing that M(r > 6, t = 0) = 0, we have for r > 6

M{r, «) = MO[1 — exp( — Ctr~«)\. (20)
R

The integral jM( r , t)dV gives the nuclear magnetic mo-
5

ment of a sphere with center in the magnetic ion and
with radius R, after subtracting the sphere with radius
6. Taking into account the fact that the magnetic mo-
ment of the spheres with radii 6 around the magnetic
ions are not revealed in NMR experiments (in view of
the strong shift of the Larmor frequency), we obtain for
the experimentally measured value of 2R (the upper limit
in the integral can be replaced by infinity)

5DI (0 = inNtH0 \ [1 — exp (— Ctr-*)] r*dr
6

(5BJo = VM0 is the equilibrium nuclear magnetic moment
of the sample, V is the volume). The integration yields

1. (21)

(22)

(23a)

~

where $(x) is the probability integral, and

In the limiting cases we obtainC21)8]

for t<vic.

for (filC<t<b'IC. (23b)

In order to observe experimentally the non-exponen-
tial relaxation it is necessary, besides satisfaction of
the condition 6 < b, also that the ratio b/R not be too
small (otherwise the value of ffli(t) remains practically
unchanged within a time b6/C), i.e., the concentration N
should not be too small. On the other hand, however,
b/R should nevertheless be smaller than unity, for
otherwise the aforementioned analysis will not be cor-
rect.

IV

Let us consider briefly the so-called homogeneous
model of relaxation18'2211.

The reciprocal time of direct relaxation of the i-th
nucleus is given by the expression CYJr7®, where r^, is

the distance from the i-th nucleus to the k-th magnetic
ion; the summation is over all the magnetic ions of the
sample. In the case when the nuclear magnetization of
the sample does not depend on the position, the spin
diffusion is immaterial and we can average the latter
expression over all nuclei (of a given type) of the sam-
ple. This averaging leads to the expression

We thus obtain

2 rt = AT 2
ik i

T* = nV

(24)

It is physically clear that if the time diffusion of the
nuclear spin over a distance R, i.e., the quantity R2/D,
is sufficiently small, then an internal equilibrium in the
nuclear-spin system is rapidly established (within a
time of the order of R2/D) in the greater part of the
sample, and the nuclear magnetization will not depend
on the position. In such a case, the relaxation time of
the nuclear moment of the sample, Tn , will not depend
on the spin-diffusion coefficient.

We denote by r m the distance from the magnetic ion
to the nearest nucleus (it is clear that r m ~ a). Assume
that the conditions 6 > r m and R2/D < Tdi r(6) = 66/C
are satisfied. We can use for Tn formula (24), summing
with respect to i the nuclei located at a distance > 6
from the magnetic ion. We change over to integration,
making the substitutionZ/(...) -— J(...)ndV (this substi-

tuion is , in general, permissible if 6 / r m is sufficiently
large). We obtain

n ' = 4aiVC?-^, (25)

or

We thus arrive at the result (lb).*
We must, however, note the following. When (5) is

taken into account, the condition R2/D < 66/C yields b2R
< 63, i.e., b < 6(6/R)1/2. On the other hand, the result
(lb) is valid when the less stringent condition b < 6 is
satisfied. Thus, the homogeneous model, although it does
yield the correct result for Tn in the considered limiting
case, it results in a more stringent criterion than the
true criterion.

Formula (lb) can be rewritten in the form

In this formula (6/R)3 gives the ratio of the number of
nuclei located in the layers 0 < r < 6 and 6 < r < R.

Assume now that the following conditions are satis-
fied:

To find Tn , we can again use formula (24), but in the
sum over i, the minimum distance will already be r m ,
so that it is not permissible to change over from sum-
mation to integration.

Let us consider a case in which the magnetic ion re-
places in the lattice one of those nuclei, whose relaxa-
tion is investigated. Then the sum over i in (24) can be
expressed in terms of the second moment P of the
nuclear resonance line of the polycrystalline sample or
powder. We have (see, for example, Appendix B of[3])

We note that by taking b as the lower limit of the integral in (25),
we arrive at the result (la) without the numerical factor 1.6.
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Using also formula (4) for C, we readily obtain (we
consider the case S = 1/2)

3B p (27)

The criterion R2/D < r m / C yields b2R < r2
m, i.e.,

b < r m (rm /R) . Apparently, however, in order for the
result (27) to be valid it is sufficient to satisfy (in addi-
tion to the condition (6 < r m ) the less stringent condi-
tion b < r m .

The result (27) cannot be obtained by solving the
spin-diffusion equation, for when b, 6 < r m the macro-
scopic description of the diffusion is not valid. To avoid
misunderstandings, we note that the relative concentra-
tion of the magnetic impurity is connected with the quan-
tity N/n by the relation

/ = VJL, (28)

where v is the number of nuclei (the relaxation of which
we are dealing with) per atom replaced by an impurity.
For example, v = 1 for ruby (AI2O3 with chromium im-
purity) and v = 24 for lanthanum-magnesium double
nitrate (La2Mg3(NO3)i2 • 24H2O) with cerium or neo-
dymium impurity (since we are dealing with proton re -
laxation).

Jeffries123'241 proposed the so-called influence-
sphere model to explain the experimental data on proton
relaxation in dilute paramagnetic salts.

We consider a sphere centered about a magnetic ion
with radius R. We denote by r the distance from the
point to the magnetic ion, and break up the sphere into
three regions: 0 < r < r m , r m < r < 6, and 6 < r < R.
We assume that r m < 6 < R, and in addition that 6 > b.
The overwhelming majority of the nuclei are in region
HI, and region I does not contain any nuclei at all. In
region IE, owing to the spin diffusion, internal equili-
brium is rapidly established in the system of nuclear
spins. It is assumed in123'243 that in region E it is possi-
ble to introduce a nuclear relaxation probability aver-
aged over r; it is assumed further that the nuclei of
region El are in thermal contact with the magnetic ion
only via the nuclei of region E, and a corresponding
cross-relaxation time is introduced. Comparing the
equations for the time variation of the polarizations of
the nuclei of regions E and El, and solving these equa-
tions approximately, we find that the relaxation time of
the summary nuclear moment (which can be assumed to
coincide with the relaxation time of the nuclei of region
El) is given by the formula

y-' = <r-iIW)rm.» (4) 3 - (29)

In this formula Cld1i r(r)} rm5 is the average value of
the probability of direct relaxation for the interval
( r m , 6). Calculation of this mean value yields

r " = W " <29a>

It seems to us that introduction of a time of cross re -
laxation between the nuclei of regions E and El is doubt-
ful. However, inasmuch as the cross relaxation time

drops out of the final result, this assumption does not
play an essential role.

The weak point of the influence-sphere model, in our
opinion1253, is the introduction of the averaged relaxa-
tion probability for the nuclei of region II. Indeed, in
typical cases 6 / r m = 2—4, and the times of direct re-
laxation at distances r m and 6 differ very strongly. In
region in, the spin diffusion is very appreciable, and in
region II the diffusion is suppressed. Therefore the de-
cisive role in the relaxation of the nuclei of region HI
is played by the probability of direct relaxation at the
boundary of the regions II and IE, i.e., 1 ^ ( 6 ) . The
direct formula is therefore not (29) but (26), leading to
the result (lb) (see t25]).

As indicated above (see Ch. IV), in the case when
b, 6 < r m , the value of Tn is given by formula (24), in
which the minimum distance for summation over i is
r m . Replacement of summation by integration leads to
the result (29a). In this case, however, first, the re -
placement of summation by integration is incorrect, and
second, under the experimental conditions1233 we have
6 > r m .

We note, finally, that two spherical surfaces of radius
6(1/3) and 5(1/4) are introduced in [23], in order to re -
fine the influence-sphere model (see Ch. I). It is as-
sumed in that paper, however, that 6(1/3) < 6(1/4),
whereas actually the opposite inequality holds.

VI

We proceed to consider the experimental results on
nuclear relaxation in a crystal containing a magnetic
impurity. We confine ourselves to the result published
since 1965.

InC26] is reported an investigation of the relaxation of
F19 nuclei in CaF2- The measurements were made in the
temperature interval 2— 20° K, and also at temperatures
63 and 78°K. Fields from 300 to 5500 Oe were used.
The experiments were made both with single-crystal
samples and with powders. The nature and the concen-
tration of the magnetic impurity were unknown (the con-
centration, however, is so small that even at 2°K the
condition TJ <C TS is certainly satisfied, and therefore
also T = 17).

The authors measured the dependence of Tn on the
temperature, field, crystal orientation, and simple
dimensions. According to the experiment, Tn ^ HT"
at 2 < T < 14°K and H < 2 kOe. This result can be ex-
plained approximately by assuming that rynH > 1, 6 > b,
and T < T2, and assuming that the magnetic ion is not of
the Kramers type and its relaxation is of the single-
phonon type (this yields x « H^T"1). Indeed, using (7c)
and (lib), we obtain Tn oc H3 / 4T~7 /" (if we assume that
a = 1/4). At 14 < T < 20°K, and also when H > 3 kOe,
the dependence of Tn on H turns out to be stronger, a
fact which the authors attribute to the effect of the
phonon bottleneck and to relaxation of the magnetic ion.

The relaxation of protons in para-dibromobenzene
was investigated in t 27 ] . The experiments were per-
formed at helium temperatures (in the interval
2.7—4.2°K). The nature and concentration of the impur-
ity, unfortunately, were unknown (the concentration,
however, was so low that at all temperatures 17 <C TS
and T = 17). Fields from 0 to 140 Oe were used. In such
a weak field, the equilibrium proton signal is small,

p-7/4
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1/2

and therefore it is difficult to determine Tn from the
growth of the signal after the saturating field is turned
off. The protons were polarized by thermal mixing with
the bromine nuclei in a weak field H, after which the
proton signal was measured under conditions of rapid
passage (the author measured in this case the depen-
dence of the signal on the time of stay in the field H).

The dependence of the relaxation time on the field
was measured at T = 4.2°K. In a weak field, however,
the employed procedure determines the spin-tempera-
ture relaxation time (in a weak field, the system is
characterized by a single spin temperature). This time
is a combination of the relaxation times of the Zeeman
and dipole-dipole interaction. Knowing the local field, it
is possible, by using the measured values of the relaxa-
tion time of the Zeeman interaction, as was indeed done.
It turns out that this correction must be used in a field
smaller than 20 Oe.

Figure 1 shows, in a log-log scale, the obtained de-
pendence of Tn on H. The figure also shows two lines
with slopes 1/2 and 2. It is seen from the figure that
when the field increases a change takes place from a
dependence Tn <* Hl/2 to a dependence Tn <* H2 (the
deviation of the experimental points from the Tn «: H1

dependence in a field weaker than 2 Oe can be disregar-
ded, for in such a weak field the aforementioned re-
calculation is too rough). This result can be readily
understood by assuming that TynH > 1, that Tj is inde-
pendent of H, and that T; > T2 (see formulas (7a) and
(11)). The central point of this transition (the point of
intersection of the two straight lines) corresponds to a
field of 35 Oe. This field corresponds to 63 = 1.6b3 (see
formulas (la) and (lb). Using this fact, the author esti-
mates from experiment the value of 6 4D and obtains a
reasonable value for it. Further, using the known value
of the ratio 6/b in a field of 35 Oe, he plots the depen-
dence of Tn on H in accordance with formulas (13) and
(14). It is shown in Fig. 1. We see that the agreement
between theory and experiment is good, on the basis of
which it is concluded in1273 that the rectangular barrier
model is a good approximation.

In the same investigation, the temperature depen-
dence of Tn in the temperature interval 2.7—4.2° K in a
50 Oe field. We note that according to the theory, when
rynH > 1, 6 > b, and T > T2, we have Tn <* T (see form-
ulas (7a) and (lib)). The experimental data fits well the
curve Tn °c T"9. It follows therefore that the magnetic
ion is a Kramers ion, and its relaxation is of the Raman
two-phonon type.*

The influence of light radiation on the relaxation of
cadmium nuclei in CdS, which is a photoconducting com-
pound, is investigated in t 28 ] . The light causes photo-
electrons to appear in the conduction band, some of
which are captured by the lattice defects or by the im-
purities. The centers capturing the photoelectrons, in
the case when the latter are paramagnetic, cause the
relaxation of the nuclei of the main lattice. The relaxa-
tion can be produced also by the band photoelectrons, if
their concentration is sufficiently large. Thus, illumina-
tion of a photoconductor should lead to a decrease of the

ff.Oe

In view of the low value of the external field, the single-phonon
relaxation is negligibly small compared with the two-phonon relaxation.

FIG. 1. Dependence of the proton relaxation time on the magnetic
field in paradibromobenzene at T = 4.2° K [" ].

relaxation time of the nuclei of the main lattice.
The experiment was performed at a temperature

4.2°K and at the external-field values 4, 7.4, and
9.7 kOe. The relaxation times of the nuclei Cd l u and
Cd113 were determined from the rate of recovery of the
nuclear signal after the saturating field was turned off.
According to the measurements, for the sample em-
ployed by the authors, Tn(Cd113) = 3000 min in darkness.
As a result of illumination, Tn decreases to 30 minutes.
After the illumination is turned off, Tn increases to
400 minutes. Further illumination of the crystal with
red light restores the initial value of Tn.

The analysis performed by the authors shows that the
decrease of Tn following illumination with white light is
due to the paramagnetic centers produced as a result of
capture of photoelectrons by lattice defects or impuri-
ties. The decrease of Tn due to the bandphotoelectrons
is negligible, in view of the smallness of their conserva-
tion. The fact that the initial value of Tn is not restored
after the white light is turned off is attributed by the
authors to the fact that at low temperature a fraction of
the electrons remains captured by the defects. Illumin-
ation of the crystal with red light causes a release of
these electrons (the energy of the red-light quantum is
insufficient for the formation of new photoelectrons).
According to the experiment, Tn increases slowly with
increasing external fields, in qualitative agreement with
the diffusion theory (in the case when b > 6).

A detailed investigation of the relaxation of protons
in dilute paramagnetic salts was made by Jeffries and
co-workers. In one of the investigations of this
group"61, they measured the relaxation time of the
photons in lanthanum-magnesium double nitrate, in
which 1% of the lanthanum atoms was replaced by neo-
dymium atoms (in order to get rid of the hyperfine
structure, the isotope Nd142 was introduced). This con-
centration corresponds to N = 1.6 x 1019 cm"3. The
measurements were made in a temperature interval
1.3—4.3° K and at an external-field intensity 1—20 kOe.
The external field was inclined 40° to the symmetry
axis of the intracrystalline field. By way of an example
we point out that at a temperature 2°K and in a field of
5 kOe we have Tn a 103 sec. Simultaneously with Tn
they measured also 17.

Under the conditions of these experiments, 6 S> b, so
that it is necessary to use formula (lb) for Tn. Substi-
tuting r 1 for T in (4), the authors arrive at values of Tn
that exceed the experimental data by three orders of
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magnitude. However, TS <C T̂  under the conditions of
these experiments. However, substituting Tg for T in
(4), we arrive at values of Tn smaller by three orders
of magnitude than the experimental data.

In another investigation[2ai, the Jeffries group meas-
ured the relaxation time of the protons in the same salt
in the temperature interval 0.5—3°K and in an external-
field interval 10—50 kOe. The external field was applied
perpendicular to the symmetry axis of the intercrystal-
line field. In this investigation, T̂  was not measured.
By way of an example we indicate that at 1.5°K and in a
field of 19.5 kOe, the obtained value was Tn = 40 hours.
As noted by the authors, such large values of Tn are
very convenient from the point of view of conservation
of the proton spin direction following dynamic polariza-
tion by a high-frequency field.

We note a very interesting investigationl231 of proton
polarization occurring following rotation of an yttrium
ethyl sulfate crystal, in which 2% of the yttrium atoms
are replaced by ytterbium atoms (even isotope Yb172).
Besides investigating the polarization occurring upon
rotation, the authors also measured the proton relaxa-
tion time in the temperature interval 1.4—4.3° K for an
external field 0.05-20 kOe and for different crystal
orientations.

To explain the results obtained m£16>23>29]; they intro-
duced the influence-sphere model, which we have dis-
cussed in sufficient detail above (see Ch. V).

In'303, the relaxation time of F19 was measured in an
NaF crystal containing Mn2+ as an impurity. The impur-
ity concentration ranged from 1018 to 1019 cm"3. The
measurements were made in the temperature interval
2—1380°K and at external-field values 3.2, 5.7, and
9.7 kOe. We confine ourselves to results obtained at
room temperature and below.

The authors observed magnetic resonance due to the
manganese impurity. A line having a hyperfine struc-
ture was observed, and also a broad structureless line.
It was possible to saturate only the line having the
hyperfine structure, and consequently the dependence of
T[ on the temperature and on the field could be meas-
ured only for the centers producing this line. The au-
thors have shown further that at temperatures above
170°K the measured plots of Tn and TJ against the tem-
perature satisfy the relation that follows from the diffu-
sion theory of nuclear relaxation. Below 170° K, the
theoretical values of Tn obtained by using the measured
values of T; exceed the measured values of Tn. The au-
thors conclude that at a temperature below 170° K the
paramagnetic relaxation causing the relaxation of the
F19 nuclei is connected with centers that produce a broad
structureless EPR line. The authors assume that these
centers are pairs or larger aggregates of manganese
ions.

Reference 31 is devoted to an investigation of the re -
laxation of In115 nuclei in p-InSb. The measurements
were made in the temperature interval 1—4.2°K for an
external field 0.3—10 kOe, and in the acceptor-concen-
tration interval 1014—1017 cm"3. It is important that the
samples contained also a compensating donor impurity.
The most interesting results were obtained for medium
concentrations of the acceptor impurity (2 x 1015—2
x 1016 cm"3). The authors show that the experimental
data can be explained by assuming that the relaxation of

the nuclei is caused by the time variation of the local
field on the nuclei, due to hopping of the hole from one
acceptor impurity atom to another. We note that such
hopping is possible because the sample contains com-
pensating donor impurities, which causes a certain frac-
tion of the acceptor atoms to be in the ionized state.

This effect was investigated in greater detail in [32],
where a study was made of the relaxation of the Si29

nuclei (spin 1/2, abundance 4.7%) in n-Si. The measure-
ments were made at temperatures 1.3 and 4.2°K and in
the field interval from 50 to 3300 Oe. In all the samples,
the concentration of the donor impurity (phosphorus) was
the same, N,j = 6 x 1016 cm"3. The concentration Na of
the acceptor impurity (boron) varied in such a way that
the compensation coefficient K = Na/Ncj assumed values
0.13, 0.33, and 0.67 for different samples. Measure-
ments were made of the dependence of T n on the tem-
perature, external field, and K. For the dependence of
Tn on H at T = 4.2° K, they obtained Tn <* H l /2, which
agrees with formula (lla) if it is assumed that T is in-
dependent of H. At helium temperatures and at a donor
impurity concentration 6 x 1016 cm"3, almost all the
"extra fifth" electrons of the donor atoms will be local-
ized. In compensated n-Si, however, some of the elec-
trons will be captured by the acceptor atoms and there-
fore several of the donor atoms will be ionized.

The authors introduced the following model to explain
the experimental data on the dependence of Tn on the
temperature and on K. Let us consider a pair made up
of a neutral and ionized donor atoms, located near an
ionized (electron-capturing) acceptor atom. InC33], the
probability of the transition of the electron from one
donor atom to the other was calculated. In such a transi-
tion, the local field acting on the nearby Si29 nucleus
changes. The authors of[32] calculated the time of direct
relaxation of the Si29 nucleus, due to the hopping of the
electron; using then the results of the spin-diffusion
theory, they obtained finally an expression for Tn.

Calculation shows that Tn <* K at small values of K
(when K < 1), Tn

x oc 1 - K at large K (i.e., when 1 - K
•C 1), and Tn* goes through a maximum when K = 0.5.
These results can be readily understood. If Na <SC N<j,
then the number of centers causing the relaxation of the
nuclei is proportional to the acceptor concentration Na;
on the other hand, if Na = N^, then the number of cen-
ters causing a relaxation is proportional to the concen-
tration of the neutral donors, i.e., to Nd - Na.* The re-
sults of the experiment fit approximately the theoretical
curve (but it is difficult to speak of good agreement,
since K assumes only three values in the experiment).
The authors also calculated the ratio of the values of Tn
for two temperatures and obtained a value close to the
measured one.

Incia: they measured the temperature dependence of
the relaxation time of F19 nuclei in CaF2 doped with
neodymium. The neodymium concentration was
5 x 10"3wt.%. The measurements were made in an ex-
ternal field of 1.5 kOe and in the temperature interval
2—300° K. Two orientations of the external field along

The number of centers causing the nuclear relaxation is propor-
tional to Nd(Nd — Na) Na. Recognizing that Nj is fixed, we arrive at the
indicated results.
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the [100] and [110] directions were used. At T = 16° K,
Tn goes through a minimum. The spin-lattice relaxa-
tion time of the neodymium ions was not measured.

To analyze the results of his measurement, the au-
thor uses formula (15). Thus, the author determines the
dependence of T on T. At temperatures below 50° K, this
dependence is described by formula (9), in which T̂
corresponds to the resonant relaxation process via an
intermediate level located 65 cm"1 above the ground
level.

An interesting transition effect was observed in[34].
The experiment was performed with lanthanum-magnes-
ium double nitrate, in which 1% of the lanthanum atoms
were replaced by neodymium atoms (Nd142 isotope). The
measurements were made in the temperature interval
1.5-2.5°K. The forbidden transition of the "Nd3+ ion
plus proton system" was saturated, the transition en-
ergy (divided by Planck's constant) being equal to the
sum of the Larmor frequencies of the neodymium ion
and the proton. In other words, a saturating microwave
field was applied (frequency 8.8 MHz), and the external
field was set equal to H_ (see the review [3 :). It is known
that in an H. transition the protons are negatively polar-
ized, and accordingly an emission signal in the proton
resonance measurement setup. When the microwave
field was turned off, the emission signal decreased, and
then the signal became positive and the polarization of
the protons tended to its equilibrium value. The time
variation of the signal was simply exponential. For the
proton relaxation time Tn , a value on the order of sev-
eral hundred seconds was obtained (450 sec at
T = 2.02°K and 220 sec at T = 2.42°K).

In the second experiment, after reaching the station-
ary negative polarization of the protons (which exceeded
in absolute magnitude the equilibrium thermal polariza-
tion by about 300 times), the external magnetic field was
rapidly changed as a result of the H. transitions, and
made equal to H+. As a result, the emission signal de-
creased. At the instants when the proton signal became
equal to zero, the microwave field was turned off. The
measurements have shown that initially the emission
signal is partially restored. The maximum signal ex-
ceeds the equilibrium signal in absolute magnitude by
3—4 times, and this maximum is reached approximately
100 sec after turning off the microwave field. The au-
thors note that the signal growth in time cannot be des-
cribed by a single exponential, or even by a sum of
several exponentials. The emission signal decreases
after the maximum is reached, vanishes at a certain
instant of time, after which an absorption signal appears,
which in the limit tends to the equilibrium signal. Dur-
ing this second stage, the change of the signal with time
is simply exponential, and the time constant coincides
with the previously measured value of Tn. This effect
is observed only below 2.5°K.

The authors present the following interpretation of
the observed effect. At first, all the protons are nega-
tively polarized as a result of the H_ transitions. Switch-
ing the external field from the value H. to the value Ht
produces H+ transitions. Since the probability of direct
reorientation of the proton spin decreases rapidly with
increasing distance from the neodymium ion, the change
of the polarization direction begins for the protons loca-
ted near the magnetic ions. At the instant when the

microwave field is turned off, the protons located near
the neodymium ions have positive polarization exceed-
ing the thermal polarization; on the other hand, most
protons have a negative polarization, and the total nuc-
lear magnetic moment of the sample is equal to zero.
The nuclear relaxation starts at that instant. The pro-
tons close to the ions have positive polarization exceed-
ing the thermal polarization and relax rapidly. On the
other hand, the relaxation of most protons is connected
with the spin diffusion and is slower. It is clear there-
fore that the average sample polarization is at first
negative, and that this process is not exponential in
time. Then, owing to the spin diffusion, the contribution
of the relaxation of most protons becomes noticeable.
The total nuclear magnetic moment of the sample begins
to decrease (in absolute magnitude), passes through
zero, and then tends to an equilibrium value. It is clear
that this process will be exponential with a relaxation
time Tn.

The relaxation time of F19 in samples of CaF2 doped
with Tb3+, Tm3+, and Sm3+ was measured in[3S]. The
measurements were made in the temperature interval
28—300°K, the frequency of the alternating field was
29.5 MHz (the corresponding value of the external field
was 7.3 kOe), and the external field was directed along
the [111] axis. Preliminary measurements have shown
that at room temperature the relaxation times in all the
samples were much lower than in a sufficiently pure
CaF2 sample. This indicates that in all these samples
the relaxation of the F19 nuclei is due mainly to the in-
troduced magnetic impurity.

Let us describe the results obtained for a sample
with a Tb3+ concentration 1.9 x 1019 cm"3. At such a con-
centration and at T > 28° K we have T̂  <S TS and T = T .̂
According to the experiment, the relaxation time, Tn
has a minimum at a temperature of 41° K. Assuming
that the minimum corresponds to a value of wnT equal
to unity, the authors determine the value of T at 41°K.
Using the obtained value of T and the corresponding
value of Tn , the authors, using formula (la) (6 < b at
41°K), determined the diffusion coefficient D. Using,
further, the obtained value of D and the measured values
of Tn , the authors determined the dependence of i\ on T
for the temperature interval 28—300° K. The authors
note that their 77 (T) curve and the TJ(T) curve obtained
inC36:l in the temperature interval 2—10° K, by the pulsed
EPR saturation method, are "joined together" satisfac-
torily.

Similar results were obtained for a sample of CaF2
doped with Tm3+. In the case of a sample doped with
samarium, the curve obtained for the temperature de-
pendence of Tn had a single maximum and a single mini-
mum. The reason for such a behavior of the Tn(T) curve
is unclear.

Reference 37 is devoted to the measurement of the
dependence of Tn on the temperature, the external field,
and the orientation of the crystal under conditions when
the spin polarization of the magnetic ion is large and it
is necessary to take into account in T(jjr the factor
1 — Po (see Ch. I). The measurements were made with
lanthanum-magnesium double nitrate, in which 0.01%
of the lanthanum atoms was replaced by dysprosium
atoms (S = 1/2, Dy162 isotope). External fields in the
interval 5.7—20 kOe were used, the temperature varied
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in the interval 1.1—1.9°K, and the external field was
applied parallel and perpendicular to the symmetry
axis of the intracrystalline field.

According to the theory we have (when wnT ^> 1)

This yields

(30)

where p. = 1/4 when b > 6 and M = 1 when b < 5. The
concentration of the dysprosium is so small that it can
be assumed that r = TJ.

The experimentally obtained values of the ratios
Tn(20 kOe)/Tn(12 kOe) (at T = 1.1° K) and
Tn(l.l°K)/Tn(1.9°K) (at H = 20 kOe) in parallel and
perpendicular orientations were compared with the val-
ues of these ratios that follow from formula (30). The
author, however, did not measure TJ, which he obtained
by extrapolating the data of[38]. A comparison shows
that the measured values of these ratios lie in all cases
between the theoretical values corresponding to /ix = 1/4
and /i = 1.

Int39:1 they measured the temperature dependence of
the relaxation time of the F19 nuclei in BaF2 and SrF2
crystals containing Mn2t as an impurity. The tempera-
ture dependence of the spin-lattice relaxation time of the
Mn2+ ions was also measured. The measurements were
made in a field of 3.3 kOe and in the temperature range
from that of helium to 79° K. The Mn2+ concentration
measured by determining the EPR intensity varied for
different samples in the interval (2—8) x 1017 cm"3.
However, the measurement of the concentration by an
optical method has led to much larger values. This indi-
cates that an appreciable fraction of the manganese ions
is combined into pairs or even larger "clusters ."

The measurement results show that the Tn(T) curve
has a minimum. The minima take place at temperatures
close to 30" and 50° K for BaF2 and SrF2 respectively.
These temperatures satisfy approximately the condition
wnr = 1 if the measured values are used for Tj. At tem-
peratures above 25°, the experimental data agree quali-
tatively with the theoretical results. At lower tempera-
tures there is no agreement, and this is attributed by
the authors to the presence of "clusters" of manganese
ions, or to the presence of another impurity.

Reference 21 is devoted to an investigation of the re -
laxation of protons in solid organic substances containing
free radicals as an impurity. The matrices employed
were tetrahydrylfuran (C4H8O), toluene (C6H5-TH3), di-
phenyl (C6H5-CoHs) and o-terphenyl (CoH4(C6H5)2), and
the free radicals were DPPH (diphenyl pycril hydrazyl)
and BPA (bis-diphenyl p-chlor-phenylalyl). The radicals
were dissolved in the matrix above its melting tempera-
ture. Good homogeneity in the radical distribution was
obtained by rapid cooling to 77°K. Special investigations
have shown that toluene and o-terphenyl are obtained in
the vitreous state, while tetrahydrylfuran and diphenyl
are obtained in the polycrystalline state.

The measurements were made at 14.5 MHz, the tem-
perature varied in the interval 4.2—77° K (most meas-
urements were made at 77°K), and the radical concen-
tration N was varied in the interval 1018—1019 cm"3. The
authors measured the recovery of S)J(t) in time after

pulsed saturation of the proton resonance. In all cases,
regions of 3ft(t) oc t, 3K(t) °c tl/2—const, and an exponen-
tial region were observed. Further, according to the
measurements, the coefficient of t and of t respec-
tively, and also the relaxation probability T^1 in the ex-
ponential region, are proportional to the radical con-
centration N. Thus, by using formulas (23a), (23b), and
(la) it is possible to determine from the experimental
data the values of C, D, and 6, for which reasonable
values are obtained. Values in the interval
10"14—10"16 cm2 sec"1 are obtained for the spin-diffusion
coefficient. The small values of D are due to the fact
that for solid organic substances the distance between
the protons of the neighboring molecules is relatively
large. In this connection, the authors note that formula
(6) does not hold for solid organic substances, for the
quantity T2, unlike D, is determined mainly by the intra-
molecular interactions.

The obtained values of b and 6 are rather large. For
example, for diphenyl (with BPA impurity) the authors
obtain b = 34 A and 6 = 17 A at 77°K. In this connection,
the validity of the theory at the employed concentrations
is somewhat doubtful. Indeed, for example at
N = 1018 cm'3, it is found that R = 62 A, and thus, b/R
exceeds one-half.

Reference 40 is devoted to an investigation of the re-
laxation and dynamic polarization of protons in lan-
thanum magnesium double nitrate, in which 0.1% of the
lanthanum atoms are replaced by neodymium atoms
(Nd142 isotope). The samples were bombarded with
146-MeV protons. The measurements were made at
temperatures 4.2 and 1.3°K in fields 2.5 and 9.2 kOe.
The integral irradiation dose was varied up to
3 x 1012 protons/cm2.

The EPR line resulting from the irradiation was in-
vestigated. The value obtained for the g-factor was
2.002 (the g-factor of the line due to the neodymium ion
is 2.7, so that these two lines do not overlap). The line
width does not depend on the temperature and on the
irradiation dose, but increases rapidly with increasing
field. It turned out further that the integral intensity of
the EPR signal, meaning also the concentration of the
centers resulting from the irradiation (and responsible
for the EPR) are proportional to the irradiation dose.
An estimate shows that the maximum dose corresponds
to an center concentration on the order of 3 x 1019 cm"3.

The measurements have shown that the dynamic
polarization of the proton decreases with increasing ir-
radiation dose. This fact is connected by the authors
with the occurrence of an additional channel for the re -
laxation of the protons by the defect centers and, in addi-
tion, to the shift of the Zeeman frequencies of the pro-
tons located near these centers.

The dependence of the relaxation time of the protons
on the irradiation dose was measured in a field of
9.2 kOe and at a temperature 1.3°K. At all doses, the
proton relaxation turned out to be exponential within the
limits of errors. The measurements have shown that
the proton relaxation rate T"1 is a linear function of the
dose; in other words, the additional proton relaxation
rate (compared with the relaxation rate in the non-
irradiated sample) is proportional to the concentration
of the defect centers produced by the radiation. This
fact indicates that the additional relaxation of the pro-
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tons is connected with the reorientation of the spins of
the defect centers, due to their spin-lattice (and not
spin-spin) relaxation.

An estimate yields* b = 2A and 6 ss 16 A (the esti-
mate of 6 was obtained from the observed decrease of
the dynamic polarization of the proton as a result of the
irradiation), so that formula (lb) should be used for the
additional relaxation rate. The authors state that their
data are in good agreement with this formula.

Concluding the review the experimental studies, we
note that for many of them we were forced to confine
ourselves to a qualitative comparison with the theory.
This is due to the fact that only the values of Tn were
measured in many experiments, and not the values of
Tj. In many experiments the dependence of Tn on the
field was not measured. Finally, in some experiments
the concentration or even the type of the magnetic im-
purity was unknown.

VII

In a class by itself are the brilliant experiments of
Kessemeier and Norbergt4i:l on nuclear relaxation due
to a magnetic impurity in a rotating crystal.

We shall discuss first the question of the line width
of NMR in a rotating crystal (see, for example/42'43-1,
and also t 41 ]).

The external field, as throughout this review, is as-
sumed to be much stronger than the local field, so that
the condition u n > a is satisfied (a = P is the statisti-
cal mean-square NMR line width). It is well known that
in a strong field the shape and the width of the NMR line
are determined by the secular part of the energy of the
nuclear dipole-dipole interaction, i.e., by the part that
commutes with the Zeeman energy operator. This secu-
lar part consists of two sums over pairs of nuclei t. The
first sum contains terms proportional to I?I?, and the

second sum (the so-called flip-flop part) contains terms
proportional to 1*17 + r r .

We denote the angular velocity of the rotating crystal
by ft, and the angle between the directions of the external
field and the rotation axis by 8. We introduce, further,
the quantity

A (6) = i (3 cos2 9 — 1).

When the crystal rotates, the secular part of the
dipole-dipole interaction is a function of the time. A
simple calculation shows that it can be represented in
the form of a sum of three terms, one of which is inde-
pendent of the time and is proportional to A(6), and the
other two depend on the time. Further, it turns out that
the terms that depend on the time decrease with increas-
ing ft and become negligibly small when the condition
ft » a/277 is satisfied. Thus, if the angle 8 is chosen
equal to the magic angle cos"1 (3~l/2) = 54.7°, then the

Tc calculate b it is necessary to know the spin-lattice relaxation
time of the defect center T,. Measurements have shown that at a tempera-
ture 1.3° K in a field of 2.5 kOe, we have T{ a 2 X 10"3 sec. Assuming
that the defect is of the Kramers type and its spin-lattice relaxation is
due to a single-phonon process (this yields Tj a H~*), the authors found
that 7; = ICC5 sec in a field of 9.2 kOe.

secular part of the dipole-dipole interaction becomes
very small at large values of ft. Accordingly, the NMR
line width should decrease with increasing ft and tend to
zero when ft ^$>a/2v. The latter conclusion, however,
is valid only if the NMR line width is due only to the
dipole-dipole interaction. On the other hand, if a certain
contribution is made to the NMR width by some spin-
spin interaction, which is invariant against rotation,
then the width will tend not to zero but to a finite limit
at large values of ft.

We shall not discuss the results of experiments on
the shape and width of the NMR line in a rotating crys-
tal. We note only that such experiments make it possi-
ble to obtain information on rotation-invariant chemical
shifts.

We proceed to the question of the relaxation of nuclei
in a rotating crystal [41]. According to formula (1) and
(5), the relaxation time Tn depends on the three quanti-
ties 6, C, and D. The radius 6 of the diffusion barrier
does not change when the crystal rotates. It is easy to
see, furthermore, that the relative change of C when the
crystal rotates is of the order of ft/a)n, and therefore it
can be assumed that C likewise remains unchanged.
From the physical point of view, this is connected with
the following circumstance: The quantity C describes
the direct relaxation of the nucleus by the magnetic ion;
in this process, the nucleus and the magnetic ion ex-
change an energy equal to Rwn, which greatly exceeds
the quantum lift connected with the rotation. On the
other hand, the spin-diffusion coefficient D is connected
with the flip-flop transitions of pairs of neighboring
nuclei. In the flip-flop transition of a pair of nuclei, the
energy of this pair changes by an amount of the order
of a. If ft > a/2rr, the probability of the flip-flop transi-
tion, and with it the spin-diffusion coefficient D, should
be smaller than in the static case.

The calculation of the value of D for a rotating crys-
tal is similar to the calculation of the NMR line width.
The interaction energy causing the flip-flop transitions
represents that part of the secular dipole-dipole inter-
action which is the sum over the pairs of nuclei from
the expression proportional to It IT + irK . For a rotat-
ing crystal, this interaction of energy again reduces to
a term that does not depend on the time and is propor-
tional to A(8), and to two terms that depend on the time
and decrease with increasing ft. Thus, we find that at
an angle 8 equal to the magic angle the diffusion coeffi-
cient D will decrease with increasing ft and tend to zero
at large ft. More accurately, if a certain contribution
is made to the flip-flop transition probability by the
spin-spin interaction, which is invariant against rotation,
then D(ft) will tend at large values of ft not to zero but
to a finite limit.

The value of D(ft)/D(0) as a function of ft was calcula-
ted inH1] for a pure dipole-dipole interaction between
the nuclei. Introducing further, in accordance with (4),
the quantity b(ft) = 0.68 C [D(ft)]~l/4, we can, using
formulas (13) and (14), obtain an expression for Tn(ft).

According to (la) in the limit of diffusion-limited
relaxation,

tA pair of non-identical nuclei produces only terms of the first kind. In the fast-diffusion limit, the relaxation time Tn is
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FIG. 2. Dependence of the relaxa-
tion time Tn on the angular velocity
n for p3' nuclei in Mg3 P2 in a field
of 16,825 Oe[41].

S 6 SI, kHz

independent of the diffusion coefficient, and therefore
also of O. However, since D(fi) decreases with increas-
ing Q,, diffusion-limited relaxation will always take place
when fl is sufficiently large.

In setting up the experiments, a difficulty arises with
the satisfaction of the condition n >o/2v. For example,
for the NMR of F19 in CaF2 we have a/2n = 10 kHz. But
when n is larger than 10 kHz, there is the danger of
rupturing the crystal. It is therefore desirable to ex-
periment with a material for which a is relatively small.
To this end it is necessary that the resonating nuclei
have a small gyromagnetic ratio, that the average dis-
tance between them be relatively large, and that most
other nuclei have zero spin. It is desirable furthermore
to deal with nuclei having a spin equal to 1/2, so as to
get rid of quadrupole effects.

The experiments were performed on P31 nuclei in
Mg3P2, Zn3P2 and A1P, and on Al27 in A1P. The value of
a/2n for the P31 nuclei in Mg3P2 and Zn3P2 is 0.88 and
1.02 kHz, respectively. The samples used were in
powdered form. The accuracy with which the angle 8
was set equal to the magic angle was ±0.5°. The angu-
lar velocity n was varied in an interval from 2 to 8 kHz.
The measurements were performed at room tempera-
ture and at frequencies 15.9 and 25.0 MHz. The corre-
sponding values of the resonant field of the P31 nucleus
were 9225 and 16,825 Oe.

Pulsed saturation of the NMR was produced in the
experiments, and a 90° pulse was applied at a time T
after the saturation. The magnitude of the signal was
proportional to z-component of the magnetization at a
time T after the removal of the saturation. The depen-
dence of the signal on j turned out to be exponential,
making it possible to determine Tn(fi). The nature and
the concentration of the magnetic impurity were un-
known. However, diffusion-limited relaxation certainly
takes place at room temperature.

Figure 2 shows the dependence of Tn(i2) on fi for P31

nuclei in Mg3P2 in a field of 16,825 Oe. The solid line
shows the theoretical curve calculated for the dipole-
dipole interaction.

We see thus that according to experiment, Tn(O) first
increases with increasing £2, after which the growth
slows down and Tn(fi) tends to a finite limit. According
to the foregoing, this means that a certain contribution
to the flip-flop transition probability is made by some
spin-spin interaction that is invariant with respect to
rotation. According to Fig. 2, Tn(°°)/Tn(0) s 2.5. This
yields D(°°)/D(0) = 0.3.

The authors propose that the additional interaction is
an exchange interaction between nuclei, due to the elec-

trons , and it is of the form

The value of J for nearest nuclei can be estimated by
using the asymptotic value of D(°°)/D(0). This yields
J = 0.33 kHz for the P31 nuclei in Mg3P2.

VIII

In Ch. II we have assumed that in the case TS < 77,
when the spin orientation takes place, its Zeeman energy
goes over into the energy of the dipole-dipole reservoir
(DDR) of the system of magnetic ions. It must be recog-
nized, however, that at low magnetic impurity concen-
trations, the heat capacity of the DDR will be smaller
than the heat capacity of the nuclear Zeeman interac-
tions. Because of this, the "DDR of the magnetic-ion
system—lattice" section may turn out to be the "bottle-
neck" in the transfer of the energy from the nuclear
spins to the lattice.

Buishvili'443 analyzed the relaxation of nuclei in a
crystalline with magnetic impurities, with allowance for
the possibility of changing the temperature of the DDR
of the magnetic ions. He confined himself to the homo-
geneous problem (the nuclear magnetization was as-
sumed to be independent of the position). We present the
general line of reasoning in his paper, and analyze its
results. We note that this reasoning is valid for arbi-
trary values of S and I.

The Hamiltonian of the system is written in the form

whereaft'jjo^cj, and<$?j are respectively the Hamiltonians
of the Zeeman system of the nuclei, of the DDR of the
magnetic ions (secular part), and of the lattice (it is
assumed that the Zeeman degrees of freedom of the
magnetic ions are in equilibrium with the lattice); S£^
is the energy operator of the interaction between the
spins of the nuclei and of the magnetic ions, andcSi?^ is
the energy operator of the interaction between the spins
of the magnetic ions and the lattice.

The quantum equations of motion are (the square
brackets denote a commutator)

(32)

Following Zubarev t45], the statistical matrix of the
system in the stationary nonequilibrium state can be
written in the form

. (33)

where Q is equal to the " t race" of the exponential, |3j,
0^, and [$i are the reciprocal temperatures of the nuclear
Zeeman system, the DDR, and the lattice, respectively;
K(t) denotes the operator K in the Heisenberg represen-
tation; the transition to the limit e — +0 should be made
after the evaluation of the integral.

The mean value of K can be expressed by the formula

K = Sp(pK). (34)

Confining ourselves to the case of high temperatures,



SPIN DIFFUSION AND NUCLEAR MAGNETIC RELAXATION 813

we can expand the exponential in (33) in a series* and
retain_terms of first order of smallness^After_calcu-
lating Kj and Kd and expressing further S£^ ando^ in
terms of /3j and j3d, we obtain the following system of
equations (the dot denotes differentiation with respect to
time)

where
FA(e t, Xfi,))

lK,Kd (t, XP;)> dt

Kj (t, Xfii)) ,.

the symbol ( ) denotes

and Td can be represented in the form

where

Til =-( t (t, '-dt,

, %(,,))dt.

We note that

Tdl
p -X2!

(35)

(36a)

(36b)

(37a)

(37b)

(38)

(39)

(40)

(41a)

(41b)

(42)

where cj and cd are the heat capacities of the nuclear
Zeeman system and of the DDR of the magnetic ions,
respectively.

Calculation yields

Tf = ~(yng№S(S +1) A/(<„„) 2'•S6. (43)

The summation takes place over the nuclei, and r ^
is the distance from the i-th nucleus to the k-th mag-
netic ion. f(w) is given by the formula

We assume that

(44)

(45)

where T is given by formula (9), and then

or (comparing with formula (24))

FIG. 3. Schematic picture of the re-
laxation with allowance for the dipole-
dipole reservoir of the magnetic ion.

It i s further easy to obtain the relat ion

cd NS(S+\) I ad \2
c, nl(I--i) \an I ' (47)

where the quantity w^, which plays the role of the aver-
age DDR quantum, is given by the formula

ft2 ((^ S)^-) \*°)
k

The relaxation picture is shown schematically in Fig.
3. I, d, and I denote respectively the nuclear Zeeman
system, the DDR of the magnetic ions, and the lattice
(the Zeeman degrees of freedom of the magnetic ions
a r e combined with the lattice). T J J and T d ^ play the

role of the par t ia l relaxation t imes of the I and d
sys tems with the latt ice, respectively.

Equations of the type (35) a r e encountered i n

[ 4 6 > 4 7 ] ,
where their solutions a r e analyzed.* It follows from
(35) that the relaxations of /3j and j3d a r e described by
sums of two exponentials, exp(—X+t) and exp(-A_t), where

, i r / j M 2 . 4 l 1

— 2 l\Td Tj I • TldTdI J
(49)

It will become clear from what follows that for all
the performed experiments it can be assumed that the
condition T d <C Tj is satisfied.

We confine ourselves to a consideration of part icular
3 a s e s t 4 4 ' 2 5 ] . We a r e interested h e r e in relaxation of /3j
only.

Case I: T j d ^> T j ; . /3j re laxes with a relaxation t ime

XI1, where

_̂ = n i = r j i . (50)

The nuclear spins re lax directly with the lattice (more
accurately, via the Zeeman degrees of freedom of the
magnetic ions). The DDR of the magnetic ions does not
take part in the relaxation of the nuclei.

Case II: T d j 2> T d ^ . Assuming, in addition, that
T d <C Tj, we find that /3j re laxes with a single relaxa-
tion t ime X:1, where

(51)

The heat capacity of the DDR is in this case suffi-
ciently large, and the reservoir is not heated by the
relaxation of the nuclei.

Case n i : T M < Tu, T d I <C Tdl, T d I « T I d . /3j and

(46)

*%e expand the exponential (33) in terms of all the variables with
the exception of ftHr.

*)lt should be noted, however, that Eqs. (35) (but not (40)) differ
from the corresponding equations of [46 >47 ] in the permutation of
and TdI.
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/3d first relax rapidly to a common value
(cj + cd)"x

 [CJ/3J(O) + cd %(0)], with a relaxation time
AT1, where

Further, /3j and /3d, remaining equal to each other, re -
lax to 0i with a relaxation time XI, where*

i cd 71-1 i r-i /5<^

Usually X; is very small, so that only one relaxation
time \Z is observed in the experiment.

In case HI, the systems I and d are much more
strongly coupled with each other than with the lattice.
Then the heating of the DDR upon relaxation of the
nuclei will be appreciable, thus slowing down the re-
laxation.

Two subcases are possible:
Subcase ma: c d /c j » T d ; / T j / . The relaxation

probability is

(53a)

Subcase Illb: cd /cj -C

X_ = TH (53b)

In the latter case, the heating of the DDR is so strong
that the nuclei relax directly with the lattice.

The relaxation process is described by four quanti-
ties with the dimension of time: Tdj , Tjd , T d j , and T J J .
We have calculated above only the quantity Tj (formula
(46)). For a complete solution of the problem it is
necessary to find the quantities described by formulas
(37) and (41). Let us see, however, what general conclu-
sions can be drawnC25]. It is known that Tdj s TJ/2 [ 2 0 : I .
Therefore T d ; either remains unchanged, or decreases
with increasing N (see Ch. I). Taking (40) into account,
as well as the fact thatt cd <* N2, we obtain T d I /T M

<* N2. From this we can apparently conclude that T d I

increases with increasing N. $ It can be assumed that
when N increases Tj / /Tj d also increases. Indeed, at
sufficiently small N the nuclear relaxation process does
not affect the DDR, and therefore Tj ; < TJ<J; at suffi-
ciently large N, the situation is reversed.

Further, T̂  is always so small that the satisfaction
of the conditions Td j -C TJJ , Tjd should be expected in
all cases. In all the performed experiments, the
magnetic-ion concentration is so small that the condi-
tion cd <S cj is satisfied. According to (42) we obtain
Tdj <̂C Tj d . An important role for the sequel is played
by the values of (Tj//T Id) and (T d / /T d I) . Let Ni and N2

be the solutions of the equations = Tjd and = T
respectively. Ni and N2 are functions of the tempera-

d j ,

In the more general case, for an arbitrary value of the ratio cd/ci,
we have

- T-l1 Tt •
cd

'For a regular distribution of the magnetic ions, cj <* N3 (see [4S ]).
However, if they have a random distribution, calculation leads to cj <* N2

(this circumstance was pointed out to us by L.L. Buishvili).

*The quantity Tld, of course, decreases with increasing N, but there
is every reason for assuming that this decrease is not faster than N'2.

ture and of the external field. In addition, they depend
strongly on the type of magnetic impurity and on the
host substance. Taking the foregoing into account, we
have:

TIZ < T I d when N < Ni, Tu > T I d when N > Ni,

dZ Tdl w h e n N z' T
dZ Tdl w h e n N

Let N2 < Ni; then we get case I when N < N2 and case
II when N > Ni.* Thus, if N2 < Ni, then there is no reg-
ion of N in which the heating of the DDR plays an impor-
tant role in the relaxation of the nuclei. Let now Ni
< N2. Then case I takes place when N < Ni, case HI
when Ni < N < N2, and case n when N > N2. Thus, if Ni
< N2, the heating of the DDR will play an important role
in the relaxation of the nuclei for the intermediate
values of N.

We note, however, that all these arguments are
meaningful only if Ni and N2 are sufficiently small,
since the entire theory is valid only at sufficiently low
concentration of the magnetic impurity.

DC

In Ch. VI we compared the diffusion theory of nuclear
relaxation with the experimental data published in 1965
and later. In the reviewC3J we compared the theory with
earlier experiments. With some of them, the theoretical
results agree well. With others, there is only qualita-
tive agreement. There are also experiments that deviate
strongly from the theory as developed in Chapter I. It
should be noted that the theory deviates principally from
those low-temperature measurements in which rather
large magnetic-ion concentrations are used (N/n > lCT4).
The discrepancy between theory and experiment is ap-
parently due to the fact that in the theory it is neces-
sary to take into account the possibility of heating of the
DDR of the magnetic ions. To this end it is necessary
to calculate the values of Tjd , Tdj , T J J , and T$i, and
then carry out a quantitative analysis based on the re-
sults of Ch. VIII. However, generally speaking, the cal-
culation should be carried out with allowance for spin
diffusion. The disparity between theory and experiment
in the case of helium temperatures and large N is pos-
sibly also due to another cause, namely to the fact that
6/R is not small enough under these conditions, and one
of the criteria for the applicability of our theoretical
analysis is violated. It is also possible that the dis-
crepancy between theory and experiment is due in part
to failure to take into account the anisotropy of the dif-
fusion barrier.

In conclusion, we note once more that the theory (in
the form expounded in Ch. I) is in fair agreement with
many experiments performed at sufficiently low mag-
netic-impurity concentrations.

Recent interesting experimental papers li9>501 indicate
that in ruby, with a chromium concentration 0.05 at.%
(N/n = 5 x 10~4) the coupling between the Zeeman system
of the Al27 nuclei and the DDR of the chromium ions is
much stronger than their coupling with the lattice. Ac-

More accurately, when N < N2 we have the case iff (II denotes
the case opposite to the case II, i.e., satisfaction of the condition Tdj >
Tdl), when N2 < N < Nj we have the case III, and when N > N2 we
have the case MI.
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cording to the statements made above (see Ch. VIII),
the nuclear Zeeman system and the DDR are in equili-
brium with each other, and relax together to equilibrium
with the lattice. Indeed, it was shown inC49] that the
nuclear relaxation rate is described well by formula
(53a). The experiment was performed at 4.2°K and
9 MHz.

In150-1 the EPR line in ruby was saturated under con-
ditions of cross relaxation. It is known that cross re-
laxation leads to a change of the temperature of the
magnetic-ion DDR, which in turn, in view of the strong
coupling, should change the temperature of the Zeeman
system of the Al27 nuclei. The experiment was per-
formed at 1.8°K and at 3.2 cm wavelength. The NMR
signal of the Al27 was measured in parallel. It was
shown that the NMR signal is intensified, and that the
maximum gain reaches 20—25.

It is of considerable interest to perform additional
experiments on the relaxation of nuclei under conditions
of strong coupling between the nuclear Zeeman system
and the DDR of the magnetic ions.
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