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1. BRIEF HISTORY OF THE PROBLEM

WlTHOUT aiming at any detailed exposition of the
history of scientific methods of weather forecasting
(and, all the more, nonscientific methods, such as
almanacs), we confine ourselves to a mention of only
five events which, in our opinion, played the most impor-
tant role in the formation of modern theory of weather
forecasting (more detailed historical information can be
found, for example, in the book by Khrgian:i:i).

The first event was the organization of the weather
service by the Director of the Paris Astronomical Ob-
servatory Urban Leverier, who, under orders of the
French government following the catastrophic storm of
14 November 1854 in Balaklava, was the first to com-
pile, on 19 February 1855, the weather map of that day.

The second event was an article by Vilhelm Bjerknes
"The problem of Weather Forecasting, Considered from
the Point of View of Mathematics and Mechanics"
(1904), in which this problem was first formulated as
an initial-value problem for the equations of the hydro-
mechanics of a baroclinic liquid* (the works of Jacob
Bjerknes, 1917—1919, and subsequent work of the so-
called Bergen school, in which the concept of atmos-
pheric fronts was developed, i.e., surfaces separating
the different air masses, and concerning the formation
of cyclones as a result of loss of wave stability on the
interface, were the basis of modern synoptic methods of
short-range weather forecasts, but these concepts so far
have not acquired great importance for numerical fore-
casting methods, to be sure only for purely technical
reasons: the space grids used in numerical forecasting,
with a longitudinal spacing of several hundred kilome-
ters , do not make it possible to take into account narrow
zones with large hydrodynamic-field gradients, espec-
ially such as atmospheric fronts; to take them into ac-
count in numerical forecasts it is necessary to develop
other methods).

The third event was the book of Lewis Richardson
"Weather Forecasting by a Numerical Process" (1922),
which contained the first attempt to calculate the future
weather by numerically solving the hydromechanics
equations—in the same manner as astronomers predict
the positions of the planets by solving the equations of

*A liquid is called barotropic if its density p is a function of the pres-
sure p only, and baroclinic in the opposite case. A real atmosphere is baro-
clinic, its p depends not only on p but also on the temperature T and,
neglecting the humidity, it satisfies the Clapeyron equation p = pRT (R
« 0.287 J/g-deg is the gas constant for dry air). A liquid in the field
of potential forces and in the absence of viscosity satisfies the theorem
of W. Bjerknes: — = - & ^ (where V =& VdS is the circulation of the

at J;. p J L

velocity along the closed contour L), from which it follows that in a
baroclinic liquid the intersection of the surfaces p = const and p = const
(or p = const and T = const) leads to vorticity production.

dynamics of a planetary system. The attempt was un-
successful: a weather forecast prepared after many
very long calculations for one day (20 May 1920 for the
region Nurnberg—Augsburg) was unsatisfactory. From
the present-day point of view, the reasons for Richard-
son's failure are clear: 1) incompleteness of the initial
data (at that time there were only surface data and
furthermore from a skimpy grid of stations in Europe),
2) imperfection of the finite-difference schemes (e.g.,
the Courant-Friedrichs-Lewy criterion for the ratio of
the spatial and time intervals, which was established
later, in 1928, was not fulfilled), 3) the excessive com-
plexity of the integrated equations, which describe not
only the motions of importance for the weather (the so-
called synoptic processes) also all possible "noise"
such as acoustic waves, breathing of vegetation, etc.

This latter difficulty was overcome in 1940 by I. A.
Kibel' t23, whose paper is probably the most important
event in the history considered by us; he proposed a
fundamental principle for simplifying the hydromechan-
ics equations, namely the asymptotic "quasigeostrophic
approximation," which made it possible to "filter out"
from the solutions of the equations the "meteorological
noise" which is of no importance to the weather. This
principle was subsequently the basis for the creation of
the hydrodynamic theory of short-range weather fore-
casts .

In 1940, striving to limit the calculation only to the
lower layer of the atmosphere (the troposphere), Kibel'
imposed on its upper limit (the tropopause) an artificial
condition, which does not follow from the laws of hydro-
dynamics. ^"Quasigeostrophic approximation" equations
free of these limitations were introduced only in the
post-war years, in the almost-simultaneously published
papers of A. M. ObukhovC3] and J. Charneyt4>5]. These
equations were immediately used for practical calcula-
tions : weather forecasting was one of the problems
which John von Neumann had in mind in the development
of high-speed computers; he was the co-author of one of
the first papers m on the realization of "quasigeostrop-
hic approximation" equations with a computer. The de-
velopment of a hydrodynamic theory of short-range
forecasting of meteorological fields was the greatest
accomplishment of the physics of the atmosphere in the
post-war years. This theory has now already been des-
cribed in a number of books t7"10] specially devoted to
numerical methods of weather forecasting; the first of
them, by I. A. Kibel' t7 ], was in our opinion the best.

As regards the physical principles of long-range
weather forecasting, their history is much shorter; it
dates back from a paper published by E. N. Blinova in
1943 t l l : l. The main difference between the short-range
and long-range forecasts (causing the difference in the
states of their theory) lies, in our opinioncl2] in the fact
that for short-range forecasts it is sufficient to use the
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hydrodynamic equations in the adiabatic approximation,
whereas the very nature of the long-range weather
changes is due to nonadiabatic processes.

2. SCALES OF WEATHER PROCESSES

We present a number of numerical characteristics
of the atmosphere—the object to which we shall apply
the equations of hydromechanics. The atmosphere con-
tains M « 5.3 x 1021 g of air. The total kinetic energy E
of its motion is of the order of 1021 J (the energy of an
individual cyclone, roughly speaking, is smaller by two
orders of magnitude; for comparison, we indicate that
1 megaton of TNT is approximately equivalent to
4 x 1015 J). Thus, according to empirical estimates by
Borisenkov[13], in the northern hemisphere E = 4 x 1020 J
in the winter and 1.9 x 1020 J in the summer, whereas in
the southern hemisphere 7.1 x 1020 J in the winter and
3.9 x 1020 J in the summer; similar estimates are given
by Pisharoty[14] and Gruza[15] (the latter indicates that
on the average, more than 70% of the kinetic energy in
the troposphere goes into zonal flow, i.e., flow parallel
to the latitude circles, and less than 30% to meridional
flow; approximately half the energy is connected with
the average zonal circulation and half with the devia-
tions from it). The kinetic energy per unit mass E/M is
of the order of 106 erg/g = (10 m/sec)2; therefore
U = 10 m/sec is taken to be the typical air velocity in
synoptic processes.

The primary source of the energy of the atmospheric
processes is solar heat. The power of this source on
earth is 1.8 x 1014 kW, but approximately 40% of the
solar radiation is immediately reflected back to the
outer space, so that the initial figure should be taken to
be 1 x 1014 kW, or on the average per unit area of the
earth's surface, 20 mW/cm2. Only a small fraction of
this energy is transformed into the kinetic energy of the
atmospheric motion; according to Palmen's empirical
estimates'16 '173, the rate 8E/8t of transformation of the
potential energy into kinetic energy in the atmosphere is
on the whole of the order of 2 x 1012 kW, so that the effi-
ciency of the "atmospheric engine" amounts to only
about 2% (in individual cyclones, 8E/8t - (1-2)
x 1011 kW, and outside the cyclones, on the average,
there is a slow inverse conversion of kinetic energy into
potential energy). The average rate of generation of
kinetic energy per unit mass, (l/M)(8E/8t), is according
to these data 4 cm2/sec3. The average per unit rate e
of the dissipation of kinetic energy into heat as a result
of friction should be of the same order of magnitude;
indeed, BrentC18] obtained by an independent method,
back in 1926, a value e ~ 5 cm2/sec3 for the troposphere.

The typical time of energy conversion

turns out to be 1021 J/2 x 1012 kW = 5 x 105 sec, i.e., on
the order of one week. The typical time of degeneracy
of the energy of the synoptic processes under the influ-
ence of viscosity is of the same order. Indeed, in the
interval of scales L in which there is a cascade process
of energy transfer from the large-scale motions to the
small-scale motions, occurring with a constant rate e
(i.e., a rate independent of L), the effective "viscosity"
is of the form v{L) ~ e l /3L4/3 (the so-called "four-

thirds" law of Richardson1191, which is valid practically
in the entire spectrum of atmospheric-motion scales
from millimeters to thousands of kilometers—Fig. 1),
and the time of degeneracy of the energy under the influ-
ence of this "viscosity" is T(L) ~ L2A(L) ~ e"l/3L2/3.
A typical length scale for synoptic processes, according
to Obukhovt3], is Lo = c/l, where c is the speed of sound
and I = 2 cos 9 is the so-called Coriolis parameter
(w = 7.29 x 10"5 1/sec is the angular velocity of rota-
tion of the earth, 9 is the complement of the latitude);
in moderate latitudes, Lo ~ 3000 km. Using this Lo and
the value of e given above, we obtain for synoptic proc-
esses T(LO) ~ e"l/3L?/3 ~ 3 x 105 sec. We note that the
Euler scale of time for synoptic processes i\ = Lo/U is
of the same order of magnitude (inasmuch as in the
west-east transport the average layers of the atmos-
phere in middle latitudes complete their revolution
around the earth in several weeks, the Euler time scale
for the atmosphere is on the whole of the order of a
month).

We present also some data on the energy role played
by the humidity of the air. According to Rudloff[20]

(similar data are given by Neikc21]), the atmosphere
contains on the average 1.24 x 1019 g of moisture, which
is equivalent to a layer of precipitated water of 24 mm
(the ocean contains 1.37 x 1024 g of water, and the ice-
bergs 2.9 x 1022 g of ice, the melting of which would
raise the sea level by 80 m). The average annual pre-
cipitation on earth is 3.96 x 1O20 g (of which 2.97 x 1020 g
falls on the oceans and 0.99 x 1020 g on dry land), which
is equivalent to a layer of water of 780 mm (thus, the
water vapor in the atmosphere is replenished on the
average 780/24 = 32 times annually, or every 11 days).
This is also the annual amount of evaporated moisture,
but the relative shares of the ocean and the dry land are
3.34 and 0.62; the runoff from land amounts to 0.37
x 1O20 g. If we take for the latent heat of evaporation a
value 2.4 x 103 J/g, then the heat consumed in the evap-
oration amounts to 3 x 1013 kW, i.e., 30% of the solar
heat absorbed by the earth—this influx of heat in the
atmosphere turns out to be 15 times larger than the rate
of generation of kinetic energy!

3. SPECTRUM OF ATMOSPHERIC PROCESSES

The time oscillations of the meteorologic elements,
namely the rates of motion of the air, temperature,
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FIG. 1. Virtual diffusion coefficient v(L) as a function of the turbu-

lence scale L (empirical points - after Richardson [19].
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pressure, humidity, etc. contain components with periods
from a fraction of a second and at least up to tens of
thousands of years. The entire spectrum of the oscilla-
tion periods can be broken up into the following nine
intervals:

1) Micrometeorological oscillations with periods
from a fraction of a second to several minutes. The
largest contribution is made to them by the small-scale
turbulence. Its energy spectrum fS(f) <f = 1/T—fre-
quency, T—period of the oscillations, S(f)—spectral
energy density) in the surface layer of the air has a
maximum at the period T m a x ~ 1 min, corresponding to
a horizontal turbulent inhomogeneity scale L = U r m a x

~ 600 m. When f ^> 1/Tmax, the wind-velocity spectra
satisfy the Kolmogorov-Obukhov "five-thirds law" [22]

p2/3 i f \ — 5/3

the temperature spectra have a similar formt23]

v in
 N*~m (t r 5 / 3

• > T ( / ) jj—[-(r)
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FIG. 3. Spectrum of horizontal wind velocity after Van der Hoven
I26]-

tains 80% of the mass of the atmosphere); it separates
the quasi-two-dimensional (quasi-horizontal) synoptic
inhomogeneities with scales L » H from the essentially
three-dimensional (quasi-isotropic) micrometeorologi-
cal inhomogeneities with scales L < H. The presence of
this minimum makes it possible to obtain in micro-
meteorology relatively stable mean values for the wind
velocity, temperature, etc., by using values averaged
over the periods from the mesometeorological interval
(in practice one chooses T = 10—20 min).

3) Synoptic oscillations with periods from many
hours to several days, with an energy-spectrum maxi-
mum at about T = 4 days (see Fig. 3; the particular
maximum at r = 12 hrs is considered by Van der Hoven
to be insignificant). This interval includes also the
diurnal oscillations which are manifest, for example, in
the temperature oscillation spectrum in the form of the
diurnal line, and in the pressure oscillation spectrum in
the form of the diurnal and semi-diurnal line. In the
high-frequency half of the synoptic interval, there takes
place a cascade transfer of energy over the spectrum,
from the large-scale motions to the small-scale ones,
as a result of the hydrodynamic instability of the quasi-
horizontal synoptic motions, which have large Reynolds
numbers Re = WL/v (on the low-frequency end of the
synoptic interval, apparently, there is a transfer of en-
ergy in the opposite direction, from the synoptic motions
to the larger-scale flows of the general circulation of
the atmosphere127'28-1). In addition, any motion on a
synoptic scale generates a microturbulence directly
(i.e., bypassing any motion of the intermediate scales)
and continuously, as a result of the hydrodynamic insta-
bility of the vertical inhomogeneities of the wind field,
especially near the earth's surface in the so-called jet
streams, where the vertical gradients of the wind veloc-
ity are the largest.

By regarding the microturbulence as a dissipative
factor for the synoptic motions, it can be characterized
by an effective viscosity coefficient t'turb- The minimal
scale of synoptic motion, capable of overcoming this
viscosity, is L m i n ~ £" i^urb* T h e P r e s e n ce of the

'. T.sec

F I G . 2 . S p e c t r u m o f m i c r o p u l s a t i o n s o f pressure , af ter G o l i t s y n [ 2 6 ] .

m i n ^urb
mesometeorological minimum denotesC25: that Lmin > H.

4) Global oscillations with periods from weeks to
months, which are of greatest interest for the problems
of long-range weather forecasting, but have still been
little investigated. So far, only the so-called "index cy-
cle," i.e., the cycle of oscillations of the planetary cir-
culation between the states of intense zonal flow (the
west-east transfer) with weak meridional mixing and
weakened zonal flow with intense meridional mixing, is
the only more or less pronounced phenomenon in this
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range. It was traced, for example[29"31], by means of the
oscillations of the circulation index a = u/a sin 9, i.e.,
the average angular velocity of rotation of the atmos-
phere in moderate latitudes relative to the earth's sur-
face (u—zonal velocity averaged along the latitude circle,
a—earth's radius). The period of the "index cycle" is
close to two weeks (Fig. 4); the spectral density of the
oscillations of the circulation index[30~31] has a sharp
maximum at T = 12 days (we note that the oscillations of
the circulation index form, generally speaking, not a
stationary but a periodic random processC31] with a
period of one year).

5) Seasonal oscillations—the annual period and its
harmonics.

6) Inter-annual oscillations with periods on the order
of several years, the spectrum of which has not yet been
investigated (we mention the 26-month rhythm of oscilla-
tions in the equatorial stratosphere, observed by several
authors, and also the hypothesis that the earth's weather
is subject to an 11-year cycle of oscillations of solar
activity, which in our opinion has not been convincingly
proven). According to Kolesnikova and MoninC32], the
swing of the inter-annual oscillations of the average
annual values of the temperature and of many other
meteorological elements usually amounts to 15—30% of
the swing of their seasonal and irregular oscillations
within the year.

Inter-annual oscillations must still not be classified
as oscillations of the climate. If all the oscillations in
1)—6) are called short-period oscillations, then the
climate is a statistical regime of the short-period os-
cillations of the meteorological fields, which itself ex-
periences long-period oscillations. The spectrum of the
latter can be subdivided into the following three inter-
vals:

7) Intrasecular oscillations, a clear-cut example of
which is the rising temperature which occurred in the
first-half of the 20th century (and which is apparently
now terminating), a connection being observed between
the changes of the climate and the character of the gen-
eral circulation of the atmosphere: According to
Dzerdzeyevskii t33], in 1900—1930 zonal types of circu-
lation in the northern hemisphere were observed less
frequently and meridional ones more frequently than in
1930—1950. The genesis of the climatic heating of the
20th century is a timely problem of the physical theory
of the climate.

8) Inter secular oscillations, among which are

knownt34: the heating following the end of the glacier
period (65th century BC), leading to the so-called
"climatic optimum" in the 40—20th centuries BC, fol-
lowed by a deterioration of the climate in the so-called
"sub-atlantic period" (10th century BC to 3rd century
AD), its improvement in the 4th—9th centuries AD,* the

*During the period of the "small climatic optimum" in the 8th - 10th
centuries BC, when the Vikings colonized Iceland and Greenland, the
Arctic was not very icy according to their chronicles. This offers evidence
against the hypothesis that if the Arctic increases, it no longer freezes;
this hypothesis is due to an overistimate of the role of the local albedo
(reflectance of the underlying surface) for the Arctic conditions. Recog-
nizing that within the 72° northern latitude circle the Arctic amounts to
only 2.5% of the surface of the earth, it is more natural to assume, con-
versly, that the local conditions in the Arctic (including its iciness and
consequently its albedo) are not the cause but the consequence (indicator)
of the state of the general circulation of the atmosphere.

FIG. 4. Spectral density of the
oscillations of the circulation index, aim
after Monin [30].

12 IB 20W 28
T. days

subsequent deterioration in the 13th—14th centuries,
improvement in the 15th—16th centuries, and deteriora-
tion in the 17th—19th centuries (the so-called "small
glacier period").

9) The glacier periods of the Pleistocene: Giinz
(500—475 thousand years BC), Mindel (425-325 thous-
and years BC), Riss (200—125 thousand years BC),
Wiirm (60—25 thousand years BC), during which the
temperature of the surface layer of the air (now +15°C)
dropped approximately by 10°. So many causes have
been proposed for the icing of the earth (including, e.g.,
Simpson's hypothesis'35-1 that the solar radiation has
increased, thereby leading to an increase of the evapor-
ation, cloudiness, and snowfall), that it is possible that
not the appearance of icing but the absence of glaciers
during 90% of the post-Cambrian time calls more
readily for an explanation.

4. ADIABATIC INVARIANTS

It was shown in Ch. 2 that the typical time of genera-
tion of the kinetic energy of synoptic processes

is of the order of a week, and that the typical time of
the dissipation of the kinetic energy of the synoptic
processes T(LO) ~ e L2 is of the same order of mag-
nitude. The periods t - t0 < T are naturally called short,
and t - t0 > T long[12]. Thus, in the theory of short-
range forecasts, by the very definition, we can disre-
gard the influx and dissipation of energy, i.e., we can
use the adiabatic approximation: obviously, this approxi-
mation is utterly unacceptable for long-range forecasts.

For the adiabatic processes, which are the only ones
considered in this article, there are two conservation
laws: when any volume of air V moves, there are con-
served in it the entropy JSpdV (S—entropy per unit
mass, p—density) and the "vortex charge" J(BavS)dV
(Oa—the absolute vorticity), i.e.,

The "specific vorticity" O = (OavS)/p is also called the
potential vorticity1363. The conservation law dn/dt = 0
was first introduced by Ertel t 37 : (see alsoC4'38)39"40]).

Hollmanui : indicated three other independent com-
binations of hydrodynamic fields which are conserved in
adiabatic processes:

, (4.2)*

where w = va - vW, with va the absolute velocity and
t

W = J'Adt is the so-called action (with Lagrangian
0

A = (va/2) - (p - 7], where q> is the gravitational poten-
tial and t) is the specific enthalpy).

*tvsvn] = v s x v n
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The entropy increments dS in dry air are defined by
the formula

i x-l
dS — Cpd In — = Cpd In 0, 0 = T I — I , (4 • 3)

where p and T are the pressure and temperature;
K = Cp/cv is the ratio of the specific heats at constant
pressure and constant volume (cp = 1.003 and cv
= 0.717 J/g-deg; c p / c v = 1.41); © is the so-called po-
tential temperature, p0 is the standard pressure (usually
p0 = 1000 mb = 106 dyne/cm2). The moisture content of
the air is always small*; therefore the entropy of un-
saturated moist air can be determined in many calcula-
tions (but not always) by the same formula (4.3), and in
the case of saturated air it suffices to add to the ex-
pression (4.3) for dS the term xdq m /T , where q m
ra (R/Ry)(em/p) is the specific saturation humidity. On
the other hand, if the influx of heat due to the phase
transitions of the moisture is neglected, then it is possi-
ble to disregard completely the humidity of the air; so
far, this is the most frequent practice in operational
numerical short-range weather forecasting. Accord-
ingly, we shall use for the time being formula (4.3) for
dS.

According to (4.1), any function of S and SI is an adia-
batic invariant, i.e., a conservative characteristic of
the moving particles of air in adiabatic processes. It is
convenient to choose two such independent functions as
the Lagrangian coordinates of the air particles. The
corresponding coordinate surfaces cut up the atmosphere
into tubes, and air does not flow through the walls of
these tubes, so that the adiabatic evolution of the atmos-
phere consists only in the deformation of such tubes.
The prediction of these deformations is the basis of the
short-range weather forecasting.

As one of the Lagrangian coordinates, it is convenient
to choose the potential temperature ©. Recognizing that
its changes in the vertical direction are much larger
than in the horizontal direction, so that the vector v® is
directed approximately vertically, we can put

where I is the aforementioned Coriolis parameter and
J2Z is the vertical component of the relative vorticity.
Using the quasistatic approximation, i.e., the equation
9p/8z = — pg (g is the acceleration due to gravity; the
meaning of this approximation will be explained later),
we obtain

where y a = (K - l)A(g/R) ra 10 degAm is the adiabatic

"The partial pressure of the saturating water vapor em(T) is deter-
mined by the Clausius-Clapeyron formula

dem
dT x=Xo—(cw

(where x is the latent heat of evaporation, cpv = 1.81 and Rv = 0.461
J/g-deg are the specific heat at constant pressure and the gas constant of
water vapor; cw = 4.19 J/g-deg is the specific heat of water) and ranges
from 0.509 to 42.47 mb when the temperature increases from — 30° to
+ 30°C. The specific humidity q, i.e., the ratio of the densities of water
vapor and moist air, usually does not exceed 3 - 4%. The content of liq-
uid water and ice in clouds is usually much smaller than the vapor con-
tent.

temperature gradient, and y = -3T/8z is the actual
temperature gradient. Using these results, it is con-
venient to choose as the second Lagrangian coordinate,
following ObukhovC40:l, the function

>,(Qz
Ya-Y P*O) (4.5)

where p*(©) and y*(0) are the standard values of p and
y on the surfaces © = const (i.e., the characteristics of
the so-called standard atmosphere). Inasmuch as ©
varies most rapidly in a vertical direction and f? along
the meridian (since usually |O | <^ I and fiz + I
ra 2w cos 9), © and fi can replace the vertical coordin-
ate and the latitude, and the most lucid picture of the
invariant (©, Cl) tubes is given by their meridional sec-
tion. An example of such a section is shown in Fig. 5,
while Fig. 6 shows for the same example the isolines
J? = const on one of the surfaces © = const. If we denote
by /i(e, £?)d®dfi the fraction of the atmosphere mass
contained in an infinitesimally thin (®, £?) tube, then
M(®, &) can be interpreted140^ as the probability density
for the values of the Lagrangian coordinates ® and O of
a randomly chosen air particle. In Fig. 7 we present an
example of the probability distribution M(®, B) from data
for the period from 1—10 April 1962, kindly supplied to
us by A. B. Karunin.

In addition to the differential invariants S and J2 (or
any other two functions of these invariants, say ® and
O), adiabatic processes, as is well known, have also an
integral invariant, namely the total energy E = K + N,
where

K = - dm

is the kinetic energy (v—is the modulus of the velocity,
dV the volume element, dm = pdV the mass element,
and the integral extends over the entire atmosphere),
and N is the labile energy, i.e., the sum of the potential
energy 9 = J*dm (* = gz is the potential of the force
of gravity) and the internal energy J = JcvTdm. In the
quasistatic approximation, the potential energy of a
vertical column of air with unity cross section is
Jgzpdz = - Jzdp = Jpdz, so that by virtue of the
Clayperon equation p = pRT we get 3" = jRTdm, and
since c v + R = cp , we have

( - £ ) " Sdm. (4.6)

In adiabatic processes, the total mass of the air over
any isentropic surface © = const remains unchanged, so

a v 2010 is & zz

BO 0°
FIG. 5. Meridional section of (0, 3 ) tubes at longitude 100° E for

1 April 1962 (from I40]). Abscissas — latitudes, ordinates.- t̂mospheric
pressure: 12 = const - solid lines, 0 = const - dashed lines; fJ is measured
in units of 10"4 sec"1.
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320

0 0,5 iff
FIG. 7. Probability density /x(®, ^ ) from the data for the period

FIG. 6. Configuration of the lines S = const on the surface 0 = 300° 1 - 10 April 1962.
for 1 April 1962 (from [40]).

that the average value p*(®) on any isentropic surface
likewise remains unchanged, and consequently also the
quantity

A'* = cn
rp»(en Qdm, (4.7)

i.e., that labile energy of the atmosphere, which remains
if the atmosphere is brought adiabatically to a state with
a constant pressure along any isentropic surface (and
with stable stratification). It is clear that not all the
labile energy can be converted into kinetic energy in
adiabatic processes, but at the most only a part of it
A = N - N*, called the available potential energyC42"43]

(A turns out to equal the weighted average value of the
dispersion of ® on the isobaric surfaces). Consequently,
the sum K + A is an adiabatic invariant.

If the atmosphere is brought adiabatically to a state
with indifferent stratification (in which the isentropic
surfaces are vertical, i.e., ® is independent of p), then
the labile energy N in this state can be calculated by re-
placing in (4.6) the factor p ( K ~l )A under the integral
sign by its value averaged over the mass of the vertical
air column:

x-l
\ p " dm K -7T-

where p is the pressure at the earth's surface; this
yields

5. CLASSIFICATION OF ATMOSPHERIC MOTIONS

To construct a hydrodynamic theory of short-range
weather forecasting it is important to clarify first of all
what are the possible types of atmospheric motions in
adiabatic processes. All these motions have the charac-
ter of waves, and for their classification it is sufficient
to consider the case of small-amplitude waves, i.e.,
small oscillations of the atmosphere relative to the
state of rest (in which the pressure p, the density p, and
the temperature T are functions of only the altitude z,
connected with the static equations 9p/3z = — gp and the
Clapeyron equation p = pRT). In the flat-earth approxi-
mation, the equations of motion for small oscillations
are of the form

where u, v, and w are the components of the velocity
vector v, p and p are the perturbations of the pressure
and of the density (these five functions characterize
completely adiabatic small oscillations), and I, as above,
is the Coriolis parameter. It is necessary to add to
these equations the continuity and adiabaticity equations,
in the form

^- >r div pv == 0, -^f- - bpiv = c- (5.2)

where c2 = /cRT is the square of the speed of sound and

The difference £ = N - N is called the macrostability
parameter [44]. The quantity £ turns out to equal the
weighted average value of the vertical gradient of the
potential temperature (—9®/3p) in the entire thickness
of the atmosphere. It equals the amount of kinetic energy
released or lost in the adiabatic transition from a given
stratification to the indifferent stratification. The differ-
ence K — £ is an adiabatic invariant.

is the stratification parameter. The natural boundary
conditions with respect to z for Eqs. (5.1) and (5.2) are
the requirement that the vertical mass flux pw vanish
on the boundaries of the atmosphere (at z = 0 and z — °°).
The system (5.1)—(5.2) is of fifth order in the time; to
solve it uniquely it is necessary to specify at t = 0 the
initial values v0, p0, and p0 of all the unknown functions.

Let us assume for the time being'451 that I = const

T
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(this is valid for territories spread not too widely in
latitude). Then Eqs. (5.1)-(5.2) will have a family of
stationary solutions v s , p s , p s , describing motions of
the first kind which are: (1) quasistatic, i.e., 9ps/9z
= - g p s , (2) horizontal, i.e., ws = 0, and (3) geostrophic,
i.e.,

3p,i

(the latter denotes that the divergence of the velocity
field is zero, and that its current function ^ s equals
Ps/'P)- W e n o t e t n a t o u r equations have two invariants
(stationary combinations of unknown functions)

J, = (P-c*P)^, /1 = p(f_*i)+/(4.JL=£VL_p).(5.3)
V ox ay } \ oz o /

The first of them is the linearized form of the entropy
(at z = 0), and the second is that of the potential vortex.
We can indicate one integral invariant, from which fol-
lows invariance of both quantities Ji and J2; for the
quasistatic case it was found in [48 : .

We indicate also an energy invariant

2xpb
«. (5.4)

where the first, second, and third terms in the square
brackets correspond to the kinetic, elastic, and the so-
called thermobaric[47] energy (connected with the buoy-
ancy forces acting on a particle that is displaced ver-
tically from the equilibrium state).

An arbitrary solution of Eqs. (5.1)—(5.2) will be sta-
tionary if and only if the initial data have the properties
(1)—(3). In the opposite case, it will be a sum of a sta-
tionary solution with invariance (5.3) determined from
the initial data (the invariants Ji and J2 and the condi-
tions (1)—(3) determine the stationary solution com-
pletely), and a certain nonstationary solution, for which
j 1 = j 2 = 0. Such nonstationary solutions describe mo-
tions of the second kind. These solutions are super-
positions of waves of the form <3>(z) exp{i(kix + k2y — at)} ;
owing to the adiabaticity and linearity, their frequencies
a are real. There are two types of waves: 1) two-
dimensional waves, in which there are no vertical os-
cillations of the air particles, i.e., w = 0, 2) internal
waves, in which w * 0.

It can be verified that the frequencies of the two-
dimensional waves are determined by the formula a2

= I2 + k2c2 (where k = Vk2 + k2, is the horizontal wave
number), so that the wave-front velocity equals the
velocity of sound c; their amplitudes decrease mono-
tonically with altitude like * ~ (p)~ . Only such waves
are possible in a quasistatic barotropic atmosphere; in
the case of a quasistatic baroclinic atmosphere, they are
singled out int46:l. If c2 = const and b = const (this is an
exact condition for an isothermal atmosphere), the am-
plitudes of the internal waves depend on the altitude
like exp{-[(b + g)/2c2]z + imz}, where m * 0 is the ver-
tical wave number, and their frequencies are determined
from the equation

(a
i - P ) [ « ' - ^ - ' » v ] = ^ ( o . - ^ ) (5.5)

and at arbitrary k and m they fill the intervals I2 s a2

< bg/c2 and cr2 > (b + g)2/4c2, corresponding to two
different types of internal waves. Considering the case
I = 0 in an isothermal atmosphere (c2 = KgH, b = (K - l)g,

where H is the thickness of the homogeneous atmos-
phere), we can verify that on going to the limit as
K — » to isopycnic processes (i.e., to an incompressible
liquid), the second interval goes off to infinity, and the
first takes the form a2 < g/H and corresponds to internal
gravitational waves. On going to the limit as K — 1 to
isothermal processes (in which the isothermal strati-
fication becomes indifferent), the first interval vanishes
at zero, and the second takes the form a2 > g/4H and
corresponds to acoustic waves. Inasmuch as
bg < (b + g)2/4, the frequency spectra of the acoustic
and gravitational waves do not overlap in an isothermal
atmosphere. Dikii l i 8 : , who investigated the wave spec-
tra already not in an isothermal but in a temperature-
stratified atmosphere, established that only a very small
overlap of the spectra of the acoustic and gravitational
waves occurs in such an atmosphere. These results ex-
plain the presence of the minimum in the spectrum of
Fig. 2.

In the quasistatic approximation, i.e., neglecting the
left part of the third equation of (5.2), and consequently
using the static equation 9p/8z = — pg, all the frequen-
cies of the internal acoustic waves become infinite, i.e.,
the latter are completely "filtered out." The frequen-
cies of the gravitational waves are in this case slightly
overestimated, but the smaller k (i.e., the longer the
waves), the less the overestimate. The frequencies of
two-dimensional waves, the stationary solutions, and
the invariants remain unchanged, and this justifies the
use of the quasistatic approximation for the description
of synoptic processes.

The main change introduced in the foregoing results
by allowance for the curvature of the earth's surface
reduces to a transformation of the stationary solutions
(motions of the first kind) into slow gyroscopic waves.
The earth's curvature can be approximately accounted
for by constructing with the aid of the first two equations
of (5.1) equations for the vorticity dv/dx- 9u/9y and the
divergence 9u/8x + 9v/9y, with allowance for the depen-
dence of the Coriolis parameter I on the coordinate
along the meridian y, and then replacing the obtained
equations I and /3 = dl/dy = (2w sin 0)/a by constants
(i.e., going over to the so-called |8-plane). Then, in the
case of a barotropic atmosphere and neglecting its hori-
zontal compressibility (i.e., assuming 9u/3x + 8v/9y = 0)
we obtain for the frequencies of the gyroscopic waves
the formula a = —/3ki/k2[49: (the minus sign denotes that
the waves move westward).

With exact account taken of the sphericity of the
earth, the distinction in the barotropic atmosphere be-
tween the slow gyroscopic waves, which are important
for weather forecasting, and the fast two-dimensional
waves, which are important for the description of tides,
was established already at the end of the 19th century
by Houghl50i (see also the works on tide theory by
Love [5 i :, Kochin£S2], PekerisC533, Kertz [54], and
SiebertC5SJ). The effect of weak horizontal compressi-
bility of the atmosphere can be described here with the
aid of series in powers of the parameter
y = (2oia/c)2[56]. As y —• 0, the fast waves vanish, and
the frequencies of the gyroscopic waves are given by
the formula

g = am-2((X + g".m. (5.6)
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where m and n are integers, and a is the already-men-
tioned circulation index'57'113. For the earth's atmos-
phere (y « 10) for small values of n and m this formula
is rough t56], and its accuracy increases rapidly with
increasing n and m.

In the case of a baroclinic atmosphere on the earth's
surface, the description of all the possible types of
waves was given by Dikii1 l5a'591 —in the first of these
papers for the isothermal atmosphere, and in the second
for the so-called standard atmosphere CIRA-1961. Seek-
ing the waves

0> (Q V (cos 9) e'OnM-ot)

(where A is the longitude, 6 the complement of the lati-
tude, and £ = ln(p/p0) the vertical coordinate), Dikif
obtained for * the so-called Laplace equation of the
theory of tides, containing m, o, and the constant h ar is-
ing upon separation of the variables (the so-called depth
of the dynamically equivalent ocean), but not containing
the stratification characteristics, and obtained for * a
"vertical" equation containing a, h, and the stratifica-
tion characteristics, but not containing the horizontal
wave number m. Each of these equations makes it possi-
ble to determine a family of proper cr(h) curves; the
intersections of the curves of different families deter-
mine the possible eigenvalues of a and h. Figure 8 shows
the "horizontal" proper curves cr(h) for m = 2; the
lower curves correspond to fast waves and the upper
ones to slow waves. Figure 9 shows the "vertical"
proper curves cr(h): on the lower right they correspond
to acoustic waves and on the upper left to gravitational
waves; the numbers at the curves indicate the number
of the nodes of the corresponding eigenfunctions.

6. ADAPTATION OF METEOROLOGICAL FIELDS

Let us return for a time to the previously considered
simplified "flat" model of the atmosphere with I = const.
As already noted, if the initial data Vo, po, and p0 have
properties (1)—(3), i.e., if only motions of the first kind
are present at the initial instant, then only such motions
will remain also in the future (since the solutions des-
cribing them are stationary). On the other hand, if at the
initial instant of time the conditions (1)—(3) are violated
in some region of space V, then motions of the second
kind—fast waves—are also produced in this region.
These, however, scatter away in all directions, and

m=Z
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FIG. 8. Proper curves <j(h) of the Laplace equation of the tidal theory

at m = 2 (from1581).

0 5 W 15 ZO h, km
FIG. 9. Proper curves a(h) of the "vertical" equation for the stand-

ard atmosphere CIRA-1961 (from [5>]).

when they leave the region V, then conditions (1)—(3)
are established in this region, i.e., only certain motions
of the first kind are left (defined by the invariant fields
Ji and J2, which can be constructed from the initial data).
This process of restoration of the consistency conditions
(1)—(3) of the meteorological fields v, p, and p is called
the adaptation of the meteorological fields. The problem
of adaptation of meteorological fields in the case of a
quasistatic barotropic atmosphere was first formulated
by Rossbyt60] and Cahn[61] and solved by Obukhovt3] ; in
the case of a quasistatic baroclinic atmosphere, this
problem was dealt with by BolinC62:, Kibel't63] (without
taking into account two-dimensional waves), Veronis1643,
FjelstadC65:l, MoninC46]; see also the outstanding review
by Phillips t66], devoted to geostrophic motions (or, in
our terminology, motions of the first kind) in the atmos-
phere and in the ocean.

The adaptation to the state of the static equilibrium
(1) is effected by generation and spreading of internal
acoustic waves, and its duration is approximately equal
to the time during which the front of the internal acous-
tic waves traverses (with the speed of sound
c ~ 20 km/min) the main thickness of the atmosphere,
for which only several minutes are needed. After this,
the adaptation of the atmosphere to the state of the
geostrophic equilibrium (1)—(3) continues, and this state
is reached, on the average over the thickness of the
atmosphere, after the two-dimensional waves escape
from the region V (the fronts of these waves move with
the same velocity c), and is established at all altitudes
even later, after the slower internal gravitational waves
escape (their velocities depend on the thermal stratifi-
cation of the atmosphere163'46'673—the fronts move with
a velocity 2 V(l - 1/K)(1 - y/ya)RT, and behind the
fronts, as in the case of two-dimensional waves, there
is a continuous "wake" in which damped oscillations
take place).

By way of an example of the adaptation of the
meteorological fields we show in Fig. 10 a case [46] in
which at the initial instant of time there were no pres-
sure perturbations, and the velocity field corresponded
to a plane-parallel flow of the type of tangential discon-
tinuity along the ordinate axis (the initial distribution of
the surface velocity vo(x) is shown in the figure dotted).
As a result of adaptation, the velocity field changed
little—see the limiting distribution of the surface veloc-
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FIG. 10. Example of adaptation of meteorological fields in a baro-
clinic atmosphere (from I46].

ity v(x) (the kinetic energy decreased by 3%—loss to
the generation of fast waves and to the formation of in-
homogeneities of the pressure field), and the pressure
"adapted" actively to the velocity field—a distinct dip
was produced in it (see the limiting distribution of the
heights of the surface isobaric surface z(x); it dropped
by 4 dkm along the ordinate axis).

So far we have spoken only of adaptation of the
meteorological field in the "flat" model of the atmos-
phere with I = const. Allowance for the sphericity of the
earth's surface introduces into this process two not very
important changes. First, the fast waves escaping from
the perturbed region will now propagate not in an infin-
ite but in a horizontally-bounded space, producing an
interference pattern, which will attenuate with time as
a result of the dissipative processes (which were not
taken into account above). Second, on the sphere, mo-
tions of the first kind will not be stationary—there will
be a superposition of slow gyroscopic waves, the motions
of which will lead at all times to changes of the config-
uration of the fields © and J2, which in turn upset the
consistency conditions (1)—(3) of the meteorological
fields. Thus, two competing processes occur continu-
ously on a sphere: 1) disturbance of the consistency of
the velocity, pressure, and density fields as a result of
an evolution of spatial distribution of the entropy and of
the potential vortex, and 2) adaptation of the meteoro-
logical fields as a result of generation, escape, and
damping of the fast waves.

So far we considered in this chapter, as in the pre-
ceding one, only waves of small amplitudes, which can
be described by linearized dynamic equations. In a real
atmosphere, motions of the second kind—acoustic and
gravitational waves—have small amplitude practically at
all times (and therefore produce "meteorological noise"
which is of low importance for the weather), but the mo-
tions of the first kind no longer have, generally speaking,
small amplitudes, and are described by the nonlinear
equations (4.1). This nonlinearity (as well as allowance
for the sphericity of the earth's surface) leads to a non-
stationary character of the motions of the first kind—an
evolution of the spatial distribution of the quantities ®
and O as a result of their transport by the air currents
and, as a consequence, to a continuous competition be-
tween the disturbance of the consistency and the adapta-
tion of the meteorological fields. As a result of this
competition, the disturbances of the consistency condi-
tions (1)—(3) are as a rule only small, and the motions
of the first kind still satisfy these conditions, albeit ap-

proximately. We shall make this statement more pre-
cise in the next chapter.

7. QUASIGEOSTROPHIC APPROXIMATION

It is desirable to simplify the hydrodynamic equa-
tions in such a way that the simplified equations des-
cribe with sufficient accuracy the motions of the first
kind, which are important for the weather, but do not
contain among their solutions the inessential motions of
the second kind (i.e., the latter are "filtered out"). We
have already mentioned that the quasistationarity condi-
tion (1) for the motions of the first kind is satisfied
practically exactly, and that its use in lieu of the com-
plete equation of motion in the vertical direction leads
to a "filtering out" of the acoustic waves from the solu-
tions of the hydrodynamic equations. We shall hence-
forth use throughout such a "quasistatic approxima-
tion," and transform with its aid to the vertical pressure
coordinate p in lieu of the altitude z; then the pressure
field p(x, y, z, t) will be replaced in the hydrodynamic
equations by another unknown function z(x, y, p, t), the
values of which at fixed values of p are the heights of
the isobaric surfaces p = const.*

The hydrodynamic equations (more accurately, the
Euler equations) contain two-dimensional parameters—
the acceleration due to gravity g and the Coriolis param-
eter I (on a sphere it is better to use in lieu of I the
earth's rotation 2u>; equations on a sphere include also
the earth's radius a). In the boundary condition on the
earth's surface one adds also the average surface pres-
sure p0 and density p 0 (with the aid of which it is possi-
ble to define the height of the homogeneous atmosphere
H = po/Pog and the isothermal speed of sound c 0 = VgH).
Finally, we introduce typical length and velocity scales
L and U for the synoptic processes. Out of the foregoing
dimensional quantities it is possible to set up the follow-
ing four dimensionless parameters [ 6 8~7 0 ]; l) the spher-
icity parameter L/a; 2) the quasistatic parameter H/L;
3) the Kibel' number Ki = U/LZ (in some foreign papers
it is also called sometimes the Rossby number); 4) the
Mach number Ma = U/co (or the parameter of the hori-
zontal compressibility of the atmosphere L/Lo = №a/Ki,
where Lo = Co/I is the already mentioned scale of the
oscillations of the two-dimensional compressible atmos-
phere in the field of the Coriolis force, introduced by
Obukhov[3:).

The Kibel' number Ki can be interpreted as the ratio
of the typical value of U/L of the relative vorticity Q,z

to the value of the earth's rotation 2w z = I (or as the
ratio of the typical relative acceleration U2/L to the

*On going over from the coordinates (x, y, z) to (x, y, p), the horizon-
tal pressure gradients Vnp is replaced by pgVhz (and 3p/3t by pg3z/3t),
and the static equation 3p/3z = - pg is rewritten in the form 3z/3p =
— 1/gp (by determining p from this equation, we can reduce the Clapeyron
equation p = pRT to the form T = - (g/R)p3z/3p); the individual deriva-
tive d/dt assumes the form dh/dt + w*3/3p, where dh/dt is the derivative
with respect to the horizontal motion (on the isobaric surfaces), and w* =
dp/dt replaces the vertical velocity. One of the advantages of the coordi-
nates (x, y, p) is the particularly simple form of the continuity equation:
D + 3w*/3p = 0, where D = 3u/3x + 3v/3y is the horizontal divergence
of the velocity. On the other hand, the boundary conditions w = 0 at
z = 0 assumes the more complicated form w* = pg djjz/dt (it is customary
to require satisfaction of this condition, for the sake of simplicity, not at
z = 0 but at p = p0, where p0 is the average surface pressure).
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typical Coriolis acceleration VI). With the exception of
the tropical zone, this number is as a rule small: thus,
according to calculations by Chaplyginami, who deter-
mined the values of Oz/Z from actual data, the modulus
of this number is almost always smaller than 0.4, and
in 75% of the cases it is smaller than 0.2. This means
that the rotation of the air in large-scale atmospheric
vortices at moderate and high latitudes (cyclones and
anticyclones) is much more slower than the rotation of
the earth. Consequently, in the scales of the synoptic
processes, the horizontal gradient of the pressure is
approximately balanced by the Coriolis force, i.e., the
geostrophy conditions (3) are approximately satisfied
(accurate to terms of order U Ki), and assume in the
coordinates (x, y, p) the form

I
It follows from (7.1) that in scales of synoptic proces-
ses, the variations of the quantity z in the horizontal
direction are of the order of ZLU/g (the variations of z
in time are of the same order). Then we see from the
adiabaticity equation dS/dT = 0, which with the aid of
(4.3) and the static equation 1/p = —g 9z/9p can be re-
duced to the form

„ dt, 0z 2 -i * ri in o\
gp — t cc^cw = 0, \* •*)

where al = -(T/T0)(p/cp)9S/9p is the dimensionless
parameter of the static stability (the quantity
Ri = (l/Ma2)(To/T2) al is sometimes called[68"69] the
Richardson number), that the values of w* are of the
order of

L- -Ki

(in the troposphere usually al ~ L2/Lo). Finally, the
continuity equation D + 9w*/9p = 0 shows that the values
of the horizontal divergence of the velocity are of the
order of w*/p0 ~ (U/L)Ki. Thus, for motions of the first
kind (synoptic processes) the following conditions are
satisfied

where A = 82/9x2 + 92/9y2. For motions of the second
kind, these conditions, to the contrary, are not satisfied.
Therefore, it is possible to "filter out" the fast waves
by finding solutions of the hydrodynamic equations in the
form of asymptotic series in powers of Ki, with principal
terms satisfying the conditions (7.2) (the so-called
quasigeostrophic expansion, first proposed by Kibel' [2:).
The equations for these principal terms describe the
synoptic processes with sufficient accuracy (with a rela-
tive error only of the order of Ki), and do not include the
fast waves among their solutions. Such equations are
the relations (7.1) and the equation obtained from the
conservation law dnfi/dt + w*(9fi/9p) = 0 of the potential
vorticity Q « ~ f iaz6 9 s / 9 P after eliminating from it,
with the aid of (7.2), the quantity w* and after taking into
account only terms of zeroth order in Ki. The latter
equation is reduced to the elegant form*

"Obtained from the more general formula

(7.4-)

Qz P — n /*7 A \
JF = j [2, ̂ Fz-\-l], \i .4)

where .Fis an elliptic linear operator (the analog of the
three-dimensional Laplace operator), defined by the
formula

dt \ az c% dp at dp I '
which expresses a certain approximate conservation law for the horizontal
motions.

3-2= — L (7.5)

and the square brackets [A, B] will henceforth denote the
Jacobian S(A, B)/9(x, y). The method of asymptotic ex-
pansions, which makes it possible to derive Eq. (7.4)
from the initial hydromechanic equations, is a particular
case of the general asymptotic methods developed by
N. N. Bogolyubov and N. M. Krylov for the description
of slow oscillations in nonlinear mechanical systems,
in which rapid oscillations occur besides these slow os-
cillations (Van der Pol was the first to develop one such
method for the description of current oscillations in an
electric circuit containing a vacuum tube with feedback).
From the purely mathematical point of view, we are
dealing here with equations (describing the oscillations)
that contain a small parameter (the Kibel' number) at
the higher derivatives (terms in the equations of motion
describing the relative accelerations).

Equation (7.4) contains only one unknown function z;
it describes synoptic changes of the three-dimensional
field of atmospheric pressure in the quasigeostrophic
approximation, and is of the first order in the time; this
is natural, since the initial system of hydrodynamic
equations was of fifth order, but the "filtered out" two
families of waves (acoustic and gravitational) "carried
away" two orders each. Thus, in order to calculate
beforehand the field of the atmospheric pressure in the
quasigeostrophic approximation it is sufficient to know
the initial values of only the pressure field itself, and the
initial values of the velocity field (which would be needed
to solve the complete hydrodynamic equations) need no
longer be known. This simplification is very important
in practice, since the wind field is presently measured
rather crudely, and an organization of its exact meas-
urements would be a very cumbersome and expensive
matter.

The differential equation (7.4) is of second order in p,
and for its solution it is necessary to specify the boun-
dary conditions on the upper and lower limits of the
atmosphere p = 0 and p = p0. For p — 0 we require that
the kinetic energy be bounded, i.e., p |vnz|2 < °°, and for
p = po we use the condition w = 0, which with the aid of
Eq. (7.2) at w* = pog dnz/dt (see the footnote on the
preceding page) reduces to the form

Equation (7.4) with such boundary conditions can be re-
written in integral form

where S is the operator of integration with respect to p,
defined by the formula

zdp. (7.7)
0 1} p 0

Equation (7.6) is particularly convenient for the tran-
sition in the limit as al — 0 to the case of the barotropic
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atmosphere. For synoptic processes in a barotropic
atmosphere, vnz and 9z/St are proportional to a certain
function of p (see[72]), the second term in the right side
of (7.6) drops out, the operator s becomes equal to unity,
and Eq. (7.6) takes the simple form

Such an equation was proposed for weather forecasting
purposes by Obukhov[3] and Charneyt4~5] (a similar
equation, but without the term with 1/Lo, was previously
obtained by another method by Ertel t 7 3 ] , but the signifi-
cance of that equation was not understood then). This is
precisely the equation which was first used in the post-
war years (e.g., in t6]) for numerical forecasts of the
pressure field (at a certain average level in the tropo-
sphere).

It follows from (7.6') that the value of 9z/9t at a fixed
point M is obtained by integrating the "advection of the
vortex" [z, (g/Z) AZ + Z] over all the points of the plane
M' with weights (l/27r)Ko(r/Lo), where r is the distance
from M' to M and Ko is the symbol of the cylindrical
Macdonald function. The influence function Ko(r/Lo) de-
creases with increasing r; thus, changes of the pressure
9z/9t at each fixed point M are determined by the entire
pressure field z(M'), but the influence of the individual
points M' turns out to be small (the "influence radius"
is the distance Lo). We note that retention of the subtra-
hend 1/Lo in the operator A - (1/Lo) in the left side of
(7.6') (and analogously in the operator S A - 1/Lo in the
left side of Eq. (7.6)) is essential: if this subtrahend is
neglected (it describes the effect of the "horizontal
compressibility" of the atmosphere), the influence func-
tion Ko(r/Lo) is replaced by the function In r , which in-
creases with increasing r, i.e., corresponds to an in-
crease of the influence of the remote points M' with in-
creasing distance r , which of course is not natural. If
we represent the horizontal field z(x, y) in the form of
a superposition of elementary harmonic waves, then it
becomes clear that for waves with length much shorter
than Lo allowance for the term —1/Lo in the dynamic
operator is insignificant, but it becomes quite apprec-
iable for the description of the evolution of long waves
(with length L > Lo).

In analogy with the foregoing, it follows from (7.6)
that the value of 9z/9t at a fixed point M = (x, y, p) of a
baroclinic atmosphere is obtained by integration over
all points M' = (x', y', p') of the sum of the "vorticity
advection" [z, (g/l) AZ + Z] with a certain weight
G(r/L0; p, p') and "heat advection" -(g/Z) [z, p(9z/9p)]
with weight (1/Loao)p' (9/9p')G(r/Loj p, p') where r is
the horizontal distance from M to M'. The influence
functions G and p'(9G/9p') were first determined (using
coordinates x, y, z, and Fourier transforms in x and y)
in 1951—1952 by Obukhov and ChaplyginaC74] and almost
simultaneously (in coordinates x, y, p) by Buleev and
Marchuk[75], and later by HinkelmannC78] and Kuo t77].
The simplest derivation of these functions is given inU6],
where the role of these influence functions in the prob-
lem of adaptation of meteorological fields is also estab-
lished. Figures 11—12 show plots of these functions
fromt74:I (in dimensionless form, following Fourier
transformations with respect to x and y, and at a value
of the dimensionless wave number
kL0V

r[(ya - Y)/(K - l)](/cR/g) = 4), showing clearly the

7, mb
FIG. 11. Influence functions of vorticity advection in various layers

of the air on the values of 3z/3t at the levels p = 1000, 850, 700, 500,
and 300 mb (from [74]).

FIG. 12. Influence functions of heat advection in various layers of
the air on the values of 3z/3t at the levels p = 1000, 850, 700, 500, and
300 mb (from [74]).

relative weights with which the "dynamic" and
"thermal" contributions of different layers of air enter
in the values of 9z/9t at various levels.

8. QUASISOLENOIDAL APPROXIMATION

As the equator is approached, the Coriolis param-
eter I = 2d} cos d decreases, the Kibel' number
Ki = U/LZ ceases to be small, and consequently the
quasigeostrophic approximation is no longer valid. In
addition, experience with numerical forecasts of the
pressure field has shown that even outside the tropical
zone the description of the synoptic processes with the
aid of the quasigeostrophic approximation turns out in
some cases to be insufficiently accurate. It may there-
fore be useful to find in lieu of the conditions (7.3) other
"consistency" conditions for the synoptic fields of the
velocity and pressure, making it possible to distinguish
the synoptic processes from the fast wave motions.

Such conditions (which are suitable not only near the
equator but everywhere) can be obtained by starting
from the fact that the potential component of the field of
the horizontal velocity of the slow synoptic motions is
small compared with the solenoidal component, or in
other words, the horizontal divergence of the velocity
D = 9u/9x + 9v/8y is small (in absolute magnitude) com-
pared with the vorticity Slz = 8v/9x - 9u/9y. As a re -
sult, the principal terms in the equation for D, obtained
by applying to the equations of motion the divergence
operation, will be those containing neither D (or w*
~ p0D) nor the Coriolis parameter Z (which can be
small). These principal terms are of the form 2[u, v]
— gAz; from a comparison of these terms it follows that
the variations of z are of the order of U2/g = HMa2,
where Ma = U/co is the Mach number, which is quite
small for synoptic processes. We then obtain from (7.2)
w* ~ poUMa2/Lao, and therefore also D ~ UMa2/LaS.
In other words, the condition for the smallness of D
compared with Oz for motions of the first kind (synoptic
processes) can be written in the form

G, = O ( " ) , o = o ( i i J ^ i ) . (8.1)

For motions of the second kind (fast waves), these con-
ditions, to the contrary, are not satisfied. We can there-
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fore "filter out" the fast waves, finding solutions of
the hydrodynamic equations in the form of asymptotic
series of powers of Ma2 = U2/co with principal terms
satisfying the conditions (8.1), and with a principal term
for z on the order of HMa2. The principal term of the
wind velocity field (u, v) will then be its solenoidal com-
ponent, and u = -dtp/dy and v = dip/dx, where ip is the
current function; for this reason, the indicated asymp-
totic series are sometimes called the quasisolenoidal
expansion. One of the equations for the principal terms
of the quasisolenoidal expansion is obtained with account
taken of only the zeroth-order terms in Ma in the ap-
proximate conservation law (7.4'):

QP _ l / A i\ ' s ^ P̂  ^2 fa *)\

Unlike the quasigeostrophic approximation equation
(7.4), which contains only one unknown function, z, Eq.
(8.2) contains two unknown functions, z and ip. The con-
nection between them (i.e., the connection between the
velocity and pressure fields, which was given in the
geostrophic approximation by formulas (7.1)), will be
given by an equation obtained from the aforementioned
equation for D in which only terms of zeroth order in
Ma are retained. This equation, called the balance equa-
tion, is of the form

Equations (8.2) and (8.3) describe the synoptic changes
of the velocity and pressure fields in the quasisolenoidal
approximation. They are of the first order in the time
(since the "filtered out" two families of the fast waves,
the acoustic and gravitational, have "carried away" two
orders of magnitude each). Thus, for the forecasting of
synoptic processes in the quasisolenoidal approximation
it suffices to have the initial values of only the pressure
field z, and the initial values of the velocity field (the
current functions ip) can be determined from the field z
by means of (8.3).

The quasisolenoidal approximation equations
(8.2)—(8.3) are suitable both near the equator, where I
is small and the quasigeostrophic approximation is not
valid, and outside the tropical zone, i.e., in the region
where the Kibel' number Ki is small. In the latter reg-
ion, the quasigeostrophic approximation is valid accur-
ate to terms of order Ki, and the quasisolenoidal ap-
proximation is valid with great accuracy up to terms of
order Ki2 (here the second term in the right side of
(8.3) is smaller than the remaining terms by one order
of magnitude relative to term Ki, and if it is neglected
and the variations of I with latitude are neglected, then
the geostrophic relation lip « gz is obtained, whereby
(8.2) is transformed into the quasigeostrophic approxi-
mation (7.4)).

The balance equation (8.3) was obtained as the second
approximation in the quasigeostrophic expansion in[72]

(see also the papers of BolinC783, Thompson1793, and
also the later paper1463). It became popular after it was
pointed out in a paper by Charney[8°3 with reference to
an unpublished paper by Fjortoft. A justification of the
quasisolenoidal approximation by asymptotic expansion
in powers of Ma was proposed in t 67 ] , and in a very
similar form by CharneyE68]; Gavrilin1703 derived the
equations of the quasisolenoidal approximation for non-
adiabatic synoptic processes on a spherical earth.

Actually, the quasisolenoidal approximation was used
for the description of synoptic processes long ago: the
theory of synoptic waves developed by Blinova[11] (gyro-
scopic waves in the terminology of Ch. 5) was based on
consideration of the quasisolenoidal approximation for
the vortex transport equation in an adiabatic barotropic
atmosphere on a spherical earth (in the case of a baro-
tropic atmosphere, it is possible to put 9z/3p = 0 in
(8.2), and then F can be simply replaced by Aip + I). In
the indicated theory this equation was linearized rela-
tive to a state in which the atmosphere rotates around
the earth as a rigid body, with an angular velocity a
(the aforementioned circulation index), and took the form

where A is the longitude and a is the earth's radius
(an analog of this equation in Cartesian coordinates was
proposed earlier for the description of the gyroscopic
waves by Rossby:493, who obtained from this analog a
formula for the velocity of motion of baric depressions,
i.e., planetary pressure waves; see Ch. 5). The elemen-
tary wave solutions of (8.2') were indicated by Haur-
witz :573. Blinovacll] constructed with the aid of this
equation a general solution of the initial-value problem
for the field of the atmospheric pressure, relating the
latter with the field ip by an actually linearized balance
equation.

The solution of the quasisolenoidal-approximation
equations (8.2)—(8.3) entails considerable mathematical
difficulties (see t80 '68}). They are connected, first, with
the need for determining from the balance equation (8.3)
the initial field ip for a specified initial field z, and sec-
ond, with the need for determining, during each step of
the integration of (8.2) with respect to time, the field ip
from the field F, which in turn is determined by the
second formula of (8.2) using the same balance equation
(8.3). The latter, regarded as an equation with respect
to tp, is among the so-called Monge-Ampere equations.
In practice, owing to the incompleteness or even absence
of synoptic information over a considerable fraction of
the earth's surface, it becomes necessary to solve Eq.
(8.3) with respect to tp only inside a certain bounded
territory, specifying in some manner the values of ip on
its boundary. Such a boundary-value problem for Eq.
(8.3) will be correct only if it is elliptic. The condition
for its ellipticity reduces to the form gAz + (Z2/2) > 0.
One can be sure that such a condition is satisfied only
for small values of Ki, but if Ki is not small (e.g., in the
tropics), this condition may not be satisfied. On the
other hand, in the case of small Ki Eq. (8.3) can be re-
written (in the simplest scheme with I = const) in the
form[463

I Ail) = g Az — 2 4s- i — . —-1 • (8.3')

9. PRIMITIVE EQUATIONS

Recently in many papers on hydrodynamic theory of
short-range weather forecasts (e.g., Smagorinsky1813,
Hinkelmann"23, Phillips"33, Charney[68], Buleev and
Marchuk1843), there appeared a tendency to forego
"filtered out" fast waves and to return to the use of
complete hydrodynamic equations (albeit in the quasi-
static approximation), which were called "primitive"
equations, i.e., the initial equations. This tendency is
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probably due to the following causes: 1) the quasigeo-
strophic approximation is insufficiently accurate in
many cases; 2) the solution of the equations of the
quasisolenoidal approximation entails mathematical
difficulties; 3) owing to the development of computa-
tional mathematics and computer techniques, numerical
solution of primitive equations is now perhaps no more
difficult or only slightly more difficult than the solution
of the "filtered out" equations (see, e.g., the differences
schemes proposed by Marchukt85"87>10] for the numerical
solution of the primitive equations).

Just as in the balance equation considered above, the
primitive equations must be integrated within the limits
of confined territories. This raises the question of the
correct formulation of the corresponding boundary con-
ditions : whether in the case of insufficient or in the
case of redundant boundary conditions, the solutions of
the equations are unstable, and the resultant errors will
extend more and more, following each step of integra-
tion with respect to time, away from the boundaries to
the interior of the territories under consideration.
Charneyle82 has shown that the correct boundary value
problem for the primitive equations is obtained by speci-
fying the normal component of the velocity on the entire
boundary of the territory under consideration, and the
values of the potential vorticity on those sections of the
boundary, where the motion of the air is directed to the
interior of the territory (analogous boundary conditions
were previously formulated by Charney, Fjortoft, and
von NeumannC6] for the equation of the quasigeostrophic
approximation in a barotropic atmosphere). The use of
such boundary conditions makes it possible, on going
over from the differential to the difference equations, to
avoid calculations on boundaries of unilateral normal
derivatives of the velocity components, the appearance
of which would lead to a computational instability of the
solutions of the difference equations.

The attempt to increase the accuracy of the descrip-
tion of the synoptic processes (compared with the quasi-
geostrophic approximation) by returning to the primitive
"unfiltered" equations is obtained at the cost, first, of
retaining the high order in time in the employed system
of equations, and consequently with the need for specify-
ing a large number of initial data (namely the initial
values not only of the pressure field but also of the wind-
velocity field), and second, retaining the gravitational
waves along the solutions of the forecasting equations.

We recall that the gravitational waves can be genera-
ted, first, as a result of the initial "inconsistency" of
the pressure and velocity fields, and, second, because
the nonstationary character of the synoptic processes
(due to their nonlinearity, and also to the influence of
the sphericity of the earth) continuously causes the con-
sistency of these fields to be disturbed. When the primi-
tive equations are used, the second of these factors re-
mains in force, but the first can be eliminated by speci-
fying using actual data, only the initial pressure field,
and choosing the initial velocity field from the conditions
that it match the pressure field (this eliminates once and
for all the errors connected with the inaccuracy of
measuring the initial wind field; see [88]). These condi-
tions can be written, in accordance with the foregoing,
in terms of the quasigeostrophic or quasisolenoidal ex-
pansion (see1831 and t67]). Accurate to terms of order

Ki2, these conditions reduce to the fact that the current
function ip should be connected with z by the balance
equation (8.3), and the velocity divergence D = 8u/9x
+ 9v/8y should be connected by the formula

fl=-i{A¥th> -i - ' ] } . (9-l)

in which it is necessary also, with the aid of (7.4) or
(7.6), to express 8z/8t in terms of the values of the field
z at the same instant of time.

The advantage of returning to the primitive equations
cannot be connected with allowance for the gravitational
waves; these, to the contrary, must be "filtered out"
(at least in part, by making approximately "consistent"
the initial velocity and pressure fields). But the useful-
ness may also lie in allowance for the actual bounded-
ness of the "interaction radius" of the baric field, which
follows from the fact that the system of the primitive
equations is hyperbolic: the baric tendency, i.e., the
derivative 8z/8t, enters in the principal linear part of
these equations under the sign of the hyperbolic opera-
tor

^A ~ £5 ~~ 4aT*

(where T> is defined by formula (7.7)). Therefore the
value of 8z/8t at a fixed point M at the instant of time t
is determined by the values of the initial pressure and
velocity fields in a vicinity of the point M which is boun-
ded horizontally, with a radius Cot, and cannot in fact
depend on the values of the initial fields outside this
vicinity. In the "filtered out" equation, on the other
hand, for example (7.6), this hyperbolic operator is re-
placed by the elliptic operator .VA — (1/Lo), as a result
of which the value of 9z/9t at the point M at any instant
of time t becomes dependent on the values of the initial
pressure field in all of space, including the values of
this field at points located at a distance larger than cot
from M. The contributions of these points have no phys-
ical nature and introduce into the values of 9z/9t distor-
tions, which are the price that must be paid for the
"filtering out" of the gravitational waves.

However, to correct this shortcoming of the "filtered
out" equations it is not necessary to return fully to the
primitive equations, and it is sufficient, for example, to
replace in the quasigeostrophic-approximation equation
(7.6) the left side (3 A - l/Lg)(8z/8t) by

/ „ , 1 1_ JP_\ Jk_
[s Li~ 4 at*)~dt

and to use for the obtained equation the approximately
"consistent" initial values of the velocity and pressure
fields; such a procedure was recommended inC67].

Incidentally, the turning from the "filtered out" equa-
tions to the primitive equations (or the restoration of the
hyperbolic operator in the "filtered out" equations) for
the purpose of increasing "the accuracy of the forecasts
of synoptic processes is so far not inevitable, since the
accuracy that can be provided in principle by the
"filtered-out" equations, particularly the quasisolenoi-
dal approximation equation, is in practice not yet
reached in concrete calculations, primarily because of
errors in the numerical calculation connected with the
approximation of the continuous pressure and velocity
fields by their values on a finite set of points of a cer-
tain space-time grid and with the corresponding replace-
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ment of the differential operators contained in the dy-
namics equations by difference operators (and also as a
result of the errors contained in the initial data and
caused by the inaccurate formulation of the boundary
conditions on the underlying surface and with the curva-
ture of the relief).

10. VERTICAL STRUCTURE OF SYNOPTIC PROCES-
SES

One of the first problems arising in the integration of
the forecasting equations is the description of the verti-
cal structure of the synoptic processes, which is needed
because these equations contain double differentiation
with respect to the vertical coordinate p (which enters
in Eq. (7.4) in the operator -F, and in (8.2) in the invar-
iant F) or the equivalent double integration (the operator
V in (7.6)).

The vertical structure of the synoptic processes
turns out to be simplest in the case of a barotropic
atmosphere (see t72 :). The deviations z(x, y, p, t) of the
heights of the isobaric surfaces from their values Z (p)
in the standard atmosphere take on here the form

) = zo (x, y, t) i)>o (p). (10.1)

and the function zo(x, y, t), which are the only "param-
eter" of the barotropic model of the atmosphere, can be
assigned the meaning of the height of the isobaric sur-
face at a certain average level in the troposphere (ap-
proximately 500 mb). In the general case of a baro-
clinic atmosphere, the function z(x, y, p, t) can be ap-
proximated by the expression

</. P. 0 = (10.2)

where f/>n(p) are certain fixed functions, and zn(x, y, t)
are "parameters" which can always be expressed in
terms of the values of z(x, y, p, t) on specified levels
p = p n (so that the models of vertical structure of the
synoptic processes with several "parameters" are
equivalent to models with several levels). For no finite
number of terms N can expression (10.2) serve as an
exact solution of the forecasting equations, but the latter
can be replaced approximately by the corresponding
equations for the "parameters" of the given model. In
the practice of numerical forecasts, use was made of
models with two or three parameters, and in experi-
ments also with a larger number of parameters (or
levels). The functions $n(p) were specified in this case
either by starting from some qualitative assumptions
regarding the vertical structure of the synoptic proces-
ses, or from considerations of convenience of interpola-
tion between the specified levels. But this raises natur-
ally the question of the optimal choice of these functions.

An optimality criterion can be introduced with the aid
of statistical considerations, by regarding, for a fixed
value of t, the values of z(x, y, p, t) at different points
(x, y) as individual realizations of a certain random
function >p{p), characterized by the correlation function
j3(pi, p2) = ^(pl)^(p2) (the bar denotes the mathematical
expectation or averaging over (x, y); the mean value
>p{p) is assumed here equal to zero without loss of gen-
erality). From the general theory of random functions
it followst89>90] that the mean square

of the error of the approximation of the function V(p) by
the sum of the first N terms of the expansion in the
complete orthonormal system of functions $ (p) will be
minimal at a fixed N, if one chooses for #n(p) the eigen-
functions of the "dispersion operator" j3(pi, P2) in the
integral equation

P (Pi, p2 (10.3)

Such a choice of the functions ^n(p) will be optimal from
the statistical point of view. The eigenvalues 11 of the
operator /3(pi, p2) will have then the meaning of the dis-
persions of the expansion coefficients z n = J ^ n d p and
these coefficients will be pairwise uncorrelated.
ObukhovC90] used such a statistically-optimal repre-
sentation for the description of the vertical structure of
the field #(p) = 9z/9t. In two real examples of such
fields, considered by him on the discrete set of levels
p = 1000, 850, 700, 500, and 300 mb, it turned out that
the first term of the optimal expansion (corresponding
to the barotropic model of the atmosphere) accounts for
approximately 70% of the total dispersion of the field
9z/3t, the sum of the first two terms accounts for more
than 90%, and the sum of the first three for 97%; the
subsequent terms contain already a very small fraction
of the total dispersion and are therefore determined
very inaccurately. It follows therefore that in the models
of the vertical structure of synoptic processes we can
confine ourselves to two—three parameters or levels
(a larger number of levels can be useful in the planetary
boundary layer of the atmosphere for a detailed allow-
ance for the friction effects, and in the stratosphere if
it is necessary to forecast its state). We note that in
Obukhov's two examples the orthonormal optimal func-
tions #n(p) turn out to be very close. The small varia-
bility of such functions from territory to territory and
during the year, both for the field ^(p) = 9z/9t and for
the vertical structure of the fields of the zonal and
meridional components of the wind velocity and a few
other synoptic fields, was established by a special in-
vestigation by Rukhovetst91]; by way of an example,
Fig. 13 shows the first five functions #n(p) for the field
9z/9t during different seasons of the year.

The foregoing method of statistically-optimal expan-
sions was employed earlier by Fukuoka[92:, LorenzC93:l,
White and co-authors [94], and Bagrov[95] for a descrip-
tion of the horizontal structure of the meteorological
fields, for the purpose of their typization and statistical
forecasting. Following Obukhov's work[90] this work
found very wide application (see, e.g./963).

Another method of naturally choosing the function
^n(P) i n t n e expansion (10.2) is to use the eigenfunctions
of the "dynamic operator" SB, which enters in the prin-
cipal linear part of the forecasting equation, which we
write in the form 9^/9t =&eil>. Under certain general
conditions, such functions #n(p) will coincide with the
just-considered eigenfunctions of the "statistical opera-
tor" /3 = ^(pi)#*(p2) (for the sake of generality we admit
here complex functions 4>, and the asterisk denotes the
complex conjugate). Indeed, differentiating this expres-
sion for (3 with respect to the time t, replacing dip/dt by
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FIG. 13. Eigenfunctions i//n(p) of the dispersion operator/3(p1; p2)
of the field i//(p) = 9z/3t during different seasons of the year (from [M]).

January 1958; April 1959; -July 1959;
October 1959.

a/£ip, and; using the condition^* = —SB (which ensures
energy conservation) we obtain

-f. = <£?p-M?, (10.4)

so that under the condition of statistical stationarity,
when the dispersion operator (9 does not depend on the
time t and the left part of (10.4) vanishes, the operators
/3 and H turn out to be commutative and consequently
have identical eigenfunctions[97:l. The connection be-
tween these eigenfunctions and the time-independent
"dynamic operator" 30 can explain their statistical sta-
bility (low variability from season to season and from
territory to territory), which was noted above. But this
does not pertain to the dispersions fi.n of the coefficients
z n , for within the framework of the linear theory their
values are in general arbitrary, and they are established
actually as a result of weak nonlinear interactions, so
that the dispersions turn out to be statistically much
less stable than the eigenfunctions of the operator /3
a n d X

A similar method of choosing the functions ^n(p) in
the expansion (10.2) was proposed by Gavrilin[98 ', where
^n(P) w e r e chosen to be the eigenfunctions of the "verti-
cal operator" X = (9/9p)(p2/ao)(9/9p) (with al = const),
which enters in the three-dimensional elliptic operator
i^of formula (7.5), which in turn enters in the Eq. (7.4)
of the quasigeostrophic approximation. These eigen-
functions were obtained earlier in£67] as solutions of the
equation 3(ip = - jiip under the boundary conditions
p(9^/9p) + a§^ = 0 at p = p0 (corresponding to the van-
ishing of the vertical velocity w on the underlying sur-
face) and p | ^ | 2 < ° ° a s p — 0 (corresponding to bounded-
ness of the kinetic energy on the upper boundary of the
atmosphere); such boundary conditions were used above
to obtain the integral form (7.6) of the equation of the
quasigeostrophic approximation. The spectrum of the
eigenvalues /u of the operator X contains an isolated
point M = 1 - a% and the straight line 1/4 a\ < \i < °°
(in the limit as al — 0, i.e., on going over to the baro-
tropic atmosphere, only a single isolated point remains
in the spectrum). The isolated point corresponds to the
eigenfunction ipo(p) = (Po/p)a^, and the remaining points
of the spectrum correspond to the functions

Gavrilin considered a bounded layer of the atmosphere
p0 SL p 2 ph (with boundary condition p(9̂ >/9p) + a^ip =0
on the upper boundary); the continuous part of the spec-
trum breaks up in this case into a denumerable set of
points v = im/ln (po/pn),

 n = 1> 2, ..., and the form of the
eigenfunctions remains unchanged. For the "param-
eters" zn(x, y, t) of the expansion (10.2), the resultant
equations are

where &n = (g//)(A - nn/h
2

0), where /xn are the eigen-
values of the operator 96 (Lo/V/Î  plays the role of the
scale of the horizontal inhomogeneities of the field zn),
Nn are the norms of the eigenfunctions ipn, and finally
anpq = /^n^p^qdP- These equations show that the time
variations of each component znipn of the field z are de-
termined by the interaction between all such compon-
ents. Any three components zn^n, Zp^p, and Zqipq inter-
act both directly (this direct interaction is described by
the coefficients anpq, which are symmetrical in their
three indices), ana also via all the remaining compon-
ents. Such a structure of the pressure-field variation
as the result of direct interactions between the triads of
the eigenvalues is the consequence of the quadratic form
of the nonlinearity in the hydromechanics equations. In
practice it is necessary to confine oneself to only a finite
number of "parameters" zn. The equation for z0 then
describes the "barotropic" changes of the pressure. If
we put zô o = z*, then this equation takes the form

where v = ^a\\i — 1/4. The indicated eigenfunctions are
not normalized; apart from this, they are quite similar
to the statistically-optimal functions of Fig. 13. In[98]

As al — 0, it goes over into Eq. (7.6) of the barotropic
model. For the "baroclinic" component z' = z — z* we
obtain the equation

• * r ! 1 =~Hi« .^ ] -&$ fc^i * • *»+££} . do.6")

From the system of two equations (10.6) and (10.6') we
can determine both components z* and z' of the varia-
tion of the pressure field, and by the same token esti-
mate directly the role of the baroclinic effects. One
might think that this role will be the largest in the
frontal zones (between the air masses with different
properties), and outside these zones the main fraction of
the changes of the pressure will be accounted for by the
"barotropic" component z*).

11. WEATHER FORECASTING
In the quasigeostrophic approximation, we deal with

Eqs. (7.4) or (7.6), which describe the synoptic oscilla-
tions of the field of the heights of the isobaric surfaces
z(x, y, p, t), i.e., of the pressure field in the atmosphere
(in the quasisolenoidal approximation the field of the
current function ip is added also to the field z in Eqs.
(8.2)—(8.3)). This naturally raises the question of the
extent to which it is possible to judge from the predicted
changes of the atmospheric-pressure field (which them-
selves can hardly be sensed by humans), those weather
features to which humans are very sensitive, i.e., prim-
arily the air temperature, the wind, and finally the var-
iable cloudiness and precipitation, which are the main
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characteristics of the weather in our planet. This ques-
tion can be answered with sufficient optimism.

1) Indeed, knowledge of the field z(x, y, p, t) permits,
first, to calculate the air temperature T by means of the
formula T = - (gp/R)8z/8p (given in the footnote of
p. 754).

It is important here that only the synoptic oscilla-
tions of the field z are predicted, which have rather
large spatial and temporal scales, and that they are pre-
dicted only in the adiabatic approximation. Therefore
one can calculate from the predicted field z only the
smoothed temperature field—the "synoptic" tempera-
ture background, on which there are superimposed in
nature small-scale oscillations and the diurnal variation
produced by non-adiabatic factors, for example in the
boundary layer of the atmosphere at the underlying sur-
face. The forecasting of the daily course of the surface
temperature can be carried out separately, as is indeed
done in forecasting practice.

2) Second, from the field z it is possible to calculate
the horizontal components u and v of the wind field at
any level, using in the quasigeostrophic approximation
formulas (7.1) (in the quasisolenoidal approximation,
they are determined from the current function ip, which
is calculated simultaneously with z). Knowledge of the
force and direction of the wind at different altitudes is
very important, for example, in aviation.

3) Third, it is possible to calculate from the field z
the field of the quantity w* = dp/dt, which in coordinates
(x, y, p) replaces the vertical velocity (from w* we can
determine the divergence D = — 8w*/9p). Namely, we can
obtain for w* a diagnostic equation (i.e., containing no
derivatives with respect to time), by differentiating the
balance equation (8.3) with respect to p and with respect
to t, and then eliminating from it the derivative dip/dt
with the aid of the equation for the transfer of the poten-
tial vorticity (8.2), and the derivative 8z/9t with the aid
of the adiabaticity equation (7.2). We then obtain for w*
an elliptic equation with a right-hand side

iM-w+M^-e^^+A-Lw.w+n, ( i i . i )

where A is the operator (v • lv)&~1 (we have left out here
small terms resulting from the term 2 [dip/dx, dip/dy] in
the balance equation). In the quasigeostrophic approxi-
mation, it is sufficient to replace in (11.1) the current
function ip by gz/l. In this approximation (and at
I ss const, when J = I), examples of the construction of
the field w* from the field z by solving Eq. (11.1) were
given, for example, by Knighting1"3. He used actual
data on the values of the field z at nine levels p = 1000,
900, 800, ..., 200 mb on a grid of 480 points spaced ap-
proximately 100 miles apart, covering a considerable
portion of the northern Atlantic and western Europe, and
solved the difference analog of Eq. (11.1) under zero
boundary conditions for w* on the boundaries of the reg-
ion under consideration (including the lower limit
p = 1000 mb and the upper limit p = 200 mb).

One of Knighting's examples (for 01n of 2 December
1958) is shown in Fig. 14, where the profile of w*(p)
(in mb/hr) is given in each of the 16 x 12 internal points
of the horizontal grid (negative w*, corresponding to
rising air motion, are plotted to the right, and positive
w*, corresponding to descending motions, to the left of

FIG. 14. Profiles of w*(p) in the layer 1000 - 200 mb and the iso-
hypses of the heights of the isobaric surface 1000 mb over the Northern
Atlantic and Western Europe at Olh on 2 December 1958 (from ["]).

the origin). The solid lines in Fig. 14 show the isolines
of the altitudes z (in meters) of the isobaric surface
p = 1000 mb, and the dashed lines show the atmospheric
fronts. These and other examples demonstrate that the
profiles w*(p) calculated from (11.1) vary sufficiently
smoothly and regularly from point to point, and agree
well with the customary notions of the synopticians, for
example, concerning the rise of the air ahead of baric
troughs and the drop of the air behind them. If the values
of w* are large, then their maximum (and therefore also
the zero value of the divergence D = -8w*/9P) is reached
at an average level in the troposphere near 500—600 mb;
the profiles w*(p) have on the average an approximately
parabolic form.

Incidentally, it must be borne in mind that compared
with the pressure field the horizontal wind field, the
field of the vertical velocity w (or w* = pg/RT [dnz/dt)
— w)] is much more sensitive to factors which we have
so far not taken into account, and primarily to the curva-
ture of the earth's surface and to nonadiabatic factors.
The former can be taken into account by specifying the
shape of the earth's surface by the functions z = f (x, y),
so that in the case of smooth flow over the relief we get
w = u(8£/8x) + v(8£/8y) « [ip, t] (this condition must be
written for z = f, but at small £ it can be approximately
referred to the level z = 0 or p = p0).

From among the non-adiabatic factors, foremost is
the friction against the earth's surface, characterized
by a horizontal vector T of the stress of the friction
against the earth's surface; when this friction is taken
into account, the value of w on the upper boundary of the
friction layer (or approximately again at p = p0) can be
determined by the formula w = 1/lp • |curl T | ; when the
friction layer is descr ibed by the so-cal led Eckman
model, with a turbulent-viscosity coefficient x which is
constant in altitude, we get w = g/l^x/2lAz.

Both indicated effects—the presence of the relief and
the friction against the earth—should be taken into ac -
count in the boundary condition for (11.1), which should
be writ ten in the form
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We can then calculate with the aid of (11.1) and (11.2) the
field w* from the specified fields z and ^. In a more
complete formulation of the problem, it is necessary to
take into account the influence of the relief and of the
friction on the fields z and ip, using the boundary condi-
tion (11.2) when solving the quasigeostrophic-approxi-
mation for it (7.4) (which introduces additional terms in
the right side of formula (7.6) or of the equations of the
quasisolenoidal approximation (8.2)—(8.3)). Incidentally,
it is necessary here to take into account also the re-
maining non-adiabatic effects, among which the release
of the latent heat of the condensation in the clouds is
particularly important for the field.

4) Knowledge of the field ip (which equals gz/l in the
quasigeostrophic approximation) and of the field w*
makes it possible to calculate the displacements of
various impurities in the atmosphere. In the case of
conservative impurities, it is possible to use for this
purpose the transport equation in the form

(11.3)

where q is the specific concentration of the impurity
(i.e., the ratio of its mass in an elementary volume of
the air to the total mass of the air with the impurity in
this volume), with

(11.3')
iZS{g}=-jdivQ,

where Q is the density of the impurity diffusion flux
produced principally by turbulent diffusion, which is usu-
ally assumed to depend linearly on the gradient vq of
the field q. Incidentally, in the free atmosphere (i.e.,
above the planetary boundary layer of the atmosphere),
during the course of time intervals which are not too
large, the turbulent diffusion of the impurity (i.e., the
right side of (11.3)) is frequently neglected.

If the water vapor in the air is in the unsaturated
state, then it is a conservative admixture, and Eq. (11.3)
is suitable for a description of the evolution of the field
of the specific humidity q (in this case, incidentally,
knowledge of w* makes it possible to estimate the adia-
batic cooling of the rising air particles, and the heating
of the descending air particles, with the aid of the sim-
ple formula dT/dt = [(/c - l)//c]T/pw*). It is sometimes
more convenient to use for the description of the humid-
ity of the air not q but the so-called dew point Tm—the
temperature at which the air with a fixed specific humid-
ity q and a pressure p becomes saturated (over a plane
surface of water). The dew point is determined from
the relation q = R/Rv • e m (T m ) /p , where R and Rv are
the gas constants of dry air and water vapor, and
e = em(T) is the partial pressure of the saturated water
vapor. Substituting this formula for q in (11.3) (neglect-
ing its right-hand side) and using for em(T) the
Clausius-Clapeyron equation (4.4), we obtain for the
deficit of the dew point A = T - T m the equation

Lewis l lml proposed a very simple method for predicting
the amount of cloudiness and the presence of precipita-

tion, based on the use of the empirical connection be-
tween these phenomena and the values of w* and A,
which can be calculated with the aid of Eqs. (11.1) and
(11.4). Such an empirical connection is shown in Fig. 15,
where the abscissas show the values of A at the level
700 mb, and the ordinates show the values of w in the
central troposphere (approximately w* » —pgw); differ-
ent symbols on the nomogram represent the actually
observed weather phenomena (in the period 15—28
March 1960 in Japan, after£101]). Analogous methods of
forecasting the cloudiness and the precipitation were
developed or used by ShvetsU02], Dushkin, Lomonosov,
and Lunin[1C3], Vedermancl04], Ovsyannikov1105"1063,
Kuznetsovcl07], Pedersenc l 0 8\ Uspenskiftl09:,
Bagrov t l l0 ], and many other authors.

Methods of predicting cloudiness and precipitation
from their empirical connected with the values of A and
w* (or with the relative humidity at some level in the
troposphere) are, of course, very crude. Thus, accord-
ing to Antonov:1U], the probabilities of precipitation,
total cloudiness, or, to the contrary, of clear weather
when the point (A, w*) falls in the corresponding region
on a nomogram such as in Fig. 15, amounts to 70—80%,
and for partial cloudiness only approximately 50%.
Obviously, it is necessary to develop another forecast-
ing procedure, which would start from a concrete des-
cription of the physical processes of cloud and precipi-
tation formation. The water vapor can no longer be
regarded as a conservative and passive impurity, as
was done outside the clouds when using Eq. (11.2); when
clouds appear, it is necessary to take into account the
phase transitions of the moisture, the non-adiabatic
dynamic effects of the release or absorption of the
latent heat of the phase transitions, and also the dropping
out of the moisture with the precipitation.

One such scheme was developed in a series of papers
by Matveev1112"1162 (see also Chap. 21, Sec. 3 of his
book t l l7: and the papers of Lushev and Matveev[118:l with
examples of forecasting of large-scale cloudiness, and
of Bychkova and Matveev:U9] with a description of a
numerical experiment on the evolution of cloudiness in
a cyclone, and of Feigel'son and FrolovatI2o:l with cer-
tain methodological improvements). In this scheme there

mb/hi

15 20

FIG. 15. Empirical connection between the amount of large-scale
cloudiness and the presence of precipitation with the values of the dew-
point deficit A at the level 700 mb and the velocity w of the large-scale
motions in the central troposphere (from I100]). Actually observed
weather phenomena — from [101] (shaded circles — cloud contents, cross
- precipitation).
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are considered two phases of moisture in the clouds-
water vapor with a specific concentration q, and water
droplets (plus ice) with specific concentration qw (called
the specific water content), and the following equations
are assumed for them

(11.5)

where m is the specific rate of condensation (plus sub-
limation) of the water vapor (i.e., the mass of the water
vapor condensed or sublimated per unit mass of air in
a unit time), and n = (l/p)(9Qw/9z) is the rate of precipi-
tation, where Qw is the density of the flux of the mass
of the water drops and ice crystals, produced by their
gravitational settling; the latter can be represented in
the form Qw = -p w w, where w is the average rate of
the precipitation, weighted with weights r3f(r), with f(r)
the probability density for the radii r of the cloud ele-
ments, which in this scheme is assumed to be known,
for example, logarithmically normal with parameters
connected by some empirical formulas with qw; To Eqs.
(11.5) one adds the equation for the influx of heat, which
is conveniently written here in the form

in[12o:l to find qw from the second equation of (11.5), in
which m is defined by the formula

AT
dt w* = SD \T\-\ ,

x n l ' ' t, '
(11.6)

where e = e r + €q is the rate of heat influx (per unit
mass) produced by the radiant heat exchange (er) and by
the phase transitions of the moisture (eq), while 3>{T}
= — 1/cpP • div Q-p, where Q-p is the density of the tur-
bulent heat flow.

According to Zilitinkevich and LaikhtmanU21], the
vertical component of the turbulence of the flow of water
vapor in clouds can be written in the form Qz
= -pK(9q/3z + |3), where j3 = c p / x (ya - yw) is the
equilibrium gradient of the humidity, K is the coefficient
of turbulent diffusion, y a = [(K — l)/»c](g/R) is the adia-
batic temperature gradient, and y w is the so-called wet-
adiabatic temperature gradient, defined by the formula

(11.7)
_

9TThe vertical component of the turbulent heat flow should
be written in this case in the form Q T Z =
-cpp*-(3T/8z + yw).

The influx of heat €„ in the atmosphere differs from
zero only in clouds, where phase transformations of the
moisture takes place; there it is equal to i m , where L
is the latent heat of evaporation (or the latent heat of
sublimation, which is close to it in magnitude).
Matveev's scheme is based on the fact that equations
for the "equivalent temperature" n = T + (i/cp)q and
the "total specific moisture content" q~ = q + q m , der-
ived (under certain simplifications) from (11.5)—(11.6),
do not contain m and have the same form in clouds and
outside the clouds. Finding II and if from these equa-
tions, we can obtain from the relation

pRBp
the value of T and define clouds as regions in which the
difference q - (Rem(T)/Rvp) is positive; then this quan-
tity is the specific humidity qw). To avoid an unreliable
numerical calculation of this difference, it is proposed

(11.8)
which is obtained after eliminating dT/dt with the aid of
(11.6) from the first equation of (11.5), written out for a
cloud, i.e., at q = qm(T, p). A formula of this type was
apparently first derived for m by ShvetsC1223. In the
construction of concrete physico-mathematical models
of clouds, a similar formula for m was used by
Lebedev'123"1243.

A more detailed scheme is proposed in the article by
Marchuk"251 (see also his book[10]), where, besides q
and qw, he introduces separately the specific concentra-
tion of the ice crystals q j c , the phase transitions of the
moisture are described by the terms S otifii in the ex-
pressions for dqj/dt (with the coefficients a j j , which
satisfy the condition S a^ = 0, being specified by cer-
tain semi-empirical formulas), and the precipitation in
the liquid and solid phases is described by very simple
empirical formulas. Even more detailed schemes
include the calculation of the characteristics of the
microstructure of the cloud—primarily the already-
mentioned probability density f(r) for the radii r of the
cloud elements (which, generally speaking, depends on
the spatial coordinates and on the time). By the same
token, it is necessary to synthesize the dynamics and
microphysics of the clouds.

The microphysics of the clouds was actively devel-
oped in the post-war years, principally in connection
with experiments on artificial scattering of clouds (e.g.,
by seeding them with crystals of dry ice, silver iodide,
or other coagulants), and reached considerable progress
(a review of which, e.g., is found in Fletcher's mono-
graph11261). Whereas experiments on raid production
still do not yield reliable results, the dispersal (albeit
temporary) of certain types of clouds has already been
attained with good reliability (the failure to use the de-
veloped methods, e.g., on the part of large airports, is
apparently only manifestation of organizational inertia).
At the same time, the microphysics of clouds has not
been sufficiently well oriented towards the problem of
weather forecasting, and so far only very little research
has been done in this direction. By way of examples, we
mention papers by Buikov[1273 and Shulepov and
Bulkov1128"1291, in which it is assumed that
m = 4fl\Nrx(q — qm) (where N and Fa re the average num-
ber of cloud elements per unit volume and their average
radius, and x is the diffusion coefficient of water vapor),
and the following kinetic equation is used for the proba-
bility density f(r)

(11.9)

where ar2 is the velocity of descent of a water drop in
stationary air.

5) The synthesis of dynamics and microphysics of
the clouds is still a matter for the future. Another still
unsolved problem is the forecasting of convective clouds
and the precipitation from them: individual convective
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clouds turn out to be in their spatial scales not synoptic
but mesometeorological phenomena, so that the theory of
Ch. 7—8 is not applicable for their description. At the
same time, the amount of precipitation from convective
clouds is comparable with the amount of precipitation
from large-scale cloud systems, and consequently should
be taken into account in the description of synoptic proc-
esses. So far, attempts are being made to obtain em-
pirical connections of convective cloudiness and precipi-
tation with the large-scale synoptic background; it is
possible that the establishment of such connections will
be aided by the physical and mathematical models of
convective cells (of the type constructed by
Lebedev [ m ]) .

In searches for these connections, apparently, it will
be necessary to distinguish between free cumulus con-
vection, observed for example in moderate latitudes
over areas occupied by cold air masses (intramass
showers and thunderstorms, determined primarily by
the humidity field and by the energy of the instability of
the lower troposphere, but probably not strongly connec-
ted with the large-scale vertical velocity w*, which,
incidentally, corresponds to settling of the air in the
anticyclone regions, typical of summer convection and
induced cumulus convection, observed on the lines of
horizontal convergence (on the intratropical line of con-
vergence and on cold fronts in middle latitudes), and at
convergence points (tropical cyclones), and determined
primarily by the field of the humidity and by the magni-
tude of the divergence 3> (or the corresponding vertical
velocity w*). According to Charney's idea, cumulus
convection itself produces, to some degree, the horizon-
tal convection that causes it, so that we have here a bi-
lateral interaction between large-scale and meso-scale
processes.

The theory of Ch. 7—8, based on the adiabatic ap-
proximation and on "filtered-out" equations, is insuffi-
cient for the forecasting not only of such mesometeoro-
logical phenomena as convective clouds, but also
phenomena with scales on the borderline between meso-
meteorological and synoptic regions, such as tropical
cyclones—hurricanes or typhoons. Tropical cyclones
are the most intense weather phenomena on earth (see,
e.g., the article by Riehl[13Oj and the books by Riehl : i31]

and Tiron M 2 : ) . Thus, in their centers one observes the
lowest air pressure at sea level—the three-times record
is 890 mb (the normal is 1013 mb), and the rate of de-
crease of the pressure when the hurricane approaches
sometimes reaches 40 mb/20 min (see the example in
Fig. 16), while the horizontal pressure drops frequently
exceed 50 mb/50 miles—the wind velocity reaches in
this case 100 m/sec. In the centers of the hurricanes
one observes "the eye of the storm"—a quiet region (of
course, not including the sea waviness) and partial and
full clearing of the sky (and consequently, descending
air motions) with an average diameter of 30 km. The
trajectory of hurricanes in the northern hemisphere is
almost always directed from the equator into the middle
latitudes, and many hurricanes first move to the north-
west and then veer to the northeast (Fig. 17). Much in-
formation, in many respects unexpected, concerning the
structure of the hurricanes has been obtained recently
by heroic experiments in which the "eye of the storm"
and its vicinity have been sounded by airplanes (see,

W.I/I

FIG. 16. Barogram of the passage of the hurricane of 18-20 September
1947 in New Orleans, La. (from [m]).

I. Long

«*N. Lat

FIG. 17. Paths of typhoons in the western part of the Pacific in the
1962 season.

e.g.,11333) and by photography from rockets and satel-
lites. For example, Fett[134] reports observation along
the boundary of the cloud system of a hurricane a narrow
cloudless zone of settling with an exceedingly low humid-
ity (dew-point deficit A = 15—20°), in front of which
there is an external zone of intense convection with
thick cumulus clouds; over the settling zone, at a level
of approximately 200 mb, there is a strong jet flow,
which envelopes the hurricane anticyclonically from the
north, and then splits into two branches.

Synoptic methods and for the time being also hydro-
dynamic methods, do not offer a complete explanation
or an accurate forecast of the motions and evolution of
hurricanes; in particular, the sharp turns in the motion
of hurricanes have not yet been physically explained.
According to Hill113" , the daily forecasts of the posi-
tions of the centers of hurricanes, made up by the USA
Weather Bureau, which are so far regarded as the best,
have an average error exceeding 200 km, whereas only
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forecasts with an error not exceeding 80 km can be re-
garded as satisfactory. Apparently, the presently em-
ployed simplified hydrodynamic equations do not take
into account many factors which are important for the
evolution of hurricanes—the release of heat of conden-
sation, friction, and possibly vertical acceleration.

Incidentally, some published physical-mathematical
models of typhoons gave hopeful results. Thus, for ex-
ample, Estoquecl36] describes calculations by means of
two models—quasigradient and one based on primitive
equations, in which account is taken of the vertical and
horizontal turbulent exchange and the release of latent
heat of condensation in descending motions, and the non-
stationary axially-symmetrical problem with time inter-
vals of 90 and 15 sec (!) is solved. The results of the
calculations duplicate the descent of the air in the "eye
of the storm" and the rise at the "wall of the eye," the
inflow of air at the lower levels and the outflow at the
higher levels.

Morikawa1137"138'1 constructed a hurricane model in
which, taking into account its small (mesometeorologi-
cal) scales, the hurricane is treated as a pointlike vor-
tex, interacting with the "leading stream." Namely, he
proposed to use for the description of the hurricane the
solution of the quasigeostrophic barotropic equation
(7.6') in the form z = Z/g • (ip0 + ipi), where

(Ityo/g is the solution of Eq. (7.6') corresponding to a
pointlike vortex at the point ro(t) = {xo(t), yo(t)}), and the
trajectory of the vortex is determined by the relation

dy
This solution was applied successfully to describe the
motion of the hurricane "Betsy" on 14—17 August 1956;
in addition, a model was calculated with a quasiuniform
leading stream

The approximate representation of the continuous
vorticity field (or better, the potential vorticity) in the
cited papers of Morikawa by a finite number of pointlike
vortices, the motion of which is described by ordinary
differential equations, is analogous to replacing the con-
tinuous distribution of a mass by a discrete set of point-
like masses, and is a method of approximately describ-
ing continuous fields, capable of competing with the use
of expansion in orthogonal functions (Ch. 10) or discrete
spatial grids. In hydrodynamics, such a procedure was
used for example by Onsagercl39], Fermi, Pasta, and
Ulam [ u o ] , Pasta and Ulam t l41], and Ulam t l42]. For
meteorology problems, it was publicized by Charneyt143].

Summarizing, it can be admitted that the hydrody-
namic theory is already capable, to some degree, of
coping with short-range forecasts not only of the pres-
sure field, but also of such singularities of the weather
as the temperature and the wind, and makes important
steps towards forecasting cloudiness and precipitation.
However, announcements by weather services that they
are already using the hydrodynamic theory of short-
range weather forecasts in practice can be accepted, of
course, only when objective hydrodynamic forecasts are
compiled not together with the subjective synoptic fore-
casts, but in place of them.
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