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1. INTRODUCTION

THE theory of oscillations and stability of a spatially-
inhomogeneous plasma contained by an external mag-
netic field has been extensively developed in recent
papers. Interest in this theory is due to the efforts to
solve the problem of controlled thermonuclear fusion,
persistent efforts to realize phenomena occurring in
the ionospheric and interplanetary plasma, and finally
research in an old ‘‘classical’’ branch of physics,
namely gas-discharge physics. Owing to the inhomo-
geneous plasma contained by a magnetic field, and also
owing to the curvature of the magnetic-field force lines,
different drift motions are possible in the plasma. The
latter lead to the occurrence of instabilities in the
plasma, called drift instabilities. The frequencies and
growth increments of the unstable drift oscillations lie

in the range
kyvy v

<7 — —_—
O< Oy~ 5L, ¥ aE’

where v = VYT/m is the thermal velocity of the particles,
Q = eBy/mc—their gyroscopic frequency, and Lo—the
characteristic dimension of the plasma inhomogeneity.
Under conditions when wqy 2> v, where vy (@ = e,i)—
effective collision frequencies of the charged particles
(electrons and ions), or when the wavelengths of the
drift oscillations are smaller than their mean free path,
k, vy =2 Vg, it is possible to neglect particle collisions
in first approximation in the investigation of the drift
instability of an inhomogeneous plasma. A survey of the
results of the theory of drift instability of a collision-
less plasma was presented in an article by the authors"*
(see also™*7). A number of instabilities are connected
with Cerenkov emission and absorption of plasma os-
cillations by plasma particles. In this sense, we can
speak of a dissipative effect leading to a growth of the
plasma oscillations.

The subsequent development of the theory of stability
of magnetic plasma containment followed the path of the
study of the influence of other dissipative effects on the
stability. A large number of investigations have been
devoted to a study of the role of plasma-particle colli-
sions'™® 281, Tt can be said, that the theory of plasma
stability has been subdivided here into two parts. The
first is connected with the need for a consistent utiliza-
tion of kinetic theory and the solution of the kinetic equa-
tions, in which it actually becomes necessary to con-
sider in detail the particle collision integrals. To the
contrary, the second part does not require the kinetic
theory, and all its results can be obtained with the aid
of the hydrodynamics of two fluids®*®? (electrons and
ions). It is obvious that the second part is simpler.
However, it is only in the initial stage of development
(see, for example®®?'1), In particular, we shall there-
fore attempt insofar as possible, not to touch upon ques-

]

tions of hydrodynamic theory of plasma stability in the
present article*. To the contrary, we shall focus our
attention on the kinetic theory of plasma stability. We
shall make an attempt below to create a definite sum-
mary of the theory of the drift-dissipative instability of
a fully ionized plasma, taking into account the Coulomb
collisions of the particles in the plasma. Such a theory
is not at all of academic interest. The point is that
even in a thermonuclear plasma (N ~ 10*—10" cm™,

T ~ 1—10—keV, L, ~ 10 cm, Bo ~ 10*~10° Oe) the in-
equalities for the most dangerous fundamental modes of
the drift oscillations are vg ~ 10°—10° sec™* > wdr

~ V/QLE ~ 10°~10% sec™ 2 v ~ 10°~10° sec™. As a
rule, a similar relation is satisfied for the frequency of
the drift oscillations in a discharge plasma, and also in
ionospheric and interplanetary plasma. The construc-
tion of a theory of drift oscillations, as well as of a
theory of stability of magnetic containment of the
plasma under such conditions, is possible only on the
basis of kinetic equations that take consistent account of
the particle collisions.

In a series of papers , the kinetic theory of the
stability of magnetic containment of a plasma was based
on the kinetic equation with a Bathnagar-Gross-Krook
(BGK) model collision integral®!. However, as shown
by Pitaevskif ®****! | such a collision integral, as applied
to a fully ionized plasma leads to results that differ
qualitatively from the true ones. Thus, he has shown
that in the case of short-wave oscillations with a wave-
length shorter than the gyroscopic radius of the parti-
cles, the effective collision frequency obtained with the
aid of the Landau collision integral™®! differs from that
obtained with the aid of the BGK model integral by the
square of the ratio of the gyroscopic radius to the wave-
length of the oscillation across the magnetic field. This
result was used by Kadomtsev and Pogutse®®?. How-
ever, in general it does not suffice to replace the fre-
quency of the ion-ion collisions by such an effective
frequency. The authors of the present article®®! (see
also®™) have shown that for the investigations of os-
cillations and stability of a plasma with an inhomogene-
ous temperature it is necessary to use the exact
Boltzmann or Landau collision integrals, for otherwise

{22-27]

* Description of the oscillations with the aid of hydrodynamics is
possible only for frequencies w that are much smaller than the ion and
electron effective collision frequencies vj and vg. In [*¢72!] where a
theory of plasma oscillations was constructed under conditions ve > w
> vj, use was made of approximations based on modifications of the
equations of two-fluid hydrodynamics. Such an approach can allow
only a qualitative description, suitable within relatively narrow limits
which can be established only with the aid of the kinetic method. Bear-
ing in mind the latter remark, and also the fact that the consistency and
greater degree of development of the kinetic approach not only yields
more reliable concrete results, but also yields them more rapidly, we
shall not employ semi-quantitative methods anywhere.
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it is impossible to observe the essential qualitative ef-
fects that appear in both short-wave and long-wave os-
cillations. In that short paper, the authors presented
several results of the kinetic theory of oscillations of a
weakly-inhomogeneous plasma with allowance for the
Coulomb collisions of the particles, making it possible
to draw a number of conclusions concerning the stability
of plasma containment by a magnetic field with straight
force lines. Simple approximate methods for solving the
kinetic equation, which are treated in appendices to the
present article were used. In some of the solutions it

is actually shown that integration of the kinetic equation
with an exact collision integral does not make the theory
more complicated than when the 3GK method is used.
Following publication of'*®*" it became clear which of
the results obtained with the aid of the BGK model in-
tegral were qualitatively correct and which were in er-
ror. In addition, these papers have made it possible to
determine the limits of applicability of the different
hydrodynamic approximate methods used inf***'! to
describe drift oscillations of an inhomogeneous plasma
in the kinetic region of frequencies (i.e., when w > vj),
used int%?4,

We develop below a kinetic theory of drift-dissipative
instabilities of magnetic containment of a low pressure
plasma, when the thermal motion of the plasma is
negligibly small compared with the pressure of the
containing magnetic field. We take into account here
both the curvature and the shear of the magnetic force
lines. To take into account the curvature of the force
lines we introduce an effective gravity field g, the vec-
tor of which is oriented along the inhomogeneity of the
plasma (along the x axis). In order of magnitude

2
2t JERN

tel~—5—,

where vg = VTe/M—velocity of the long-wave ion sound
and R is the curvature of the magnetic-field force.*

The instability conditions are analyzed within the
framework of the method of geometrical optics. As is
well known'™, the concept of the dielectric constant of
a weakly-inhomogeneous plasma is productive in this
case. Expressions for such dielectric constants are
given in Sec. 2 for a number of limiting cases; these
expressions are necessary for the study of the influence
of Coulomb collisions of charged particles on the plasma
drift oscillation. In Secs. 3 and 4 we present the results
of the investigation of low-frequency and respectively
long-wave and short-wave oscillations, and in Sec. 5 we
study the spectra of the drift-cyclotron oscillations of
an inhomogeneous plasma. We determine the frequen-

*The introduction of this gravity-field effect to take into account the
curvature of the magnetic-field force lines can be explained as follows.
The particle moving along the force lines of the curved magnetic field
with thermal velocity v is acted upon by a centrifugal force (directed
along the principal normal to the force lines) equal to mvT /R. Th.lS force
causes in turn a centrifugal drift of the particle with velocity u = vT/RQ
The velocity of the relatlve drlft of the electrons and ions is then equal
to upe] =Ug — U= — (le + vs )/RSZ It is easy to see that the gravity
field introduced by us |g| = (le + v3)/R leads to the same relative parti-
cle drift. It should be noted that such an allowance for the curvature of
the magnetic-field force lines is, strictly speaking, correct only for oscil-
lations with w > kuge), for in the opposite case the thermal velocity
scatter of the particles becomes significant. We shall therefore assume
in all that follows that this inequality is satisfied.
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cies and increments of the growing oscillations, and
discuss the regions of their localization. We clarify
the possibility of stabilizing drift-dissipative instabili-
ties of the plasma by means of shear of the force lines
of the magnetic field, and indicate criteria for such a
stabilization. Attention is paid to presently fashionable
minimum-B systems®% 1%,

2. DIELECTRIC CONSTANT OF A WEAKLY INHOMO-
GENEOUS PLASMA

A fundamental role in the theory of stability of an
inhomogeneous plasma is played by the dielectric con-
stant. We devote this section to an exposition of the
main premises underlying the kinetic theory of the di-
electric constant of a weakly inhomogeneous plasma
contained by a strong magnetic field, and also present
the results of such a theory, with account taken of the
particle collisions in the plasma.

With respect to the real situation taking place under
conditions of magnetic plasma containment, we shall
assume that the frequency of the gyroscopic rotation of
the particles  is large compared with their character-
istic collision frequencies. In this connection, we
neglect the influence of particle collisions on the
equilibrium velocity distribution. The z axis is directed
along a magnetic field By, and the plasma is assumed
inhomogeneous in the direction of the x axis. The vector
of the effective gravity field g is directed along the
same axis. Then the kinetic equation for the equilibrium
distribution function can be written in the form

f0+ dfo %h _ .

vBo] -

@.1)t

Limiting ourselves to the case presently of greatest
interest, when the pressure of the magnetic field greatly
exceeds the thermal pressure of the plasma 8 = 87P,/Bj
< 1, we can neglect the inhomogeneity of the field B,
when integrating (2.1). Finally, we also take into account
the fact that in a real plasma the particle distribution
changes little over distances on the order of the gyro-
scopic ion radius pj = VTi/Qi- As a result, the solution
of Eq. (2.1) for the equilibrium distribution function can
be written in the form

foe m [+ o2 4 (v —0)2] } '

ST (2.2)

N© -
[2nmT(C)) %2 exp {

where u = —g/Q is the velocity of the gravitational drift
of the particle in the crossed fields g and By, and C = x

+ (vy —u)/9Q is a characteristic of (2.1) determining the
dependence of the function of Eq. (2.2) on the spatial co-
ordinates.

To study the stability of a plasma having a particle
distribution (2.2), let us consider small deviations from
such distributions, accompanying small disturbances of
the fields. In view of the smallness of the thermal pres-
sure of the plasma, we can neglect the perturbation of
the magnetic field and confine ourselves only to an
allowance for the perturbed electric field 6E = —v&.

* In minimum-B systems, the curvature of force lines is negative,
since the principal normal to the force lines is directed towards the re-
gions of increased density. This means that g(8/n/9x) > 0, i.e., the ef-
fective gravity field is parallel to the direction of increasing plasma
density.

+[vBo] =N X By,
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Bearing in mind that the equilibrium distribution does
not depend on the y and z coordinates, we shall seek the
non-equilibrium quantities in the form

8f (x) exp { — iwt + ikyy -+ ik,z).

Then the kinetic equation for the non-equilibrium addi-

tion to the distribution function can be written as follows:

— i (®— kyu— hyvy — k. z,z)f)frvx—aé—f—s) dﬁf‘ ¢ afn Zlag

me
(2.3)
Here g—azimuthal angle in momentum space (the polar
axis along the z axis), and I, g—linearized collision
integral of charged particles of type a with particles of
type 6[35] .

28, —wap;
1,5 —2ne} e?sL——Q dp’ —w—él}Tswlw—J
aan 3dfg dfop (2.4)

57
= _foco dp - foc 01)

x lfofi .=+ 8f¢
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where L = In(rp/ I‘mm) is the Coulomb logarithm and

W = v, — vg. The summation in the right side of (2.3) is
over all types of charged particles of the plasma. It is
convenient to solve Eq. (2.3) in a coordinate system in
which there is no gravitational drift of particles of a
given type. In such a reference frame, the distribution
function has the form (2.2) with u = 0. Confining our-
selves to perturbations with a wavelength along the x
direction much smaller than the characteristic dimen-
sion of the plasma inhomogeneity L;, we can assume the
dependence of the perturbed quantities on the coordinate

X
X in the form exp(i J kxdx>. Then, solving in the
(4]

geometrical optics approximation the system of kinetic
equations for electrons and ions, we obtain the charge
density induced in the plasma by a potential non-
equilibrium field:

angegdpaf‘é—(i_a)m (2.5)
The longitudinal dielectric constant determined in this
manner

e (o, k, x) =14 e, 1 oe; (2.6)

will be used in the subsequent sections to study the po-
tential plasma oscillations. In the present section we
shall subsequently write out, for a large number of
limiting cases, expressions for 6€g and 6¢€j, which
correspond to the contributions of the electrons and
ions in the dielectric constant of the plasma.

We neglect throughout the gyroscopic radius of the
electrons compared with the wavelength of the investi-
gated plasma oscillations. This causes the frequencies
of the investigated drift oscillations to be regarded as
lower than the gyroscopic frequency of the electrons,
w ¥ Qg. In addition, we shall neglect completely the
gravitational drift of the electrons, inasmuch as the
electron drift velocity ug is smaller by M/m times than
the ion drift velocity u; = —g/Qj. As a result, the num-
ber of possible limiting cases for the electron contri-
bution to the dielectric constant is relatively small.

If the longitudinal wavelength of the oscillations is
small compared with the electron mean free path, as
well as compared with the distance traversed by the
thermal electron during the period of the considered

oscillations (w, v¢ < k;VTe), then the collisions of the
electrons can be neglected, and we can use the results
of the theory of a collisionless plasma'!!:

kgl
P [ Y'Te 3
68:—“—#1 ————-———( — £
¢ kzr;‘se 1 l/ 2 | kzlvre 0Qe 3z

=)} @D

The dissipative contribution is due here to the Cerenkov
effect on the electrons.

To the contrary, if the longitudinal wavelength of the
oscillations greatly exceeds the mean free path of the
electrons, then the Cerenkov effect can be neglected,
for in this case the dissipative effects are due to elec-
tron collisions. I, in addition, the frequency of the con-
sidered oscillations greatly exceeds the collision fre-
quency, w -2 Vg 2> k,vTe, then it is easy to obtain a so-
lution of the kinetic equation for the electrons with the

aid of expansion in powers of ve/w. As a result we
t[35]

ge : 2
so.— 1 {kyvi}c aln N kvg, (1- ky7, oln NTE)
¢ K2 ®Q oz @2 ©Q, Jdz
S (2.8)
L veff kyvq, (1 k vn 3 N )
® w2 ©Q, Jz V7., ’
where
/ 2n etNL
Vet ='5_1/ 3/2 .

The quantity vegr characterizes the collisions of the
electrons with the ions, which for simplicity are as-
sumed to be singly charged: e; = —e.

Finally, under conditions when the mean free path is
smaller than either the longitudinal wavelength or the
distance traversed by the thermal electron during the
period of the oscillations (ve 2> w, kzvTe), the term of
largest order in the kinetic equation’(2.3) turns out to be
the collision integral. The solution of the kinetic equa-
tion for the electrons can then be obtained with the aid
of the Chapman-Enskog method (see Appendix I). This
yields
1 {k,,vzn dn N

A . k2v, kg, 3l NTHTH
be. = kzr%? ol az +i1.96 OV opf ( T e, oz )I
2.9)
when wvgep > kzzv?re (see also™®%1), and
2
1 . OVeff kyvg, dInNTS
6sg=@{1+1.1.44 ey (1—2 } (2.10)

We now proceed to consider the ionic contribution to
the dielectric constant. Allowance for the gravitational
ion drift leads to the appearance in the kinetic equation
for the ions of a Doppler frequency shift w’ = w — kyu;.
With the aid of a simple method of successive approxi-
mations we can readily obtain the solution of the kinetic
equation corresponding to the limit w’ — sQ; 2> vy,
where s =0, 1, 2, ..., For the ionic contribution to the
dielectric constant we obtain in this limit

2
1 f [y kyvn dln N aTr; @
Be = k‘lri‘)7i 11 Z @' —sQ; (1 - o' [ oz + 8. 6T )

s

X Ay (R 0h) o (L) |+ eis+ S, (2.11)
where
A, (@)= e, (2),
and x
J () =ze—x22 S dret?/?
(see'®®! concerning J,(x)). The first term corresponds

here to the one obtained in the theory of collisionless
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plasma'’!. The two others are due to ion-ion and ion-
electron collisions. These terms are insignificant if
w’ —88; K k,vp;. In the opposite case (v’ — s

2> kzvTi) we readily obtain simple expressions for 6 €
for both long waves k .LPi <1

4
dovu Vmi il +7 (_Fhoamy
Ty o 0z

:292
24"_4+E§_"_’il~_£ﬁ M 7, 2.12)
@ A Q[‘ ©'Q; dz ’ ( :

8ey; =

L A

and short waves k) p; > 1 (see Appendix II and also®®):
s Ve’ 3(m+1) k_l_pi
Beii =1 2 ©—2 V=

+ (1= ]

where vj; is the frequency of the ion-ion collisions:

[1_ ky"%'i aln N

kz,%i o’Q; oz

(2.13)

et

ve=3V 5 S
In obtaining formula (2.12) we also assumed that w’
< Q;, since it is only in this cage that long-wave drift
oscillations in the plasma are possible.

Ion-electron collisions are significant only in the
long-wave region k| pj < 1 and under the condition
Ve 22 w, kzvTe and w’ < Q4. Then

22
kzv7e ( _ kyh 0InNTe)
o,rzkz,%h_ ©0Q, z ’

Seje = (2.14)

In the formulas obtained above, the ion collisions
were assumed to be relatively rare, as is characteristic
of the kinetic (but not hydrodynamic) theory of rarefied
gases. As already noted above, the solution of the kinetic
equation is obtained in this case by the perturbation-
theory method. A real example of the expansion, as can
be seen from formulas (2.12) and (2.13), is v;;K] p}/w’ or

191/ (' — S.Qi). However, there is still one more
case which calls for the use of the kinetic theory, in
which this parameter is not small, namely:

vikipf (0" —sQi), kavr,

where s = 0, 1, 2, ... This case is realized for short
wavelengths (k; p; > 1) when®®? (see Appendix II)

(t—csmw)]}
(2.15)

where Co = 0.914 and C; = 0.225. In this region, the
contribution of ion-electron collisions can be neglected.
Formulas (2.7)—(2.15) encompass all the limiting
cases of the kinetic theory of drift oscillations of an
inhomogeneous low-pressure plasma. Remaining outside
the slope of these formulas are only the hydrodynamic
oscillations satisfying the conditions k, p; <1, 8,4
> vy 2 w, kyzvyq for both electrons and ions (i.e.,
a =e, i). As already noted above, the hydrodynamic
drift oscillations of an inhomogeneous plasma were in-
vestigated in"%311,

1 { L e ZCOI:__kuv%i aln N

S, =t {1 4 Lo 2 ,
t kzr%i V.'ik:ip? 3n w'Q; oz

3. SPECTRA OF LONG-WAVE DRIFT-DISSIPATIVE
OSCILLATIONS OF A WEAKLY-INHOMOGENEOUS
PLASMA

According to the method of geometrical optics, to
determine the potential-field oscillation spectrum in an
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inhomogeneous plasma it is necessary to use the eikonal
equation

e(w, k, z)=0. (3.1)

Substituting in this equation the previously obtained ex-
pressions for the longitudinal dielectric constant, we de-
termine ky (w, x)—the component of the wave vector

k (w, x)—as a complex function of the coordinates and

of the complex frequency w. Finally, the quasiclassical
quantization rules®*]

Ty

S « (@, ) dz=nn 3.2)
*u

(where n is an integer much larger than unity) deter-

mine the spectrum of the plasma oscillations and, in

particular, resolve the question of plasma instability.

In formula (3.2), the integration is carried out between

the complex turning points* x; and x,, in which ky (w, x)

= 0, or else between the turning point and the boundary

of the plasma, on which nondissipative boundary condi-

tions can be specified. In the case of weakly damped

(or growing) oscillations, this region is called the trans-

parency region of the plasma.

Among the possible oscillations described by
geometrical optics, there may be such for which, owing
to the smooth dependence of the dielectric constant on
the coordinates, the correct order of magnitude of the
frequencies and the correct information on the plasma
stability are obtained from the so-called local spec-
tra'®, When the local spectrat are obtained with the
aid of the eikonal equation (3.1), the frequency is deter-
mined as a complex function of the coordinates and of
the real components of the wave vector. Recalling these
general premises of the geometrical optics method, we
proceed now to study the oscillation spectra of weakly
inhomogeneous plasma.

In this section we consider long-wave drift-dissipa-
tive oscillations of a plasma, for whichk;p; < 1 and
consequently, o’ < ;.

a) In the frequency region |w + ive| K kzvTe,

w’ 2 vy, kyvpi (3.1), the substitution of expressions
(2.7), (2.11) and (2.12) leads to the following spectra of
the long wave drift-dissipative oscillations:

Kl om N

~—
o0 & Q; dr '

2.2
kg 14InT, ¢

912 T 2dmlmN

T; dln NT;
(1+T dinN )

frere,
L ]/2 [k, |vn{
L
T 3 01nTi)v
iy

gt ok Lo °
- 10 ko (1+ 7, 28 9N
kZZQi

dlnN
ky oz

Wy —

2 dlnN zoInN 5 w?
v (3.4)

(3.5)

_ g_Lelmre g N\_ 8  kvp
2=y 7 |k;|m( ) 5 Vi

0l = — k22 oIn7T;
W3 = VT 7 oA

ky”n alnT;

S 2t
0y =—kw Qo

(3.6)

* According to Dnestrovskif and Kostomarov [#3] a complex of kind

II should take place here. This means that two unconnected regions,
bounded by the lines Im ky(w, x) = 0 and containing the respectively
remote points of the real axis x = +o0 and x = —o0 emerge from each of
the two turning points.

T Turning points may be real points of “localization” of oscillations.
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which appear under a variety of conditions. The last
branch, first discovered in**! and called the drift-
temperature branch, corresponds to hydrodynamically
unstable oscillations in the frequency region

kyw? 9N
1<<0°"/ géis ax

and is possible only if

T; dInT;
€7, 3N

T; 4InT;
T, aInN > 1.

The third branch'**!, also corresponding to hydro-
dynamically unstable oscillations of an inhomogeneous
plasma, exists in the region of lower frequencies, when

kol gl N
Q; oz’

o3 &

It is also possible only if

T;0IlnT;
TedInN > 1.

The second branch®’ corresponds to weakly growing
oscillations (v, < w;) and exists only in nonisothermal
plasma with T 2> Tj (since kyvpi K w2 K kyvg); we
see that in such oscillations the ion-ion collisions play
a stabilizing role, whereas the Cerenkov effect on the
electrons can lead to their buildup if 8InT;/81InN > 2,
The situation is reversed for the first oscillation branch
(when kiw] > kgﬂi), where the Cerenkov dissipation on
the electrons at large values of

2,2
alnT, 20 o FiVs ( LT 9l NT;
oln N >2|:krD¢‘ Qf 14 Te 0InN ):I

stabilizes the oscillations, and the ion-ion collisions can
lead to buildup of the oscillations if

olnT; _ 28 T,
R > (1) -

A characteristic influence is exerted by the curva-
ture of the force lines of the magnetic field on the os-
cillations in question. As can be readily seen from
(3.5) and (3.6), for the third and fourth branches of the
oscillations the curvature of the force lines of the mag-
netic field does not influence the spectrum at all, and
consequently it has no effect on the stability of the os-
cillations. For the first and second branches of the
oscillations, the curvature of the force lines of the mag-
netic field influences the stability, and in systems with
positive curvature (g 8 InN/8 x < 0) in the first branch
it leads to a buildup of the oscillations, while in systems
with negative curvature (minimum-B systems) it plays
a stabilizing role. From the expression for y, it is
seen that the influence of the curvature becomes ap-
preciable when

T; 2 2 R
7, = HL0i

B
P~

5
|

The curvature of the magnetic-field force lines has the
opposite effect on the second branch of the oscillations.
It should be noted that the influence of the curvature of
the force lines on the oscillations of the second branch
can become appreciable only under conditions when the
velocity of the gravitational drift of the ions is com-
parable with the velocity of the Larmor drift of the
electrons, i.e., when Tj/Te 2 R/Lo > 1. In this limit,
however, the introduction of an effective gravity field to
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take into account the curvature of the force lines of the
magnetic field, as already noted above, is incorrect; we
can speak rigorously only of a weak influence of the
curvature on the character of the plasma oscillations.
So far we have said nothing of the shear of the force
lines of the magnetic field, due to the small but strongly
inhomogeneous transverse component of the field Bgy(x)
< B,,. The shear of the force lines is accounted for by
making the simple substitution'*®! (see also!*®:%°)

iy B () = ky - k0 (2), (3.7)

where 0(x) = Boy/Boz. For concreteness we assume

that 8 = Sx, corresponding to a linear change of the
transverse component of the magnetic field with coor-
dinate®®, i.e. B,y = SxB,,, where x varies in the region
of localization of the oscillations and consequently as-
sumes values on the order of the dimension of the region
of localization*, while S characterizes the twisting of
the magnetic field force lines per unit length.

A nonzero shear of the force lines of the magnetic
field can lead to two effects. First, it can influence the
region of localization of the drift oscillations, which is
obviously, near the surface of the plasma (in the region
of its inhomogeneity). It is precisely with increasing 6,
according to (3.7), that the effective wave number k3
increases, and the condition for the existence of drift
oscillations may be violated. For oscillations consid-
ered above it is necessary to have wgr > kyvg, kzvTi;
w > k,vry (when w® < ki vy we have Debye screening

of the field and oscillations are impossible). Therefore,
such a violation occurs when!*?
_ "Te= Ty 1 3.8
0=3S8z > V oL ( )

H this inequality holds true in the entire inhomogeneity
region of a plasma, at values of x on the order of the
region of the localization of the oscillations, which ex-
ceeds the Larmor radius of the ions, (i.e., x ~ 1/k;

> pj), the branches of the drift-dissipative oscillations
considered above are impossible, in other words, the
oscillations are stabilized by the shear of the force
lines of the magnetic field.t Tt should be noted that in-
equality (3.8) is sufficient (and therefore too stringent),
but far from necessary for the stabilization of the con-
sidered drift oscillations. For individual concrete

* For a cylindrically inhomogeneous plasma 9 = rAr /81 (Boy/TB, )
where Az — dimension of the region of localization of the oscillations.
Consequently, in a cylindrically inhomogeneous plasma, S should be
taken to be the quantity

2 [ Bog
s=ra ()

=" \7h,,

(here S = 6Ar!). The minimum value of Ar (x in the plane case) is of
the order of the wavelength of the oscillations in question in the direction
of the inhomogeneity of the plasma, and the maximum value does not
exceed the dimensions of the inhomogeneity region.

T The smaller the dimension x for which the inequality (3.8) is
satisfied, the smaller the wavelength of the possible unstable oscillations
and consequently the less dangerous the instability is from the point of
view of magnetic containment of the plasma. This remark pertains to
all types of the unstable drift oscillations considered by us, stabilized
by the shear of the force lines of the magnetic field. The most danger-
ous of them, obviously, are the oscillations with greatest wavelength,

A "vLg, which are excited under conditions when an inequality of type
(3.8) is not satisfied for dimensions x > L,.
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branches of the oscillations, the necessary and suffi-
cient conditions of stabilization can be readily obtained
from the inequality k}¥vpy > w. These conditions differ
little from (3.8) and will therefore not be written out
here.

Second, the shear of the force lines of the magnetic
field can greatly influence the spectrum of the drift-
oscillation frequencies. In the presence of strongly in-
homogeneous shearing of the force lines of the magnetic
field, local expressions for the oscillation spectra, ob-
tained directly from the eikonal equations, may differ
qualitatively, as shown below, from those obtained with
the aid of the quantization rules.

For the oscillations considered above, in the fre-
quency region w 2 v, lw +ive| K kyvTe, taking into
account the shear of the force lines of the magnetic
field, the dispersion equation obtained from the eikonal
equation (3.1) and equation (3.2) is

§a { R T VT, )

_L-.T_"A‘_l Vii 1_"%011“\ wi" 2 91n T, 1/2~M
Wb A 0'Q; 6z B 0'Q oz =an,

1 1 _k e a
A2, oSt vre 0%,

where v (3.9)
2 1 . kv ol N
klo= — {—“’12,,) (1 T )
2 —1
0’11 g2 ( k3 an NT; ) _&( k2 aln NTi)
Ky S§ @'Q; oz t+ Qz 1_,‘,—@;-‘-‘0‘1—— .

(3.10)
In the derivation of these formulas we used the relation
(3.7) and made the substitution £ = x + k;/kyS. The
integration in the dispersion equation (3.9) is over the
transparency region of the plasma, in which —k% +k7,
> 0 (in the case under consideration, the dissipative
terms are small and we can speak of the transparency
region of the plasma). If there are no turning points in
the inhomogeneous plasma, then the limits of integra-
tion coincide with the surfaces of the inhomogeneous
plasma layer (in a homogeneous plasma, these oscilla-
tions do not exist and consequently, the surface of the
inhomogeneous layer is the turning point for them), or
else are determined from an inequality which is the in-
verse of (3.8) and which serves as the condition for the
existence of oscillations.*

Examining relation (3.9) in the limiting cases in
which the local spectra (3.3)—(3.5) were obtained, we
obtain analogous formulas, in which kyS&o should be
taken for ky, where £, is the point in the vicinity of the
surface of the plasma (it is determined by inequality
(3.8)). Thus, for these oscillations the conditions for
existence and the instability criteria of the plasma are

* We note that in a collisionless plasma this circumstance is auto-
matically taken into account in the dispersion equation

2 2
Py kyvyy
ded —k2— (1— - )J( ) 1
S I{ u [r'lm ®'Q; oz k;vT, +
— 2
1 %] kyvre @ N o’
VRN i]/_———{1—————l v_})+ (1—1 ( ))
[rlzjc(—r 2 lkllvie Wl 0z V. r%)l * k;VTi

1/2
Lt ky”%i{alnN‘ a0 (—u)__ S
K2l 0’8 9z az o7 N kdog o

dIn N | oT; o i

"oz ol

which includes the relation (3.9) and is generalized to the frequency re-
gion w < k¥vpy It is seen from this relation that in the limit ' <
k%vT; the oscillations are impossible, and Debye screening of the field
in the plasma takes place. This denotes in turn that there is a turning
point in the region w’' ~ k3vrj,
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correctly described qualitatively by the local spectra.
We note that this is the consequence of the fact that
such oscillations turn out to be surface oscillations,
locked-in between the turning point and the surface of
the inhomogeneous plasma layer.

The situation is different for the fourth branch of the
oscillations, described by formula (3.6). Relation (3.9)
for this branch of oscillations takes the form

‘ I»SZE?‘Z 1/2 i
Sd&l/ lpl{mam o? } T (3.11)

Q Iz

In the presence of shear of the force lines of the mag-
netic field, these oscillations turn out to be locked
inside the plasma between two turning points. Neglect-
ing the inhomogeneity of the ion temperature compared
with the inhomogeneity of the shear of the force lines of
the magnetic field, we obtain from (3.11)1*%

T, kyLTz alnT;
Q; oz

W= inQ; | k,S | pf o< (3.12)

The local spectrum of the osc111ations, determined by
formula (3.6) differs qualitatively from the spectrum
(3.12). This is precisely the manifestation of the afore-
mentioned strong influence of the shear of the force
lines of the magnetic field on the oscillation spectrum
of the inhomogeneous plasma.

With increasing shear of the force lines of the mag-
netic field as seen from (3.12), the growth increment of
the examined oscillations increases. However, it follows
from the condition w < wqy that when

(3.13)

Sty
no such oscillations are possible in the plasma or, in
other words, they are stabilized by the shear of the
force lines of the magnetic field. When x ~ pjvTg/T;
the inequality (3.13) corresponds to the condition (3.8).

It should be noted that the drift-dissipative oscilla-
tions with spectra (3.3)—(3.6) and (3.12), which we inves-
tigated above, can exist both in a collisionless plasma
and in a plasma with a rather high collision frequency.
In particular, they are possible under conditicns when
w < Wiz < ve. Then, however, it is necessary that the
wavelength of the oscillations along the magnetic field
be smaller than the mean free path of the electrons in
the plasma, i.e., kv e ~ Vg. As to the ion collisions,
they should be sufficiently rare, in order to satisfy the
condition wy, 2 w > v¥j ~ ik, pi.

We note also that the use of the model BGK integral
leads to the conclusion that ion-ion collisions have a
stabilizing influence on these oscillations'®*"*°:*®), Thig
conclusion, however, as shown above, is valid only in
the case of a homogeneous ion temperature. In addition,
since the particle collision frequencies are not strictly
defined in the BGK model integral, it follows that even
in those cases when its results are qualitatively correct,
they are quantitatively inaccurate.

b) We now consider long-wave oscillations in the
frequency region w -> ve, kzvTe (and consequently
w 2 v;). Using expressions (2.8), (2.11), and (2.12) we
get from the eikonal equation (3.1) in the frequency reg-
ion under consideration, under the condition w 2 wqy,,
the well known spectrum of the hydrodynamically unsta-
ble flute oscillations (k; ~ 0) in systems with positive
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curvature of the force lines of the containing magnetic
field "1 *;

kié’ aln N

. S 3.14
ot = K (14 viey) Oz ( )

As shown in®?, allowance for the finite ion Larmor
radius in the collisionless plasma stabilizes the flute
instability if

N
>4g01n .

n (3.15)

]t_LPz ( 611;;'\/7' )

In a plasma with collisions, when this condition is satis-
fied, the flute branch of the oscillations goes over into
the drift-dissipative branch with k, ~ 08%7:

4 kR ATy
T -+ U%/c2 Q o0z ?

[ —(a132) 3R] g L,

N klpl aln N
V= 40 1\1; Je? aln NT;

Consequently, when

dIn T v
(31 +3 )alnv<28?2"

the flute oscillations are unstable even when the Rosen-
bluth condition (3.15) is satisfied. Here, however, the
instability has a kinetic character and the buildup of the
oscillations is due to the ion-ion collisions. This con-
clusion also shows the incomplete nature of the theory
which uses a model BGK integral, and according to
which the ion collisions always play a stabilizing
role'7). We note that such an instability is possible in
systems with both positive and negative curvatures.

The oscillations considered above can be relatively
easily stabilized by the shear of the force lines of the
magnetic field. Indeed, if we recall that such oscillations
are possible only when w 2> kzvTe, and take into ac-
count the transformation (3.7), then the stabilization con-
ditions can be written in the form

61 N m L
1 R 8.17)
for flute oscillations w1th spectrum (3.17), and
(3.18)

T i
8=>5z> 1/ v T, 20
for drift-dissipative oscillations with spectrum (3.18).

In deriving condition (3.18) we also took into account the
inequality

satisfaction of which is necessary in order for the spec-
trum (3.16) to be valid. If these inequalities are not
violated at dimensions exceeding the region of localiza-

* The branches of oscillations with k, # 0, which arise as a result
of the presence of a gravity field, are frequently termed in the literature
“balloon” modes. The spectrum (3.14) is in force also for oscillations
with k, # 0, provided only

_£ m g dln N
Toxr

In particular, it follows from this that a system in which the section
with positive curvature of the magnetic force lines has a finite length
Ly such as the system considered here, the high frequency balloon in-
stability is possible, as was demonstrated in ['?], only under the con-
dition SMR
L>Lh) &I
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tion of the oscillations x 2 pi, then the oscillations con-
sidered above will be stabilized.

We shall now show that the stabilization condition
(3.17) remains in force also when the spectrum of the
oscillations is determined with the aid of the quantiza-
tion rules. Indeed, if we take into account the fact that
w 2 wqy, the quantization rule (3.2) leads to the follow-
ing dispersion equation:

dlnN M 1/2
- 2 2 £ oz 4‘752@9?
ol ]
where § = x + ky/kyS. Neglecting the inhomogeneity of
the density compared with the inhomogeneity of the
shear of the force lines of the magnetic field, we get
from relation (3.19)

g(? InN
2 _ dx
o (1 IR )+2n

We see that the considered flute oscillations become
stabilized by the shear force lines of the magnetic field
under the condition

S>‘/M ng

When x ~ 1/ky pj this condition coincides with (3.17).

As already noted above, for the local spectrum (3.16)
to be valid, it is necessary to satisfy, in addition to con-
dition (3.15), the inequality

(3.19)

=nn,

Mm@ ks

m e? 102 /e

—0. (3.20)

61nN’ yPi mLo
Ly M R -

(3.21)
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In the opposite limit, the local spectrum of the drift-
dissipative oscillations is determined by the expressions
(when c? > vj)

alnT3/?

ky”sz dInNT, _
V= Vell ST,

byt SUNT, (3.22)

Unlike the oscillations with the spectrum (3.16), these
oscillations are unstable in the presence of a tempera-
ture gradient, namely when 81n Te/81In N > 0 or

81n Te/81n N< —1, and the buildup of the oscillations
is then due to the collisions between the electrons and
the ions. In the presence of shear of the magnetic-field
force lines, these oscillations become relatively easily
stabilized as a result of violation of the inequality

w ~ kyvre. To stabilize the oscillations it is necessary
that in the region of the plasma inhomogeneity, at dimen-
sions x ~ 1/k; 2 pi, the following condition remains un-
violated:

"LTePA

T;

f=8zr> (3.23)
Finally, in the region of frequencies w < wgyyr, when
the inequality (3.15) is satisfied, there exist also two
branches of aperiodically (hydrodynamically) unstable
drift oscillations with local spectra*!'® (at ¢® 2> vj)

koM,
2 __ 2 Iln NT,
or= k.ZL m T; ™ 8InNT; (3.24)
%4 ok
03— 2z M T, : y”@@lnN (3_25)
kJ_ m T o8} dr

The first of these branches is possible in a plasma with

* When T = Tj the spectrum (3.24) goes over into the spectrum

obtained earlier in [*].
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an arbitrary ratio To/Ty, and the second only in a non-
isothermal plasma, in which Te 2> Tj. The obtained
spectra do not depend at all on the dissipative proces-
ses in the plasma, and it is therefore perfectly natural
that they are correctly described by any theory that
does not take particle collisions into account. These
oscillations can be easily stabilized by the shear of the
magnetic force lines; to this end it is sufficient to
satisfy one of the conditions (3.18) or (3.23) in the en-
tire region of the plasma inhomogeneity.

We now write out the dispersion equation obtained
with the aid of the quantization rule, for oscillations
described by local spectra (3.16), (3.22), (3.24), and
(3.25). Confining ourselves for simplicity to considera-
tion of only the spectrum of frequencies w, we neglect
in the eikonal equation (3.1) the small dissipative
terms, and in order to take into account the shear of
the magnetic-field force lines we make the substitution
£ =x + k;/kyS. As a result we get from the eikonal
equation (3 1{ using the quantization rule (3.2), the
sought-for dispersion equation

2 ky”sz dInNT, 1z
kﬁs“’ﬁz OLe (1+ @ Q; Az )
2 2
" (e

Sd& .y —mn. (3.26)

Allowance for the dissipative terms leads to an oscilla-
tion growth increment which goes over, within the ap-
propriate limits, into expressions (3.16) and (3.22),
which are averaged over the region of the transparency
of the plasma (in the limit corresponding to the spectra
(3.24) and (3.25), the oscillations are aperiodically un-
stable and there is no need to take into account the
dissipative terms). The conditions for the buildup of
the oscillations and their stabilization by the shear of
the magnetic force lines turns out in this case to be the
same as for the corresponding local oscillations.

The unstable drift oscillations considered in this
section, with w 2> ve, kzvTe, With the exception of the
hydrodynamic flute oscillations with spectrum (3.14),
are possible only when the drift frequencies of the par-
ticles are larger than the collision frequencies wqp
2 ve. In addition, the condition w > k;vTe means that
they can be excited only in sufficiently long installa-
tions, in which the longitudinal plasma dimension is
larger than the transverse one by at least v M/m times,
and can be easily stabilized by a weak shear of the
force lines of the magnetic field. However, in those
cases when such instabilities are possible, they are
more dangerous than those considered in the preceding
section at w S wqr < kzvTe, since the density distur-
bances in them encompass, generally speaking, a large
region of plasma in the longitudinal direction. As to the
flute instability with spectrum (3.14), the increment of
its development is larger than the drift frequencies,
and the instability can therefore develop also when
war K ve. Moreover, it will be shown below that hydro-
dynamic flute instability is developed in systems with
positive curvature of the magnetic-field force lines not
only when w > Ve, but also when w < ve.

¢) We now proceed to investigate long-wave oscilla-
tions in the frequency region ve 2 w, kzvTe; w 2> v,
kzvTi. The drift oscillations in this region of frequen-
cies are of interest because they can be excited also in
a relatively dense and low-temperature plasma, in
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which wgy < Ve. Substituting expressions (2.9) (or
else (2.10), (2.11), and (2.12)) in the eikonal equation
(3.1), we see that the dissipative ionic term in this reg-
ion of frequencies is always small. On the other hand,
the electronic dissipative term in the limit wve >

K2 v (When the diffusion and thermal conductivity of
the electrons can be neglected in the oscillation proc-
ess) is small only under the condition w 2> wg, where

2 2
kz ﬁ Qi

K2 m Ve

Under these conditions, the eikonal equation (3.1) leads
to the well known flute instability (at k, = 0) with spec-
trum (3.14).* Just as in the case considered above

(w 22 veff), when inequality (3.15) is satisfied, the flute
branch of the oscillations goes over into the drift-dissi-
pative branch with k, = 0, the spectrum of which is de-
termined by expressions (3.16). In the considered case,
however, the conditions of stabilization of such oscilla-
tions by the shear of the magnetic field lines assume a
different form. Namely, the flute oscillations with
spectrum (3.14) are stabilized under the condition

W=

[ m Veff [
b—Sr> 1V 2 o
V < vore

whereas for the stabilization of the drift-dissipative os-
cillations with spectrum (3.16) it is necessary to have

(3.27)

(3.28)

If these inequalities are not violated for dimensions
X 2 Ppi, then the indicated oscillations are impossible
in a plasma, or in other words, the corresponding
plasma instabilities become stabilized.

When inequality (3.28) is satisfied, the condition
w 7 wg is violated. In this case the dissipative terms
in the eikonal equation (3.1), due to the electron colli-
sions, become comparable with the nondissipative real
terms. As a result, in the region of frequencies that are
larger than the drift frequencies of the particles, there
appears a dissipative oscillation branch, determined by
the finite conductivity of the plasmat™?!, The eikonal
equation (3.1) for such oscillations, in the presence of
weak shear of the magnetic-field force lines, is written
in the form+t

dln N
ar

o, (3.29)

2
(1 +—”;;—) o Ker - iokih - kg
where n = ¢®/0 and ¢ = 1.96 w}o/4mvegs is the conduc-
tivity of the plasma. Making the substitution £ = x
+ kz/kyS and using the quantization rule (3.2}, we obtain
the dispersion equation of the oscillations

2
2 4n ky M _dlnN

S 8 { b e (&%
* This spectrum is retained also when k, # 0, but

aln N
dx

1/2
— imEZSzvi) } =an. (3.30)
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From this we get, in particular, that in systems with length

M @ Ry \'*
Ly <lLo{- —5
m Vopd VT

such an instability, which can also be called balloon instability, is
impossible.

+ Such an equation is obtained also in the model of the single-fluid
hydrodynamics [?°] under the condition ¢ > v5? and k2 > k,*?.
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Neglecting the inhomogeneity of the plasma density
compared with the inhomogeneity of the shear of the
magnetic field force lines in the transparency region,
we get therefore

galnN Ty

5 avs

1 P )*“2”\/ it
02(1-4 v5/c?) —ion (1 +vg /c?)

In the case of a weak shear of the magnetic field force
lines, S ~— 0, when the second term in the left side of
(3.31) can be neglected, the equation describes ordinary
flute oscillations (see (3.14)). In the case of the opposite
limit (when w? < g[8 In N/8 x]) we get the spectrum of
the unstable dissipative branch of the oscillations 72"

(3.31)

. nkye® a1n ¥y2) '3

Ve { 4y ngSzvi (1+vi/o2) ( dz ) } ) (3'32)

One should not think that the considered dissipative
branch of the oscillations exists only in the case of a
sufficiently large shear of the magnetic field force
lines. With decreasing shear, this instability still re-
mains. In this case, however, its increment changes.
The point is that the region of localization of the oscilla-
tions with spectrum (3.2) increases like S™*/3 with de-
creasing shear of the force lines, and can become larger
than the dimensions of the inhomogeneous plasma layer.
In this case, the region of transparency of the plasma is
determined by the surfaces of this layer and the plasma
instability increment can be obtained directly from the
eikonal equation (3.29) in the form of the local spectrum.

We have 2! *
k2
- Ny 8 0N
O=—tzz K2 v% 0z (3.33)

From this we see, incidentally, that the considered
dissipative instability can develop only in systems with
positive curvature of the force lines of the magnetic
field; it does not occur in minimum-B systems.

The local spectrum (3.33) differs qualitatively from
the oscillation spectrum (3.32). In this example we see
the already mentioned qualitative influence of the shear
of the magnetic field force lines on the plasma oscilla-
tion spectrum.

Finally, we note that at sufficiently large shear, the
considered dissipative plasma instability due to the
narrowing of the region of localization of the unstable
oscillations to dimensions on the order of the Larmor
radius of the ions, can be stabilized. To this end it is
necessary to have

S m o o/ Le
0=3S8z> ‘/’ 1""—[2—; ‘/%

The dissipative branch of the oscillations, just as the
flute branch, is due to the curvature of the force lines
of the containing magnetic field and disappears when the
Rosenbluth conditions (3.15) are satisfied. More accur-
ately speaking, in this case the frequency of the flute
oscillations (3.14) becomes smaller than that of the
drift oscillations, and the formulas obtained above for
the spectra of the flute and dissipative instabilities of
the plasma are no longer applicable. We have seen
above that the flute branch of the oscillations (v > wg)

(3.34)

* We note that the dissipative branches of the oscillations (3.32)
and (3.33) are frequently also called dissipative balloon modes.
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goes over into the drift branch with spectrum (3.16)
when condition (3.15) is satisfied.

Let us trace now the transition of the dissipative
branch (w < wg) into the drift-dissipative branch with
increasing transverse wave number k;, when the in-
equality (3.15) is satisfied. From the eikonal equation
(3.1) in the frequency region w S wg, w S wqz and w?
<K (k3 /k%)owqy We obtain the following three local spec-

trgl16:19;361 .
_ kplolNry?
o= - Q; ox ’

e YA T alnAT Kol (14 Lo 20T
VT T 960, @ T, gmarha |k g T T e AT )
which is valid when wi < w3, (3.39)

. .7, dlnNTLT
0)2:l~1.9()u)sT—§TN‘TL_ s (3.36)
which is valid when w; ~ wg < wdr, and finally
03 i m T; v aln NT; (337)
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which is valid when
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The oscillations in the second and third branches are
practically always unstable, whereas those in the first
branch are unstable only if wi ~ wjy =2 (& /k))0].

From the condition for the applicability of formula
(3.36) it follows that the latter inequality should be
satisfied also for the second branch of the oscillations.
On the other hand, the third unstable branch of the os-
cillations is valid when the inverse inequality is satis-
fied. However, it follows from the condition w > v
that such oscillations are possible only in a non-iso-
thermal plasma with hot ions, when

It should be noted that in the limit when w?
> (k5/k})Q3 (which is equivalent to neglecting the
longitudinal motion of the ions) the spectra of the drift-
dissipative oscillations (3.35) and (3.36) coincide with
those obtained in"****? under the condition wre > k3 vire,
i.e., in the case of weak electronic thermal conductiv-
ity*. As to the spectrum (3.37), it is due entirely to
longitudinal motion of the ions and cannot be obtained
within the framework of the approximate method pro-
posed in these papers.

In the presence of shear, the oscillations under con-
sideration can be fully stabilized under conditions when
the inequality (3.8) is satisfied in the region of plasma
inhomogeneity, for dimensions on the order of the os-
cillation-localization length, which can be compared
with the gyroscopic radius of the ions.

Finally, we write out the ‘‘quantization rule’’ for
oscillations corresponding to the local spectra (3.35)—
(3.37). By determining from the eikonal equation (3.1)
the complex function ky(w, x) and substituting in (3.2),

we get
2 c2 ky"%i IInNT; -t
Sdg{_ky_[i’*ﬁu_ oYy oz )]

*We note that these papers contain annoying errors, and only correc-
tion of these errors can yield formulas (3.35) and (3.36).
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From this we can easily show that the spectrum of the
frequencies, the buildup conditions, and the conditions
for stabilization of the oscillations under consideration
by the shear of the magnetic field force lines are des-
cribed correctly by the local formulas (3.35)—(3.37).

d) In conclusion, let us consider long-wave drift os-
cillations of an inhomogeneous plasma in the frequency
region vy 2 w, kyvTe; w 2 vi, kyvri, and under the
condition wvy <K k5v7e. The electronic contribution to
the dielectric constant of the plasma is determined in
this case by (2.10), which is similar to (2.7), although it
differs fundamentally from it. The point is that in (2.7)
the dissipative term is due to collisionless Cerenkov
absorption of the waves by the plasma electrons, where-
as in (2.10) the dissipative term is connected with par-
ticle collisions, namely with the diffusion and thermal
conductivity of the electrons. As a result, the spectra of
the frequencies of the drift oscillations of the plasma in
the region under consideration coincide with the spectra
(3.3)—(3.6). Only the expressions for the growth incre-
ments y; and y,, which are determined by the dissipa-
tive processes in the plasma!*'!, are changed:

wiveff R Kol T, NT; @ n 7956
e
kivke OF T, olnN dIn N w2 dln ¥
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This leads to a change in the role of the dissipation on
the electrons in the buildup of the oscillations. We see
that for the first branch of the oscillations, the electron
collisions exert an unstabilizing effect when

dInT, P kiuﬁ( ,ﬁﬂlnNTi):I
011\N<1'8 IilL Ther [*H 1ﬁ‘—Te IInN !

and for the second when 81n Te/8In N > 1.8, In all
other respects, the entire foregoing analysis, concern-
ing the influence of the curvature of the force lines of
the containing field on the plasma oscillation spectrum
(see the analysis of formulas (3.3)—(3.6) and
(3.9)—(3.12)) remains in force also in the region under
consideration.

In spite of the analogy with the spectra (3.3)—(3.6),
oscillations in the region under consideration are more
dangerous (even for a thermonuclear plasma). Indeed,
from the condition veff -2 kzvTe it follows that the
longitudinal wavelength of the oscillations under con-
sideration is larger than the electron mean free path,
whereas for oscillations investigated in Sec. a) the in-
verse inequality should be satisfied (since for these os-
cillations k,;vme 22> Vegf). This means in turn that the
oscillations under consideration can lead to larger-
scale (and consequently more dangerous) plasma insta-
bilities. It should be noted, however, that such oscilla-
tions are easier to stabilize by the shear of the magnetic
field, namely, for their stabilization it is sufficient to
satisfy the inequality

[ Lo 3\

0 =>min (H y U—Teveff} s

(3.40)
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which, generally speaking, is weaker than the inequality
(3.8).

Finally, we note that the spectra of the considered
oscillations cannot be obtained from the general form-
ulas given in"*®!. It is easy to show that in the limit
when wresr K K5 vfe these formulas yield incorrect re-
sults. This circumstance indicates that the region of
applicability of the quasihydrodynamic method used
in'**! ig limited, and is the consequence of the already
noted neglect of the longitudinal ion motion.

4. SHORT-WAVE LOW-FREQUENCY DRIFT-DISSIPA-
TIVE PLASMA OSCILLATIONS

In this section we shall deal with low-frequency
(w K Q) drift oscillations with a transverse wavelength
much lower than the gyroscopic radius of the ions (but
at the same time larger than the electron gyroscopic
radius). It is precisely in this sense that we shall use
the term ‘‘short-wave oscillations.’”’ It appears at first
glance that short-wave drift instabilities are not so
dangerous for magnetic containment of the plasma as
long-wave oscillations, since they lead only to very
small-scale perturbations of the density, and not to a
disintegration of the plasma as a whole. It must be
borne in mind, however, that such oscillations can be
localized in very narrow regions near the surface of the
plasma, with dimensions smaller than the gyroscopic
radius of the ions, and this is precisely why it is prac-
tically impossible to stabilize them by the shear of the
force lines of the magnetic field. In this sense, short-
wave drift oscillations are quite dangerous. We note
that the theory of such oscillations is always kinetic.
Finally, since the characteristic dimension of the in-
homogeneity of the plasma greatly exceeds the gyro-
scopic radius of the ions in the experimental situation
considered by us, the conditions under which the excita-
tion of the short-wave oscillations takes place can be
determined by merely analyzing the local spectra. Just
as in the preceding section, the analysis of the short-
wave drift oscillations will be carried out for different
regions of frequencies and longitudinal waves.

a) In the region of frequencies w, v K kzvTe, the
short-wave oscillations (pe K 1/k; < pj) are possible
only if w 2 viikipi, and their frequencies are much
lower than the drift frequencies of the particles. Taking
into account the smallness of the dissipative terms
compared with the nondissipative ones, we obtain from
the eikonal equation (3.1) in the frequency region under
consideration the following spectrum of the short-wave
plasma oscillations:

o= — Te kyori 8 n N
Te+T: (4+k¥be) Vank, 02 VT’
2 1203
y= Te . i YT (iln N_) (i In N_) %
Mo+, (L+k2rba)* 21kz1k e o= YT,/ Vo= =T,

g 2 2 3(ni-1 6]nNTlT0'69
X(1—— A )—'ViikJ_pi 41/5)—61“”770_5 .
Yo YT, (4.1)
The expression obtained for the increment shows that
the Cerenkov effect on the electrons, just as in a
collisionless plasma (see™’®!) leads practically always
to a buildup of the oscillations; on the other hand, the
ion-ion collisions exert a stabilizing influence, with the
exception of the region where 2 > 81n Tj/8In N > 1.45,
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in which, to the contrary, they lead to a buildup of os-
cillations and by the same token they broaden the reg-
ions of plasma instability®®’. The effect of the curva-
ture of the force lines of the containing magnetic field
is peculiar: when 81n Tj/21n N < 2, in systems with
positive curvature, it plays an unstabilizing role, and
when &1n T;/81n N > 2 it stabilizes the oscillations; in
systems with negative curvature (minimum-B systems),
the curvature of the force lines exerts an opposite
effect. It should be noted that the influence of the curva-
ture of the force lines can become considerable only in
a plasma with hot ions, when T;i/Te¢ 2 R/Lo > 1. But
in this case, as already noted above, the introduction of
the effective gravity field is no longer valid and we can
speak only of a weak influence of the curvature of the
force lines on the character of the plasma oscillations.

The local spectrum (4.1) is retained also in the pres-
ence of shear of the magnetic field. The shear of the
field lines only narrows down the region of localization
of the oscillations, and under the condition

1 0i
Vﬁk_]_Pi To
it stabilizes the oscillations completely. Such a stabil-
ization, however, is quite difficult under real conditions,
since the region of localization of the oscillations can
be of the order of or even smaller than the gyroscopic
radius of the ions* and it is necessary that the inequality
(4.2) not be violated for such dimensions.

b) The spectrum (4.1), with a slight modification, re-
mains valid also in the region ve 2 w, k;vTe under the
condition w, ve <K kivie. The change concerns the
growth increment y of the oscillations, and is due to
the change of the dissipative contribution to 6 €g, which
in the region under consideration is determined by the
expression (2.10) in lieu of (2.7). Taking this circum-
stance into account, we get™! (see also!*)

0= Sz > (4.2)

V2n A hkiohiTivese 1 (alnNT;O'“)(olnNT;O-f”)

) — - —
¥ (T, +T; (1 - k2rb)|2kive k| Qi az ox

, 0ln NT0B 3 (-1 . o dInNT7069
< (1—ght——) - 2(1/2' vikiot P NTT00
(4.3)

The analysis presented above for the conditions of the
buildup of the oscillations and stabilization of the shear
of the force lines of the magnetic field (4.2) remains in
this case unchanged.

¢) Let us consider now short-wave oscillations in
the frequency region w -2 vg, k;vTe. By substituting
(2.8), (2.11), and (2.13) (or (2.15)) in the eikonal equa-
tion (3.1) we get the following relations for the local
spectra of such oscillations'®®?;

1 k% 81n N
w:m Q; dr

*Actually, for example, for wavelengths much larger than the Debye
radius of electrons, the quantization rule corresponding to the oscilla-
tion frequency (4.1) is given by.

4 Te vri 0 N 2
§as {1 (T,,, Ty Vane 0z 1“1/77) }
It is obvious that when n v kyp; > 1, the region of localization of the
oscillations turns out to be of the order of the gyroscopic radius of the
ions. Oscillations are also possible with a larger region of localization.
For them it is easier to determine the conditions under which the shear
of the force lines may turn out to be appreciable.

Y2 an
[ kyl "

669
2 2 —0,5
1= —ver 7o (o T T D) e (4.9)
where
{ ik py 2GR [OIn Ty 1.45k2rbs | 1.45¢ (1 4-k%bi)
, 32V x [alnzv TR T, TN ]
if o>>vikipl,
n=1 _20,Cyet [0InT;  A4Skirhi | 4455 (kD) (4.5a)
l 3nvik? p} [6 In ¥ 1 ikerh; UzTialanIN ]
k if o < vikipl

(4.5b)
It is seen from these formulas that the collisions of the
electrons with the ions, under the condition

ot (142)

contribute to the buildup of the oscillations; on the other
hand, collisions of ions with ions can lead to buildup
only if
9InT;
dIn N

< 4.45k% ;.

The influence of the curvature of the force lines of the
magnetic field on the considered oscillations is negligi-
bly small practically always, with the exception of the
case of a nonisothermal plasma, in which

k2rb;
(- kb2

~
v

L. R
Ly

4

i

In systems with positive curvature, the curvature plays
an unstabilizing role, whereas in systems with minimum
B it can lead to stabilization of the unstable oscillations
(provided only k’rh; < 1).

Finally, we note that the short-wave oscillations
under consideration are stabilized by relatively small
shear, determined by the inequality (3.18). The real
difficulty in stabilizing the instability, however, just as
above, lies in the fact that this inequality must not be
violated when the dimensions are on the order of the
region of the oscillation localization, which can be com-
parable with the gyroscopic radius of the ions or even
smaller.

d) In conclusion, let us consider short-wave oscilla-
tions in the frequency region vg -2 kyzvTe under the con-
dition wvg > kivie. Substituting expressions (2.9),
(2.11), and (2.13) (or (2.15)) in the eikonal equation (3.1),
we can show that the frequency spectrum of such os-
cillations coincides with the spectrum (4.4), and the
growth increment is determined by the formula®®

1,71
T, kwke 1 T, OInT, "y y
T, veff {14“—k2ri§i+Ti(1+ aIn N )}”\'h (4.6)

where v is given by formulas (4.5). The spectrum (4.6)
is a continuation of the spectrum (4.4) from the fre-
quency region w ~ Vegf into the frequency region

w < vgss. This leads to a modification of the condition
for the stabilization of the oscillations by the shear of
the magnetic field, which is written for the oscillations
in question in the form

v=—1.96

/Veff

0=38r > -
e

(4.7)

and is due to the violation of the inequality wveff > kivie
in systems with sufficiently large shear. We note that
satisfaction of this condition, generally speaking, is
necessary only for oscillations in the frequency region
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w K Vi k lp1 The oscillations in the frequency region
w2 Vnk"’lp can be stabilized by a shear determined by
the inequality (3.8). Under real conditions, however,
this inequality is frequently more difficult to satisfy
than inequality (4.7). The role of the ion collisions for
the oscillations in question is the same as for the os-
cillations described by formulas (4.4); on the other
hand, the electron collisions always play a stabilizing
role.

The entire analysis performed in the present section
of the short-wave drift-dissipative oscillations of in-
homogeneous plasma shows that the conditions of their
instability are significantly determined by the character
of the inhomogeneity of the plasma-particle tempera-
tures (particularly the ion temperatures). This is pre-
cisely why such oscillations cannot be described by the
BGK model collision integral, since it does not make it
possible to take into account the inhomogeneity of the
plasma temperature. The analysis of the low-frequency
short-wave oscillations performed in®*?? with the aid of
such a model collision integral is, unfortunately, inac-
curate both qualitatively and quantitatively.

5. DRIFT-CYCLOTRON OSCILLATIONS

We now proceed to investigate drift oscillations in
the region of frequencies of ion cyclotron resonance
w ~ wdr 2 5. We note immediately that an analysis
of the ion-cyclotron oscillations, as well as of the short-
wave drift oscillations, with the aid of the BGK model
collision integral, as was performed in®*, leads to
qualitatively incorrect conclusions.

We shall therefore not compare the results obtained
below with the results of ®*'. Under conditions when the
characteristic dimension of the plasma inhomogeneity
is much larger than the gyroscopic radius of the ions,
the drift-cyclotron oscillations are short-wave
(k;pj 2> 1). In the investigation of such oscillations,
as already noted above, we can confine ourselves to an
analysis of the local spectra. In our case, such an ap-
proximation describes sufficiently well the oscillation
spectra of the inhomogeneous plasma not only qualita-
tively but also quantitatively.

Bearing in mind a low-pressure plasma in which

8a Po

p="%"< 1,
we confine ourselves here to an analysis of longitudinal
oscillations only*.

a) Under conditions when |w +ive| K kzvTe (i.€.,
when the longitudinal wavelength of the oscillations is
small both compared with the electron mean free path
and compared with the distance traversed by the elec-
tron during the field oscillation period), the drift-cyclo-
tron oscillations are possible only in the frequency reg-
ion lw — 8Qj| > vyiki p}, kvTi, i.e., far from the line
of resonant cyclotron absorption of the waves in the
plasma. Neglecting the gravitational drift of the ions
(it can be shown that the effects of curvature of the
magnetic force lines in the region of cyclotron frequen-
cies are always negligibly small) and taking into account

* Arbitrary nonpotential drift-cyclotron oscillations of an inhomo-
geneous plasma, with allowance for Coulomb particle collisions, were
investigated in {37].
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the smallness of the dissipative terms, we get from the
eikonal equation (3.1) the following local spectrum of the
drift-cyclotron plasma oscillations (A = w — s i) in the
frequency region under consideration

T, 1 Eydi o N
ReA= — — (s e n———_)
Te+- Ty (1-+ kb Vank p V0 & 82 YT
7; Vzmgp, /T Rea? (5.1)
=ImA=— gt {]
T, o y”n 0 |kz|vTe

8§82 — ——
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v? . - k u'-‘l-(?lnl\/Ti_ﬂ’69
X (SQI+ 5 001 __VNT_e)+Tiv”k'Lpi38(tLl/’—;;) (sgz‘ny‘T)} .
It is seen from these formulas that when w ~ sQ;
2 wqyr the oscillations are stable (y < 0); instability
(y > 0) is possible only if wqy 2 s9j. In the limit wdr
2 sQj, the spectrum (5.1) coincides with that obtained
in®®) "and when vj; — 0 it goes over into the results
of **1, It should be noted that the Cerenkov effect on the
electrons (the first term in the curly brackets of the ex-
pression for y), under conditions when the considered
drift-cyclotron instability can develop in the plasma,
always plays an unstabilizing role, whereas the ion-ion
collisions in a plasma with uniform particle temperature
stabilizes the instability. On the other hand, if the tem-
perature of the particles (ions) is inhomogeneous, then
the ion collisions, to the contrary, may even be the cause
of the instability. Thus, it follows from (5.1) that when
wqr 2 sQj the collisions of the ions with the ions lead
to a buildup of oscillations if

dInT;

dln N ; > 1.45.

2>

This instability is stabilized by the shear of the mag-
netic field, determined by the condition (4.2); stabiliza-
tion is due in this case to the violation of the inequality
Re A 2> kyvpj. We note that for real stabilization of
the instability it is necessary to have inequality (4.2)
not violated over dimensions on the order of the gyro-
scopic radius of the ions, which determines in order of
magnitude the region of localization of the oscillations.

b) Let us consider now drift-cyclotron oscillations
in the frequency region |w +ivgl 22> kyvre. We note
first that in the region inside the resonant absorption
line, when |w — s Q| < vjik] pf and vjik3 p® > kyvri,
the spectra of the drift-cyclotron oscillations are deter
mined by expressions (4.4) and (4.6) respectively in the
cases w ~ Ve and w < ve (When wve 2 kivire); the
quantity v is given in this case by formula (4. 5b). This
means that the spectra of the low-frequency drift os-
cillations (4.4) and (4.6) are continued without change
into the region of cyclotron frequencies. Obviously, the
conditions for stabilization of the oscillations by the
shear, which are given by (3.18) and (4.7) in the cases
w 2 Vg and w < v respectively, remain likewise un-
changed.

New characteristic singularities in the spectra of
drift-cyclotron oscillations in the frequency region
lw +ivel 2> kzvTe appear far from the resonant ab-
sorption line, when |w — sQ4] 2> Vllk.Lpl’ k, Vi
Neglecting small d1ss1pat1ve terms in the e1kona1 equa-
tion (3.1), we find under the condition w ~ vg that, at
the intersection of the drift and cyclotron oscillation
branches, in a narrow frequency region

Fyvhs oin N

s@f Oz —1

Krbhi—
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the development of a resonant purely hydrodynamic
(nondissipative) instability is possible, with a spectrum

Q)2 — Q) o=
(0 — s8;) Tk o o —s2;) e
#;2 ‘ZzialllvT_i_zg'
= Vﬁklmm [(1 + k*rhi) TN k rDl] .
It follows therefore that when (5-2)
alnT; 2k2rbi
oln N . gerh;
and
% pi >f—2

there is developed in the plasma an instability with a

maximum increment Ymgx ~ ‘/m7MQ1 This instability

is stabilized by a relatively small shear of the force

lines, determined by the inequality
Ofsz>l/ oo (5.3)

40

which should not be violated at dimensions on the order

of the Larmor radius of the ions.

As noted above, the resonant frequency region in
which the hydrodynamic drift-cyclotron instability de-
velops is quite narrow, and even rare collisions can
lead to stabilization of such an instability. Indeed, sim-
ple analys1s of (5.2) shows™" that when vij
2 (m/M)° "Ql, the resonant region is completely
smeared out as a result of the ion-ion collisions, and
the instability in question does not arise. However, a
nonresonant dissipative instability can develop in the
plasma, with a spectrum determined by the expressions
(& =w-5895)

) N
s (1— :Qz = IHVT—I-)

Re A= A 5.4
1/—2_’11; 0i [1,(_k2r2 ___Itll”)i'ia In N] ’ ( )
L bi sQF Oz
1) S_Z‘z Jx
*ImA4 — vk 3(n s
1k 08 4]/2 ) kv, 01n NT; 00 + Ve
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where "
2 2 3 14’7_2*6—1‘ n_‘/zT
£f & ReA? o
BVE- LWL LA (5.5)

s10% 1— kot o
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c) It is easy to show that the oscillation spectrum
(5.4) remains, with slight modification, also in the case
when w < vg, provided only w, ve > kyvie. All that
changes is the electronic contribution y¢ to the oscilla-
tion damping decrement v, which in this case takes the
form

Ep? glnNTLTL

= T; k2v're Re A2 sQ} [
= —1.96)V 2n Lk p: i ! 5.6
Ve T, 1P: Vet o *kyvzn K N ( )
sQf 0z YT,

(This is a consequence of the difference between the
dissipative parts of the expressions (2.8) and (2.9), due
to the electron collisions.) From (5.4)—(5.6) we see

that the drift-dissipative instability in the region of ion-
cyclotron frequencies can develop only under the condi-
tion®®? wy, > s9j. The electron collisions then lead
practically always to a buildup of oscillations if s;

2 vefs; on the other hand, if sQ; < veff, oscillations are
built up only when 8 1n Te/81n N < 2. As to the ion colli-
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sions, they always play a stabilizing role, with the ex-
ception of the region

oln Ty

2>

=>1.45,

where they unstabilize the oscillations by broadening the
region of instability of the plasma.

In order to stabilize the considered nonresonant drift-
dissipative instability near the cyclotron frequencies, it
is necessary to have a shear satisfying the condition

(L (5.7)
—\/ﬂk’:’Lp% L¢
This condition should not be violated for dimensions on
the order of the oscillation-localization region, which
can be comparable with the Larmor radius of the ions.

d) Finally, in the region |w + ivg| 2 kyzvTe, under
the condition wvg K Kivie, the drift-cyclotron oscilla-
tions are possible only far from the resonant line, when
lw — 89| > v;;kip;. The oscillation spectrum then
coincides with the spectrum (5.1), and the growth incre-
ment y differs from (5.1) and takes the form

0 =s8r>

T; RES ]‘Lpl
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(5.8)
The change of the expression for y is due to the change
of the dissipative contribution to 6 €g, which in the fre-
quency region under consideration is determined by ex-
pression (2.10) and not (2.7), as in the case investigated
above. It is seen from (5.8) that electron collisions lead
to a buildup of oscillations, particularly when s;
< wdr-. The role of the ion collisions and the condition
for stabilization of the instability by the shear then re-
main unchanged (see the analysis following formulas

(5.1)).

6. CONCLUSION

We have considered above practically all the possi-
ble spectra of the unstable oscillations of an inhomo-
geneous plasma contained by a strong magnetic field,
with the exception of long-wave oscillations, for which
the conditions k| p; € 1 and ve 2 w, kzvTe are satis-
fied, and for which vj 2 w, k;vTi. (To describe such
oscillations, we can use the equations of two-fluid hydro-
dynamics™®'; an investigation of the instability of an
inhomogeneous plasma with respect to such hydro-
dynamic oscillations was initiated in®°*"'). Summariz-
ing the analysis, we can draw the following conclusions:

1. Ion-ion collisions far from always stabilize the
drift instabilities of an inhomogeneous plasma (as fol-
lows from the theory using the model collision integral)
and, to the contrary, even lead in a number of cases to
the broadening of the plasma instability region, particu-
larly when it comes to a plasma with an inhomogeneous
temperature or when it comes to short-wave plasma
oscillations.

Electron collisions (friction of the electrons against
the ions) lead as a rule to a buildup of drift-dissipative
plasma oscillations, but for some short-wave oscillation
branches they also play a stabilizing role (see (4.4) and
(4.6)).
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2. The nonvanishing but small curvature of the force
lines of the confining magnetic field (R 2> L) exerts a
strong influence only on the relatively high-frequency
oscillations of an inhomogeneous plasma, with a fre-
quency larger than the particle drift frequencies.
Namely, in systems with positive curvature of the force
lines of the magnetic field, there exist the known flute
and dissipative instabilities. To the contrary, the influ-
ence of the curvature of force lines of the field on the
low-frequency drift-dissipative instabilities is generally
speaking insignificant. Only in the case of a strongly
nonisothermal plasma (Tg/Tj
2 R/Le > 1) can this influence become appreciable,
and in systems with positive curvature it reduces as a
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rule to a broadening of the region of instability of the
plasma, while in minimum-B systems it has a stabiliz-
ing effect.

3. An analysis shows that an effective means of sta-
bilizing drift-dissipative instabilities of an inhomogene-
ous plasma may be the shear of the force lines of the
confining magnetic field. In this case, the most difficult
to stabilize are the short-wave oscillations, since their
stabilization requires a shear which is appreciable for
dimensions on the order of the oscillation-localization
region, which is comparable with the gyroscopic radius
of the ions. When dealing with the most dangerous long-
wave oscillations (flute or drift-dissipative), their sta-
bilization requires a smaller shear than short-wave

Z R/Lo > 1 or Ti/Te

oscillations.
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0 <o @}z —k2} 9 In7, Insignifi Insignifi 6 >min Ti Ly
L ogr, 3 PN nsignificant nsignificant LoVeff
dlnT;
N ! =
1422 Te bi
kg%, N l/ T o
yWri dInT . 0
f-= —k2v? —a a—l‘ , » » 6 >min Lovess
Ve
I 1
ky? §1in 7, Te Lo
. yYs d1n .
of=inQ; [k,S|p} Q; oz i » » 6 > min Lovefs
Vre
o
APPENDICES X exp {QL S dg” (m‘“kzvz‘kyv_]_ sin q)”)} .
e
[
I. CALCULATION OF b¢q

Equation (2.3) for the electrons can be written in

integral form (we neglect the gravitational drift of the

electrons):

0f (2) =

1
Qe

dep’ (L vo o 17/0

me

+ Lot 1)

ge—2g

Integration in this equation is carried out along the
characteristic

v, sing
L L -
Tt F
Qe

v, sin
,i_ J_

T == const.
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(1.1)

This makes it possible to write under the integral sign



The integral equation (1.1), will be solved in the geom-
etric-optics approximation, writing the functions @ and

x
6fe in the form exp i[kydy . Taking into account the
0

inequalities w K Q4 and kvpg K Qg, we get from (I.1)
(1.3)

e® kyvh -
2 (ave 2 0,) foot i Ueat o

(@ —k;23) 8fo— o

In the solution of this equation it is necessary to dis-
tinguish between three limiting cases.

a) |w +1ivg K kzvTe; in this case the collision integ-
ral in (I.3) can be neglected. As a result we have
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Table V
Existence Spectra of long w illati Role of ; -
Conditions pec © & 3:1'3,‘ f;:';sf fons electron Role of jon collisions Stabilization by shear
collisions
Te v, 8 N
@, Ve L kppgy | O — e e i n—— Insignificant
e TetTi (14,2, Vlﬂ Ik VT Destabilizing when
nw? #ln N/VTE{ g dInT; 1 1 .
@ > kvpi, 1—_‘——‘ - 1.45 f2 LS S
> kezvy (Ic jvTek_LPzalnN/VT \ v*g—ln w< ol N< B>V2—“ kypi Lo
VT
3(n--1) 9InNT;O®
P 2
@ > ik 03 —vabyel 5 TIMNTT
@ > Vekvre,| © A~ 1 kyvhi 9ln N >1 m Te py
ereTel BN TR, T oxr ' Destabilizing when Destabilizing when l/ M T; Ly
T; kv, 1 T.dInNT;"5 *)lnT, AInT,
o 2 vk el | v=—7t vesr 2 (g R ) Y| S > 2 (1) T < 445 ke
1 kyvh; 9InN .
v, o, kv e R 4
o > 0. ke 1+k2rm Q oz Always destabilizing | Destabilizing when 0(>m1/nMT veft
k2% dlnT;
0ve > kpvh,, | v=—1.9 GTI zf:e [:1 ke, + TN < 445 Kb XJI. 14 m 7o Rk 0
o —_—— .
> vkt ot ALY K l V ve{f‘% 1 I
0 2 viikd b} +3(1r 5 ) ] e 0 TR pi Lo
T, vp; @ N
Ve > @ kVre, mQ*———*~——— l—, 0>
e Ve T T A 3%, V/3q 9x V 7y Always destabilizing | Destabilizing when (ST Veff
V2nmk 0; ©.56 . _8InT — =
1P dln NT; 4 ! | 7 k0
v & Koy y = 1.44 T, Veff alnNTeUS x 1.m<d1 N< > min 2 11 m 18 Qck | i
| - [
wftm— &  \N_ L Ver kjei Lo
29y N
o YT
o> vkt pl| _ 3w k3 vuklpldIn NT7000
V2 9 In NT;5
o 20,0 (dlnT, 445k,
* U i AN L o2
) Here y; vis  3mkY pf (alnN 1} &2%,; ) if o<vakie},
. 3Guyy a7y 145G, .
W e vk (T T ) B 0% vk
2o v, Sw ) . e e ( kyv )
e (4 —a R L o E Ve |2 Te .
oy ( wo g, %) fe do=—7 ®hoet 7@ ;{0 — 5 o (1.4)
a—alnN-|_‘”“T’-’ (_i+ u2) (12)
¢ o 9z 2 2k, This expression leads to (2.7). It can be shown that

allowance for the collisions yields corrections on the
order of v&/kyvie.

b) lw +ivg| 2 KzvTe, w 22 ve; in this case the
collision integral in (1.3) is also small, and in first ap-
proximation we get expression (1.4), in which w =2 kyv,.
However, precisely because of this inequality, allow-
ance for the particle collisions becomes essential, for
when w 2> k,v, expression (I.4) leads to an exponen-
tially small dissipative term in 6€¢,. The correction to
(1.4), due to the collisions, is

YT S
f& ® ( e ) (1-5)

e R




KINETIC THEORY OF DRIFT-DISSIPATIVE INSTABILITIES OF A PLASMA

Table VI
. Nati Role of
Existence Spectragf gmgkwave\;)icﬂlanons electron Role of ion collisions| Stabilization by shear
Conditions PE N TR ollisions
T, vp; 0 N ) 1 p?
kre > 0, Ve ReAw=s — o o€ o T In—— | Insignificant i
T > O, Ve T+ T +5 15 Von 9z VYT, e Destabilizing when | ° > 1/2,, b7
nk,p:Re A% 510 N VT, alnT
S 1P nN/ VT,
Ay vk} = - £ 1. 4o< 1< 2
L [kzlvre  aInN/VT; nN
3@ -1 ) 9 ln NT;0-09
Ty w Kot alnN/VT;
1 kyu’Ti dlnN ]/m Te 0
® 3 Ve, Kre, W —— s L fe Bt
> Ve habre Ti-k%ryy & ox Destabilizing when | Destabilizing when 2V T T L,
T 200, (olnT; 445K, aln7, T; alnT
02 et ol 4 i iy 2( _L) i 22
A<kl pl VT e (Frin 1t kmm) Gy T, N < AR
T; kv, 1 T dln Nﬂ/fe_)
Veff T, Tor (muﬂr;ﬁ 7, oInN
1 Fyhi 8 la N
Ve 0, kre o=t o o o >t SH Ty
Di i s Always destabilizing Destabilizing when ]/ m Te Ly
2 r AR alnT;
A& vkt L e 20,0 (611)7,_ 140 m)_ WLIT N
ALk 07 Vo TR BT N TN LR, Ty S D
LoeLi K, 1 T omNT;-ﬂ)
T, Vett (1 k3, T, OlnN
M)SM Qi /( m)i/é L e 174 p;.
© - Vi kvper | ReAy ———t v [ Q; Insignificant Insignificant 0 (_)
>( oy iis K2V71e 2V2nk_Lm NS 17 i Zn; > i LO
A vkt p}
. N/VT, 2
Ay vkt g, ReA :——i—g—zl— 6—‘%% , Always destabilizing 3} >L__ p_;
M5 Vank) p; o Destabilizing when Vin L
kot (/ﬁ)<( ) Vii o 8 1ln NT;0-69 3ln7;
2VTe ii _ 3(m+1) Vuk_lfz 1 _ 1.45 < 5 In N<2
4V2 dln NJVT;
| et Re A%, Vak, pp 2 NIVT,
ot o NVT;
sQ; ain N/VT; p}
Vo> 0, ke, Red =t _ I0. 1n/}v/ L, o>t o
Venk 10 Destabilizing when Destabilizing when Von L3
ove S K, B O1RATE mlise  |rasc i,
¢ et 42 Kot alnN/VT,
ReA2k20%, 9 1n TL-71
Ay vkt p? 1. 91;; 2k pp —————
> ViR Py 0 gy Vn 1P aIn N/ VT,
S . ko DA Te v @ N 1 o}
N 3 @, ke, Re A= — P J‘kzruc) VZn Frs —_VFI y Always destabilizing Destabilizing when 0> V_E L_§
VZ'z Re A2veff 8 ln NT=0-56 alnT;
wve & Kk, =1.44 ; e __ — 1.45< <2
e <& ARV Y Foh, Ia]nN/VT élnN
. 3t 0ln NT;0-99
A vk p} v; ——
> VLR PRV 150, NVT,
1t is necessary here to substitute (I.4) in the collision ie _ k% aInNT, b onT, (5
N . . T k20, @ foe o0, PR 5) Fl 5 2 3 =Toe+ 1y
integral. When calculating the corrections to the charge e ©%e O 0% “Te

density induced in the plasma with the aid of (1.5), the

only contributing term

collisions; the electron-electron collisions make no

is the one due to the electron-ion

contribution, owing to momentum conservation. We ob-

tain ultimately for & e€g

¢) lw +ivel 2 kzvTe, Ve 2 w;
collision term in (I.3) becomes the principal one and the
equation must be solved by the Chapman-Enskog method.
We introduce the function

dfe=—

From (I.3) we get

formula (2.8).
in this case the

and a;:
k,v?
2 e _ *yUTe alnNTe)‘, ( 3
ky(”)Te ;—%‘I’ft)e+Fe (1.6) 7, k=0 (1 w0, ar ) =wet (00tg 111) '
w32
e Te koskmalnr*m ( +13+4Vz )
T, "V en, oz el Y

[47])

5
Fo=v;foe [%-F‘H (—2'—

)]
2.1
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(L.7)
Expanding Fe in Sonine- Laguerre polynomials and con-
fining ourselves to two terms of the expansion (for de-
tails see

(1.8)

we obtain from (I.7) the following system of algebraic
equations for the determination of the coefficients aq

(1.9)



Sge=—

&
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From the expression obtained in this manner for Fg we
get the current due to Fg, and then with the aid of the
continuity equation we determine the corresponding con-
tribution to the electron charge density induced in the
plasma. This is precisely how expression (2.9) was

derived under the condition wve 2> Kjvire. We note that,

unlike case b), in the present case both the electron-ion
and the electron-electron collisions are important.

To calculate 0 € in the frequency region under con-
sideration, a very convenient method is proposed in'*?.
We start from the equations of continuity and heat bal-

ance for the electrons
6eNe

+-div jo=0,

3 aNeT (1.10)

3 f+divg.=Ej.+0Q,
where Q is the heat transferred from the electrons to
the ions. Confining ourselves to oscillations with
w 2 mveff/M, we can put Q = 0. The expressions for
de and je under the conditions vess 2> w, Vet 2 kyVTe,
and Q¢ > Veff, k1VTe take the form™"*1

. _ __eNT, 1 <E 81a NT,
jre=e toy ap==20 2 [B (-0 ]
1-71
fre=e¢ S fev, dp=1.96 eNT, ('?Ez_alnNTe ) ’
mveff \ Te 0z
s 2 5 NT% 1 ¢E dlmNT? ¢ (L11)
e { e dr=—yag 5 (B (7).
NT% 1eg, OInNT}%
-n 2 :—_.i, e (‘e_zﬂ H )
fee 2 S fev®s dp 2 2’52mveff T, 8z .

Varying these expressions with respect to small devia-
tions from equilibrium

Ny —> No+8N,, Te > To+8T,, E—>$E=—vo (L.12)

and using (1.10), we easily obtain 6 Ng in the geometrical
optics approximation, and consequently
of,

2 v

h2v7p,

47e8No _
k@

k ”TealnN+ 1.96 12°Te k3o
@2, v

2 2.2
hgun (k ”Teal“we+i.4,2 R0,
eff

)(1+1928 lv“) —i.3.35
v eff

) -

v ff 0, OV g
z Te Ry Te
) i-3.35 20Te B (1+1 12 T )(I 13)

Within the limits wvegp 2> Ko vipe and wygpr K ksze,
this expression goes over into (2.9) and (2.10) respec-
tively.

[ "Te

(1+« 1.96 _20Te )(l+i-9.28 KT
v eff av

eff

I. CALCULATION OF 6¢j

Equation (2.3) for ions has, in perfect analogy, the
following integral form (with allowance for the gravi-
tational drift of the ions)

5/0;

P
s1i@ =~ § ag (5

oo

+LigHTus)

®
Xexp{gl—i S de” (0 —kyu;—kw, —kyv | sin (p")} . (I1.1)
£

Here, too, the integration is carried out along the char-
acteristic

v, sing

z = const

and therefore afoi/av is determined by formulas similar
to (I.2), but only for the ions. The difference between
(11.1) and (I.1) lies in the fact that the former contains
not only the ion function 6£;, but also the electron func-
tion 6fg, namely

o ap

1 fOz

4ne4L afo,
Lig~ 7. N;

m

V(sfe

o § appre = — (I1.2)
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Therefore Eq. (IL1) is solved by using for 6f, the ex-
pressions obtained in Appendix I. Introducing the func-
tion Fjy:

5!2=S T—ei‘l’fni+Fh (11.3)

we obtain from (II.1) in the zeroth approximation of
geometrical optics

ar,

w1 (e

a) When jw’ +ivj| K kzvpj K @4, the collision
integral in (II.1) and (II.4) can be neglected. We then ob-
tain for 8f;, and consequently S ¢;, the well known!" ex-
pression of the theory of an inhomogeneous plasma
without collisions (expression (2.11) without the last
two terms). Allowance for collisions leads to negligibly
small corrections.

b) If w’ 2> vy, kyvy or |w’ — sQi| > vy, kzvTi, then
the collision integral in (II.1) and (II.4) is also a small
term, but it must be taken into account for a correct
description of the dissipative effects connected with the
ion collisions. Using expansions in powers of vj/w’ or
vi/lw’ — 8R4l, we obtain by direct calculation the cor-
rections (2.12), (2.13), and (2.14) necessitated by the
particle collisions in the plasma. We note that in the
derivation of (2.13) for the short-wave oscillations

(0’ —kv) F;—Q;

kyvh;
yTiTai) foiti Ui+ (11.4)

(ki pj 2 1) it is convenient to use the simplified ion-ion
collision integral obtained in™**? (see also!*®?):
__2neLN fy VJ_ 9281; A 9%,
IR () S0y @
where
e~ f?
== {va oo (i-m)+5 ),
—12
V—{v(—) )
' t
. —x2 — v "
® 0= Sod.re Vo (1L.6)

c¢) Particularly convenient is the use of the collision
integral (I1.5) for the derivation of formula (2.15), which
is valid when vj;k] p3 > kv, (w' — ;). In this case
the term Ije in (II.4) can be neglected and this solution
can be written in the form (with allowance for the fact

that Q4 > vk}
) ( ) exp [ sin (p— a)—mp]

(o~
e Z— (.4—11,,2—3) ()

kllsz
Q;

ie
Fy= 7, o

A
where a is the polar angle of the vector k (i.e., ky
=k; cos a, ky = k) sin o). By determining with the aid
of formulas (I1.3) and (11.7) the charge density induced
by the ions in the plasma, we obtain ultimately expres-
sion (2.15) for the ionic contribution to the dielectric
constant.
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