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I. INTRODUCTION. CONDITIONS FOR THE EXISTENCE
OF QUANTUM SIZE EFFECTS IN FILMS

INTEREST in the physical properties of films has in-
creased recently. This is connected primarily with the
needs of the rapidly developing field of microelectronics.
The investigation of films is of interest both from the
purely scientific point of view and from the practical
one, since new specific effects, not observed in bulky
samples, can appear in the film state. In addition, the
investigation of crystalline films yields definite informa-
tion concerning the physical properties of the crystal.

The investigation of solids in different practical de-
vices frequently imposes definite requirements on the
energy spectrum of the carr iers . By subjecting the
sample to the action of strong magnetic or electric
fields, to high pressure, by changing the character of
the doping, etc., it is possible to obtain crystals with the
required characteristics, in particular, with a designated
energy spectrum. The shape and the dimensions of the
sample also influence the physical properties of the
crystal. This influence will become significant when the
dimensions of the sample are of the order of some
characteristic length. In particular, when the dimen-
sions of the crystal sample are comparable with the
electron mean free path, the kinetic properties, such as
the electric conductivity, become dependent on the
dimensions and shape of the crystal.

Variations can be expected in the physical properties
of crystals also in the case when the finite dimensions
of the sample lead to quantization of the quasiparticle
motion. This was pointed out back in the 3O'scl ].

The idea of the size quantization found its reflection
in the theory of oscillations of thermodynamic charac-
teristics of thin layers of metal, developed by I. M.
Lifshitz and his co-workersC2'33 (a complete review and
a bibliography of this cycle of investigations are given
in t 4 ]). Size quantization is also important in finely-dis-
persed media"'61 .

Recently, interest in the study of the quantization of
quasiparticles in films has increased in connection with
the extensive utilization of thin semiconducting films in
microelectronics.

In metals, the wavelength is on the order of the lat-
tice period a. Therefore, in actual metallic films con-
taining many atomic layers, quantum size effects are
weakly pronounced and have the character of corrections
to the properties of bulky samples. The situation is dif-
ferent in semiconducting and semimetallic films, since
the de Broglie wavelength of the carriers in semicon-
ductors and semimetals can be larger by several orders
of magnitude than the interatomic distances. The
de Broglie wavelength depends in this case on the effec-
tive carrier mass m*, their concentration n, and tem-
perature T. Therefore, under definite conditions, which

are discussed below, size quantization in semiconducting
and semimetallic films becomes already significant at
thicknesses L ~ 1CT5 cm (see below) and leads to qualita-
tively new effects not observed in bulky samples.

A film is an example of a bounded medium. This cir-
cumstance leaves a significant imprint on the properties
of the quasiparticles in films. Owing to the limited size
of the film in one direction, the projection of the quasi-
momentum kz perpendicular to the plane of the film is
indeterminate. Therefore, the energy of the electron in
the film, as well as the energy of any other quasiparti-
cle, is determined by the longitudinal projections of the
quasimomentum kx, ky and, generally speaking, by a
discrete quantum number s, which replaces kz:
% = %(kz, ky, s). At a fixed s, the energy runs continu-
ously through an interval of values which will be called
henceforth subband. The longitudinal projections of the
quasimomentum are determined in a two-dimensional
Brillouin zone, which in the case of a film, generally
speaking, is not a plane cross section of a three-dimen-
sional band (see Chapter II). The surface states are
also defined in terms of a quasimomentum from a two-
dimensional Brillouin zone, and the energy values
corresponding to these states also form one subband.
The subbands usually overlap, since the energy interval
gg + L — gg for fixed 1^ and k^ is as a rule smaller than

the width of the subband. Thus, the energy spectrum of
the electron in the film is quasidiscrete and consists of
overlapping subbands.

Quantization of the transverse motion in films can
appear, however, only if a number of conditions are
satisfied17'83. Owing to the scattering of the electrons,
the quasidiscrete spectrum is partially smeared out. In
order for the quasidiscrete character of the spectrum
to be maintained, it is necessary that the smearing h/r
(T—relaxation time) be smaller than the distance be-
tween the neighboring subbands:

•i < * « - « • • (1-1)

For an exact determination of T it would be necessary
to calculate the damping of the quasiparticles in the film
for different possible scattering mechanisms, as was
done for example, by Rytova for the electron-electron
and electron-impurity scatterings'93. Since it is im-
possible to obtain a sufficiently accurate theoretical
estimate, it is necessary to determine the relaxation
time experimentally. It is convenient, for example, for
estimating purposes, to express it in terms of the ex-
perimentally measured mobility. This means that the
transport relaxation time, which takes into account all
the carrier-scattering mechanisms in the film, is sub-
stituted in (1.1).

In addition to the condition imposed on the relaxation
time (or mobility), there should also exist a limitation
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on the temperature and concentration of the carr iers , in
order that the number of populated subbands be small.
In this case the difference between the properties of the
film and the properties of the bulky sample is more
clearly pronounced. The condition for the concentration
follows already from dimensionality considerations. In
order for only one subband to be populated, it is neces-
sary to satisfy the inequality

n<4-; (1.2)

A—dimensionless coefficient that depends on the quan-
tization law.

Upon quantization we get

g __*!_ ( i U V

(the film is approximated by an infinitely deep well,
m*—effective mass in the direction perpendicular to the
film), A = 3TT/2.

The relation for the temperature is determined from
the requirement that the thermal spread be small com-
pared with the distance between subbands:

KB1 <̂  F#+l — GB. \L.O)

It should also be noted that in order to observe the
quantization effects the film should be sufficiently homo-
geneous in thicknessClo]. It can be shown that the quasi-
discrete character of the spectrum, starting with the
s-th subband, will not be violated if the relative spread-
ing of the thickness is smaller than AL/L. In real
semiconducting and semimetallic films, the conditions
imposed on the concentration, temperature, and thick-
ness homogeneity can be relatively easily satisfied for
thicknesses L < 10"5 cm. The relation (1.3) for an ef-
fective mass of 0.01m0 is satisfied already at room
temperatures. As seen from (1.2), for the same thick-
ness required to populate one subband, the concentration
should be on the order of 1016 cm"3. Thus, at concentra-
tions of 1017 cm"3, which can be realized in semimetallic
and semiconducting films, only a few subbands are
populated; as to metals, by virtue of the large carrier
concentration, a large number of subbands is populated
for thicknesses up to L ~ 10"7 cm, thus decreasing the
influence of quantization. The most stringent require-
ment for the existence of a quasidiscrete spectrum in a
film is condition (1.1), which is satisfied only in suffi-
ciently perfect and pure films. To satisfy condition (1.1),
relatively high mobilities are required. For example,
at a thickness L ~ 5 x 10"6 cm, the mobility /x should be
larger than 103 cm2/V-sec. This requirement also limits
the maximum temperature since jix as a rule decreases
with increasing temperature. A possible exception is the
case when the scattering by an ionized impurity is sig-
nificant.

Quantum size effects in semiconducting and semi-
metallic films are not fully identical. In semimetallic
films, as a rule, the current carriers are degenerate.
Therefore, oscillatory effects (see below) are well pro-
nounced in semimetals. In semiconductors, on the
other hand, in order to observe oscillatory effects a
high doping level is necessary, leading to a decreased
carrier mobility. However, the large variety of semi-
conducting materials makes it possible to choose a film
with better parameters than in the case of a semimetal.

Until recently, there was no convincing experimental
proof of the existence of quantization of the transverse
motion of electrons in films. To be sure, Crittenden and
Hoffman1111 observed certain deviations of the resis-
tance in thin films of nickel from the values predicted
by the classical theory. These authors were inclined to
ascribe these deviations to the influence of electron-
energy quantization. They assumed that the presence of
quantization leads to a decrease in the number of possi-
ble transitions, since only discrete values of the trans-
verse momentum are allowed in the film. This, in the
opinion of the authors ofC111, leads to a decrease in the
resistance (compared with the classical theory) with
decreasing film thickness. However, this explanation of
the peculiarities of the experiment is untrue, since the
quantization (see Sec. 3) cannot lead to a monotonic de-
crease of the resistance with decreasing thickness. The
first convincing experimental confirmation of the pres-
ence of a quasidiscrete electron spectrum was obtained
in thin semimetallic films. Ogrin et al.C121 observed in
Bi films oscillations of the mobility, of the Hall con-
stant, and of the magnetoresistance with variation of the
film thickness (see Fig. 5 below). The films investiga-
ted in [12 : , which were obtained by vaporization in vacuum
onto mica, were of sufficiently perfect crystalline struc-
ture, and the mobility in them exceeded 103 cm2/V-sec.
The results of£12] are confirmed by more detailed inves-
tigations carried out in a wider thickness interval1131

L ~ 200—5000 A, and in the temperature interval
T ~ 4-200°KC141. Similar results were obtained by
Komnik1153, who investigated Bi films vaporized on a
glass substrate.

A direct observation of the quantization of the motion
of electrons was carried out by Lutskii et al.[16:l in ex-
periments on the tunneling of electrons between thin
films through a gap.

Such a method of experimentally studying the energy
spectrum was proposed* by the authors of[10] (see Sec.
2, Item 4).

The quantization of the transverse electron motion
was observed by Komnik and Bukhshtab in another
semimetal—antimony1171. They observed resistance
oscillations with varying thickness in the range
L ~ 100—400 A. Instead of using a set of films of dif-
ferent thickness, they used in[171 a sample in the form
of a wedge, thus increasing the accuracy with which the
film thickness was determined.

It should be noted here that effects analogous to quan-
tum size effects in films can occur in the thin surface
layer of a bulky sample in the case when the energy
bands are sufficiently deflected. Just as in a film, the
deflection of the bands limits the carrier motion per-
pendicular to the sample surface. As a result, when a
number of conditions are satisfied, the carrier spec-
trum becomes quasidiscrete % = % (kx, kv, s). In the
case of a many-valley single crystal, just as in a
film1181, level splitting is possible and can lead to a
decrease in the number of equivalent valleys.

*The work was first reported in 1962 at the seminars of the physics
institute of the USSR Academy of Sciences and of the Moscow Physico-
technical Institute.
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The surface deflection of the bands can be varied by
means of an external electric field applied perpendicu-
larly to the sample surface. In some sense, a change in
the magnitude of the field is analogous to a change in the
film thickness, and can lead to similar effects. A dis-
cussion of the influence of quantization on the field effect
was apparently first presented by Schrieffer inU 9 J . By
now, an appreciable number of papers devoted to quan-
tization in the surface layer have been published C2C'2i:i.
The most detailed experimental investigation is repor-
ted inC2i :, where oscillations of the magnetoresistance
were observed in the surface layer in a quantizing mag-
netic field. In this investigation they observed the case
of population of one subband. So far, however, the case
of filling of several subbands was not realized under ex-
perimental conditions. A detailed discussion of the quan-
tization effect in the surface layer is beyond the scope
of the present review.

The field effect can also be used in principle to study
the properties of films with a quantized spectrum. This
method, proposed by Sandomirskif[22], consists in the
following. The investigated film serves as one of the
plates of a capacitor. By varying the potential difference
it is possible to vary the electron concentration in the
film in such a way, that the number of filled subbands
changes. This can lead to an oscillatory dependence of
the mobility and the conductivity on the voltage applied
to the capacitor. We note that the carrier concentration
in the film can also be varied by subjecting the film to
pressure.

An experimental study of this effect on Bi filmsC23]

has shown that the oscillations actually take place in the
thickness interval L ~ 2000—3000 A. However, it is
impossible to present an exact interpretation of the ob-
tained results by assuming that the transverse field
leads only to a change of the concentration. At small
thicknesses, apparently, the penetration of the field in
the film becomes important, and this should lead to a
change of the energy spectrum in the film. This circum-
stance makes an analysis of the experiment on the field
effect in the film very difficult.

The number of quantum size effects is not confined
to the specific dependence of the kinetic and thermo-
dynamic characteristics on the film thickness. Quan-
tization of the motion should also lead to a change in the
temperature dependence of the film properties, to a new
dependence of these properties on the magnitude and
direction of the magnetic and electric fields; the quasi-
discrete character of the spectrum leads to different
resonance phenomena when electromagnetic radia-
tionC24>25], sound, and electron current, etc. pass through
the film.

Effects connected with the quantization of motion of
other quasiparticles (magnons, excitons, etc.) in the
film have been investigated in a number of experimental
and theoretical studies. The present review is devoted
to an analysis of effects due only to the quantization of
electron (and hole) motion.

H. FEATURES OF ELECTRON STATES IN THIN FILMS

A quantitative calculation of the energy spectrum and
of the wave functions in films is extremely difficult.
The main difficulties are connected both with the com-

plicated nature of the boundary conditions and with the
indeterminacy of the self-consistent potential in the
film, which has a lower symmetry than in the bulky
sample. Certain special models and approximations
used by different authors (seeC26]) for the calculation of
the spectrum cannot serve for a quantitative calculation
of the physical parameters of the films. At the same
time, the limitation of the electron motion in the film in
one dimension leads to a number of specific features,
regardless of the concrete boundary conditions and of
the form of the potential inside the film.

1. Energy Spectrum in Films

The electrons in the film move in a crystal field hav-
ing not a three-dimensional but only a two-dimensional
translational symmetry. Even this alone leads to cer-
tain conclusions concerning the character of the elec-
tronic states in the film. The wave function will have
the Bloch form

f k (r) = e*'uk (r),

where ufc(r) has a planar translational symmetry, and
k is the quasimomentum from the two-dimensional
Brillouin zone. When k varies within the limits of the
two-dimensional Brillouin zone, the energy runs through
a continuous set of values, forming a subband. As noted
in Chapter I, these planar subbands, generally speaking,
are strongly overlapping.

The planar Brillouin band is determined by the two-
dimensional translational symmetry of the film struc-
ture. In the case of germanium and silicon crystals,
when the film is grown in the [ i l l ] direction, the struc-
ture of the film has the translational symmetry of a
planar hexagonal lattice. In this case, therefore, the
Brillouin zone is a regular hexagon. A similar Brillouin
zone is produced in bismuth films grown along the t r i -
gonal axis (it is precisely in such films in which quan-
tum size effects were observed in[12~16'23]).

The lowering of the symmetry on going from a bulky
crystal to the film should lead to a partial or complete
lifting of the degeneracy, which can arise with the merg-
ing of the bands at singular points of a three-dimen-
sional k-space, or else with the many-valley character,
when several points in the Brillouin zone correspond to
one extremum. In the latter case, the lowering of the
symmetry should lead to a decrease in the number of
equivalent valleys. On the basis of a group-theoretical
analysis it is possible to clarify the character of the
energy-level splitting near the extremal points : l8: i. For
example, in Ge and Si films, the degeneracy of the edge
of the valence band, which corresponds to a quasi-
momentum k = 0, is completely lifted. In the conduction
band of germanium, the four-valley energy minimum
splits into a three-valley minimum and a single-valley
minimum. The single-valley minimum lies in the center
of the two-dimensional Brillouin zone, and the points
corresponding to the position of the three-valley mini-
mum lie at the midpoints of the hexagon forming the
two-dimensional Brillouin zone (Fig. 1). Generally
speaking, the energy minimum in the film is shifted
upward as compared with the minimum in the bulky
crystal, by an amount on the order of h2ir2/2m*L2. This
follows from the uncertainty principle.
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For the single-valley minimum in the Ge film, this
shift will be smaller, since it is determined by the
longitudinal effective mass, which is maximal. Unlike
Ge films, the splitting of the six-valley minimum of the
conduction band does not take place in Si films grown
in the [111] direction.

Of great interest is the study of the spectrum in thin
Bi films, in connection with the fact that it is precisely
in these films that quantization was observed. As is
well known, the semimetallic properties of Bi are due
to the intersection of two energy bands. As a result,
carriers of both polarities appear, with a concentration
on the order of 1017cm"3. The Fermi surface of the
electrons is made-up of three ellipsoids, which go over
into one another when rotated 120° with respect to the
trigonal axis. The usual growth direction of the crystal
bismuth film is the direction of the trigonal axis. The
effective mass in this direction is 0.01 m0, and the value
of the effective mass of the holes is 0.7 m0

[55].
On going over to the film, the lowering of the sym-

metry does not lead to a splitting of the three-valley
minimum. In the two-dimensional Brillouin zone, which,
as already noted, is a regular hexagon, the points corre-
sponding to the three-valley electron minimum are the
midpoints of the sides of the hexagon.

2. Density of States

To find the thermodynamic and kinetic coefficients
in thin films, it is necessary to determine the density of
the electronic states G(g) = dx/AM, which must depend
strongly on the film thickness.

The density of the states is determined by the dis-
persion law. Since the quasimomentum of the electron
along the film is determined, the dispersion law has in
the effective-mass approximation the form

(kx and ky are directed in this case parallel to the axes
of the ellipsoid). As shown incls: l, as a rule there is no
degeneracy near the extremal points in films. There-
fore formula (2.1) is sufficiently general for semicon-
ducting and semimetallic films. Using (2.1), we readily
obtain for one subband

(%) = r-^ps, (2.2)

where r—number of two-dimensional valleys, S—area of
the film. For comparison with the density of states in
the bulky crystal, it is necessary to introduce the state
density per unit volume of the film:

°sub

Thus, the state density in the subband does not de-
pend on the energy and on the number of the subband,
and is inversely proportional to the thickness.

For the surface levels, the density of states is also
proportional to 1/L, since the levels form a two-dimen-
sional subband. The energy dependence, generally
speaking, should be determined by the concrete disper-
sion law. On the other hand, near the edges of the sur-
face subband, where the dispersion law can be regarded
as quadratic, the density of states does not depend on
the energy.

FIG. 1

The total state density Nf in the film at a given en-
ergy is equal to the sum of N g ^ over all the subbands
for which Ms<

N f = m (if, V) N (2.4)

where m—maximum value of s.
To determine m(g, L) it is necessary to choose some

model of the potential in the film. The simplest model,
frequently used by various authors, consists of the ap-
proximation of the film by a square potential well with
infinitely high walls. Such a model cannot give quantita-
tive agreement with experiment for small values of s,
but it does take into account the most characteristic
feature of the electronic states in the film, namely the
limitation of the transverse motion of the electrons. In
the square-well model with infinite walls, the single-
particle spectrum has, as is well known, the form

(2.5)h'n"

The model of an infinitely deep well, however, does
not take into account the concrete band structure of the
film, and also leads to a non-self-consistent solution.
On the one hand, it is assumed in the model that no for-
ces whatever act on the electron inside the film, and on
the other hand the solution leads to an inhomogeneous
distribution of the electric charge, i.e., to a strong
Coulomb repulsion, not initially taken into account. In
spite of this, this model can be used for rough esti-
mates. This estimate, based on the well model, gives
for the lower level the same result as the uncertainty
principle.

The square-well model presupposes that no forces
act on the electron inside the film. However, when we
consider the electron motion, it is necessary to take into
account the effect of other charges on the electron,
whose total charge is +e. The action of this charge on
the electron in question will be significant when A. > L.
The lowering of the potential energy due to the attrac-
tion of the electron to the positive charge should cause
the rising of the lowest discrete level with decreasing
thickness to be smaller than would follow from the
square-well model.

Formula (2.4) determines the total density of states
as a function of the thickness and of the energy. This
dependence is governed by the fact that the number of
populated subbands increases stepwise with increasing
thickness, and also with increasing energy. A plot of
Nf(E) at a fixed thickness is shown in Fig. 2. A charac-
teristic feature of the state density is that it differs
from 0 only for energies larger than g^31'7-1 (the energy
is reckoned from the bottom of the electron band in the
bulky sample). The existence of a minimum energy is
connected with the uncertainty principle.
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FIG 2

The distance between the neighboring steps S s + 1
depends, naturally, on the quantization law. If we as-
sume that

then the density of states in the film at % = Ss equals
the density of states in the bulky sample at the same
energy.

It is of interest to consider the behavior of the den-
sity of states when the film thickness is varied. It is
this dependence which determines, in the final analysis,
the experimentally observed oscillatory character of the
dependence of the kinetic coefficients of thin films on
their thickness. With increasing thickness, the density
of states Nf at the Fermi level decreases as 1/L (see
(2.3) and (2.4)), so long as the number of filled sub-
bands does not change. However, at certain values of
the thickness L s , when a new subband begins to be
filled, the density of the states increases jumpwise by
an amount Ngy^Lg). This results in an oscillatory de-
pendence of the density of states on the film thickness
(Fig. 3).

The decrease of the density of states, proportional
to 1/L, is not connected with the model of the film po-
tential. The concrete form of this potential affects only
the positions of the jumps on the Nf(L) curve.

NIL).

FIG. 3

3. Carrier Density and Fermi Level

Let us consider first a semiconducting film with one
type of carrier173 . The electron density in the conduc-
tion band, averaged over the film thickness is given by

m _ 1 y f Cub (3) <tt
(2.6)& exp • kT •+1

where GSUD is the density of states in the subband (2.2).
The integration is over the s-th layer, and the summa-
tion is over all the layers.

To find the Fermi energy, we use the equation of

neutrality of the semiconductor. If the conditions for the
filling of one subband are satisfied, then, assuming that
the impurity levels are weakly ionized, we obtain an ex-
pression for the chemical potential

(2.7)Ed
2 kT

—
it*2 1

here N—number of impurity atoms per cm3 and E^— ac-
tivation energy of the donors, reckoned from the bottom
of the band in the film. This expression differs from
the corresponding formula for bulky semiconductors in
the stronger dependence of fip on T. It is necessary to
substitute in this formula1-271 the activation energy de-
termined for a given film thickness. The E,j(L) depen-
dence is due both to the rising of the bottom of the con-
duction band with decreasing L, t31] and to the change of
the position of the impurity level which is significant if
L < ag (ag—radius of the Bohr orbit of the impurity
electron).

In the approximation under consideration, we obtain
for the electron concentration in the conduction band the
formula

The statistics of the carriers in semimetallic films
was considered by Lutskii and by Sandomirskii122-1. In
this case, the lowering of the edge of the valence band
and the rise of the bottom of the electron band with de-
creasing thickness can lead to the formation of an en-
ergy gap, i.e., to a semimetal-dielectric transition at a
certain thickness Li. In the approximation of an infin-
itely deep well, this transition should take place at a
thickness

ah
1/2A

where A—overlap of the energy bands in the macro-
scopic sample, and m e and mn—masses of the electron
and hole in the transverse direction. For a Bi film this
would yield Li ~ 300 A. However, as already noted, the
rise of the lower level in the conduction band (or lower-
ing in the valence band) with decreasing film thickness
should be much smaller in the actual film. Therefore
the transition into the dielectric state could be observed
only at thicknesses much smaller than the thicknesses
obtained in the infinitely deep well model. Actually, it
follows from experiment (see below) that in Bi films, up
to thicknesses L ~ 300 A, the transition into the dielec-
tric state is not observed. Nor was this transition ob-
served for thinner films (L ~ 200 A). However, the
structure of the films of such thickness is imperfect
and the conclusions become unreliable.

The position of the level in the semimetal is deter-
mined from the condition of equality of the numbers of
electrons and holes. In the case of an isotropic quad-
ratic dispersion law (in the bulky sample) for electrons
and holes, in the presence of strong degeneracy, the
position of the Fermi level in the film does not depend
on the thickness[22]. This is connected with the fact that
the distance between the energy levels is inversely pro-
portional to the mass, and the density of states is di-
rectly proportional to the mass; consequently the num-
ber of filled electron and hole subbands is always the
same.
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In the actual case, on the other hand, when the dis-
persion law is anisotropic, the numbers of the filled
electron and hole subbands are different and, as follows
from the neutrality conditions, proportional to the fac-
tor [r —-) , where r—number of equivalent valleys in

the bulky sample. In particular, for Bi films the number
of populated hole subbands is approximately six times
larger than that of the electron subbands. The Fermi
level, with allowance for the anisotropy, will oscillate
weakly with change of the film thickness.

The carrier density in the semimetals must also de-
pend on the film thickness. As shown by
SandomirskiiC223, with decreasing thickness the carrier
density oscillates weakly even in the isotropic case (the
magnitude of the relative oscillation is of the order
of 1%).

4. Possibility of Experimentally Determining the Dis-
crete Energy Levels Sfs in Experiments on Tunneling

One of the possible methods of direct experimental
observation of the quantization of the transverse-motion
energy in a film is the use of tunneling of the electrons
in a sandwich made of the investigated films t l 0 ] .

The energy level scheme of the setup for the study of
the quantization using tunneling is shown in Fig. 4.
Films with a quasidiscrete energy spectrum are separ-
ated by a potential barrier, which can be realized by
means of a dielectric, particularly an oxide layer.

When the external field is turned on, the energy levels
of one film shift relative to the levels of the other film.
If it is assumed that in the tunnel transitions the longi-
tudinal momentum is strictly conserved, the current
through the barrier will arise whenever the populated
levels of one film lie opposite the free levels of the
other film. As a result, a current-voltage characteris-
tic in the form of a series of peaks is obtained. Transi-
tions with change of the quasimomentum (phonon transi-
tions) lead to the existence of a current even at voltages
which do not satisfy the condition eV = ^s +1 ~ ^s- How-
ever, as is well known, the probability of phonon transi-
tions is much lower than the probability of the direct
transitions, i.e., transitions without change of the quasi-
momentum. Therefore the form of the current-voltage
characteristic remains in principle the same as before,
but the peaks become smeared out.

Singularities on the current-voltage characteristic
were observedNin[16] at voltages equal to the energy
difference between the discrete levels. It is highly im-
probable that these singularities are connected with dis-
crete levels of the gas molecules in the gap, since the

FIG. 4

arrangement of the singularities on the current-voltage
characteristic agree well with the values of the discrete
levels determined in the preceding experiments'-12'13-1.
In t l 6 : , however, the peaks on the current-voltage char-
acteristic were not observed, while only the derivative
dl/dV oscillated at values of V satisfying the condition
eV = § s + x - I s . The absence of peaks on the observed
current-voltage characteristic is apparently connected
with the fact that under the experimental conditions the
quantization took place only in one film of the sandwich.

m. INFLUENCE OF QUANTIZATION OF THE TRANS-
VERSE CARRIER MOTION ON THE ELECTRIC
CONDUCTIVITY OF THIN FILMS

The change of the state density, and also of the form
of the electronic wave functions in the transition to a
thin film should affect the kinetic characteristics.
Another important factor is that specific scattering
mechanisms, connected with surface defects, the special
character of the oscillations of the crystal lattice, etc.,
appear in the film. Therefore, the character of the scat-
tering in the film changes, and leads to transitions be-
tween the stationary film states both within the subbands
and between the subbands.

1. Relaxation Time and Mobility of Carriers in the Film

The most interesting feature of the electric proper-
ties of thin films is the oscillatory dependence of the
mobility on the thickness18'12'131. This dependence is
connected with the fact that mobility n in the degenerate
case is determined by the density of the states on the
Fermi surface, which, as already noted, oscillates with
varying film thickness. The change of the matrix ele-
ments of the transitions with decreasing film thickness,
generally speaking also influences the form of the func-
tion M(L), but the oscillatory character of this depen-
dence is not disturbed. Indeed, the relaxation time of
an electron with a planar momentum k, situated in the
s-th subband, can be represented in the form of the sum

where TgS is the relaxation time connected with the
transitions to the s'-th subband, and the maximum value
of s' is equal to the number of populated subbands.
Starting from the two-dimensional kinetic equation, it
can be shown that in elastic scattering the relaxation
time has the same form as in the three-dimensional
case[27>28].

In the case of degeneracy, with decreasing thickness,
the number of terms in (3.1) increases by 1 for each
new subband which begins to be populated. This leads to
a jump in the relaxation-time and of the mobility, since
|MSS ' |2 is a smooth function of L. In the case when the
matrix element does not depend on k and on the number
of the subband (see below), the thickness dependence of
1/T S S is determined by the factor 1/L which arises in
(3.1) on going over from summation to integration. The
subsequent summation in (3.1) leads to the oscillatory
dependence of 1/TS on the film thickness.

Let us now proceed to consider concrete scattering
mechanisms. An analysis of the electron-phonon inter-
action in a semiconducting film, for the case when one
subband is populated (see conditions (1.2) and (1.3)) is
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presented in127'293. The character of this interaction
depends not only on the specific feature of the electronic
states, but also on the form of the phonons in the film.
Generally speaking, the phonon spectrum in the film is
quantized in the same way as the electron spectrum.
The distance between the individual phonon branches
ws(q) (q—two dimensional vector) is of the order of

e
nh

(3.2)

where c—speed of sound, ©—Debye temperature,
n—number of atomic layers in the film. However, if the
film lies on a substrate, the character of the oscilla-
tions depends on the ratio of the elastic constants of the
film and the substrate.

If the elastic constants of the film and of the sub-
strates are nearly equal, the phonons in the film can be
regarded as the same as in the bulky sample. A case
may also occur in which the film is completely free or
is very weakly connected to the substrate. In such a
case the phonons are determined from the solution of
the equation of the oscillations of a plate with free boun-
daries.

If the phonons are assumed to be the same as in the
bulky sample, then we obtain for the matrix element the
following expression:

ff.). (3-3)Eak

where

lation of two subbands, was determined by Iogansen
in [59].

In the case of a thin film with free boundaries, it is
necessary to take into account the specific features of
the phonon states. These features are most clearly
pronounced at low temperature

T<% (3.5)

(®—Debye temperature, n—number of atomic layers in
the film), when only the lower branches of ws(q) are ex-
cited: flexure waves, and longitudinal and transverse
waves. The largest contribution to the resistance is
made by longitudinal waves. As shown in1-29-1, in this
case also the relaxation time T is proportional to the
film thickness.

At higher temperatures, when condition (3.5) is not
satisfied, it is necessary, generally speaking, to also
take into account the higher phonon branches. The dis-
persion relations and the densities of the states for all
the possible types of waves in films were obtained in1301.

If several subbands are populated in the case of de-
generacy, the mobility oscillates with changing thickness
in approximately the same manner as the density of
states.

The scattering of the electrons in films with a quasi-
discrete spectrum by point defects was investigated by
Sandomirskii[8>22]. It is shown inc8J that the relaxation
time due to the elastic scattering by randomly distribu-
ted centers with 6-like potential given by

c/—velocity of longitudinal waves, p—density of the film
material and E—constant of the deformation potential.
The presence of the factor x(qz) in (3.3) is connected
with the nonconservation of the transverse quasimomen-
tum, due to the limited dimensions of the film. Since one
subband is populated, the relaxation time is determined
by formula (3.1) in which s = s' = 1. When the summation
over qx and q« is replaced by integration, a factor 1/L
arises, and therefore 1/T ~ 1/L. To estimate the co-
efficient of 1/T the summation over qz will also be re-
placed by integration (if the surface layer is considered,
then there is no quantization of qz, and such an approach
is rigorously correct). We obtain finally

4- = £ = £ ^ . (3-4)

As seen from (3.4), the character of the dependence
of the number of collisions on the film thickness is the
same as for the state density. It is also important that
T does not depend in the film on the quasimomentum,
unlike the bulky sample, where 1/T ~ |k| in the scatter-
ing by phonons. This is perfectly natural, since the
ratio T/Tpass should be a function of the dimensionless
quantity Lk. We note, to avoid misunderstandings, that
formula (3.4) is valid when L^> a (a—lattice parameter)
and, on the other hand, L is bounded from above by the
conditions for the filling of one layer.

Inasmuch as T is the same for all the electrons, the
mobility y. is proportional to T, i.e., M ~ L. Thus, even
in an "ideal" film, i.e., without allowance for scattering
by surface defects, the mobility decreases with decreas-
ing thickness.

The electron relaxation time in the film, upon popu-

(Rj—coordinate of the scattering center, N—number of
scattering centers in the volume of the film) is propor-
tional, in the case of population of one subband, to the
film thickness L.

Sandomirskii also found the dependence of the re-
laxation time and of the electric conductivity on the
thickness of the semimetallic film for an arbitrary num-
ber of filled electronic and hole subbands; it was like-
wise assumed that the scattering is by a 6-like poten-
tial. In such a model, the relaxation time is of the
formt22]

where m(L)—number of filled subbands.
Thus, with changing thickness, when a new subband

begins to be populated, the number of possible transi-
tions increases jumpwise, leading to the oscillatory de-
pendence of T on L. Since in this case r is the same for
all the electrons on the Fermi surface, T is proportional'
to M and the dependence is the same as T(L).

The electric conductivity of thin semiconducting films
was considered also by Bezak1323, who took into account
only the dependence of the Fermi energy on the thick-
ness. However, the dependence of the mobility on thick-
ness , which is the main contribution to the conductivity
oscillations, was not taken into account inC32:.

The resistivity of the film oscillates not only with
varying thickness, but can also oscillate with varying
longitudinal electric field. The resistance oscillations
can appear at such values of the field, when the energy
acquired by the electron with a mean free path length is
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equal to the distance between the quantum levels. This
effect was considered by KulikC33] under the assumption
that quantum size effects introduce a small correction
to the resistance. It is evident that the analysis made
inC33] is applicable when many subbands are populated
(metallic and relatively thick semiconducting films).

2. Comparison with Experiment

As already noted, in the experiments made on bis-
muth films U 5 ] , an oscillatory dependence of the resis-
tance and of the mobility on the thickness was observed
(Fig. 5). Inasmuch as the effective mass of the holes in
the transverse direction in the film is practically two
orders of magnitude larger than for electrons, the dis-
tances between the hole subbands are considerably
smaller than between the electron subbands. Conse-
quently, the quantization conditions (1.2) and (1.3) for
holes are more stringent. In addition, the number of
populated hole subbands, even if they are not smeared
out, as already noted, are always 6—7 times larger than
the number of filled electron subbands. Therefore the
kinetic characteristics are essentially influenced only
by the quantization of the electron motion. The Hall
mobility /x at np = ne is equal to Mh — Me- With the in-
crease in L at thicknesses corresponding to the start of
the filling of a new subband, when a jump of the density
of states of the electrons takes place (see Fig. 4), / i e
decreases jumpwise, which leads to an increase in the
Hall mobility (a positive sign of the Hall constant sig-
nifies that the hole mobility predominates in the film).
If there were no smearing of the levels in the subbands,
then on the M(L) curve, at a thickness corresponding to
the start of the filling of the new subband, there should
occur an abrupt jump by a finite amount, as in the case
of the state-density curve. However, no abrupt jumps
are observed on the experimental curves, this being
connected with the smearing of the levels by an amount
on the order of h/r . At relatively large thicknesses,
when several electron subbands are populated, the
square-well model is relatively satisfactory and the
chemical potential depends little on the thickness. This
causes the population of the new subbands to occur at
equal intervals of L. As seen from Fig. 5, this is pre-
cisely the arrangement of the maxima observed experi-
mentally. An exception is the first interval, this being
apparently connected with the deviation from the chosen
model at small film thickness.

At small thicknesses, a decrease of \i is observed
on the plot with decreasing thickness, in agreement with
the theory, which predicts a linear dependence T ~ L
for different scattering mechanisms, if one subband is
filled. As was to be expected, the maxima of M corre-
spond to minima of the resistance on the plots of Fig. 5.
The plot of p(L) is determined not only by the mobility
but also by the dependence of the concentration on the
thickness, which we shall consider in greater detail in
Chapter 4 in connection with the Hall effect. All the
oscillations are more strongly pronounced at lower
temperatures, this being connected with the better real-
ization of the quantization conditions.

The temperature dependence of the resistivity and
the Hall constant of Bi films with different thicknesses
were investigated in [14 :. For the entire temperature
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interval (T ~ 4.2-200° K), the resistivity was an os-
cillating function of the thickness. It is important to
note here that the period of the oscillations was inde-
pendent of the temperature. This period coincides with
the period obtained in t l 2 '1 3 ] . It was confirmed in t l4 ] that
the large magnitude of the oscillations is determined by
the dependence of the electron mobility on the thickness.

An unusual dependence of the electric conductivity
and of the magnetoresistance in Bi films on the thick-
ness was observed in [61], and was ascribed by the au-
thors to size quantization. However, this explanation is
not unambiguous, since the oscillations were not ex-
perimentally observed. This is apparently connected
with the fact that the experiments were made at room
temperature. The quality of the films was not investi-
gated in [61].

As already noted in Chapter I, quantization of the re-
sistance was observed in antimony film[17]. In view of
the fact that in Sb the effective masses are relatively
large, the period of the oscillations should be much
smaller than in bismuth. It follows from the experiment
that the period of the oscillations is approximately con-
stant in the entire investigated interval of thicknesses
and is equal to ~30 A. No measurements of the Hall
constant were made in [17], and therefore criterion (1.1)
cannot be verified. The criterion (1.3) was satisfied
experimentally, owing to the small investigated thick-
nesses, at temperatures lower than 600°K, and oscilla-
tions took place even at room temperatures.

The authors of:i7: attempt to determine, by starting
from the obtained period of the oscillations, the rela-
tionship of the electron and hole masses resulting in
quantization. However, the connection between the
period of the oscillations and the masses which they use
is correct in the isotropic case [22 ] , i.e., when an equal
number of hole and electron subbands is populated at



652 B. A. TAVGER and V. Ya . DEMIKHOVSKII

any thickness. In fact, however, the dispersion relations
C (k) are quite complicated, and anisotropy cannot be
neglected. A correct allowance for anisotropy of the
effective masses and for the different numbers of the
electron and hole valleys in antimony makes the number
of the populated electron and hole subbands different.
For the values of mass, given in1563, the estimate by
means of ( rmn /m i ) " i (see Chapters II and III) shows
that the number of filled electron subbands is approxi-
mately twice that of the hole subbands. The fact that a
single period of the oscillations is clearly manifested in
the experiments explicitly indicates that these oscilla-
tions are connected with the quantization solely of one
type of carrier, apparently electrons. This may be con-
nected with the fact that the quantization condition (1.1)
is not satisfied for holes, or else that holes make a
small contribution to the conductivity.

IV. THIN SEMIMETALLIC AND SEMICONDUCTING
FILMS IN A MAGNETIC FIELD

If a thin film is placed in a magnetic field, then the
quantization of electron motion will be due both to the
limited size of the sample and to the presence of Landau
levels. In a transverse field, the transverse motion is
independently quantized as a result of the limited size
of the film, and the longitudinal motion is quantized as
a result of the presence of the magnetic field. Hence
the spectrum becomes purely discrete, and the energy
levels are produced as a result of superposition of film
levels and Landau levels. On the other hand, in the case
of a longitudinal field it is impossible to separate the
influence of the limited transverse dimensions of the
film and of the magnetic field. In consequence of the
joint action of these factors, the transverse motion of
electrons becomes quantized, and the longitudinal mo-
tion remains quasiclassical as before, but an anisotropy
of the effective masses arises in this case.

Thus, when a magnetic field is superimposed on a
film, the spectrum becomes discrete or quasidiscrete.
This circumstance also must lead to oscillations of the
kinetic and thermodynamic quantities. In the present
case, however, the oscillations are possible both when
the film thickness changes and when the field changes.
If the film is sufficiently thick, then as the field varies
the oscillations are transformed into the well-known
oscillations of the de Haas van Alphen type for the dia-
magnetic susceptibility, of the Shubnikov—de Haas type
for the conductivity in the magnetic field, etc.

1. Oscillations of the Magnetic Susceptibility in a Thin
Film

The diamagnetic properties in a longitudinal field
were first considered by Kosevich and Lifshitz12-1, and
the quantization was investigated both quasiclassically
and by exact solution of Schrodinger's equation with a
specially chosen film potential. For semimetals and
semiconductors, when the lower discrete levels are
filled and the quasiclassical approximation does not
hold, the second case is of greatest interest. If the po-
tential in the film is approximated by a parabolic poten-
tial well

7(r) = ? f V

(the parameter o>0 increases with increasing thickness;
an estimate can be obtained from the uncertainty rela-
tion ha>o/2 = (7r/L)2h2/2m), and this yields the following
spectrum:

where ui = Vwc + u>l is the field directed along x, and wc
is the cyclotron frequency.

From (4.1) we obtain a formula for the period of the
oscillations when the magnetic field is varied:

3—Bohr magneton). In the limiting case of a macro-
scopic crystal (a>o = 0), we obtain the usual formula.

At a fixed film thickness, the period of the oscillation
A(l/H) decreases with increasing magnetic field. This
is connected with the fact that the distance between the
"magnetofilm" levels depends less on the magnetic
field than the intervals between the Landau levels in the
bulky sample.

It is important to note that in a film, the criterion for
the existence of the de Haas—van Alphen effect becomes
less stringent. In a bulky sample, the magnetic field
should be sufficiently strong to satisfy the conditions

C00T > 1, h(Oc » kBT. (4.3)

In a film, the role of the cyclotron frequency is
played by the "magnetofilm" frequency £>, and the cri-
terion takes the form

,T. (4.4)

At relatively small thicknesses w is determined es-
sentially by the value of Wo- Therefore, the de Haas-
van Alphen criterion is satisfied even in weak magnetic
fields.

The oscillation period, however, will be large at
large values of aj0, since the change of the magnetic
field will have a relatively small effect on the magnitude
of a>. Indeed, in order for oscillations to take place, it
is necessary that the upper filled magnetofilm level
rise by hu . This rise is equal to the product of the
change of the distance between neighboring levels

/iCOc —

and the number of filled levels. Consequently
A,. to03

For acceptable values of the period of the oscillations
A (IT1) it is necessary that the number of filled levels
/ip/hwo be not very small. We present estimates for
Bi films, for which film levels were observed. At a
thickness L ~ 2000 A and H ~ 103 G (wc ~ 0.3 o>0) we
obtain for the oscillation period A<A>C a value on the
order of the cyclotron frequency a;c itself.

Oscillations of the magnetic susceptibility occur also
when the thickness of the film L changes. These oscilla-
tions, however, arise only in a definite thickness inter-
val. At large L, the criterion for the de Haas—van
Alphen effect is not satisfied if the magnetic field is
insufficiently strong (a>c ^ 1/T). On the other hand, if
the magnetic field is strong (wc > 1 /T) , then the oscilla-
tions do not arise for another reason. The level shift
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will be insufficient, since the change of the thickness has
little effect on w. With decreasing thickness, the effect
disappears when only one subband is populated. This
minimum value of the thickness increases with increas-
ing magnetic field.

For the intermediate region of thicknesses, the per-
iod of the oscillations can be readily obtained from
qualitative considerations described above.

If we assume in addition that wc ^ Uo, then we ob-
tain

L (4.5)

For the presented parameters in the Bi film we have
A L ~ 200 A.

We now proceed to consider diamagnetism for the
case when the field is perpendicular to the film. At this
field orientation, the energy spectrum of the electrons
is a superposition of film and magnetic energy levels
% = '£s + (M + l/2)hwc . At a constant thickness, the
change of the magnetic field leads to a non- simultaneous
crossing of the Fermi surface by levels with different
values of s. Therefore, in a film, for an arbitrary form
of the film potential, there will occur a decrease of the
amplitude of the oscillations, and the periodicity in their
arrangement will become violated. On the other hand, if
only one film level is populated, then the violation of the
periodicity will not take place. The period of the os-
cillations is in this case

and increases with decreasing L.
The oscillations of the diamagnetic susceptibility

will occur also when L varies, since the number of the
populated magnetic levels changes stepwise at certain
values of the thickness.

Singularities in the state density in the film also lead
to oscillations of the spin paramagnetic susceptibilitym .
The origin of this effect can be readily understood from
the following considerations. Let the Fermi level in
the absence of a magnetic field lie between the levels
Ss and Us + j . Under the condition of total degeneracy
kgT < g.s + x — g s , then the magnetic moment is

M --- N,
(4.6)

As long as the magnetic field is weak, so that r\ ±
lies on one step of the interval (Ss, g s + J , the magnetic
moment will be proportional to the field, since the state
density is constant in this energy interval. If crossing
of the level gg takes place with increasing field, then
the magnetic susceptibility decreases jumpwise, and
when the level £ s +1 is crossed it increases jumpwise.
With further increase of the field, the magnetic suscep-
tibility will pulsate.

2. Galvanomagnetic Phenomena in Thin Films

We proceed to consider galvanomagnetic phenomena
in thin films. A study of these phenomena is of practical
interest in connection with the fact that these phenomena
are used in the determination of the carrier density and
the singularities of the energy spectrum of the semi-
conductors. The relations obtained by considering

galvanomagnetic phenomena in a bulky semiconductor
cannot be transferred automatically to a thin film with-
out taking into account the specific features of the film
states. We shall stop to discuss separately the case of
a quantizing magnetic field and the case when the Landau
quantization is not significant.

a) Quantizing magnetic field. In the case of a quan-
tizing magnetic field, a realignment of the spectrum
takes place as a result of the limited dimensions of the
sample and of the appearance of Landau levels.

Transverse galvanomagnetic phenomena in a bulky
sample were first considered by Titeicat34] and later a
strict quantum theory based on the solution of the equa-
tion for the density matrix was proposed by Adams and
Holstein[35:. Erukhimov and one of the authors solved
this problem as applied to a film[36].

For an electron in a transverse magnetic field and
longitudinal electric field, the wave function is propor-
tional to exp (- (x — x£.)2/Z2), and the spectrum is given by

«Mk={M + ±)kuc + gs-egx°h, (4.7)

where k is in this case the projection of the quasimo-
mentum on the y axis, the oscillation center is

the magnetic length I = (h/m*u>c) , and %s are the film
levels. The random character of the scattering, just as
in a bulky sample, causes the perturbed state to be im-
pure, and transitions arise between the stationary levels.
In this case the electron system should be described by
a density matrix. The Hall current jy has a definite
value already in the stationary state. The Hall constant
will also equal R = 1/ecn, but the concentration in this
case is a function of L and H. Since the dependence of ip
on x is described by a real function, the current j x along
the electric field can appear only as a result of scatter-
ing. Scattering gives rise to transitions with a change
of discrete quantum numbers s and M and of the oscilla-
tion center x^, which runs through a continuous set of
values. Inasmuch as the wave function is localized in
the interval I, the matrix elements of the scattering
potential are significantly different from 0 only for
those transitions for which x£ — x^/ ~ I. For such tran-
sitions, the electric energy should change by an amount
e ¥ I. H the electric field is weak and the intervals be-
tween the magnetic levels and the film levels are suffi-
ciently large, so that hwc S> eel and AES 3> efl, then
the energy conservation law forbids any transitions be-
tween the stationary states. This situation is typical of
a film. In a bulky sample, where the energy of the mo-
tion of the electrons along the magnetic field is contin-
uous, transitions between the stationary states are
possible at an arbitrarily weak electric field E. This
circumstance makes it possible to seek an addition to
the density matrix in the bulky crystal in the form of a
series of powers of E, leading to Ohm's law in the case
of weak fields. On the other hand, in the case of a film
the current is practically nonexistent up to fields
E <; Eo = hwc/eZ, i.e., fields in which the electron ac-
quires an energy ho>c over the magnetic length.

Under the condition that one magnetic and one film
level are filled, the calculations[36] lead to the following
dependence of the dissipative current j x on the inten-
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sity E

>{-um- (4.8)

When several magnetic levels are populated, the
form of jx(E) remains qualitatively unchanged, but the
parameter Eo becomes a nonmonotonic function of H,
leading to an oscillatory dependence of the dissipative
current on the magnetic field.

For very large values of the magnetic field, when
only one magnetic level is populated, this dependence
becomes monotonic. In order for the magnetic field to
be quantizing, it is necessary to satisfy the conditions

A « *«,, kBT « toc. (4.9)

The second of these conditions does not impose any rigid
limitations on the temperature, especially when the
cyclotron mass m c = Vm*m* is small, as is the case,
for example, in Bi films, in which quantization of the
transverse motion was observed, or in InSb. The condi-
tion (4.9) is more stringent with respect to the relaxa-
tion time or its associated mobility, which in films is
lower than in the bulky sample. Comparatively more
promising in the sense of satisfying the conditions (4.9)
are InSb films, in which, owing to the isotropy of the
dispersion law, the cyclotron mass is small for any film
orientation: mg ~ 0.01 m0. For an isotropic dispersion
law, conditions (4.9) are equivalent to the condition

In a longitudinal quantizing magnetic field :6°3 the
situation changes radically, since the motion along the
film can be regarded as quasi-classical. In considering
the de Haas—van Alphen effect it was noted that the
presence of a longitudinal magnetic field leads (see
(4.1)) to an increase in the distance between the discrete
film levels, which is effectively equivalent to a decrease
of the thickness. The influence of the magnetic field on
the motion along the film results, as it were, in an in-
crease of the effective mass in a direction perpendicular
to the field. When the magnetic field changes, the density
of states on the Fermi surface will oscillate. In the
de Haas—van Alphen effect, this has led to pulsations of
the magnetic susceptibility, and in this case pulsations
of the current will take place (the Shubnikov—de Haas
effect). Oscillations will arise also when the thickness
changes. The criterion for the existence of the effect
will evidently be the same as in the case of the de Haas-
van Alphen effect (4.3).

b) Nonquantizing transverse magnetic field. Let us
consider the case when the Landau quantization can be
neglected (conditions (4.9) are not satisfied). In a trans-
verse magnetic field, if a relaxation time can be intro-
duced, the dependence of the Hall constant RJJ and of the
magneto-resistance Ap/p on T will be the same in the
film as in the bulky sample, since the dimensionality of
the space is not essential in the derivation of these re -
lations. The Hall constant and the magneto-resistance
in a bulky crystal are obtained by the kinetic-equation
method. On going over to a film, it is natural to assume
that the kinetic equation is valid only when considering
longitudinal carrier motion, which can be regarded as
quasiclassical. A non-quantizing magnetic field, direc-
ted perpendicular to the film, does not violate the quasi-

classical character of the longitudinal motion. Hence
the kinetic-equation method can be used to calculate the
Hall effect and the magnetoresistance along the film in
a transverse magnetic field.

If the magnetic field is weak (wc <C 1/T), then RJJ and
Ap/p are determined, as is well-known, by the relations

(4.10)R =_JEiJ_ Ap _t'H\eH \2 i't-T

(the averaging over the electronic states is denoted by
a bar).

Since it can be approximately assumed for different
scattering mechanisms when one subband is filled, that
T is proportional to L, it follows from (4.10) that the
Hall constant is connected with the concentration in the
same manner as in the bulky sample. The magneto-
resistance then decreases as L2 with decreasing thick-
ness£22 '283.

If many subbands are populated, then, in connection
with the oscillations of T(L) , the quantity Ap/p should
also oscillate, and the dependence of RH(L) will be de-
termined by the dependence of the concentration on the
thickness[22].

In the case of a strong non-quantizing field
(CL)C ^ 1/T, ha>c ^ kgT), the Hall constant and the
magnetoresistance are determined by the formulas

flH=-L, ^P_-^rfI)_l. (4.H)
enc p V x / x '

In this case the Hall constant again depends on the
thickness only via the concentration, and the magneto-
resistance does not depend significantly on L t2S].

3. COMPARISON WITH EXPERIMENT

A dependence of RJJ and of Ap/p on the thickness was
observed experimentally112'133 for magnetic fields
H ~ 104 G. For the experimentally-observed values of
mobility (p. ~ 103 cm2/V-sec), these fields are weak.
For magnetoresistance, the dependence on L is connec-
ted with a change of the relaxation time, just as is the
case for mobility. For small thicknesses, as follows
from the foregoing reasoning, Ap/p tends to 0. For
thicknesses larger than Li it can be assumed that de-
generacy takes place, and RJJ is determined under the
condition njj = ne by the formula

(4.12)1 V-h —

As shown in t 22 j , the concentration is an almost mono-
tonic function of the thickness for L > Li.

As was shown above (Chapters III and II), the aniso-
tropy of the effective masses in Bi makes it possible to
neglect the oscillations of /xn in comparison with the
oscillations of /Lte. Therefore, the factor
(/Lih- Me)(Mh + Me) i n (4-12) w i l 1 oscillate with changing
L, thus apparently explaining the experimentally ob-
served oscillations of R. In real films it may turn out
that the electron and hole densities are not equal. Then
formula (4.12) is somewhat modified. However, if we
disregard the effective-mass anisotropy, we cannot ex-
plain the strong oscillations of the Hall constant ob-
served inC12'133.

When the film is so thin that one subband is popula-
ted, the Hall constant decreases with decreasing L, as
can be seen from the experimental curve (see Fig. 5).
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If we use the square-well model to approximate the
quantization Jaw, then at small thicknesses on the order
of 300-400 At24] the overlap of the energy bands in the
Bi films should vanish. This should lead to an exponen-
tial decrease of the concentration with decreasing thick-
ness. The decrease of the concentration should cause a
sharp increase of R, which is not observed experimen-
tally. This shows that in the investigated samples no
transition to the dielectric state takes place, i.e., evi-
dently, at small thicknesses the square-well model gives
a poor approximation.

V. TEMPERATURE OF TRANSITION INTO THE
SUPERCONDUCTING STATE IN THIN FILMS WITH
QUASIDISCRETE ENERGY SPECTRUM

The conditions for the appearance of superconductiv-
ity in films with a quantized spectrum differ from the
corresponding conditions in the bulky sample. This is
connected with the dependence of the electron density
of states on the thickness of the film and with the special
character of the Cooper pairing. The electrons forming
Cooper pairs in the film should have opposite planar
momenta k, just as in the bulky sample. As to the dis-
crete quantum number s, it should be the same for both
electrons of the pair, since the electrons from different
subbands with a given energy have different k. Thus,
the pairing of the electrons in different subbands can be
neglected, at least so long as A '6S 3> kgT c (correspond-
ing to thicknesses L ^ 10"5 cm).

The described picture of the Cooper pairing of the
electrons in a film is analogous to the two-band model
of a bulky superconductorC37:, in which pairing of the
electrons belonging to different subbands is neglected.

1. Case of Population of One Subband

Of the greatest interest is the case of population of
only one subband (semimetals, semiconductors), when
the specific character of the film state is most strongly
pronounced. We note that superconductivity was recently
observed in degenerate semiconductors (GeTe, SrTiO3,
PbTe)[273.

When electrons populate one subband, the problem
in k-space becomes two-dimensional, although the film
is essentially a three-dimensional formation (L^> a).
The usual method of finding the energy gap leads to an
equation similar to the Cooper equation for the bulky
superconductor:

(5.1)

Here V—volume of the film. The summation in (5.1) is
carried out over the two-dimensional Brillouin zone.
The interaction constant g, generally speaking, differs
somewhat from g in the bulky sample. This difference,
however, is not fundamental, and it at least does not con-
tain the factors 1/L, as can be seen from the expression
for the interaction constant obtained on the basis of a
consideration of the Frohlich Hamiltonian
g = |Mjjjf' |2/hw, where the matrix element is

and ip and u are normalized to the volume of the film.

The two-dimensional Cooper equation leadsl3B1 to the
usual relation between the critical temperature and the
energy gap at absolute zero: 2A = 3.52 kgT, with

A distinguishing feature of this case is the fact that the
energy gap and T c are exponentially dependent on the
film thickness. This circumstance is due to the depen-
dence of the density of the states on L in one subband:
as seen from (5.2), the argument of the exponential can
be represented in the form - l /gN(L). It follows from
(5.2) that if a bulky semiconductor or semimetal is a
superconductor, then in the film state, at sufficiently
small thickness, it is possible to attain a higher value
of the critical temperature. Another feature of T c in
film when only one subband is filled is the weak depen-
dence on the carrier density. This feature is connected
with the fact that the density of states at the Fermi level
does not depend on the concentration, and the charac-
teristic phonon frequency wc and the coupling constant
g cannot give a strong dependence, since only intervalley
transitions are important in superconducting semicon-
ductors (see below). Of course, these conclusions are
not valid for very small concentrations when the elec-
tron system is far from degeneracy. The characteristic
phonon frequency wc is determined by the mean value
of the momentum of the virtual phonon. Attraction be-
tween electrons corresponds to virtual-phonon momenta
on the order of the difference between the momenta of
the interacting electrons.

In this connection, Cooper pairing of electrons from
one valley in semiconductors and semimetals will
correspond to a small phonon frequency, much lower
than the Debye frequency. Consequently, in semiconduc-
tors with one valley it is impossible to expect a high
Tc

L32i. Cohen called attention to the fact that in a multi-
valley semiconductor, high values of the critical tem-
perature are possible as a result of intervalley transi-
tions lm . In the case of a film, a similar situation is
obtained, i.e., we can expect the appearance of super-
conductivity only in the presence of several valleys.
Consequently, in formula (5.2) the characteristic phonon
frequency is of the order of the Debye frequency, since
intervalley transitions correspond to a momentum trans-
fer on the order of the reciprocal lattice constant.

We have noted above that the density of states in a
film at the Fermi level, when one subband is filled, does
not depend on the carrier density. In this connection,
we can expect the appearance of superconductivity in
semiconducting films with low carrier density. Such a
semiconductor, in the immediate vicinity of 0 tempera-
ture, is nondegenerate (the impurity band is narrow and
does not overlap the conduction band). With increasing
temperature, degeneracy may set in. The possibility of
occurrence of superconductivity of semiconductors in
the presence of such a situation was investigated by
Kogan and one of the authors U11. It was shown there
that superconductivity can appear in the temperature
interval bounded from both above and below.

The existence of a lower temperature limit for
superconductivity T s u p is connected with the fact that
when T < T s u p the semiconductor is far from degener-
acy and no Cooper pairing takes place.
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2. Case of a Metal Film

The peculiarities of superconductivity at large car-
rier density, when several energy subbands are filled
in the film, were first considered by Blatt and Thomp-
son C42:. They solved numerically the three dimensional
Cooper equation with allowance for the quantization of
the electron energy, for fixed parameters characteris-
tic of metals. In142-1 no account was taken of the special
character of the Cooper pairing of the electrons in the
film, so that the obtained oscillations of the critical
temperature with varying thickness are due entirely to
the effect of pulsation of the density of states. The in-
fluence of the dependence of the density of states on the
thickness at T c was investigated also in[43>44:i .

As was noted, Cooper pairing in a film should occur
only between electrons belonging to the same subband.
Hence, the system of two-dimensional equations should
be of the formC45]

A ( t i l -

•Si
( 5 . 3 )

w h e r e A s — g a p i n t h e s - t h s u b b a n d , g s / — i n t e r a c t i o n c o n -

s t a n t c o r r e s p o n d i n g t o t h e v i r t u a l t r a n s i t i o n s b e t w e e n

t h e s - t h a n d l-th s u b b a n d s , a n d c e = V A 2 + | | i s t h e e n -

e r g y o f t h e e l e c t r o n i n t h e n o r m a l m e t a l , r e c k o n e d f r o m

t h e F e r m i l e v e l , a s i n t h e m o d e l o f a m u l t i - b a n d b u l k y

m e t a l .

T h e c r i t i c a l t e m p e r a t u r e w i l l b e t h e s a m e f o r a l l

s u b b a n d s , a l t h o u g h t h e e n e r g y g a p s A s , g e n e r a l l y s p e a k -

i n g , a r e d i f f e r e n t . F r o m t h e s y s t e m ( 5 . 3 ) w e o b t a i n a n

e x p r e s s i o n f o r t h e c r i t i c a l t e m p e r a t u r e :

T c = 1,14/MO,. exp I — -

I
( 5 . 4 )

w h e r e X e = A e / A a s T — T c .

T h e c o u p l i n g c o n s t a n t s g s j , g e n e r a l l y s p e a k i n g a r e

n o t i d e n t i c a l . H o w e v e r , i f w e n e g l e c t t h e i r d i f f e r e n c e ,

t h e g a p s A s t u r n o u t t o b e e q u a l a n d f o r m u l a ( 5 . 4 ) b e -

c o m e s

( 5 . 5 )

i . e . , t h e d i s t i n c t i o n f r o m a b u l k y s a m p l e w i l l o c c u r o n l y

i n t h e d e n s i t y o f s t a t e s . I n v i e w o f t h e o s c i l l a t o r y c h a r -

a c t e r o f N f ( L ) , t h e c r i t i c a l t e m p e r a t u r e w i l l a l s o o s c i l -

l a t e w i t h c h a n g i n g f i l m t h i c k n e s s . S u c h o s c i l l a t i o n s c a n

b e o b s e r v e d e x p e r i m e n t a l l y , a p p a r e n t l y , o n l y i n s e m i -

c o n d u c t i n g f i l m s .

W h e n t h e n u m b e r o f p o p u l a t e d s u b b a n d s i s l a r g e

( m e t a l l i c f i l m ) , t h e o s c i l l a t i o n s h a v e a s m a l l p e r i o d ( o n

t h e o r d e r o f t h e l a t t i c e p a r a m e t e r ) . I t i s t h e r e f o r e

m e a n i n g f u l t o s p e a k o n l y o f t h e a v e r a g e N f ( L ) d e p e n -

d e n c e . T h e a v e r a g e v a l u e o f N f , g e n e r a l l y s p e a k i n g , i n -

c r e a s e s w i t h d e c r e a s i n g L . H o w e v e r , t h i s e f f e c t i s

s m a l l . A c c o r d i n g t o e s t i m a t e s C 4 4 : , e v e n u n d e r t h e m o s t

f a v o r a b l e c h o i c e o f t h e b o u n d a r y c o n d i t i o n s , l e a d i n g t o

a m a x i m u m d e n s i t y o f s t a t e s , t h i s e f f e c t c a n n o t e x p l a i n

t h e g r o w t h o f t h e c r i t i c a l t e m p e r a t u r e i n f i l m s o f c e r t a i n

m e t a l s , o b s e r v e d e x p e r i m e n t a l l y 1 4 6 ' 4 7 ' 4 8 ' 5 7 - 1 ( a r e v i e w o f

c e r t a i n e x p e r i m e n t a l d a t a o n t h e v a r i a t i o n o f T c i n t h i n

m e t a l l i c f i l m s i s c o n t a i n e d i n t h e n o t e b y M a k s i m o v [ 4 9 ] ) .

A n e x p l a n a t i o n o f t h e i n c r e a s e i n t h e c r i t i c a l t e m -

p e r a t u r e w i t h i n t h e f r a m e w o r k o f a m o d e l w i t h q u a s i -

d i s c r e t e s p e c t r u m , d u e t o t h e d i f f e r e n c e i n t h e c o n s t a n t s ,

w a s c a r r i e d o u t i n C 5 0 ' 5 1 ] . I t i s s h o w n i n [ 5 0 : t h a t t h e a v e r -

a g e v a l u e o f t h e i n t e r a c t i o n c o n s t a n t , w h e n t h e f i l m

t h i c k n e s s i s r e d u c e d b y %, i n c r e a s e s b y a f a c t o r

( 1 + a / L ) , l e a d i n g t o a g r o w t h o f t h e c r i t i c a l t e m p e r a -

t u r e i n a c c o r d a n c e w i t h t h e f o r m u l a

w h e r e a i s o n t h e o r d e r o f t h e l a t t i c e c o n s t a n t . E s t i -

m a t e s m a d e f o r A l f i l m s a r e i n g o o d a g r e e m e n t w i t h t h e

e x p e r i m e n t .

A n o t h e r p o s s i b l e e x p l a n a t i o n f o r t h e i n c r e a s e o f T c

i n a l u m i n u m f i l m s w a s g i v e n b y S t r o n g i n a n d P a s k i n 1 4 7 3

o n t h e b a s i s o f t h e n o n - p h o n o n m e c h a n i s m o f s u p e r -

c o n d u c t i v i t y , c o n n e c t e d w i t h t h e i n t e r a c t i o n o f t h e e l e c -

t r o n s w i t h n e u t r a l m o l e c u l e s o n t h e s u r f a c e , f i r s t p r o -

p o s e d b y G i n z b u r g [ 5 2 ] . F r o m t h e p o i n t o f v i e w o f t h e

i n d i c a t e d m e c h a n i s m , t h e i n c r e a s e o f T c i n t h e f i l m c a n

b e a t t r i b u t e d t o t h e i n t e r a c t i o n o f t h e e l e c t r o n s w i t h t h e

o x i d e o n t h e s u r f a c e . I n t h i s c o n n e c t i o n , o f i n t e r e s t a r e

t h e e x p e r i m e n t s o f A l e k s e e v s k i i a n d M i k h e e v a : 4 8 ] , i n

w h i c h t h e c r i t i c a l t e m p e r a t u r e i n a l u m i n u m f i l m s w a s

i n d e p e n d e n t o f t h e t h i c k n e s s o f t h e o x i d e l a y e r .

T h e q u a n t i z a t i o n e f f e c t s c a n b e s i g n i f i c a n t i n t h o s e

m e t a l s i n w h i c h t h e r e e x i s t g r o u p s o f e l e c t r o n s a n d

h o l e s w i t h s m a l l e f f e c t i v e m a s s e s a n d s m a l l c o n c e n t r a -

t i o n s . I n p a r t i c u l a r , s u c h a f e a t u r e i s p o s s e s s e d b y t h e

F e r m i s u r f a c e i n A 1 [ B 3 3 . R e c e n t e x p e r i m e n t s p e r f o r m e d

b y A l e k s e e v s k i i a n d V e d e n e e v o n p h o t o a b s o r p t i o n [ 5 8 ]

a p p a r e n t l y c o n f i r m t h e p r e s e n c e o f a d i s c r e t e s p e c t r u m

i n a l u m i n u m f i l m s .

T h e p r o b l e m o f d e t e r m i n i n g t h e c r i t i c a l t e m p e r a t u r e

a n d t h e s p e c t r u m o f s i n g l e - p a r t i c l e e x c i t a t i o n s f o r t h e

c a s e w h e n t h e i n t e r a c t i o n o f t h e e l e c t r o n s i s n o n h o m o -

g e n e o u s o v e r t h e t h i c k n e s s o f t h e f i l m w a s c o n s i d e r e d

i n [ 5 4 j . I t w a s s h o w n t h a t t h e r e s u l t s c o i n c i d e w i t h t h e

c a s e w h e n t h e i n t e r a c t i o n i s h o m o g e n e o u s o v e r t h e

t h i c k n e s s , w i t h a n a c c u r a c y u p t o a r e p l a c e m e n t o f t h e

i n t e r a c t i o n c o n s t a n t b y i t s m e a n v a l u e . T h e r e l a t i o n s f o r

T c a n d A o b t a i n e d i n t S 4 ] f o l l o w f r o m t h e r e s u l t s o f 1 4 5 ' 5 0 3

i f t h e c o u p l i n g c o n s t a n t s f o r t h e d i f f e r e n t s u b b a n d s c a n

b e r e g a r d e d a s i d e n t i c a l . I n p a r t i c u l a r , i n t h i s c a s e t h e

e n e r g y g a p s p e r t a i n i n g t o d i f f e r e n t s u b b a n d s , a s a l r e a d y

n o t e d , w i l l b e t h e s a m e
* * *

T h e e x p e r i m e n t a l m a t e r i a l a c c u m u l a t e d t o d a t e

p r o v e s c o n v i n c i n g l y t h e e x i s t e n c e o f q u a n t u m s i z e e f f e c t s

i n t h i n f i l m s . H o w e v e r , t h e r a n g e o f i n v e s t i g a t e d m a -

t e r i a l s i s s t i l l q u i t e s m a l l . T h i s i s c o n n e c t e d , o n t h e o n e

h a n d , w i t h t h e d i f f i c u l t i e s o f o b t a i n i n g p e r f e c t f i l m s , a n d

a l s o w i t h t h e f a c t t h a t u n t i l r e c e n t l y t h e n u m b e r o f e x -

p e r i m e n t a l i n v e s t i g a t i o n s a i m e d a t o b s e r v i n g q u a n t u m

s i z e e f f e c t i n s e m i c o n d u c t i n g a n d s e m i m e t a l l i c f i l m s

w a s r e l a t i v e l y s m a l l .

T h e e x p e r i m e n t e r s a r e n o w b e i n g o f f e r e d m u c h g r e a -

t e r p o s s i b i l i t i e s a s a r e s u l t n o t o n l y o f p r o g r e s s i n t h e

t e c h n o l o g y o f f i l m p r e p a r a t i o n , b u t a l s o a s a r e s u l t o f

r e c e n t t h e o r e t i c a l r e s e a r c h , w h i c h h a s p r e d i c t e d m a n y

e f f e c t s a c c e s s i b l e t o o b s e r v a t i o n . I n a d d i t i o n t o t h e

a l r e a d y o b s e r v e d p u l s a t i o n s o f t h e k i n e t i c c o e f f i c i e n t s

w i t h v a r y i n g f i l m t h i c k n e s s , i t h a s b e e n s h o w n b y n o w

t h a t s i z e q u a n t i z a t i o n g r e a t l y i n f l u e n c e s s u c h p h e n o m e n a

a s t h e d e H a a s — v a n A l p h e n e f f e c t , t h e S h u b n i k o v — d e

H a a s e f f e c t , a n d t h e s u p e r c o n d u c t i v i t y o f s e m i c o n d u c t i n g

f i l m s . S i z e q u a n t i z a t i o n c a n a l s o l e a d t o a n o t i c e a b l e
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increase of the width of the forbidden band in semicon-
ductors and the conversion of a semimetal into a dielec-
tric, to the appearance of resonant absorption of light in
films, to an oscillatory dependence of the film resis-
tance on the longitudinal electric field, etc.

To obtain more detailed information concerning the
characteristics of real films it is necessary to develop
effective methods of obtaining the dispersion law in the
presence of quantization from the experimental data.

In connection with the progress noted recently in the
procedures of obtaining perfect semiconducting and
semimetallic films, we can expect the number of inves-
tigated materials to increase. There are promising
searches for quantum effects in films of III-V semicon-
ductor compounds, in which the effective mass is small
and the mobility is large (for example, InSb). To ob-
serve the semimetal-dielectric conversion with increas-
ing thickness, a convenient material is an alloy of Bi
and Sb, in which the overlap of the energy bands is
smaller than in pure Bi, and can change with varying
Sb concentration. It is also desirable to perform ex-
periments with films of superconducting semiconductors
(for example, GeTe).

One can hope that quantum size effects will turn out
to be important also in the study of near-surface reg-
ions of semiconductors.

Quantum size effects are not only of independent
interest, but in principle can be useful for the deter-
mination of the parameters of bulky crystals. However,
no suitable procedure has yet been developed. Very
promising is the creation of film instruments, the
operating principle of which is based on the use of dif-
ferent quantum effects [10>62"65:l.
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