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I. INTRODUCTION

1 HE study of transport phenomena in conductors in the
presence of a magnetic field has been the subject of
many theoretical and experimental papers. The classi-
cal theory of galvanomagnetic phenomena are dealt with
in the review of Lifshitz and Kaganov[1], and in the
monograph of Beer[2]. The classical theory and analy-
sis of experiments on thermomagnetic phenomena are
developed in the monograph of Tsidil'kovskii14-1, in the
reviews of Delves[5], Harman et al. [6 ], and Zawadski
and Kolodzieczak[7].

The classical theory of thermogalvanomagnetic
phenomena is based on the Boltzmann kinetic equation.
When the external parameters of the system, such as
the magnetic field intensity H, the temperature
T = kT° (k—Boltzmann constant, Tc—absolute tempera-
ture in degrees) are altered, appreciable quantum ef-
fects may appear, which can no longer be described by
the Boltzmann equation. Indeed, on going to the quan-
tum description of the motion of an electron in a plane
perpendicular to the magnetic field, a discrete energy
spectrum arises (Landau levels), and the electron
energy becomes dependent on H. Such a discrete
spectrum is the consequence of the quantization of the
finite orbital classical motion of the electron. The
presence of a discrete spectrum under certain condi-
tions can lead to significant changes in the thermody-
namic and kinetic characteristics of conductors. Ob-
viously, when the magnetic field is changed, a shift of
the Landau levels relative to the Fermi level takes
place. And whenever one of the Landau levels coincides
with the Fermi level, a sharp increase takes place in
the density of the electron states near the Fermi level.
This is due to the fact that the Landau levels are
strongly degenerate, and the multiplicity of the degen-
eracy is proportional to the magnetic field intensity.
Thus, the density of states at the Fermi surface is an
oscillating function of H. In order for these oscillations
to appear in the thermodynamic and kinetic character-
istics of the conductors, it is necessary that the energy

difference between the neighboring Landau levels fift
exceed the width of the thermal smearing of the Fermi
level, which equals ~kT°. At the same time, it is
necessary to satisfy one more important condition. In
all real systems there exist collisions between the
electrons and various kinds of scatterers. These col-
lisions lead to an uncertainty in the energy of the sta-
tionary states, or to a broadening of the Landau levels
by an amount ^-KT"1 (ft—Planck constant, T—charac-
teristic electron relaxation time). It is obvious that
the discrete energy spectrum exists only when fift
3> fir"1, i.e., the "distance" between the Landau levels
greatly exceeds the width of the level. Consequently,
under the conditions Kft 3> kT° and S 2 T » 1, all the
thermodynamic and kinetic characteristics of the elec-
trons , which depend on the density of the states at the
Fermi surface, will be oscillating functions of H.
Strong magnetic fields can also strongly influence the
electron scattering processes. Thus, for example, with
increasing magnetic field intensity the average elec-
tron momentum along the magnetic field decreases,
and the de Broglie wavelength Xz increases. In the
ultraquantum limit, when all the electrons are at the
lower Landau level, it may happen that Az J> a—the
average distance between the scattering centers. In
this case scattering by many centers is significant.

It becomes obvious that the description of transport
phenomena in strong magnetic fields ( f lT> 1) and at
low temperatures (fin ^> T) must be a quantum de-
scription.

During the last decade, much progress was made in
the quantum theory of galvanomagnetic phenomena, as
reflected in the review by Kubo et al. f3]. There are at
present no review articles devoted to the quantum
theory of thermomagnetic phenomena*. This is not
accidental. The point is that in the quantum theory of
galvanomagnetic phenomena it is sufficient to consider

*A recently published review by Puri and Geballe [81 ] analyzes the
experimental research on the thermal emf, dragging, and magnetophonon
oscillations of the thermal emf in n-Ge and n-InSb.
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only spatially-homogeneous systems in the presence
of only dynamic forces, such as the electric field in-
tensity E or the magnetic field intensity H, which
are included in the usual manner in the Hamiltonian of
the system, making it possible to write down directly
the Schrodinger equation for the density matrix. In the
construction of a quantum theory of thermomagnetic
phenomena, unlike galvanomagnetic ones, we encounter
a more difficult problem, since it is necessary to
consider spatially-inhomogeneous systems, so as to
include consistently into consideration not only dy-
namic forces but also forces of a static nature, due
to the spatial inhomogeneities of the temperature T
and of the chemical potential £. Further, calculation
of the volume densities of the conduction current and
of the heat flux, which are needed for the construction
of a quantum theory of thermomagnetic phenomena,
lead to new complications compared with the quantum
theory of galvanomagnetic phenomena. In order to ex-
plain the foregoing, we note that the density matrix
can be used to calculate the mean values of the quan-
tum-mechanical operators corresponding to physical
quantities. Thus, for example, it is possible to calcu-
late the charge and energy flux-density operators. But
by virtue of the macroscopic nature of the definitions
of the conduction current and the heat flux (see Sec. II)
we cannot construct quantum-mechanical operators for
these quantities. And since, for instance, the conduc-
tion current in spatially-inhomogeneous systems in a
quantizing magnetic field does not at all coincide with
the volume charge flux density, this raises a new
problem, that of separating the conduction current from
the volume charge flux density and the heat flux from
the volume energy flux density.

All these difficulties, and also the lack of a clear-
cut understanding of the formulation of the problem (as
manifest in attempts either to identify the volume
charge flux density and energy flux density, calculated
with the aid of the density matrix, with the conduction
current and the heat flux, or else to define thermody-
namic phenomena not on the basis of the conduction
current and the heat flux but some other fluxes), have
led to contradictory results and hindered the construc-
tion of a quantum theory of thermomagnetic phenomena.

Yet a theoretical analysis of the already available
experimental data on thermomagnetic phenomena in a
quantizing magnetic field uncovers new prospects and
can yield very interesting information not only on the
structure of the energy spectrum and on the carrier
relaxation mechanisms, but also on the character of
the interaction of phonons in solids, and on the absorp-
tion of sound at very high frequencies ~1010—1012 Hz,
where direct measurement of the sound absorption co-
efficient is at present practically impossible.

These prospects are uncovered because in the
region of quantizing magnetic fields and at low tem-
peratures, an appreciable contribution to the differen-
tial thermal emf of semiconductors with small con-
duction-electron density, such as n-Ge and n-InSb, is
made by the deviation of the phonons from local equili-
brium. The differential thermal emf is made up of
two parts. The first is due to the deviation of the elec-
trons from thermodynamic equilibrium as a result of
the temperature gradient existing in the system. The

second part is connected with the deviation of the
thermal phonons from equilibrium. The first is
usually called the electronic part of the thermal emf,
and the second is called the dragging thermal emf. The
electronic thermal emf in strong magnetic fields
(Sir ;§> 1) does not depend on the scattering in the case
of conductors with unequal hole and electron densities,
and is usually small. The dragging thermal emf is a
result of the fact that the temperature gradient pro-
duces a phonon flux proportional both to the tempera-
ture gradient and to the phonon mean free path Zp
~ vs/a)pp (v s = s—speed of sound, o>pp—phonon damp-
ing decrement or the frequency of relaxation of phonons
on phonons or defects, in short—the non-electronic
phonon relaxation frequency). When this phonon flux
collides with the electrons, momentum is transferred
from the phonons to the electrons. The fraction of the
momentum transferred is proportional to the frequency
of the phonon-electron collisions wep. Thus, the
dragging current, meaning also the dragging thermal
emf, is proportional to the ratio o>ep/wpp. In the
classical limit (R = 0), wep does not depend on the
magnetic field and is usually much smaller than Wpp
for semiconductors with low carrier density. This can
be easily verified with the aid of the momentum con-
servation law in collisions between electrons and pho-
nons. In the case of Maxwellian statistics, the average
electron momentum is p e = VmT . In accordance with
the momentum conservation law, the electrons can in-
teract only with phonons whose momentum is Rq < p g .
But for T° > 1°K, the average thermal momentum of
the phonons Hqx = T/v s greatly exceeds p e . There-
fore the electrons interact only with the long-wave
thermal phonons, the number of which is relatively
small.

In a quantizing magnetic field, the situation is dif-
ferent. For simplicity we consider only the quantum
limit Kfi ^> T and electrons obeying Maxwell's
statistics. In this case the localization of the electron
in a plane orthogonal to the magnetic field is deter-
mined in order of magnitude by the magnetic length
a = (cR/|e |H)1/2 (c—speed of light, e—electron
charge) or by the Larmor quantum radius, inasmuch
as the electrons populate essentially the lowest Landau
level. From the uncertainty relation it follows that the
order of magnitude of the transverse-motion momentum
is ~h/a'1. Therefore the electron moving across the
magnetic field can interact only with phonons whose
momentum is fiq < ha'1. It follows therefore that with
increasing magnetic field the volume of the phase space
of the phonons interacting with the electrons increases
in proportion to H, and this in turn leads to a rapid in-
crease of the frequency of phonon relaxation on the
electrons, coep. The latter is due to the exponential
dependence of a>ep on a (see, for example, formula
(6.19)). Inasmuch (as noted above) as the dragging
thermal emf is determined in terms of the ratio
Uep/^pp, this ratio increases with increasing H,
since wpp does not depend on H. This is precisely why,
for example, in InSb the dragging thermal emf in the
quantum limit (RS2 ;§> kT°) increases by almost 100
times. With the aid of a theoretical analysis of the
experimental dependence of the dragging thermal emf
on T and H it is possible to obtain valuable informa-
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tion on the mechanism of relaxation of long-wave pho-
nons on short-wave thermal phonons, and to find the
frequency and temperature dependences of aipp for
sound waves with length A ~ Vcfi/1 e | H.

It should also be noted that at least some of the
thermomagnetic effects have definite experimental
advantages over galvanomagnetic ones. The point is
that measurements, say, of the differential thermal
emf in strong magnetic fields are much less subject to
the influence of random inhomogeneities in the impurity
distribution than galvanomagnetic measurements, since
the transverse Nernst electric field tends to zero with
increasing magnetic field (in the classical limit),
whereas the Hall field tends to infinity. This is pre-
cisely why it is easier to separate " t rue" effects, due
to the band structure, degeneracy, and carrier scatter-
ing mechanism in the analysis of the measurements of
certain thermomagnetic effects. Thus, it has been
demonstrated experimentally that the magnetothermal
emf has a clearly pronounced classical saturation
region (in accordance with the predictions of the
theory), whereas for magnetoresistance there is prac-
tically no such region. In spite of this fact, we have at
present very limited experimental material on thermo-
magnetic phenomena in a quantizing magnetic field,
whereas the galvanomagnetic phenomena have been
thoroughly investigated in numerous experiments. This
situation obviously has been due in part to the absence,
until quite recently, of a consistent quantum theory of
thermomagnetic phenomena.

The present review is the first attempt at a con-
sistent exposition of such a theory.

The entire theory is based on the kinetic equation
for the density matrix in the mixed Wigner representa-
tion. It was just this formalism of quantum statistical
theory which turned out to be very convenient and ex-
ceedingly simple for the calculation of fluxes, and was
widely used by Eleonskii, Zyryanov, and Silint8],
Akhiezer, Bar'yakhtar, and Peletminskiif9'10], and
Zyryanovfll~14]. In the second section of the review we
discuss the problem of thermogalvanomagnetic phe-
nomena in conductors. The third section is devoted to
an exposition of a procedure for separating the conduc-
tion current from the volume charge flux density and
separating the heat flux from the volume energy flux
density, neglecting scattering. In the fourth section we
calculate the dissipative (collision) heat flux and the
conduction current in the approximation of elastic scat-
tering of the carriers. The fifth section is devoted to
the calculation also of the dissipative parts of the con-
duction current and the heat flux, but with allowance
for inelastic scattering of the electrons and phonons,
and also with allowance for the nonequilibrium nature
of the latter (the phonon dragging effect). In the sixth
section we consider thermomagnetic effects in the case
when the temperature and chemical-potential gradients
are directed parallel to the magnetic field (longitudinal
effects). The seventh section is devoted to a compari-
son of theory with experiment. This section contains a
theoretical analysis of only the most significant ex-
periments, in which various general laws, with weak
dependence on the concrete details of the structure of
the energy spectrum of the carr iers , have been estab-
lished. The appendix contains a derivation of the

kinetic equations used to calculate the charge and
energy fluxes.

n. FORMULATION OF PROBLEM IN THE THEORY
OF THERMOMAGNETIC PHENOMENA

Thermogalvanomagnetic phenomena in conducting
media, according to Landau and Lifshitz[15], are de-
termined with the aid of formulas for two vector fluxes,
namely the volume conduction-current density
j c o n ( r ) and the volume heat flux density Qx(r)- Thus,
the problem of constructing a microscopic theory of
thermogalvanomagnetic phenomena reduces to a calcu-
lation of jcon( r) and QT(*") . Before we proceed to
calculate these quantities, let us stop to define them.
The most general definition of jcon( r) is given in115-1.
According to [ l s l , Jcon(r ) *s that part of the volume
density of the charge flux j ( r ), which contributes to
the transport of the charge through the cross section
of the entire conductor. Q T ( T ) is analogously defined
as that part of the volume energy flux density Q( r )
which makes the contribution to the energy transport
through the cross section of the entire conductor at
j c o n ( r ) = 0. In other words, Q T ( T ) is the energy
flux of the thermal random motion of the carriers.
The kinetic coefficients in jCon( r) a"d Q T ( T ) should
satisfy the Einstein relation and the Onsager symmetry
principle—requirements imposed on these fluxes by
the thermodynamics of irreversible processes. As is
well known, the Einstein relation is the consequence of
the principle of maximum entropy at thermodynamic
equilibrium. Maximum entropy corresponds to a state
in which the temperature T and the electrochemical
potential £q> = £ + etp (<p—electric-field potential) are
constant along the entire system1-161; in this case both
the conduction current and the heat flux vanish. Under
deviations from the thermodynamic equilibrium, a heat
flux and a conduction current are produced in the elec-
tron system, and are proportional in the case of small
deviations from equilibrium to the spatial gradients:
VT and -v£q> = e ( E - ( l / e ) v £ ), E = -V<p. Inasmuch
as the conduction current and the heat flux are propor-
tional to v£(p, the kinetic coefficients preceding E and
( - (1/e )v£ ) in these fluxes are identical. This is the
Einstein relation. Thus, the conduction current and the
heat flux are of the form

(2.1)

The Onsager symmetry principle, which is a conse-
quence of the time reversibility of the mechanical equa-
tions of motion of particles and of the macroscopic
damping of the fluctuations of the physical quantities in
the system^6-1, leads in the presence of a magnetic field
to the following relations:

(Qr)i = to (H) (Ek —\- Vft£) -Xifc (H) VkH.

Pik(H) = -i-Xf*(-H). (2.2)

Inasmuch as j c o n and QT serve as the basis of the
theory of thermogalvanomagnetic phenomena and are
defined with the aid of volume charge and energy flux
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densities, we must be able first of all to calculate
these fluxes.

In classical theory, j and Q are determined with
the aid of the distribution function f, which is a solu-
tion of the Boltzmann equation; this solution is linear
in the electric field E and in the gradients of the
chemical potential £ and the temperature T. These
formulas are

(dp) e\f (p, r), (2.3)

(2.4)

where e is the charge and e(p) the energy of the
carrier. In quantum theory, the analog of these formu-
las are the mean values of the quantum mechanical
operators corresponding to the volume charge and
energy flux densities

j (r) = Sp (p, j),

Q(r) = Sp(p, Q),

where p—density matrix, and

±.

(2.5)
(2.6)

(2.7)
v, :if, and N are the operators of the velocity, energy,
and the carrier density, respectively.

In some earlier papers, attempts were made to use
in the theory of thermomagnetic phenomena another
definition of the charge and energy fluxes, namely

j' = eSp(v, p), Q'="5-Sp(p, vd̂ -fô v).
It is easy to verify that j ' and Q' coincide with j(r)
and Q(r ) defined in (2.5) and (2.6) only in the particu-
lar case of spatially-homogeneous systems and in the
presence of only a homogeneous electric field. In
spatially-inhomogeneous systems, when VT/0 and
V£ ^ 0, j ' and Q' differ from j and Q. The classical
limit (fi = 0) of j ' and Q', unlike that of j and Q,
does not coincide with the well known results that
follow from the Boltzmann equation. This is precisely
why attempts to use j ' and Q' in the theory of thermo-
magnetic phenomena led to erroneous results.

We shall consider further examples from which it
will be seen that j(r) does not always coincide with
j c o n ( r ) . Nor does Q ( r ) - ( £ / e ) j c o n ( r ) always coin-
cide with the heat flux Q T ( T )• If the external magnetic
field is H = 0 and at the same t ime the magnetization
of the c a r r i e r s M vanishes, then the fluxes j ( r ) and
Q ( r ) - ( £ / e ) j ( r ) due to the e lect r ic field and the
gradients of T and £ satisfy both all the requirements
of the thermodynamics of i r revers ib le p rocesses im-
posed on jcon a n d QT> and the definitions of these
fluxes as given above. This is precisely why j ( r ) can
be identified with j c o n ( r ) and Q ( r ) - ( £ / e ) j ( r ) with
the heat flux Q T ( I " )• If in the spatially-homogeneous
sys tem H ^ 0 and the fluxes a re due only to the homo-
geneous electr ic field E ( v T = v£ = 0 ) , then M will
also be spatially homogeneous. In this case j ( r ) coin-
cides with J c o n ( r ) but Q ( r ) - ( £ / e ) j c o n ( r ) no
longer coincides with the heat fluxes, since Q ( r ) con-
tains besides ( £ / e ) j c o n also the magnetic-energy flux
( - cE x M), which equals the contribution made to the
Poynting vector by the magnetization ( C/4TT ) E
x (H - B) . Thus, the heat flux is determined in this

case by the formula*

If the fluxes j ( r ) and Q(r) are due to both E and
VT and v£ , then the magnetization of the carriers
M(T( r ) , £ (r)) depends on the coordinates when
H / 0 . In this case j ( r ) no longer coincides with
Jcon(r )> since the spatial inhomogeneities of the
magnetization M will make a contribution (equal to
c curl M) to j ( r ) , in addition to the contribution of
j c o n ( r ) . Analogously, Q(r) contains, besides the heat
flux Qx( r ) , also the flux of magnetic energy Q M ( T )
which includes, besides the term - cE x M which oc-
curs also in spatially-homogeneous systems, also
terms that depend on curl M. It will be shown below
that a contribution is made to the transport of charge
through the cross section of the entire conductor only
by part of the volume density of the charge flux, equal
to the difference

jcon'(r) = Sp (p, j) — c rot M, (2.8)

and a contribution to the transport of thermal energy
is also made only by the difference

, Q)—f i«m(r)-QM(r), (2.9)

^ { ( | ) E ( | ) J I £')•
(2.10)

Formulas (2.8)—(2.10), which determine the volume
density of the conduction current and the heat flux,
serve, in accordance withf15', as the basis for the con-
struction of the microscopic theory of thermogalvano-
magnetic phenomena. The kinetic coefficients charac-
terizing jcon( r) and Q T ( T ) satisfy both the Einstein
relation and the Onsager symmetry principle. Thus,
the problem of the microscopic theory of thermo-
galvanomagnetic phenomena reduces:

1) To the calculation of j(r ) = Tr(p, j ) and Q(r )
= Tr(pQ) and

2) to the separation of jCon( r) from j ( r ) and of
QT ( r ) fromQ(r).

Obraztsov[17] proposes to determine the thermo-
magnetic coefficients for spatially-homogeneous media
and for the temperature and chemical-potential grad-
ients with the aid of the so-called total fluxes (volume
plus surface) per unit area of the conductor cross
section. This formulation of the problem is a particu-
lar case of the more general formulation described
in[15].

In the case of spatial inhomogeneities of T and £,
formula (2.8) is well known and is the consequence of
averaging of the Lorentz equations for the microscopic
electromagnetic fieldt151. However, the flux of the
magnetic energy QMC1") now no longer reduces to the
contribution made to the Poynting vector by the mag-
netization, and is expressed by the more complicated
formula (2.10), which was derived in[18] (see also[19'20]).

In concluding this section we note that the thermo-
galvanomagnetic coefficients determined with the aid
of the fluxes (2.1) are perfectly identical for both
classical and quantum systems and are given, for ex-

*[E(H-B)] =EX(H-B)
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ample, in[15' . We shall present here formulas for
only some of them.

Under isothermal conditions at a specified tempera-
ture gradient v x T l H, the differential thermal
emf axx the Nernst coefficient N = CKxy/H and the
thermal conductivity K X characterizing the heat flux
along ( -Vx H ) are all determined with the aid of (2.1)
under the condition j c o n = 0 and VyT = 0. For the
case of an isotropic medium, when all the tensors of
the kinetic coefficients in (2.1) have the structure

/ Axx Axy 0 \
-Axy 4 . 0 ,

\ 0 0 AZJ

we get

la + Co)'1,

and the electric resistance is given by

Pxx = P_L = Oxx (alx + dlj,)"1,

(2.11)
(2.12)
(2.13)

(2.14)

The Rigghi-Leduc effect* is adiabatic and is obtained
from (2.1) under the conditions VXT ^ 0, v y T ^ 0,
icon = ®> an(* (QT)y = 0- ^ a n isotropic medium we
have

VyT=[XxAy-txy*x* + *xy\ ("i)"1 ~*J (2.15)

(Kj.—thermal conductivity of the electrons and phonons).
In the case of strong magnetic fields (QT ^> 1) we
have CTxy » crjcx, /3xy » £xx, « x y ;§> «xx, since the
non-diagonal components do not depend on the scatter-
ing, whereas the diagonal ones are proportional to
1/SIT. However, the inequality crXy ^> cr^ is violated
in conductors for which the electron density ne = %
(nh—hole density). This can be easily understood by
recalling that the electric field E 1 H causes carrier
drift with velocity VE = cE x H/H2, and this velocity
depends neither on the sign of the charge nor on its
mass. Therefore both the holes and the electrons drift
with the same velocity, and if ne = nh, then the elec-
tric current vanishes and crXy = 0. Consequently, when
ne = % expansion of ffxy in powers of the parameter
(1 /SJT) begins not with the zeroth degree, as in the
case ne = nh, but with the second: (1/flr)2 .

HI. NONDISSIPATIVE ELECTRON FLUXES IN A
QUANTIZING MAGNETIC FIELD

As is well known, the force F i H acting on the
electrons leads in the zeroth approximation in the
scattering only to a drift with velocity

Such a motion of the electrons is produced by dynamic
forces, and for example for the electric field E and
for the gravitational field g we have respectively

*This effect consists in the fact that the mutually perpendicular
magnetic field and the heat flux in conductors lead to the appearance
of a temperature gradient in a direction perpendicular to both the mag-
netic field and to the heat flux (in the "Hall direction").

FJJ = eE and Fg = mg. The dynamic forces can be
taken into account directly in the Hamiltonian of the
electrons. There exist forces of a different nature,
due to the spatial inhomogeneities of the temperature
T and of the chemical potential £, sometimes called
forces of a statistical nature. These forces can be
taken into account consistently only by a statistical
description of the system. In the case of a strong mag-
netic field ( ! 2 T > 1) in the zeroth approximation in
the scattering, the distribution function of the electrons
over the states will depend only on the single-particle
integrals of motion. Such integrals of motion can be
taken, for example, to be the energy €(p), the mo-
mentum p z along the magnetic field, and the x-coordi-
nate of the center of the Larmor orbit x0. We shall
consider henceforth distributions that depend only on
e(p) and x0, for example, fo([e(p) - £(xo)]/T(xo)).
Such distributions describe systems that are spatially-
inhomogeneous along the axis x 1 H. In the case of
weak spatial inhomogeneities, when £(x0) and T(x0)
remain practically constant on the Larmor radius, we
can identify x0 with the x-coordinate of the electron;
then £(x) and T(x) have the meaning of local values
of the chemical potential and the temperature. Putting
x0 = x - (x - x0), assuming weak spatial inhomogenei-
ties, we expand f0 in a series

) — £ (z)

(*_*„)+ (3.1)

With the aid of (3.1) we can easily find the volume
density of the charge flux. Recognizing that

x — .To = cos cp, i>B = i>j_ cos cp
(cp = fit) and taking into account the periodicity of f0
with respect to the variable <p, we get

This is a well known result which follows, in particu-
lar, from the Boltzmann kinetic equation (neglecting
scattering).

We now proceed to consider the case of a quantizing
magnetic field. The single-particle states of the elec-
tron will be described in the Landau representation.
The Hamiltonian of the electron has in this represen-
tation the form

Seo=[v-^AyJ2m, A0 = {0, Hx, 0},

and its eigenfunctions and eigenvalues are

(3.3)

Ev = E(n, p,) = ftQ(» + l/2) + -g-,

where x0 = cpy/eH is the projection of the center of
the Larmor orbit on the x axis, *n( x ) is the eigen-
function of the harmonic oscillator normalized to
unity, a2 = cK/ |e |H, and finally Ly and Lz charac-
terize the normalization volume. In the presence of
an electric field E directed along the x axis, the
eigenfunctions (3.3) remain the same, but

and the eigenvalues are
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E(n, pz, xo)=-E(n, pz)-exaEx^^El.

Neglecting scattering, the density matrix is diagonal
in the Landau representation: pvv' = ivf-vv', and plays
the role of the electron distribution function over the
states n, p z , and x0. Just as in the classical case,
we shall consider distributions that depend only on two
integrals of motion, E(n, p z ) and x0. Assuming weak
spatial inhomogeneities, we get

(3.4)
With the aid of (2.4) and the definitions (2.5) and (2.6),
we obtain the volume densities of the charge and energy
fluxes:

E (n, pz) —;

4 @ + E

(3.5)

dPzE(n, Pz)^[y,e+

En\f(n, pz), £n = (3.6)

From (3.5) and (3.6) we see that the Einstein relation
is not satisfied for the kinetic coefficients characteriz-
ing jy and Qy, i.e., the coefficients preceding
( - l / e v x £ ) and E x are different.

This fact was first pointed out by the Japanese
physicists Kasuya[21] and Nakajima*221 (see also the
paper by Kubo[23]). However, the actual cause of the
violation of the Einstein relation was brought to light
in a paper by Zyryanov and Silin[241, where it was
shown that in the case of spatially-inhomogeneous
systems in the presence of a quantizing magnetic field
a contribution is made to the volume density of the
charge flux j v (x) by the current c curl M, due to the
dependence of the Landau diamagnetic susceptibility on
£(x). It was also shown there that the difference jy(x)
- c curlyM satisfies the Einstein relation. A physical
interpretation of the results of[24] was given in^18],
where it was shown that the volume density of the
charge flux does not coincide with the conduction-
current density and differs from it by an amount
c curlM; in other words, they obtained from the
microscopic theory the well known formula[15]

j = Jcon+c rot M,

in which the magnetization is due to the orbital motion
of the conduction electrons (the Landau diamagnetism).

Thus, the problem of separating the conduction
current from jy(x) turned out to be relatively simple,
whereas the problem of separating the heat flux
Q T ( X ) from the volume density of the energy flux
Q(x) turned out to be much more difficult. To solve
this problem in the presence of a quantizing magnetic
field, we shall first separate that part of the volume
densities of the charge and energy fluxes which depends
on the spatial inhomogeneities of the magnetization, due
to the gradients of the temperature and of the chemical
potential. It is clear from general considerations that

only the nondiagonal components of the tensors of the
kinetic coefficients in j and Q can depend on the
magnetization vector M. Indeed, inasmuch as j and
Q are polar vectors and M is an axial vector, in the
approximation linear in M the most general depend-
ence of j and Q on M can be represented in the form
of a linear functional of curl M. In the case of spatial
inhomogeneities of M, due only to the dependence of
M on T and £, we have

It is seen from this formula that within the framework
of the linear transport theory, only the non-diagonal
components of the tensors of the kinetic coefficients in
j and Q can depend on M. On the other hand, in the
conditions J2T^> 1, the non-diagonal components of
the tensors of the kinetic coefficients do not depend on
the scattering. It is therefore sufficient to solve the
problem of separating jCon from j and Q-p from Q
by neglecting scattering. To this end, we express the
kinetic coefficients in (3.5) and (3.6) in terms of the
thermodynamic functions of the electron gas. Such a
possibility is obvious, since the fluxes were calculated,
first, neglecting scattering and, second, in the local-
equilibrium state.

We introduce the thermodynamic potential of the
electron gas

where V is the volume of the system.
Since * = - iPV, the pressure P is numerically

equal to the thermodynamic potential per unit volume,
taken with the minus sign. Therefore the entropy S,
the number of particles N, and the magnetization M,
all per unit volume, are expressed by the following
formulas:

The kinetic coefficients in formulas (3.5) and (3.6) can
be expressed in terms of the thermodynamic functions
(3.8). If we further neglect the compressibility of the
electron gas, then (3.5) and (3.6) can be written in the
following form:

!„=-^-rot,((0> + eN(f)H) + cioivM, (3.9)

— ̂ rotjMJ-clEM];,; (3.10)

Here

(3.11)

It is seen from these formulas that the collisionless or
non-dissipative fluxes are essentially solenoidal, and
therefore it is impossible to use the continuity equation
to separate the conduction current and the heat flux.

Formulas (3.9) and (3.10) are remarkable primarily
because both j and Q are expressed in terms of the
macroscopic quantities M and (sp +eN<p), for which
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the boundary conditions on the surface of the conductor
a r e known; in addition, these formulas can be general-
ized to the case of an explicit dependence of M and
(.-/' + eN<p) on the spatial coordinates. It is known from
electrodynamics [ 1 5 ] that the tangential component M
experiences a discontinuity on the surface of the mag-
netized conductor and vanishes outside the conductor,
and (>•>• + eN<^), neglecting compressibi l i ty, is the
electrochemical potential per unit volume, which is
constant everywhere in the state of thermodynamic
equilibrium and is continuous everywhere, including
the separation boundaries of the media, at small devi-
ations from thermodynamic equilibrium ( see t l 6 ] ) .
Taking these boundary conditions into account, it can
be noted that the t e r m s in (3.9) and (3.10), containing
cu r lM, make no contribution to the charge and energy
t ranspor t through the c ross section of the entire con-
ductor'1 5 1 . This can be easily verified. We integrate
(3.9) over the a rea of the c ross section of the ent ire
conductor, and use the Stokes theorem

? (j ds) = — ~ ? rot ((3s -f eNy) II) ds - c { rot M ds

(3.12)

The integration contour L should enclose the c ross
section a rea of the ent ire conductor. The contour L
should be chosen to be outside the conductor through-
out, without touching its surface anywhere. Since
M = 0 outside the conductor, meaning also on the con-
tour L, we get (j) M dl = 0. By virtue of the continuity

L
of (,i' + eOf<p) we have everywhere*

if the state of the system differs from thermodynamic
equilibrium character ized by the condition (it' + eNcp)
= const. Thus, in s ta tes differing from thermodynamic
equilibrium, the contribution to the t ranspor t of charge
through the c ross section of the ent ire conductor is
made only by the first t e r m in (3.9), which in accord-
ance with the definition is the conduction-current
density:

icon = --fi¥ rot ((® + eN<?)n). (3.13)

The resul t admits of the following i l lustrat ive in-
terpreta t ion. Let c curl M / 0 at any point of the con-
ductor c ross section. Then c curl M makes a contribu-
tion to the charge t ranspor t , but M experiences a
finite jump on the surface of the conductor and curl M
= °°. The lat ter c i rcumstance leads to the occurrence
of a surface current which offsets completely the con-
tribution made to the charge t ranspor t through the
c ross section of the conductor by the volume current
c cu r lM. This is precise ly why J c u r l M ds = 0. The
function (3s + eN^p) has no finite jumps anywhere, in-
cluding the surface of the conductor, so that the de-
r ivat ives a r e bounded everywhere. This leads, in

*On the surface of the conductor, both (P and eNf are discontinuous,
but their sum is continuous, since the jump of (Pis compensated by the
jump of ip due to the double electric layer on the surface of the conduc-
tor.

par t icular , to the absence of a surface conduction
current .

We proceed to separate the heat flux from (3.10).
Just as in the preceding case , we integrate (3.10) over
the c ross section a re of the ent ire conductor:

— ff2rotM)|— c \ <fe[EM]. (3.14)

In the case of weak spatial inhomogeneities (i.e., in
the t ranspor t theory that is l inear in VT and v £ ) it is
necessary to replace £ and T in the operator

by their mean values over the c ross section of the
conductor. Allowance for the deviation of £ and T
from their mean values in this operator leads to t e r m s
of second order in 7 T and v f , which will be neglected
throughout. Taking this into account, we changed the
order of integration with respect to ds and d£; then
the analysis of the obtained expression will not differ
at all from the analysis of formula (3.12), presented
above. The contribution made to the energy t ranspor t
through the c ross section of the conductor by the t e rm
- cE x M is completely cancelled by the surface flux
due to the jump of the tangential component of M.
Consequently, a contribution to the energy t ranspor t
through the c ross section of the ent ire conductor is
made only by the t e r m proportional to ;•;> + eN<p. Using
the definition of the heat flux, we obtain for it the
following formula:

f(QT)» = Qy — f «-..)»- (Q«)» = - -Tw T {-w)

dt,' (3.15)

and the magnetic-energy flux Q M contained in this
formula is described by formula (2.10).

With the aid of (3.8), (3.11) we can rewr i te (3.13) in
(3.15) in a different form, namely:

(3.16)

(3.17)

From these expressions for j C O n and Q T we see that
these fluxes satisfy both the Einstein relat ion and the
Onsager symmetry principle. In the case of a strongly
degenerate electron gas , the corresponding coefficients
in (3.16) and (3.17) a re connected by the Wiedemann-
Franz law [ 1 8 ] (see a l so [ 2 5 ] ) .

A formula s imi lar to (3.16), and the resultant dif-
ferential thermal emf neglecting scat ter ing, a^
» /3 x y / a x y = S/(eN) (see (2.11)), were first obtained
by ODraztsov c " \ Peletminskii and Bar 'yakhtar [ 2 5 ] ca l -
culated all the coefficients in j c o n and Qx , and ob-
tained resul t s that differed from (3.16) and (3.17) only
in form. Formulas (3.16) and (3.17) remain in force
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when spin is taken into ac i ° u n t t l 3 l > a n d a l s o for an
a rb i t r a ry isotropic c a r r i e r dispersion law [ 2 0 ] . Re-
cently Tsendin and Efros [ 2 6Confirmed the validity of
(3.16) when account is taken o ^ t h e spin-orbit in te rac-
tion of the c a r r i e r s in the two-B a n d model of the crystal
with isotropic dispers ion law. In C-onductors with ani-
sotropic dispersion of the c a r r i e r s , the spatial inhomo-
geneities of the temperature and of the chemical poten-
tial in a plane perpendicular to the magnetic field cause
fluxes along the magnetic field. The calculation of the
heat flux and of the conduction current in such conduc-
to rs neglecting scat ter ing, was carr ied out by OkulovC27].
PeletminskiiC28] described a method of separating the
conduction current and the heat flux in spatial ly-
homogeneous conductors with a rb i t ra ry relation be-
tween the Larmor frequency and the ca r r i e r - re l axa t ion
frequency.

We note that formulas (2.8)-(2.10), which determine
the density of the conduction current and of the heat
flux, have a wider region of applicability, beyond the
l imits of those model l imitations under which they
were derived from the microscopic theory infl8~20]. In
par t icu lar , it can be assumed that these formulas a r e
valid for a rb i t ra ry magnets and for an a rb i t ra ry value
of fir. Indeed, the current entering in (2.8) and con-
nected with the magnetization of the c a r r i e r s , is given
by the formula oftl5] for all magnets and, of course ,
for all QT. This formula is the consequence of the
macroscopic boundary conditions for M on the surface
of the conductor, and the magnetic-energy flux which
enters in (2.9) can also be expressed in t e r m s of
c cu r lM (see (2.10)).

In concluding this section, let us stop to justify
rigorously the procedure used to calculate the non-
dissipative fluxes. In the derivation of formulas (3.5),
(3.6) and (3.13), (3.15) it was tacitly assumed that the
distribution function f o ( [E(n, p z ) - £ (x o ) ] /T(x o ) ) is a
Fe rmi function and descr ibes the spatially-inhomo-
geneous distributions of the electrons along the x axis ,
and se rves in the case of weak inhomogeneities as a
definition of the local thermodynamic charac te r i s t i cs
of the electron gas , such as the tempera ture T ( x ) and
the chemical potential £ ( x ) . Let us prove these
p remise s .

In a sufficiently dense electron gas, thermodynamic
equilibrium is established as a resul t of interelectron
collisions. In the case of weak spatial inhomogeneities,
the electron collision integral (see (A. 14) of the
appendix) can be expanded in the small parameter

which is the ordinary equation for the balance of the
par t ic les in cell K. The first t e r m in the curly bracket
descr ibes the a r r iva l of the par t ic les in the cell K, and
the second the depar ture . The probability of t ransi t ion
per unit t ime is

X 6 [Ev. + Ex-

X 8(Z

,-£„„] 6 (p<v)-/,<">-hq)S(p<

K — ZOv") 6 (̂ 0v —«0x) 8 (ZOv' — Zo

It follows from (3.18) that the function

tin, pz, xo) = jexp (3.19)

causes the collision integral to vanish. At low conduc-
t ion-electron concentrations, the collisions between the
electrons and the phonons play an essential role in the
establishment of the thermodynamic equilibrium. Let
us assume that the interaction of the phonons with the
thermosta t , whose tempera ture is specified by the
function T ( x ) , is sufficiently strong and that their
collisions with the electrons do not violate the local
equilibrium of the phonons with the thermosta t . Under
these assumptions, a local-equil ibrium phonon d i s t r i -
bution function can be assumed in the kinetic equation
for the electrons

Nq(x) = N«qix)=[ex-p{^)-iyi. (3.20)

This function is an approximate solution of the kinetic
equation (A.29), (A.30) under the condition that the
frequency of collision of the phonons with electrons is
smal l compared with the frequency of the collision of
the phonons with the thermosta t Wpp(q) (A.30). Sub-
stituting (3.20) in the kinetic equation for the electron
density matr ix (A.28) and then expanding the electron-
phonon collision integral IepU ] in a se r i es in
( T L / L ) (f iqy/p e) < 1, we obtain in zeroth order the
equation

(V| ' ! (3.21)
which takes into account the a r r iva l and the depar ture
of the electrons in the K state following their in terac-
tion with the phonons. The transi t ion probability per
unit t ime is here :

(q) = ^-1C, (a*9l/2) 8 [Ex -

(3.22)

where

L~f\df/dxo\-\

p e—average electron momentum, and Rqy—change of
the electron momentum upon collision. The zeroth-
order t e r m in this parameter leads to the kinetic equa-
tion

•^—operator effecting the replacement v~ K. The
collision integral in (3.21) is made to vanish also by
the function (3.19). We shall show that (3.19) de ter -
mines the local values of the tempera ture and of the
chemical potential of the electron gas. The number of
par t ic les in the state n, p z at the point x is by defini-
tion

7Vn
E(n, pJ-S

The assumption of weak spatial inhomogeneities makes
it possible to take f outside the integral sign at the

(3.18) point x0 = x, inasmuch as * n ( x - x o / a ) differs from
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zero when |x - x0 I < r L , and f is practically con-
stant at distances ~ r^ . Taking account of the normal-
ization of * n , we get

v f () = /<> {
E(n, pt)-t{x)

r^

It follows therefore that £(x) and T(x) are the local
values of the chemical potential and of the temperature.

IV. DISSIPATIVE ELECTRON FLUXES IN THE
ELASTIC-SCATTERING APPROXIMATION

When account is taken of only elastic scattering of
the electrons in the first Born approximation, the
problem of calculating the conduction current and the
heat flux due to the spatial inhomogeneities of the tem-
perature T and of the chemical potential £ is particu-
larly simple. It is precisely with this case that we
shall begin the calculation of the dissipative electron
fluxes.

We first stop to determine the dissipative heat
fluxes and the conduction current. These fluxes, in the
case of an isotropic carrier dispersion law, are char-
acterized only by diagonal components of the tensors
of the kinetic coefficients (i.e., they are potentials);
they are determined with the aid of the continuity equa-
tions. The conduction current j c o n must be determined
from the equations for the conservation of the charge
eN(r ) and the energy W(r, t)

~ ivQT = (4.1)

If we confine ourselves to the study of spatial inhomo-
geneities only along the x axis, which is orthogonal to
the quantizing magnetic field, then it is sufficient to
consider in this case only the diagonal elements of the
density matrix in the Landau representation (energy
representation) f(n, p z , x0). The charge density at the
point x equals by definition the diagonal element of
the density matrix in the coordinate representation
(x-representation), multiplied by the charge of the
carrier:

A s s e e n f r o m ( 4 . 2 ) , 9 / 9 t N i s e x p r e s s e d i n t e r m s of

9 / a t f ( n , p z , x 0 ) . T h e l a t t e r q u a n t i t y c a n b e d e t e r m i n e d

f r o m t h e k i n e t i c e q u a t i o n f o r f, w h i c h c a n b e w r i t t e n

d o w n i m m e d i a t e l y , t a k i n g i n t o a c c o u n t t h e a r r i v a l of t h e

e l e c t r o n s i n t h e c e l l v a n d t h e i r d e p a r t u r e f r o m t h i s

c e l l . T h i s l e a d s t o t h e f o l l o w i n g k i n e t i c e q u a t i o n :

Oh. = v VFw'{/v-(l —/v) — M l —/V')}> ( 4 - 3 )
V'

w h e r e t h e p r o b a b i l i t y o f t r a n s i t i o n p e r u n i t t i m e o f a n

e l e c t r o n f r o m t h e s t a t e v' i n t o t h e s t a t e v u p o n s c a t -

t e r i n g b y a n i m m o b i l e c e n t e r e q u a l s , i n t h e B o r n a p -

p r o x i m a t i o n ,

f v » ' = ¥- S I Vq p Fm- (« 2 ?l /2) 8 (E («', pz + hqz)-E(n, pz))

= N i m p
i

X 6(xov- — ̂ ov — chqyleH);

C q | 2 , N i m p — n u m b e r of i m p u r i t i e s , a n d

C q — F o u r i e r " c o m p o n e n t of t h e p o t e n t i a l e n e r g y of t h e

i n t e r a c t i o n of t h e e l e c t r o n w i t h t h e s c a t t e r e r . W e n o t e

t h a t ( 4 . 3 ) c a n b e o b t a i n e d f r o m t h e k i n e t i c e q u a t i o n

(A.28) by taking into account c n e collisions of the elec-
trons with the phonons in the elastic-scattering ap-
proximation. To this end, jt is necessary to neglect
processes of phonon emiP|gionj i_e., to assume in (A.28)
that Nq > 1 and to ne^le c t t n e change in the electron
energy upon scattering putting Rwq ~ 0 in 6(E(n' , p z .
+ Rqz ) - E(n, p z ) + fiwq), and finally, replace
I Cq |2Nq by | Cq |

2N i m p . With the aid of (4.3) it is easy
to obtain an expression for the conduction current.
Differentiating (4.2) with respect to time and substitut-
ing (4.3) in the obtained expression, we get

(eN <*)> = (n', q)
X 6 [E(n', pz+tiqz)~E(n, pz)][f(n', qz, xo-i-ytx2q

(4.4)

Further, it is necessary to substitute in (4.4) the solu-
tion of the kinetic equation for the function f(n, p z , x0)
Such a solution, in the zeroth approximation in the
scattering, is the local-equilibrium distribution (3.19).
It must be substituted in (4.4) to find the conduction
current with accuracy not exceeding the accuracy of
the kinetic equation. In the case of weak spatial in-
homogeneities, the function f is practically constant
over the length of the Larmor radius, where the func-
tion 4>n (x - Xo)/a is noticeably different from zero,
so that f can be taken outside the sign of the integral
with respect to x0 at values x0 = x. Taking this into
account, substituting (3.19) in (4.4), and expanding the
results in a series in a2qy, we get[13)14]

d 1 TIT / w & f 2eA'n XI P j 2-T . „ i9 ~ , ? -> ....
— (dV (*))=-— { - ( 5 ^ 2 ^dp.-7r|Cq|'Fn.».(a'j1/2)

qz)-E(n, pz))-

TJ -T- • • • (4.5)

T h e e x p r e s s i o n i n t h e c u r l y b r a c k e t s i n ( 4 . 5 ) d e t e r -

m i n e s t h e c o n d u c t i o n c u r r e n t i n t e r m s of t h e g r a d i e n t s

of t h e s p a t i a l i n h o m o g e n e i t i e s o f T a n d £ . T h e c o e f -

f i c i e n t i n f r o n t of ( - ( 1 / e ) v x £ ) c o i n c i d e s w i t h t h e

e l e c t r i c - c o n d u c t i v i t y c o e f f i c i e n t o b t a i n e d by A d a m s a n d

a n d H o l s t e i n [ 2 9 ] . T h i s i n d i c a t e s t h a t t h e E i n s t e i n r e l a -

t i o n , c o n n e c t i n g t h e d i f f u s i o n c o e f f i c i e n t a n d t h e e l e c -

t r i c c o n d u c t i v i t y c o e f f i c i e n t , h o l d s . In c o m p l e t e a n a l o g y

w i t h t h e d e r i v a t i o n of ( 4 . 5 ) , w e o b t a i n a c o n t i n u i t y e q u a -

t i o n f o r t h e t h e r m a l e n e r g y [ 1 3 > 1 4 ]

\ IE{n, „ , ) - „)}

2Nn

n,n, q
X 8 [E («', pz + hqz) - E (n, Pl)\ ^ [

E(n, p z ) - t ,

(4 .6 )

T h u s , t h e d i a g o n a l c o m p o n e n t s of t h e t e n s o r s of t h e

k i n e t i c c o e f f i c i e n t s i n j c o n a n d Q f ( s e e ( 2 . 1 ) ) c a n b e

r e p r e s e n t e d i n t h e f o r m

— 2Nn

(n, n'.q)
*F

2 ) 2! OE
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e\E(n, pz)-Z,]/T
[E(n,pz)-Z?/T (4.7)

The dependence of I Cq |2 on q is determined by the
scattering mechanism and is given in Table I, taken
from the paper of Adams and Holstein[29]. The depend-
ence of cr, /3, and K on T and H turns out to be the
most sensitive to the electron scattering mechanism
only in the quantum limit.

Table I. Dependence of | Cq |2 on q and values
of the numbers m and p which enter in the tables

Scattering mechanism

Acoustic phonons:
low temperatures
high temperatures

Piezoelectric phonons
low temperatures
high temperatures

Optical phonons
high temperatures

Pointlike defects
Ionized impurities

Atq
At (27/fts)

A-fl

Ai^ + gir1 (277^)
A2

m

0
1

0
1

1
0
0

p

1
0

—1
—2

—2
0
4

When H varies in the range £ » fifi > kT°, the
quantities a, P, and K experience quantum oscillations.
As shown by Adams and Holstein[ , the dependence of
these oscillations on the scattering mechanism, at
least for a ^ , turns out to be not very important. This
is precisely why it is of interest to study in the quan-
tum limit the dependence of cr, /3, and K on T and H
at different mechanisms of carrier scattering. We
present here such dependences, obtained by Zyryanov
and Kalashnikov[30] for two limiting cases.

a) In the case of nondegenerate electrons in the
quantum limit Bfi ;§> kT° we get from (4.7)

1 / S , d \ „ I / J . \

(4.8)

In the latter formula for a ^ , a divergence appears at
the lower limit. The nature of this divergence and dif-
ferent methods of its elimination are discussed in the
paper of Adams and Holsteint29]. Following that paper,
we can introduce a cutoff energy, connected for exam-
ple with the broadening of the Landau energy levels as
a result of the collisions of the electrons with the
scatterers. A detailed discussion of the question is
contained in the review of Kubo et al. t 3 ] In the quantum
limit lift > T, the dependence of the diagonal compon-
ents of the tensors of the kinetic coefficients on the
magnetic field and on the temperature for different
scattering mechanisms is shown in Table II. In the

Table II. Dependence of diagonal components of the
tensors cr, /3, x, « on T and H for nondegenerate

electrons in the quantum limit

Tensor

Oxx
P«

a)

Tm-3IZHP/2
Tm-3/2jjPl2

b)

yP+5/2 -̂2

Tensor

Xxx
Xxx

a)

Tm~l/2]jpf2
2"n-l/2j{P/2

b)

•pP+T/2jj-2

fV+TI2 JJ-2

c a s e o f a c o u s t i c a n d p i e z o e l e c t r i c p h o n o n s , t h e r e s u l t s

g i v e n i n c o l u m n a ) ( T a b l e s I I — V ) a r e v a l i d f o r

H < c T ( B s 2 e ) " 1 ( s — s p e e d o f s o u n d ) . I f t h e o p p o s i t e

i n e q u a l i t y h o l d s , t h e n i t i s n e c e s s a r y t o u s e f o r t h e s e

t w o s c a t t e r i n g m e c h a n i s m s t h e r e s u l t s g i v e n i n

c o l u m n b ) ( f o r a c o u s t i c p h o n o n s p = 1 , a n d f o r p i e z o -

e l e c t r i c p h o n o n s p = - 1 ) .

T h e s e r e s u l t s , t o g e t h e r w i t h f o r m u l a s ( 3 . 2 3 ) a n d

( 3 . 2 4 ) f o r t h e n o n d i s s i p a t i v e f l u x e s , s u f f i c e t o d e t e r -

m i n e t h e d e p e n d e n c e o f a n y t h e r m o m a g n e t i c e f f e c t o n

T a n d H . F o r e x a m p l e , i n T a b l e I I I w e p r e s e n t t h e s e

r e l a t i o n s i n t h e q u a n t u m l i m i t f o r t h e i s o t h e r m a l

N e r n s t c o e f f i c i e n t s Q N a n d f o r t h e e l e c t r o n i c t h e r m a l

c o n d u c t i v i t y / c e a t z e r o c o n d u c t i o n c u r r e n t .

T a b l e H I . D e p e n d e n c e o f t h e i s o t h e r m a l N e r n s t

c o e f f i c i e n t s Q N a n d o f e l e c t r o n i c t h e r m a l

c o n d u c t i v i t y K e a t z e r o c u r r e n t i n t h e c a s e o f

n o n d e g e n e r a t e e l e c t r o n s a t B S 2 » T .

' Thermo-
magnetic

coefficient

QN

a)

ym— 3/2jjp/2

Tm-l/2Hp/2

b)

fV'ril2H~2

b ) I n t h e o t h e r l i m i t i n g c a s e — s t r o n g l y d e g e n e r a t e

e l e c t r o n g a s ( T < J ) w e h a v e

* - ^ 1 \~dT~) ' K * x - ^
( 4 . 9 )

w h e r e f o r t h e u l t r a q u a n t u m l i m i t T < c £ < K f t w e h a v e

( 4 . 1 0 )

I t f o l l o w s f r o m t h e s e f o r m u l a s t h a t b o t h t h e d i a g o n a l

c o m p o n e n t s o f a a n d K , a n d t h e n o n d i a g o n a l o n e s , a r e

c o n n e c t e d b y t h e W i e d e r m a n n - F r a n z l a w . I n o t h e r

w o r d s , t h e W i e d e r m a n n - F r a n z l a w i s v a l i d a l s o i n t h e

u l t r a q u a n t u m l i m i t .

T a b l e I V g i v e s t h e d e p e n d e n c e s o f t h e k i n e t i c c o e f -

f i c i e n t s o n T a n d H i n t h e u l t r a q u a n t u m l i m i t K £ 2 > £ .

T a b l e I V . D e p e n d e n c e o f t h e d i a g o n a l c o m p o n e n t s

o f t h e t e n s o r cr , / 3 , \ , K o n T a n d H f o r

s t r o n g l y d e g e n e r a t e e l e c t r o n s i n t h e u l t r a q u a n t u m

l i m i t ( T « £ , < K f t ) .

Tensor

Oxx

a) b) Tensor

II

Tp+iff Xxx

a) b)

1



548 P. S. ZYRYANOV and G. I. GUSEVA

Table V. Dependence of isothermal Nernst
coefficients QN and of the electronic

thermal conductivity /ce at zero current
in the case of strongly degenerate electrons

in the ultraquantum limit (T « 4 < Kfi)

Therm o-
magnetic
coefficient

QN
xe

a

•pin-\-i r r 5 + p / 2

r m + l j j - 3 4 - J i / 2

b

y P + 5 ^ 3

r P + 5 #

F o r t h e s a m e l i m i t i n g c a s e , T a b l e V l i s t s t h e d e p e n d -

e n c e o f t h e i s o t h e r m a l N e r n s t c o e f f i c i e n t s Q N a n d o f

t h e e l e c t r o n i c t h e r m a l c o n d u c t i v i t y « e o n T a n d H .

B a r ' y a k h t a r a n d P e l e t m i n s k i i ^ 1 - 1 c o n s t r u c t e d a m o r e

g e n e r a l t h e o r y , i n w h i c h t h e d i a g o n a l c o m p o n e n t s o f

t h e t e n s o r s o f t h e k i n e t i c c o e f f i c i e n t s i n t h e c o n d u c t i o n

c u r r e n t a n d i n t h e h e a t f l u x a r e e x p r e s s e d i n t e r m s o f

t h e e x a c t e l e c t r o n - i m p u r i t y s c a t t e r i n g a m p l i t u d e . T h e

p r o c e d u r e f o r c a l c u l a t i n g t h e c o n d u c t i o n c u r r e n t a n d

t h e h e a t f l u x u s e d i n [ 3 1 ] i s f u l l y e q u i v a l e n t , a s s h o w n

b y P e l e t m i n s k i i [ 3 2 ] , t o t h e k i n e t i c - e q u a t i o n m e t h o d .

T h e k i n e t i c e q u a t i o n o b t a i n e d i n [ 3 2 ] d i f f e r s i n t h i s c a s e

f r o m t h e a p p r o x i m a t e e q u a t i o n ( A . 4 1 ) i n t h a t i t c o n t a i n s

t h e e x a c t s c a t t e r i n g a m p l i t u d e i n s t e a d o f t h e B o r n a m -

p l i t u d e . H o w e v e r , t h e k i n e t i c c o e f f i c i e n t s c a n b e e x -

p r e s s e d i n t e r m s o f t h e a m p l i t u d e o f s c a t t e r i n g b y a

s i n g l e c e n t e r , p r o v i d e d t h e d e B r o g l i e w a v e l e n g t h o f

t h e c a r r i e r i s "X < g ; a n — t h e a v e r a g e d i s t a n c e b e t w e e n

t h e s c a t t e r i n g c e n t e r s . I f a t t h e s a m e t i m e * ^ > r 0 —

t h e f o r c e r a d i u s o f t h e s c a t t e r e r , t h e n i t i s p o s s i b l e t o

o b t a i n a n a s y m p t o t i c a l l y e x a c t s c a t t e r i n g a m p l i t u d e

f o r t h e e l e c t r o n w i t h z e r o e n e r g y . S k o b o v [ 3 4 : r o b t a i n e d

f o r t h i s c a s e t h e s c a t t e r i n g a m p l i t u d e i n t h e f o l l o w i n g

f o r m :

' 1 + iaK (Ev)
( 4 . 1 1 )

H e r e

K (E) = K' (E) + iK" ( £ ) , K" (E) =

a — a m p l i t u d e f o r s c a t t e r i n g o f a n e l e c t r o n w i t h z e r o

e n e r g y b y a n i m p u r i t y i n t h e a b s e n c e o f a m a g n e t i c

f i e l d , a n d 0 £ r) < 1 i s d e f i n e d b y t h e e q u a t i o n

E = ( N + % - V ) K O ( N - p o s i t i v e i n t e g e r ) . I f t h e

t r a n s i t i o n p r o b a b i l i t y W J V i n ( 4 . 3 ) i s d e f i n e d i n t e r m s

o f t h e S k o b o v a m p l i t u d e o f s c a t t e r i n g t v v ' ( q ) , t h e n w e

g e t f o r t h e k i n e t i c c o e f f i c i e n t s f o r m u l a s a n a l o g o u s t o

( 4 . 7 ) , t h e o n l y d i f f e r e n c e b e i n g t h a t i n ( 4 . 7 )

I C q | 2 F n n ' ( a 2 q l / 2 ) i s r e p l a c e d b y I C o 1 2 F n n ' ( a 2 q 2 , / 2 )

| 1 + i a K ( E l , ) r 2 , w h e r e | C o | 2 = ( N i m p / V ) ( 2 ; f f i 2 a / m ) 2 .

T h e k i n e t i c c o e f f i c i e n t s o b t a i n e d i n t h i s m a n n e r n o

l o n g e r c o n t a i n d i v e r g e n c e s i n t h e c a s e o f t h e M a x w e l l

s t a t i s t i c s , i n a s m u c h a s i n t h e B a r ' y a k h t a r - P e l e t m i n s k i i

t h e o r y [ 3 1 ] t h e S k o b o v s c a t t e r i n g a m p l i t u d e ( 4 . 1 5 ) t a k e s

i n t o a c c o u n t t h e b r o a d e n i n g o f t h e L a n d a u l e v e l s d u e

t o t h e s c a t t e r i n g o f t h e c a r r i e r s . T h e d e p e n d e n c e o f

t h e k i n e t i c c o e f f i c i e n t s o n T a n d H i n t h i s c a s e i s

T a l l
a n a l y z e d i n 1 ' .

I n c o n c l u d i n g t h i s s e c t i o n , l e t u s s t o p t o d i s c u s s

o t h e r w o r k s d e v o t e d t o t r a n s p o r t p h e n o m e n a i n a

s t r o n g m a g n e t i c f i e l d i n t h e e l a s t i c - s c a t t e r i n g a p p r o x i -

m a t i o n . J a j d u t 3 5 ] a n d H a j d u a n d F i s c h e r t 3 6 ] c o n s i d e r e d

t r a n s p o r t p h e n o m e n a i n s y s t e m s w i t h s p a t i a l l y - i n -

h o m o g e n e o u s t e m p e r a t u r e i n t h e e l a s t i c - s c a t t e r i n g a p -

p r o x i m a t i o n . T h e d i a g o n a l c o m p o n e n t s o f t h e k i n e t i c -

c o e f f i c i e n t t e n s o r s o b t a i n e d b y t h e m c o i n c i d e w i t h

f o r m u l a s ( 4 . 7 ) , t h e o n l y d i f f e r e n c e b e i n g i n t h e f o r m .

A s t o t h e n o n d i a g o n a l c o m p o n e n t s , t h e y s a t i s f y n e i t h e r

t h e E i n s t e i n r e l a t i o n n o r t h e O n s a g e r s y m m e t r y p r i n -

c i p l e . I n t h e c a s e o f s t r o n g d e g e n e r a c y o f t h e e l e c t r o n

g a s , a s n o t e d i n 1 - 3 6 1 , t h e n o n d i a g o n a l c o m p o n e n t s , u n -

l i k e t h e d i a g o n a l o n e s , a r e n o t c o n n e c t e d b y t h e

W i e d e r m a n n - F r a n z l a w . T h e s e p a r a d o x e s a r e t h e

c o n s e q u e n c e o f a n e r r o n e o u s i d e n t i f i c a t i o n o f t h e

v o l u m e d e n s i t y o f t h e n o n d i s s i p a t i v e c h a r g e f l u x w i t h

t h e c o n d u c t i o n c u r r e n t , a n d o f ( Q - S j / e ) w i t h t h e

h e a t f l u x ( s e e S e c . I I ) . T h e j u s t i f i c a t i o n o f t h e W i e d e r -

m a n n - F r a n z l a w i n q u a n t i z i n g m a g n e t i c f i e l d s i s t h e

s u b j e c t a l s o o f a p a p e r b y Z a k [ 3 7 1 . H o w e v e r , t h i s p a p e r

c o n t a i n s n o v a l i d p r o o f , s i n c e t h e i n i t i a l e q u a t i o n o f

t h i s p a p e r i s p o s t u l a t e d , a n d i t s c o n n e c t i o n w i t h t h e

S c h r o d i n g e r e q u a t i o n f o r t h e d e n s i t y m a t r i x i s n o t c l e a r

a n d i s n o t d i s c u s s e d a t a l l . T h e c o e f f i c i e n t fl^ ( s e e

( 4 . 7 ) ) w a s f i r s t c a l c u l a t e d b y A n s e l ' m a n d A s k e r o v [ 7 7 ) 7 8 1 .

R e c e n t l y A n s e l ' m , O b r a z t s o v , a n d T a r k h a n y a n 1 - 3 3 ] r e -

f i n e d t h e i r r e s u l t s .

V . D I S S I P A T I V E F L U X E S W I T H A L L O W A N C E F O R

I N E L A S T I C S C A T T E R I N G O F E L E C T R O N S A N D

P H O N O N S

T h e e l a s t i c - s c a t t e r i n g a p p r o x i m a t i o n u s e d i n t h e

c a l c u l a t i o n o f t h e c o n d u c t i o n c u r r e n t a n d t h e h e a t f l u x

i n t h e p r e c e d i n g s e c t i o n i s n o t a l w a y s c o n v e n i e n t .

A l l o w a n c e f o r i n e l a s t i c s c a t t e r i n g i n t h e c o l l i s i o n s o f

e l e c t r o n s a n d p h o n o n s l e a d s t o d r a g g i n g e f f e c t s . T h e s e

e f f e c t s a r e m o s t i m p o r t a n t i n s e m i c o n d u c t o r s w i t h

M a x w e l l i a n s t a t i s t i c s o f t h e c a r r i e r s . F o r e x a m p l e , a s

n o t e d i n S e c . I , t h e t h e r m a l e m f i n n - G e a n d n - I n s B a t

l o w t e m p e r a t u r e s i n q u a n t i z i n g m a g n e t i c f i e l d s i s d u e

essentially *<• the effect of electron dragging by phonons,
i .e . , to inelastic scat ter ing.

When electrons interact with optical phonons, the in-
elasticity of the scattering leads to the so-called mag-
netophonon resonance predicted independently in1-381.
The gist of this resonance consists in the fact that when
the optical-phonon frequency is a multiple of the cyclo-
tron frequency of the c a r r i e r s , i .e . , <A>D = №2 (N—
positive integer), resonant t ransi t ions of the c a r r i e r s
between the Landau levels a r e possible, accompanied
by absorption or emission of an optical phonon. Thus,
the inelastic scatter ing of e lectrons by optical phonons
leads to oscillations of the e lectr ic conductivity and of
other kinetic coefficients when the magnetic field is
varied. We shall not stop here to discuss these ques-
t ions.

In other cases , allowance for inelasticity in electron
scatter ing apparently does not lead to qualitatively new
phenomena. We shall henceforth concentrate our atten-
tion on inelastic scatter ing of electrons by acoustic
phonons and proceed to calculate the conduction cur-
rent and the heat flux in such s y s t e m s . If we take into
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account the deviation of the phonons from local equili-
brium, then in the plane orthogonal to the magnetic
field it is necessary to consider already two-dimen-
sional inhomogeneities. Such spatial inhomogeneities
are described by a density matrix which is nondiagonal
in py = eHxo/c. However, it is more convenient in what
follows to use the mixed representation of Wigner

/(«, Pz, Pi,, y)- 'Sjn,pz,Pa,n,p2,p;iexp(i(P,,-~p;,)y/Ti), (5.1)
Py

since, just as in the preceding section, the conduction
current and the heat flux will be determined with the
aid of the continuity equation. Using the approximation
of weak spatial inhomogeneities, we obtain with the aid
of the kinetic equation (A.32), in full analogy with the
derivation of (4.5), the following formula:

, p,, p,, (5.2)

The rate of time variation of the density of the thermal
energy of the electrons at the point x, y can also be
expressed with the aid of (A.32) by means of the for-
mula

[E(n, ft)- z, p ,y)}

{ 2 ( ^ )
».»,,*. (5.3)

and finally, using the kinetic equation for the phonons
(A.33), we obtain the rate of change of the phonon
energy density with time, in the form

±- 2 Nq (*, ,) n*q s ±- W<» =-. -± ( 2 * ^ JVq (s, y))

i q q

We shall apply the general formulas (5.2)—(5.4) to
some particular cases.

We first calculate the conduction current and the
heat flux, assuming a local-equilibrium phonon distri-
bution. Such a situation is realized when the frequency
of the collisions between the phonons and the "thermo-
stat" at temperature T(x, y) greatly exceeds the fre-
quency of their collision with the electrons. The colli-
sions of the electrons with the phonons do not violate
in this case the local equilibrium of the phonons with
the thermostat, and their distribution function takes
the form

- ^ i - l } " ' . (5.5)

In the approximation under consideration, Eq. (5.5) is
the solution of the kinetic equation (A.35). Owing to
the collisions with the phonons, there is also estab-
lished in the electron system a local-equilibrium dis-
tribution with a Fermi function

fo(n, pz, x, jr) =
(B(n, p,)~Z, (x, y)\
\ T (x, y) ) (5.6)

This function is a solution of the kinetic equation (A.32)
in the zeroth approximation in (fix)"1 <§; 1. Substituting
(5.5) and (5.6) in (5.2)—(5.4) and then expanding the
right sides in a2qx and a2q-y, we find the continuity
equations for the charge ana the energy1-39-1 of both the

electrons and the phonons:

eN(x,y)

W-'(P) (x, y)

=—div
conte. y)
r'(*. y)

#'(*, y)

(5.7)

where

, (5.8)

n', pz~%qz)-E(n, pz) - So),] ((E (n, j52

E(n, Pl)-
- / . ( •

E(n,
- ) ] . ( 5 - 9 )

X (£•(«, Pz)-Vr')[h ('

m and m' assume the values 0, 1, 2; the symbol
u>ep( 1) is used when m = m' = 0. Summing Q^?'
and Q ^ ' , we obtain the total heat flux of the electrons

and phononsf39]

X {(Dep((E + Soo- (5.10)

T h e k i n e t i c c o e f f i c i e n t s a r e c o n n e c t e d b y t h e O n s a g e r

s y m m e t r y r e l a t i o n o n l y i n t h e t o t a l h e a t f l u x Q T ( 5 . 1 0 )

a n d i n t h e c o n d u c t i o n c u r r e n t j c o n ( 5 . 8 ) . T h e s e c a l c u -

l a t i o n s w e r e p e r f o r m e d w i t h s u c h d e t a i l o n l y b e c a u s e

i n s o m e p a p e r s a n e r r o r h a s c r e p t i n t o t h e d e t e r m i n a -

t i o n o f t h e p h o n o n e n e r g y f l u x d e n s i t y i n s p a t i a l l y -

i n h o m o g e n e o u s s y s t e m s . T h u s , f o r e x a m p l e , F i s c h e r [ 4 0 ]

g i v e s f o r t h e h e a t f l u x c a r r i e d b y t h e p h o n o n s t h e

f o r m u l a

2 h a i ( I F ) - ^ I - ( 5 - H )

q

T h i s f o r m u l a d e s c r i b e s , a s c a n b e s e e n f r o m ( 5 . 4 ) ,

o n l y t h a t p a r t o f t h e p h o n o n - e n e r g y f l u x w h i c h i s d u e

t o t h e d e v i a t i o n o f t h e d i s t r i b u t i o n f u n c t i o n N q f r o m

t h e l o c a l e q u i l i b r i u m ( 5 . 5 ) . I n o t h e r w o r d s , t h e e n e r g y

f l u x ( 5 . 1 1 ) i s d u e o n l y t o t h e p h o n o n d r i f t . I n t h e s t a t e

o f l o c a l e q u i l i b r i u m , t h e f l u x ( 5 . 1 1 ) v a n i s h e s , b u t i n

t h i s c a s e t h e s p a t i a l i n h o m o g e n e i t i e s o f t h e t e m p e r a t u r e

o f t h e e l e c t r o n s a n d p h o n o n s l e a d t o a d i f f u s i o n h e a t

f l u x d e s c r i b e d b y f o r m u l a ( 5 . 8 ) f o r Q ( P \ I f t h e t o t a l

h e a t f l u x i n t h e s y s t e m i s d e t e r m i n e d b y t h e f o r m u l a

{ Q ^ ? ' + S f i a j q x ( 3 w / e q ) N q } = Q * , t h e n t h e O n s a g e r

r e l a t i o n f o r j c o n ( 5 . 8 ) a n d f o r Q * w i l l n o t b e s a t i s f i e d .

W e n o w p r o c e e d t o c o n s i d e r e f f e c t s c o n n e c t e d w i t h

a l l o w a n c e f o r t h e d e v i a t i o n o f t h e p h o n o n d i s t r i b u t i o n

f u n c t i o n f r o m t h e l o c a l e q u i l i b r i u m f u n c t i o n ( 4 . 6 ) . I n

p u r e m e t a l s a n d s e m i c o n d u c t o r s , a t s u f f i c i e n t l y l o w

t e m p e r a t u r e s , i t m a y t u r n o u t t h a t t h e n o n - e l e c t r o n i c

p h o n o n r e l a x a t i o n f r e q u e n c y ( t h e r e l a x a t i o n o f t h e

p h o n o n s o n t h e " t h e r m o s t a t " ) o > P p ( q ) i s c o m p a r a b l e



550 P . S. ZYRYANOV and G. I . GUSEVA

with or even smaller than their relaxation frequency
on the electrons. Under these conditions, the phonon
distribution function will depend not only on the state
of the thermostat, but also on the state of the electrons.
A correct theory of the kinetic phenomena calls for a
consistent description of the electron-phonon systems
with the aid of two coupled integro-differential equa-
tions for the nonequilibrium additions to the phonon
and electron distribution functions. Neglect of one of
these additions in the equation for the other leads, as
shown by calculations in the absence of a magnetic
field (see t41]) to violation of the Kelvin relations for
the thermoelectric coefficients. These relations, or
more accurately the second one, are the consequence
of the symmetry principle of the kinetic coefficients of
Onsager. Consequently, the violation of the second
Kelvin relation is the consequence of violation of the
Onsager symmetry principle. As shown by Bond-
holder1-421, the correct theory, based on a system of
integro-differential equations for the nonequilibrium
additions to the electron and phonon distribution func-
tions, ensures satisfaction of the Onsager symmetry
principle. However, so far no exact solution of such a
system of equations in a weak or zero magnetic field
could be found. In the case of strong magnetic fields,
when the small parameter ( f lT)" 1 -^ ! appears (T—
electron relaxation time), it becomes possible to find
the solution of such a system of integro-differential
equations in the form of a series in powers of this
parameter. The Onsager symmetry principle is then
satisfied; consequently, the Kelvin relations are also
satisfied.

We shall henceforth assume, as is usually done in
linear transport theory, that the phonon distribution
function differs little from the local-equilibrium func-
tion (5.5). Accordingly we put

y), (5.12)

Substituting (5.12) in the kinetic equation (A.33), we
obtain an equation for the determination of gq(x, y).
This equation includes the electron distribution func-
tion f(n, p z , x, y) . In order to find gq in the first
approximation in (tor)"1, it is sufficient to take for f
the solution of Eq. (A.32) in the zeroth approximation
in (BT)" 1 . Such a solution is the local-equilibrium
electron distribution function (5.6). Substituting (5.6)
in the equation for the function gq, we obtain in the
linear approximation in the gradients T and £ the
following formula1 l l l l 2 ] :

X {ftsa (qV) 71"1 - ya*qy [coep {(E + ftco - Q) VxZ1-1 + coep <1> Vx£]
}. (5.13)

Substituting (5.12) and (5.6) in (5.2), we obtain in the
linear approximation in VT and v£ an expression for
the conduction current with allowance for the phonon
dragging111'12'433

{ <oe > (opp (q) T^

Substituting (5.12) and (5.6) in (5.3) and (5.4), we obtain,
again in the linear approximation, a formula for the
total heat 1111243^

{ [< p (q))

- o>ep {{E + Two—Q) copp (q) VxS

(5.15)

Comparing the kinetic coefficients in front of the tem-
perature gradient in (5.14) and the gradient of the
chemical potential (5.15), we verify that they satisfy
the Onsager symmetry principle. The coefficient pre-
ceding ( - v £ )/e in (5.14) coincides with the electric
conductivity coefficient obtained earlier in the paper
by Gurevich and Nedlin144-1 by the method of Konstanti-
nov and Perel' t451. This confirms once more the satis-
faction of the Einstein relation.

Formulas (5.14) and (5.15) were obtained also by
Akhiezer, Bar'yakhtar, and Peletminskii[9]. The dif-
ference lies in the notation. In this interesting paper,
the total heat flux and the conduction current in an
electron-phonon system were determined in terms of
the entropy production. The entropy production was
calculated with the aid of kinetic equations for the
electron and phonon single-particle density matrices.

A recently published paper by Fischert4C^ is also
devoted to the calculation of the conduction current and
the heat flux with allowance for phonon dragging. The
kinetic coefficients in the conduction current, obtained
in1"1, coincide with the corresponding coefficients in
our formula (5.14). The coefficients in the electronic
part of the heat flux also coincide. As already noted
above, the total heat flux was not determined correctly
in' *n[40]

(5.14)

VI. FLUXES ALONG THE MAGNETIC FIELD AND
LONGITUDINAL THERMOMAGNETIC PHENOMENA

In preceding sections we considered fluxes ortho-
gonal to the magnetic field, and the associated trans-
verse thermomagnetic phenomena. In this section we
shall calculate the fluxes along the magnetic field.
Attention will be paid principally to effects connected
with the non-equilibrium behavior of the phonons, i.e.,
with dragging effects. These effects are of greatest
interest since the differential thermal emf due to the
non-equilibrium behavior of the phonons (the dragging
thermal emf) increases with increasing magnetic field
intensity in the quantum region as shown ur48-1.

We shall be interested in what follows in sufficiently
strong magnetic fields ( S 2 T » 1) and with distribu-
tions that are spatially inhomogeneous along the mag-
netic field H II Oz. In this case, to describe the system
it is necessary to retain in the Landau representation
the density matrices that are diagonal in the quantum
number n, do not depend on py, and are nondiagonal
in p z . In the case of weak spatial inhomogeneities, it
is convenient to use the density matrix in the Wigner
representation
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/(«, pz, z) = 2 / n , P .,iP-exp{i(ft-pi)z/h}. (6.1) (6.4) we obtain in the linear approximation in VZT and

Indeed, if the spatial inhomogeneities are small com-
pared with the de Broglie wavelength, the left side (the
Liouville operator) of the kinetic equation can be
written in the usual form

The electron-phonon collision integral contain in this
equation can be represented in the form

<»'. 1. P'Z)
(ri, p'z) — E(n, pz) — %v>q\ 6 [p'z — %qz — pz]

X [(/(»', ft, z)-f(n, Pz, z))Nq(z) + f(n', ft, z)(l-/(n, pz, z))\

+ Fn,n.[—j±-)6[E(n', pz)-E(n, ft) +fta,] 6 [ft + &?i-ft]

X [(/(»', Pz, z)-f(n, pz, z))Nq(z)-f(n, pz, z)(l-/(ra', pi, z))]}.
(6.3)

The phonon distribution function is obtained also from
the kinetic equation

where

/ [Nq (z)] = ^ dPzdpz I
n, n'

x8[E(n't p'z)-E(n, pz)~

ft, z)(l-/(n, ft,

(6.4)

1) 6 (P; _ *g,-ft)

)-/(n, p., z))tf,,(z)
r,(z)]<»J,p(q). | (6.5)

In (6.5) we took into account the non-electronic mecha-
nisms of phonon relaxation by introducing the corre-
sponding relaxation frequency o)pp(q), and N^(z) is
the local-equilibrium phonon distribution function,
equal to

Ao)a (6.6)

Eqs. (6.2) and (6.4) are sufficient for the calculation of
the fluxes along the magnetic field. When obtaining the
dragging effect, it is necessary to take into account the
deviation of both the electronic and phonon distribution
functions from the local equilibrium. In other words,
it is necessary to find the nonequilibrium additions of
u2 and gq to the local-equilibrium distribution func-
tions of the electrons and phonons

f(n,pz, z) = T(z)
\gq\€Nq(z)

(6.7)

(6.8)

With the aid of (6.2) and (6.4) we can find a system of
integro-differential equations for the functions uz and
gq. Inasmuch as the exact solution of these equations
is difficult, we confine ourselves only to the approxi-
mate analysis of the problem, namely: we assume that
uz—the velocity of the ordered motion of electrons
under the influence of the temperature gradient and the
electric field—is much smaller than the average
velocity of their random motion. We can then replace
uz(n> Pz ) approximately by the mean value of uz which
does not depend on n or p z .

In this approximation, it is possible to analyze the
problem to conclusion. Indeed, substituting (6.7) in

U = t"lz [2 (<oep (1) + *>„„ (q)) (ch (^S) - l ) ] " 1 (vlVzT'1 + T^№ep (D uz).
(6.9)

Using (6.7)-(6.9), we obtain with the aid of (6.2) for
stat ionary conditions the formula

eN
(6.10)

where

S

(ch

(6.11)

(6.12)

S—entropy of the electron gas (see (3.18)). Substituting
(6.10) and (6.9) in (6.7) and (6.8), we obtain non-equili-
brium electron and phonon distribution functions. With
the aid of these functions it is easy to write down
formulas for the conduction current and for the total
heat flux transported both by the electrons and the
phonons:

(Qrh =

(6.13)

(6.14)

where

The kinetic coefficients in (6.13) and (6.14) satisfy both
the Onsager symmetry principle and the Einstein re la-
tion.

Let us consider f irst of all the differential thermal
emf. F r o m the equation j z = 0 we get for it

«„ (H) = Pz. (T2^)-1 = v ~ + a" (B)' (6-16)

where a Z 2 ( H ) is the contribution made to thermal
emf by dragging; this contribution vanishes when
Wpp — <*>. In this case the electronic par t of the longi-
tudinal thermal emf ( E * II VT 11 H ) , as well as the
electronic par t of the t r a n s v e r s e emf ( E * II v T X H ) ,
a r e expressed by the s a m e formula

« w # = 4 £ . (6.17)

This formula is approximate and corresponds to equal-
ity of the mean value of the force exerted on the e lec-
t rons by the applied tempera ture gradient to the force
exerted by the electr ic field, i .e . ,

E (n, pz) —- v2r) iLlk
2m 8E

--=0. (6.18)

It follows from (6.16) that the thermal emf is made up
of an "electron" and "phonon" parts. The former is
due to the deviation of only the electrons from equili-
brium, whereas the latter is due to deviation of the
phonon system from equilibrium, too. The former was
investigated in the relaxation-time approximation by
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Ansel'm and Askerov[49]. The greatest interest in the
quantum region attaches to the second part of the
thermal emf, since it increases with increasing mag-
netic field intensity.

Let us consider the case of practical interest,
namely wep( 1) <gc Wpp(q). In this case when Ki
^> kT° we nave for nondegenerate electrons, in accord-
ance with (5.13),

X exp

where it is assumed that I Cq I2 = E2fiq/(vspoV), p0—
crystal density, Eo—constant of the deformation poten-
tial, vs—speed of sound, and V—volume of the system.
In the case of not too strong magnetic fields
H < c!i (T/Rvs )

2/1 e |, the only interaction of importance
is that of electrons with phonons whose momentum is
Kq < fi/a. In this approximation we have

(6.20)

where

2 / m \ 3/2 / F2 \ / mT \ z

ft \ 2jt / \ pQl Ar / \ rt* /

w i t h a > p p ( q ) = X q , T ( t ) ~ G a m m a f u n c t i o n , a n d E > t ( x ) —

p a r a b o l i c - c y l i n d e r f u n c t i o n . F o r t h e m o s t i m p o r t a n t

p h o n o n r e l a x a t i o n m e c h a n i s m , w i t h q ^ I / a , u n d e r

c o n d i t i o n s w h e n t h e d r a g g i n g e f f e c t s m a k e a n o t i c e a b l e

c o n t r i b u t i o n t o t h e t h e r m a l e m f , W p p ~ q — t h e S i m o n s

r e l a x a t i o n m e c h a n i s m ' - 5 0 1 , i . e . , t = 1 , a n d w h e n K £ 2

» T

a If)) a If))
•H; ( 6 . 2 1 )

a ( 0 ) — t h e r m a l e m f a t H = 0 . I n t h e r e g i o n o f l o w t e m -

p e r a t u r e s , w h e n s c a t t e r i n g o f p h o n o n s b y t h e b o u n d a r i e s

o f t h e s a m p l e p r e d o m i n a t e s ( L — s a m p l e d i m e n s i o n ) ,

t = 0 , a n d

• Hs/2. ( 6 . 2 2 )

R e c e n t l y G l u z m a n a n d T s i d i l ' k o v s k i i 1 - 7 9 ' i n v e s t i g a t e d

e x p e r i m e n t a l l y t h e d e p e n d e n c e o f a ^ P ? ( H ) / a ( 0 ) o n t h e

t e m p e r a t u r e a n d o n t h e q u a n t i z i n g m a g n e t i c f i e l d i n

n - G e s a m p l e s . T h e i r r e s u l t s a g r e e w e l l w i t h f o r m u l a

( 6 . 2 1 ) , w h i c h w a s o b t a i n e d u n d e r t h e a s s u m p t i o n t h a t

" p p ~ q T 4 .

T h e l o n g i t u d i n a l t h e r m a l e m f i n a q u a n t i z i n g m a g -

n e t i c f i e l d w a s c a l c u l a t e d i n d e p e n d e n t l y b y a n o t h e r

m e t h o d b y O h t a [ 5 1 ] . H e c o n s i d e r e d o n l y t h e c a s e
2q 2 , a n d o b t a i n e d t h e f o r m u l a

a ( 0 )
( 6 . 2 3 )

W e n o t e t h a t w h e n t = 2 t h i s f o r m u l a f o l l o w s f r o m

( 6 . 2 0 ) .

T h u s , a l l t h e m o s t s i g n i f i c a n t p h o n o n r e l a x a t i o n

m e c h a n i s m s l e a d t o a g r o w t h o f t h e d r a g g i n g t h e r m a l

e m f w i t h i n c r e a s i n g m a g n e t i c f i e l d i n t e n s i t y . W e n o t e

t h a t a n a n a l y s i s o f t h e d e p e n d e n c e o f A a ^ P z ' ( H ) / a ( 0 )

o n t h e m a g n e t i c f i e l d a n d o n t h e t e m p e r a t u r e m a k e s i t

p o s s i b l e t o e s t a b l i s h t h e f r e q u e n c y a n d t h e t e m p e r a t u r e

d e p e n d e n c e s o f t h e a t t e n u a t i o n o f s o u n d i n t h e f r e q u e n c y

r e g i o n u> ~ v s / a .

T h e c h a r g e a n d h e a t f l u x e s a l o n g t h e m a g n e t i c f i e l d

w e r e c a l c u l a t e d , i n t h e a p p r o x i m a t i o n o f e l a s t i c s c a t -

t e r i n g b y a s h o r t - r a n g e p o t e n t i a l b y P e l e t m i n s k i r 5 2 1 ,

w h o a l s o a n a l y z e d t h e d i f f e r e n t l i m i t i n g c a s e s . I n t h e

q u a n t u m l i m i t , w i t h t h e r e l a x a t i o n t i m e i n t r o d u c e d

p h e n o m e n o l o g i c a l l y , t h e h e a t a n d c h a r g e f l u x e s w e r e

c a l c u l a t e d a l s o b y A n s e l ' m a n d A s k e r o v ^ 4 9 - ' .

V H . C O M P A R I S O N O F T H E O R Y W I T H E X P E R I M E N T

I n t h i s s e c t i o n w e s h a l l u s e t h e t h e o r y d e v e l o p e d

a b o v e t o i n t e r p r e t t h e a v a i l a b l e e x p e r i m e n t a l d a t a o n

t h e r m o m a g n e t i c p h e n o m e n a . H o w e v e r , b e f o r e w e p r o -

c e e d t o d o s o , i t i s n e c e s s a r y t o s t o p a n d d i s c u s s t h e

i n f l u e n c e o f m i c r o i n h o m o g e n e i t i e s i n t h e d i s t r i b u t i o n

o f t h e i m p u r i t i e s o n t h e m e a s u r e m e n t s o f t h e t h e r m o -

m a g n e t i c a n d g a l v a n o m a g n e t i c e f f e c t s . T h e f i r s t t o

i n v e s t i g a t e t h i s q u e s t i o n w a s H e r r i n g ' - 5 3 - ' . H e s t u d i e d

t h e o r e t i c a l l y t h e i n f l u e n c e e x e r t e d o n t h e g a l v a n o m a g -

n e t i c m e a s u r e m e n t s b y r a n d o m i n h o m o g e n e i t i e s i n t h e

i m p u r i t y d i s t r i b u t i o n , a n d s h o w e d t h a t i n s t r o n g m a g -

n e t i c f i e l d s t h e i n h o m o g e n e i t i e s l e a d t o a q u a d r a t i c i n -

c r e a s e o f t h e m a g n e t o - r e s i s t a n c e w i t h i n c r e a s i n g f i e l d .

T h e q u e s t i o n o f t h e i n f l u e n c e o f m i c r o i n h o m o g e n e i -

t i e s o n t h e m e a s u r e m e n t s o f t h e r m o m a g n e t i c e f f e c t s

i n s t r o n g m a g n e t i c f i e l d s w a s i n v e s t i g a t e d t h e o r e t i c a l l y

b y K u d i n o v a n d M o y z h e s [ 5 4 1 . U s i n g t h e g e n e r a l m e t h o d ,

d e v e l o p e d b y H e r r i n g [ 5 3 1 , f o r e x p a n d i n g f l u c t u a t i o n s

q u a n t i t i e s i n a F o u r i e r s e r i e s , t h e a u t h o r s o f t 5 4 ] h a v e

s h o w n t h a t t h e r e l a t i v e i n f l u e n c e o f t h e r a n d o m i n h o m o -

g e n e i t i e s i n c r e a s e s w i t h i n c r e a s i n g m a g n e t i c f i e l d i n

m e a s u r e m e n t s o f t h e N e r n s t c o e f f i c i e n t , b u t d o e s n o t

i n c r e a s e i n m e a s u r e m e n t s o f t h e l o n g i t u d i n a l a n d t r a n s -

v e r s e t h e r m a l e m f . T h i s c o n c l u s i o n w a s s a t i s f a c t o r i l y

c o n f i r m e d e x p e r i m e n t a l l y b y D r i c h k o a n d M o c h a n 1 - 5 5 - 1

w h o h a v e s h o w n t h a t t h e t h e r m a l e m f i n a s t r o n g f i e l d

i s n o t v e r y s e n s i t i v e t o t h e i n f l u e n c e o f m i c r o i n h o m o -

g e n e i t i e s . H o w e v e r , t h i s i n f l u e n c e a f f e c t s s t r o n g l y

m e a s u r e m e n t s o f t h e N e r n s t c o e f f i c i e n t a t l a r g e v a l u e s

o f H . T h e e f f e c t i v e ( e x p e r i m e n t a l l y m e a s u r e d ) N e r n s t

c o e f f i c i e n t Q & f f v a r i e s l i k e H m , w h e r e - 1 < m < - 0 . 2 .

A c c o r d i n g t o t h e p r e d i c t i o n s o f t h e t h e o r y o f K u d i n o v

a n d M o y z h e s t 5 4 ] , Q ^ 1 ~ I T 1 , a n d i n s o m e c a s e s Q ^ * f

w i l l t e n d t o s a t u r a t i o n w h e n t h e f i e l d H i n c r e a s e s

w i t h o u t l i m i t , w h e r e a s a c c o r d i n g t o t h e t h e o r y t h a t

d o e s n o t t a k e i n t o a c c o u n t t h e c o r r e c t i o n s f o r t h e

m i c r o i n h o m o g e n e i t i e s , t h e N e r n s t c o e f f i c i e n t Q N i s ,

a s i s w e l l k n o w n , o f t h e o r d e r o f H ~ 2 .

T h u s , i n a q u a n t i z i n g m a g n e t i c f i e l d a c o m p a r i s o n

o f t h e e x p e r i m e n t a l d a t a o n t h e N e r n s t e f f e c t w i t h

t h e o r y m u s t b e c a r r i e d o u t w i t h g r e a t c a u t i o n , a n d t h e

i n f l u e n c e o f t h e m i c r o i n h o m o g e n e i t i e s m u s t b e s p e c i a l l y

i n v e s t i g a t e d . O n t h e o t h e r h a n d , m e a s u r e m e n t s o f t h e

t h e r m a l e m f a r e p e r f e c t l y r e l i a b l e . T h e m i c r o i n h o m o -

g e n e i t i e s i n t r o d u c e o n l y i n s i g n i f i c a n t c o r r e c t i o n s

( w i t h i n t h e l i m i t s o f t h e m e a s u r e m e n t e r r o r s ) , w h i c h

d o n o t d e p e n d o n H . W e s h a l l t h e r e f o r e c o m p a r e i n

d e t a i l w i t h t h e t h e o r y o n l y t h e m e a s u r e m e n t s o f t h e

t h e r m a l e m f .

S i m p l e r f o r m u l a s , a n d t h e r e f o r e m o r e c o n v e n i e n t

f o r a t h e o r e t i c a l a n a l y s i s , a r e t h o s e o b t a i n e d f o r
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Table VI. Experimental study of thermomagnetic phenomena in
semiconductors and semi-metals in a quantizing magnetic field

Material

Bi

rc-InSb

rc-InAs

n-InSb

n-Ge

n-lnSb

Liter-!
ature

56

67

58

59

60

61

64

72, 73

75

Investigated
effect

Temperature
oscillations

Oscillations of
CC X 1 , p

•j Oscillations of

/ MO)

| Magnetophonon
j oscillations

' Ai
I S(Oj
I

Act,
=i

a(0)

a ± (ff) -
a sat

Carrier density,
cm'3

1018

1018

1.3-10"

2.4-1016

1 .210*

5 ,5 .10 ' 3 —
3.S-10 1 '

(1—2)-10 3

3 . 1 0 1 3 — 4 - 1 0 "

6.3-10 1 3

1.3-101*

Temper-
ature

interval,
°K

1.3

1.47-4.33

4,2

4

20—110

120 — 140

15 — 85

6,5 — 82

92 — 101

Hmax

kG

12

13

30

28

80

33

90

100

20

^ max

13

13

70

4S

40

2.S

6

150

2,2

Obtained informa-
tion on the phys-
ical properties of
the conductors

Determination of
the form of the
Fermi surface
Coincidence of the
periods and phases
of the oscillations of

Coincidence of the
periods and phases
of the oscillations
of

Ace i Ap i

o W " " F ( o T
Coincidence of the
periods of the
oscillations of

^ ) a n < p l 5 )
Determination of
the relative role
of different car-
rier mechanisms

Mechanism of
relaxation of long
wave phonons on
the thermal ones

Character of the
electron-phonon
and phonon-
phonon inter-
action
Verification of the
validity of the
theory for the
electronic part of
the thermal emf

thermomagnetic coefficients under isothermal condi-
tions. However, it is quite difficult to realize iso-
thermal conditions in a direction perpendicular to the
primary gradient of the temperature and of the electro-
chemical potential, owing to the occurring transverse
thermomagnetic effects. Reduction of the appearing
temperature gradients entails considerable difficulties,
since it calls for the supply and removal of heat from
different sides of the sample. It is much easier to
realize adiabatic conditions, by thermally insulating,
for example, the side walls of the sample and placing
it in vacuum. An estimate of the adiabatic corrections
to the isothermal coefficients in a quantizing magnetic
field shows that for both a degenerate and a nonde-
generate electron gas these corrections are negligibly
small.*

For easy visualization, the available experimental
data on thermal magnetic phenoma in a quantizing mag-
netic field are summarized in Table VI. The next to

*For the scattering of electrons, for example, by point defects or by
acoustic phonons, in the case of limiting degeneracy, the difference
between the isothermal and adiabatic thermal emf depends on the pre-
dominance of the phonon component of the thermal conductivity K ^
on the electronic component K̂ x

The coefficient of electronic thermal conductivity transversely to a
strong magnetic field is smaller by a factor (Sir)'2 than in the absence
of the field. Therefore when Sir > 1 the electronic part of the thermal
conductivity becomes small compared with the phonon part, and
ad _ _,is

the last column of this table gives the maximal values
of (ftft)/T obtained in experiments, which show the
margin with which the conditions for quantization of
the energy levels of the carriers are realized. The
last column indicates what information of general
nature can be obtained from the given experiment.

The entire aggregate of the experimental data on
thermomagnetic phenomena, presented in the table,
can be separated into two groups: a) oscillatory phe-
nomena and b) phenomena in the quantum limit. Let
us consider both groups in detail.

a) Oscillatory Effects

A special position in the investigation of oscillatory
effects is occupied by the paper of Kunzler et al.[5B],
who investigated the so-called magnetothermal oscilla-
tions in bismuth, i.e., the reversible changes of the
temperature of an adiabatically isolated sample, oc-
curring when the magnitude or direction of an applied
magnetic field is changed. The oscillations of the tem-
perature in a quantizing magnetic field are connected
with oscillations of the entropy of the electron gas S,
and have the same physical origin as the well known
low-temperature magnetization oscillations. Inasmuch
as

a M = -

the oscillations of both S and M are due to oscillations
of the thermodynamic potential $, and in final analysis
they are connected with the nonmonotonic character of
the dependence of the density of states on the energy.
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3 * 5
H-'-lD'1, G"1

FIG. 1.

With increasing entropy of the electron gas, the thermal
energy necessary to maintin the initial temperature is
also increased. However, for an adiabatically isolated
sample, the only source of thermal electron energy is
the lattice. With the aid of the thermometer, peaks of
cooling are observed with changing H. The magneto-
thermal oscillations have a high resolving power and
make it possible to determine with great accuracy the
parameters of the Fermi surface.

Oscillations of the thermomagnetic coefficients in a
quantizing magnetic field (thermal conductivity, differ-
ential thermal emf) were first discovered experimen-
tally by Steele and Babiskin[57] in very pure single
crystals of bismuth. They established very general
laws relating the oscillations of the coefficients of
thermal emf, thermal conductivity, and electric re -
sistance upon variation of the magnetic field, namely,
that the periods and phases of the oscillations of these
coefficients coincide.

Figures 1 and 2 illustrate the oscillations of the
thermoelectric potential difference and the coefficient
of thermal conductivity transversely to the magnetic
field, as observed by Steele and Babiskin. In these
figures, the solid curves correspond to the experimen-
tal results, and the dashed ones are the envelopes of
the minima of the oscillations; 6 is the difference be-
tween the ordinates of the experimental curve and the
envelope of the minima. The quantity 6 was intro-
duced in order to separate the oscillating components.
The plot of 6 is shown in the lower part of the figures.
This curve is periodic in H"1. In order to be able to
compare the period and the phase of the oscillations of
the thermomagnetic coefficients with the galvanomag-
netic ones, the electric resistance of the same single
crystal was measured. Comparison shows (Fig. 3) that
the periods of the oscillations with change of H"1 are
the same for all three effects. The difference in the
phases of the oscillations is quite small. The relative

FIG. 2.

phase shift of the oscillations of the thermal conduc-
tivity and of the electric resistance amounts to 0.16 rad,
and in the case of the thermal emf and the electric
resistance it is 0.08 rad. This difference in the phases
of the oscillations is due principally to the errors in
the construction of the envelope of the minima. In[571

they investigated also the temperature dependence of
the thermal emf, and it was shown that the monotonic
part of the thermal emf decreases with decreasing
temperature like Tn , where n « 1. It follows from the
experiments oft57] that the amplitudes of the oscillations
of the thermal emf are proportional to HS//2. When the
temperature changes, this dependence remains un-
changed. The envelope of the minima of the thermal
emf is proportional to H.

Before we discuss the possible theoretical interpre-
tation of the experimental results oft67], let us find the
consequence ensuing from the simplest single-band
model of a conductor with an isotropic carrier disper-
sion law. We assume that the electrons are strongly

FIG. 3. Ordinate-values
of 1 /H corresponding to the
minima on the 5 curves for
the thermoelectric poten-
tial difference (O), thermal
conductivity ( • ) , and elec-
tric conductivity ( • ) ; ab-
scissas - the integers N.
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degenerate and that the elastic scattering of the elec-
trons with the impurities and defects is dominating in
the transport phenomena.

To calculate the thermal emf axx> the electronic
part of the thermal conductivity «x, and the magneto-
resistance pi, we need formulas for the kinetic coef-
ficients ffik, /3ik> Kik> a n d Xik- ^ t n e c a s e o f strong
degeneracy, we get from (3.16), (3.17), and (4.7) the
Wiedemann- Franz law

**=£(4-Yrotk. (7.1)

The remaining kinetic coefficients can also be ex-
pressed in terms of ffik. The corresponding formulas
are

«zi»=-rp«,- ~" (7-3)

In a strong magnetic field, in the presence of carriers
of the same sign

oxx<oxu, p««pXi,;

Here, in accordance with (2.11) and (2.14),

(7.4)

(Xxx = OL i = , \ I . Of
®xy

P± = ̂ - (7-6)
Xy

According to (4.7), in the approximation that is non-
vanishing in the degeneracy, the following formulas
hold:

ih * » X,ik ^" J i Kih ^^ >• • V ' * ' /

T h e r e f o r e t h e f i r s t t w o t e r m s o f ( 2 . 1 3 ) a r e p r o p o r t i o n a l

t o T 3 . N e g l e c t i n g i n K 1 t h e t e r m s p r o p o r t i o n a l t o T 3 ,

w e g e t i n t h e a p p r o x i m a t i o n l i n e a r i n T

X x = i l i ( A ) V a ^ . ( 7 . 8 )

A d a m s a n d H o l s t e i n [ 2 9 ] h a v e s h o w n t h a t f o r s u f f i c i e n t l y

l a r g e v a l u e s o f t h e q u a n t u m n u m b e r n , t h e c h a r a c t e r

o f t h e o s c i l l a t i o n s c r ^ i s e s s e n t i a l l y i n d e p e n d e n t o f

t h e s c a t t e r i n g m e c h a n i s m , a n d t h a t t h e o s c i l l a t i n g p a r t

o f t h e e l e c t r i c c o n d u c t i v i t y c a n b e r e p r e s e n t e d i n t h e

f o r m

- y - J 0 - ' / 2 , ( ' • » )

w h e r e CTCI i s t h e c l a s s i c a l ( n o n - q u a n t u m ) e l e c t r i c c o n -

d u c t i v i t y i n a s t r o n g m a g n e t i c f i e l d , a n d

i l O O

T h e o s c i l l a t i n g p a r t o f t h e d i f f e r e n t i a l t h e r m a l

e m f ( Q f x x ) o s c c a n a l s o b e r e p r e s e n t e d , a t n o t t o o s m a l l

q u a n t u m n u m b e r s n , b y t h e f o r m u l a

(7.11)

where

is the thermal emf in the classical limit for a strongly
degenerate electron gas. Since the oscillating part of
the magnetoresistance, thermal conductivity, and

thermal emf are proportional to the same oscillating
function

(Pl)osc ~ (K_L)OSC ~ (ajjosc ~ 6-'/2,

the periods and the phases of the oscillations of pi,
Ki, and cti are identical. The maximum values of the
amplitudes of the oscillations at low temperatures are
determined essentially by the broadening of the energy
levels, due to the collision of the electrons with the
scatterers. According to[29], the maximum values of
6~l/2 are equal in order of magnitude -/Tfr (T—carrier
free path time, which enters in the electric conductiv-
ity). If the dominating role in the broadening of the
energy levels is played by elastic scattering by impuri-
ties, then T is independent of the temperature. The
dependence of the amplitudes of the oscillations 6 ~l/2

on the magnetic field is the same at different tempera-
tures. Finally, a linear dependence of the thermal
emf on T is due to strong degeneracy. These conclu-
sions of the single-band model are in good qualitative
agreement with the experiments of Steele and
Babiskin[57]. However, we have no justification for
transferring the results obtained in the single-band
model to the case of bismuth, in which the electron
density is equal to the hole density, and the first in-
equality of (7.4) is violated, inasmuch as in the zeroth
approximation in the scattering (7^1 = 0. In this case,

a nonzero contribution to ffxy will arise only in the
approximation (QT)'2. Under the conditions of the
experiments of[57] (a large number of filled Landau
levels) it can be shown that the quantity a^l
~ ( 1/QT)2 can also be represented in the form of a
slowly-varying classical part (<Jxy)ci and an oscillat-
ing part proportional to 6~1/2. Therefore, when the
amplitudes of the oscillations of the kinetic coefficients
are small compared with the classical part that depends
smoothly on H, aixx as well as /S^ and pxy can be
represented in the form

+(pw:)o

where

(PxyJ'osi,

Thus, in not too strong magnetic fields, if a sufficiently
large number of Landau levels are filled, the charac-
ter of the oscillations of the thermogalvanomagnetic
coefficients turns out to be the same in both the single-
band and the two-band models of the conductor as well
as when the hole and electron densities are equal. On
the other hand, if the fields are so strong that not too
many levels are filled, then the character of the oscil-
lations of the different thermogalvanomagnetic coef-
ficients is different. Thus, for example, the experi-
ments of Antcliffe and Stradling[80], made on n-InsB
samples, have shown that the oscillations of pxx and

differ in phase by ir/4.
In semiconductors, the quantum low-temperature

oscillations of the thermal emf in a transverse mag-
netic field (H i vT) were observed in n-InSbt58] and
n-InAs[59]. Comparison of the experimental curves for
the transverse magnetothermal emf Aa j / a (0 ) and

Pxy
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the transverse magnetoresistance Apx/p(0) reveals,
just as in the case of bismuth, agreement of the
periods and good agreement of the phases. Int5 , a
distinct spin splitting of the first (n = 1) Landau level
was observed. However, an estimate of the g-factor
from the magnitude of the splitting leads to a value
I g I = 34, which is smaller than the g-factor predicted
by the theory and determined from the spin resonance
of the electron conductivity in InSb (I g I = 50).
Another physical nature (compared with the low-tem-
perature oscillations considered above) is possessed
by the so-called magnetophonon oscillations of the
thermal emf, first observed in n-InsB by Puri and
Geballe[601 and investigated in greater detail by
Muzhdaba, Parfen'ev, and Shalyt[61].

Both with respect to the observation conditions
(higher temperatures) and with respect to the depend-
ence of the period on the parameters of the conductor,
this type of oscillations differs from the low-tempera-
ture quantum oscillations of the Shubnikov—de Haas
type considered above.

The period of low-temperature oscillations is deter-
mined only by the electron density:

a n d t h e p e r i o d of t h e m a g n e t o p h o n o n o s c i l l a t i o n s o n t h e

e f f e c t i v e m a s s of t h e e l e c t r o n s m * a n d t h e l i m i t i n g

f r e q u e n c y of t h e o p t i c a l p h o n o n s :

A ( _ L ) = _ 1 _ . ( 7 . 1 3 )

I n t h i s r e v i e w w e s h a l l n o t a n a l y z e i n d e t a i l t h e m a g -

n e t o p h o n o n o s c i l l a t i o n s of t h e t h e r m a l e m f , r e f e r r i n g

t h e r e a d e r t o t h e s p e c i a l l i t e r a t u r e 1 6 2 ' 8 1 1 ; w e n o t e o n l y

t h e f o l l o w i n g t w o c i r c u m s t a n c e s .

F i r s t , n o o s c i l l a t i o n s w e r e o b s e r v e d o n t h e c u r v e

of t h e t r a n s v e r s e m a g n e t o t h e r m a l e m f i n [ 6 1 ] , i n a c c o r d

w i t h t h e t h e o r e t i c a l r e s u l t c o n c e r n i n g t h e i n d e p e n d e n c e

of t h e t r a n s v e r s e e l e c t r o n i c p a r t of t h e t h e r m a l e m f o n

t h e s c a t t e r i n g . I n a l o n g i t u d i n a l m a g n e t i c f i e l d

( H II V T ) , t h e m a g n e t o t h e r m a l e m f o s c i l l a t e s . T h e

m a x i m a t h a t c a n b e o b s e r v e d i n t h e e x p e r i m e n t a l

c u r v e s h a v e a p e r i o d i c i t y t h a t a g r e e s w i t h ( 7 . 1 3 ) .

S e c o n d , t h e o s c i l l a t i o n m a x i m a of t h e l o n g i t u d i n a l

t h e r m a l e m f ( A a n ) / a ( 0 ) a r e s h i f t e d r e l a t i v e t o t h e

r e s o n a n t v a l u e s of t h e m a g n e t i c f i e l d d e t e r m i n e d b y

c o n d i t i o n ( 7 . 1 3 ) . A c o m p a r i s o n of t h e m a g n i t u d e of t h i s

s h i f t w i t h t h e p r e d i c t i o n s of t h e t h e o r y of P a v l o v a n d

F i r s o v [ 6 z l y i e l d s i n f o r m a t i o n o n t h e r e l a t i v e r o l e of

t h e d i f f e r e n t c a r r i e r s c a t t e r i n g m e c h a n i s m s i n n - I n S b .

b) T h e r m o m a g n e t i c E f f e c t s i n t h e Q u a n t u m L i m i t

T h e d e p e n d e n c e of t h e t h e r m o m a g n e t i c e f f e c t s i n

t h e q u a n t u m l i m i t o n t h e t e m p e r a t u r e a n d i n t e n s i t y of

t h e m a g n e t i c f i e l d f o r d i f f e r e n t m e c h a n i s m s of e l a s t i c

s c a t t e r i n g i s s h o w n i n T a b l e s I I - I V . A t t h e p r e s e n t

t i m e , h o w e v e r , w e s t i l l d o n o t h a v e s u f f i c i e n t l y r e l i a b l e

e x p e r i m e n t a l d a t a t o b e a b l e t o j u d g e t h e v a l i d i t y of t h e

t h e o r e t i c a l d e p e n d e n c e s of t h e t h e r m o m a g n e t i c e f f e c t s

o n T a n d H , g i v e n i n T a b l e s I I - T V . T h u s , f o r e x a m p l e ,

m e a s u r e m e n t s of t h e N e r n s t e f f e c t , q u o t e d b y A m i r k -

h a n o v e t a l . [ 6 3 ] , c a n n o t b e i n t e r p r e t e d t h e o r e t i c a l l y ,

b e c a u s e t h e c h a r a c t e r of t h e d e p e n d e n c e of t h e N e r n s t

c o n s t a n t o n t h e m a g n e t i c f i e l d c h a n g e s f r o m s a m p l e t o

: \ ?
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FIG. 4.

s a m p l e . T h i s i s a p p a r e n t l y c o n n e c t e d w i t h t h e i n f l u e n c e

of t h e i n h o m o g e n e i t i e s r e f e r r e d t o i n t h e b e g i n n i n g of

t h i s s e c t i o n .

T h e m o s t r e l i a b l e e x p e r i m e n t a l i n f o r m a t i o n a b o u t

t h e d e p e n d e n c e o n t h e t e m p e r a t u r e a n d o n t h e m a g n e t i c

f i e l d i n t e n s i t y i n t h e q u a n t u m l i m i t w e r e o b t a i n e d f o r

m e a s u r e m e n t s of t h e d i f f e r e n t i a l t h e r m a l e m f . T h e s e

e x p e r i m e n t a l d a t a a r e of g r e a t e s t i n t e r e s t , b e c a u s e

t h e i r t h e o r e t i c a l a n a l y s i s m a k e s i t p o s s i b l e , o n t h e

o n e h a n d , t o j u d g e t h e v a l i d i t y of t h e p r e m i s e s of t h e

t h e o r y a n d , o n t h e o t h e r , o b t a i n i n f o r m a t i o n o n t h e

m e c h a n i s m s o f e l e c t r o n - p h o n o n a n d e v e n p h o n o n -

p h o n o n r e l a x a t i o n .

I n t h e e x p e r i m e n t s m a d e b y P u r i a n d G e b a l l e [ 8 4 ' o n

p u r e s a m p l e s of n - G e w i t h i m p u r i t y d e n s i t y n D

~ 1 0 1 3 c m " 3 , t h e y m e a s u r e d t h e r a t i o

( 7 . 1 4 )
S]JO) ~~ a ^ (0) •

F i g u r e 4 s h o w s t h e e x p e r i m e n t a l r e s u l t s o b t a i n e d i n [ 6 4 ]

f o r t h e d e p e n d e n c e of A a ^ / a ^ O ) o n t h e m a g n e t i c f i e l d

a t d i f f e r e n t t e m p e r a t u r e s f o r H II [ 1 0 0 ] a n d v T II [ 0 1 0 ] .

T h e s a m e f i g u r e s h o w s t h e d e p e n d e n c e of A a i / a i ( 0 )

o n t h e t e m p e r a t u r e , o b t a i n e d i n a f i e l d H = 8 8 k G . T h e

e x p e r i m e n t a l d a t a l e a d t o t h e f o l l o w i n g e m p i r i c a l f o r -

m u l a s : i n t h e t e m p e r a t u r e i n t e r v a l 2 0 — 8 0 ° K

( 7 . 1 5 )Ace i

a n d f o r T < 2 0 ° K

AaL

a x (0)=

• H \ 3 / 2

)
( 7 . 1 6 )

D i a n d Efe v a r y l i t t l e w i t h t h e t e m p e r a t u r e a n d w i t h t h e

f i e l d .

I n s e m i c o n d u c t o r s w i t h a n a n i s o t r o p i c c o n s t a n t -

e n e r g y s u r f a c e ( s u c h a s n - G e o r n - S i ) , t h e c o u p l i n g of

t h e c a r r i e r s w i t h t h e l o n g i t u d i n a l a n d t r a n s v e r s e p h o -

n o n s i s of t h e s a m e o r d e r of m a g n i t u d e . T h e r e f o r e a n

a n a l y s i s of t h e s e e x p e r i m e n t s i s i m p o s s i b l e w i t h i n t h e

f r a m e w o r k of t h e s i m p l e s t m o d e l .

I n [ 6 S > 8 6 ] , t h e m a i n p r e m i s e s of t h e q u a n t u m t h e o r y

of t h e r m o m a g n e t i c p h e n o m e n a , d e v e l o p e d i n S e e s . I l l—
I V a s a p p l i e d t o a q u a d r a t i c i s o t r o p i c d i s p e r s i o n l a w ,

w e r e e x t e n d e d t o a m u l t i v a l l e y a n i s o t r o p i c e n e r g y
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spectrum of the electrons. The anisotropy of the car-
rier scattering was taken into account within the
framework of the deformation-potential method. The
isothermal thermal emf was investigated in greatest
detail in different limiting cases, as functions of the
magnitude of the magnetic field and the degree of
dragging of the electrons by the phonons.

The isothermal differential thermal emf is made up
of two parts: electronic a<e>(H), due only to the non-
equilibrium nature of the electrons, and phonon
a'P'fH), due to the deviation of the phonons from the
equilibrium distribution as a result of electron-phonon
collisions: a(E) = a< e )(H) + a (P'(H). Under the con-
ditions of the experiments of[64], a 'P' turns out to be
small compared with a 'P ' [sic!]. In a quantizing mag-
netic field, the main contribution to the interaction with
the electrons is made by phonons with q ~ qH
= V | e | H/ch". The magnetic field and temperatures
used in[64:i were such that qfj < q^ = (T/fisx f. In this
limit, for the case when the magnetic field is directed
along the fourfold axis and the dragging of the electrons

' 1 ' *1
by the A-branch phonons is weak ), the
following expression was obtained for the dragging
thermal emf[65]:

, (7.17)

where s\ — phase velocity of the A.-branch phonons,
C2—deformation-potential constant, c^ — mean value of
the elastic constant for the A.-brach, F^ contains a
weak logarithmic dependence on the magnetic field,

P =p0K<2"r;v)s^4"rA>L"1, p<,-density of the substance,
L—dimension of the crystal, B is determined by a
combination of the components of the reciprocal-effec-
tive-mass tensor in the coordinate frame connected
with the external fields[65]; TL and y are determined
by the phonon damping decrement

•zZl(q.T)-^A>j'-T^q
2+\ (7.18)

and A\ d e p e n d s on t h e p a r a m e t e r s of t h e m a t e r i a l .
T h e r a t i o a ( P ' ( H ) t o t h e d r a g g i n g t h e r m a l emf in t h e
a b s e n c e of a m a g n e t i c f ie ld a S P ^ O ) i s e x p r e s s e d by
m e a n s of t h e s i m p l e f o r m u l a

(7.19)

c o n t a i n s a w e a k l o g a r i t h m i c d e p e n d e n c e on H and T.
In n - G e , t h e e x p e r i m e n t a l l y i n v e s t i g a t e d quan t i t y

Act?' (H)
(7.20)

c o n t a i n s a c o n t r i b u t i o n f r o m d i f fe ren t b r a n c h e s of t h e
phonon s p e c t r u m and i s m o r e c o m p l i c a t e d for a n a l y s i s .

It fo l lows f r o m ( 7 . 1 7 ) - ( 7 . 2 0 ) tha t t h e d e p e n d e n c e on
T and H of t h e m e a s u r e d quan t i ty Aa/a(0) i s d e t e r -
m i n e d e s s e n t i a l l y by t h e d a m p i n g d e c r e m e n t of t h e
p h o n o n s with q ~ q n = V | e | H /c l i . U s u a l l y one u s e s
in t h i s f r e q u e n c y r e g i o n , for t h e d a m p i n g d e c r e m e n t of
t h e t r a n s v e r s e sound w a v e s , t h e L a n d a u - R u m e r
f o r m u l a [ 6 7 ]

and for long i tud ina l sound t h e H e r r i n g f o r m u l a [ 6 8 ]

rT' = Aig*TK (7.22)

T h e s e f o r m u l a s w e r e ob ta ined in t h e a p p r o x i m a t i o n
invo lv ing t h r e e - p h o n o n p r o c e s s e s in which t h e e n e r g y
and m o m e n t u m c o n s e r v a t i o n l a w s a r e e x a c t l y s a t i s f i e d .

F o r suf f ic ien t ly low t e m p e r a t u r e s , t h e phonon r e -
l a x a t i o n on t h e b o u n d a r i e s of t h e s a m p l e , which d o e s
not depend on T and q, b e c o m e s i m p o r t a n t ; in t h i s
c a s e t h e d a m p i n g d e c r e m e n t i s g iven by

(Tb)l = (Tb h 2T ' '

( L — c h a r a c t e r i s t i c d i m e n s i o n of t h e s a m p l e ) .
In t h e e x p e r i m e n t s of [64], t h e m a g n e t i c f ie ld i n t e n s i t y

and t h e t e m p e r a t u r e s a t i s f i e d t h e inequa l i ty

H< • ( £ ) • •
In t h i s c a s e , a s fo l lows f r o m (7.21) and (7 .22) , w e h a v e

T; = ('<Y(T T y (7.24)

T h e inequa l i t y (7.24) l e a d s t o t h e c o n c l u s i o n t h a t t h e
m o s t s ign i f i can t c o n t r i b u t i o n t o t h e d r a g g i n g t h e r m a l
emf i s m a d e by long i tud ina l p h o n o n s , and i n a c c o r d -
a n c e wi th (7.19)

(H)

=A,qT\ (7.21)

a<« (0) T

This formula gives a different dependence than the
experimentally observed (7.15). The lat ter formula
would be obtained only if an inequality opposite to
(7.24) were to apply, thus contradicting the experi -
mental conditions of t 6 4 l Consequently, T/ and T^, cal-
culated in the approximation of three-phonon processes
with satisfaction of the energy and momentum conser-
vation laws, cannot be reconciled with the exper imen t^^
performed in the presence of a quantizing magnetic
field. A s imi lar situation took place also ear l ie r in an
investigation by Herr ing et a l . f 6 9 ] in an analysis of ex-
per iments on thermomagnetic phenomena in the c las -
sical region of fields. There exist also other exper i -
iments^70-1 on the study of the tempera ture dependence
of TI and Tt, which also contradict formula (7.22).

Thus, it becomes necessary to review our concepts
concerning the relaxation of the longitudinal long-wave
sound in solids. So far we disregarded the width of the
energy levels of the short-wave thermal phonons that
take par t in the three-phonon p roces ses . Allowance for
this factor in the absorption of the longitudinal long-
wave sound leads to new possibi l i t ies . In order to ex-
plain the foregoing, let us consider the scat ter ing of
sound by short-wave thermal phonons. Neglecting the
level width (the damping decrement) of the short-wave
thermal phonons, there should be exactly satisfied in
three-phonon p rocesses only the energy and momentum
conservation laws. If the dispersion of the speed of
longitudinal sound is ze ro , then a process is possible
in which three phonons of the longitudinal branch, with
three wave numbers , take par t ; then the momentum
conservation law is given by qi = q2 - q3, and the
energy conservation law is obtained by multiplying this
equality by the speed of longitudinal sound. Allowance
for an arb i t ra r i ly small dispersion of the short-wave
thermal phonons already excludes these p rocesses ,
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since the law of energy conservation will not be satis-
fied if all three phonons are longitudinal. However, the
situation can be radically altered if account is taken of
the damping decrement of the shortwave thermal pho-
nons. Indeed, allowance for the damping decrement of
the thermal phonons leads to an uncertainty in the
energy conservation law, and if this uncertainty is
larger than the magnitude of the dispersion, then
processes in which three phonons belonging to one
branch take part, become possible. It is precisely
these processes which make an appreciable contribu-
tion to the absorption of the long-wave sound in solids
by short-wave thermal phonons and lead, as shown by
Simons[50] (see also'711), in place of (7.22), to the
following damping decrement of the longitudinal long-
wave sound:

it = A,qTi. (7.25)

The damping decrement of the transverse long-wave
sound, with allowance for the final width of the level
of the thermal phonons, is described as before by
formula (7.21).

Formulas (7.25) and (7.21), together with (7.19),
lead to an experimental observation of relation (7.15)
in a temperature interval in which phonon-phonon re-
laxation predominates. This confirms the notions con-
cerning the mechanism of relaxation of long-wave pho-
nons by short-wave phonons, on which formulas (7.25)
were based. It must be emphasized that the results of
experiments'701 on the study of the temperature depend-
ence of absorption of longitudinal and transverse sound
in dielectrics also agree well with formulas (7.21) and
(7.25). At T < 20°K, formulas (7.23) and (7.19) lead
to

a (0) V T I '

which agrees well with the experimental result'843.
Of great interest for the clarification of the mecha-

nism of phonon-phonon relaxation in semiconductors
with cubic lattice is also another paper by Puri and
Geballe'721. The authors observed that in n-InSb. in
the temperature interval 6—40° K, the dragging thermal
emf a (P'(H) increases very strongly with increasing
magnetic field exceeding a<e) by dozens of times, al-
though in the classical region of strong fields, i.e.,
when £2T^> 1, K& < T, it is practically nonexistent.
Since the constant-energy surfaces of n-InSb are iso-
tropic, unlike n-Ge, only longitudinal phonons should
make a contribution to the dragging effects. This cir-
cumstance greatly simplifies the comparison of theory
with experiment.

In'72' they measured the change of the thermal
emf AaeXp = a(H) - <*sat compared with the classical
saturation value asat> a s a function of the magnetic
field and of the temperature. Neglecting Of^i the
dragging thermal emf a (P'(H) was determined from
the following relation:

a<p) (H) = Aaexp — Ac^0I , (7.Zb)

where

Here a <e>(H)—electronic part of the thermal emf in

the quantizing magnetic field, determined by the rela-
tion (7.4); Qfgfjt— electronic part of the thermal emf in
the classical region of strong magnetic fields, So-
chemical potential at H = 0. In a subsequent investiga-
tion'741, Puri compared the experimental data for
a'P'(H) with the formula obtained for the dragging
thermal emf by extending the Herring theory'74^
("IT" approach) to the quantum region. In the limit
^H < (T/RSX )2> this formula leads to the same depend-
ence on T and H as the formula determined by the
conduction current (5.18).

A study of the dependence of a'P* on the magnetic
field at low temperatures (T < 15°K), when the pho-
nons are scattered principally from the boundaries of
the sample, has made it possible to determine uniquely
whether electron scattering in n-InSb by the deforma-
tion potential predominates absolutely over their scat-
tering by piezoelectric oscillations.

At higher temperatures (15 < T < 40°K), using an
analysis of the field and temperature dependences of
the dragging thermal emf a'P' for the damping decre-
ment of the longitudinal long-wave phonons, Puri ob-
tained the following relation:

Tr'(9, T)~qT3. (7.28)

This expression contradicts the results of a theory,
which takes into account three-phonon processes and
leads, as noted by Herring'68-1, to a sum equal to five
for the exponents of q and T in the damping decre-
ment. It seems to us that the result (7.28) is the con-
sequence of an insufficiently correct analysis of the
experimental data.

First, Puri ignores those serious difficulties which
arise in the separation of the change of the electronic
part of the thermal emf Aoj^i from the total ex-
perimentally-measured change of the thermal

means of for-emf Aa e xp. He calculates !?
mula (7.27), taking into account, as follows from gen-
eral considerations, the spin splitting of the Landau
levels and the nonquadratic nature of the conduction
band in n-InSb. However, in this region of temperatures
and magnetic field where the dragging effect is prac-
tically missing, and consequently Aa e xp = Aa ( e ) , this
formula does not describe adequately the experimental
electronic part of the thermal emf. As was observed
in a number of papers, better agreement with experi-
ment takes place only if the spin splitting of the Landau
levels is not taken into account in (7.27). For a quad-
ratic isotropic carrier dispersion law without allow-
ance for the spin, formula (7.27) takes the form

MaW= - 1 + ln (-^—) +ivctharv, (7.29)

where xv = Kft/T. Good agreement between the experi-
mental data and formula (7.29) was observed by Drichko
and Mochant75], who measured Aa<e) for not very
strong magnetic fields and high temperatures (x^,
~ 1, T = 100°K), and also by Puri and Geballet75!.
This is evidenced by Fig. 5 of[72], in which measure-
ments of AaeXp and T = 82°K, when there is no
dragging, are compared with the theoretical curve cal-
culated by formula (7.29).

If the carrier spin and the effective value of the g-
factor are taken into account in formula (7.27) for a
quadratic isotropic law, then the agreement between
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theory and experiment, as noted in1-721, becomes worse.
The corrections for the non-quadratic nature of the
conduction band in n-InSb, with account of the spin
splitting of the energy levels, do not improve the
agreement with experiment[76]. This disparity between
theory and experiment for Aa ( e ) remains unexplained
to this day. However, in the reduction of the experi-
mental data, the existing discrepancy between theory
and experiment for Aa<e> should be kept in mind.

Int73] there is a table of the experimental values for
AaeXp in a wide range of temperatures (6.5—82°K) and
magnetic fields (10—lOOkG). If Aa |£ e o r is calculated
not from a formula that takes into account both the
spin splitting of the levels and the non-quadratic band,
as is done by Puri in[73], but use is made, for example,
of formula (7.29), which agrees better with experiment,
then the following dependence on T and on K is ob-
tained for a 'P ' in the temperature interval 25—40° K:

acpj-ff1-6?-5-05 (7.30)

in place of the relation a $ | r i ~ H1>3T" obtained by

Puri. This yields for the damping decrement of the
longitudinal long-wave phonons the formula

Vi = -rr'(?. T)~qTlf>\ (7.31)

in lieu of formula (7.28) obtain int73].
Another significant circumstance to which Puri paid

no attention in the reduction of the experimental data
and in the derivation of formula (7.28) is allowance for
the scattering of the phonons at the boundaries of the
sample. In the temperature interval 27— 43°K, Puri
analyzed the dependence of the dragging thermal emf
a'P' on the magnetic field and the temperature with
allowance for only phonon-phonon relaxation, neglecting
completely the scattering of the phonons at the bounda-
ries of the sample. However, an earlier paper[75] pre-
sents convincing experimental proof to the contribution
made to the phonon relaxation by their scattering from
the boundaries in the indicated temperature interval.
In particular, in[75] they investigated the ratio of the
thermal emf's of two samples with different cross
section area at a fixed value of the field (80 kG) as a
function of the temperature (the so-called size effect).
In the interval 27—43°K this ratio differs from unity
and equals respectively 1.45—1.15. The maximum
value of this ratio equals 1.55 at T = 6°K. The pre-
sented values of the size effect offer evidence of the
role of the boundary scattering of the phonons in the
investigated temperature interval.

Theoretical estimates of the field and temperature
dependences of the dragging thermal emf a 'P' by
means of formula '7.17) for the relaxation of longitudi-
nal long-wave phonons on short-wave phonons (in ac-
cordance with (7.25)) and on the boundaries of the
sample (in accordance with (7.23)) lead respectively to
the following expressions:

(TI) T/1.5/TT—5.5 (n OO\
atp) '̂ - ti 1 , (I ,O£i)
Av) UZT— I'5 IT "\%\

ab ~U I . (1.64)
Comparison of these relations with the experimental
data (7.30) indicates that in the interval 27—43°K scat-
tering of phonons by phonons predominates, but scatter -

ing of the phonons at the boundaries cannot be neglected
completely.

Thus, we can hope that a description of A j

which is in better agreement with experiment, and also
the introduction of corrections for the boundary scat-
tering of the phonons, will confirm the validity of the
relation for the damping decrement of longitudinal
long-wave sound yi ~ qT4, which agrees with the ex-
perimental data for the dragging thermal emf in
n-Ge[64], as well as with experiment'70' on the absorp-
tion of ultrasound in solids, and finally, with the
theoretical concepts[50'711

APPENDIX

a) KINETIC EQUATION FOR ELECTRONS

Let us consider the system of interacting electrons
with Hamiltonian

H~ V£ + -L- V G*1'*1 + + (A. 1)
V V (n, Ji\ v, V)

where Eu— eigenvalue of the energy of the single-parti-
cle Hamiltonian, and G £ / ^ = ( i>, /i j G(r - r ' ) | v', / / )
—matrix element of the interelectron interaction in
terms of the eigenfunctions of the single-particle
Hamiltonian, aj, and a^—second-quantization opera-
tors obeying the Fermi statistics. We introduce, fol-
lowing Bogolyubov and Gurovf46], the density matrices
of one, two, etc. particles with the aid of the formulas

Sp (paiaK.) = (aiaK,) = fm,,
Sp (pa}.at.'iivav,) m {aiai'avav) == h (xte'vv'),

(A.2)

Ths averaging in (A.2) is over the Gibbs ensemble.
Using the definitions (A.2) and the equation of mo-

tion of the operators

i%~F=[H, PusHF — FH,

we get

V) V

A(xx'n>')

(A.3)

(A.4)

(A. 5)

To obtain the equations of motion of the single-particle
density matrix, without taking into account the effects
of dynamic screening of the interelectron interactions
in the Born approximation, it is necessary to express
the mean values contained in the right side of (A.5), of
the product of six operators, in terms of the product
of the single-particle matrices. Thus, for example

> = vM' (A. 6)

Substituting (A.6) in (A.5) we obtain an equation re-
lating h with f, in the following form:

x.-Ev-Ey.^ h (HX'YT ') = M[f\. (A.7)
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Here M[f ] denotes the right-hand side of (A.5) follow-
ing substitution of (A.6). In the case of slow processes,
h does not depend explicitly on the time t, and depends
implicitly in terms of the single-particle matrix tvv'.
Therefore ih 9/St h = 0. However, it is customary to
introduce in perturbation theory an adiabatic parame-
ter e —* 0, that includes the interaction between the
electrons at t — -°° . Consequently, it is necessary to
make in (A.7) the substitution iK 9/St — ie. We then
get from (A.7)

M [I]
h (V.X'Y ) — lim (A.8)

Substituting (A.8) in (A.3) we obtain a kinetic equation
for the single-particle density matrix tvv'.

Let us consider the particular case of the kinetic
equation for electrons in a homogeneous quantizing
magnetic field. We are interested in distributions that
are not homogeneous along the x axis, which is per-
pendicular to the magnetic field, which in turn is
parallel to the z axis. Such inhomogeneities, in the
Landau representation | K ) S |n, p2, XO) are described
by the diagonal elements of the density matrix f/oc'
= iK5KK', which depends on p v = eHxo/c.

Taking this into account and substituting (A.8) and
(A.4), we get

-7~-= >, W (xvvVHMl —/x]dt
(v, v', V) (A.9)

where

II" (zvv V) ™ -^- I 2 8 [£v ,-Ev, — £x —

J. <v | «*>' j y.) <* | | e*' \v').
(A. 10)

The products of the matrix elements contained in this
equation can be written in the Landau representation
in the form:

=:8 (-PJ(*
I-PJ,V)-*!,) 6 (qa~q-v) 6 (-P

X exp{ — i lq'x — q

)-^Z) 8 (9z~?

Here

J V v (± qx, qy) - V ^~J- ("yf {[sign K - «v) «1 ?» ~ *?i} ) '"* "

Xexp ( - , ?i = 9= + 9!
r »=mmK, »,},

(A. 13)

Ln(t)—generalized Laguerre polynomial.
The product of the matrix elements in (A.11) de-

creases exponentially if | q x | or |qxl is larger than
I / a . Consequently, only the factor exp[ ixo/c (qx - qx)l
can change noticeably in the region where this product
differs greatly from zero, i.e., when |q x I or |q x I is
smaller than I / a . Consequently, following substitution
of (A.ll) in (A.10) and integration with respect to q',
the difference between qx and qx can be neglected in
the slowly-varying parts of the products of the matrix

elements; then the integral with respect to qx reduces
to the form

Taking this formula into account, we can represent
(A.9) in the form

(V, V',V",q)
X8 [£V + £V.-£X-EV.] 8 (lox-̂ ov)

X{/v[l-W/v- [l-/v»l-Ml-/v]/v»l1-/v'l>- (A.14)

Taking into account the equality Xo = (c/eH )p^ and
(A.11), we can easily verify that the matrix elements
(v I eiq • r \v") and <He i ( l r I K ) , which enter in (A. 14),
contain the factor

8 (S gs) 8 (̂ Ov» — i (V = sig

In the case of weak spatial inhomogeneities, when f as
a function of x0 remains practically constant on the
Larmor radius, this factor can be expanded in a series
in «2qy. The zeroth-order term in the collision inte-
gral (A. 14), using the notation of (A. 11) and (A.12) as
well as

(A. 14a)

is given by (3.3).

b) KINETIC EQUATIONS FOR ELECTRON-PHONON
SYSTEMS

To calculate the charge and energy volume flux
densities it is necessary to know the equations of mo-
tion of the single-particle density matrices of the elec-
tron and the phonon. In the Born approximation in the
amplitude of electron-phonon scattering, the kinetic
equations for the single-particle matrices can be ob-
tained by using the already described procedure of
Bogolyubov and Gurovt46]. Such calculations were per-
formed in the paper of Bar'yakhtar and Peletminskii^101.

The Hamiltonian of the electron-phonon system is

H = H0e + H0p + Aep, (A. 15)

where

{A (v'vq) (v'v9) 6$}

A (v'vq) = Cq <v' | e^' | V); A* (v'vq) = C* (v' | C^* | v),

Cq—Fourier component of the electron-phonon interac-
tion energy.

We define the single-particle matrices

and the correlative matrices

h (xx'q)=Sp (paX-l̂ ), h* (w'q) q

With the aid of (A.3) and the definitions (A.16) and
(A.17) we get
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(V, v', 9)

r^*(v'vq)[6xv./>(vx'q)-*(xv'q) «„„.]},

{^(v'vq)[6>lv.**(vx'q)-A'(xv',)flVJt,J

(A. 18)

(ift-jj-+ftoq,—»G>J '
v
qq — 2 {-4(v'vq)**(vv'q')—.-l*(v'vs)*(vv'q)}.

(v-v'» (A. 19)

In the same manner we can obtain an equation for
h( j/pq) and h*(v'vq), which contains the mean values
of the products of four operators

SP(P<V<V)- sp (p<av.*jsq). (A.20)

In order to obtain a closed system of equations for the
single-particle matrices Nqq' and f/c/c', it is neces-
sary to express the mean values of the product of four
operators in t e r m s of Nqq' and inx' • This can be
done, as in the preceding section, only approximately,
neglecting in the relat ions

, , , , mr , i , , i \ / A 01 \
I I 0 r 0 I :^z 7 il\ r "~f~ f (VV fl Q) I /I, fd I J

the correla t ive functions g and g'. In this approxima-
tion we get

(v, V, q)
-«„ , /„ . ] (a,q.4-wqq-)4[/xx./VV'-)-/Xv' («vX—/«,')) a,,-} (A.22)

and a s imi lar equation for h*(KK'q). In the case of
slow p roces se s , h and h* depend on the t ime implicitly,
via IVK and Nqq'. Therefore the derivatives of h with
respect to the t ime in the left-hand sides can be
neglected. Then, introducing the adiabatic pa ramete r
e -*• 0, we get

' M - A T F T O r . S
(V, v', q)

< V - - V > ] > - ( A . 2 3 )

A * ( x x ' q ) = Urn £ £ x + ft(B , ( e 2

>- ( A . 2 4 )

S u b s t i t u t i n g ( A . 2 3 ) a n d ( A . 2 4 ) i n ( A . 1 8 ) a n d ( A . 1 9 ) , w e

o b t a i n a s y s t e m o f k i n e t i c e q u a t i o n s f o r t h e s i n g l e -

p a r t i c l e e l e c t r o n a n d p h o n o n d e n s i t y m a t r i c e s .

L e t u s p r o c e e d t o c o n s i d e r t h e p a r t i c u l a r c a s e s o f

i n t e r e s t t o u s . W e f i n d f i r s t t h e k i n e t i c e q u a t i o n f o r

t h e e l e c t r o n i c d e n s i t y m a t r i x i n t h e p r e s e n c e o f a

h o m o g e n e o u s q u a n t i z i n g m a g n e t i c f i e l d . T h e d i s s i p a t i v e

c h a r g e a n d e n e r g y f l u x e s d u e t o t h e o n e - d i m e n s i o n a l

s p a t i a l i n h o m o g e n e i t i e s i n t h e p l a n e p e r p e n d i c u l a r t o

t h e m a g n e t i c f i e l d a r e e x p r e s s e d i n t e r m s o f t h e e q u a -

t i o n o f m o t i o n o f t h e d i a g o n a l m a t r i x e l e m e n t s o f t h e

d e n s i t y m a t r i x {KK' = i^KK1 * n t h e L a n d a u r e p r e s e n t a -

t i o n . W i t h t h e a i d o f ( A . 1 8 ) , ( A . 2 3 ) , a n d ( A . 2 4 ) w e g e t

(v,q, q')

£x—Sv-f-

(xvq') 8 [£•„_,£,, _ *

(A.25)

It is seen from this formula that the second curly
bracket is obtained from the first by making the sub-
stitution K -^ v and multiplying by - 1 .

The products of the mat r ix elements of the electron-
phonon interaction energy, which a r e contained in (A.25),
a r e of the form given in (A. l l ) . Jus t as in the der iva-
tion of (A. 14), we shall neglect the difference between
q x and q x in the slowly-varying par t of the product of
the mat r ix elements; then the integral with respec t to
q x takes the form

dqx csp [i (<fa-<Q

(A-26)

in which the phonon matr ix Nq(xoK ) is introduced in a
mixed Wigner representat ion, or the quantum function
of the phonon distribution with the aid of the relat ion

cexp[i(qx~ q'x) XOK] N (A. 27)

Making in (A.26) the substitutions K — v and u — K,
and multiplying everything by - 1 , we obtain the resul t
of the integration with respect to q x in the second
curly bracket of (A. 2 5). The final resu l t is the follow-
ing kinetic equation:

X a[ - p[K) - [ _ ,M - hqz + pMj g [£x _
J. (A.28)

I n t h i s e q u a t i o n w e i n t r o d u c e , t o a b b r e v i a t e t h e n o t a t i o n ,

the operator •f'l/K, which makes the substitutions
v — K and K —- v. Similarly we obtain from (A. 19),
with the aid of (A.23), (A.24), and (A.27), a kinetic equa-
tion for the quantum distribution function of the phonons
in the form:

( d tto d \

a [ - P M -

l-p^-bqz-pM] {fv ( l - /

( A . 2 9 )

A l l o w a n c e f o r t h e n o n - e l e c t r o n i c r e l a x a t i o n o f t h e

p h o n o n s , i . e . , t h e r e l a x a t i o n o f p h o n o n s o n p h o n o n s , o n

t h e b o u n d a r i e s o f t h e s a m p l e , e t c . , c a n b e e f f e c t e d b y

a d d i n g t o t h e r i g h t s i d e o f ( A . 2 9 ) t h e t e r m

[A™ ( z ) - J V q M ] 0 ) j , p ( q ) , ( A . 3 0 )

w h e r e N q i s t h e l o c a l - e q u i l i b r i u m d i s t r i b u t i o n f u n c t i o n

o f t h e p h o n o n s , a n d W p p ( q ) i s t h e e f f e c t i v e p h o n o n r e -

l a x a t i o n f r e q u e n c y . I n t h i s f o r m , t h e k i n e t i c e q u a t i o n s

( A . 2 8 ) a n d ( A . 2 9 ) h a v e b e e n u s e d i n [ U l l 2 ' 4 7 ] . T o s t u d y

t h e e f f e c t o f d r a g g i n g o f p h o n o n s b y e l e c t r o n s , i t i s

n e c e s s a r y t o c o n s i d e r t w o - d i m e n s i o n a l s p a t i a l i n h o m o -

g e n e i t i e s o f t h e d i s t r i b u t i o n i n a p l a n e p e r p e n d i c u l a r t o

t h e m a g n e t i c f i e l d . S u c h i n h o m o g e n e i t i e s a r e d e s c r i b e d

b y t h e n o n - d i a g o n a l m a t r i x e l e m e n t s o f t h e d e n s i t y

m a t r i x o n l y w i t h r e s p e c t t o t h e q u a n t u m n u m b e r p y ,

i - e - > f n , p z , p y ; n , p z , p ^ - C a l c u l a t i o n o f t h e c h a r g e a n d

e n e r g y f l u x e s i n s u c h s y s t e m s i s b e s t c a r r i e d o u t w i t h

t h e a i d o f t h e W i g n e r r e p r e s e n t a t i o n o f t h e d e n s i t y

m a t r i x , n a m e l y
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/(n,

For convenience in writing down the kinetic equation,
it is expedient to introduce in lieu of the function

Pz* Py: V)

a new function

From (A.18) and (A.19) we get with the aid of (A.23)
and (A.24), for weak spatial inhomogeneities tu '12\
kinetic equations for TK and Nq(x, y) similar to (A.28)
and (A. 29):

- I T = - T - 2

X8 (»,-KX X) 8 (-pW- ,'1) 6 (-P<x)-ft
Ui.1, (A.32)

do a

) [fv(i-

l 2 )

*\»- (0 = |/B.«-« I2- (A-33)

The kinetic equations (A.28), (A.29), and (A.32), (A.33)
could be written out immediately by taking into account
the arrival of the electrons in the cell with quantum
number K and their departure from this cell. Since the
electron distribution is spatially inhomogeneous, the
phonon distribution function should also depend on the
spatial coordinates (local equilibrium!) and, in accord-
ance with the Bose statistics of the phonons in the
processes of their emission, the factor (Kq + 1)
should be taken at the point corresponding to the final
state of the electron, whereas in absorption processes
the factor Nq should be referred to the point charac-
terizing the initial state of the electron. Such an inter-
pretation of the equations (A.32) and (A.33) is possible
in the case of weak spatial inhomogeneities, when
f(n, p Z ) py, y) changes little over the Larmor radius.
It is precisely in this case that it is possible to specify
simultaneously the quantum numbers n, p z and the
coordinates y and py = eHxo/c, without contradicting
the uncertainty principle. Then f(n, p z , x 0 , y) can be
identified with the probability that the electron in the
state n, p z is at the point xo, y (more accurately, in
the center of the Larmor orbit of the electron). Of
course, Nq(x, y) can also be identified with the usual
probability, when the characteristic scale of the spatial
inhomogeneities is large compared with the wavelength
of the phonons that play an important role in the prob-
lem.
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