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I. INTRODUCTION

THE study of transport phenomena in conductors in the
presence of a magnetic field has been the subject of
many theoretical and experimental papers. The classi-
cal theory of galvanomagnetic phenomena are dealt with
in the review of Lifshitz and Kaganov(!, and in the
monograph of Beer 2} The classical theory and analy-
sis of experiments on thermomagnetic phenomena are
developed in the monograph of Tsidil’kovskiil*!, in the
reviews of Delves'®!, Harman et al.[®], and Zawadski
and Kolodzieczak!”\,

The classical theory of thermogalvanomagnetic
phenomena is based on the Boltzmann kinetic equation.
When the external parameters of the system, such as
the magnetic field intensity H, the temperature
T = kT° (k—Boltzmann constant, T°~—absolute tempera-
ture in degrees) are altered, appreciable quantum ef-
fects may appear, which can no longer be described by
the Boltzmann equation. Indeed, on going to the quan-
tum description of the motion of an electron in a plane
perpendicular to the magnetic field, a discrete energy
spectrum arises (Landau levels), and the electron
energy becomes dependent on H. Such a discrete
spectrum is the consequence of the quantization of the
finite orbital classical motion of the electron. The
presence of a discrete spectrum under certain condi-
tions can lead to significant changes in the thermody-
namic and kinetic characteristics of conductors. Ob-
viously, when the magnetic field is changed, a shift of
the Landau levels relative to the Fermi level takes
place. And whenever one of the Landau levels coincides
with the Fermi level, a sharp increase takes place in
the density of the electron states near the Fermi level.
This is due to the fact that the Landau levels are
strongly degenerate, and the multiplicity of the degen-
eracy is proportional to the magnetic field intensity.
Thus, the density of states at the Fermi surface is an
oscillating function of H. In order for these oscillations
to appear in the thermodynamic and kinetic character-
istics of the conductors, it is necessary that the energy

difference between the neighboring Landau levels hQ2
exceed the width of the thermal smearing of the Fermi
level, which equals ~kT°. At the same time, it is
necessary to satisfy one more important condition. In
all real systems there exist collisions between the
electrons and various kinds of scatterers. These col-
lisions lead to an uncertainty in the energy of the sta-
tionary states, or to a broadening of the Landau levels
by an amount ~h7 ' (k—Planck constant, 7—charac-
teristic electron relaxation time). It is obvious that
the discrete energy spectrum exists only when hQ

> H7Y, i.e., the ‘“distance’’ between the Landau levels
greatly exceeds the width of the level. Consequently,
under the conditions A& >> kT° and 7> 1, all the
thermodynamic and kinetic characteristics of the elec-
trons, which depend on the density of the states at the
Fermi surface, will be oscillating functions of H.
Strong magnetic fields can also strongly influence the
electron scattering processes. Thus, for example, with
increasing magnetic field intensity the average elec-
tron momentum along the magnetic field decreases,
and the de Broglie wavelength A, increases. In the
ultraquantum limit, when all the electrons are at the
lower Landau level, it may happen that A, 2 a—the
average distance between the scattering centers. In
this case scattering by many centers is significant.

It becomes obvious that the description of transport
phenomena in strong magnetic fields (27> 1) and at
low temperatures (hQ > T) must be a quantum de-
scription.

During the last decade, much progress was made in
the quantum theory of galvanomagnetic phenomena, as
reflected in the review by Kubo et al.®l, There are at
present no review articles devoted to the quantum
theory of thermomagnetic phenomena*. This is not
accidental. The point is that in the quantum theory of
galvanomagnetic phenomena it is sufficient to consider

*A recently published review by Puri and Geballe [3' ] analyzes the
experimental research on the thermal emf, dragging, and magnetophonon
oscillations of the thermal emf in n-Ge and n-InSb.
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only spatially-homogeneous systems in the presence
of only dynamic forces, such as the electric field in-
tensity E or the magnetic field intensity H, which
are included in the usual manner in the Hamiltonian of
the system, making it possible to write down directly
the Schridinger equation for the density matrix. In the
construction of a quantum theory of thermomagnetic
phenomena, unlike galvanomagnetic ones, we encounter
a more difficult problem, since it is necessary to
consider spatially-inhomogeneous systems, so as to
include consistently into consideration not only dy-
namic forces but also forces of a static nature, due

to the spatial inhomogeneities of the temperature T
and of the chemical potential {. Further, calculation
of the volume densities of the conduction current and
of the heat flux, which are needed for the construction
of a quantum theory of thermomagnetic phenomena,
lead to new complications compared with the quantum
theory of galvanomagnetic phenomena. In order to ex-
plain the foregoing, we note that the density matrix
can be used to calculate the mean values of the quan-
tum-mechanical operators corresponding to physical
quantities. Thus, for example, it is possible to calcu-
late the charge and energy flux-density operators. But
by virtue of the macroscopic nature of the definitions
of the conduction current and the heat flux (see Sec. II)
we cannot construct quantum-mechanical operators for
these quantities. And since, for instance, the conduc-
tion current in spatially-inhomogeneous systems in a
quantizing magnetic field does not at all coincide with
the volume charge flux density, this raises a new
problem, that of separating the conduction current from
the volume charge flux density and the heat flux from
the volume energy flux density.

All these difficulties, and also the lack of a clear-
cut understanding of the formulation of the problem (as
manifest in attempts either to identify the volume
charge flux density and energy flux density, calculated
with the aid of the density matrix, with the conduction
current and the heat flux, or else to define thermody-
namic phenomena not on the basis of the conduction
current and the heat flux but some other fluxes), have
led to contradictory results and hindered the construc-
tion of a quantum theory of thermomagnetic phenomena.

Yet a theoretical analysis of the already available
experimental data on thermomagnetic phenomena in a
quantizing magnetic field uncovers new prospects and
can yield very interesting information not only on the
structure of the energy spectrum and on the carrier
relaxation mechanisms, but also on the character of
the interaction of phonons in solids, and on the absorp-
tion of sound at very high frequencies ~10'°—10* Hz,
where direct measurement of the sound absorption co-
efficient is at present practically impossible.

These prospects are uncovered because in the
region of quantizing magnetic fields and at low tem-
peratures, an appreciable contribution to the differen-
tial thermal emf of semiconductors with small con-
duction-electron density, such as n-Ge and n-InSb, is
made by the deviation of the phonons from local equili-
brium. The differential thermal emf is made up of
two parts. The first is due to the deviation of the elec-
trons from thermodynamic equilibrium as a result of
the temperature gradient existing in the system. The

second part is connected with the deviation of the
thermal phonons from equilibrium. The first is
usually called the electronic part of the thermal emf,
and the second is called the dragging thermal emf. The
electronic thermal emf in strong magnetic fields
(27> 1) does not depend on the scattering in the case
of conductors with unequal hole and electron densities,
and is usually small. The dragging thermal emf is a
result of the fact that the temperature gradient pro-
duces a phonon flux proportional both to the tempera-
ture gradient and to the phonon mean free path Ip

~ Vg/Wyy (Vg = s—speed of sound, wp,—phonon damp-
ing decrement or the frequency of relaxation of phonons
on phonons or defects, in short-—the non-electronic
phonon relaxation frequency). When this phonon flux
collides with the electrons, momentum is transferred
from the phonons to the electrons. The fraction of the
momentum transferred is proportional to the frequency
of the phonon-electron collisions wep. Thus, the
dragging current, meaning also the dragging thermal
emf, is proportional to the ratio wep /wpp. In the
classical limit (kK =0), Wep does not depend on the
magnetic field and is usually much smaller than w

for semiconductors with low carrier density. This can
be easily verified with the aid of the momentum con-
servation law in collisions between electrons and pho-
nons. In the case of Maxwellian statistics, the average
electron momentum is pg = VvmT. In accordance with
the momentum conservation law, the electrons can in-
teract only with phonons whose momentum is hq < Pe-
But for T°> 1°K, the average thermal momentum of
the phonons hqT = T/vg greatly exceeds Pe- There-
fore the electrons interact only with the long-wave
thermal phonons, the number of which is relatively
small.

In a quantizing magnetic field, the situation is dif-
ferent. For simplicity we consider only the quantum
limit A2 >>> T and electrons obeying Maxwell’s
statistics. In this case the localization of the electron
in a plane orthogonal to the magnetic field is deter-
mined in order of magnitude by the magnetic length
a = (chi/|e |H)Y? (c—speed of light, e—electron
charge) or by the Larmor quantum radius, inasmuch
as the electrons populate essentially the lowest Landau
level. From the uncertainty relation it follows that the
order of magnitude of the transverse-motion momentum
is ~ﬁ/a'1. Therefore the electron moving across the
magnetic field can interact only with phonons whose
momentum is hq < Ha™'. It follows therefore that with
increasing magnetic field the volume of the phase space
of the phonons interacting with the electrons increases
in proportion to H, and this in turn leads to a rapid in-
crease of the frequency of phonon relaxation on the
electrons, Wep- The latter is due to the exponential
dependence of w on a (see, for example, formula
(6.19)). Inasmuch (as noted above) as the dragging
thermal emf is determined in terms of the ratio
wep/wpp, this ratio increases with increasing H,
since wpp does not depend on H. This is precisely why,
for example, in InSb the dragging thermal emf in the
quantum limit (52 3> kT°) increases by almost 100
times. With the aid of a theoretical analysis of the
experimental dependence of the dragging thermal emf
on T and H it is possible to obtain valuable informa-
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tion on the mechanism of relaxation of long-wave pho-
nons on short-wave thermal phonons, and to find the
frequency and temperature dependences of wpp for
sound waves with length A ~ v ch/[e[H.

It should also be noted that at least some of the
thermomagnetic effects have definite experimental
advantages over galvanomagnetic ones. The point is
that measurements, say, of the differential thermal
emf in strong magnetic fields are much less subject to
the influence of random inhomogeneities in the impurity
distribution than galvanomagnetic measurements, since
the transverse Nernst electric field tends to zero with
increasing magnetic field (in the classical limit),
whereas the Hall field tends to infinity. This is pre-
cisely why it is easier to separate ‘‘true’’ effects, due
to the band structure, degeneracy, and carrier scatter-
ing mechanism in the analysis of the measurements of
certain thermomagnetic effects. Thus, it has been
demonstrated experimentally that the magnetothermal
emf has a clearly pronounced classical saturation
region (in accordance with the predictions of the
theory), whereas for magnetoresistance there is prac-
tically no such region. In spite of this fact, we have at
present very limited experimental material on thermo-
magnetic phenomena in a quantizing magnetic field,
whereas the galvanomagnetic phenomena have been
thoroughly investigated in numerous experiments. This
situation obviously has been due in part to the absence,
until quite recently, of a consistent quantum theory of
thermomagnetic phenomena.

The present review is the first attempt at a con-
sistent exposition of such a theory.

The entire theory is based on the kinetic equation
for the density matrix in the mixed Wigner representa-
tion. It was just this formalism of quantum statistical
theory which turned out to be very convenient and ex-
ceedingly simple for the calculation of fluxes, and was
widely used by Eleonskii, Zyryanov, and Silin!® ,
Akhiezer, Bar’yakhtar, and Peletminskii*"*°] , and
Zyryanov[“ 141" In the second section of the review we
discuss the problem of thermogalvanomagnetic phe-
nomena in conductors. The third section is devoted to
an exposition of a procedure for separating the conduc-
tion current from the volume charge flux density and
separating the heat flux from the volume energy flux
density, neglecting scattering. In the fourth section we
calculate the dissipative (collision) heat flux and the
conduction current in the approximation of elastic scat-
tering of the carriers. The fifth section is devoted to
the calculation also of the dissipative parts of the con-
duction current and the heat flux, but with allowance
for inelastic scattering of the electrons and phonons,
and also with allowance for the nonequilibrium nature
of the latter (the phonon dragging effect). In the sixth
section we consider thermomagnetic effects in the case
when the temperature and chemical-potential gradients
are directed parallel to the magnetic field (longitudinal
effects). The seventh section is devoted to a compari-
son of theory with experiment. This section contains a
theoretical analysis of only the most significant ex-
periments, in which various general laws, with weak
dependence on the concrete details of the structure of
the energy spectrum of the carriers, have been estab-
lished. The appendix contains a derivation of the
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kinetic equations used to calculate the charge and
energy fluxes.

II. FORMULATION OF PROBLEM IN THE THEORY
OF THERMOMAGNETIC PHENOMENA

Thermogalvanomagnetic phenomena 1n conductmg
media, according to Landau and Lifshitz* ], are de-
termined with the aid of formulas for two vector fluxes,
namely the volume conduction-current density
jeon(r) and the volume heat flux density Qp(r). Thus,
the problem of constructing a microscopic theory of
thermogalvanomagnetic phenomena reduces to a calcu-
lation of jeon(r) and QT(r). Before we proceed to
calculate these quantities, let us stop to define them.
The most general definition of jeon(r) is given in!*®3,
According tol! s jcon(r) is that part of the volume
density of the charge flux j(r), which contributes to
the transport of the charge through the cross section
of the entire conductor. QT(r) is analogously defined
as that part of the volume energy flux density Q(r)
which makes the contribution to the energy transport
through the cross section of the entire conductor at
jcon(T) = 0. In other words, Qr(r) is the energy
flux of the thermal random motion of the carriers.

The kinetic coefficients in jeon(r) and Qr(r) should
satisfy the Einstein relation and the Onsager symmetry
principle—-requirements imposed on these fluxes by
the thermodynamics of irreversible processes. As is
well known, the Einstein relation is the consequence of
the principle of maximum entropy at thermodynamic
equilibrium. Maximum entropy corresponds to a state
in which the temperature T and the electrochemical
potential £ =¢ +eg ((p—-electmc -field potential) are
constant along the entire system[ 8l ; in this case both
the conduction current and the heat ﬂux vanish. Under
deviations from the thermodynamic equilibrium, a heat
flux and a conduction current are produced in the elec-
tron system, and are proportional in the case of small
deviations from equilibrium to the spatial gradients:
vT and -v{, = e(E ~ (1/e)v$), E = -v¢. Inasmuch
as the conduction current and the heat flux are propor-
tional to v¢ @, the kinetic coefficients preceding E and
(- (1/€)v¢) in these fluxes are identical. This is the
Einstein relation. Thus, the conduction current and the
heat flux are of the form

(Geon)s = 0in (H) (Ex — -5 VaL) —Bus () VaT,

Q)i =ton () (Br ——+ Val ) —in (H) VaH. (2.1)

The Onsager symmetry principle, which is a conse-
quence of the time reversibility of the mechanical equa-
tions of motion of particles and of the macroscopic
damping of the fluctuations of the physical quantities in
the system[ , leads in the presence of a magnetic field
to the followmg relations:

o (H)y=o0p:i (—H), % (H) =5 (—H),
Bik(H)"—"LTXik(_H)' (2.2)

Inasmuch as j.on 2nd Qr serve as the basis of the
theory of thermogalvanomagnetic phenomena and are
defined with the aid of volume charge and energy flux



QUANTUM THEORY OF THERMOMAGNETIC PHENOMENA 541

densities, we must be able first of all to calculate
these fluxes.

In classical theory, j and Q are determined with
the aid of the distribution function f, which is a solu-
tion of the Boltzmann equation; this solution is linear
in the electric field E and in the gradients of the
chemical potential { and the temperature T. These
formulas are

(2.3)
(2.4)

§0) = gags § (@D evi (@, ),

2

Q) =zarga | (@) ve®) £ (b, 1),

where e is the charge and €(p) the energy of the
carrier. In quantum theory, the analog of these formu-
las are the mean values of the quantum mechanical
operators corresponding to the volume charge and
energy flux densities

i(r)=5Sp(p, J) (2.5)
Q(r)=5p(p, Q), (2.6)

where p—density matrix, and
- SONERY), Q= (5 + 5B, (2.7)

v, .”7[, and N are the operators of the velocity, energy,
and the carrier density, respectively.

In some earlier papers, attempts were made to use
in the theory of thermomagnetic phenomena another
definition of the charge and energy fluxes, namely

J=eSp(v, 9) Q=5 Sp(@, voB+ SHY).

It is easy to verify that j’ and Q' coincide with j(r)
and Q(r) defined in (2.5) and (2.6) only in the particu-
lar case of spatially-homogeneous systems and in the
presence of only a homogeneous electric field. In
spatially-inhomogeneous systems, when vT # 0 and
v #0, j and Q differ from j and Q. The classical
limit (§ =0) of j and Q', unlike that of j and Q,
does not coincide with the well known results that
follow from the Boltzmann equation. This is precisely
why attempts to use j’ and Q in the theory of thermo-
magnetic phenomena led to erroneous results.

We shall consider further examples from which it
will be seen that j(r) does not always coincide with
jcon(T). Nor does Q(r) - (¢{/e)jcon(r) always coin-
cide with the heat flux QT(r). If the external magnetic
field is H = 0 and at the same time the magnetization
of the carriers M vanishes, then the fluxes j(r) and
Q(r) - (&/e)j(r) due to the electric field and the
gradients of T and ¢ satisfy both all the requirements
of the thermodynamics of irreversible processes im-
posed on jcon and QT, and the definitions of these
fluxes as given above. This is precisely why j(r) can
be identified with joon(r) and Q(r) — (£/e)j(r) with
the heat flux QT(r). If in the spatially-homogeneous
system H # 0 and the fluxes are due only to the homo-
geneous electric field E (vT =v¢§ =0), then M will
also be spatially homogeneous. In this case j(r) coin-
cides with joon(T) but Q(r) - (£/€)jeon(r) no
longer coincides with the heat fluxes, since Q(r) con-
tains besides (¢/e)jcon 2lso the magnetic-energy flux
(- cE X M), which equals the contribution made to the
Poynting vector by the magnetization (c/47)E
X (H - B). Thus, the heat flux is determined in this

case by the formula*
Qr (1) =Q (1) — = jeon () — = [E(H—B)].

If the fluxes j(r) and Q(r) are due to both E and
vT and v{, then the magnetization of the carriers
M(T(r), & (r)) depends on the coordinates when
H # 0. In this case j(r) no longer coincides with
jcon(r), since the spatial inhomogeneities of the
magnetization M will make a contribution (egual to
¢ curl M) to j(r), in addition to the contribution of
jcon(T). Analogously, Q(r) contains, besides the heat
flux QT(r), also the flux of magnetic energy Qp(r)
which includes, besides the term — cE X M which oc-
curs also in spatially-homogeneous systems, also
terms that depend on curl M. It will be shown below
that a contribution is made to the transport of charge
through the cross section of the entire conductor only
by part of the volume density of the charge flux, equal
to the difference

jcon‘;(l'):sp(é’ J)—crotM, (2-8)

and a contribution to the transport of thermal energy
is also made only by the difference

Qr (1) =5p (P, Q) == jon (1) — Qui (8), (2.9)

4

Qu() = —c(BM+ 2 {7 (7). +2 (), } § aroeme, v).

- (2.10)

Formulas (2.8)—(2.10), which determine the volume
density of the conduction current and the heat flux,
serve, in accordance with“s], as the basis for the con-
struction of the microscopic theory of thermogalvano-
magnetic phenomena. The kinetic coefficients charac-
terizing jeon(r) and Qr(r) satisfy both the Einstein
relation and the Onsager symmetry principle. Thus,
the problem of the microscopic theory of thermo-
galvanomagnetic phenomena reduces:

1) To the calculation of j(r) = Tr(p, j) and Q(r)
= Tr(pQ) and

2) to the separation of jeon(r) from j(r) and of
Qm(r) from Q(r).

Obraztsov!'"! proposes to determine the thermo-
magnetic coefficients for spatially-homogeneous media
and for the temperature and chemical-potential grad-
ients with the aid of the so-called total fluxes (volume
plus surface) per unit area of the conductor cross
section. This formulation of the problem is a particu-
laflsc]ase of the more general formulation described
in* ™"

In the case of spatial inhomogeneities of T and £,
formula (2.8) is well known and is the consequence of
averaging of the Lorentz equations for the microscopic
electromagnetic field*®), However, the flux of the
magnetic energy Qm(r) now no longer reduces to the
contribution made to the Poynting vector by the mag-
netization, and is expressed by the more complicated
formula (2.10), which was derived in!*®] (see also!*®:?°1),

In concluding this section we note that the thermo-
galvanomagnetic coefficients determined with the aid
of the fluxes (2.1) are perfectly identical for both
classical and quantum systems and are given, for ex-

*[E(H-B)] =E X (H-B)
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ample, in!'%*). We shall present here formulas for
only some of them.

Under isothermal conditions at a specified tempera-
ture gradient v4xT L H, the differential thermal
emf axx the Nernst coefficient N = axy/H and the
thermal conductivity «; characterizing the heat flux
along (-VxH) are all determined with the aid of (2.1)
under the condition jegn = 0 and v T = 0. For the
case of an isotropic medium, when all the tensors of
the kinetic coefficients in (2.1) have the structure

Azx Agy O
(—Axy Axx 0 ),
0 0 Az,

we get
Oxx = (Uxxﬁxx -+ nyﬁxy) (Uiy + Gix)—ly (2 1 1)
Qxy =(nyﬁxx_0'xxﬁxy) (0§y+0'xx)—1, (2'12)
®) = —(Xxxaxx"l‘Xxyaxy_”xx)y (2'13)
and the electric resistance is given by
y = = 2 2 )t
Pxx Pl =0xx (Gxx+0xy) s (2.14)

Py = Oxy (02 + 0%y)

The Rigghi-Leduc effect* is adiabatic and is obtained
from (2.1) under the conditions vxT # 0, vyT #0,
jeon =0, and (Qp )y = 0. In an isotropic medium we
have

(2.15)

(k’;—thermal conductivity of the electrons and phonons).
In the case of strong magnetic fields (7> 1) we
have Oxy 3> Oxx, Bxy > Bxx, Kxy > Kxx, since the
non-diagonal components do not depend on the scatter-
ing, whereas the diagonal ones are proportional to
1/Q7. However, the inequality Oxy > Oxx is violated
in conductors for which the electron density ng = np
(nh—hole density). This can be easily understood by
recalling that the electric field E 1 H causes carrier
drift with velocity vE = cE x H/H?, and this velocity
depends neither on the sign of the charge nor on its
mass. Therefore both the holes and the electrons drift
with the same velocity, and if ne = nh, then the elec-
tric current vanishes and oxy = 0. Consequently, when
ne = n expansion of 0xy in powers of the parameter
(1/27) begins not with the zeroth degree, as in the
case ne = np, but with the second: (1/Q7).

vyT = [Xqu'xy — Aoey@xx + ”xy] (M:L)_l v.T

III. NONDISSIPATIVE ELECTRON FLUXES IN A
QUANTIZING MAGNETIC FIELD

As is well known, the force F L H acting on the
electrons leads in the zeroth approximation in the
scattering only to a drift with velocity

Vp =z [FH].

Such a motion of the electrons is produced by dynamic
forces, and for example for the electric field E and
for the gravitational field g we have respectively

*This effect consists in the fact that the mutually perpendicular
magnetic field and the heat flux in conductors lead to the appearance
of a temperature gradient in a direction perpendicular to both the mag-
netic field and to the heat flux (in the “Hall direction”).

GUSEVA

Fg = eE and F, = mg. The dynamic forces can be
taken into account directly in the Hamiltonian of the
electrons. There exist forces of a different nature,
due to the spatial inhomogeneities of the temperature
T and of the chemical potential {, sometimes called
forces of a statistical nature. These forces can be
taken into account consistently only by a statistical
description of the system. In the case of a strong mag-
netic field (227> 1) in the zeroth approximation in
the scattering, the distribution function of the electrons
over the states will depend only on the single-particle
integrals of motion. Such integrals of motion can be
taken, for example, to be the energy €(p), the mo-
mentum pz along the magnetic field, and the x-coordi-
nate of the center of the Larmor orbit x,. We shall
consider henceforth distributions that depend only on
€(p) and xo, for example, fo([ €(p) — &(%0)]/T(%0)).
Such distributions describe systems that are spatially-
inhomogeneous along the axis x 1 H. In the case of
weak spatial inhomogeneities, when §(x,) and T(x)
remain practically constant on the Larmor radius, we
can identify x, with the x-coordinate of the electron;
then ¢(x) and T(x) have the meaning of local values
of the chemical potential and the temperature. Putting
Xo =X - (X - Xo), assuming weak spatial inhomogenei-
ties, we expand f, in a series

fo (S (P)T—(fo)(zo)) = ( € (P)T“(IC) (=) )

2L (Vb 22O v ) )

aE (3.1)

With the aid of (3.1) we can easily find the volume
density of the charge flux. Recognizing that

v
x—zO:TJ-coscp,

(¢ =Qt) and taking into account the periodicity of f,
with respect to the variable ¢, we get

Uy=1"v) cOS @

2
fu=epam (2 (VLS vr) L (3.2)
This is a well known result which follows, in particu-
lar, from the Boltzmann kinetic equation (neglecting
scattering).

We now proceed to consider the case of a quantizing
magnetic field. The single-particle states of the elec-
tron will be described in the Landau representation.
The Hamiltonian of the electron has in this represen-
tation the form

o= (p—2A)"/2m, Ac=(0, Hz, 0},

and its eigenfunctions and eigenvalues are

(3.3)

[9) = |, por 20) = (LyLa)™ 2 exp (- + 252 @, (272,
P
2m
where X, = cpy/eH is the projection of the center of
the Larmor orbit on the x axis, ®p(x) is the eigen-
function of the harmonic oscillator normalized to
unity, @® = ch/|e|H, and finally Ly and L, charac-
terize the normalization volume. In the presence of
an electric field E directed along the x axis, the
eigenfunctions (3.3) remain the same, but

E,=E(n, p)=1Qn+1/2)+

’

2
C mc >
o= Pot g Ex

and the eigenvalues are
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2
E(n, p., z)=E(n, p;)—exE —}-—;nHC—in.

Neglecting scattering, the density matrix is diagonal
in the Landau representation: p,,’ = f,€;,,/, and plays
the role of the electron distribution function over the
states n, pz, and x,. Just as in the classical case,

we shall consider distributions that depend only on two
integrals of motion, E(n, p;) and X,. Assuming weak
spatial inhomogeneities, we get

T I LIS 2 ESLE M AT R IV LS TR A TR
(3.4)

With the aid of (2.4) and the definitions (2.5) and (2.6),

we obtain the volume densities of the charge and energy

fluxes:

. _ ceN c 2 of En, p)—¢
To(@) = =g Bx— s 2 E"S P g [V“CJF"T—EV"T] ’
" (3.5)
2
Q@)= — G- (E+E) E—27 etk
x 3 Er §ap:k (n, p) ok [Vt + 20 B v 1],

NE+E) =gy 3 § dp. 1E (v, p2)

+En]f<n1 Pz), E'n:hQ (n‘{_%“) . (3'6)

From (3.5) and (3.6) we see that the Einstein relation

is not satisfied for the kinetic coefficients characteriz-

1ng and Q , i.e., the coefficients preceding
/Vxé and Ex are different.

This fact was f1rst pointed out bY the Japanese
physicists Kasuya Tand Nakajima'®? (see also the
paper by Kubo'**!). However, the actual cause of the
violation of the Einstein relation was brought to light
in a paper by Zyryanov and Sllm[z"], where it was
shown that in the case of spatially-inhomogeneous
systems in the presence of a quantizing magnetic field
a contribution is made to the volume density of the
charge flux jy(x) by the current c curl M, due to the
dependence of the Landau diamagnetic susceptibility on
£(x). It was also shown there that the difference jy(x)
-~ ¢ curlyM satisfies the Einstein relation. A ?hysmal
1nterpre¥at10n of the results of** was given in'*®J
where it was shown that the volume density of the
charge flux does not coincide with the conduction-
current density and differs from it by an amount
c curl M; in other words, they obtained from the
microscopic theory the well known formula*

i=lcontecrotM,

in which the magnetization is due to the orbital motion
of the conduction electrons (the Landau diamagnetism).
Thus, the problem of separating the conduction
current from jy(x) turned out to be relatively simple,
whereas the problem of separating the heat flux
Qr(x) from the volume density of the energy flux
Q(x) turned out to be much more difficult. To solve
this problem in the presence of a quantizing magnetic
field, we shall first separate that part of the volume
densities of the charge and energy fluxes which depends
on the spatial inhomogeneities of the magnetization, due
to the gradients of the temperature and of the chemical
potential. It is clear from general considerations that

only the nondiagonal components of the tensors of the
kinetic coefficients in j and Q can depend on the
magnetization vector M. Indeed, inasmuch as j and
Q are polar vectors and M is an axial vector, in the
approximation linear in M the most general depend-
ence of j and Q on M can be represented in the form
of a linear functional of curl M. In the case of spatial
inhomogeneities of M, due only to the dependence of
Mon T and §, we have
A
) +Vid (v;)T) M] :

It is seen from this formula that within the framework
of the linear transport theory, only the non-diagonal
components of the tensors of the kinetic coefficients in
j and Q can depend on M. On the other hand, in the
conditions &7 > 1, the non-diagonal components of
the tensors of the kinetic coefficients do not depend on
the scattering. It is therefore sufficient to solve the
problem of separating jecon from j and Qp from Q
by neglecting scattering. To this end, we express the
kinetic coefficients in (3.5) and (3.6) in terms of the
thermodynamic functions of the electron gas. Such a
possibility is obvious, since the fluxes were calculated,
first, neglecting scattering and, second, in the local-
equilibrium state.

We introduce the thermodynamic potential of the
electron gas

rotM:[:(VT( (3.7

O, T, ¢ V)= —

2’ dpzln [1+exp{lt—E (n, p)V/T}],

where V is the volume of the system.

Since & = — #V, the pressure P is numerically
equal to the thermodynamic potential per unit volume,
taken with the minus sign. Therefore the entropy S,
the number of particles N, and the magnetization M,
all per unit volume, are expressed by the following
formulas:

S = (%)‘ Ht'

The kinetic coefficients in formulas (3.5) and (3.6) can
be expressed in terms of the thermodynamic functions
(3.8). If we further neglect the compressibility of the

electron gas, then (3.5) and (3.6) can be written in the
following form:

N= (2 (3.8)

dE)V,T,H’ 7(630\

H | v, [

Jy= —— rot, (& -+ eN¢) H) + c rot, M, (3.9)

e

H
9
O = [t(5),+ 7 (5),) § & troty (@ +evoym)

— HZroty M} —c [EM],; (3.10)
Here
E.= -—Vx(P,
— & roty (§+eNo) H = (dc )"T,Hvxu- (%—)V’;,HvxT+eNVx(p.
(3.11)

It is seen from these formulas that the collisionless or
non-dissipative fluxes are essentially solenoidal, and
therefore it is impossible to use the continuity equation
to separate the conduction current and the heat flux.
Formulas (3.9) and (3.10) are remarkable primarily
because both j and Q are expressed in terms of the
macroscopic quantities M and (¢ + eNg), for which
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the boundary conditions on the surface of the conductor
are known; in addition, these formulas can be general-
ized to the case of an explicit dependence of M and

(4 + eNg) on the spat1a1 coordinates. It is known from
electrodynamics!*®* that the tangential component M
experiences a discontinuity on the surface of the mag-
netized conductor and vanishes outside the conductor,
and (v + eNg¢), neglecting compressibility, is the
electrochemical potential per unit volume, which is
constant everywhere in the state of thermodynamic
equilibrium and is continuous everywhere, including
the separation boundaries of the media, at small devi-
ations from thermodynamic equilibrium (see[‘s])
Taking these boundary conditions into account, it can
be noted that the terms in (3.9) and (3.10), containing
curl M, make no contribution to the charge and energy
transport through the cross section of the entire con-
ductor!*®), This can be easily verified. We integrate
(3.9) over the area of the cross section of the entire
conductor, and use the Stokes theorem

§ s =

=~ @ +eNe)(H dl)—‘—cd‘s} (M dl).
L

H2 S rot ((# +eNg) H)ds ¢ S rot Mds
(3.12)

The integration contour L should enclose the cross
section area of the entire conductor. The contour L
should be chosen to be outside the conductor through-
out, without touching its surface anywhere. Since

M = 0 outside the conductor, meaning also on the con-
tour L, we get 1),) M dl = 0. By virtue of the continuity

of (/' +eNg) we have everywhere*

$ (& -+ eNo) (Hdl) #0,

L
if the state of the system differs from thermodynamic
equilibrium characterized by the condition (¥ + eNg)
= const. Thus, in states differing from thermodynamic
equilibrium, the contribution to the transport of charge
through the cross section of the entire conductor is
made only by the first term in (3.9), which in accord-
ance with the definition is the conduction-current
density:

<75 10t (& + eNg) H). (3.13)

The result admits of the following illustrative in-
terpretation. Let c curl M # 0 at any point of the con-
ductor cross section. Then ¢ curl M makes a contribu-
tion to the charge transport, but M experiences a
finite jump on the surface of the conductor and curlM
= o, The latter circumstance leads to the occurrence
of a surface current which offsets completely the con-
tribution made to the charge transport through the
cross section of the conductor by the volume current
¢ curl M. This is precisely why jcurlM ds = 0. The
function (& + eNg) has no finite jumps anywhere, in-
cluding the surface of the conductor, so that the de-
rivatives are bounded everywhere. This leads, in

Jeon = —

*0On the surface of the conductor, both @ and eNy are discontinuous,

but their sum is continuous, since the jump of ®is compensated by the
jump of ¢ due to the double electric layer on the surface of the conduc-
tor.

ZYRYANOYV and G. I.
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particular, to the absence of a surface conduction
current.

We proceed to separate the heat flux from (3.10).
Just as in the preceding case, we integrate (3.10) over
the cross section are of the entire conductor:

t
Sst:Sds {—;%—[C,ai;—f—T(;T);] S dt’ (rot (&

1+ eNg)H— H?rot M)} —¢ S ds [EM]. (3.14)
In the case of weak spatial inhomogeneities (i.e., in

the transport theory that is linear in vT and v¢) it is
necessary to replace { and T in the operator

4
2 [4 ,

Cx+7(7)) Smdc o
by their mean values over the cross section of the
conductor. Allowance for the deviation of { and T
from their mean values in this operator leads to terms
of second order in VT and v, which will be neglected
throughout. Taking this into account, we changed the
order of integration with respect to ds and d{; then
the analysis of the obtained expression will not differ
at all from the analysis of formula (3.12), presented
above. The contribution made to the energy transport
through the cross section of the conductor by the term
- cE X M is completely cancelled by the surface flux
due to the jump of the tangential component of M.
Consequently, a contribution to the energy transport
through the cross section of the entire conductor is
made only by the term proportional to «»» + eNg. Using
the definition of the heat flux, we obtain for it the
following formula:

(QT)yzQy_“ET‘(inp)y_(QM)y: “‘TZ?T (6_67-);

4
x S dz’ rot, (H (P +eNg)),

—00

(3.15)

and the magnetic-energy flux QM contained in this
formula is described by formula (2.10).

With the aid of (3.8), (3.11) we can rewrite (3.13) in
(3.15) in a different form, namely:

(joon)y =gz Ve[ (E—5 VL) H] +7r SHYT,  (3.16)
Q)= 7S [ (E— 5 ve) H],
9
+—t T(d—"T)c S deS(, TYHYT],. (3.17)

From these expressions for jcon and QT we see that
these fluxes satisfy both the Einstein relation and the
Onsager symmetry principle. In the case of a strongly
degenerate electron gas, the corresponding coefficients
in (3.16) and (3 17) are connected by the Wiedemann-
Franz law!®] (see also! ])

A formula similar to (3.16), and the resultant dif-
ferent1a1 thermal emf neglecting scattering, ayx

/0 iy = S/(]eN) (see (2.11)), were first obtained

by ézra sovi!”). Peletminskii and Bar’yakhtar %! cal-
culated all the coefficients in jcon and Qr, and ob-
tained results that differed from (3.16) and (3.17) only
in form. Formulas (3.16) and (3.17) remain in force
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when spin is taken into acd)“nt“”, and also fOI‘ an
arbitrary isotropic carrier dispersion law®). Re-
cently Tséndin and Efros?®] "onfu'med the vahdlty of
(3.16) when account is taken o, the spin-orbit interac-
tion of the carriers in the two—B@,md model of the crystal
with isotropic dispersion law. In Conductors with ani-
sotropic dispersion of the carriers, the spatial inhomo-
geneities of the temperature and of the chemical poten-
tial in a plane perpendicular to the magnetic field cause
fluxes along the magnetic field. The calculation of the
heat flux and of the conduction current in such conduc~
tors neglecting scattering, was carried out by Okulov
Peletminskii®®®! described a method of separating the
conduction current and the heat fiux in spatially-
homogeneous conductors with arbitrary relation be-
tween the Larmor frequency and the carrier-relaxation
frequency.

We note that formulas (2.8)—(2.10), which determine
the density of the conduction current and of the heat
flux, have a wider region of applicability, beyond the
11m1ts of those model limitations under which they
were derived from the microscopic theory in!**2°], In
particular, it can be assumed that these formulas are
valid for arbitrary magnets and for an arbitrary value
of 7. Indeed, the current entering in (2.8) and con-
nected with the magnet1zat10n of the carriers, is given
by the formula of 5] for all magnets and, of course,
for all €7. This formula is the consequence of the
macroscopic boundary conditions for M on the surface
of the conductor, and the magnetic-energy flux which
enters in (2.9) can also be expressed in terms of
c curlM (see (2.10)).

In concluding this section, let us stop to justify
rigorously the procedure used to calculate the non-
dissipative fluxes. In the derivation of formulas (3.5),
(3.6) and (3.13), (3.15) it was tacitly assumed that the
distribution function fo([E(n, p,;) — §(X0)]/T(%,)) is a
Fermi function and describes the spatially-inhomo-
geneous distributions of the electrons along the x axis,
and serves in the case of weak inhomogeneities as a
definition of the local thermodynamic characteristics
of the electron gas, such as the temperature T(x) and
the chemical potential {(x). Let us prove these
premises.

In a sufficiently dense electron gas, thermodynamic
equilibrium is established as a result of interelectron
collisions. In the case of weak spatial inhomogeneities,
the electron collision integral (see (A.14) of the
appendix) can be expanded in the small parameter

A
_{r 9y 1.
orq,/L = (_L) (——‘;e ) <1
where
L~ §|8fldzy |, rp=pe/mQ,

pe—average electron momentum, and fgy,—change of
the electron momentum upon collision. e zeroth-
order term in this parameter leads to the kinetic equa-
tion

U 3 WEA A=) fo (A= fe)

VLV, v

_fu“_fv)fv’“_fv')}v (3'18)

(271,

which is the ordinary equation for the balance of the
particles in cell x. The first term in the curly bracket
describes the arrival of the particles in the cell k, and
the second the departure. The probability of transition
per unit time is

vorg or
Wi = 55| Cq* Fan, (02G°1/2) Fayony (0247/2)
q

X OBy - Ey— Ey—E ] 8 (9 — p7° — nq) 8 (pi¥ — pi¥" — hq,)

x 8 (Zon — Zoyr) 6 (Zov— Zox) 8 (Tov — Zgx)-
It follows from (3.18) that the function

o) = {oxp (L= ) )7 (3.19)
causes the collision integral to vanish. At low conduc-
tion-electron concentrations, the collisions between the
electrons and the phonons play an essential role in the
establishment of the thermodynamic equilibrium. Let
us assume that the interaction of the phonons with the
thermostat, whose temperature is specified by the
function T(x), is sufficiently strong and that their
collisions with the electrons do not violate the local
equilibrium of the phonons with the thermostat. Under
these assumptions, a local-equilibrium phonon distri-
bution function can be assumed in the kinetic equation
for the electrons

Nq(x):Nf}(x):{exp(%)—1}4. (3.20)

This function is an approximate solution of the kinetic
equation (A.29), (A.30) under the condition that the
frequency of collision of the phonons with electrons is
small compared with the frequency of the collision of
the phonons with the thermostat wpp(q) (A.30). Sub-
stituting (3.20) in the kinetic equatlon for the electron
density matrix (A.28) and then expanding the electron-
phonon collision integral Iep[f] in a series in
(r1./L) (Higy/Pe) < 1, we obtain in zeroth order the
equation

P S (4= G Was (@) {F (1= ) (V3 () + 1) — Fu (1= 1) VY (@)

oo (3.21)
which takes into account the arrival and the departure
of the electrons in the k state following their interac-
tion with the phonons. The transition probability per
unit time is here:

2 .
Wy, (@ =5-|Cy [ Fan (026" /2) 8 [Ex— Ey+ hog]

8 (P 4 nge— ) 8 (0 — PV (3.22)
c‘%—operator effecting the replacement v < k. The
collision integral in (3.21) is made to vanish also by
the function (3.19). We shall show that (3.19) deter-
mines the local values of the temperature and of the
chemical potential of the electron gas. The number of
particles in the state n, p, at the point x is by defini-
tion

_¢ E (n, p))—§ (x0) 5 (T—T,
Nup, (@)= § doof (-~ ft ) @ (2200
The assumption of weak spatial inhomogeneities makes
it possible to take f outside the integral sign at the
point x, = X, inasmuch as ®}(x — x./a) differs from
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zero when |x - Xo| S < ri,, and f is practically con-
stant at distances ~ ryj. Taking account of the normal-
ization of tbn, we get

Na,p,(2)=fo (————E . I;Z)(I_)UI) ) .
It follows therefore that ¢(x) and T(x) are the local
values of the chemical potential and of the temperature.

IV. DISSIPATIVE ELECTRON FLUXES IN THE
ELASTIC-SCATTERING APPROXIMATION

When account is taken of only elastic scattering of
the electrons in the first Born approximation, the
problem of calculating the conduction current and the
heat flux due to the spatial inhomogeneities of the tem-
perature T and of the chemical potential { is particu-
larly simple. It is precisely with this case that we
shall begin the calculation of the dissipative electron
fluxes.

We first stop to determine the dissipative heat
fluxes and the conduction current. These fluxes, in the
case of an isotropic carrier dispersion law, are char-
acterized only by diagonal components of the tensors
of the kinetic coefficients (i.e., they are potentials);
they are determined with the aid of the continuity equa-
tions. The conduction current j.,, must be determined
from the equations for the conservation of the charge
eN(r) and the energy W(r, t)

(eN(r D) 481V jeon=0, = W (x, 1) + divQr =0. 4.1)

If we conflne ourselves to the study of spatial inhomo-
geneities only along the x axis, which is orthogonal to
the quantizing magnetic field, then it is sufficient to
consider in this case only the diagonal elements of the
density matrix in the Landau representation (energy
representation) f(n, pz, X0). The charge density at the
point x equals by definition the diagonal element of
the density matrix in the coordinate representation
(x-representation), multiplied by the charge of the
carrier:

eN (@) =e s 3§ . § daof (n, e 2 D3 (T2) L (4.2)

As seen from (4.2), 8/8tN is expressed in terms of
8/8t f(n, pgz, Xo). The latter quantity can be determined
from the kinetic equation for f, which can be written
down immediately, taking into account the arrival of the
electrons in the cell v and their departure from this
cell. This leads to the following Kkinetic equation:

ais Z Wy {for (1= fo) = Fs (1= )}, (4.3)

where the probab111ty of transition per unit time of an
electron from the state »’ into the state v upon scat-
tering by an immobile center equals, in the Born ap-
proximation,

W = 2 SV P (0%41/2) 8 (B (W, py + 1) — E (s p2)

X 8 (zov: — Loy — chgyleH);

[ Vg !® = Nimp | Cq [*, Nimp—number of impurities, and
Cq Fourier component of the potential energy of the
interaction of the electron with the scatterer. We note
that (4.3) can be obtained from the kinetic equation

2 (N (@)= (Zie;‘;;'gp 2 Sdp; § dmr (2270) Ed

{A.28) by taking into account ihe collisions of the elec-
trons with the phonons in the elastic-scattering ap-
proximation. To this end, j{ js necessary to neglect
processes of phonon emiSgion, i.e., to assume in (A.28)
that Ng > 1 and to negect the change in the electron
energy upon scattern}g putting hwg ~ 0 in 6 (E(n’, pz.
+ HQZ) E(n, Pz) *Hwy), and fmally, replace

[Cq "Ny by [Cql® Nimp. With the aid of (4.3) it is easy
to obtain an expression for the conduction current.
Differentiating (4.2) with respect to time and substitut-
ing (4.3) in the obtained expression, we get

| Ca P*Frn (027 /2)

X 8[E(, pﬁhqz)—E(n, P (R, Prt-ga Zo--y0%qy)
—f(n, pzy 2o)(y=signe). (4.4)

Further, it is necessary to substitute in (4.4) the solu-
tion of the kinetic equation for the function f(n, pz, %¢).
Such a solution, in the zeroth approximation in the
scattering, is the local-equilibrium distribution (3.19).
It must be substituted in (4.4) to find the conduction
current with accuracy not exceeding the accuracy of
the kinetic equation. In the case of weak spatial in-
homogeneities, the function f is practically constant
over the length of the Larmor radius, where the func-
tion <I>§1 (x - X0)/a is noticeably different from zero,
so that f can be taken outside the sign of the integral
with respect to X, at values x, = x. Taking this into
account, substituting (3.19) in (4.4), and expanding the
results in a series in azqy, we get!'®:14]

2eNpn a
o {—(Zna)zﬁ Sdpz 2
n,n’, q

X 8[E(n', p,-+1g)—E (n, p,)]

(eN (z)= | Cql? Fa, e (223 /2)

(a? QJ)

X%[vxﬁwygﬁ,..}. (4.5)

The expression in the curly brackets in (4.5) deter-
mines the conduction current in terms of the gradients
of the spatial inhomogeneities of T and {. The coef-
ficient in front of (-~ (1/e)vy¢) coincides with the
electric-conductivity coefficient obtained by Adams and
and Holstein®?l. This indicates that the Einstein rela-
tion, connecting the diffusion coefficient and the elec-
tric conductivity coefficient, holds. In complete analogy
with the derivation of (4. 5), we obtain a continuity equa-
tion for the thermal energy!*®,*4]

5 {WZ § daodp.dt (S5) (£ (0 p)—T1f (n, Py 20) }
(g 3 F G (8 () ety

I:Vx . En, pz) r.v T]I—

x 8[E @, p.+ 71qz)~ (n, pz)l

(4 6)

Thus, the diagonal components of the tensors of the
kinetic coefficients in jeon and QT (see (2.1)) can be
represented in the form

Gxx 2N
(ﬁ”) (2:1&)27;; zl

(n,m',q)

an 2 aqy aqy o
lC“‘F"'"'( 2 ) 20 0E

Axx
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ez
x 8 [E (n,s P+ hq:)—E ("ﬂ Pz)] ( 4 [E (Tl, pz)_ oyr ) ) Tﬁxx= Aaxa-
(B (m, p)—LPIT (4.7)

The dependence of qu [* on q is determined by the
scattering mechanism and is given in Table I, taken
from the paper of Adams and Holstein®®), The depend-
ence of 0,83, and ¥k on T and H turns out to be the
most sensitive to the electron scattering mechanism
only in the quantum limit.

Table 1. Dependence of | Cq|” on q and values
of the numbers m and p which enter in the tables

Scattering mechanism 1Cq 12 m P

Acoustic phonons:

low temperatures A9 0 1

high temperatures Ay (27 /ks) 1 0
Piezoelectric phonons

low temperatures Asg G —1

high temperatures Az (g2 -+ (2T /hs) 1 —2
Optical phonons

high temperatures A, (g2 -+ )7 2T/ hog) 1 —2
Pointlike defects Ay 0 0
lonized impurities As (g2 4-¢H)2 0 —4

When H varies in the range ¢ > h& 2 kT, the
quantities ¢, 8, and k experience quantum oscillations.
As shown by Adams and Holstein!??, the dependence of
these oscillations on the scattering mechanism, at
least for 04y, turns out to be not very important. This
is precisely why it is of interest to study in the quan-
tum limit the dependence of ¢, 8, and k on T and H
at different mechanisms of carrier scattering. We
present here such dependences, obtained by Zyryanov
and Kalashnikov'®! for two limiting cases.

a) In the case of nondegenerate electrons in the
quantum limit B > kT° we get from (4.7)

1 a a2 1 a
Hxx == 73" (?TTZXT—UW)E’ 511:7(WT01x):v

eta m dgxdgy
Oxx = —3 ——C:*/TSWNJC(;‘IHZ
2n T (2nh) (4 8)
{ .
@’ \ ¢ dE !
X Fo, 0 (T) S Te—E/T’
o
I 3
S=tmg J

In the latter formula for g4y, a divergence appears at
the lower limit, The nature of this divergence and dif-
ferent methods of its elimination are discussed in the
paper of Adams and Holstein!?®, Following that paper,
we can introduce a cutoff energy, connected for exam-
ple with the broadening of the Landau energy levels as
a result of the collisions of the electrons with the
scatterers. A detailed discussion of the question is
contained in the review of Kubo et al.®] In the quantum
limit KQ > T, the dependence of the diagonal compon-
ents of the tensors of the kinetic coefficients on the
magnetic field and on the temperature for different
scattering mechanisms is shown in Table II. In the

Table II. Dependence of diagonal components of the
tensors o, B, x, k on T and H for nondegenerate
electrons in the quantum limit

Tensor a) b) Tensor a) b)
Grx Tm—S/ZHp/Z Tp+5/2H—2 Yoex Tm~1/2Hp/2 Tp+7/2H—2
B Fm—3/2 go/2 Fp+5/2 g2 Rax pm—1/2 gp/2 TP+1/2 -2

case of acoustic and piezoelectric phonons, the results
given in column a) (Tables II--V) are valid for

H < cT(hs%e)™ (s—speed of sound). If the opposite
inequality holds, then it is necessary to use for these
two scattering mechanisms the results given in
column b) (for acoustic phonons p =1, and for piezo-
electric phonons p = - 1).

These results, together with formulas (3.23) and
(3.24) for the nondissipative fluxes, suffice to deter-
mine the dependence of any thermomagnetic effect on
T and H. For example, in Table IIl we present these
relations in the quantum limit for the isothermal
Nernst coefficients QN and for the electronic thermal
conductivity «¢ at zero conduction current.

Table III. Dependence of the isothermal Nernst
coefficients QN and of electronic thermal
conductivity ke at zero current in the case of
nondegenerate electrons at 2 >> T.

' Thermo-
magnetic a) b)
coefficient

QN m= 3/2Hp/2 Tp'!f5/2H~2
%e Tm=1/2yp/2 Tp+7/2H—2

b) In the other limiting case—strongly degenerate
electron gas (T « £ ) we have

n2 O0xx n? Ne2v
ﬁxxz’-ﬁ‘T( 7 )v ”x:c:mTUxxy Oxx ===

(4.9)

where for the ultraquantum limit T <« ¢ < A we have

e () e fanicuen (-7

[

5

X{5(qz)+6(qz+2]/2m,f*)}.

It follows from these formulas that both the diagonal
components of 0 and k, and the nondiagonal ones, are
connected by the Wiedermann-Franz law. In other
words, the Wiedermann-Franz law is valid also in the
ultraquantum limit.

Table IV gives the dependences of the kinetic coef-
ficients on T and H in the ultraquantum limit k@ > ¢.

(4.10)

Table IV. Dependence of the diagonal components
of the tensor o, 8, x¥, Kk on T and H for
strongly degenerate electrons in the ultraquantum
limit (T << § <uQ).

Tensor a) b) Tensor a) b)
Oax Tmy3+p/2 otig Yxx mt2p5-+p/2 7r+6g3
[ pmtt grhdp/2 7r+5y3 A pmtt gr3tps2 TSy
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Table V. Dependence of isothermal Nernst
coefficients QN and of the electronic
thermal conductivity ke at zero current
in the case of strongly degenerate electrons
in the ultraquantum limit (T <<§ <EHQ)

Thermo-
magnetic a b
coefficient
On Tm+1H5+p/2 Tp+5H3
%o milg3+p/2 TP+5H

For the same limiting case, Table V lists the depend-
ence of the isothermal Nernst coefficients QN and of
the electronic thermal conductivity ke on T and H.

Bar’yakhtar and Peletminskii®®!! constructed a more
general theory, in which the diagonal components of
the tensors of the kinetic coefficients in the conduction
current and in the heat flux are expressed in terms of
the exact electron-impurity scattering amplitude. The
procedure for calculating the conduction current and
the heat flux used in®'} is fully equivalent, as shown
by Peletminskii®®], to the kinetic-equation method.
The kinetic equation obtained in'?! differs in this case
from the approximate equation (A.41) in that it contains
the exact scattering amplitude instead of the Born am-
plitude. However, the kinetic coefficients can be ex-
pressed in terms of the amplitude of scattering by a
single center, provided the de Broglie wavelength of
the carrier is X < ap—the average distance between
the scattering centers. If at the same time * > ro—
the force radius of the scatterer, then it is possible to
obtain an asymptotically exact scattering amplitude
for the electron with zero energy. Skobov!**! obtained
for this case the scattering amplitude in the following
form:

tor () —a % (4.11)

Here
K(Ey=K'(E)+iK"(E), K"(E)=(Q2na?)~1/3,
1

N—
K (B)= @12 3 (s —m—1%),
m=0

a-—amplitude for scattering of an electron with zero
energy by an impurity in the absence of a magnetic
field, and 0 =7 < 1 is defined by the equation

E = (N + % -1 )AQ (N—positive integer ). If the
transition probability Wy’ in (4.3) is defined in terms
of the Skobov amplitude of scattering t,,’ (q), then we
get for the kinetic coefficients formulas analogous to
(4.7), the only difference being that in (4.7)

| Cq IPFpp’ (@*qi/2) is replaced by |Col*Fpy (¢*q}i/2)
|1 +iaK(Ey)| ™, where | Cof* = (Nimp/V)(Z‘irﬁza/m ).
The kinetic coefficients obtained in this manner no
longer contain divergences in the case of the Maxwell
statistics, inasmuch as in the Bar’yakhtar- Peletminskil
theory'®*] the Skobov scattering amplitude (4.15) takes
into account the broadening of the Landau levels due

to the scattering of the carriers. The dependence of
the kinetic coefficients on T and H in this case is
analyzed in'®'),

GUSEVA

In concluding this section, let us stop to discuss
other works devoted to transport phenomena in a
strong magnetic field in the elastic-scattering approxi-
mation. Jajdu[ss] and Hajdu and Fischer 13¢] considered
transport phenomena in systems with spatially-in-
homogeneous temperature in the elastic-scattering ap-
proximation. The diagonal components of the kinetic-
coefficient tensors obtained by them coincide with
formulas (4.7), the only difference being in the form.
As to the nondiagonal components, they satisfy neither
the Einstein relation nor the Onsager symmetry prin-
ciple. In the case of strong degeneracy of the electron
gas, as noted in[”], the nondiagonal components, un-
like the diagonal ones, are not connected by the
Wiedermann-Franz law. These paradoxes are the
consequence of an erroneous identification of the
volume density of the nondissipative charge flux with
the conduction current, and of (Q — £j/e) with the
heat flux (see Sec. II). The justification of the Wieder-
mann-Franz law in quantizing magnetic fields is the
subject also of a paper by Zak®", However, this paper
contains no valid proof, since the initial equation of
this paper is postulated, and its connection with the
Schridinger equation for the density matrix is not clear
and is not discussed at all. The coefficient Byx (see
(4.7)) was first calculated by Ansel’m and Askerov(™ ™,
Recently Ansel’m, Obraztsov, and Tarkhanyan[m re-
fined their results.

V. DISSIPATIVE FLUXES WITH ALLOWANCE FOR
INELASTIC SCATTERING OF ELECTRONS AND
PHONONS

The elastic-scattering approximation used in the
calculation of the conduction current and the heat flux
in the preceding section is not always convenient.
Allowance for inelastic scattering in the collisions of
electrons and phonons leads to dragging effects. These
effects are most important in semiconductors with
Maxwellian statistics of the carriers. For example, as
noted in Sec. I, the thermal emf in n-Ge and n-InsB at
low temperatures in quantizing magnetic fields is due
essentially *:- the effect of electron dragging by phonons,
i.e., to inelastic scattering.

When electrons interact with optical phonons, the in-
elasticity of the scattering leads to the so-called mag-
netophonon resonance predicted independently in[®),
The gist of this resonance consists in the fact that when
the optical-phonon frequency is a multiple of the cyclo-
tron frequency of the carriers, i.e., wp = NQ (N—
positive integer), resonant transitions of the carriers
between the Landau levels are possible, accompanied
by absorption or emission of an optical phonon. Thus,
the inelastic scattering of electrons by optical phonons
leads to oscillations of the electric conductivity and of
other kinetic coefficients when the magnetic field is
varied. We shall not stop here to discuss these ques-
tions.

In other cases, allowance for inelasticity in electron
scattering apparently does not lead to qualitatively new
phenomena. We shall henceforth concentrate our atten-
tion on inelastic scattering of electrons by acoustic
phonons and proceed to calculate the conduction cur-
rent and the heat flux in such systems. If we take into
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account the deviation of the phonons from local equili-
brium, then in the plane orthogonal to the magnetic
field it is necessary to consider already two-dimen-
sional inhomogeneities. Such spatial inhomogeneities
are described by a density matrix which is nondiagonal
in py = eHx,/c. However, it is more convenient in what
follows to use the mixed representation of Wigner

(2, p Py, Y)- __) In, Py DT D, Jry exp (i (py,— py) y/h), (51)

7’1/
since, just as in the preceding section, the conduction
current and the heat flux will be determined with the
aid of the continuity equation. Using the approximation
of weak spatial inhomogeneities, we obtain with the aid
of the kinetic equation (A.32), in full analogy with the
derivation of (4.5), the following formula:

aeN (@, y)=2e D Leplf (7, P P I D5 (2)

LI

(5-2)
¥

The rate of time variation of the density of the thermal
energy of the electrons at the point x, y can also be
expressed with the aid of (A.32) by means of the for-
mula

a2 3 e -0k (252) fn pn e )}

(24
(n, D, Xo)

r—zp

T W@, =2 N (En, p)—00; (=

P, Xy

) Ten V1 2, P2 2y W)L,
(5.3)

and finally, using the kinetic equation for the phonons
(A.33), we obtain the rate of change of the phonon
energy density with time, in the form

a )
FZ Ng(zx, y)hquWW(m:
q

——%(Z frvg
q

We shall apply the general formulas (5.2)—
some particular cases.

We first caleculate the conduction current and the
heat flux, assuming a local-equilibrium phonon distri-
bution. Such a situation is realized when the frequency
of the collisions between the phonons and the ‘‘thermo-
stat’’ at temperature T(x, y) greatly exceeds the fre-
quency of their collision with the electrons. The colli-
sions of the electrons with the phonons do not violate
in this case the local equilibrium of the phonons with
the thermostat, and their distribution function takes
the form

50
___:_I. (2 hm‘,?‘;“ Ng(z, y))
9
8
ﬁ‘~N,1 (2. 4)) -+ ) hogl pe [Ngl + 3} hoglpa [Nl (5.4)
< a a

(5.4) to

Na(x,y):{exp %—1}71 (5.5)
In the approximation under consideration, Eq. (5.5) is
the solution of the kinetic equation (A.35). Owing to

the collisions with the phonons, there is also estab-
lished in the electron system a local-equilibrium dis-
tribution with a Fermi function

E@pd 2y 4],

y e (5.6)

To(n, pa 2, y):[exx) (
This function is a solution of the kinetic equation (A.32)
in the zeroth approximation in (7)™ « 1. Substituting
(5.5) and (5.6) 1n (5.2)--(5. 4) and then expanding the
right sides in a qX and a’qy, we find the contlnulty
equations for the charge an the energy 1 of both the

electrons and the phonons:

eN (z, y) con(z, y)
2 we @ y) |=—div| Q¥ v |, (5.7)
ot
W (z, ) QP (=, y)
where
(jnp)x
(e)y “ep (D
(@) | = wep (E + 200 — ;») (—+7)
\(Q(Tp)) Tiwgqwep (1) v

wep (E+ho—L) (£

(emep {E +-ho— Z))
hwgwep (£ + ko —{))

}QL h—ﬂi] dg.dqy, (5.8)

R 2 igh
0ep (E -+ ho— 1) (E—1)™) = (m)zh E TGl Fare (—55)

x § dpSIE (W, pa-thg)—E (n, pz)—mq] (E (n, ps)+hag—D)"

X (B, p =0 [fo (B2, (B2 0THT 0 (59)

T and M assume the values 0, 1, 2; the symbol
wep(1) is used when m =m’ = 0. Summmg QY

and Q’(II‘] , we obtain the total heat flux of the electrons

and phonons*®)

-1

©@n)s= (52" § dgdauat [en 30— 1]

X {®op (B 4 B — L)) VT @op (B + ho—5)) T2 Vo 5}. (5.10)
Yy 1

The kinetic coefficients are connected by the Onsager

symmetry relation only in the total heat flux Qr (5.10)

and in the conduction current j.., (5.8). These calcu-

lations were performed with such detail only because

in some papers an error has crept into the determina-
tion of the phonon energy flux density in spatially-
inhomogeneous systems. Thus, for example, Fischer![*!
gives for the heat flux carried by the phonons the
formula

E hwg (2—2) Ng.
q

(5.11)
This formula describes, as can be seen from (5.4),

only that part of the phonon-energy flux which is due

to the deviation of the distribution function N, from

the local equilibrium (5.5). In other words, the energy
flux (5.11) is due only to the phonon drift. In the state
of local equilibrium, the flux (5.11) vanishes, but in

this case the spatial inhomogeneities of the temperature
of the electrons and phonons lead to a diffusion heat
flux described by formula (5.8) for Q%”. If the total

heat flux in the system is determined by the formula
{QF + %)ﬁwq x (Bw/Bq)Nq} = @*, then the Onsager

relation for jeop (5.8) and for Q* will not be satisfied.
We now proceed to consider effects connected with
allowance for the deviation of the phonon distribution
function from the local equilibrium function (4.6). In
pure metals and semiconductors, at sufficiently low
temperatures, it may turn out that the non-electronic
phonon relaxation frequency (the relaxation of the
phonons on the ‘‘thermostat’’) wpp(q) is comparable
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with or even smaller than their relaxation frequency
on the electrons. Under these conditions, the phonon
distribution function will depend not only on the state
of the thermostat, but also on the state of the electrons.
A correct theory of the kinetic phenomena calls for a
consistent description of the electron-phonon systems
with the aid of two coupled integro-differential equa-
tions for the nonequilibrium additions to the phonon
and electron distribution functions. Neglect of one of
these additions in the equation for the other leads, as
shown by calculatlons in the absence of a magnetic
field (see[ ) to violation of the Kelvin relations for
the thermoelectric coefficients. These relations, or
more accurately the second one, are the consequence
of the symmetry principle of the kinetic coefficients of
Onsager. Consequently, the violation of the second
Kelvin relation is the consequence of violation of the
Onsager symmetry principle. As shown by Sond-
heimer[“zl, the correct theory, based on a system of
integro-differential equations for the nonequilibrium
additions to the electron and phonon distribution func-
tions, ensures satisfaction of the Onsager symmetry
principle. However, so far no exact solution of such a
system of equations in a weak or zero magnetic field
could be found. In the case of strong magnetic fields,
when the small parameter (7)™ < 1 appears (7—
electron relaxation time), it becomes possible to find
the solution of such a system of integro-differential
equations in the form of a series in powers of this
parameter. The Onsager symmetry principle is then
satisfied; consequently, the Kelvin relations are also
satisfied.

We shall henceforth assume, as is usually done in
linear transport theory, that the phonon distribution
function differs little from the local-equilibrium func-
tion (5.5). Accordingly we put

Nyq(z, p)=Ng(z, v)+gq(x, y). |gq} < Ng. (5.12)
Substituting (5.12) in the kinetic equation (A.33), we
obtain an equation for the determination of gy (x,5)
This equation includes the electron dlstr1but10n func-
tion f(n, pz, X, y). In order to find gq in the first
approximation in (£7)7, it is sufficient to take for f
the solution of Eq. (A.32) in the zeroth approximation
in (@7)™". Such a solution is the local-equilibrium
electron distribution function (5.6). Substituting (5.6)
in the equation for the function gg, we obtain in the
linear approximation in the gradients T and { the
following formula‘*'»**]

h -1
8q= {2 [Ch “;)-_q“"“ 1] [ep (1) +Opp (q)l}
X {fis® (qV) T~ — yolgy [005 ((E 4 o — 1)) VaT L+ @p (1) Vab)
+ 902 [0ep (B + ho—T)) VT8 + wep (1) Y21} (5.13)

Substituting (5.12) and (5.6) in (5.2), we obtain in the
linear approximation in vT and v{ an expression for
the conduction current with allowance for the phonon
dragging[“’m’m
3 -1
Goon)s=e ()" § da:dg, g3 [ech—72—1] @ep 1)+ 05 (@)
2 Gen (1) V.7 1}
(5.14)

3{ e (B -+ B0—0) 03 VT —00p (1) 03 (@) T2Vl F v
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Substituting (5.12) and (5.6) in (5.3) and (5.4), we obtain,
again in the linear approximation, a formula for the
total heat flux'"11:%

(@)= (£)"§ daeda, a1 [b 72— 1] @epct) + app (@)
X { [@ep (B + 70— 0 (@ep {1} + 000 (@)

1+ (25 — @ep (B + ho— 1)} ] TaT
— Wpp {(E + ho—1)) 0pp (q) VxC

(5.15)

Ty 2 ey (B + ho— D) 7 T'1+V mep<1>vyc}
Comparing the kinetic coefficients in front of the tem-
perature gradient in (5.14) and the gradient of the
chemical potential (5.15), we verify that they satisfy
the Onsager symmetry principle. The coefficient pre-
ceding {-v¢ )/e in (5.14) coincides with the electric
conductivity coefficient obtamed earlier in the paper
by Gurevich and Nedlin!**! by the method of Konstanti-
nov and Perel’!®], This confirms once more the satis-
faction of the Einstein relation.

Formulas (5.14) and (5.15) were obtained also by
Akhiezer, Bar’yakhtar, and Peletminskii!®. The dif-
ference lies in the notation. In this interesting paper,
the total heat flux and the conduction current in an
electron-phonon system were determined in terms of
the entropy production. The entropy production was
calculated with the aid of kinetic equations for the
electron and phonon single-particle dens1ty matrices.

A recently published paper by Fischer'®] is also
devoted to the calculation of the conduction current and
the heat flux with allowance for phonon dragging. The
kinetic coefficients in the conduction current, obtained
in[“°], coincide with the corresponding coefficients in
our formula (5.14). The coefficients in the electronic
part of the heat flux also coincide. As already noted

ab[ov]e, the total heat flux was not determined correctly
in“%,

VI. FLUXES ALONG THE MAGNETIC FIELD AND
LONGITUDINAL THERMOMAGNETIC PHENOMENA

In preceding sections we considered fluxes ortho-
gonal to the magnetic field, and the associated trans-
verse thermomagnetic phenomena. In this section we
shall calculate the fluxes along the magnetic field.
Attention will be paid principally to effects connected
with the non-equilibrium behavior of the phonons, i.e.,
with dragging effects. These effects are of greatest
interest since the differential thermal emf due to the
non-equilibrium behavior of the phonons (the dragging
thermal emf) increases with increasing magnetlc field
intensity in the quantum region as shown in

We shall be interested in what follows in sufficiently
strong magnetic fields (27> 1) and with distribu-
tions that are spatially inhomogeneous along the mag-
netic field H il Oz. In this case, to describe the system
it is necessary to retain in the Landau representation
the density matrices that are diagonal in the quantum
number n, do not depend on py, and are nondiagonal
in p,. Inthe case of weak spatial inhomogeneities, it
is convenient to use the density matrix in the Wigner
representation
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fr, psy =21, py; v %P {i (po— p3) 2/}, (6.1)
Pz

Indeed, if the spatial inhomogeneities are small com-

pared with the de Broglie wavelength, the left side (the

Liouville operator) of the kinetic equation can be

written in the usual form

(Frt+oegr+ebagy) fn P )=T1f (0, P o). (6.2)

The electron-phonon collision integral contain in this
equation can be represented in the form

2,3
I pe D=2 3 Cqlt { P (5%)
', q, py)
X 8{E (W, p;)— E (n, p:)—haq) 8 [p~ fig. ~— p;]
X((f(7+ Pz 2)—F(ny Pzy 2) No(2)+ 1wy Pz 2) (1 — () P2y 2))]
2452
o, (S ) SIE (', p)—E (n, Pa)+ Tiaag) & [P+ figs— i)
Xy pry ) —F (0, P2y D) Ng(2)—f(ny pz, Y(A—F (0", Pz, 2N}
(6.3)
The phonon distribution function is obtained also from
the kinetic equation

Jw 0

(’%+@;z) Nq(2) =1 [Nq(2)], (6.4)

where

2 2 . a*q) .
IINg@DV =5 3 grges § Apsdpi| Co PFa, w (=) (pi—ha:—p2)
n, n’

X G[E (n', p})—E(ﬂ, pz)"‘hmq] [(f(nll p;1 Z)"_f(nv Pz Z)) Nq (z)
+F 0, por D) (1—F(n, Py DI+ NG (@) — Ny (D 0pp ()- | (6.5)

In (6.5) we took into account the non-electronic mecha-
nisms of phonon relaxation by introducing the corre-
sponding relaxation frequency wpp(q), and Nfl( z) is
the local-equilibrium phonon distribution function,
equal to

{exp (7ot} =1}, oq=va (6.6)

Eqs. (6.2) and (6.4) are sufficient for the calculation of
the fluxes along the magnetic field. When obtaining the
dragging effect, it is necessary to take into account the
deviation of both the electronic and phonon distribution
functions from the local equilibrium. In other words,
it is necessary to find the nonequilibrium additions of
u; and g4 to the local-equilibrium distribution func-
tions of t%e electrons and phonons

f(n, Pz Z):fo (E(—n,Tp_z(}Z;Lz)) "g—%o‘ﬁzuzy (6'7)
Ng(2)=N§(2)+ga 24| K NY(2)- (6.8)

With the aid of (6.2) and (6.4) we can find a system of
integro-differential equations for the functions u; and
gq- Inasmuch as the exact solution of these equations
is difficult, we confine ourselves only to the approxi-
mate analysis of the problem, namely: we assume that
ug~the velocity of the ordered motion of electrons
under the influence of the temperature gradient and the
electric field—is much smaller than the average
velocity of their random motion. We can then replace
ugz(n, pz) approximately by the mean value of uy which
does not depend on n or p,.

In this approximation, it is possible to analyze the
problem to conclusion. Indeed, substituting (6.7) in

(6.4) we obtain in the linear approximation in v,T and
Uy
h -
8a=1:[2(0ny () + 050 @) (el (52) = 1) ] @724 700y (1) ).
(6.9)
Using (6.7)—(6.9), we obtain with the aid of (6.2) for
stationary conditions the formula

- (02,8% 5-B,.9,T71)

LA caki (6.10)
where
EteE,— T, an=200
w12 N § B gyt [2mT (00 )+ o) (e (50 —1) T
X 0pp (@) 0ep (1), (6.11)
for = + o {725~ { Zhwshay?
3 [20ep (1 +0pp @) {eh (59 —1) P 0}, (6.12)

S—entropy of the electron gas (see (3.18)). Substituting
(6.10) and (6.9) in (6.7) and (6.8), we obtain non-equili-
brium electron and phonon distribution functions. With
the aid of these functions it is easy to write down
formulas for the conduction current and for the total
heat flux transported both by the electrons and the
phonons:

(fcon)z = UzzE; + 621V1T—ls
(QT)Z = T‘IﬁzzEf + (ﬁgz (TUzz)—:l -+ %p) Vszlf

(6.13)
(6.14)

where
Hp = S (;Tq)g(ushfh)z {:2 (@ep (1) 005, (q)) (Ch (hTm) - 1)]’1 - (615)

The kinetic coefficients in (6.13) and (6.14) satisfy both
the Onsager symmetry principle and the Einstein rela-
tion.

Let us consider first of all the differential thermal
emf. From the equation j; = 0 we get for it

e =T,y Ll 0,

where a(zg)(H) is the contribution made to thermal

emf by dragging; this contribution vanishes when

Wpp T *. In this case the electronic part of the longi-
tu£na1 thermal emf(E* i vT Il H), as well as the
electronic part of the transverse emf (E* ivT 1L H),
are expressed by the same formula

aH=1 2 (6.17)

This formula is approximate and corresponds to equal-
ity of the mean value of the force exerted on the elec-
trons by the applied temperature gradient to the force
exerted by the electric field, i.e.,

(6.16)

2 Em, p)—L oo
(2na)2h28dpz (8E1+JTL)-V2T) Zmd_g: .
n

(6.18)

It follows from (6.16) that the thermal emf is made up
of an ‘‘electron’” and ‘‘phonon’’ parts. The former is
due to the deviation of only the electrons from equili-
brium, whereas the latter is due to deviation of the
phonon system from equilibrium, too. The former was
investigated in the relaxation-time approximation by
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Ansel’m and Askerov!®®), The greatest interest in the
quantum region attaches to the second part of the
thermal emf, since it increases with increasing mag-
netic field intensity.

Let us consider the case of practical interest,
namely wep{1) K wpp(q)- In this case when hKQ
> kT we have for nondegenerate electrons, in accord-
ance with (5.13),

St (1o (2T
hogpe V2numT 1921 P T

coxp { o (S22 Lo}

where it is assumed that |Cq * = Effia/(vgpoV), po--
crystal density, Eq—constant of the deformation poten-
tial, vg—speed of sound, and V—volume of the system.
In the case of not too strong magnetic fields

H < chi(T/fivg)’/lel, the only interaction of importance
is that of electrons with phonons whose momentum is
fiq < fi/a. In this approximation we have

3—1

=B (F)

Wep <1> =

(6.19)

ol (H (t<2), (6.20)

where
u

) (55) “re-0D050

3/2 2
B ='hg“ (TZT) / (prDA
with wy,,(q) = Kq T'(t)-~Gamma function, and D¢(x)—
paraboﬂc cylinder function. For the most important
phonon relaxation mechanism, with q < 1/a, under
conditions when the dragging effects make a noticeable
contribution to the thermal emf, wpp ~ q—the Simons
relaxation mechanism®® ], i.e., t =1, and when hQ
> T
a® (i) —a )
o (0)

_daPa@

A ; (6.21)

a(0)—thermal emf at H = 0. In the region of low tem-
peratures, when scattering of phonons by the boundaries
of the sample predominates (L-—-sample dimension},

t =0, and

Aal®) () 2
W e, (6.22)
Recently Gluzman and Tsidil’kovskii!™ investigated

experimentally the dependence of a‘zp’ (H)/a(0) on the

temperature and on the quantizing magnetic field in
n-Ge samples. Their results agree well with formula
(6.21), which was obtained under the assumption that
wpp ~ qT"

The longitudinal thermal emf in a quantizing mag-
netic field was calculated independently by another
method by Ohta'®!l. He considered only the case
wpp ~ q%, and obtamed the formula

A ()

1/2
o () ~ i

(6.23)

We note that when t = 2 this formula follows from
(6.20).

Thus, all the most significant phonon relaxation
mechanisms lead to a growth of the dragging thermal
emf with increasing magnetic field intensity. We note
that an analysis of the dependence of Aa P’ (H)/a(0)
on the magnetic field and on the temperature makes it
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possible to establish the frequency and the temperature
dependences of the attenuation of sound in the frequency
region w ~ vg/a.

The charge and heat fluxes along the magnetic field
were calculated, in the approximation of elastic scat-
tering by a short-range potential by Peletminskii* 52]
who also analyzed the different limiting cases. In the
quantum limit, with the relaxation time introduced
phenomenologically, the heat and charge fluxes were
calculated also by Ansel’m and Askerov(®

VII. COMPARISON OF THEORY WITH EXPERIMENT

In this section we shall use the theory developed
above to interpret the available experimental data on
thermomagnetic phenomena. However, before we pro-
ceed to do so, it is necessary to stop and discuss the
influence of microinhomogeneities in the distribution
of the impurities on the measurements of the thermo-
magnetic and galvanomagnetic effects The first to
investigate this question was Herrmg . He studied
theoretically the influence exerted on the galvanomag-
netic measurements by random inhomogeneities in the
impurity distribution, and showed that in strong mag-
netic fields the inhomogeneities lead to a quadratic in-
crease of the magneto-resistance with increasing field.

The question of the influence of microinhomogenei-
ties on the measurements of thermomagnetic effects
in strong magnetic fields was investigated theoretically
by Kudinov and Moyzhes[“]. Using the general method,
developed by Herring!®®), for expanding fluctuatlons
quantities in a Fourier series, the authors of 54 have
shown that the relative influence of the random inhomo-
geneities increases with increasing magnetic field in
measurements of the Nernst coefficient, but does not
increase in measurements of the longitudinal and trans-
verse thermal emf. This conclusion was satlsfactoruy
confirmed experimentally by Drichko and Mochan!®
who have shown that the thermal emf in a strong field
is not very sensitive to the influence of microinhomo-
geneities. However, this influence affects strongly
measurements of the Nernst coefficient at large values
of H. The effectwe (exper1menta11y measured) Nernst
coefficient Qe varies like H™, where ~1< m < -0.2.
According to the predictions of the theory of Kudinoy
and Moyzhes!®*, Q eff . B! and in some cases QN

will tend to saturatmn when the field H increases
without limit, whereas according to the theory that
does not take into account the corrections for the
microinhomogeneities, the Nernst coefficient Qy is,
as is well known, of the order of H.

Thus, in a quantizing magnetic field a comparison
of the experimental data on the Nernst effect with
theory must be carried out with great caution, and the
influence of the microinhomogeneities must be specially
investigated. On the other hand, measurements of the
thermal emf are perfectly reliable. The microinhomo-
geneities introduce only insignificant corrections
(within the limits of the measurement errors), which
do not depend on H. We shall therefore compare in
detail with the theory only the measurements of the
thermal emf.

Simpler formulas, and therefore more convenient
for a theoretical analysis, are those obtained for
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Table VI, Experimental study of thermomagnetic phenomena in
semiconductors and semi-metals in a quantizing magnetic field

Liter- |
ature

Investigated

Material ffont

Carrier density,
cm?

Temper- Obtained informa-
ature | Hyay,| (3) tion on the phys-

interval, | T/ max| ical properties of
°K j the conductots

Bi 56 Temperature 1018

oscillations
87 | Oscillations of 1018
LAY

Ao g

n-InSh 58 Oscillations of
} o (0

n-InAs 89

n-InSh | Magnetophonon
oscillations
of

Ay

|
i -

n-Ge 64 Ac,
L

n-In8b |72, 73

o1
014

-

sat 6.
1

(330
-

31013 — 4.1014

Determination of
the form of the
Fermi surface
Coincidence of the
periods and phases
of the oscillations of]

1.3 12 3

147433 13 13

Gyy%yandpy
Coincidence of the
periods and phases

4.2 30 0 of the oscillations

of )
Aa an dAp L
af®)  p©O
Coincidence of the

periods of the
oscillations of

Ao Ap

a1

2 (0) 0 ()
Determination of
the relative role

of different car-
rier mechanisms

4 28 48

20 —110] 80 40
120 — 140; 33 2.8

15—85| 90 6 Mechanism of
relaxation of long
wave phonons on
the thermal ones
6,0—82 ) 100 130 Character of the
electron-phonon
and phonon-
phonon inter-
action
Verification of the
validity of the

| theory for the

92 — 104 20 2,2

electronic part of
the thermal emf

thermomagnetic coefficients under i1sothermal condi-
tions. However, it is quite difficult to realize iso-
thermal conditions in a direction perpendicular to the
primary gradient of the temperature and of the electro-
chemical potential, owing to the occurring transverse
thermomagnetic effects. Reduction of the appearing
temperature gradients entails considerable difficulties,
since it calls for the supply and removal of heat from
different sides of the sample. It is much easier to
realize adiabatic conditions, by thermally insulating,
for example, the side walls of the sample and placing
it in vacuum. An estimate of the adiabatic corrections
to the isothermal coefficients in a quantizing magnetic
field shows that for both a degenerate and a nonde-
generate electron gas these corrections are negligibly
small.*

For easy visualization, the available experimental
data on thermal magnetic phenoma in a quantizing mag-
netic field are summarized in Table VI. The next to

*For the scattering of electrons, for example, by point defects or by
acoustic phonons, in the case of limiting degeneracy, the difference
between the isothermal and adiabatic thermal emf depends on the pre-

dominance of the phonon component of the thermal conductivity K(pr)
(e)

on the electronic component K5y

d is 3 5
agy = o Gl +u B /{3 4- 21D,

The coefficient of electronic thermal conductivity transversely to a
strong magnetic field is smaller by a factor (27)™? than in the absence
of the field. Therefore when £27 > 1 the electronic part of the thermal
conductivity becomes small compared with the phonon part, and

ad . IS
Oyx "~ %Xx

the last column of this table gives the maximal values
of (AQ)/T obtained in experiments, which show the
margin with which the conditions for quantization of
the energy levels of the carriers are realized. The
last column indicates what information of general
nature can be obtained from the given experiment.

The entire aggregate of the experimental data on
thermomagnetic phenomena, presented in the table,
can be separated into two groups: a) oscillatory phe-
nomena and b) phenomena in the quantum limit. Let
us consider both groups in detail.

a) Oscillatory Effects

A special position in the investigation of oscillatory
effects is occupied by the paper of Kunzler et al,!®],
who investigated the so-called magnetothermal oscilla-
tions in bismuth, i.e., the reversible changes of the
temperature of an adiabatically isolated sample, oc-
curring when the magnitude or direction of an applied
magnetic field is changed. The oscillations of the tem-
perature in a quantizing magnetic field are connected
with oscillations of the entropy of the electron gas S,
and have the same physical origin as the well known
low-temperature magnetization oscillations. Inasmuch

as
S= _(%)L’ a M=— (%g);'

the oscillations of both S and M are due to oscillations
of the thermodynamic potential ®, and in final analysis
they are connected with the nonmonotonic character of
the dependence of the density of states on the energy.
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With increasing entropy of the electron gas, the thermal
energy necessary to maintin the initial temperature is
also increased. However, for an adiabatically isolated
sample, the only source of thermal electron energy is
the lattice. With the aid of the thermometer, peaks of
cooling are observed with changing H. The magneto-
thermal oscillations have a high resolving power and
make it possible to determine with great accuracy the
parameters of the Fermi surface.

Oscillations of the thermomagnetic coefficients in a
quantizing magnetic field (thermal conductivity, differ-
ential thermal emf) were first discovered experimen-
tally by Steele and Babiskin'®") in very pure single
crystals of bismuth. They established very general
laws relating the oscillations of the coefficients of
thermal emf, thermal conductivity, and electric re-
sistance upon variation of the magnetic field, namely,
that the periods and phases of the oscillations of these
coefficients coincide.

Figures 1 and 2 illustrate the oscillations of the
thermoelectric potential difference and the coefficient
of thermal conductivity transversely to the magnetic
field, as observed by Steele and Babiskin. In these
figures, the solid curves correspond to the experimen-
tal results, and the dashed ones are the envelopes of
the minima of the oscillations; & is the difference be-~
tween the ordinates of the experimental curve and the
envelope of the minima. The quantity & was intro-
duced in order to separate the oscillating components.
The plot of § is shown in the lower part of the figures.
This curve is periodic in H*, In order to be able to
compare the period and the phase of the oscillations of
the thermomagnetic coefficients with the galvanomag-
netic ones, the electric resistance of the same single
crystal was measured. Comparison shows (Fig. 3) that
the periods of the oscillations with change of H™ are
the same for all three effects. The difference in the
phases of the oscillations is quite small. The relative
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phase shift of the oscillations of the thermal conduc-
tivity and of the electric resistance amounts to 0.16 rad,
and in the case of the thermal emf and the electric
resistance it is 0.08 rad. This difference in the phases
of the oscillations is due principally to the errors in
the construction of the envelope of the minima. In{®"
they investigated also the temperature dependence of
the thermal emf, and it was shown that the monotonic
part of the thermal emf decreases with decreasing
temperature like T?, where n~ 1. It follows from the
experiments of'®") that the amplitudes of the oscillations
of the thermal emf are proportional to H*?. When the
temperature changes, this dependence remains un-
changed. The envelope of the minima of the thermal
emf is proportional to H.

Before we discuss the possible theoretical interpre-
tation of the experimental results of[”], let us find the
consequence ensuing from the simplest single-band
model of a conductor with an isotropic carrier disper-
sion law. We assume that the electrons are strongly

tf L 1 T - T T T
st .
FIG. 3. Ordinate-values
of 1/H corresponding to the gl B
minima on the 8 curves for =
R

the thermoelectric poten-
tial difference (Q), thermal S
conductivity (@), and elec- 2y 4
tric conductivity (l8); ab-
scissas - the integers N.

g 2z 4 £ g a2 74
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degenerate and that the elastic scattering of the elec-
trons with the impurities and defects is dominating in
the transport phenomena.

To calculate the thermal emf oy, the electronic
part of the thermal conductivity «,, and the magneto-
resistance p), we need formulas for the kinetic coef-
ficients Oik, Bik, Kik, and Xjk. In the case of strong

degeneracy, we get from (3.16), (3.17), and (4.7) the
Wiedemann-Franz law

%ik:—f‘;—z(—];—)zTOUik. (7'1)
The remaining kinetic coefficients can also be ex-
pressed in terms of 0. The corresponding formulas
are

z

Bin— — (%); S dt'om (L), (7.2)

(7.3)

e
—o0

exin= —TBin-

In a strong magnetic field, in the presence of carriers
of the same sign

Oxx << nyy ﬁx:\: << ﬁxy; (7'4)

Here, in accordance with (2.11) and (2.14),
e = 1) = ﬂz: , (7.5)
L= ‘;gz . (7.6)

According to (4.7), in the approximation that is non-
vanishing in the degeneracy, the following formulas
hold:

B ~T, xun~T2% (7.7)

Therefore the first two terms of (2.13) are proportional
to T°. Neglecting in k, the terms proportional to T?,
we get in the approximation linear in T

u,-h~T.

ny =2 (2) 1%, (7.8)
Adams and Holstein!?®! have shown that for sufficiently
large values of the quantum number n, the character
of the oscillations 0xy is essentially independent of

the scattering mechanism, and that the oscillating part
of the electric conductivity can be represented in the
form

(1.9)

Cosc ™~ Ocf (%‘) v &-172,
where 0] is the classical (non-quantum) electric con-
ductivity in a strong magnetic field, and

b2=2V 7 B (— )" (2aM)~Z cos (LR T) .
M>0
The oscillating part of the differential thermal

emf (axx)osc can also be represented, at not too small
quantum numbers n, by the formula

(7.10)

(&1 Yose = (Cxx) 0sc= @ el (%g)“2 o1z, (7.11)
where
1 n® ¢ kT°
acl=—2*£e"( z )

is the thermal emf in the classical limit for a strongly
degenerate electron gas. Since the oscillating part of
the magnetoresistance, thermal conductivity, and

thermal emf are proportional to the same oscillating
function

(P.LYosc ~ (1 Yosc ~ (&t Yosc ~ 8~1/2,

the periods and the phases of the oscillations of p |,
K;, and a; are identical. The maximum values of the
amplitudes of the oscillations at low temperatures are
determined essentially by the broadening of the energy
levels, due to the collision of the electrons with the
scatterers. According to[zgl, the maximum values of
57”2 are equal in order of magnitude V@7 (7—carrier
free path time, which enters in the electric conductiv-
ity). If the dominating role in the broadening of the
energy levels is played by elastic scattering by impuri-
ties, then 7 is independent of the temperature. The
dependence of the amplitudes of the oscillations &/
on the magnetic field is the same at different tempera-
tures, Finally, a linear dependence of the thermal

emf on T is due to sirong degeneracy. These conclu-
sions of the single-band model are in good qualitative
agreement with the experiments of Steele and
Babiskin!®". However, we have no justification for
transferring the results obtained in the single-band
model to the case of bismuth, in which the electron
density is equal to the hole density, and the first in-
equality of (7.4) is violated, inasmuch as in the zeroth
approximation in the scattering o;(’;ﬁ = 0. In this case,

a nonzero contribution to oxy will arise only in the
approximation (Q7)%, Under the conditions of the
experiments of *7! (a large number of filled Landau
levels) it can be shown that the quantity o)
~ (1/Q7)* canalsobe represented in the form of a
slowly-varying classical part (0xy)c) and an oscillat-
ing part proportional to 6 /2. Therefore, when the
amplitudes of the oscillations of the kinetic coefficients
are small compared with the classical part that depends
smoothly on H, ayx as well as Byx and pyxy can be
represented in the form

Gz = (Cx)el + (%xx)osc,
Pxx = (Pxx)el 1 (Pxx)oscs
Pzy = (Pxy) ot + (Pxy)ose,

where

(Axx) osc ~ (Pxx)losc ~ (Pxg)lose ~ 82

Thus, in not too strong magnetic fields, if a sufficiently
large number of Landau levels are filled, the charac-
ter of the oscillations of the thermogalvanomagnetic
coefficients turns out to be the same in both the single-
band and the two-band models of the conductor as well
as when the hole and electron densities are equal. On
the other hand, if the fields are so strong that not too
many levels are filled, then the character of the oscil-
lations of the different thermogalvanomagnetic coef-
ficients is different. Thus, for example, the experi-
ments of Antcliffe and Stradling'®®’, made on n-InsB
samples, have shown that the oscillations of pyyx and
pxy differ in phase by n/4.

In semiconductors, the quantum low-temperature
oscillations of the thermal emf in a transverse mag-
netic field (H L vT) were observed in n-InSb!*?! and
n-InAs %, Comparison of the experimental curves for
the transverse magnetothermal emf Ao /a(0) and
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the transverse magnetoresistance Ap/p(0) reveals,
just as in the case of bismuth, agreement of the
periods and good agreement of the phases. In[“], a
distinct spin splitting of the first (n = 1) Landau level
was observed. However, an estimate of the g-factor
from the magnitude of the splitting leads to a value

| g| = 34, which is smaller than the g-factor predicted
by the theory and determined from the spin resonance
of the electron conductivity in InSb (|g| = 50).
Another physical nature (compared with the low-tem-
perature oscillations considered above) is possessed
by the so-called magnetophonon oscillations of the
thermal emf, first observed in n-InsB by Puri and
Geballe'®®! and investigated in greater detail by
Muzhdaba, Parfen’ev, and Shalyt'®*),

Both with respect to the observation conditions
(higher temperatures) and with respect to the depend-
ence of the period on the parameters of the conductor,
this type of oscillations differs from the low-tempera-
ture quantum oscillations of the Shubnikov—de Haas
type considered above.

The period of low-temperature oscillations is deter-
mined only by the electron density:

1

A (——) = % (3n2n)*2/3,

L (7.12)

and the period of the magnetophonon oscillations on the
effective mass of the electrons m* and the limiting
frequency of the optical phonons:
1 e

A(T):W' (7.13)
In this review we shall not analyze in detail the mag-
netophonon oscillations of the thermal emf, referring
the reader to the special literature!®’®'}; we note only
the following two circumstances.

First, no oscillations were observed on the curve
of the transverse magnetothermal emf in[“], in accord
with the theoretical result concerning the independence
of the transverse electronic part of the thermal emf on
the scattering. In a longitudinal magnetic field
(H 1 vT), the magnetothermal emf oscillates. The
maxima that can be observed in the experimental
curves have a periodicity that agrees with (7.13).

Second, the oscillation maxima of the longitudinal
thermal emf (Aq) )/@(0) are shifted relative to the
resonant values of the magnetic field determined by
condition (7.13). A comparison of the magnitude of this
shift with the predictions of the theory of Pavlov and
Firsov[szlyields information on the relative role of
the different carrier scattering mechanisms in n-InSb.

b) Thermomagnetic Effects in the Quantum Limit

The dependence of the thermomagnetic effects in
the quantum limit on the temperature and intensity of
the magnetic field for different mechanisms of elastic
scattering is shown in Tables II-IV. At the present
time, however, we still do not have sufficiently reliable
experimental data to be able to judge the validity of the
theoretical dependences of the thermomagnetic effects
on T and H, given in Tables II-IV. Thus, for example,
measurements of the Nernst effect, quoted by Amirk-
hanov et al.!®! , cannot be interpreted theoretically,
because the character of the dependence of the Nernst
constant on the magnetic field changes from sample to
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sample. This is apparently connected with the influence
of the inhomogeneities referred to in the beginning of
this section.

The most reliable experimental information about
the dependence on the temperature and on the magnetic
field intensity in the quantum limit were obtained for
measurements of the differential thermal emf. These
experimental data are of greatest interest, because
their theoretical analysis makes it possible, on the
one hand, to judge the validity of the premises of the
theory and, on the other, obtain information on the
mechanisms of electron-phonon and even phonon-
phonon relaxation.

In the experiments made by Puri and Geballe™*! on
pure samples of n-Ge with impurity density np
~ 10" c¢m™, they measured the ratio

ocJ_(H)~a_L(O)_‘ Aay

it 7.14
a; ©) Tay (07 ( )

Figure 4 shows the experimental results obtained infe#]
for the dependence of Aa/a(0) on the magnetic field
at different temperatures for H Il {100] and ¢T il [010].
The same figure shows the dependence of Aal/a)(0)
on the temperature, obtained in a field H = 88 kG. The
experimental data lead to the following empirical for-
mulas: in the temperature interval 20—-80°K

Aa) gy (H)2 7.15

a_L(O)—‘ i(_T—) v ( )
and for T < 20°K

Aa, H\2

T(’-O):DZ(-T—) . (7.16)

D: and D, vary little with the temperature and with the
field.

In semiconductors with an anisotropic constant-
energy surface (such as n-Ge or n-8i), the coupling of
the carriers with the longitudinal and transverse pho-
nons is of the same order of magnitude. Therefore an
analysis of these experiments is impossible within the
framework of the simplest model.

(®%] the main premises of the quantum theory
of thermomagnetic phenomena, developed in Secs. III—
IV as applied to a quadratic isotropic dispersion law,
were extended to a multivalley anisotropic energy
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spectrum of the electrons. The anisotropy of the car-
rier scattering was taken into account within the
framework of the deformation-potential method. The
isothermal thermal emf was investigated in greatest
detail in different limiting cases, as functions of the
magnitude of the magnetic field and the degree of
dragging of the electrons by the phonons.

The isothermal differential thermal emf is made up
of two parts: electronic a‘®’(H), due only to the non-
equilibrium nature of the electrons, and phonon
aP’(H), due to the deviation of the phonons from the
equilibrium distribution as a result of electron-phonon
collisions: a(H) = a'®(H) + a'P(H). Under the con-
ditions of the experiments of!®", ¢® turns out to be
small compared with a'P’ [sic! ]. In a quantizing mag-
netic field, the main contribution to the interaction with
the electrons is made by phonons with q ~ qH
= Y |e|H/ch. The magnetic field and temperatures
used in'® were such that q}; < ¢ = (T/hs) )*. In this
limit, for the case when the magnetic field is directed
along the fourfold axis and the draggmg of the electrons
by the A-branch phonons is weak (w PP > w )"), the

following expression was obtained for the dragging
thermal emf!%°

2-—7ry 2—714 3—ﬂrl
r(7)

P T2 msi T2 [ Cy\2 TVR,
o729 T2 (hTQ) (—T_) (Tz) PV, °
where s)—phase velocity of the A-branch phonons,
C;—deformation-potential constant, ¢, —mean value of

the elastic constant for the A-brach, F, contains a
weak logarithmic dependence on the magnetic field,

P = poi®TMs{"TML™, po—density of the substance,
L—dimension of the crystal, B is determined by a
combination of the components of the reciprocal-effec-
tive-mass tensor in the coordinate frame connected
with the external fields'®®); ry, and y are determined
by the phonon damping decrement

o (H) = (7.17)

3—r,—y 247
A 2
q -

wig D)= 4T (7.18)

and A) depends on the parameters of the material.
The ratio a‘p’(H) to the dragging thermal emf in the
absence of a magnetlc field @P’(0) is expressed by
means of the simple formula

o (H) (m) T

(D) (0) T (7 ° 19)

B; contains a weak logarithmic dependence on H and T.

In n-Ge, the experimentally investigated quantity

' Aad?) (H)
PO il (7.20)
a(0) N af? ()

A

contains a contribution from different branches of the
phonon spectrum and is more complicated for analysis.
It follows from (7.17)—(7.20) that the dependence on
T and H of the measured quantity Aa/a(0) is deter-
mined essentially by the damping decrement of the
phonons with q ~ qf =v |e|H/ch. Usually one uses
in this frequency region, for the damping decrement of
the transverse sound waves, the Landau- Rumer
formula'®

Tt = AqT, (7.21)

and for longitudinal sound the Herring formulal®®

= APTE. (7.22)

These formulas were obtained in the approximation
involving three-phonon processes in which the energy
and momentum conservation laws are exactly satisfied.

For sufficiently low temperatures, the phonon re-
laxation on the boundaries of the sample, which does
not depend on T and g, becomes important; in this
case the damping decrement is given by

(o)r=(1ph" ~ 2 (7.23)
(L—characteristic dimension of the sample).
In the experiments of[s"] the magnetic field intensity
and the temperature satisfied the inequality

H< o7 (hTsA)z'

In this case, as follows from (7.21) and (7.22), we have

s \3 ¢ T T yi/2
=) o) >t
The inequality (7.24) leads to the conclusion that the
most significant contribution to the dragging thermal

emf is made by longitudinal phonons, and in accord-
ance with (7.19)

(7.24)

agp) (H) "
agp) () T

This formula gives a different dependence than the
experimentally observed (7.15). The latter formula
would be obtained only if an inequality opposite to
(7.24) were to apply, thus contradicting the experi-
mental conditions of®**), Consequently, 77 and T¢, cal-
culated in the approximation of three-phonon processes
with satisfaction of the energy and momentum conser-
vation laws, cannot be reconciled with the experiment[“]
performed in the presence of a quantizing magnetic
field. A similar situation took place also earlier in an
investigation by Herring et al. 1591 in an analysis of ex-
periments on thermomagnetic phenomena in the clas-
sical reglon of fields. There exist also other experi-
iments™! on the study of the temperature dependence
of 77 and 7¢, which also contradict formula (7.22).
Thus, it becomes necessary to review our concepts
concerning the relaxation of the longitudinal long-wave
sound in solids. So far we disregarded the width of the
energy levels of the short-wave thermal phonons that
take part in the three-phonon processes. Allowance for
this factor in the absorption of the longitudinal long-
wave sound leads to new possibilities. In order to ex-
plain the foregoing, let us consider the scattering of
sound by short-wave thermal phonons. Neglecting the
level width (the damping decrement) of the short-wave
thermal phonons, there should be exactly satisfied in
three-phonon processes only the energy and momentum
conservation laws. If the dispersion of the speed of
longitudinal sound is zero, then a process is possible
in which three phonons of the longitudinal branch, with
three wave numbers, take part; then the momentum
conservation law is given by qi = Q2 — Qs, and the
energy conservation law is obtained by multiplying this
equality by the speed of longitudinal sound. Allowance
for an arbitrarily small dispersion of the short-wave
thermal phonons already excludes these processes,
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since the law of energy conservation will not be satis-
fied if all three phonons are longitudinal. However, the
situation can be radically altered if account is taken of
the damping decrement of the shortwave thermal pho-
nons. Indeed, allowance for the damping decrement of
the thermal phonons leads to an uncertainty in the
energy conservation law, and if this uncertainty is
larger than the magnitude of the dispersion, then
processes in which three phonons belonging to one
branch take part, become possible. It is precisely
these processes which make an appreciable contribu-
tion to the absorption of the long-wave sound in solids
by short- wave thermal phonons and lead, as shown by
Simons®®! (see also!™)), in place of (7.22), to the
following damping decrement of the longitudinal long-
wave sound:

= AigT (7.25)

The damping decrement of the transverse long-wave
sound, with allowance for the final width of the level
of the thermal phonons, is described as before by
formula (7.21).

Formulas (7.25) and (7.21), together with (7.19),
lead to an experimental observation of relation (7.15)
in a temperature interval in which phonon-phonon re-
laxation predominates. This confirms the notions con-
cerning the mechanism of relaxation of long-wave pho-
nons by short-wave phonons, on which formulas (7.25)
were based. It must be emphasized that the results of
experlments ™) on the study of the temperature depend-
ence of absorption of longitudinal and transverse sound
in dielectrics also agree well with formulas (7.21) and
(7.25). At T < 20°K, formulas (7.23) and (7.19) lead
to

o (H H 2
a(«») - (T) '
which agrees well with the experimental result’®,

Of great interest for the clarification of the mecha-
nism of phonon-phonon relaxation in semiconductors
with cub1c lattice is also another paper by Puri and
Geballe! ™), The authors observed that in n-InSb.
the tem erature interval 6—40°K, the dragging thermal
emf a?’(H) increases very strongly with increasing
magnetic field exceeding a‘®’ by dozens of times, al-~
though in the classical region of strong fields, i.e.,
when 7> 1, K2 < T, it is practically nonexistent.
Since the constant-energy surfaces of n-InSb are iso-~
tropic, unlike n-Ge, only longitudinal phonons should
make a contribution to the dragging effects. This cir-
cumstance greatly simplifies the comparison of theory
with experiment.

(™! they measured the change of the thermal
emf Adexp = a(H) - agat compared with the classical
saturation value agat, as a function of the magnetic
field and of the temperature. Neglecting a‘p’t, the

dragging thermal emf oP’(H) was determined from
the following relation:

a® (H) = Aa g — Aalihor (7.26)
where
A eo= 0l (H) — 'y =+ (F— 3+ 52) . (7.27)

Here a‘® (H)—electronic part of the thermal emf in

GUSEVA

the quantizing magnetic field, determined by the rela-
tion (7.4); a‘sg’t-—electronic part of the thermal emf in
the classical region of strong magnetic fields, {q—-
chemlcal potential at H = 0. In a subsequent investiga-
tion("! , Puri compared the experimental data for

a'PY( H) with the formula obtained for the drag%mg
thermal emf by extending the Herring theory
(‘“m’’ approach) to the quantum region. In the limit
qfy < (T/BSy )%, this formula leads to the same depend-
ence on T and H as the formula determined by the
conduction current (5.18).

A study of the dependence of ‘P’ on the magnetic
field at low temperatures (T < 15°K), when the pho-
nons are scattered principally from the boundaries of
the sample, has made it possible to determine uniquely
whether electron scattering in n~-InSb by the deforma-
tion potential predominates absolutely over their scat-
tering by piezoelectric oscillations.

At higher temperatures (15 < T < 40°K), using an
analysis of the field and temperature dependences of
the dragging thermal emf a'® for the damping decre-
ment of the longitudinal long-wave phonons, Puri ob-
tained the following relation:

(g, T)~qT®. (7.28)

This expression contradicts the results of a theory,
which takes into account three-phonon processes and
leads, as noted by Herring[“], to a sum equal to five
for the exponents of q and T in the damping decre-
ment. It seems to us that the result (7.28) is the con-
sequence of an insufficiently correct analysis of the
experimental data.

First, Puri ignores those serious difficulties which
arise in the separation of the change of the electronic

part of the thermal emf Aa p) = from the total ex-

perimentally-measured change of the thermal

emf Acexp. He calculates Aaégéor by means of for-

mula (7.27), taking into account, as follows from gen-
eral considerations, the spin splitting of the Landau
levels and the nonquadratic nature of the conduction
band in n-InSb. However, in this region of temperatures
and magnetic field where the dragging effect is prac-
tically missing, and consequently Adeyxp = Aa‘®, this
formula does not describe adequately the experimental
electronic part of the thermal emf. As was observed

in a number of papers, better agreement with experi-
ment takes place only if the spin splitting of the Landau
levels is not taken into account in (7.27). For a quad-
ratic isotropic carrier dispersion law without allow-
ance for the spin, formula (7.27) takes the form

eAa© — _1*1n(

Sy (7.29)

where x, = i2/T. Good agreement between the experi-
mental data and formula (7.29) was observed by Drichko
and Mochan!™!, who measured Aa‘® for not very
strong magnetlc fields and high temperatures (x,
~ 1, T = 100°K), and also by Pur1 and Geballe!?],
This is evidenced by Fig. 5 of!™ ), in which measure-
ments of Aaexp and T = 82°K, when there is no
dragging, are compared with the theoretical curve cal-
culated by formula (7.29).

If the carrier spin and the effective value of the g-
factor are taken into account in formula (7.27) for a
quadratic isotropic law, then the agreement between

) + xy cth zy,
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theory and experiment, as noted in[m, becomes worse.
The corrections for the non-quadratic nature of the
conduction band in n-InSb, with account of the spin
splitting of the energy levels, do not improve the
agreement with experiment (8] Thig disparity between
theory and experiment for Aa‘®’ remains unexplained
to this day. However, in the reduction of the experi-
mental data, the existing discrepancy between theory
and experlment for Aa‘® should be kept in mind.

I ™ there is a table of the experimental values for
Aexp in a wide range of temperatures (6.5—82°K) and
magnetic fields (10100 kG). If Aatheor is calculated
not from a formula that takes into account both the
spin splitting of the levels and the non-quadratic band,
as is done by Puri int™! , but use is made, for example,
of formula (7.29), whlch agrees better with experiment,
then the following dependence on T and on E is ob-
tained for P’ in the temperature interval 25—40°K:

(7.30)
in place of the relation ai(lgl)ri ~ HY3T™** gptained by

Puri. This yields for the damping decrement of the
longitudinal long-wave phonons the formula

=" (g. T)

in lieu of formula (7.28) obtain in!

Another significant circumstance to which Puri paid
no attention in the reduction of the experimental data
and in the derivation of formula (7.28) is allowance for
the scattering of the phonons at the boundaries of the
sample. In the temperature interval 27—43°K, Puri
analyzed the dependence of the dragging thermal emf
a'P’ on the magnetic field and the temperature with
allowance for only phonon-phonon relaxation, neglecting
completely the scattering of the phonons at the bounda-
ries of the sample. However, an earlier paperm] pre-
sents convincing experimental proof to the contribution
made to the phonon relaxation by their scattering from
the boundaries in the indicated temperature interval.

In particular, in(™! they investigated the ratio of the
thermal emf’s of two samples with different cross
section area at a fixed value of the field (80 kG) as a
function of the temperature (the so-called size effect).
In the interval 27—43°K this ratio differs from unity
and equals respectively 1.45—1.15. The maximum
value of this ratio equals 1.55 at T = 6°K. The pre-
sented values of the size effect offer evidence of the
role of the boundary scattering of the phonons in the
investigated temperature interval.

Theoretical estimates of the field and temperature
dependences of the dragging thermal emf a‘® by
means of formula “7.17) for the relaxation of longitudi-
nal long-wave phonons on short-wave phonons (in ac-
cordance with (7.25)) and on the boundaries of the
sample (in accordance with (7.23)) lead respectively to
the following expressions:

D) ~ HI.GT—E).OS

~qT3'55,
73]

(7.31)

a® ~ H1.5T—5.5’

(7.32)
(7.33)

Comparison of these relations with the experimental
data (7.30) indicates that in the interval 27--43°K scat-
tering of phonons by phonons predominates, but scatter-

Py gy,

ing of the phonons at the boundaries cannot be neglected
completely.
Thus, we can hope that a description of Aafpl .

which is in better agreement with experiment, and also
the introduction of corrections for the boundary scat-
tering of the phonons, will confirm the validity of the
relation for the damping decrement of longitudinal
long-wave sound y; ~ qT*?, which agrees with the ex-
per1menta1 data for the dragging thermal emf in
n-Ge'®¥, as well as with experiment!™? on the absorp-
tion of ultrasound in sohds and finally, with the
theoretical concepts!®™],

APPENDIX

a) KINETIC EQUATION FOR ELECTRONS
Let us consider the system of interacting electrons
with Hamiltonian

(A1)

Tig1y
Gy, ava uav T

H= 3 Evalay+
v (W, u's v, v

where Ej —eigenvalue of the energy of the single-parti-

’
cle Hamiltonian, and Gﬁ/# =(y, ulG(r - )1V, u"
—matrix element of the interelectron interaction in
terms of the eigenfunctions of the single-particle
Hamiltonian, a;} and a,, —~second-quantization opera-
tors obeying the Fermi statistics. We introduce, fol-
lowing Bogolyubov and Gurov[“’], the density matrices
of one, two, etc. particles with the aid of the formulas

Sp (éa;ak,) = (a;a,ﬁ = /m«.”
Sp (ﬁa,tai_ravav,) = (a;aﬁ'avav,) =h (un'vv’),

(A.2)

The averaging in (A.2) is over the Gibbs ensemble.
Using the definitions (A.2) and the equation of mo-
tion of the operators

P noA
ih—- F=[H, | =AF—FH, (A.3)
we get
o 0 . It
(z}l—gT+Ex,—EK) fow= D GEM b (') by,
(v, 7l 1)
—h{vup' %) 8y -k (e’ V') 8,00 — R (V'V} (A4)
DB LB B, —E) homyy
(; B By By — v:) (')
= 2 G“‘ “([aja;av Byr Bgafiayay ). (A5)

(MU, v, v7)

To obtain the equations of motion of the single-particle
density matrix, without taking into account the effects
of dynamic screening of the interelectron interactions
in the Born approximation, it is necessary to express
the mean values contained in the right side of (A.5), of
the product of six operators, in terms of the product

of the single-particle matrices. Thus, for example

@fefayahiayay) = fyy fuy Tug+ fovTuglurg + oty @y —

(EJ"I a:},“u Gyl )—fmyfv\,vfm,-+fu"'fv»?'fp.v+fw,afvwfuv'»

Frry)s
(A.8)

Substituting (A.6) in (A.5) we obtain an equation re-
lating h with f, in the following form:

(gt Bk By — By — By ) hGx'yy) = B (1) (A7)
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Here M[f] denotes the right-hand side of (A.5) follow-
ing substitution of (A.6). In the case of slow processes,
h does not depend explicitly on the time t, and depends
implicitly in terms of the single-particle matrix f,,,’.
Therefore ih /8t h = 0. However, it is customary to
introduce in perturbation theory an adiabatic parame-
ter € — 0, that includes the interaction between the
electrons at t — ~ . Consequently, it is necessary to
make in (A.7) the substitution ih 2/6t — ie. We then
get from (A.7)

Mf)
R VE,(~E.,~-EV, e "

(A.8)

g (x%’\71?’):gllmg Ez
Substituting (A.8) in (A.3) we obtain a kinetic equation
for the single-particle density matrix f,,°.

Let us consider the particular case of the kinetic
equation for electrons in a homogeneous quantizing
magnetic field. We are interested in distributions that
are not homogeneous along the x axis, which is per-
pendicular to the magnetic field, which in turn is
parallel to the z axis. Such inhomogeneities, in the
Landau representation [k ) = |n, ps, X0) are described
by the diagonal elements of the density matrix fxx’
= 40/, which depends on py = eHxo/c.

Taking this into account and substituting (A.8) and
(A.4), we get

Oy

6t=2

(v, v v

W vy {fy U —Fu £y D —F) = b 14— Fo) e U= Fy 11

(A.9)
where

9
W (@vw'v") = S| G O [Ey - By — By—Eyal,
16N

dq¥’ dq'V ; . ; -
T:‘.—;‘)TS T%TG([GEV (vl e wy (x| e TNy (v | e T A (v | 2T )

(A.10)
The products of the matrix elements contained in this
equation can be written in the Landau representation
in the form:

] e W ] 619 )

=8 (—pl = pi) — hay) 8 (gy—a;) 8 (— L+ P — 1) 8 (42— q)

weXp {—i g5 qx] Tod

(A.11)

exp{—ivalqy (45— 4=) /2 In n, (=2 ) To 00 90)-

Here

) SRl (e Y mny
Jﬂz"v [EN qy)zl/ n\—fny_'( V2 {Isign (n, —ny) €] qg-—zqr}) ®ow

wexp (,?:i‘—) L%"vfn\-l (aij_) . =gt tel, r=min {n,, n}, (A12)
=Y o (21) 5 (A.13)
m=0

Lrsl(t )—generalized Laguerre polynomial.

The product of the matrix elements in (A.11) de-
creases exponentially if {qy | or [qx| is larger than
1/a. Consequently, only the factor expl ixor (qx — gx)]
can change noticeably in the region where this product
differs greatly from zero, i.e., when [qx | or {qxiis
smaller than 1/a. Consequently, following substitution
of (A.11) in {A.10) and integration with respect to q’,
the difference between q;{ and qx can be neglected in
the slowly-varying parts of the products of the matrix

and G. I. GUSEVA
elements; then the integral with respect to q% reduces
to the form

dq;, exp [— g, (on— Toyr)] =278 (2on— 2y
Taking this formula into account, we can represent
(A.9) in the form
diy
ot 2

Vv, v

2m : ;
TG BTy P v T v 2

X8 [Ey-+E, —~Ey,—E.}b (Tore— T gy

X {fy = fd Fyr (0= ol = 1= F) Fr 1111 (A.14)

Taking into account the equality x¥ = (c/eH )p;,) and

(A.11), we can easily verify that the matrix elements
{(v'1eld T |p”) and (v el |«), which enter in (A.14),
contain the factor

8 (20— 2oy - ¥22qy) B (Zgyn— Tpyr +y22qy) (y =signe).

In the case of weak spatial inhomogeneities, when { as
a function of %, remains practically constant on the
Larmor radius, this factor can be expanded in a series
in azqy. The zeroth-order term in the collision inte-
gral (A.14), using the notation of (A.11) and (A.12) as
well as

242
A
n'\n%

3 ):’I"v"x (2, 0 12 (A.14a)

is given by (3.3).

b) KINETIC EQUATIONS FOR ELECTRON- PHONON
SYSTEMS

To calculate the charge and energy volume flux
densities it is necessary to know the equations of mo-
tion of the single-particle density matrices of the elec-
tron and the phonon. In the Born approximation in the
amplitude of electron-phonon scattering, the kinetic
equations for the single-particle matrices can be ob-
tained by using the already described procedure of
Bogolyubov and Gurov!®, Such calculations were per-
formed in the paper of Bar’yakhtar and Peletminskii!*®},

The Hamiltonian of the electron-phonon system is

H— foy -+ Hop -+ dlep, (A.15)

where
Hyo="Y Evatay, Hop= 3| hagbiby,
v q

Iiep: 2 {4 (v'vg) bq+A* (v'vg) b;} ata,.,

v, Vv, 9

A Vg =Cq (v’ [e"'"[v); A* (v’vq):Cﬁ ] e—iqr {3,

Cq—Fourier component of the electron~phonon interac-
tion energy.
We define the single-particle matrices

faaw =Sp (i, ), N g =5p (0bbg), (A.16)
and the correlative matrices
h (xu'q) =Sp (ﬁa;ax,b;), h* (nn’q) =Sp (ﬁa;au,bq). (A. 17)

With the aid of (A.3) and the definitions (A.16) and
(A.17) we get
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8 ’ .
(h = Bt B ) f= D 1A G (0% (') = 1% (63°9) Byy]
vy, @

FA* (v'vq) [0,k (vr'g)—k (2v'Q) 8y, 01}, (A.18)
(‘h—i%—h — ooy ) Negr = DY (vIva) ke (veg) — A% (v'vg) k(v g)).
ih o hog, mq)qu,,_ ’{. v'vg q q

R (A.19)

In the same manner we can obtain an equation for
h{v'vq) and h*(» vq), which contains the mean values
of the products of four operators

(A.20)

In order to obtain a closed system of equations for the
single-particle matrices Ngq’ and fxx’, it is neces-
sary to express the mean values of the product of four
operators in terms of Nqq' and fxx’. This can be
done, as in the preceding section, only approximately,
neglecting in the relations

Sp (pAa;ay',a*,a 2.

ta, Sp (ﬁa:av,bgbq).

8P PALA,050,) = Fre Fynr + Py Brery— Frn) 8 (0w,

Sp (p”a;av.b;,bq) =foyNgqtg (Waq'q)

(A.21)

the correlative functions g and g’. In this approxima-
tion we get

(m%nLEW»Er o ko) = )A(v’vq’) VB
v, v, 0

Bl ] Bqr Vg + b+ Fryr G — L)1 gt (A.22)
and a similar equation for h*(xk’q). In the case of
slow processes, h and h* depend on the time implicitly,
via fux and Ngq’. Therefore the derivatives of h with
respect to the time in the left-hand sides can be
neglected. Then, introducing the adiabatic parameter
€ —~ 0, we get

D AGT) (Bqq+ Nog)
(SN ]

X Sy LSy b Sqqr Bonr Ty e @ T

. 1
hGo'g)= ELITO E,  —E,—hogrie

(A.23)
. 1 12 ’

o= i E R e T D ATy

X”vn’év'anq’“éw' (qu’”:'éqq’)] e Fayr — T fvv'l 6qq'}‘ (A-24)

Substituting (A.23) and (A.24) in (A.18) and (A.19), we
obtain a system of kinetic equations for the single-
particle eleciron and phonon density matrices.

Let us proceed to consider the particular cases of
interest to us. We find first the kinetic equation for
the electronic density matrix in the presence of a
homogeneous quantizing magnetic field. The dissipative
charge and energy fluxes due to the one-dimensional
spatial inhomogeneities in the plane perpendicular to
the magnetic field are expressed in terms of the equa-
tion of motion of the diagonal matrix elements of the
density matrix fxx’ = {4044’ in the Landau representa-
tion. With the aid of (A.18), (A.23), and (A.24) we get

a

— 25 * ’ .
T D Al (o) 4 (viq) 8 (By— Ey + hag]

997
Kby U—=1) (Vgqr -+ 8qq) — Fu U= R N )]+ [A (vq) A* (evq") 6 (B — By —hoog]

X (o (L= o) Ngqe—Fu (L= F2) (W g =5 g N1 (A.25)
It is seen from this formula that the second curly

bracket is obtained from the first by making the sub-
stitution kK = v and multiplying by -1.
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The products of the matrix elements of the electron-
phonon interaction energy, which are contained in (A.25),
are of the form given in (A.11). Just as in the deriva-
tion of (A.14), we shall neglect the difference between
qx and gy in the slowly-varying part of the product of
the matrix elements; then the integral with respect to
qy takes the form

§ 02 exp 10 (g0 204] 1y =1 (0, g+ 80g)

— I (= I N ggd = fy (U= £ AN g () + 1) — o~ 13) ¥ (e, (A.26)

in which the phonon matrix Nq(xo,() is introduced in a
mixed Wigner representation, or the quantum function
of the phonon distribution with the aid of the relation

Wolend= § dgg oxp 1t (g —0) 2 N g

—on

(A.27)

Making in (A.26) the substitutions kK — v and v — k,
and multiplying everything by ~1, we obtain the result
of the integration with respect to qy in the second
curly bracket of (A.25). The final result is the follow-
ing kinetic equation:

of, _ 2n N alg?
= Sk -tory, ()

X[ — Pl — hay - P18 — P —Bge + p{V) 8 (B — Ey+ hio )
X{fo (1= F) (Vg G+ D)~ Fe (1= 1) N (20} = 7 [ (1, s, z0)]. (AL 28)

In this equation we introduce, to abbreviate the notation,
the operator #,,, which makes the substitutions

v— K and k — p. Similarly we obtain from (A.19),
with the aid of (A.23), (A.24), and (A.27), a kinetic equa-
tion for the quantum distribution function of the phonons
in the form:

3 fw  d 2
(3?+—aqx '5;) No@=2 2 5-1C
vV, ®

arf’q?L

%Fp o (55) B Eut hogl 8 (b9 hay +p{]

n’V.nV (
X8 [—pO—h PV {fy (1—F,) (N glzo) 1)

— Fll = 1} N (200} § (g0~ 2)=T pe [Na]. (A.29)
Allowance for the non-electronic relaxation of the
phonons, i.e., the relaxation of phonons on phonons, on
the boundaries of the sample, etc., can be effected by
adding to the right side of (A.29) the term

(A.30)

where N& is the local-equilibrium distribution function
of the phonons, and wpp(q) is the effective phonon re-
laxation frequency. In this form, the kinetic equations
(A.28) and (A.29) have been used in'**»2:4"), T¢ study
the effect of dragging of phonons by electrons, it is
necessary to consider two-dimensional spatial inhomo-
geneities of the distribution in a plane perpendicular to
the magnetic field. Such inhomogeneities are described
by the non-diagonal matrix elements of the density
matrix only with respect to the quantum number py,
ie., fnp, ,Py;n ,Dz,py" Calculation of the charge and

[N (2)— N (2)] opp (@),

energy fluxes in such systems is best carried out with
the aid of the Wigner representation of the density
matrix, namely
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Ponpe e =2, e 10— ]
?p
Vol y)=§1v“.oq o exp [i (gz—qy) =-+i (gp—qy) ¥l (A.31)

For convenience in writing down the kinetic equation,
it is expedient to introduce in lieu of the function

f(ny Pz Py V) = ()
a new function
Tum hetwd = § 5 @) 8 = av.
From (A.18) and (A.19) we get with the aid of (A.23)
and (A.24), for weak spatial inhomogeneities' '},
kinetic equations for f; and Ng(x, y) similar to (A.28)
and (A.29):

67,5 _2n

. o’
L= 2 N e r =P {F, . (5E) 8 B Euthog
v, 9

X (v — ¥+ y0202) B (— P —hay+p{N 8 (—p{¥ — R+ ™)

X o =T (Vg (zvr 1) +0)—=T A —To) No(oour vl } = Lep [, (A.32)

8, g0 9 , 80 8 _ o @it
(-ﬁ-ﬂ—-@—qzﬁ-i-mﬂ) Ny y)‘T%quPFﬂan ( 3 )
X (B — Byt kwq)d (g — g+ va?gs)  (— po— Bgy 1 p{")
% {(— p — Bz + o [y (1 —TF) (Ng (3onr 30 + 0 —TFu (1—T2) N (z0r 9]
X 8 (zou—2) & (y—1:) + (NG (z, ¥) —Na (2, 1)) Opp (9) = Tpe [N g +Tpa [V ]
Frp (=11, 2.0 2. (A.33)

The kinetic equations (A.28), (A.29), and (A.32), (A.33)
could be written out immediately by taking into account
the arrival of the electrons in the cell with quantum
number ¥ and their departure from this cell. Since the
electron distribution is spatially inhomogeneous, the
phonon distribution function should also depend on the
spatial coordinates (local equilibrium!) and, in accord-
ance with the Bose statistics of the phonons in the
processes of their emission, the factor (Ng +1)
should be taken at the point corresponding to the final
state of the electron, whereas in absorption processes
the factor Ny should be referred to the point charac-
terizing the initial state of the electron. Such an inter-
pretation of the equations (A.32) and (A.33) is possible
in the case of weak spatial inhomogeneities, when

f(n, pz, py, y) changes little over the Larmor radius.
It is precisely in this case that it is possible to specify
simultaneously the quantum numbers n, pz and the
coordinates y and py = eHxo/c, without contradicting
the uncertainty principle. Then f(n, pz, X0, y) can be
identified with the probability that the electron in the
state n, py is at the point %o, y (more accurately, in
the center of the Larmor orbit of the electron). Of
course, Ng(x,y) can also be identified with the usual
probability, when the characteristic scale of the spatial
inhomogeneities is large compared with the wavelength
of the phonons that play an important role in the prob-
lem.
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