$(\Delta S = -\Delta Q)$ contains only the J_{λ}^{V} contribution and the phase δ_1 . The interpretation of the experimental data depends strongly on the $\pi\pi$ -scattering phase shifts and on the J_{λ}^{V} contribution. For an analysis of the K_{e4} am-plitudes see^[6].

¹M. Esten et al., Phys. Soc. Conf., London, 1967. (Berkeley, cited in^[6]).

²B. Birge et al. (Berkeley, bubble chamber. Cited in^[6]. See also Phys. Rev. B139, 1600 (1965); 69 $K_{e_4}^{+}$ decays were observed in part of the accumulated statistics; a total of 3×10^6 K⁺ decays were observed.

³V. Bisi et al., Phys. Lett. **B25**, 572, 1967 (CERN, bubble chamber; altogether, 61400 decays of K⁺ into three particles were observed.

⁴D. Cline et al., Phys. Lett. 15, 293 (1965) (1 K_{114}^{\dagger} event).

⁵D. Greiner et al., Phys. Rev. Lett. 13, 284 (1964)

(1 $K_{\mu4}^{+}$ event). ⁶ F. Behrends et al., Preprint, 1967. See also Heidelberg, Conf. on Elem. Part. Physics, September, 1967, Abstract of contributions.

III

CONSERVATION OF LEPTONS AND BARYONS AND THE NEUTRINO MASS

B. PONTECORVO

Joint Institute for Nuclear Research

Idea of experiment	Experimental procedure	Results (confidence level of limits about 70% unless otherwise stipulated	Remarks	
1. Lepton conservation				
$v_e \neq v_e$; searches for neutrinoless double Beta decay	Magnetic spark cham- bers	$T_{eevv}^{Ca48} > 3.10^{19}$ yrs 4	Theoretical half-lives (years) for double β- decay processes ¹⁻³	
	Semiconductor Ge counter as source and detector	$T_{ee}^{Ca^{48}} > 1.6 \cdot 10^{21} \text{ yrs } 4$ $T_{ee}^{Ca^{76}} > 3 \cdot 10^{20} \text{ yrs } 5$	$\begin{split} \mathcal{T}_{eev}^{\text{Ca48}} &= 10^{21\pm2.5} \\ \mathcal{T}_{ee}^{\text{Ca48}} &= 5\cdot10^{15\pm2} \\ \mathcal{T}_{eev}^{\text{Ca48}} &= 10^{23\pm2.5} \\ \mathcal{T}_{eev}^{\text{Ge78}} &= 8\cdot10^{16\pm2} \end{split}$	
	Mass spectrometric analysis of Xe and Kr in the minerals Te and Se of known	$T^{{ m Te}^{128}} \ge 3 \cdot 10^{22}$ yrs ⁶	$T_{eevv}^{\text{Te}128} = 10^{27\pm2.5}$ $T_{ee}^{\text{Te}128} = 2 \cdot 10^{19\pm2}$ $T_{ee}^{\text{Te}130} = 10^{22\pm2.5}$	
	age. TAdetermined from the relation	$T^{\mathrm{Te}^{130}} =$	$T_{ee}^{\mathrm{Tel30}} = 2 \cdot 10^{16 \pm 2}$	
	$\frac{1}{T^{A}} = \frac{1}{T^{A}_{\rho\rho\gamma\gamma}}$	$= (8 \pm 0.6) \cdot 10^{20} \text{ yrs}^{5}$ $T^{\text{Te}^{130}} =$ $= (3 \pm 0.4) \cdot 10^{20} \text{ yrs}^{7}$	$T_{eevv}^{Se^{82}} = 10^{22 \pm 2.5}$	
	$+\frac{1}{T^{\mathbf{A}}_{ee}}$	$T^{\text{Tel30}} =$ = 6.10 ^{20±0,3} yrs ³	$T_{ee}^{\rm Se^{82}} = 1 \cdot 10^{16 \pm 2}$	
		$T^{\text{Se}^{92}} =$ = 6.10 ^{19±0.3} yrs ³	"Neutrinoless" half-lives calculated in the case of maximum violation of the lepton conserv- ation law for unpolar- ized neutrinos	
$v_{\mu} \neq \overline{v}_{\mu};$ investigation of sign of charged muons produced in collision with nuc- lei of high energy $v_{\mu}:$	Spark chambers ⁸	$\sigma_{\mu^+} < 0.02 \sigma_{\mu^-}$ (~ 1000 neutrino events)	Accuracy limited by the fact that the v_{μ} beam contains a v_{μ} admixture	
+				

TABLES OF EXPERIMENTAL DATA

1-10

procodule	70% unless otherwise stipulated	Remarks		
Spark chambers ⁸	$ \begin{aligned} \sigma_e &= (0.011 \pm 0.010) \sigma_{\mu} \\ (\sim 5000 \text{neutrino} \\ \text{events}), \\ \sigma_e &< 0.01 \sigma_{\mu} \\ (450 \text{events}) \end{aligned} $	Accuracy limited by the fact that the v_{μ} beam contains a v_e admixture		
Bubble chamber ⁹				
Spark chamber ¹⁰	$R = \frac{W(\mu^+ \rightarrow e^+ + \gamma)}{W(\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu})} - \frac{W(\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu})}{< 2 \cdot 10^{-8}}$ (confidence level 90%)	"Theoretical value" $R \sim \frac{\alpha}{2\pi} \epsilon^2$, where ϵ is the relative ampli- tude of the inter- action that does not conserve the μ charge		
2. Baryon conservation				
Registration of parti- cles in a system of liquid scintillation detectors located 3200m underground (162m ² sr) ¹¹	Half-life of nucleon $T > 2 \times 10^{28}$ years for "unfavorable" decay $p \rightarrow K^* + \nu$ and $T >$ $8 > 10^{29}$ years for the most "favorable" de- cay $p \rightarrow \mu^t + \gamma$	This result pertains to conservation of bar- yon charge only, since the virtual transitions $n \rightarrow \overline{n}$, forbidden only by the baryon conserv- ation law, may cause decays of nuclei with pion emission ¹²		
3. Neutrino mass				
Electrostatic integ- ral spectrometer ¹³	$m_{v_e} < 250 \text{ eV}$			
Magnetic spectro- meter ¹⁴	$m_{ u\mu}$ $<$ 1.2 MeV	More accurate determin- ation of the pion mass will greatly decrease the upper limit of the ν_{μ} mass; cosmological but likely hypothesis leads to a ν_{μ} mass limit $m_{\nu_{\mu}} < 1000$ eV.		
	Spark chambers ⁸ Bubble chamber ⁹ Spark chamber ¹⁰ 2. Baryon Registration of parti- cles in a system of liquid scirillation detectors located 3200m underground (162m ² sr) ¹¹ 3. Ne Electrostatic integ- ral spectrometer ¹³ Magnetic spectro- meter ¹⁴	Spark chambers 3 $\sigma_e = (0.011 \pm 0.010) \sigma_{\mu}$ (~ 5000 neutrino events), $\sigma_e < 0.01\sigma_{\mu}$ (450 eventsBubble chamber 9 $R =$ $= \frac{W (\mu^+ \rightarrow e^+ + \gamma)}{W(\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_{\mu})}$ $< 2 \cdot 10^{-8}$ (confidence level 90%)2. Baryon conservationRegistration of particles in a system of liquid scitllation $(162m^2 sr)^{11}$ Bubble chamber 103. Neutrino massElectrostatic integ- ral spectrometer 13Bubble chamber 10 $m_{\nu_e} < 250 \text{ eV}$ $m_{\nu_\mu} < 1.2 \text{ MeV}$		

¹S. P. Rosen and H. Primakoff, Alpha-, Beta-, Gamma-ray spectroscopy, vol. 2, Amsterdam: North-Holland Publ. Co., 1965, p. 1499.

²V. Lazarenko, Usp. fiz. nauk 90, 601 (1966) [Sov. Phys.-Usp. 9, 860 (1967)].

³T. Kirsten, W. Gentner and O. A. Schaeffer, Zes. Phys. 202, 273 (1967).

⁴R. Baldin, P. Gollon, I. Ullman and C. Wu, Phys. Lett. B26, 112 (1967).

⁵E. Fiorini, A. Pullia, G. Bertolini, F. Cappellani and G. Restelli, Preprint, 1967.

⁶N. Takaoka and K. Ogata, Zs. Naturforsch. 21, 84 (1966).

⁷E. Gerling, Yu. Shukolyukov and G. Ashkinadze, Yad. Fiz. 6, 311 (1967) [Sov. J. Nuc. Phys. 6, 226 (1968)].

⁸J. Bienlein et al., Phys. Lett. 13, 80 (1964).

⁹G. Bernardini, Report at the Int. Conf. on High

Energy Phys., Dubna, 1964, vol. 2, p. 48.

¹⁰S. Parker, A. Anderson and C. Rey, Phys. Rev. B133, 768 (1964).

¹¹H. Gurr, W. Kropp, F. Reines and B. Meyer, Phys. Rev. 158, 1321 (1967).

¹²L. Okun', Seminar po CP-neinvariantnosti (Seminar on CP Violation), Moscow, 1967. ¹³ D. Hamilton, P. Alford and L. Gross, Phys. Rev. 92,

1521, 1953.

¹⁴ P. Booth, R. Johnson, E. Williams and J. Wormald, Phys. Lett. B26, 39 (1967).

¹⁵S. Gershtein and Ya. Zel'dovich, ZhETF Pis. Red. 4, 174 (1966) [JETP Lett. 4, 120 (1966)].