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THE discrete symmetries play an important role in
elementary particle physics, since one can generally
connect them with additional conservation laws. These
are first of all the symmetry with respect to reflections
of space P, charge conjugation C and time reversal T.
A little more than ten years ago there were hardly any
doubtis that the invariance of the theory under these
transformations reflect strict laws of nature. Then we
became witnesses to an experimental overthrow of this
viewpoint: it turned out that parity P, charge-conjuga-
tion parity C and combined parity CP are not conserved
in a series of processes. It is true that until now we do
not know the profounder reasons for such an asymmetry
of the interactions of elementary particles. Neverthe-
less such a turn of events has induced in some physi-
cists an impatient desire to ‘“finish off’’ with another
symmetry of the discrete type, which has much strong-
er foundations. We have in mind CPT -invariance. In
this connection we should like from the very beginning
to point out the distinguished role of CPT-invariance.
First of all this role consists in the fact that a strong
reflection (or CPT-transformation) is not an ordinary
unitary transformation. Indeed, the action of the CPT
(also called ® or R) operator on an in-state maps it
into an out-state, so that one can speak about eigenval-
ues of the CPT-operator (or CPT -parity) only in a con-
ventional way.* Such nonunitary operators were intro-
duced by Wigner and later by Schwinger.t !

Another essential distinction is the relation of CPT-
invariance to the locality properties of fields and the
character of commutation relations among fields.t
Consequently, a violation of CPT will affect to a larger
or lesser extent problems of locality of the theory and
the relation between spin and statistics. Therefore,
before one subjects the CPT-symmetry to any doubts
it is desirable once more to remember the basic as-
sumptions lying at its foundation. This is also neces~
sary because one often hears directly contradicting
statements about CPT -invariance. On the one hand
(e.g., Matthews'®!) it is stated that ‘“in a Lorentz-
invariant theory the invariance under strong reflections
(CPT) does not lead to any additional restrictions or se-
lection rules, if one assumes normal connection between
spin and statistics.’” On the other hand, the opinion is
widespread that a violation of CPT -invariance signifies
violation of local commutativity or microcausality.

The development of the axiomatic method has al-

* Thus, if lojy, r > is the in-state of the particle « with spin r,
Blayy, r > = <ogyt, i.e., transforms into the out-state of the antiparticle
with spin —r.

T More correctly, CPT-invariance reflects the propert y of weak
Jocal commutativity (cf. infra).

lowed one to prove the CPT theorem from a very gen-
eral position and to show!*®! that CPT-invariance is
equivalent to weak local commutativity (WLC)* and
therefore a theory may be CPT-invariant but not micro-
causal (cf. Example 1 at the end of this article). Thus
the CPT-invariance observed in nature is not a strong
support to the hypothesis of local commutativity.

1t is interesting to compare this result of the axio-
matic approach with the usual proof of CPT~invariance
(the Pauli-Liiders theorem!®'} which is based on the
existence of a local Lagrangian or Hamiltonian.

The purposes of the present report are:

First, to expose (without rigorous reasoning) the
CPT theorem in the axiomatic approach.

Second, to compare this proof with the usual treat-
ment of the CPT theorem in the Lagrangian method.

Third, to show how the CPT theorem leads to the
relation between spin and statistics

Fourth, to list a series of examples and to discuss
briefly the possibility of extending CPT and other sym-
metries to unstable particles.

This report is not intended as a review of work on
the CPT theorem.

Among the numerous aspects of the CPT problem we
are naturally able to throw light only on the most im-
portant ones, from our point of view. (Therefore this
talk can be considered to a certain degree as a popular
exposition of some facts which are well known in a nar-
row circle of specialists—-axiomatists.)

I. THE CPT THEOREM IN THE AXIOMATIC
APPROACH

For simplicity we first consider a neutral scalar
field, and then we formulate the theorem in its general
form.

We assume the following axioms of field theory to be
valid.

The relativistic quantum postulate: Every state is
described by a unit vector of the Hilbert space %, The
relativistic transformation law is given by the contin-
uous unitary representation of the inhomogeneous Lo-
rentz group (Poincaré group):t {a, A} — U(a, A). The
unitary representation Ufa, 1) can be written in the
form

=exp (iP*ay),

where P is a Hermitean operator interpreted as the
energy-momentum of the theory. PH P, = m? is the

* The most recent investigations, in particular, the abandonment of
so-called localizable theories destroy this connection: a theory may be
CPT-invariant and nonlocalizable. In such a theory MLC loses its mean-
ing, in general,

t x> x'= Ax +a, A is a Lorentiz transformation, a is a four-vector.
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mass operator. The eigenvalues of PLL are in the for-

ward light-cone. There exists a unique invariant state
10) or &,:
Ua, A)]0)=]0).

The postulate of existence of local operators ¢(x)
defined on &% *!—i.e., of renormalized Heisenberg oper-
ators.

The postulate of Poincaré invariance: under a trans-
formation {a, A} of the Poincaré group ¢(x) transforms
according to the law

Ula, A)g () U™ (2, A)= ¢ (Ax+a).

We do not assume the postulate of local commutativity.

If the theory under consideration exhibits symmetry
(invariance) under discrete transformations these can
be represented by means of unitary operators. Thus, if
there is invariance under space reflection and charge
conjugation, then there exist the unitary operators U(P)
and U(C) such that

U)o @)Ut (P)=¢Pr)=¢(—x,z0), U)o @)U (C)=9*@)=9¢

(for a neutral scalar field). These operators are defined
up to an arbitrary phase (U(P)[0) = el®|0)). In the
presence of CPT invariance there exists a ““unitary”’
operator U(CPT) = ® such thatf

O¢ @) 0 =g (—2),
OV =Y+ Yol

oy

In axiomatic field theory all properties are formulated
in terms of vacuum expectation values of simple prod-
ucts (Wightman functions) or of T- and R-products
(Lehma.nn—Syma.nzik—Zimmermamn,[73l Bogolyubov,
Medvedev, Polivanovt®?).

If the theory is CPT invariant then in the language of
Wightman functions W(xz, ..., X) this means that

Wiz, ..., 20) 'E(OIQP(J%) "-q7(fil)lo>:(0|‘l?(“‘1n) '-'(P(_xi)IO)3

an immediate consequence of (1). )

The requirements of P-, C-, Cr- etc. invariance can
be written in similar form.

The CPT theorem states: Let ¢(x) be a Hermitian
scalar field satisfying the listed axioms. If the condi-
tion (2) is satisfied for all xj then at Jost points the
condition of weak local commutativity is satisfied, i.e.,
v _ \ ®3)
Ole @) ... ¢ @) |O=0] (=) ... ¢ (z) ]| 0.
Conversely, if the WLC condition (3) is satisfied in a
(real) neighborhood of a Jost point, the CPT -invariance
condition (2) is satisfied everywhere. In other words,
CPT-invariance is a necessary and sufficient condition
for WLC.

Since local commutativity implies WLC, any field

*Strictly speaking, one should talk about smeared-out operators
or = fp(x)f(x)dy where the thest function f is smooth, since the action
of p(x) on ¥ in ¥ leads to a nonnormalizable vector.

TWe explain the properties of the operator ©: if ¥ = [f(x, )—
{(x pxo(x 1 )—p(x n, WA IO then O = WX <O| ff(-x; )—f(-x, Jp(x, )—
pxy )(d,) consenquently O(a ¥ +£¢) = a\I/+ﬁ ‘{{IX. The definition of ©
as an antiunitary operator acting in the same Hilbert space can be found
in the book [’} Sec. 3.5.
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theory of a local Hermitian field exhibits CPT-symme-
try.
Definition. The set of vectors

Ei=a— Ty o En1 =Tt — 0

is called a Jost point if for arbitrary x; =0

n—1 n—1{

(2]1 ME)P <0, ;‘1 A 0. {4)
It is obvious that the Jost points do not exhaust the
whole region where gf < 0, i.e., where the vectors are
spacelike, but at any Jost point all £ < 0. We do not
reproduce here the proof of the theorem (cf. **:*1). We
only note that the proof is essentially based on the ana-
lytic properties of W(x,, ..., X,) which are conse-
quences of the positivity of the spectrum of P° and
Poincaré invariance. (The scheme of the proof: if (2)
is valid, it is also valid at Jost points, but the latter are
points of holomorphy of W, so that the signs of all can
be changed, leading to the WLC condition (3).)

For the case of fields with arbitrary spins the exist-
ence of the operator ® or CPT-invariance is expressed
in the form of the identities (for all Wightman func-
tions)

Of s (@) - @n @) |0) = (—1)7i" O] @ (—22) ... 01 (—2)| 0}, (5)

where F is the number of fields of half-integral spin,
and J is the total number of undotted spinor indices. In
a more familiar notation, for particles of spin '/, the
action of ©® is defined as:

Oy (x) @-I)T = iy5¥a (—2)- (6)
Then in the language of Wightman functions the CPT -
invariance condition will be 0
O] Wy (@1) - - - Yy (7) | O}
= (Vsdagay - o (V) (0] Wz (—Tn) - o+ Yoy (—7)] 0
etc.

We now discuss the action of ® on the operators
@in, out 2nd what properties of the observables are con-
sequences of CPT.

If one assumes a linear relation between @(x) and
@in, out (the Yang—Feldman equation*), then

&rmzw(x)»%g A¥a—a, m)j (') die, (8)
Fout = () + i AY 2, m)j (@) di,
(@) = (0 —m?) ¢ (2). (8"
Applying the operator © we have
©¢m (0 6 = (—a)-- X A —z—a' m)j@)dia’.  (9)
Comparing (8’) and (9) we find
(OF1a (2) O = qoue (— ). (10)

On the other hand, since the fields ¢;,(x) are weakly
local with respect to each other, there exists a ““uni-
tary’’ operator V, such that

*In the general case the asymptotic fields are introduced on the basis
of the Haag-Ruelle scattering theory [*] . However, until now there is no
rigorous proof of (10) without use of the locality axiom, for the case of
a nonlinear relation between y in and p(x).
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Vo (@ VY =g (—2); (11)
and similar for @gu(x).
1t follows from (10) and (11) that
Pout (2) = (B (Voun (z) V)T 7, (12)

The product of the two ‘“unitary’’ operators o VT is
the (genuinely) unitary operator

§=v10T=(yTe, (13)
which coincides with the scattering matrix S, since
(Pout:S*cPinS, S*S=1. (14)

The relation (13) is extremely useful for the sequel. It
is easy to check that (13) implies

@soyT_gs. (15)

The relation (15) allows one to derive the symmetry
properties of the S~-matrix implied by the CPT-invari-
ance of the theory. For an arbitrary matrix element we
have

P -0V,

(@, SY)= (¥, SP), O =0*O,

Considering that
(16)

0|, in) = (a, out,
it follows

(@, in| S|P, iny= (B, out|S|e, outy = (B, in|S|a, in), (17)
since S|out) = |in). Here |@) denotes the correspond-
ing antiparticle state with reversed spins,

It is interesting to consider the relations (17) in
terms of energy variables. For neutral scalar parti-
cles the S-matrix can be expanded into normal-ordered
products of in- or out-operators:

1

S == TSS"(z“ ey Tn) P in (21) - . Qin () ¢ (dT)

(18)
=D a2 fouc @) - - Gout (@) (d3).

We assume normal statistics for the in- and out-fields.
This does not constitute an additional assumption and
follows from the definitions (8), (8’) and the relations
(10).

From (10), (15), (18) we obtain in the momentum
representation on the mass shell

Sy (P - PrY=Sa(— D1y o ooy —DPn)s
pi==m? po=+(p2+mAE, pi=m¥ pio= —(p}+m?)
0ig<y, v j<n.

(19)

1/2
’

It is characteristic that even for a neutral scalar
field this relation is not a simple consequence of Lo~
rentz invariance (as might seem at a first glance). It
also requires certain analytic properties of the S, (ct.
Example 2 at the end of this article).

A series of examples of interactions of the nonlocal
type without WLC confirm the nontrivial character of
(19), which reflects the CPT-invariance of the scalar
theory (cf. Examples 1 and 2).

Similar reasoning applied to a spinor field of spin Y,
with the assumption that

O¥ 1 () O = iysou (—2), )

- s (20)
(OF i (2) OY" = i o (— 2 151 J
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lead, for instance, in the case of the matrix element
(with state vectors on both sides omitted) of the inter-
action of scalar fields with a fermion to a relation of
the form

Sn Py Pos by - - kn) = 5Sn (— Pty —Pas —Fkiy o, —hn)vei (21)

where p; and p, are the four-momenta of the incident
and outgoing fermions, and ki are the boson four-
momenta (i = 1, ..., n).

This relation is clearly satisfied in a theory with lo-
cal commutativity and normal commutation relations
for the in-fields. If WLC or other postulates are vio-
lated it does not in general hold.

We stress the fact that in the derivation of (19) and
(21) we have nowhere made use of the postulate of local
commutativity or any concrete form of the S-matrix in
the Lagrangian method. This was a purely axiomatic
reasoning.

O. THE USUAL PROOF OF THE CPT THEOREM

We briefly recall the usual reasoning used in proving
the CPT theorem in the Lagrangian (or Hamiltonian) ap-
proach, and make some critical remarks in this connec-
tion.

For example in Pauli’s article!®’ the fundamental
assumptions are formulated as follows:

a) there exists a relation between spin and statistics
which follows from CPT -invariance;

b) the Lagrangian is invariant under proper Lorentz
transformations;

c) the equations have a local character, i.e., all
quantities are spinors or tensors of finite rank and in-
volve only derivatives of finite order;

d) kinematically independent spinor fields anticom-
mute; then, assuming a definite form of the transforma-
tion law of spinors under CPT and antisymmetrizing all
products with respect to all permutations of spinors and
symmetrizing with respect to boson fields one can show
that £ remains invariant under a strong reflection.

The principal assumption which restricts the usual-
ness of this proof is the assumption that a local La-
grangian exists in the Heisenberg picture.

It follows from the preceding section that the local-
ity of the interaction is not necessary for the validity of
the CPT theorem.

In addition, it is impossible to define in a mathemat-
ically rigorous manner the concept of an Z(x) in the
Heisenberg picture.

Insofar as the Schrddinger equation in the interac-
tion picture is concerned, Haag’s theorem shows us
that in relativistic quantum field theory such a picture
exists only in the case when there is no interaction be-
tween the particles!

A more acceptable proof of the CPT theorem can be
obtained starting from a representation of the renor-
malized S-matrix in the form of a T -ordered exponen-
tial:

S=Texp (i Szi:‘t(x) d4.z') - Texp(i S 2 @) daz) ,

.lgt is the renormalized interaction Lagrangian.
Then, assuming as usual the action of the operator
on the fields according to Eqs. (10), (20) and normal

where £ i
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commutation relations for the in-fields, it is easy to
show that
ut

@sonT =5, since (O n(z) 0 =g (—a), (15)
and consequently relations of the type (17) hold for the
matrix elements of the S-matrix. But, in distinction
from the axiomatic proof, here again it was necessary

to assume local commutativity of ;C;Et(x). From what

was said before it is clear that the condition (15) re-
mains valid even under weaker assumptions about

;gt(x). Because of lack of time we do not dwell on

this subject in more detail.

Now, regarding the quotation (from Matthews) in the
introduction. It is clear that Lorentz invariance and
normal spin-statistics for the jg_(ﬁ) fields do not suf-
fice for a proof of the CPT theorem. In Matthews’ lec-
tures'®! the matrix elements are represented 4 la Leh-
mann—Symanzik-Zimmermann.' " Requiring Lorentz
invariance of this representation on the mass shell only,
it will be valid also in a nonlocal theory, where, in gen-
eral, CPT is violated. If one assumes that this expres-
sion is valid and Lorentz invariant also off the mass
shell, we are led to the local commutativity of the Hei-
senberg operators and thus automatically to CPT-invar-
iance.

I, THE CONNECTION OF SPIN AND STATISTICS

The experimental facts indicate that integral spin
particles are subject to Bose—Einstein and those of
half-odd-integral spin are subject to Fermi-Dirac sta-
tistics. So far no systems obeying parastatistics have
been observed.

The spin-statistics theorem asserts that in quantum
field theory a nontrivial field of integral spin cannot an-
ticommute at spacelike separated points, and that a non-
trivial field of half-integral spin cannot commute, at
such points.

In passing on to commutation relations between dif-
ferent fields the picture becomes more complicated, It
turns out that ‘“anomalous’’ commutation relations can
be realized, where two integral spin fields, or one inte-
gral and one half-integral spin field, anticommute, and
two half-integral spin fields commute. At the same
time the theory exhibits symmetries of a special type.
Owing to these symmetries one can always select in
such theories the fields in such a manner that they obey
normal commutation relations and are related to the
original fields by means of so-called Klein transforma-
tions. In this sense a theory with anomalous commuta-
tion relations is equivalent to one with normal commu-
tation relations.

We shall not prove all these assertions since the
proof can be found in the book by Streater and Wight-
man.'®! We illustrate the facts on the case of a scalar
field ¢(x) (and its Hermitian adjoint ¢*(x), to be con-
sidered a different field!). Assume that

[¢ @), ¢* (@) =0, if (22)

Then @(x)¥o = 0, ¢*(x)¥, = 0. In a field theory where
¢ and ¢* commute or anticommute with all other
fields this implies ¢ = ¢* = 0, The ‘“simplest’’ proof
follows from the Killén—Lehmann representation

(x—yy<0.

509

©110 @), ¢* @1-0)= —i § dwp () Aa—y, w9 =0,
0

(@x—y)*<<0.
(23)
Comparing (22) and (23) it follows (using analyticity)

O]e @) e*y)|0,=0,
or
@ (2)W,=0

{this means that || ()%l = [l o*(£)¥, | = 0 where ¢(f)
= f go(x)f(x)d4x, f(x) being a smooth function from the
test function space, and the norm),

The second part of the theorem (¢ = ¢* = 0) is
proved on the basis of analyticity of Wightman func-
tions.

IV. SOME APPLICATIONS OF CPT INVARIANCE

1. We first consider stable particles. We show that
CPT invariance implies the equality of particle and
antiparticle masses. Let \Il}r“ denote a state of a parti-
cle of mass m, i.e.,

(PPD,) W' = 2™, (24)

Considering that
(ep*e1’ =P (25)
we obtain from (24) and (25)
OPHP OOV = WO (©PRP, 6T = ot
where ¥OUt js an antiparticle state of opposite spin, or
(PP ¥ = m2Wn,

as required,
2. Unstable particles. The one-particle state is,
generally speaking, unstable, i.e.,

S|a, in) == | a, in).

If one assumes that, as before (taking into account the
decay interaction), the theory is CPT invariant, one can
establish the equality of lifetimes of particle and anti-
particle. The decay probability of the particle is de-
fined by _

%]64(pB_Pa)|<ﬁ’ inlSlav in) |2, (26)
where S is the S~-matrix from which a four-dimensional
delta function has been removed and |a in) is the in-
state of the unstable particle. CPT-invariance implies
(cf. (1))

(B, in}| 5] @, in) = (a, in‘m B_, in). (27)
The decay probability of the antiparticle is proportional
to

284 (pe—pa) [ (B, in ]S |a im ]~ (28)
Using the relation (27) and Lorentz invariance, one can
reduce the expression (28) to (26).

Other examples of applications of CPT-invariance to
K-meson decays can be found in the reviews [°*'1,

3. Let us briefly discuss the extension of the con-
cepts of P, C, and other symmetries to unstable parti-
cles. The most consistent approach to introducing un-
stable particles into the theory is the determination of
the corresponding singularities on unphysical sheets of
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the matrix elements of stable particle interactions.
Thus, consider the process”
' p—>nt4at 4.

Assume that the matrix element of this process, as a
function of the invariant mass g of the two final pions
has a pole in the unphysical sheet at the point

E=M—ir  (A>0).
We denote the residue at this pole by
T (s, t; M?—id).

Then if A/M®< 1, one can use the value of T(s,t, M%) as
a definition of the transition matrix element for 7* + p
with the formation of an unstable particle (a p meson,
say; we do not consider other quantum numbers here).

It is obvious that if the original theory has a certain
symmetry (e.g., CPT) then the quantum numbers corre-
sponding to this symmetry can be attributed to the un-
stable particle. Up to terms of the order A/M? one can
introduce creation—annihilation operators for the unsta-
ble particles, etc. If the particles have a large width
there appear complicated unsolved problems.

In a completely analogous manner one can define the
matrix elements for the formation of two or more un-
stable particles.

4, We give two examples of theories satisfying the
spectral condition and Lorentz and translation invari-
ance, but where local commutativity does not hold. In
the first example the theory is CPT invariant, and in
the second example this invariance is vinlated. For
simplicity we consider neutral, zero spin particles.

Example 1. We write an S-matrix of the form

S=exp(id), A=A*

and select A of the form

A:gS 1 pf (x) @ diz.

The matrix element for the scattering of two particles
(p, a— p’, q’) in the g®-approximation will have the
form 6*(p + q—p’ —q’) X {8[(p + )* —m®] + 6[(p — q')*
—m? +8[(p - p’)’—m?}. It satisfies the symmetry re-
quirement (19) which follows from CPT-invariance, but
violates the analyticity properties which are implied by
local commutativity.

Example 2.
A=g S (D (@) DX (2) 957 (2): + h. €. ) d%e.

The field &;, describes a particle of mass m, and
@in describes a particle of mass . In the g?-approx-
imation the matrix element is

, a0, ¢) ~8*(p+qg—p —¢)O(pe+ 9 6 ((p + @* — p?).

It does not exhibit CPT-invariance, but satisfies all the
postulates, except local commutativity.

'E. P, Wigner, Gtting. Nachr, (Math.-Naturwiss.
Klasse) 31, 546 (1932).

*The neutron is considered stable.
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DISCUSSION
V. B. Berestetskii:

Aren’t the requirements imposed on the S-matrix by
the CPT theorem in its rigorous form tautological ? In
fact they contain the definition of antiparticles.

V. Ya. Fainberg:

No, since the particle—antiparticle concepts are in-
troduced in the language of in- (or out-) operators, i.e.,
for noninteracting particles. In any theory where, for
instance, weak local commutativity is violated (hence
also locality), one can introduce particles and antipar -
ticles, but the interaction (S-matrix) will not be CPT
invariant.

D. A. Kirzhnits:

Can one make any statement on whether, in principle
the condition of weak local commutativity reduces to
the first three postulates, or whether this condition
represents an independent requirement ?

3

V. Ya. Fainberg:

Dyson has shown that if fields possess the property
of weak local commutativity (WLC) the Wightman func-
tions will be analytic and single-valued in a real neigh-
borhood of spacelike points. Thus, in general WLC ex-
tends the domain of analyticity and is thus an additional
requirement.

M. K. Polivanov:

Since weak local commutativity is hierarchically a
weaker requirement than local commutativity, a viola-
tion of weak local commutativity will without doubt lead
to a violation of locality in the strong sense.
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V. Ya. Fainberg:
This is a correct statement.
S. Matinyan:

Recently the assertion has frequently been made that
the proof of the CPT theorem does not require the whole
apparatus of quantum field theory, but can be ‘‘proved”’
in an S-matrix theory (Chew, Stapp). On the other hand,
Jost has criticized Stapp’s attempt in this direction,
showing that in fact Stapp introduces into his proof those
analytic properties of the S-mairix elements which are
required for the CPT theorem. Can you say something
in this regard? How seriously should one take the S-
matrix approach?

V. Ya. Fainberg:

It is now clear that Jost’s criticism of Stapp seems
to be valid only within the so-called localizable theo-
ries (Meiman, Jaffe). In the case of nonlocalizable the-
ories, when the matrix elements can grow exponentially
or faster in momentum space, the analytic properties
of the S-matrix which are equivalent to CPT invariance
do not imply the existence of local operators: the con-
cept of weak local commutativity somehow loses its
meaning and the S-matrix approach turns out to be
more general (cf. footnote *’).

A. A. Komar:

You have asserted that in the axiomatic approach
CPT invariance is equivalent to weak local commutativ-
ity. However, if one goes over to observable (to the S-
matrix) it was necessary to assume additionally the ex-
istence of the Yang—Feldman equations. Isn’t this a
rather stringent new hypothesis, which brings the axi-
omatic proof of the CPT theorem closer to the proof in
the Lagrangian formalism ?

V. Ya. Fainberg:

In the transition to observables in the theory of
asymptotic fields and particles (the Haag—Ruelle scat-

tering theory) one also assumes the completeness of

the in-states:
= H

and local commutativity. However, the latter assump-
tion does not seem to be necessary: it is only neces-
sary that the commutator of two fields decrease suffi-
ciently rapidly in spacelike directions. In the case of a
linear relation (2 la Yang—Feldman) between the in-
operators and the Heisenberg operators, the require-
ment of local commutativity is not necessary for prov-
ing the CPT -properties of the S-matrix.

L. B. Okun”:

What happens if one writes a Lagrangian which is
not symmetrized in boson fields, or antisymmetrized in
fermion fields ? Can one use such a Lagrangian for
computing matrix elements, etc., or will some prob-
lems arise ? The symmetrization or antisymmetriza-
tion are needed not only for the proof of the CPT -theo-
rem.

V. Ya. Fainberg:

If the fields which enter into 4 (x) are subject to such
commutation relations that < (x) satisfies local (or
weakly local) commutativity, then there certainly exists
an operator ® such that

(0% (2) 8°9)T-= £ (—a),

and the theory will be CPT -invariant. In this case the
symmetrization—antisymmetrization procedure for the
boson and fermion operators which occur in ¥ (x) re-
duces to eliminating so-called contact infinities. In the
interaction picture this procedure is equivalent to a
transition from ordinary products to normal-ordered
products. If the fields are nonlocal, the theory will cer-
tainly nc be CPT -invariant. Thus, roughly speaking,

in a local theory the symmetrization is equivalent to
some kind of renormalization of £ (x)
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