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1. INTRODUCTION

K.AMAN scattering (RS) of light is one of the most inter-
esting interactions between electromagnetic radiation and
matter. RS in liquids, gases, and solids is usually de-
scribed as inelastic interaction between light and a quan-
tum system (atom, molecule, crystal), as a result of which
the light is scattered at an altered frequency, and the
quantum system goes over to a different energy level (say,
vibrational). In the study of RS in crystals, this phenome-
non is conveniently represented also as a process of in-
teraction between the quasiparticles of the crystal. For
example, Stokes RS can be described as the decay of a
quantum of light of energy fia)0 into an optical phonon of
energy RS2 and a photon of energy Bw', while anti-Stokes
scattering can be described as a collision between a light
quantum of energy Rw0 and an optical phonon of energy
frfi, resulting in a light quantum of energy Rw" (Fig. 1).
The energy and quasimomentum conservation laws for
the foregoing processes are of the form

(1.2)

here k0, k', and k" are the wave vectors of the quasipar-
ticles of the incident and scattered radiation, k is the
wave vector of the optical phonon, and KCL>0, KW', KW", and
fiw are the energies of the corresponding quasiparticles.

We note that other quasiparticles of the crystal, for
example polaritons,[1] acoustic phonons (Mandel'shtam-
Brillouin scattering), magnons,[2>3:i plasmons[4>5] etc. can
participate in the scattering process in place of the opti-
cal phonon. We shall consider mainly scattering pro-
cesses in which optical phonons take part.

Since the crystal lattice vibrations take part in the RS,
it has become possible to obtain with the aid of this phe-
nomenon important information concerning the dynamics
of the motion of atoms and molecules of the crystal. One
of the advantages of RS over other methods of studying
vibrations in crystals (infrared absorption, the slow-
neutron method, etc.) is that in the former the "tool"
of the investigation is visible light.

However, observation of RS in crystals is made diffi-
cult by the fact that the effective cross section and ac-
cordingly the RS intensity are very small. The order of
magnitude of the effective RS cross section per unit cell
is 10-27-10~28 cm2; it turns out here that the scattered-
radiation power reaching the receiver amounts to 10"11-
10"12W, Thus, to observe RS it is necessary to have pow-
erful sources of monochromatic radiation and very sen-
sitive receivers.

The exciting-light source used for the study of RS has
for a long time been mainly the mercury arc-discharge
line (A. = 2537, 4358, or 5461 A). Difficult and laborious

experiments have made it possible to investigate RS in
very many samples that are transparent to the indicated
mercury lines. The processes mainly investigated were
of first order, i.e., RS in which only one phonon takes
part. It follows from (1.1) and (1.2) that the modulus of
the wave vector of the optical phonon taking part in the
scattering has the same order of magnitude as the mod-
ulus of the wave vector of the photon, i.e., |k| <C ir/d,
where d is the linear dimension of the unit cell. Thus,
a study of the first-order RS spectra is in essence a
study of the spectrum of long-wave optical phonons
(|k| « 0). A partial study was made also of the distri-
bution of the line intensity in the spectrum, the line
polarization, and a few other line parameters. There
are many reviews devoted to the results of these mea-
surements.[6>9]

Later on, second-order RS spectra were observed,
and yielded important information concerning phonons
with k * 0, i.e., the entire Brillouin zone. However, in
view of the large experimental difficulties, second-order
RS spectra were investigated only in a small number of
crystals. [9]

The discovery of lasers, which are sources of mono-
chromatic directional and polarized radiation, has led
to entirely new possibilities in RS spectroscopy. The
first investigations, which demonstrated the prospects
of using lasers for the excitation of RS in crystals, were
investigations of colored crystalline powders with the
aid of ruby[10'11] (A = 6943 A) and helium-neon[12'13]

(X = 6328 A) lasers. At the present time, the use of
lasers in RS spectroscopy has made it possible to solve
many new experimental problems. The wide range of
wavelengths of laser-radiation lines has made it possible
to study substances that are not transparent to the
already-mentioned mercury lines, particularly a number
of colored organic substances,[10-13], and certain semi-
conducting materials with a forbidden band width of the
order of 2 eV. [4 '" '15]

Owing to the small divergence of the laser beam, it
became possible to trace the variation of the scattered-
radiation frequency as a function of the direction of
propagation of the incident and scattered radiation.[16]

The possibility of concentrating intense laser radiation
in a small volume of matter has made it possible to ob-
serve second-order processes in many new substances,
as well as stimulated RS of light. In recent years, inter-
est arose also in temperature investigations, particu-
larly near phase-transition points in crystals.

The theory of RS has developed further in keeping
with the new accomplishments in the experimental tech-
niques. One of the principal tasks of the theory of RS
is to calculate the effective cross section of this pro-
cess, which determines the intensity of the scattered
light. At the present time there are many approaches
to the solution of this problem, but all leads to such
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cumbersome final formulas, that an actual calculation of
the intensity of the scattered light is extremely difficult
and can be performed only in the simplest cases, with
allowance for many simplifying assumptions. In this con-
nection, the establishment of selection rules, i.e., of the
conditions for the vanishing of the effective cross section,
which follow from the concrete symmetry of the crystal,
[i7-i9] b e c o m e s highly valuable.

Of great importance is the interpretation of the RS
spectra, and in connection with it also the classification
of the vibrational levels of the crystal. This problem is
likewise solved by using the symmetry of the crystal with
the aid of the formalism of the theory of group represen-
tations.C2C>21:| It should be noted that several trends have
been noted in the literature devoted to these questions;
some of these trends frequently appear to be mutually
contradictory. For further development of the theory, it
is of interest to make a critical comparison of different
points of view and to establish their mutual relationship.

In this review we attempt to summarize the results
of recent investigations in the field of RS spectroscopy
in crystals.

2. CRYSTAL LATTICE VIBRATIONS

2.1. One-dimensional Lattice Vibrations

Many important properties of crystal vibrations can
be clarified by considering the simple case of a one-
dimensional lattice model. [22>23:1 Let us consider a chain
of identical atoms of mass m, the distance between which
are equal to a. We denote by un the displacement of the
n-th atom from its equilibrium position. If we take into
account the interaction of only the nearest neighbors,
then the force Fn acting on the n-th atom can be repre-
sented in the form

Fn •= I ("n+1 — "n) — / ("n —«n-l) , ( 2 . 1 )

w h e r e f i s t h e f o r c e c o n s t a n t o f t h e l a t t i c e . T h e e q u a t i o n

o f m o t i o n o f t h e n - t h a t o m c a n b e w r i t t e n i n t h e f o r m

( 2 . 2 )

T h e s o l u t i o n o f t h i s e q u a t i o n c a n b e s o u g h t i n t h e f o r m

S u b s t i t u t i n g ( 2 . 3 ) i n ( 2 . 2 ) , w e o b t a i n t h e c o n d i t i o n

( 2 . 3 )

( 2 . 4 )

F o r m u l a ( 2 . 4 ) , w h i c h c o n n e c t s t h e o s c i l l a t i o n f r e q u e n c y

w w i t h t h e w a v e n u m b e r k , i s t h e d i s p e r s i o n e q u a t i o n f o r

t h e p r o b l e m u n d e r c o n s i d e r a t i o n . I t f o l l o w s f r o m ( 2 . 4 ) t h a t

t h e m a x i m u m f r e q u e n c y w n w h i c h c a n b e p o s s e s s e d b y v i -

b r a t i o n s o f a c h a i n o f i d e n t i c a l a t o m s i s k > m = 2 V f / m .

T h i s f r e q u e n c y c o r r e s p o n d s t o w a v e - v e c t o r v a l u e s k m

= ± w / a . U s u a l l y i n c r y s t a l s k m = ± 7 r / a « 1 0 8 c m " 1 a n d

u m » 1 0 1 3 s e c " 1 . T h i s l i m i t i n g f r e q u e n c y l i e s i n t h e i n -

f r a r e d r e g i o n o f t h e s p e c t r u m .

W e s h a l l a s s u m e t h a t t h e c h a i n i n q u e s t i o n c o n s i s t s o f

N a t o m s a n d t h a t p e r i o d i c b o u n d a r y c o n d i t i o n s ( c y c l i c

c o n d i t i o n s ) a r e s a t i s f i e d , i . e . ,

u(na-\-Na)=^u(na). ( 2 . 5 )

W e t h e n o b t a i n f r o m ( 2 . 3 ) t h e p o s s i b l e v a l u e s o f t h e w a v e

v e c t o r k :

Na
4.T

( 2 . 6 )

T h e s e v a l u e s o f k d e t e r m i n e t h e N n a t u r a l o s c i l l a t i o n s o f

t h e c h a i n .

L e t u s d e t e r m i n e t h e d i s t r i b u t i o n f u n c t i o n o f t h e n u m -

b e r o f o s c i l l a t i o n s w i t h r e s p e c t t o f r e q u e n c y ; t h i s d i s t r i -

b u t i o n f u n c t i o n d e s c r i b e s t h e s p e c t r u m o f t h e n a t u r a l

o s c i l l a t i o n s . L e t g ( w ) d w g i v e t h e n u m b e r o f o s c i l l a t i o n s

i n t h e i n t e r v a l f r o m w t o w + d u > , a n d w ( k ) d k t h e n u m b e r

o f o s c i l l a t i o n s i n t h e w a v e - n u m b e r i n t e r v a l f r o m k t o

k + d k . T h e n

, . , ... dk . / *> r 7 \
g ((o) d(a = w («) --— ooo. I A. ( 1

T h e v a l u e o f d k / d a ? c a n b e r e a d i l y o b t a i n e d f r o m ( 2 . 4 ) :

( 2 . 8 )
dk __ 2

—co>

T h u s , s i n c e a c c o r d i n g t o ( 2 . 6 ) t h e r e i s o n e o s c i l l a t i o n i n

t h e i n t e r v a l 2 i r / N a , w e g e t

r W - , " . ., • ( 2 . 9 )

L e t u s c o n s i d e r n o w a m o r e c o m p l i c a t e d c a s e , t h a t o f

a l i n e a r c h a i n o f a t o m s t h a t a r e e q u a l l y s p a c e d b u t h a v e

d i f f e r e n t a l t e r n a t i n g m a s s e s m1 a n d m 2 . W e d e n o t e t h e

f o r c e c o n s t a n t s o f t h e i n t e r a c t i o n o f t h e n e i g h b o r i n g

a t o m s b y f. I n t h i s c a s e t h e u n i t c e l l c o n t a i n s t w o a t o m s

a n d t h e e q u a t i o n s o f m o t i o n b e c o m e m o r e c o m p l i c a t e d .

I n p l a c e o f ( 2 . 2 ) , w e h a v e a s y s t e m o f t w o e q u a t i o n s ( w e

a g a i n t a k e i n t o a c c o u n t o n l y t h e i n t e r a c t i o n o f t h e n e a r e s t

n e i g h b o r s )

W e s e e k t h e s o l u t i o n o f t h e s e e q u a t i o n s i n t h e f o r m

" 2 n ! I = - v i [ B ' + < 2 n + i ' ) f t o ] - 1 ( 2 - 1 1 )

S u b s t i t u t i n g t h i s s o l u t i o n i n ( 2 . 1 0 ) , w e o b t a i n a s y s t e m o f

t w o h o m o g e n e o u s e q u a t i o n s

-< -< *« ) -2 / , l 2 . ( 2 . 1 2 )

T h i s s y s t e m h a s n o n t r i v i a l s o l u t i o n s w i t h r e s p e c t t o A x

a n d A 2 i f

2f—m1u>2 —2/coska

— 2j cos ka 2/ — m^

T h e n

M 2 i s i n s * a - | 2
) \

( 2 . 1 3 )

( 2 . 1 4 )

T h e d e p e n d e n c e o f o> o n k , d e t e r m i n e d b y f o r m u l a

( 2 . 1 4 ) , i s s h o w n i n F i g . 2 ( i t i s a s s u m e d t h a t m x > m 2 ) .

W e s e e t h a t i n t h i s c a s e t h e d i s p e r s i o n c u r v e h a s t w o

b r a n c h e s . O n e i s c a l l e d a c o u s t i c a n d t h e o t h e r o p t i c a l .



RAMAN S C A T T E R I N G OF LIGHT IN CRYSTALS 401

Optical ^
branch

_-—-^

Acoustic^ branch

/ I

FIG. 2. Oscillation frequencies of
a two-atom chain.
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Similar branches arise also in two-dimensional and
three-dimensional lattices.

2.2. Three-dimensional Lattice Oscillations

An ideal crystal is a mechanical system with an in-
finitely large number of degrees of freedom. To sim-
plify the problem one considers, in accordance with the
Born hypothesis,[24] not the vibrations of an infinite crys-
tal but those of a sufficiently large finite volume of the
crystal (cyclicity volume), which contains N = L3 unit
cells, with account taken of the cyclic boundary condi-
tions. Let us consider the harmonic oscillations of the
cyclicity volume.

The position of an arbitrary atom of the crystal can
be specified by means of the vector

where 1 = 1$.^+ -"2a2 + h*3 is a vector that determines the
position of the unit cell in which the atom under consid-
eration is situated, and Zj are integers satisfying the in-
equality 0 < li < L. The vector XK defines the equilib-
rium position of the atom numbered K (K = 1, 2 , . . . ) in-
side the unit cell specified by the vector 1; the vector

u ( K ) characterizes the deviation of this atom from the

equilibrium position.
As the generalized coordinates of the considered me-

chanical system we can choose the 3Nn coordinates of

the displacements u a (K) of the atoms from their equi-
librium position in the direction of the a axis (a = 1, 2, 3)
of a Cartesian system. The Hamiltonian and the Lagrang-
ian of the system have then in the harmonic approxima-
tion the form

/ l l ' \
\KK')here m ( is the mass of the atom numbered K, $aa

are the coefficients of second order in the expansion of
the potential energy in the displacements of the atoms.

The equations of motion are accordingly

The solution of (2.18) is of the form

(2-19)

After substituting (2.19) in (2.18) we obtain

[<1 O [l)= 0. (2.20)

The condition for the solvability of the system (2.20) is
the vanishing of the determinant

| = 0. (2.21)

Equation (2.21) is an algebraic equation of degree 3Nn
relative to w2. The solution of the system (2.20) yields
3Nn eigenvectors. It is possible to go over from the quan-
tities u^ ' ( K ) to other more convenient variables. Owing
to the translational symmetry, such variables are the
quantities u (^ (K), determined from the expansion of

in plane waves

u%'(l):=y,^L=uT(k)e'". (2.22)

It follows from (2.22) that

(2.23)

Owing to the cyclicity conditions, the vector k assumes a
number of discrete values, such that

/ = ±Taj

2n L— La, — La, — La, La, I \

kz = + p~, +^L-2, + i - - 3 , ... + I - 4 - .
— La, — Lo, La, La3 I I

(2.24)

where ax, a2, and a3 are the linear dimensions of the unit
cell. Substituting (2.22) and (2.19) in (2.18), we obtain

= 0. (2.25)

where

The condition for the solvability of (2.25) is the van-
ishing of the determinant

\xx') =0. (2,26)

We denote the eigenvectors of the system (2.25) by

e M K | j ) , and the corresponding eigenvalues are w2 (; ) •

Then

(2.27)

Equation (2.26) is of order 3n, so that j = 1, 2 , . . . , 3n.
Thus, in the case of a three-dimensional lattice con-

sisting of 3nN particles, there are 3nN oscillation fre-
quencies, which are grouped in 3n branches. The rela-
tion u = w(k) obtained from (2.26) is a multiply-valued
function that has 3n different values of k (in the absence
of degeneracy) for each value of the vector k; each of
these values pertains to one of the 3n branches. It can
be shown that the three branches have frequencies w that
tend to zero when k tends to zero; these branches are
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called acoustic; the remaining 3n - 3 branches are optical.
The system (2.25) makes it possible to determine the

/ k.\
eigenvectors e ( K ; ) only accurate to a constant factor.

They can therefore be chosen such as to satisfy the or-
thonormalization condition

On going over to the quantum-mechanical analysis, the
.... / 1 \ , / I \ , ,

quantities u a ^ K l and p a ( K j are regarded as operators
u a (^J and p a (KJ satisfying the following commutation

r e a l o n s

S 4 (x | J ) «. (x — 8,..

| (2>28)

The Hamiltonian of the crystal is the sum of two quad-
ratic forms which can be reduced simultaneously to diag-
onal form. Such a transformation can be realized with the
aid of the expansion

Accordingly, the variables Q ( f ) , p ( f ) and q ( f ) ( P ( f )

should also be regarded as operators, and it follows from
(2.28) that

, ) Q { j

It follows from the fact that u a (A is real that

• >

_ . t . ,k,
\9 (/ ) ' p \ V IJ = inA (k~k ') 6«''
[i ( * ) , j ( £ ) ] = .»A(k-k ')fi,,. J

( 2 l 3 5 )

( A (k) = 1 if k vanishes or equals the reciprocal-lattice
vector; A(k) = 0 in all other cases.)

In particular, in the coordinate representation we have
the well known relation

Substituting (2.23) in the Hamiltonian and Lagrangian,
we obtain so that the Schrodinger equation takes the form

From this we obtain the equations of motion

with solution

|

(2.32)

(2.33)

where Q<0)(f) is the amplitude of the oscillation and cp0

is the initial phase.

The coordinates Q ( j ) are called normal coordinates,

and the vibrations of the crystal atoms with frequency

w (t ) are called the principal vibrations.

The normal coordinates Q (j ) and the corresponding
/k\ Jk /k \

canonically conjugate momenta P h l = Q h l , generally
speaking, are complex. It is possible to change over to
real coordinates with the aid of the transformation

It can be shown that such a transformation is canonical.

The variables q ff) and q ( J ) are then canonically con-

jugate.
As a result of the substitution (2.34), the Hamiltonian

reduces to the form

The solution of this equation is well known and can be
written in the form

where m (; ) is the vibrational quantum number of the
J /k \

oscillator with index (j j . Each of the functions ^m/k)
satisfies the equation

The total energy E j m ) of the crystal in the state de-
., , , . . . , , /k \ .

scribed by 3Nn quantum numbers m( . ) is

The solution of (2.36) is of the form

*-(?) - (-iTsb-;)"2cxp (-4-PV) Hm (p,), (2.37)
u 2ra !

 k

)

where p ( f ) = q ( f ) , with the variables p ( J ) and q ( J )

r e a l

k
w h e r e ^ = ^)?(k) = W> W(i ) ' a n d Hm(x> i S a H e r m l t e

Polynomial of order m.
The corresponding energy levels are determined by

the formula
, k . r . k . n . k .

E'» [,) =-= Vm 1,) + TJ A<01 / J '

where m(j ) = 0 , 1 , 2 , . . . The matrix elements of the

operators q ( J ) and p ( * ) , calculated with the aid of

the wave function (2.37), are
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{m\q\ m')= y -^- (V m — 1 6m-, m±i &m;m-l),

—
.(2.38)

; ) , and a vacuum with energy

Let us consider now the so-called second-quantization
representation. To this end, we introduce first new ca- The indicated quasiparticles are called phonons; they

/jj^ /jj, were first introduced by I. E. Tamm.
nonical variables a( j ) and a*(j ) , defined by the rela- F r o m the f o r m o f ^ g matr ix elements (2.38) it fol-

tions l o w s ^ a t

(2.39)

On going over to the quantum-mechanical analysis, the

quantities a.(j ) and a*(j ) are replaced by operators.

Using (2.35), we readily find that

Thus, the operators a can be regarded as Bose operators.
The matrix elements of these operators, in the represen-
tation given by formula (2.37), can be obtained by using
(2.38) and (2.39):

{m\a*\m') = Vln^u

(in ! a | m') = Vm + 1 8m., m+I.

The Hamiltonian operator takes the form

Since any stationary state of the crystal is determined

by specifying 3nN quantum numbers {ni(i )}, any quan-

tum state of the system can be described by a set of

these numbers. The corresponding wave function

ip {m(i j } depends on 3nN variables and specifies the

second-quantization representation. It follows from
(2.40) that in the second-quantization representation the

operator a.*(; ) a.(: j is diagonal, with

? ) • { » ( / ) } = (2.41)

Accordingly, the action of the Hamiltonian operator on

the function ip { m(: )} yields

where

The last expression can be interpreted as the energy of
the aggregate of the interacting oscillators, for each of

which there are ml j I quasiparticles with energies

Therefore the operators a*(. ) and &(\) are appropri-

ately called the quasiparticle creation and annihilation

operators; the operator m n ) = a*f; j a ( ; j , in accord-

ance with (2.41), is called the quasiparticle-number

operator.

2.3. Raman's Theory of Crystal-lattice Dynamics

In a number of papers,i251 Raman and his co-workers
[28-28] deveiOpe(j for the crystal lattice vibrations a the-
ory different from Born's. The main idea of this theory
consists in the following.

Raman foregoes the aforementioned Born's cyclic
boundary conditions, assuming that the normal oscilla-
tions of the crystal particles should not be identified
with all the wave motions that follow from the cyclic
condition. He postulates instead that the ratios of the
displacements (a, j3, y) of any two neighboring equivalent
atoms, located along any of the three principal axes of the
Bravais lattice and taking part in the normal oscillations,
are real and the same for each pair of such atoms:

a, P, y = ± l .

This means that the phases of the oscillations of the in-
dicated atoms can either coincide or be opposite. If a
= (3 = y = 1, i.e., the oscillations of equivalent atoms are
the same, and if the primitive cell contains n nonequiva-
lent particles, then n interpenetrating Bravais lattices
vibrate relative to each other with the same oscillation
phase as the neighboring equivalent atoms. Altogether
there are 3n such oscillations; the seven remaining pos-
sible values of a, |3, and y have 21n more degrees of
freedom, corresponding to oscillations in which not all
the neighboring planes made up of equivalent atoms move
in phase (some of them move in phase opposition). It is
thus assumed that the crystal has altogether 24n - 3 de-
grees of freedom corresponding to real physical oscilla-
tions (among all the normal oscillations, three corre-
spond simply to translation of the crystal as a whole).
Accordingly, the problem reduces to a study of the os-
cillations of a system consisting of 8n atoms located in
eight neighboring unit cells, making it possible to apply
the same reasoning as in the analysis of polyatomic
molecules.

At first glance, Raman's theory and Born's theory of
crystal lattice dynamics are mutually exclusive. How-
ever, the development of the theory of critical points
makes it possible to establish a correspondence between
these two theories.
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2.4. Polar Oscillations of a Crystal Lattice

It has been assumed so far that the ions oscillate in-
dependently of the electromagnetic normal oscillations
that propagate in the crystal. This, however, is not sat-
isfied for polar oscillations, which are connected with
changes of the dipole moment. Let us consider the sin-
gularities of polar oscillations on the basis of Born's
theory of the crystal lattice dynamics.

Polar oscillations of ions are accompanied by the oc-
currence of electromagnetic waves that interact strongly
with the purely mechanical oscillations, and the equa-
tions of motion for such oscillations describe the dis-
placements of the ions relative to each other as well as
the components of the electromagnetic field. The formu-
lation and solution of such equations for crystals of vari-
ous types has been carried out in a number of papers.
According to Born's results,1243 in the case of a polar
diatomic lattice of a cubic crystal, the simultaneous
solution of the equations of motion for the mechanical
displacements of the atoms and for the components of
the electromagnetic fields, with Maxwell's equations
taken into account, leads to the presence of two branches
of polar oscillations—longitudinal and transverse. The
dependence of the frequency u> on the wave vector k for
these oscillations is shown schematically in Fig. 3. The
longitudinal oscillations are essentially oscillations of
the crystal polarization vector P, which occur in the di-
rection of propagation of the oscillation wave. The fre-
quency of the longitudinal oscillation is determined from
the relation

» l - £ < (2-42)

where wi is the frequency of the longitudinal oscillation,
c0 = e(0) is the static dielectric constant, £«>= e(°°) is the
dielectric constant at frequencies much higher than in-
frared but much lower than the electron-absorption fre-
quencies; w0 is the frequency of the mechanical oscilla-
tions without allowance for the interaction with the elec-
tromagnetic field (the dispersion infrared frequency).
The longitudinal oscillations are nondegenerate.

For the doubly-degenerate transverse branch of the
oscillations, the dependence of the frequency on the wave
vector k is determined from the relation

(2.43)

where c is the velocity of light and the remaining quan-
tities have been defined earlier. We see that the values
of the frequencies change with changing absolute magni-
tude of the wave vector k.

In Fig. 3, all the solutions of (2.43) are represented
by solid lines; the dashed lines show the corresponding
curves for non-interacting electromagnetic and purely-
mechanical subsystems.

In this case we actually have a typical example of
resonance of two oscillating subsystems. On the right
of the resonance point the frequency of the electromag-
netic oscillations (branch 1) becomes so large that the
ions are not set in motion by the field, owing to their
large mass; the corresponding ion oscillations (branch 2)
are purely mechanical. To the contrary, near resonance,
the mechanical oscillations "mix" with the electromag-
netic ones. The crystal quasiparticles corresponding to

FIG. 3. Optical and mechanical waves in a crystal. 1 - Optical waves
without allowance for dispersion; 2 — mechanical oscillations without
allowance for the interaction with the electromagnetic field; 3 - optical
waves with allowance for dispersion; 4 — longitudinal lattice oscillation;
5 — transverse lattice oscillations.

the section of the dispersion curve 5 near the point O
are called polaritons.

Equations (2.42) and (2.43) were generalized and in-
vestigated for more complicated cubic crystals in [23].
According to the results of that paper, each triply de-
generate oscillation of the vector type (i.e., active in the
infrared absorption spectrum) is split into nondegenerate
longitudinal and doubly-degenerate transverse oscilla-
tions. For a crystal having n optical oscillations of the
vector type, the following relation holds true:

n p ) ' = - , (2.44)

where wjj and wy are the frequencies of the longitudinal
and transverse oscillations at sufficiently large values of
the wave vector k (k ^> w/c).

For noncubic crystals, the dispersion curves of the vi-
brational branches have a more complicated form. In this
case the frequencies of the polar oscillations depend not
only on the absolute value of the vector k, but also on its
direction; the separation of the oscillations into longitudi-
nal and transverse is valid only for certain of the most
symmetrical directions of the vector k. When the direc-
tion of the vector k changes, the oscillation may become
transformed from transverse into longitudinal and vice
versa. Let us consider by way of an example a uniaxial
crystal, in which there is only one group of three vibra-
tional branches active in the spectrum of the infrared
absorption. Owing to the anisotropy of the crystal, in the
absence of long-wave electric forces, the oscillation in
which the atoms are displaced along the z axis of the
crystal have a frequency _n, which differs from the fre-
quency u>i of the doubly-degenerate oscillation occurring
in the (x, y) plane.

Equations (2.44) were generalized for noncubic uni-
axial crystals in the presence of three polar branches
in C30>311. Two solutions are obtained for an arbitrary
orientation of the wave vector k of the phonon relative
to the z axis. In one of them, the vectors E and P are
perpendicular both to the vector k and to the z axis.
This solution corresponds to the ordinary wave, for
which the following relation holds true
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(2.45)

The second solution corresponds to the extraordinary
wave. The frequencies of the extraordinary wave depend
on the angle 6 between the vector k and the z axis.

/mjje,i,|-(l.
2eoo||\ /0)j_Elu-M

2too_1_

0 .:.
(2.46)

eoi e°°± eoll a n d €°°ll
dielectric constants.

a r e corresponding values of the

It is convenient to introduce the following notation:
FOII (2.47)

It follows from (2.45) and (2.46) that when k = 0 the pho-
non frequencies are u>l and w,. At large wave vectors
(k 3> w/c) we have from (2.45) e = wj_ for the ordinary
phonon and

= 0 (2,48) (2.48)

for the extraordinary phonons.
Since the last equation has in general two different

roots wx and w2> we obtain when k ^> w/c three nonde-
generate vibrational branches with frequencies a>x> Wi,
and w2.

To analyze the general formula (2.48), let us consider
two limiting cases' 1) |w - w j 4C W* - a^, w^-u^ In
this case the difference between the mechanical elastic
coefficients of the vibrational branches, due to the aniso-
tropy of the crystal, is much smaller than the additions
due to the electrostatic forces. Examples of such crys-
tals are hexagonal-modification ZnO and SiC and others.
Under the condition that £|| and ej_ differ insignificantly,
we obtain from (2.48)

u; = (of, sin2 8 + a>\ cos2 8, OJ= = (<i){,)2 cos2 8 -|- (coj_)8 sin2 8. (2.49)

The form of the dispersion curves for different directions
of the wave vector k is shown schematically in Figs. 4a
and 4c.

2) |w|| - u>xl 3> wfi - W||, w' - wj_. In this case the so-
lutions of (2.48) are given by

(o= = co!
Lsin

28 + (of|Cos26, <a\ = u>\ cos2 8-)-cufi sin8 8. (2.50)

The corresponding curves are shown in Figs. 4d and
4f. Formulas similar to (2.49) and (2.50) were first ob-
tained in [32]. The subsequent development of the theory
for the case when there are more than three polar vibra-
tional branches is also given in C32]. In the general case
the frequencies of the polar oscillations depend both on
the direction of the wave vector and on its magnitude.

2.5. Oscillations of Individual Molecules or Group of
Atoms in Crystals

In some crystals the unit cell may contain many atoms;
individual atoms are strongly attracted to each other and
combine into separate groups. Such groups can be either
neutral (molecules) or charged formations (CO3~, H2PO4,
etc.). In first approximation it can be assumed that the
individual molecules in the molecular-crystal lattice are

d) e) 0
FIG. 4. Dispersion curves of optical vibrational branches at small

wave vectors k for a uniaxial crystal with different placements of the
phonon wave vector: a), d) parallel to the z axis; c), 0 in the (x, y)
plane; d) and e) in the intermediate position; d) corresponds to the
case when the anisotropic interatomic forces prevail over the electro-
static forces.

individual atomic groups constitute rigid formations which,
as a unit, execute translational and rotational oscillations.
Let us stop to discuss in greater detail the case of molec-
ular crystals. A. I. Ansel'm and N. N. Perfir'eva[33] per-
formed calculated the oscillations of a one-dimensional
model of a molecular lattice; these calculations make it
possible to gain new ideas concerning the singularities
of our problem.

Let us consider first a one-dimensional lattice with
one molecule per unit cell. We assume that the position
of the center of gravity and the orientation of the n-th
molecule are specified by the coordinates xn and 9n r e -
spectively (the molecule can rotate only in one plane).
The potential energy of the n-th molecule is then equal
to

Xn+l)2]+gldn-l(xn-l -Zn

(2.51)

Here a, b, c, f, g, h—ordinary dynamic constants. The
equations of motion are

(2.52)
(m—mass, I—moment of inertia of the molecule).

We seek the solution of this system in the form of
orientational-translational waves

*„ = "'«•><—»>, 8n = 8ei(»'-»i», ( 2 . 5 3 )

w h e r e t h e p h a s e o f t h e w a v e i s <p = 2;ra/A a n d a i s t h e

l a t t i c e c o n s t a n t . S u b s t i t u t i n g ( 2 . 5 3 ) a n d ( 2 . 5 2 ) , w e o b t a i n

a s y s t e m of t w o l i n e a r h o m o g e n e o u s e q u a t i o n s f o r t h e

a m p l i t u d e s x a n d

[mco2 —2/ (1 — cos <f)]x — [g (1 —e'f)—A (1 —e--"p)j 6 = 0,
[g (1 — e'") — h (1 — e~^)\ x— [/co2 — (a -f- b + 2c cos q>)] 6 = 0.

Equating, as usual, the determinants of this system to
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z e r o , we ge t

± { [ 4 ^ ( 1 + ? cos q ) ) - l Q ; ( l - c o s ( p ) ] 2

^(«-o-^o)2( l-cos(p) J + (?0 + /i0)2sin
2(p}1/2 ; (2.55)

co2 ^ 4" Q i (1 - - <•"» <P) ~ -T Ql (! + 9 c o s

Here

The quantities ^ and fi2 are the translational and orien-
tational frequencies of the molecule when its nearest
neighbors are secured in their equilibrium positions.

It can be seen from (2.55) that in the general case the
oscillations have a mixed character of translational -
orientational oscillations. The spectrum separates into
orientational and translational components if g = h = 0.
Then

ljor = »+ = ^2 V1 + q COS (f .

cot = o)_ = Qj y 1 — cos (p .
(2.56)

The limiting frequencies for long waves X — «• (or q> = 0)
a r e

T h u s , t he t r a n s l a t i o n a l f r e q u e n c i e s g ive in t h i s c a s e t h e
o r d i n a r y a c o u s t i c b r a n c h .

In t he c a s e of a l i n e a r m o l e c u l a r l a t t i c e wi th two
m o l e c u l e s p e r uni t c e l l , t he c a l c u l a t i o n s of A n s e l ' m and
P o r f i r ' e v a l e a d to t he fo l lowing e x p r e s s i o n s for t he
l i m i t i n g f r e q u e n c i e s :

T h e f i r s t f r e q u e n c y p e r t a i n s to t h e p u r e l y t r a n s l a t i o n a l
a c o u s t i c b r a n c h and t h e s e c o n d i s p u r e l y o r i e n t a t i o n a l .
The t h i r d and four th b r a n c h e s a r e m i x e d , a n d t h e i r s e p -
a r a t i o n in to t r a n s l a t i o n a l a n d o r i e n t a t i o n a l o c c u r s on ly
if g o + h o = 0.

In l a t e r p a p e r s , L 3 i i P o r f i r ' e v a c o n s i d e r e d t w o - d i m e n -
s i o n a l and t h r e e - d i m e n s i o n a l m o d e l s of t he m o l e c u l a r
c r y s t a l l a t t i c e . T h e o s c i l l a t i o n s a r e d iv ided in to p u r e l y
t r a n s l a t i o n a l and o r i e n t a t i o n a l on ly a t t h e l i m i t i n g f r e -
q u e n c i e s and on ly u n d e r t he a d d i t i o n a l condi t ion g + h = 0.
T h e l i m i t i n g f r e q u e n c i e s of t he a c o u s t i c b r a n c h e s of
p u r e l y t r a n s l a t i o n a l o s c i l l a t i o n s a r e t h e n e q u a l to z e r o ,
and t h o s e of p u r e l y o r i e n t a t i o n a l o n e s a r e p r o p o r t i o n a l
to V Ri / I i (i = x , y, z ) . T h e l i m i t i n g f r e q u e n c i e s of t h e
o p t i c a l b r a n c h e s a r e p r o p o r t i o n a l in t h i s c a s e t o V f j / m
( t r a n s l a t i o n a l o s c i l l a t i o n s ) and V R / / I J ( o r i e n t a t i o n a l o s -
c i l l a t i o n s ) ( h e r e Ix, Iy, Iz — m o m e n t s of i n e r t i a of t h e
m o l e c u l e abou t t h e c o r r e s p o n d i n g a x i s , and R j , R{, fj —
c e r t a i n c o m b i n a t i o n s of t h e q u a s i e l a s t i c l a t t i c e c o n -
s t a n t s ) . S i m i l a r c o n c l u s i o n s w e r e ob t a ined in [ 3 5 ] .

3 . CLASSIFICATION O F T H E P R I N C I P A L O S C I L L A -
TIONS O F A C R Y S T A L IN ACCORDANCE WITH
T H E I R R E D U C I B L E R E P R E S E N T A T I O N S O F T H E
S P A C E G R O U P S

3 . 1 . C r y s t a l L a t t i c e S y m m e t r y . I r r e d u c i b l e R e p r e s e n -
t a t i o n of Space G r o u p s

T h e a g g r e g a t e of a l l t h e t r a n s f o r m a t i o n s of t he s p a c e
o c c u p i e d b y the c r y s t a l , wh ich do not change the e q u i l i b -

r ium configuration (which reduce to interchange of places
of identical atoms) is called the symmetry group of the
crys ta l . The lattice always has a definite t ranslat ional
symmetry and can, in addition, have symmetry axes and
planes .* The aggregate of all these symmetry elements
of the crysta l lattice is called its space group. Different
space groups a r e distributed over the crysta l c l a s ses .
Altogether, 230 different space groups a re possible .

Each space group contains a translation subgroup,
which includes all the possible para l le l t ransfers that
realign the crys ta l lattice with itself. The elements of
the translation subgroup can be written in the form
{hx | a } , where hx is the unit element of the group of
crys ta l direct ions, and a = 1&X+ l&2+ l&3 (^—integers,
ai—basis vectors of the unit cell).

The space groups a r e infinite groups, and a re t h e r e -
fore difficult to investigate. However, the crysta l s y m -
metry groups can be regarded as finite groups, if one
assumes the cyclicity condition advanced by Born. [ 2 4 ]

According to the Born hypothesis, it can be assumed
that when the number L of the t ranslat ions along each
of the vectors a1( a2, a3 is sufficiently la rge , the crysta l
becomes aligned with itself, i .e. ,

{*, | ii\L---{hi | a2}
L = {ft, | a3}

J' = {A, | 0}.

From the cyclicity condition it follows that

0<J., h,

(3.1)

(3.2)

Thus, the t ranslat ion subgroup can be regarded as a finite
group of order N = L3. In addition, since all the t r ans l a -
tions a re commutative, this group is an Abel group and
all i ts i r reducible representat ions a r e one-dimensional
and their number is also equal to N. It is convenient to
descr ibe these irreducible representat ions in the space
of wave vectors k or in rec iprocal space, the unit vec -
t o r s of which a re the vectors

(i, Jt, 1 = 1, 2, 3). (3.3)

Two rec iprocal -space vectors that differ from each
other by an integer number of bas is vectors bi a r e called
equivalent. The aggregate of nonequivalent rec ip roca l -
space vectors can be obtained by confining oneself to the
Brillouin zone, which is constructed in the following man-
ner . We draw from the origin vectors to all the s i tes of
the reciprocal lattice (i.e., the lattice constructed with
the aid of the vectors b u b 2 , b3) and construct planes p e r -
pendicular to these vectors and passing through their
midpoints. It can be shown that the smal les t par t of
space bounded by these planes and containing the origin
is fully equivalent to the unit cell made up of the vectors
b t , b 2 , and b 3 . The symmetr ica l polyhedron constructed
in this manner is called the f i rs t Brillouin zone or s i m -
ply the Brillouin zone. According to (2.24), the wave v e c -
tors of all the plane waves propagating in a crys ta l turns
out to be located in the f irs t Brillouin zone; the number
of such vec tors , and accordingly the number of points of
the Brillouin zone, is equal to N = L3. Each of the indi-
cated points corresponds to an irreducible representat ion
of the translat ion subgroup, the opera tors of which a re
simply numbers and a re given by

*The aggregate of rotations and reflections in the symmetry planes
of the crystal (proper and improper rotations) forms the group of direc-
tions F, or the group of macroscopic symmetry of the crystal.
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(3.4)

and the basis functions are

(a) ̂  e
Reciprocal space has a simple physical meaning. In

the system of units in which fi = 1, it coincides with the
momentum space of the crystal quasiparticles, whose
quasimomentum can assume only a set of N discrete
values.

The complete space group G is obtained by adding to
the translation subgroup also f - 1 elements of the form

here hi are elements of the group of directions

In the particular case when all aj = 0, the space group is
called symmorphic. In this case the proper and improper
rotations in the crystal are elements of the symmetry
group of the entire crystal and cause coincidence not
only of the equivalent direction but also of the equivalent
points. On the other hand, if aj * 0, then screw axes or
glide planes are included among the elements of the crys-
tal group.

The theory of irreducible representations of the direc-
tion group F makes it possible to solve a number of prob-
lems arising in the investigation of Raman scattering in
crystals. Frequently, however, it is necessary to use the
representation of the entire space group G. A description
of the irreducible representation of space groups is given
in a number of papers.[36~*2] We shall make use of the
results of [39'40].

Each representation r of the space group G is charac-
terized by a set {k} of reciprocal-space vectors; this
set is invariant against the rotational part of the elements
of the space group. Thus, if ki e {k}, then also hjki
e {k} (j = 1, 2 , . . . ,f). This aggregate of vectors is called
the " s t a r " of the representation T. The star {k} is
called irreducible if for any of the vectors kj, kj e {k},
there exists a rotational element that carries to kj into
k^ An irreducible representation of the group G corre-
sponds to an irreducible star {k} .

To each vector k of the star there corresponds a cer-
tain subgroup of group G of such elements, the rotational
part of which does not change the vector k. The aggregate
of these elements is called the group Gjj of the vector k
or the "small" group. The irreducible representations
of the group Gjj will be denoted by TJ .̂ It turns out that
knowledge of these irreducible representations is suffi-
cient to find the matrix elements of the entire irreducible
representation of the group G. Moreover, for applications
it is frequently necessary to have the characters of the
irreducible representations of only the group G^.

In practice, great interest attaches to the group G^,
the elements of which are the rotational elements hj,
which leave the vector k invariant (accurate to the^
reciprocal-lattice vector). When k = 0, the group Gk
coincides with the direction group F.

The problem of constructing the irreducible repre-
sentations of the group Gjj is conveniently solved by the
method of built-up representations of the group Gfc, which
is described in detail in :39>40].

3.2. General Classification of Principal Oscillations of
Crystals

In the general theory of small oscillations, the prin-
cipal oscillations (i.e., the oscillations of all the particles
with the same frequency) are classified in accordance
with the irreducible representations of the symmetry
group G of the equilibrium configuration of the system.[39:l

This classification is realized in the following manner.
Each element of the symmetry group transforms a

system, whose equilibrium position has been disturbed,
from one configuration into another, generally speaking
different configuration. The space uj(r) (i = 1, 2 , . . . , 3s,
s—number of particles of the system, r—vectors of the
equivalent positions of the particles) of the displacements
of the particles of the system from the equilibrium posi-
tions is called the mechanical space Lj^- In symmetry
transformations, the aggregate of the displacements uj(r)
goes over into Z/Tii'(g)uj'(gr), where g is an element of

i'
the symmetry group of the system, and Tii'(g) are the
coefficients of a matrix that depends on the elements of
the group G.

If we introduce the linear operators T(g) defined by

r G?K « = 2 ?V (<?)«,•(?••). ( 3 . 6 )

a n d s e t e a c h e l e m e n t g of g r o u p G i n c o r r e s p o n d e n c e w i t h

a n o p e r a t o r T ( g ) :

g-T(g),

t h e n w e o b t a i n t h e r e p r e s e n t a t i o n of t h e g r o u p G , c a l l e d

t h e m e c h a n i c a l r e p r e s e n t a t i o n G^/[. T h e m e c h a n i c a l r e p -

r e s e n t a t i o n Gyi i s r e d u c i b l e , a n d a c c o r d i n g l y t h e d i s -

p l a c e m e n t s p a c e L M i s a l s o r e d u c i b l e .

T h e m a i n r e s u l t s of t h e g r o u p - t h e o r e t i c a l c l a s s i f i c a -

t i o n o f t h e p r i n c i p a l o s c i l l a t i o n s a r e a s f o l l o w s :

1 ) T o e a c h p r i n c i p a l o s c i l l a t i o n t h e r e c o r r e s p o n d s a

b a s i s v e c t o r of a c e r t a i n s p a c e L j , w h i c h t r a n s f o r m s i n

a c c o r d a n c e w i t h t h e i r r e d u c i b l e r e p r e s e n t a t i o n T j of t h e

g r o u p G; Lj i s h e r e o n e of t h e s u b s p a c e s i n t e r m s of

w h i c h t h e r e d u c i b l e s p a c e L M i s e x p a n d e d ; Ljyj = S L j ,

( t h e s u m m a t i o n s i g n s t a n d s f o r t h e d i r e c t s u m of s p a c e s ) .

2 ) A l l t h e p r i n c i p a l o s c i l l a t i o n s c o n n e c t e d i n t h e i n d i -

c a t e d m a n n e r w i t h t h e s a m e r e p r e s e n t a t i o n T j a n d s p a c e

Lj h a v e t h e s a m e f r e q u e n c y . In a d d i t i o n , if t h e r e p r e s e n -

t a t i o n T j i s n o t r e a l , t h e n a l l t h e p r i n c i p a l o s c i l l a t i o n s

c o r r e s p o n d i n g t o t h e r e p r e s e n t a t i o n t h a t i s c o m p l e x c o n -

j u g a t e t o T j h a v e t h e s a m e f r e q u e n c y a s t h e p r i n c i p a l o s -

c i l l a t i o n s c o r r e s p o n d i n g t o T j . A c c o r d i n g l y , if t h e r e p -

r e s e n t a t i o n T j i s r e a l , t h e n t h e d e g e n e r a c y m u l t i p l i c i t y

of t h e c o r r e s p o n d i n g f r e q u e n c y i s e q u a l t o t h e d i m e n s i o n -

a l i t y of t h e s p a c e L j ; o n t h e o t h e r h a n d , if T j i s n o t r e a l ,

t h e n t h e m u l t i p l i c i t y of t h e d e g e n e r a c y of t h i s f r e q u e n c y

i s e q u a l t o d o u b l e t h e d i m e n s i o n a l i t y of t h e s p a c e .

I t f o l l o w s f r o m t h e f o r e g o i n g t h a t t h e p r o b l e m of t h e

g r o u p - t h e o r e t i c a l c l a s s i f i c a t i o n of t h e p r i n c i p a l o s c i l l a -

t i o n s i s s o l v e d b y e x p a n d i n g t h e r e d u c i b l e m e c h a n i c a l

r e p r e s e n t a t i o n T M i n t o i r r e d u c i b l e r e p r e s e n t a t i o n T j

a n d d e t e r m i n i n g w h e t h e r t h e y a r e r e a l .

B h a g a v a n t a m [ 4 3 ] d e v e l o p e d a c l a s s i f i c a t i o n i n t e r m s

of t h e i r r e d u c i b l e r e p r e s e n t a t i o n of t h e d i r e c t i o n g r o u p

F ( t h i s c o r r e s p o n d s t o t h e c a s e k = 0 ) a n d i n t e r m s of

t h e i r r e d u c i b l e r e p r e s e n t a t i o n of t h e f i n i t e g r o u p of t h e
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Raman supercel l (see below).
The classification of the principal oscillations with

allowance for all the crys ta l symmetry elements is given
in the book by G. Ya. Lyubarskii . [ 8 9 ] Poulet [20 ] consid-
ered a classification of crysta l oscillations for k * 0, but
the final formulas of this paper were obtained only for the
s imples t ca ses .

Let us stop to discuss the classification of the p r inc i -
pal oscillations at k * 0 on the basis of the resu l t s ob-
tained in C39].

For c rys ta l s , the mechanical space L M is the 3mN-

dimensional space of displacements u a ( K j . The opera -

to rs of the mechanical representat ion a r e defined by the

relat ions

where g is the element of group G, Aao(hj) a r e the coef-
ficients of the transformation matr ix of the components
of the vector , and a , /3 = 1,2, 3.

The a rb i t r a ry displacement u M . , ) can be expanded

in terms of basis vectors that transform in accordance
with the irreducible representation of the translation
group:

where mK is the mass of the corresponding atom.
The expansion (3.8) shows that the star of the repre-

sentation T M is the reducible star {k}, the irreducible
components of which are represented by all the irreduc-
ible stars of the first Brillouln zone. From (3.8) we can
also conclude that the mechanical space Ljyj can be ex-
panded into N subspaces L^, each of which is invariant
relative to the group Gk of the vector k (the "small"
group), but is not invariant relative to all the elements
of the group G. Each vector from L^ is transformed by
the operator TM(g) into vectors from the same space.
We can therefore define in space 1% operators
with the aid of the relations

/k\
1 )==T(g)ua

We shall say that the operator T|^(g) induces in the in-
var iant subspace Ljj an operator 7t(g) (see [ 3 9 ]) . The
representat ion ric(g) is the reducible representat ion of
the group G^. In order to expand it into i rreducible com-
ponents, it is necessa ry to calculate the charac te rs Xk(s)
of this representat ion. According to [21], they a r e ob-
tained from the general formula

Xjj({ftj|tt}) = (±l-i-2cos(p)[\o(x)e J e , ^O.OJ
x

where the signs a r e chosen in accordance with whether
the rotation i s proper or improper ; the summation is
ca r r i ed out over all the nonequivalent atoms of the unit
cel l , a = ctj + a. The symbol 6(K) is defined as follows:
3(K) = 1 if the atom remains in i ts place accurate to pure
translat ion, and 6(/c) = 0 if non-equivalent identical atoms
interchange p laces ; k0 = hj^k - k (the vector k0 is equal to
the rec iproca l -space vector or is equal to zero , since
{hj | a } G G]j). If k0 = 0, which holds t rue in par t icular

for all the points inside the Brillouin zone, then formula
(3.5) assumes the simpler form, which coincides with the
corresponding result of lzn:

Xk {{hj | oj) = (± 1 + 2 cos tp) noe
lk (3.10)

where n0 is the number of nonequivalent atoms within the
unit cell, which remain in place accurate to pure transla-
tion as a result of the symmetry transformation.

The general formula (3.9) makes it possible to change
over conveniently to the characters of the built-up repre-
sentation Tjj(hj) of the group Gk; (the point group of the
vector k):

) = Xk (f hj | a}) e~ika = (± 1-f 2 cos y) (2 6 (x) e""**).(3.11)

For the number np of the irreducible built-up representa-
tions of character xP(hj), contained in the reducible rep-
resentation fu:(hj) we obtain, with allowance for the build-
ing-up,

i(k-li.k.o) (3.12)

where Xk(hj) i s obtained from (3.11), and f is the number
of elements of the group G^.

Let us examine in somewhat greater detail the final
formula (3.12). If the wave vector k is located inside the
Brillouin zone, then k - hjk = 0 (the built-up representa-
tions do not differ from the ordinary representations of
the point group G^) and (3.12) takes the form

'~Y —I (± (3.13)

where xp(hj) i s —-e character of the ordinary representa-
tion of the point group Gk>

In the particular case k = 0, Eq. (3.13) simplifies to:

, ~ —- 2 (± 1 ± 2 cos 9) noy.p (3.14)

where F is the group of directions of the crystal and f is
the number of elements of this group.

Formula (3.14) coincides with the analogous result of
[43'44], in which the crystal oscillations were classified
in accordance with irreducible representations of the
point group F of the crystal directions. We can therefore
conclude that the classification of the crystal oscillations
in accordance with the irreducible representations of the
group has a classification of phonons at k = 0.

Once the irreducible representations TP of the group
K

Gk, which enter in the irreducible representation T^ are
found, the irreducible representations of the entire space
group, which enter in Tyi can be constructed by uniting
all the representations pertaining to the same irreducible
star { k } , in accordance with the well-known method[39]

of constructing the irreducible representations of a space
group. To each principal oscillation of the crystal there
corresponds an irreducible representation TP obtained
in this manner. W

It now remains to determine whether the irreducible
representations TP , in accordance with which the spaces

{k}
L? •. a r e t ransformed, a r e r ea l . This problem can be
easily solved with the aid of the real i ty cr i ter ion" 9 ' 4 5 3
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| 2 o o r - l , if Tfk> is not real. (3.15)
Table I

The summation is carried out over all the elements of
the point group F, for which the relation hjk = - k is sat-
isfied (k is any vector of the star {k}).

The degeneracy multiplicity of the principal oscilla-
tion is equal to the dimensionality of the corresponding
space LP , if the representation TP is real, and is equal

W W
to double the dimensionality of this space if the represen-
TP , is not real. Physically this means that all the dis-
W

crete plane waves corresponding to the principal oscilla-
tions of the crystal are characterized by a polarization
that is specified by the index p, and the direction of prop-
agation k corresponds to one and the same oscillation
frequency.

We note that the classification of the vibrational levels
corresponding to excitations with k = 0 was sufficient in
most cases at the first stage of the experiments on Raman
scattering, when the spectrum ct>i(O) for different optical
branches was investigated.

The classification of the vibrational levels for arbi-
trary wave vectors is necessary in the study of second-
order spectra.

3.3. Classification of Oscillations in Crystals Containing
Complex Atomic Groups

The general theory described above makes it possible
to realize a classification of the principal oscillations of
the crystal for any number of nonequivalent atoms in the
unit cell. It turns out frequently, however, that, owing to
the forces acting between the particles, it is advanta-
geous to separate individual groups of atoms, which can
be regarded as new structural units of the crystal. Such
groups may be complex ions, and in molecular crystals
also individual molecules. The normal oscillations can
be subdivided in this case into internal and external ones.
The external oscillations are oscillations of groups of
particles relative to each other. The internal oscillations
are oscillations of pointlike particles within the indicated
groups.

The vectors of the displacements from the equilibrium
particle positions of the internal oscillations character-
ize the displacements of the atoms within the groups. The
vectors of the displacements of the external oscillations
are three-dimensional if the considered group can be re -
garded as a point, and six-dimensional if this group is
regarded as a solid body with six degrees of freedom.

The next step is to subdivide the external oscillations
into oscillations of the translational type and oscillations
of the orientational type, or rotary rocking. We note that
such a subdivision of the oscillations, if physically justi-
fied, leads to a corresponding subdivision of the irreduc-
ible subspaces L^, but the possibility of the indicated sub-
division may turn out to be incorrect for spaces Ljj cor-
responding to certain values of the vectors k. In practice,
the indicated subdivision is important only for principal
oscillations with k = 0. The formulas for the characters
of the corresponding representations are given in Table I.

Normal Raman oscillations were classified by the
[4848]y
[48~48] Thegroup-theory method in a number of papers.

classification is usually effected in two stages. At first,
3n normal oscillations corresponding to a = p - y = 1

i
Investigated object Name of representation

Unit cell contains n
pointlike particles

Mechanical representation
Tfc, k belongs to first
Brillouin zone.
Vibrational representation,
k=0.

Unit cell contains n
pointlike particles,
the external oscilla-
tions are realized by
m groups.

Unit cell contains n
pointlike particles,
external oscillations
are realized by m
asymmetrical groups
and p pointlike par-
ticles.

Representation of external
oscillation (without the
acoustic ones)

Representation of inter-
nal oscillations
Translational-vibrational
representation
Rotational-vibrational
representation

External-vibrational
representation

Translational-vibrational
representation
Rotational-vibrational
representation
Internal-vibrational
representation.

Formulas for characters*

X (*)•--;"<>( '- ' L - c o s f1)

%(CV) - ( 2 m 0 — 1 ) ( 1 + 2 C O S 9 ) ,

X(SV) . 1 - 2 c o s 9

X(S<p) =---"»( — 1 + 2 c o s 9 )
c o s 9 ) .

l — 2 c o s c p )

X (Sv) --= (Po - 1) ( - 1 -l- 2 cos (

X ( 5 < p ) - ^ ( / ' o : » ' o — ' ) ( — 1 : 2 r o s

X ( C , , ) - - m o l l - 2 c o s 9 ) ,

X (•*>)= "'o(l — 2 cos if)
X(c<p) iJ("o— Po— 2»i0) (1—2cos 9

*n0 , mo, po - numbers of particles that remain stationary apart from translation

equal to the vector of the direct lattice.

a r e c l a s s i f i e d . T o t h i s e n d , t h e n o n e q u i v a l e n t a t o m s o f

o n e u n i t c e l l a r e c o n s i d e r e d ; t h e s y m m e t r y g r o u p o f t h e

s y s t e m i s t a k e n t o b e t h e f a c t o r g r o u p o f g r o u p G ( i . e . ,

t h e g r o u p o f d i r e c t i o n s o f t h e c r y s t a l ) , a n d f o r m u l a s a r e

d e r i v e d f o r t h e c h a r a c t e r s o f t h e m e c h a n i c a l a n d o t h e r

r e p r e s e n t a t i o n s , [ 4 3 ] w h i c h c o i n c i d e w i t h t h e c o r r e s p o n d -

i n g r e s u l t s o f T a b l e I f o r k = 0 .

A l l t h e n o r m a l R a m a n o s c i l l a t i o n s a r e c l a s s i f i e d b y

c o n s i d e r i n g e i g h t n e i g h b o r i n g u n i t c e l l s ( t h e s o - c a l l e d

s u p e r c e l l ) a n d u s i n g a s t h e s y m m e t r y g r o u p t h e c r y s t a l

d i r e c t i o n g r o u p s u p p l e m e n t e d w i t h t h o s e t r a n s l a t i o n s

t h a t t r a n s f o r m n e i g h b o r i n g e q u i v a l e n t a t o m s i n t o e a c h

o t h e r . F o r e x a m p l e , f o r d i a m o n d , s u c h a s y m m e t r y

g r o u p c o n t a i n s 3 8 4 e l e m e n t s ( o f w h i c h o n l y 4 8 e l e m e n t s

b e l o n g t o t h e c r y s t a l d i r e c t i o n g r o u p ) . T h e f o r m u l a s f o r

t h e c h a r a c t e r s o f t h e m e c h a n i c a l r e p r e s e n t a t i o n a r e t h e

s a m e a s i n T a b l e I , w i t h a l l o w a n c e f o r t h e n u m b e r s o f

a l l t h e a t o m s c o n t a i n e d i n t h e s u p e r c e l l .

A d i s c u s s i o n o f t h e e x p e r i m e n t a l d a t a o n R a m a n s c a t -

t e r i n g o f l i g h t i n c r y s t a l s , f r o m t h e p o i n t o f v i e w o f t h e

R a m a n t h e o r y , w i l l b e g i v e n i n t h e s u c c e e d i n g s e c t i o n s .

W e n o t e t h a t a g r o u p - t h e o r e t i c a l c l a s s i f i c a t i o n o f p o l a r

o s c i l l a t i o n s a t k = 0 b y m e a n s o f t h e f o r m u l a s o f T a b l e I

w o u l d b e i n c o r r e c t , s i n c e t h e m e c h a n i c a l s y s t e m i s n o t

i n d e p e n d e n t b u t i n t e r a c t s s t r o n g l y w i t h e l e c t r o m a g n e t i c

f i e l d .

3 . 4 . E x a m p l e o f A p p l i c a t i o n o f t h e G r o u p - t h e o r e t i c a l

C l a s s i f i c a t i o n o f L a t t i c e V i b r a t i o n s

E x a m p l e s o f t h e a p p l i c a t i o n o f a g r o u p - t h e o r e t i c a l

c l a s s i f i c a t i o n o f t h e v i b r a t i o n a l l e v e l s c o r r e s p o n d i n g

t o k = 0 a r e d e s c r i b e d i n d e t a i l i n t h e l i t e r a t u r e . [ 4 3 ' 4 9 ]

W e s h a l l t h e r e f o r e s t o p t o d i s c u s s o n l y t h e c l a s s i f i c a -

t i o n o f t h e v i b r a t i o n a l l e v e l s i n t h e g e n e r a l c a s e ( f o r

a n y k ) . W e c o n s i d e r c r y s t a l s o f t h e Z n S t y p e ( c u b i c

m o d i f i c a t i o n ) . T h e Z n S c r y s t a l b e l o n g s t o t h e s y m m e t r y

g r o u p T d .



410 V. S. GORELIK and M. M. SUSHCHINSKII

F i g u r e 5 s h o w s t h e u n i t c e l l o f t h e Z n c r y s t a l a n d t h e

B r i l l o u i n z o n e . I f 2 T i s t h e l e n g t h o f t h e e d g e o f t h e c u b e ,

t h e n t h e e l e m e n t a r y - t r a n s l a t i o n v e c t o r s h a v e t h e f o l l o w -

i n g c o o r d i n a t e s :

a , = T ( 0 , 1 , 1) , a 2 = x ( l , 0 , 1 ) , a 3 = T ( l , 1, 0 ) .

T h e r e c i p r o c a l l a t t i c e v e c t o r s a r e g i v e n b y

bi = - i < - l . M ) . b2 = i ( l , - I , 1 ) , b , = i ( l , i , _ i ) .

T h e v e c t o r s o f t h e p r i n c i p a l p o i n t s o f t h e B r i l l o u i n z o n e

a r e o f t h e f o r m ( s e e [ 2 0 ' 4 0 ] )

l ' 2 ^ ( l ( 1 > l — M 1 - ^ 3 = 1 — (Jl3 , | 1 3 , {2(1— (13)),

T a b l e

) = - ^ ( 0 , 0 , 2 j i ) ,

o, o) .

They are characterized by different groups Gjj. Applying
the elements of group F of the crystal to the vectors k,
we obtain all the irreducible stars of group G. The char-
acters of the representations T]j(hj) corresponding to the
indicated vectors are obtained with the aid of formula
(3.11). Using relation (3.13), we expand the reducible
representations Tk(hz) in terms of the irreducible one.
The results for all the vectors listed above are given
in Table II.

The representation T M consists accordingly of a set
of the following irreducible representations:

•)T(I) i (2) T(l) . T(2) , , (3)

T < k s ! - T l k « ! " T k , ! - • " ( k 7 > + ' t t { k , r

T h e n u m b e r i n g o f t h e i r r e d u c i b l e r e p r e s e n t a t i o n s TP\

i s i n a c c o r d a n c e w i t h t h e n u m b e r i n g o f t h e b u i l t - u p r e p -

r e s e n t a t i o n s T ( P ' o f t h e g r o u p T d , g i v e n i n t 4 0 ] .

B y u s i n g t h e c r i t e r i o n ( 3 . 1 5 ) , i t i s p o s s i b l e t o c h e c k

w h e t h e r t h e s e r e p r e s e n t a t i o n s a r e r e a l . A n a l o g o u s c a l -

c u l a t i o n s w e r e p e r f o r m e d b y P o u l e t [ 2 0 ] f o r f o u r p o i n t s

o f t h e B r i l l o u i n z o n e : r ( k u ) , X ( k 1 0 ) , L ( k 9 ) , W ( k a ) . T h e

g e n e r a l f o r m u l a s ( 3 . 1 1 ) i n ( 3 . 1 2 ) m a k e i t p o s s i b l e t o

°

°

-

.7:,
/ \

/

L ^ _ I — - *J

a ) b )

F I G . 5 . Z n S c r y s t a l l a t t i c e ( c u b i c m o d i f i c a t i o n ) , a , b ) U n i t c e l l ; c )

B r i l l o u i n z o n e .

Vec to r k 2 = ( i ( b i ^ b 2 ) T

«k

X

x < 2 ,

Xk

E

1

1

6

T l i - 4 T « » + 2Ti?>

,2b2

o

1

— 1

2

1

Vector

Xk

k ^ > 1 + b 3 ) + M

E

1

1

6

. k = 2T i» + 4T t i

, b 2 + b B ,

c 2

1

— 1

— 2

Vec to rs k5=M(b i + b 2 - b 3 ) ,

k9=-J-(bi+l>2-j-l>;s) ( - )

! I * 1

i x k

1

1

0

Vec to r k 8 ^ — ( i u + b 2 ) T ^ - ( b 2 + b f i ) (

Xk

1

1

1

1

6

1

— 1

1

- 1

Vec to rs k6—ii{bi+b2),

(X)
Vec to r k n = 0 ( r j

1

1

2

— 1

— 1

o

0

— 1

0

1

— I

•)

r e a l i z e a s i m i l a r c l a s s i f i c a t i o n a l s o f o r c r y s t a l s o f t h e

n o n - s y m m o r p h i c s y m m e t r y g r o u p s a t a n y p o i n t o f t h e

B r i l l o u i n z o n e .

W e s h a l l c o n s i d e r b e l o w s e v e r a l o t h e r e x a m p l e s o f a

g r o u p - t h e o r e t i c a l c l a s s i f i c a t i o n o f t h e p r i n c i p a l o s c i l l a -

t i o n s i n c e r t a i n c r y s t a l s , d u r i n g t h e c o u r s e o f t h e d i s -

c u s s i o n o f t h e r e s u l t s o f R S i n t h e s e c r y s t a l s .

4 . F I R S T - O R D E R R A M A N S C A T T E R I N G I N C R Y S T A L S

4 . 1 . T h e o r y o f R S I n t e n s i t y I n C r y s t a l s

T h e c a l c u l a t i o n o f t h e i n t e n s i t y o f s c a t t e r e d l i g h t i s

o n e o f t h e m a i n p r o b l e m s o f t h e t h e o r y o f R S o f l i g h t . I n

s o l v i n g t h i s p r o b l e m , d i f f e r e n t m e t h o d s o f c o n s i d e r i n g

R S o f l i g h t h a v e b e e n d e v e l o p e d .

O n e o f t h e f i r s t i n v e s t i g a t i o n s o f t h e t h e o r y o f R S i n

c r y s t a l s i s t h a t o f T a m m . [ 5 0 ] I n t h i s p a p e r , R S o f l i g h t

i s r e g a r d e d a s a r e s u l t o f i n t e r a c t i o n b e t w e e n n o r m a l

o s c i l l a t i o n s , c o r r e s p o n d i n g t o e l e c t r o m a g n e t i c w a v e s ,

a n d m e c h a n i c a l n o r m a l o s c i l l a t i o n s o f t h e c r y s t a l l a t t i c e

— p h o n o n s . F o r m a l l y , s u c h p r o c e s s e s o c c u r w h e n t h e

H a m i l t o n i a n o f t h e s y s t e m m a d e u p o f t h e e l e c t r o n s ,

n u c l e i , a n d t h e i r r a d i a t i o n f i e l d i n c l u d e s , b e s i d e s t h e

q u a d r a t i c t e r m s , a l s o t e r m s o f t h i r d a n d h i g h e r o r d e r

i n t h e a m p l i t u d e s o f t h e c r y s t a l o s c i l l a t i o n s .

I n s p i t e o f t h e g e n e r a l a p p r o a c h t o t h e p r o b l e m ,

T a m m ' s t h e o r y w a s e s s e n t i a l l y s e m i p h e n o m e n o l o g i c a l ,
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since it led to no explicit expressions for the anharmo-
nicity constants of the crystal. The development of a
microscopic theory for molecular crystals and concrete
calculations of the anharmonicity coefficient were car-
ried out by L. N. Ovander.[51] He obtained from the
Hamiltonian of the molecular crystal, by using a third-
order canonical transformation under the condition that
the interaction between the crystal molecules is suffi-
ciently small,

where

( 4 . 1 )

( 4 . 2 )

( 4 . 3 )

here the operators £p(k) and £p(k) are the Bose operators
of creation and annihilation of the quasiparticles in the
crystal, p is the polarization index, k is the wave vector,
and Qpip2p3(ki, ^2) are the anharmonicity coefficients.
The HamiItonian of the system, with second-order terms
included, is regarded as the zeroth approximation; it
yields the energy spectrum of the crystal quasiparticles
obeying Bose statistics, i.e., the exciton spectrum. Al-
lowance for third-order terms is based on perturbation
theory. These terms lead to processes in which three
quasiparticles take part simultaneously (the decay of
one quasiparticle into two others and the inverse pro-
cess).

Let us consider from this point of view the RS of light.
Assume that the radiation-exciting incident photon is
characterized by the indices (p0, k0), the photon taking
part in the RS process by the indices (p, k), and the
scattered phonon by the indices (p' , k') for the Stokes
RS and (p", k") for the anti-Stokes RS. The correspond-
ing constants in (4.3) take the form Qp'ppo(k', k) and
Qpopp "(k0, k). In the first order of perturbation theory,
the increase of the number of quasiparticles with time
is determined, for the processes under consideration,
by the expressions

0, ko)X

"" (k°' k) |

. k0) —E(p\ k')},(4.4)

- k) X

, k)-E(p". k")}; (4.5)

dn(p', k')
tit

X |ra(p', k
d" ( f2k"' = TT 2 I O

POP
X[n(p",

here n(p0 , k0), n(p , k), n (p ' , k'), and n(p", k") are the
numbe'rs of quasiparticles of the exciting light, of the
phonons, and of the Stokes and anti-Stokes scattered light,
respectively.

The explicit form of the anharmonicity coefficients is
very cumbersome and will not be presented here. The in-
tensity of the scattered light is proportional to the proba-
bility of the indicated processes. Expressions for the
scattered-light intensity, obtained in [51], are complicated
and will not be written out here. The extension of the ex-
citon theory to the case of semiconductor crystals is
given in C52].

An essential feature of the theory[52] is that the inter-
action of the electromagnetic radiation with the electron
and vibrational subsystems is not assumed to be small.
This makes it possible to investigate RS under conditions

when the frequency of the incident light is close to the ex-
citon-absorption band.

Another approach to the RS phenomenon is based on
the smallness of the perturbation of the electron subsys-
tem of the crystal by the electromagnetic field of the ra-
diation. The direct interaction between the light and the
vibrations of the nuclei is generally not taken into account,
in view of the large mass of the nuclei. It is assumed,
however, that the lattice vibrations can interact with the
light indirectly, via the electronic subsystem. The solu-
tion of the problem of RS of light under the indicated as-
sumptions was considered in detail in [24>53>54:l

- By re-
garding the crystal as a "giant molecule," it can be
shown that the intensity of the Raman scattering with
polarization a is equal to

' R S (<• ( 4 . 6 )

w h e r e p a n d a a r e t h e i n d i c e s o f t h e a x e s x , y , a n d z o f

t h e s t a t i o n a r y c o o r d i n a t e s y s t e m , i n w h i c h t h e s c a t t e r e d

l i g h t i s o b s e r v e d , I o i s t h e i n t e n s i t y o f t h e e x c i t i n g l i n e

w i t h p o l a r i z a t i o n p , a n d u' i s t h e f r e q u e n c y o f t h e s c a t -

t e r e d r a d i a t i o n . I f t h e c o n d i t i o n s f o r t h e a p p l i c a b i l i t y o f

t h e p o l a r i z a b i l i t y t h e o r y a r e s a t i s f i e d , t h e n t h e s c a t t e r i n g

t e n s o r [3pa i s e q u a l t o t h e m a t r i x e l e m e n t o f t h e t r a n s i -

t i o n b e t w e e n t h e g r o u n d a n d e x c i t e d v i b r a t i o n a l l e v e l s o f

t h e t e n s o r apa o f t h e p o l a r i z a b i l i t y o f t h e c r y s t a l , t h e

e x p l i c i t f o r m o f w h i c h i s o b t a i n e d o n t h e b a s i s o f t h e

m i c r o s c o p i c t h e o r y i n t h e c i t e d p a p e r s .

O n e o f t h e s h o r t c o m i n g s o f t h e m e t h o d d e s c r i b e d a b o v e ,

i n w h i c h t h e R S p r o c e s s i s c o n s i d e r e d i n s e c o n d - o r d e r

p e r t u r b a t i o n t h e o r y , i s t h e f a c t t h a t t h e e i g e n f u n c t i o n s o f

t h e u n p e r t u r b e d e l e c t r o n i c s u b s y s t e m p e r t a i n t o t h e n o n -

e q u i l i b r i u m c o n f i g u r a t i o n o f t h e n u c l e i . T h e c o n c r e t e

f o r m o f s u c h f u n c t i o n s r e m a i n s u n k n o w n , a n d i t i s t h e r e -

f o r e i m p o s s i b l e t o e s t i m a t e t h e m a t r i x e l e m e n t s t h a t

e n t e r i n t h e e x p r e s s i o n s f o r t h e s c a t t e r i n g t e n s o r . I t i s

m o r e n a t u r a l t o u s e a s t h e u n p e r t u r b e d f u n c t i o n s o f t h e

e l e c t r o n i c s u b s y s t e m f u n c t i o n s t h a t p e r t a i n t o t h e e q u i -

l i b r i u m c o n f i g u r a t i o n o f t h e n u c l e i , a n d t o t a k e t h e i n -

f l u e n c e o f t h e v i b r a t i o n s o f t h e n u c l e i i n t o a c c o u n t b y

i n t r o d u c i n g a n a d d i t i o n a l p e r t u r b a t i o n d u e t o t h e i n t e r -

a c t i o n o f t h e e l e c t r o n s a n d t h e p h o n o n s . T h e f i r s t s u c h

d e s c r i p t i o n o f R a m a n s c a t t e r i n g w a s p r e s e n t e d b y I . I .

S o b e l ' m a n . 1 - 5 5 - 1 A d e t a i l e d d e v e l o p m e n t o f t h e i n d i c a t e d

m e t h o d f o r s i m p l e c r y s t a l s i s g i v e n i n : s 6 > S 7 ] .

I n t h i s m e t h o d t h e R S p r o b a b i l i t y d i f f e r s f r o m z e r o

o n l y i n t h i r d o r d e r o f p e r t u r b a t i o n t h e o r y . T h e p r o b a -

b i l i t y o f t h e S t o k e s R S p e r u n i t t i m e i s d e t e r m i n e d b y

t h e e x p r e s s i o n

5 = ^ F Z J | 2 J
0— 1, 1; n + 1 ; 0 | i » | a ) < a | v\ b) (b \ v\no, 0; n; 0> 2

((% — W0)((0i,— a>0) '; ( 4 . 7 )

h e r e a a n d b a r e t h e i n d i c e s o f t h e i n t e r m e d i a t e s t a t e s

o f t h e e n t i r e s y s t e m , k 0 a n d k ' a r e t h e w a v e v e c t o r s o f

t h e i n c i d e n t a n d s c a t t e r e d l i g h t , v = H r a ( j + H i a t i s t h e

p e r t u r b a t i o n o p e r a t o r , w h i c h c o n s i s t s o f t h e p e r t u r b a t i o n

o f t h e e l e c t r o n i c s u b s y s t e m b y t h e r a d i a t i o n f i e l d a n d b y

t h e p h o n o n f i e l d . I n s p i t e o f t h e c o m p l i c a t e d f o r m o f ( 4 . 7 ) ,

t h i s p a r t i c u l a r m e t h o d y i e l d e d c o n c r e t e e s t i m a t e s o f t h e

s c a t t e r i n g c r o s s s e c t i o n i n t h e c a s e o f s i m p l e c r y s t a l s ,

s i n c e t h e v a l u e s o f t h e e l e c t r o n - p h o t o n a n d e l e c t r o n -

p h o n o n i n t e r a c t i o n s a r e k n o w n f o r c e r t a i n c r y s t a l s .

D i r e c t m e a s u r e m e n t d a t a o n t h e a b s o l u t e c r o s s s e c t i o n
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of RS of light in crystals are presently available for a
very small number of crystals.lSBr*01

4.2. Selection Rules in First-order RS Spectra

According to the general theory,[81] the matrix element
(f A.)ik of a certain operator t\ differs from zero only if the
product of the representations ^ x r ^ x l * contains a
unit representation, i.e.,

r " x r l x r ' D i , (4.8)

where I* is the representation of the symmetry group of
the quantum system, in accordance to which the wave
function of the initial state is transformed, I* is the rep-
resentation according to which the wave function of the
final state is transformed (the initial and final states are
assumed to be different), r* is the representation in ac-
cordance with which the operator fx is transformed, and
A is a unit representation. In the case of RS, the operator
fx is, in the polarizability-theory approximation, a sym-
metrical tensor of second rank otpS, the components of
which transform in accordance with the irreducible repre-
sentation [V]2 of the direction group of the crystal. As was
already indicated, for the first-order RS process the tran-
sition occurs between the long-wave vibrational levels,
which are classified approximately in accordance with the
irreducible representations of the point group F of the
crystal. Thus, to clarify the selection rules in the first-
order RS spectra, it is sufficient to know the irreducible
representations of the group F.

Let us consider Stokes RS (the analysis for anti-Stokes
RS is similar). The initial state is the ground state and
corresponds to the unity representation. Therefore (4.8)
takes the form

Table m . Selection rules in first-order Raman-scattering
spectra of the most important crystals

(from the data of C56])

[V]aX (4.9)

In accordance with the general theory of representation,
C39] this is equivalent to

[V? (4.10)

i.e., the RS turns out to be allowed for the transition
A — I* if the representation [V]2 contains at least one
irreducible representation rk. The expansion of the rep-
resentation [V]2 into irreducible components can be real-
ized by using the relation

(4.11)

where
) „ 2cos cp (± 1 ± 2cos

(p is the rotation angle, the signs depends on whether the

rotation is proper or improper, and x^ (n) a r e the char-
acters of the irreducible representations of the group F.

If N r j j * 0, then the components of the polarizability
tensor, which transform in accordance with this repre-
sentation, are also different from zero. Using (4.11), it
is easy to ascertain which components of the RS tensor
differ from zero for the given crystal. The results for
the most important crystal classes are presented in
Table HI. The irreducible representations that are ac-
tive in the first-order RS spectra are listed against each
crystal class.

As indicated above, the Raman scattering tensor is in

System

Mono-
clinic

Ortho-
rhombic

Trigonal

Tetra-
gonal

Class

in

222 D-,
mmZ C2l,
'"""" "2h

3 C3
3 C3i

32 D3
3m C3v
3m D3a

32 D,
'6m C3v
3m D3d

i (\
I .S'4
iim Cih

la 0 ON
1 0 b 0
Vd d c/

.1
-li( = )Ag

la 0 II \
0,0

\0 d b )
A\z)
Agla d II N
0 a 1)

Vd 0 b )
-ll
• li (;)
Alg

la 0 ON
1 0 d 0 I
Vo 0 6/

-ll
• l l W

Alg

la (I 0 \ / c

1 0 a 0 I I d

Vo 0 b / V o

.4 (z)

A

Ag

Raman scat ter ing tensor

la 1) rf'

1 0 b d

W i l t ,

A'(x. z

II) d ON

1 d I! 0

V o (1 0 /

111 (--)

An

Ihg

IC rf

( r ;

VO c

E{x

h - u /
' V d / u /

) . - r ( w )

1 0 1 > 0 °
' \e d d / \ 0

It, ((/) « : ,

" l ( J ) " l

" i s " 3

/ - « - r f

0/ V - / ••

Eg
ON / d —c
d\ l-c 0
0/ \—rf 0

) E (y)
E{ij) E(-x)

Eg

ic 0

d - c

Vo rf

E(x

Eg

rf ON

- c O

0 0 /

B

B ( ! )

ON / u — c -
rf l-c 1)
0/ \-d 0

) e (.")
) £ ( - » • )

/ 0 0 e\ I 0

0 0 / 1 0

V / 0 / V - /

/ 0 /

(!/)

" 0

1 )

0

0 /

0 - A
0 ,

s 0 /
£ (*) £' (;/)

fi (1) £ ( — w)

t h e g e n e r a l c a s e n o t s y m m e t r i c a l . O v a n d e r [ 5 1 ] g i v e s n o n -

z e r o e l e m e n t s o f t h e s c a t t e r i n g t e n s o r , r e g a r d e d a s a

s e c o n d - r a n k t e n s o r . T h e r e s u l t s o f d i f f e r f r o m t h o s e

g i v e n i n T a b l e I I I i n t h e p r e s e n c e o f a d d i t i o n a l n o n v a n i s h -

i n g c o m p o n e n t s .

T o c a l c u l a t e t h e e f f e c t i v e c r o s s s e c t i o n s o r t h e i n -

t e n s i t y I o f t h e R a m a n - s c a t t e r i n g l i n e s w i t h t h e a i d o f t h e

t a b l e s i t i s n e c e s s a r y t o u s e t h e f o r m u l a

s ^ l S g v - ; , ] 2 , ( 4 . 1 2 )
pa

w h e r e A i s a p r o p o r t i o n a l i t y f a c t o r , e p a n d e £ . a r e t h e

c o m p o n e n t s o f t h e u n i t v e c t o r s o f t h e p o l a r i z a t i o n o f t h e

e l e c t r i c f i e l d o f t h e i n c i d e n t a n d s c a t t e r e d l i g h t , a n d / 3 p C T

i s t h e R a m a n - s c a t t e r i n g t e n s o r c o m p o n e n t s .

B y w a y o f a n e x a m p l e l e t u s c o n s i d e r R a m a n s c a t t e r -

i n g f o r t h e g e o m e t r y s h o w n i n F i g . 6 .

W e c o n s i d e r f i r s t s c a t t e r i n g b y v i b r a t i o n s o f t y p e B

o f g r o u p C 4 . T h e e f f e c t i v e R a m a n s c a t t e r i n g c r o s s s e c -

t i o n i s
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Table m (cont.)

System

Tetra-
gonal

Hexa-
gonal

Cubic

Class

4mm (\,,
422 1),,
42m D2itAlmmm D^i

6 t6
8 C№
dim Ce,,

622 De

6mm C'.,,.
«»i2 />„,
6lmmm D6K

23 7'

432 0
43;). rrf
mZin 0,,

Raman scattering tensor

/a 0 0\ /c 0 0\ /O d 0\ /O 0 e\ /() 0 0\
I 0 o 0 I 1 0 — <• 0 I 1 d 0 0 1 1 0 0 0 1 1 0 0 <• 1
Vo 0 b ) Vo 0 0/ Vo 0 0/ \e 0 0/ Vo e 0/

. ! ,( :) «, D, £ ( r ) £ (i/)]

.1, « , lu £ ( - » ) £ ( i )

.•ll 7f( Hi (;) £(./) £ ( r )
-'l« "ig B2g £ g *'g

/ « 0 OWO ( I c W 0 0 - d W , / O W O / - A
(I a 0 0 0 d 0 0 c / -<• 0 I 0 - f — /

Vo 0 b) \c d 0 / V - d c 0 / Vo 0 0 / Vo 0 ( 0 /
.1(=) E,{x) £i(.v) £ 2 A",
V E" £" £ ' ( x ) £ ' ( . / )

Ag Elg Ele E2e E2g

la 0 0 \ / 0 0 0 \ / (1 0 — r \ /() d 0 \ / i 0 0 \
I 0 a 0 I 1 0 0 c 1 1 0 0 0 j 1 d 0 0 I 1 0 —d 0 1
Vo 0 b) Vo c 0 / l ^ r ( ) 0 / Vo (1 0 / Vo 0 ( 1 /

. 1 , (:) £'i(.v) £ f ( — i ) £ 2
 £ 2

A\ E" E" E' (X) E'(IJ)

la U l l \ / ( II 0 \ / t 0 0\ / 0 0 0 \ /() 0 d\ /O d 0 \
1 0 a 0 1 I d b 0 I I 0 ft 0 I 1 0 0 d I l o o n ) I d 0 0 )
Vo 0 a) V'l 0 b) Vo 0 b) \H d 0 / \.d 0 0 / \ ( ) (I (1/

A /•.' £ £ (J;) F (n) F (:)

A, £ £ ?2 ^'2 £2

.ll E E Fn(.c) F2(\i) Fn(z)
A,g Eg Eg Fng Eg Fng

According to Table III

PI: = P̂  ="-= 0, p̂  = c, P,B = Pi,i = a, P!,1/=—c.

If we consider scattering polarized in the (x, z) plane
(parallel scattering), we obtain for the effective cross
section

«ll = /I (exc + f,,rf)2 cos2 if. (4.13a)

Accordingly, for scattering polarized perpendicular to
the (x, z) plane we have

s± = A(exd-eyc?. (4.13b)

It is assumed here that the scattered light is trans-
verse. Let us consider also an example of scattering by
triply degenerate oscillations of the type Faq of group C^.
In this case the total effective cross section can be rep-
resented in the form of a sum of three terms, each of
which is obtained from the corresponding matrix of
Table III. As a result of the calculations we obtain

FIG. 6. Geometrical scattering con-
ditions.

(4.14)

In the particular case when ip = n/2, the obtained expres-
sions simplify greatly.

An important characteristic of the scattered light is
the degree of depolarization p, defined as the ratio p
= S|| /Sj_. The degree of depolarization in the general
case depends on the angle tjj and makes it possible to
estimate the symmetry of the oscillations that take part
in the radiation transport. Calculations of the degree of
depolarization for different types of crystals and different
geometries of illumination are found in a number of
papers. [82>63]

Experimentally, to analyze the Raman scattering ten-
sor, one usually obtains the so-called two-dimensional
intensity table/643 To construct this table, one measures
the intensity of the scattered light for different orienta-
tions of the crystal and of the polarizing devices in the
paths of the incident and scattered light. The observation
is carried out in a direction perpendicular to the incident
light. For a theoretical calculation of the components of
the indicated table, in the case of nondegenerate oscilla-
tions, it is necessary to take the square of the corre-
sponding component of the Raman-scattering tensor. For
example, the intensity-table component corresponding to
the fact that the polarizing devices of the receiver and
of the illuminator are oriented along the x axis is pro-
portional to /Sxx, etc. If the oscillation that takes part in
the Raman scattering process is degenerate, then the
component of the intensity table is obtained by summing
the corresponding squares of the Raman-scattering ten-
sor components.

We note that in the literature there is frequent men-
tion of cases when the selection rules in Raman spectra
of crystals are violated. These violations can be divided
into two types. On the one hand, the appearance of "for-
bidden" RS line may be due to components of the RS ten-
sor which are equal to zero in the table. Such "forbidden"
lines may be observed when the crystal is heated,[65>66]

when the exciting line approaches the actual resonant ab-
sorption band of the crystal (resonant RS). Violation of
the selection rules at sufficiently high temperatures is
quite natural, for it was assumed in the derivation of
these rules that the crystal is in the ground state prior
to the scattering process, a condition strictly satisfied
only at T = 0°K.[sl] In the case of resonant RS, it is nec-
essary to take into account the fact that the RS tensor is
not symmetrical.C51]

On the other hand, violation of the quasimomentum
selection rules in the RS spectra is possible as a result
of violation of the translational invariance of the crystal
in the presence of inhomogeneities or vacancies.C87] As
a result it is possible to observe RS in which one lattice
phonon with arbitrary quasimomentum takes part. The
main contribution to the scattering should be made in
this case by phonons corresponding to the critical points
of the Brillouin zone (see Ch. 6). A violation of the se-
lection rules of this type has apparently, made it possible
to observe first-order lines in SrTiO3 crystals. The ap-
pearance of additional sharp but very weak lines near
strong RS lines :69>70] is also due to a violation of the
selection rules of this type (see Sec. 4.3).

The selection rules can be violated following applica-
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tion of external fields[71] that lower the symmetry of the
crystal. This is very useful for the study of oscillations
that are not active in the RS spectrum.

4.3. Results of Investigation of First Order RS Spectra
of Simplest Crystals

a) Calcite (CaCO3). The RS spectrum of calcite has
been the subjectof many investigations, since large single
crystals of calcite are readily accessible for investigation,
are transparent in the wide region of the spectrum, are
homogeneous, and can be easily worked. The unit cell of
the calcite crystal is shown in Fig. 7. It contains two
CaCO3 molecules. The coordinates of the atoms are:

Ca M; 2):-! .-!•-•-!-: 4 , -V- , -,- ;

C ( 3 , 4 ) : 0 , 0 , 0 4 . A . - i - ;

O:(5. fi. 7. 8. 9. 10).

The s y m m e t r y s p a c e g r o u p of t he c r y s t a l i s D3Cj, t h e d i -
r e c t i o n g r o u p i s D3d. T h e l i m i t i n g o s c i l l a t i o n s (k = 0)
of t he un i t c e l l can b e s u b d i v i d e d in t he fo l lowing m a n n e r .
T h e CO 3 g r o u p s c a n b e r e g a r d e d a s a uni t and a c c o r d -
ing ly one c a n s e p a r a t e t he t r a n s l a t i o n o s c i l l a t i o n s ( m o -
t i o n s of t he C O 3 g r o u p s r e l a t i v e t o e a c h o t h e r a t r e l a t i v e
to t h e Ca a t o m s ) , o r i e n t a t i o n o s c i l l a t i o n s ( r o c k i n g of t he
CO 3 g r o u p s r e l a t i v e to e a c h o t h e r in p h a s e a n d in c o u n t e r -
p h a s e ) , and i n t e r n a l o s c i l l a t i o n s of t h e CO 3 g r o u p s . T h e
c h a r a c t e r s of t h e c o r r e s p o n d i n g v i b r a t i o n a l r e p r e s e n t a -
t i o n s , and a l s o of t he r e p r e s e n t a t i o n s of the v e c t o r and
of t h e s y m m e t r i c a l s e c o n d - r a n k t e n s o r , c a n b e c a l c u -
l a t e d by u s i n g F i g . 7 and T a b l e I. T h e r e s u l t s of t he
c a l c u l a t i o n s a r e shown in T a b l e IV.

Expand ing t h e r e d u c i b l e r e p r e s e n t a t i o n s in t e r m s of
t h e i r r e d u c i b l e o n e s , we ob t a in

Table IV. Characters of representations for calcite
crystal (group D3C[

Name of representation

Vibration representation
Translation vibrational representation
Orientation vibrational representation

External vibration representation
Internal vibration representation
Vector representation
Symmetrical tensor representation
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E ~ f
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1
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1
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I I
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- 1

- - 2
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_ I

2

I

1

- 1

0

I )

g —- Eu,
(4.15)

£u -;- AES

Comparing with the representations of the vector
= A2U + Eu and of the symmetrical tensor r^CT = 2A^ \g
+ 2Eg, we arrive at the conclusion that the oscillations
of type Axg and Eg are active in the RS spectrum and
are inactive in the infrared-absorption spectrum. At
high frequencies (internal oscillations) one should ex-
pect three RS lines, and in the low-frequency spectrum
two lines.

The RS spectrum of calcite has revealed five lines

FIG. 7. Unit cell of calcite crystal.

with frequencies 155, 282, 712, 1086, and 1436 cm"1."2"743

The last two frequencies obviously correspond to internal
vibrations of the CO3 group, the strongest line &v = 1086
cm"1 corresponds to a fully symmetrical oscillation of the
type Axg, and the lines 712 and 436 cm"1 to oscillations of
type Eg. The remaining two low-frequency lines corre-
spond to oscillations of the type Eg.

The succeeding investigations of the RS spectrum of
calcite [69~70>75] have shown that this spectrum has a much
more complicated structure. Additional many weak sharp
lines as well as a continuous background in certain sec-
tions of the spectrum were observed in the indicated in-
vestigations. Thus, weak satellites with frequencies 1067,
1072, and 1075"1 near the 1086 cm"1 line; lines at 1399,
1412, and 1418 cm"1 were observed near the 1436 cm"1

line, etc.
The appearance of additional lines is explained in [76>77:|

on thebasis of Raman's theory of crystal lattice dynamics.
These lines are connected with scattering by additional
degrees of freedom of the Raman supercell. It should be
noted that the appearance of additional lines can be ex-
plained also on the basis of the Born theory, as a result
of violation of the quasimomentum conservation owing to
the inhomogeneities of the crystal lattice.

b) Quartz (SiO2). A large number of papers are de-
voted to an experimental study of the RS spectra of quartz,
and the studies covered not only the frequencies but also
the intensities, the state of polarization, and the line
widths.C78-82'62'76]

The crystal lattice of a-quartz is made up of silicon-
oxygen tetrahedra: each silicon ion is connected with four
surrounding oxygen ions, and each oxygen ion is connected
with two silicon ions. The direction group of a-quartz is
D3, and the unit cell contains three SiO2 molecules. Ac-
cordingly, four oscillations of type Ai and eight doubly-
degenerate oscillations of type E are allowed in the Raman
scattering spectra at k = 0. The remaining degrees of
freedom yield four oscillations of type A2 which are active
in the infrared spectrum, and three acoustic branches.

The customarily investigated quartz crystals are in the
form of a cube with edges directed along the crystallo-
graphic axes. We shall henceforth assume the optical axis
of the a-quartz to coincide with the z axis. According to
Table III, we then have for the scattering-tensor compo-
nent |3xx = /3yy * <3ZZ; ppa = 0 when p * a (oscillations of
type Aj), /3xx = - / 3 y y = - / 3 x y , /3XZ = - 0 y z , 0zz = 0 (oscil-
lations of type E). Experimentally, 12 lines were observed
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Table V. Relative intensities of RS lines
of a-quartz

Sym-

class

E
.1
E
A
A
EE
E
E
A
E
E

Width
cm"1

128
20(1
2GB
357
4li(i
(iUt)795
805
|0(i|
1081
115!)
1228

Fie-
5 cm'1

't

21
.'i.
4
(>.(
li.
U.I
y <

11..
8.
11.(

90
51
fi.-
5.3

180
3.1

}7.3
2.7
1.5

1(1
1.4

55
Bli
fi.5
5.7

211)
2.4
6.4
1.8
3.3
7.2
1.0

50
6)
(>.()
li.l

210
2.4
fi.2
1.5
3.1
7
1.4

10!)
28
12
12

180
4.4
3
3.8
3.1
1.1

10
1.3

Bl
31
1
1

221
3.4
4.3
1.0
2.8
fi.ll
1.1

Bl
3i
12
13

220
33.4
4.1
2.1
2.7
B.5
1.2

in the RS spectrum of a-quartz. Table V lists the results
of measurements of the parameters of the a-quartz lines,
performed in [80] by a photographic method. In that inves-
tigation, the intensities of the RS lines were measured at
three sample positions, with each of the three axes coin-
ciding in succession with the scattering direction (other
conditions being equal). The symbols z, x, and y in the
table denote the data obtained when the indicated axis
coincides with the scattering direction and the sample
was uniformly illuminated in the plane perpendicular to
this axis.

Using a polarization measurement procedure, D. F.
Kiselev and L. P. Osipova[81] obtained the values of the
intensities for the Raman scattering lines of a-quartz.
These measurements, generally speaking, can be car-
ried out by several methods: 1) the crystal is illuminated
with linearly-polarized light, and a polaroid with a polar-
ization direction parallel and perpendicular to the spec-
trometer slit is alternately placed in the path of the scat-
tered light; 2) the crystal is alternately illuminated with
linearly polarized light having a polarization direction
parallel and perpendicular to the observation direction;
this method is usually realized using "tubular" polar -
oids; 3) the crystal is illuminated with unpolarized light,
and polaroids with polarization directions parallel and
perpendicular to the instrument slit are alternately placed
in the path of the scattered light. Each of these methods
makes it possible to compile from the measured intensity
values an intensity table whose components are propor-
tional to the squares of the components of the scattering
tensor (the measurement methods, the calculations, and
the introduction of the necessary corrections are de-
scribed in t81 'M]; see also the supplement to the book Mi).
By using the intensity table, it is easy to find the absolute
values of the scattering-tensor components. The signs of
the components of this tensor can sometimes be deter-
mined on the basis of simple symmetry considerations,
but in many cases it is necessary to perform additional
calculations and measurements. According to Table III,
Izx = Izy and Ixx = lyy- Thus, in the intensity table and
accordingly in the scattering tensor there are only four
components that differ in absolute magnitude. For the
lines of class A, all the scattering-tensor components
can be regarded as positive. For the most intense 466
cm'1 line, according to the data of t81J, the RS tensor is
given by

[103 + 3 14 + 12 22 ± 2"]
P(466)= 14 + 12 103 ± 3 22 ± 2 .

L 22 ± 2 22 + 2 100 ± 2j

Similar data are given in [81] for other lines of class A.
We call attention to the fact that the mixed components
Ppo (p * cr) do not equal to zero, i.e., there are deviations
from the selection rules.

As shown by the measurements,[81] the scattering ten-
sors for the 206, 357, and 466 cm"1 lines are approxi-
mately spherically symmetrical (pzz « fex » /3yy). The
fourth line of type Hi has an appreciably differing scat-
tering tensor (the values of the components are given in
the same scale as for the tensor /3(466)):

(5(1081) [6 0 5 j
06 5 .
5 5 15,3J

The form of this tensor shows that the oscillations of the
induced electric moment occur in this case predominantly
along the z axis.

For degenerate oscillations, the experimental deter-
mination of the Raman scattering tensor of a-quartz was
carried out by Kiselev.l821 In the measurements, two
identical cubic samples were used, which differed in the
direction of the crystallographic axes x and y. The axes"
of one sample were directed along the edges of the cube,
while the axes of the second sample made an angle of 45°
with the crystallographic axes x and y.

The measurements have shown that, within the limits
of errors , the intensity tables of both investigated sam-
ples are the same for the most intense type lines, E 128,
696, 795-805, and 1159 cm"1.

For degenerate oscillations, the Raman scattering
tensor can be written in the form

Ppa ~ Ppa~r Ppo,

where the tensors P' and /3" each pertain to one of the de-
generate oscillations with a given frequency u>. Inasmuch
as two oscillations of type E with frequency a> are normal
oscillations, i.e., independent of each other, it follows
that

2 + (K a + /p
The reduction of the experimental material in [82] was

based on the assumption that IAg- = Ip'a, as a result of
which the scattering tensors /3' and /3" differ only in the
signs of certain components. The scattering tensors ob-
tained in this case were for type-E lines.

5. CERTAIN TYPICAL CASES OF RS OF LIGHT IN
CRYSTALS

Investigations of RS of light in crystals involve great
experimental difficulties. First, it is necessary to have
for the investigations sufficiently large and very pure
samples, thus greatly limiting the number of possible
objects. Work with powders and polycrystals is possible,
but entails additional difficulties. The RS lines in crys-
tals are very weak, and in addition lie near the exciting
line, which produces a strong background, and also
"ghosts" when instruments with diffraction gradients are
used. In spite of this, more than 100 different crystals
have been investigated to date, and the number of RS in-
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vestigations amounts to several hundred. It is not our
task to present a systematic review of all these investi-
gations, all the more since there are several review
papers on this question, cs"7>56'85] where an extensive bib-
liography is cited. We consider below only several typi-
cal cases of RS in crystals which in our opinion are of
greatest physical interest.

5.1. Molecular Crystals

An intensive investigation of lattice vibrations of mo-
lecular crystals was initiated by the discovery of the
low-frequency RS spectrum by E. F. Gross and M. F.
Vuks.[88] The lines of this spectrum have two important
features:

1) The region of lines of this spectrum lies in the im-
mediate vicinity of the exciting line, and consequently
correspond to very low natural frequencies of the me-
dium.

2) In the crystal spectrum, the lines are quite clearly
pronounced; on the other hand, only a continuous spec-
trum is observed in the spectrum of the same substance
in the liquid state in the region under consideration (the
wings of the Rayleigh line).

Gross and his co-workers expressed the opinion, even
in their first papers, that the low-frequency spectrum is
due to intermolecular vibrations—vibrations of the crystal
lattice of the investigated substance. This conclusion was
confirmed by a number of experiments.[87:i

A comparison of the spectra of crystals whose quasi-
elastic constants can be assumed to be close in magnitude
makes it possible in principle to assign the observed lines
to definite oscillations. Systematic investigations of this
kind were performed by E. F. Gross, A. V. Korshunov,
M. F. Vuks, and their co-worker s.C88"92] In these investi-
gations, a comparison was made of the low-frequency
spectra of crystals having similar structure, primarily
isomorphic crystals, particularly paradihalide deriva-
tives of benzene. A group theoretical analysis of the os-
cillations of these crystals can be based on the general
theory developed in [481. The theory of crystal-lattice
vibrations of molecular crystals has been developed
in [93"9".

It should be noted that the subdivision of vibrations into
internal and external is not rigorous. Coupling between
the internal and external vibrations, which usually is very
difficult to control, can lead to a shift of the position and
to a change of other parameters of the lines in the low-
frequency spectra. According to the data of Porfir'eva,[83]

in those cases when the external limiting vibrations can be
fully separated into translational and orientational, a cou-
pling between the internal and orientational vibrations
still remains.

Besides the study and comparison of the spectra of
similar crystals (primarily isomorphic), of great impor-
tance for the investigation of crystal-lattice dynamics is
the study of the small-oscillation spectra at different
temperatures and pressures. Such investigations make
it possible also in a number of cases to relate the lines
to various lattice vibrations.

According to the data of t98'98'99^ when the temperature
decreases an increase of the frequencies is observed.
This effect is apparently due to the approach of the mole-
cules as a result of compression of the substance when

FIG. 8. Temperature dependence of the frequencies: 1 — stilbene
110 cm"1 line; 2 — tolane 105 cm"1 line; 3 — tolane 116 cm"1 line (at
273°K).

the temperature is lowered, causing an increase in the
quasielastic constants of the crystal. The frequency shift
has a smooth almost linear character, slowing down
somewhat at low temperatures. By way of illustration,
Fig. 8 shows plots of the temperature dependence of the
frequencies of stilbene and tolane, obtained in [99]. A
similar effect is observed under hydrostatic compression
of the medium. According to the data of Fruhling,[98] the
lines of crystalline benzene, which have under ordinary
conditions frequencies 63 and 105 cm"1, have frequencies
66 and 112 cm"1 respectively at 720 atm.

With increasing temperature, the integral intensity of
the low-frequency Raman-scattering lines increases, in
accordance with the data of [86], and the temperature de-
pendence of the intensity agrees with the theoretical one.

The line widths in low-frequency Raman spectrum
were investigated by A. V. Korshunov and A. F. Bondarev
cioo-102] a n d b y p A Bazhulin, A. V. Rakov, and A. A.
Rakhimov.[fl9'103:i Of particular interest are measurements
of the width of these lines, carried out at different tem-
peratures.

The main causes of line broadening in the low-fre-
quency spectrum are apparently the anharmonicity of
the oscillations and the jumplike reorientation of the
molecules. The influence of the anharmonicity on the
temperature dependence of the width was qualitatively
considered in ll04i. The expression obtained for the line
width is

aTv
f '

(5.1)

where a is a constant, T the absolute temperature, v the
frequency of the given line, and f the quasielastic con-
stant.

The influence of reorientation of molecules in the liquid
on the widths of Raman-scattering lines for which the ten-
sor of the derivative of the polarizability has an aniso-
tropic part was investigated experimentally and theoret-
ically in a number of papers. Unlike a liquid, where ro-
tations of the molecules through any angle are possible
in principle, only rotations that do not violate the crystal-
lattice symmetry are realized in crystals. Rakov[105:l

demonstrated for the first time, by an optical method,
that in many crystalline substances there actually occur
random reorientations of the molecules, and calculated
the reorientation barriers U. The following formula was
obtained for the temperature dependence of the line width,
in analogy with liquids,

W - W - ^ ) . (5.2)
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Special interest attaches to investigations of the reorien-
tation of molecules in the crystal lattice by means of the
low-frequency spectra.[99] According to (5.1) and (5.2),
the temperature dependence of the line width is deter-
mined in the general case by the sum of the anharmonic
and reorientational terms:

where A and B are certain constants. In accordance with
the ratio of the indicated two terms, the temperature de-
pendence of the line width is linear or exponential to a
lesser or a greater degree.

Figure 9 shows a typical dependence of the low-fre-
quency spectral line width on the temperature in accord-
ance with the data of [98]. It can be readily seen that for
most lines this dependence is linear, but for the 90 cm"1

frequency the dependence is close to exponential, i.e., the
principal role for this line is played by reorientation of
the molecules in the lattice. Reduction of the experimen-
tal data makes it possible to find the potential barriers
of the orientation U and the average reorientation time T.

We have used above rather crude qualitative notions
concerning the causes of line broadening in the low-fre-
quency spectra. A more rigorous solution of the problem
is given in [106] on the basis of the theory of random ro-
tary wandering of the molecule in the crystal lattice. Ac-
cording to this theory, one considers first scattering by
a molecule taken individually, after which one considers
the total scattering by an aggregate of molecules making
up the crystal. In spite of the classical approach, to this
problem, the correlation theory[ lo6] leads to good agree-
ment with the experiment. The quantum mechanical the-
ory was developed by A. A. Rakhimov and L. A. Shelepin.
cio3] — ke physical meaning of the formulas of the quantum
and correlation theory is essentially the same.

Let us consider now the perturbations of the intramo-
lecular oscillations by the field of the crystal lattice.
Usually these perturbations are small and can be attrib-
uted to two mechanisms: a) the influence of the static
field of the crystal, which leads to a shift of the frequency
and to a change in the selection rules for the intramolec-
ular oscillations (as a result, certain forbidden frequen-
cies may become active and degenerate frequencies may
split); b) resonant interaction of identical oscillations of
molecules in the unit cell, as a result of which frequency
splitting takes place (the number of components of the
split line cannot exceed the number of molecules in the
unit cell).

FIG. 9. Dependence of low-frequency spectral line width on the
temperature.

The first effect is called static splitting, and the sec-
ond dynamic or Davydov splitting (it was first proposed
by A. S. Davydov to explain the structure of the electronic
spectra of molecular crystals[49]).

Investigations of the splitting of vibrational frequen-
cies under the influence of the indicated perturbing fac-
tors were carried out so far mainly by using the absorp-
tion spectra.[107] In some cases it was possible to ob-
serve splitting due to only one of these factors. Thus,
for example, O. V. Fialkovskii[108] investigated the spec-
trum of infrared absorption of single-crystal anthracene,
and observed splitting of the 740 cm"1 into the components
742 and 728 cm"1. The anthracene molecule has no degen-
erate vibrations. Therefore the effect observed in this
investigation may be only the Davydov splitting. The static
splitting of degenerate lines in infrared spectra has the
same order of magnitude.

From the point of view of a study of the influence of
the lattice field on the intramolecular oscillations, great
interest attaches to investigations of cyclohexane crys-
tals. At 46°C, cyclohexane crystallizes in a cubic system
(form I) with four molecules per unit cell, and there is
no splitting of the lines in the region of the fundamental
frequency. At - 87°C, a first-order phase transition takes
place, with formation of crystals of the monoclinic sys-
tem (form II) with eight molecules per unit cell. Many of
the lines of the infrared spectrum of form II are split.U091

A similar splitting occurs in the Raman scattering spec-
trum of this form. According to the data of M. Ito,[110]

lines of type Eg, which have in liquid cyclohexane the
frequencies 1025, 1266, 1345, and 1441 cm"1, split r e -
spectively into 1023, and 1032, 1264 and 1276, 1335 and
1347, and 1439 and 1445 cm"1. Microphotographs of three
lines of form II are shown in Fig. 10. In addition, lines of
type Ag, 1055 and 1422 cm"1, which are forbidden by the
selection rules in the liquid phase, appear in the spectrum
of form II. These effects can be attributed to a lowering
of the symmetry of the crystal lattice and help in turn r e -
fine the symmetry group of the c rys ta l . l i m

5.2. Investigation of RS Spectra in Phase Transitions

As far back as in one of the earliest studies of RS in
crystals, G. S. Landsberg and L. I. Mandershtam£111] ob-
served a change in the intensity and width of the lines of
quartz near the point of the phase transition at T = 573°C.
In that investigation, they studied the 207 and 466 cm"1

line. It turned out that the 466 cm"1 line becomes broader
and more diffuse with increasing temperature, but the
position of its maximum hardly changes above the tran-
sition point. The 207 cm"1 line becomes strongly smeared
out with increasing temperature, and shifts towards the
exciting line. Near the transition point, this line becomes
hardly noticeable, and above the transition point, i.e., in
/3-quartz, it disappears completely.

Owing to the experimental difficulties, no systematic
investigations were made in this field for a long time
following publication of [111]. The detailed study of RS
spectra near second order phase transition points began
only after V. L. Ginzburg pointed out the singularities in
the behavior of certain lines at these points.ai2J

In the case of second-order phase transitions between
different crystal modifications, there occurs either a dis-
placement of the sublattices of the crystal in the direction
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o f o n e o f t h e n o r m a l o s c i l l a t i o n s , o r a n o r d e r i n g o f t h e

p o s i t i o n s o f t h e s u b l a t t i c e s a l o n g c e r t a i n o s c i l l a t i o n s . I t

t u r n s o u t h e r e t h a t t h e s h a p e o f t h e p o t e n t i a l c u r v e o f t h e

n o r m a l o s c i l l a t i o n i s o f g r e a t s i g n i f i c a n c e . I n t h e c a s e

o f a p o t e n t i a l w i t h o n e m i n i m u m , t h e p h a s e t r a n s i t i o n i s

a t r a n s i t i o n o f t h e d i s p l a c e m e n t t y p e , a n d i n t h e c a s e o f

t w o m i n i m a i t i s o f t h e " o r d e r - d i s o r d e r " t y p e . T h e n a -

t u r e o f t h e p h a s e t r a n s i t i o n i n t h e i n d i c a t e d s e n s e c a n b e

e s t a b l i s h e d o n t h e b a s i s o f t h e e x a c t s t r u c t u r e i n v e s t i g a -

t i o n s . H o w e v e r , i n t h e c a s e o f f e r r o e l e c t r i c s , a s s h o w n

i n [ 1 1 3 J , i t i s s u f f i c i e n t f o r t h i s p u r p o s e t o k n o w t h e r e -

s u l t s o f e l e c t r i c a l m e a s u r e m e n t s ; t h e C u r i e - W e i s s c o n -

s t a n t i s o f t h e o r d e r o f 1 0 5 d e g f o r d i s p l a c e m e n t - t y p e

t r a n s i t i o n s a n d 1 0 3 d e g f o r " o r d e r - d i s o r d e r " t r a n s i t i o n s .

I n p a r t i c u l a r , t h e p h a s e t r a n s i t i o n s i n t h e c r y s t a l s B a T i O 3 ,

L s 2 T i O 3 , K T a O 3 , a n d q u a r t z c a n b e c r e d i t e d t o t h i s t y p e o f

d i s p l a c e m e n t a n d p h a s e t r a n s i t i o n s i n t h e c r y s t a l s NaNO2,

NaClOs, K H 2 P O 4 , N H J f o P O * , R o c h e l l e s a l t , t r i g l y c i n s u l -

f a t e , e t c . b e l o n g t o t h e s e c o n d t y p e .

T h e t h e o r y d e v e l o p e d b y V . L . G i n z b u r g a n d A . P .

L e v a n y u k 1 1 1 1 2 3 r e l a t e s t h e s e c o n d - o r d e r p h a s e t r a n s i t i o n s ,

d u e t o d i s p l a c e m e n t s o f t h e s u b l a t t i c e s , w i t h t h e c r y s t a l -

l a t t i c e d y n a m i c s . A c c o r d i n g t o t h i s t h e o r y , i n t h e c a s e o f

s e c o n d o r d e r p h a s e t r a n s i t i o n s t h e f r e q u e n c y o f o n e ( o r

s e v e r a l ) S R l i n e s t e n d s t o z e r o a s t h e t r a n s i t i o n p o i n t i s

a p p r o a c h e d , a n d i t s i n t e n s i t y i n c r e a s e s i f t h e t r a n s i t i o n

p o i n t i s c r i t i c a l . S i m i l a r r e s u l t s w i t h r e s p e c t t o t h e

a n o m a l o u s d e c r e a s e o f c e r t a i n f r e q u e n c i e s i s o b t a i n e d

i n t h e s e m i p h e n o m e n o l o g i c a l t h e o r y o f f e r r o e l e c t r i c s d e -

v e l o p e d b y W . C o c h r a n . " 1 4 3

T h e t h e o r e t i c a l i n v e s t i g a t i o n s o f G i n z b u r g a n d

L e v a n y u k / 1 1 2 3 a n d a l s o o f C o c h r a n , [ 1 1 4 ] s t i m u l a t e d n u -

m e r o u s e x p e r i m e n t a l i n v e s t i g a t i o n s o f t h e v i b r a t i o n a l

s p e c t r a o f c r y s t a l s n e a r p h a s e - t r a n s i t i o n p o i n t s .

O n e o f t h e m o s t i n t e r e s t i n g o b j e c t s i s b a r i u m t i t a n a t e

B a T i O 3 . I n t h e B a T i O 3 c r y s t a l , t h e f e r r o e l e c t r i c p h a s e

t r a n s i t i o n i s o f f i r s t o r d e r ( o f t h e d i s p l a c e m e n t t y p e ) , a n d

i s c l o s e t o t h e c r i t i c a l C u r i e p o i n t ; t h e r e f o r e t h e f r e q u e n c y

o f t h e o s c i l l a t i o n r e s p o n s i b l e f o r t h e t r a n s i t i o n d o e s n o t

v a n i s h . T h i s f r e q u e n c y p e r t a i n s t o t h e o s c i l l a t i o n s o f B a

r e l a t i v e t o t h e T i O 3 g r o u p . A t r o o m t e m p e r a t u r e , t h e f r e -

q u e n c i e s 1 2 , 1 7 4 , 1 8 2 , a n d 4 9 1 c m " 1 a p p e a r i n t h e i n f r a r e d

s p e c t r u m o f s i n g l e - c r y s t a l b a r i u m t i t a n a t e , [ 1 1 5 ] a n d t h e

1 7 4 c m " 1 f r e q u e n c y v a n i s h e s a b o v e t h e t r a n s i t i o n p o i n t .

T h e s p l i t t i n g o f t h e f r e q u e n c y i n t h e r e g i o n o f 1 8 0 c m " 1

c a n b e a t t r i b u t e d t o t h e c h a n g e o f t h e c r y s t a l s y m m e t r y ,

w h i c h i s c u b i c a b o v e t h e t r a n s i t i o n p o i n t ( 0 « 1 2 0 ° C ) a n d

t e t r a g o n a l b e l o w i t . W i t h i n c r e a s i n g t e m p e r a t u r e , t h e

f r e q u e n c i e s 1 8 2 a n d 4 9 1 c m " 1 r e m a i n u n c h a n g e d , w h e r e a s

t h e f r e q u e n c y o f t h e f i r s t o s c i l l a t i o n d e c r e a s e s n e a r t h e

t r a n s i t i o n p o i n t t o 6 c m " 1 . T h e d e c r e a s e o f t h e f r e q u e n c y

i n t h e p h a s e - t r a n s i t i o n r e g i o n w a s o b s e r v e d a l s o s o m e -

w h a t e a r l i e r i n a i i i . T h e R S s p e c t r a o f b a r i u m t i t a n a t e

w e r e a l s o i n v e s t i g a t e d . I n C 6 S ] , i n t h e t e t r a g o n a l p h a s e ,

t h e f r e q u e n c i e s 2 3 5 , 3 0 6 , 5 1 2 , a n d 7 1 8 c m " 1 w e r e f o u n d

n e a r t h e t r a n s i t i o n p o i n t . O n l y t h e f i r s t o f t h e s e f r e q u e n -

c i e s c h a n g e s a p p r e c i a b l y w i t h t e m p e r a t u r e , s h i f t i n g f r o m

2 7 1 t o 2 3 5 c m " 1 w h e n t h e t e m p e r a t u r e i s i n c r e a s e d f r o m

2 9 0 t o 3 9 0 ° K . T h e a u t h o r s a s c r i b e t h i s f r e q u e n c y t o a

l o n g i t u d i n a l o s c i l l a t i o n c o n n e c t e d w i t h a l o w - f r e q u e n c y

t r a n s v e r s e f e r r o e l e c t r i c o s c i l l a t i o n . A n i n v e s t i g a t i o n o f

t h e h i g h - f r e q u e n c y o s c i l l a t i o n r e s p o n s i b l e f o r t h e f e r r o -

e l e c t r i c t r a n s i t i o n i n s i n g l e - c r y s t a l B a T i O 3 w a s r e p o r t e d

i n l l " i . S i n c e t h e o s c i l l a t i o n i n q u e s t i o n i s s t r o n g l y

d a m p e d a n d h a s a v e r y l o w f r e q u e n c y ( ~ 1 5 c m " 1 ) , i t w a s

i m p o s s i b l e t o r e g i s t e r t h e c o r r e s p o n d i n g l i n e r e l i a b l y .

T h e a n o m a l o u s s h i f t o f o n e o f t h e R S l i n e s t o w a r d s t h e

e x c i t i n g l i n e o n a p p r o a c h i n g t h e p h a s e - t r a n s i t i o n t e m p e r -

a t u r e w a s i n v e s t i g a t e d a l s o i n t 7 1 » 1 1 8 : i . It w a s o b s e r v e d i n
[ 7 1 ] t h a t t h e f r e q u e n c y o f t h e o s c i l l a t i o n r e s p o n s i b l e f o r

t h e f e r r o e l e c t r i c t r a n s i t i o n * s h i f t s t o w a r d s t h e e x c i t i n g

f r e q u e n c y b y ~ 6 0 c m " 1 w h e n t h e c r y s t a l i s c o o l e d f r o m

3 0 0 ° t o 8 ° K . I t t u r n s o u t , h o w e v e r , t h a t t h e f r e q u e n c y o f

t h e o s c i l l a t i o n i n q u e s t i o n , w h i l e d e c r e a s i n g a p p r e c i a b l y ,

d o e s n o t v a n i s h a t t h e v e r y t r a n s i t i o n p o i n t . A l i n e t h a t

v a r i e s i n a c c o r d a n c e w i t h t h e t h e o r y o f [ 1 1 2 ] w a s o b s e r v e d

i n C 1 1 8 ] . H o w e v e r , t h e f a c t t h a t t h e i n d i c a t e d l i n e i s a n

" e x t r a " l i n e a c c o r d i n g t o t h e g r o u p - t h e o r e t i c a l c l a s s i f i -

c a t i o n o f t h e n o r m a l o s c i l l a t i o n s , a n d h a s a n i n t e n s i t y

c o m p a r a b l e w i t h t h e i n t e n s i t y o f t h e f o r b i d d e n l i n e s a n d

s e c o n d - o r d e r l i n e s , i s s t i l l u n e x p l a i n e d .

T h e c a s e o f t r a n s i t i o n s o f t h e " o r d e r - d i s o r d e r " t y p e

w a s c o n s i d e r e d b y V . G . V a k s , V . M . G a l i t s k i i , a n d A . I .

L a r k i n , [ U H w h o h a v e s h o w n t h a t i n t h i s c a s e t h e m a g n i -

t u d e o f t h e f r e q u e n c y s h i f t o f t h e o s c i l l a t i o n r e s p o n s i b l e

f o r t h e p h a s e t r a n s i t i o n d e p e n d s o n t h e s h a p e o f t h e p o -

t e n t i a l c u r v e . A n a p p r e c i a b l e d e c r e a s e i s e x p e c t e d o n l y

f o r l o w p o t e n t i a l b a r r i e r s ; i n g e n e r a l , h o w e v e r , t h i s q u a n -

t i t y t e n d s t o a f i n i t e l i m i t . T h i s r e s u l t w a s o b t a i n e d o n l y

i n t h e " c l a s s i c a l " v a r i a n t o f t h e i n d i c a t e d t h e o r y , b u t i n

o u r o p i n i o n i t i s w o r t h y o f a t t e n t i o n .

P . A . B a z h u l i n a n d I . M . A r e f ' e v [ 1 2 0 ] i n v e s t i g a t e d t h e

R S s p e c t r u m o f t h e f e r r o e l e c t r i c s K H 2 P O 4 a n d NH4H2PO4.

A 3 4 c m " 1 l i n e w a s o b s e r v e d i n t h e s p e c t r a o f b o t h c r y s -

t a l s . U p o n c o o l i n g t o t h e t r a n s i t i o n p o i n t , t h e f r e q u e n c y

o f t h i s l i n e d e c r e a s e d b y 4 c m " 1 i n b o t h s p e c t r a . I t s h o u l d

b e n o t e d t h a t i n a c c o r d a n c e w i t h t h e c a l c u l a t i o n s o f C o c h -

r a n , t l l 4 ] i n K H 2 P O 4 t h e f r e q u e n c y o f t h e o s c i l l a t i o n c o n -

n e c t e d w i t h t h e f e r r o e l e c t r i c t r a n s i t i o n s h o u l d d e c r e a s e

f r o m 8 5 c m " 1 a t r o o m t e m p e r a t u r e t o 1 4 c m " 1 a t t h e t r a n -

s i t i o n p o i n t .

T h e R S s p e c t r a o f f e r r o e l e c t r i c s , t r i g l y c i n s u l f a t e , a n d

R o c h e l l e s a l t , w e r e i n v e s t i g a t e d a t l o w f r e q u e n c i e s i n C 1 2 1 ] .

N o c h a n g e s w e r e o b s e r v e d i n t h e s p e c t r a o f t h e s e s i n g l e

c r y s t a l s f o l l o w i n g c h a n g e s o f t h e t e m p e r a t u r e a n d p a s s a g e

* W e n o t e t h a t t h e i n d i c a t e d o s c i l l a t i o n is i n a c t i v e i n t h e R S s p e c -

t r u m , b u t v i o l a t i o n o f t h e s e l e c t i o n r u l e w a s a t t a i n e d i n [ 7 1 ] b y a p p l y -

i n g a n e x t e r n a l e l e c t r i c f ie ld.
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through the phase-transition point. Similar results were
obtained in [ 1 2 2 : .

Certain changes in the Raman scattering spectra at the
phase-transition points were observed in №6>123: l in inves-
tigations of single-crystal NaNO2. The measurements
performed in [ 8 6 ] have shown that when the NaNO2 crystal
is heated all the lines shift towards the exciting line and
broaden. These effects are most strongly pronounced at
the lowest-frequency lines Av1 = 121 cm"1, Av2 = 158 cm' 1

and Av3 = 184 cm"1 (the frequencies are given at room
temperature). At the ferroelectric phase transition point
(0 = 160°C), the aforementioned lines have frequencies
Au1 = 110 cm"1, Avz = 143 cm"1, and the line Av3 becomes
so smeared out that it can no longer be registered. Above
the transition point, the spectrum in the low-frequency
region is represented by a broad asymmetrical band with
maximum near 110 cm"1. The intensity of this band de-
creases uniformly with increasing distance from the ex-
citing line. In addition, certain lines with higher frequen-
cies vanish above the transition point, in agreement with
the selection rules.

The broadening of the Raman scattering lines and their
shift towards the exciting line upon heating of the crystal
are ordinary temperature effects. No line with an anoma-
lously decreasing frequency near the transition point was
observed in [ 6 6 ] .

Much stronger changes than in the cited investigations
were observed in the RS spectrum in [ 1 2 4 : following heat-
ing of an NaClO3 crystal. This crystal has a ferroelectric
transition at 6 = 593°K. Investigations at higher tempera-
tures were difficult, since the melting point of the crystal
is 537°K.

The observed spectrum of the NaClO3 crystal can be
subdivided into three groups of lines: 1) weak lines with
lowest frequencies Au1 = 72 cm"1, Av2 = 81 cm"1, and Au3

= 107 cm"1, corresponding apparently to translational os-
cillations; 2) the lines Avt =123 cm"1, Av5 = 131 cm"1,
and Au6 = 179 cm"1, corresponding to orientational oscil-
lations; 3) lines with higher frequencies, corresponding
to internal oscillations of the NaClO3 molecule (the values
of the frequencies are given at a temperature 45CC). All
the oscillations are active in the Raman-scattering spec-
trum.

When the crystal is heated, all the lines except A^6

shift only slightly in frequency (by 3-5 cm"1) and broaden.
Appreciable changes with temperature are observed in the
Av6 line.

The results of measurements of the parameters of the
Afs line are shown in Table VI and are illustrated in Fig.
11. On heating from 83° to 423°K, the Av6 line shifts to-
wards the exciting line by 45 cm"1, and its width increases
from 5 to 44 cm"1. The integral intensity of this line,
which is approximately proportional to the product I06,
also increases with increasing temperature. Thus, all the
effects predicted by the theory are qualitatively confirmed,

Table VI

no 120 rso rio iso no rm rso
dv, cm"1

FIG. 11. Change of shift of the Ac6 line with increasing temperature.
1 - T = 83°K;2-T= 113°K;3 - T = 203°K; 4 - T = 318°K; 5 - T =
423°K.

A new effect observed experimentally in [ 1 2 4 ] is the appre-
ciable line broadening connected with the ferroelectric
transition. At high temperatures, this line spreads out to
such an extent that the harmonic approximation for the
crystal lattice is apparently no longer valid.

Further theoretical and experimental investigations
are needed for a more complete explanation of the
mechanisms of the phase transitions in solids.

Besides the study of phase transitions between differ-
ent crystal modifications, RS is used to study transitions
from crystals to liquids and also from liquid crystals to
liquid crystals.

T, °K
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5.3. Scattering of Light in Piezoelectric Crystals

If the crystal has a symmetry center, then all the os-
cillations active in the RS are inactive in the infrared
absorption spectrum. However, if there is no symmetry
center, as is the case for piezoelectric crystals, scat-
tering by polar lattice vibrations becomes possible. RS
by polar vibrations has many specific properties.

In accordance with the features of the dispersion
curves of the optical branches of the polar oscillations,
the frequency of scattered light changes as a function of
the magnitude and direction of the wave vector of the vi-
brational quantum that takes part in the scattering pro-
cess. By exciting various points in reciprocal space
during the RS, it is possible to study the shape of these
dispersion curves. This is done by choosing a suitable
scattering geometry. As seen from Fig. 6, the modulus
of the wave vector of the scattered light decreases with
decreasing angle 6 between the directions of the incident
and scattered radiation. If this angle is very small, then
the scattering is called longitudinal. In longitudinal Raman
scattering it is possible to excite not only purely mechan-
ical oscillations, but also "mixed" vibrational quanta—
polaritons, the frequency of which decreases strongly with
decreasing wave vector. RS on polaritons was observed
experimentally in [ 1 ] in the cubic piezoelectric crystal
GaP. The difficulty of the indicated experiment lies in
the fact that the divergence of the beams of the incident
and scattered radiations should be very small (~0.5%),
which greatly reduces the intensity of the scattered light;
the light source used in [ 1 ] was a helium-neon laser. The
observed polariton frequency shift was 20% when the angle
0 changed from zero to several degrees. In [ 1 2 6 ] , a study
was made of the longitudinal Raman scattering in a uni-
axial ZnOcrystal with the aid of an argon laser
(A = 4880 A). The laser beam propagated along the x axis,
and the scattered light propagated in the (x, z) plane at an
angle 9 to the direction of the incident light (Fig. 12). The
incident and scattered beams were polarized. The case in
which the exciting ray is ordinary and the scattered extra-
ordinary is designated in Fig. 12 by yz; the symbol for the
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v, cm
WO

a e 4 ?. a z 4 s t
k(Znv,/i:)

FIG. 12. Dispersion curve for the 407 cm'1 oscillation obtained with
the aid of RS. yz - incident beam polarized along the y axis (ordinary
beam) and beam scattered along the z axis (extraordinary beam); zy - re-
versed polarizations of the incident and scattered light; kL - wave vec-
tor of incident beam; ks — wave vector of scattered beam; k - wave
vector of phonon; the dashed lines were obtained from the energy-
quasi-momentum conservation law; solid line — dispersion curve ob-
tained by calculation.

opposite polarization of the incident and scattered radia-
tion is zy.

Regardless of the polarization of the incident and scat-
tered light, an extraordinary transverse polariton, polar-
ized along the y axis, was excited. The solid line in Fig.
12 shows the dispersion curve calculated with the aid of
the relation

voBn_Lv,,en , -v,f.

where a> = 2irv, eo l = 8.15 and e-j.= 4.0 are the static
and high-frequency dielectric constants, respectively,
and v0 is the dispersion frequency, equal to 407 cm"1 and
expressed in units of 27rfo/c.

According to the energy and quasimomentum conser-
vation law, at small 6 the following relations are satis-
fied:

k = {[v( (ne —«„) + vn0]
2 -I- v, (v; — v) rcen08

2}'/2

in the case zy and

in the case yz; here vj is the laser frequency and n0 and
ne are the refractive indices for the ordinary and extra-
ordinary beams. The energy and quasimomentum con-
servation law curves corresponding to these relations
are shown in Fig. 12 by dashed lines. Figure 13 shows
spectrograms for the yz polarization. We see that the
observed frequencies change from 407 to 160 cm"1 when
the angle is changed from 0.6° to 3.4°.

In the described experiments, RS of light was used to
study the dependence of the frequencies of the polar os-
cillations on the absolute magnitude of the wave vector.
However, for non-cubic crystals, as indicated in Sec. 2.4,
the frequency of the polar oscillations depends also on
the direction of the wave vector k. An effect of this kind
was observed in the Raman scattering spectra of a num-
ber of crystals.1127-13"

A feature of RS of light in piezoelectric crystals is
also the anomalous degree of depolarization of a number
of lines, t l34] which does not agree with the theoretical
values. These anomalies are discussed in C135>51>58:1. As
already noted above, degenerate polar oscillations split
under the influence of electrostatic forces into longitudi-

nal and transverse oscillations (in a cubic crystal). The
intensity of the RS by the longitudinal and transverse os-
cillations is different. This follows, for example, from
the form of the RS tensor, obtained with the aid of third-
order perturbation theory,C58:l since the electron-phonon
interaction is different for the longitudinal and transverse
oscillations.

5.4. Scattering With Participation of Magnons, Plasmons,
and Other Quasiparticles

Not only phonons, but also all other quasiparticles of
the crystal can take part in the RS process.

The scattering of light in magnetic crystals has been
the subject of a number of theoretical papers.C138~139J Re-
cently, RS with participation of one and two magnons was
experimentally observed [2'3] in the antiferromagnets FeF2
and MnF-j. The RS spectra were excited with the aid of
the 4880 A line of an argon laser of 50 mW power; the
temperature of the FeF2 sample, which was an oriented
single crystal measuring 5 x 5 x 7 mm, ranged from 10°
to 70°K; the antiferromagnetic transition point of FeF2
corresponds to 78.5°K. At sufficiently low temperatures,
two satellites were registered with frequencies v1 = 52
cm'1 and vt = 154 cm"1, corresponding to single-magnon
(magnon wave vector k = 0) and two-magnon scattering
(the magnon wave vectors k and - k are on the boundary
of the Brillouin zone). In the case of MnF2 the first-order
spectrum could not be observed, since the frequency of
the magnon with zero wave vector turned out to be very
small, but a second-order RS line was registered in this
case, too. The intensity of the first-order magnon satel-
lites was 10"4 of the intensity of the 992 cm"1 RS line of
liquid benzene, and the order of magnitude of the two-
magnon scattering coincided with that of the intensity of
the single-magnon process. Although the latter fact was
theoretically demonstrated,1138'1391 in our opinion addi-
tional experimental confirmation of this singularity is
necessary.

The feasibility of scattering of light with participation
of plasmons, which are longitudinal oscillations of the
electron density, was investigated in C55]. Usually the
plasmon frequencies are much higher than the optical-
phonon frequencies. In semiconductors, however, these
frequencies may be small. The RS effect with participa-
tion of the plasmons that interact with the longitudinal
optical phonons was observed in C4'5] and also in t140*141^
where a CO2 laser was used as the source of the exciting
radiation. The value of the RS method in this case is en-
hanced by the fact that the longitudinal oscillations of the
electron density, which do not interact with the transverse
electromagnetic waves, cannot be investigated with the aid
of infrared absorption.

Single-crystal gallium arsenide was investigated in
When the electron density is increased in this sample
from 2.3 x 1015 to 2.9 x 1018 cm"!, the values of the plas-
ma frequency and the frequencies of the longitudinal op-
tical phonons turn out to be close in magnitude; when the
plasma frequency approaches the phonon frequency as the
electron density is increased, the RS line corresponding
to the longitudinal optical phonons broadens and shifts
from 300 to 540 cm"1; at the same time, a weak broad
line whose frequency approaches that of the transverse
optical oscillation is produced. The observed effects are

[4]
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8-as°

FIG. 13. Microphotograph of longi-
tudinal RS in ZnO at different angles 6
between the incident and scattered rays
(yz).

I 1

in good agreement with the theory. The intensity of the
lines of RS on plasmons turns out to be much larger than
in ordinary RS; the effective scattering cross section is
~10 -25 cm2 per molecule/1413 which is 100-1000 times
larger than the corresponding figure for scattering by
phonons; the plasma RS line width is also very large
(~30 cm"1), this being connected with the rapid damping
of the plasma waves.

A theory of RS of light in the electron-spectrum energy
gap produced in superconductors below the superconduct-
ing transition point was developed in [1433. An experimen-
tal attempt to observe RS of this kind ended in failure.[1443

In such a case the experiment is made complicated by the
fact that: 1) the width of the gap turns out to be very small
(5-10 cm"1); 2) the RS effective cross section is smaller
by several orders of magnitude than the usual one;
3) since the investigated object is a metal, the exciting
light can penetrate to a very small depth (10-5 cm), which
additionally decreases the intensity of the scattered light.

Mention should also be made of RS by electronic tran-
sitions of impurity paramagnetic ions that enter the crys-
tal lattice"45"1473 of scattering by local oscillations[1483

and by Landau levels,"4^1413 and of scattering connected
with the spectral manifestations of crystallites in glass,
[12B3 all of which are of independent interest.

6. SECOND ORDER SR SPECTRA

Two phonons take part simultaneously in second-order
RS. The following process can occur in this case.

1) A photon of frequency w0 (incident radiation) decays
into a photon of frequency u' (scattered radiation) and two
phonons of frequencies fij and Q,2. The energy and quasi-
momentum conservation laws for such a process are
given by

7iko-*k'-rJik, + ftk2. | (6-1)

2) A photon of frequency w0 interacts with a phonon of

frequency n1. The scattering results in a photon of fre-
quency C<J" and a phonon of frequency Q,z. The conserva-
tion laws are

i = tm" (6.2)

3) A photon of frequency w0 interacts simultaneously
with two phonons of frequency ftj. and U2. The result is a
scattered photon of frequency w'". The conservation laws
take the form

2 = So" (6.3)

Since the absolute magnitude of the wave vectors of the
photons is small compared with the linear dimensions of
the first Brillouin zone, it follows from (6.1) and (6.2)
that the wave vectors of the phonons taking part in the
scattering process satisfy the following approximate r e -
lations

2 = 0 or k,^k2 = (6.4)

It follows from (6.4) that in the second-order Raman
scattering there can take part not only phonons from the
start of the first Brillouin zone, but from any point of the
zone, particularly points lying on the boundary of the
zone. Thus, the study of second-order spectra yields in-
formation on the phonon spectrum of the entire first
Brillouin zone.

The processes (6.1)-(6.3) can be taken into account by
introducing into the Hamiltonian of the crystal fourth-
order anharmonic terms describing processes in which
four crystal quasiparticles, two photons and two phonons,
take part simultaneously. In particular, the scattering of
type (6.1) turns out to be due to the term

11'"= 2 P̂dP'PjpJko, k', k,, k0 —k' —k,)

here £ and C are Bose operators of annihilation and cre-
ation of the quasiparticles of the crystal, p0, p ' , pu and p2
are the polarization indices of the corresponding quasi-
particles, and k0, k', and kx are their wave vectors. The
increase in the number of scattered photons n(p', k') per
unit time can be obtained by using first-order perturba-
tion theory:

(in ((>'. k') _ 2n2 Po: ko){n(p',k'

X {n(Pl, k,) + 1}{n(pa, k2) + 1}e{£pok-o-£p.k— E^- (6.6)

here n(p, k) is the number of quasiparticles per oscillator
(p, k). Analogous expressions can be obtained for thepro-
cesses (6.2) and (6.3). Explicit expressions for theanhar-
monicity coefficients of fourth order have not been ob-
tained so far. The corresponding formulas would appar-
ently be very complicated.

The second order RS of light can be described also on
the basis of polarizability theory.1150'1513 As already noted,
the main result of polarizability theory is the fact that the
intensity of the scattered light is expressed in terms of
the matrix elements of the polarizability of the electron
subsystem, which depends on the coordinates of the nu-
cleus as parameters. For the process of type (6.1), the
indicated matrix element is taken between the ground
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state of the crystal and the state corresponding to the
doubly excited vibrational level. In this case the non-
vanishing matrix element is that of the term

£ W ) QuQf in the expansion of the electronic

polarizability in normal coordinates. Thus, the intensity
of the second-order lines is proportional to the quantity

zdzapo
/o"

We note that it is possible also to calculate the inten-
sity of the second-order RS by starting from the elec-
tronic wave functions corresponding to the equilibrium
configuration of the nuclei; the motion of the nuclei is
taken into account here as an additional small perturba-
tion. In this method, the nonzero scattering probability
appears only in fourth order of perturbation theory. Ow-
ing to the complexity of the final formulas, the comple-
tion of such a program appears to be little likely, but an
important qualitative result of such an approach is the
fact that the value of the RS cross section is determined
by the constants of the electron-phonon and electron-
photons interactions.

In a concrete calculation of the second-order RS cross
section, the following difficulties arise: 1) the fourth-
order anharmonicity constants are unknown, 2) the den-
sity of the two-phonon states of the crystal, which enters
in the final perturbation-theory formula, is unknown (the
probability of the scattering process is proportional to
the density of the final states, i.e., to the number of states
per unit energy interval).

The density function of the single-phonon states of the
crystal can be determined from the secular equation
(2.26) if one knows the elastic constants characterizing
the interaction of the atoms (ions) of the crystal lattice
with one another. In the general case this function is
given by

dS
| gradk a>* (k) |

(6.7)

where v0 is the volume of the unit cell, n the number of
atoms per unit cell, and S (w2) is the surface in the
Brillouin zone for which w (k) = w2.

The final expression for the function g (w) can be ob-
tained only under a number of simplifying assumptions
and only for the simplest crystal lattices. (It was calcu-
lated directly for a one-dimensional lattice in Sec. 2.1.)
In C16O>1513

> calculations of this type were performed for
cubic lattices of the NaCl and of the diamond type with
account taken of only the nearest-neighbor interaction.
As a result of the calculations, it was found that the de-
pendence of the state density on the frequency (the func-
tion g(ct>)) is sufficiently smooth, although it does have
several maxima. Thus, the second-order Raman-scat-
tering spectrum should be quasicontinuous.

It was learned recently that the density function of the
single-phonon states of a crystal always has a number of
characteristic points, called critical. A critical point is
a point in k-space such that each component gradk w(k)
is either equal to zero or reverses sign. According to
(6.7), the density of states becomes infinite at this point.
This property of critical points was first pointed out in
U52]. Subsequently, Loudon and Johnson[153] established
that the singularities of the single-phonon state-density
function coincide with the singularities of the two-phonon

state-density function k = 0, the latter being needed for
the calculation of the probability of second-order Raman
scattering. Knowing the critical points we can thus de-
termine the contributions of various sections of the
Brillouin zone to the scattering process, without calcu-
lating in detail the entire state-density function. Methods
of finding the critical points were developed in [152>154].
Thus, for crystals of the ZnS type (cubic modification)
and of the diamond type, the critical points are the points
T, L, W, X (see Fig. 5c). Thus, owing to the presence of
critical points, sharp intensity maxima should occur in
the second-order RS spectra. The contribution of the re -
maining points of the Brillouin zone constitutes only a
continuous weak background of scattered light.

The experimental data on the second-order spectra
have heretofore been interpreted from two points of view:
starting from the crystal-lattice dynamics developed by
Born, and from the point of view of the Raman theory.
The most investigated were the second-order spectra
of alkali-halide salts. C9'15*"158] An example of second-
order spectra is given below in Fig. 15. The presence
of sharp maxima in second-order spectra is interpreted
in [158:I from the point of view of Raman's theory as the
result of the appearance of additional degrees of freedom
of the Raman supercell. At the same time, it is noted in
ci55 157 158] y ^ tiie s e c o n d _ o r c j e r spectrum has a quasi-
continuous character, and the experimentally obtained
spectra agree satisfactorily in the form with the state-
density function obtained by Born, although the number
of sharp maxima observed experimentally is larger than
would follow from the theory.

The method of analyzing the critical points is more
fruitful than theoretical calculations based on simplified
crystal-lattice models, and eliminates the seeming dis-
parity between the crystal-lattice dynamics developed
by Born and experiment. We note that allowance for the
critical points makes it also possible to explain the pres-
ence of sharp additional lines of "zero" intensity, which
appear in the RS spectra of a number of crystals (for
example, calcite"5 '773). These lines are the result of
single-phonon scattering and are due apparently to vio-
lation of the quasimomentum conservation law, owing to
violation of translational invariance of the crystal lattice
in the presence of impurities or defects (see Sec. 4.2).
The scattering probability turns out to be largest for crit-
ical points, and therefore the observed spectrum consists
of sharp lines. On the other hand, it turns out that the
additional degrees of freedom of the Raman supercell can
coincide with the normal crystal-lattice oscillations cor-
responding to the critical point of the Brillouin zone.

Let us consider from this point of view the normal os-
cillations of ZnS and diamond crystals, corresponding to
the points T, L, and X. At the point r (k = 0), the atoms
(ions) of the neighboring cells move in phase, thus satis-
fying the Raman requirement. Corresponding to this point
are six normal oscillations )two atoms per unit cell). At
the point L,

Accordingly

since

, = {0, T, x}, a2 = {r, 0, T}, 33 = {T, T, 0}.



RAMAN SCATTERING OF LIGHT IN CRYSTALS 423

Thus, the oscillations of atoms of neighboring cells are
in phase opposition, and consequently also satisfy the
Raman condition (a = /3 = y = - l ) . Since the star {k9}
consists of four vectors, the Brillouin-zone points cor-
responding to these vectors cause additional normal os-
cillations of the Raman type. The total number of such
oscillations, corresponding to the star {k9}, is obviously
24. The oscillations corresponding to the point X also
satisfy the Raman criterion:

i

since in this case the number of vectors of the star is
equal to three, the corresponding number of Raman nor-
mal oscillations is 18. Thus, all the normal oscillations
corresponding to the critical points r , L, and X are nor-
mal oscillations of the Raman supercell; moreover, since
the total number of the degrees of freedom of the Raman
supercell is in this case 48, the aforementioned normal
oscillations account for all the oscillations according to
Raman. It is clear that a useful fact in Raman's theory
is that the postulated normal oscillations indeed turn out
in this case to be among the most important ones and
make the main contribution to the second-order scatter-
ing processes. Therefore the calculated frequencies of
the corresponding oscillations agree with the experimen-
tal data. On the other hand, it is obvious that the normal
oscillations corresponding to the critical point may also
not coincide with the Raman normal oscillations. In par-
ticular, for the example indicated above, the point
W (k8 =

 1/i(b1 + b2) + V2(b2 + b3)) does not correspond to
oscillations of the Raman type, even though it is a criti-
cal point. Thus, the crystal-lattice theory developed by
Born, supplemented by the concept of the critical point,
is apparently the most correct and in best agreement
with experiment.

Let us consider now the selection rules in the second-
order RS spectra. On the basis of (6.4), phonons of the
entire first Brillouin zone take part in the RS processes.
Let us examine the selection rules for the processes of
type (6.1).* For the overtone transitions (scattering in
which two identical phonons take part), the wave function
of the final state is transformed in accordance with the
representation [T2] , which is a symmetrical square of
the physically irreducible representation T, in accord-
ance with which the considered normal oscillation of the
crystal lattice is classified. On the basis of the general
rules (see Sec. 4.2), assuming that the initial state of the
crystal is the ground state and is classified in accord-
ance with a fully-symmetrical representation, we obtain
in this case the selection rule

[V]lxiTf=,A. (6.8)

Correspondingly, for the remaining transitions we obtain

rex^xtiDl (6.9)

The rules (6.8) and (6.9) can be rewritten in the form

[x]2^[FjL (6.10)

T,XT2^[F]i, (6.11)

where [V]^ are the irreducible representations that enter

*The selection rules for the processes of the type (6.2) and (6.3) are
derived in similar fashion.

in [V]2. According to [39:l, the physically irreducible rep-
resentation T is either an irreducible real representation
of the group G, or else is written in the form of a direct
sum of two complex-conjugate representations T' and T".
In the latter case [T2] can be represented in the following
manner (see [39]):

IT]'— [T']«-rlTTH-TV. (6.12)

In this case (6.8) is equivalent to the relations

IT']2 => \v\%, (6.13a)
[x"f^\v\l, (6.13b)

[TV1^[F]- . (6.13c)

Accordingly, the representation T1 X T2 can be written
in the form of a sum of products of irreducible represen-
tations of the group G. Therefore the selection rules r e -
duce in both cases to a clarification of relations of the
type (6.10) and (6.11), where T, TU and T2 are irreducible
representations of the group G.

Thus, the problem of the selection rules in second-
order RS spectra can be solved only by determining the
structure of the products of the irreducible representa-
tions of the entire space group. Only in the particular
case when phonons with wave vector k = 0 are excited in
the scattering process can the representation r be r e -
garded as the representation of the point group of direc-
tions of the crystal F, and only then can the procedure
employed for molecules be used.

The problem of expanding the product of representa-
tions of space group was solved in a number of papers
£i7,i8,i59] c o n n e c t e ( j with concrete physical applications.
In particular, a general procedure was developed in [17]

for expanding products of two and three irreducible rep-
resentations of the space group into irreducible ones,
and selection rules were obtained in the case of crystals
of group T^ for Raman scattering in which two and three
phonons, corresponding to the critical points of the
Brillouin zone, take part. The procedure developed in
[17] is based on the construction of the characters of the
product of irreducible representations of the entire space
group on the basis of the characters of the small repre-
sentations. The general method developed in [17], how-
ever, is quite cumbersome and its use for the calculation
of the selection rules in second-order RS spectra is not
essential.

Let us stop in greater detail on another method,[19]

analogous to that used in [39] to ascertain the feasibility
of second-order phase transitions. The latter method,
besides being simple to use in practice, has also the ad-
vantage that it yields final results in the form of formu-
las that are convenient for an investigation of a number
of particular cases and for obtaining general relations.

Let us consider the method of obtaining general rep-
resentations of the symmetrical square of the irreducible
representation [T]2 of group G and of the representation
[V]2 of a symmetrical second-rank tensor, which expands
into irreducible representations [V]^. The star {k}2 of
the representation [T]2 consists of all the possible vectors
of the type ki + k^ (ki and kj/ are the vectors of the star
{k} of the representation T). If there is no null vector
among the latter vectors, then (6.10) is certainly not sat-
isfied, since the star of the representation [V]2 is {0}.
Thus, to satisfy (6.10) it is necessary that among the
vectors of the star {k} there be present simultaneously
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the vectors lq and kj/ = - lq . This requirement is an
expression of the condition for quasimomentum conser-
vation in the RS process. If the representation r satisfies
the foregoing condition, then the star {k} 2 breaks up into
two stars : one of them contains only the null vector, and
the other all the remaining vectors. Accordingly the rep-
resentation T breaks up into two representations T0 and
Tj, and only T0 can have common representations with
[V]2, a condition necessary for the satisfaction of (6.10).
Let us consider first only such representations T, whose
stars contain vectors ki that are not equivalent to - k j .
For this case, in accordance with [39], we obtain

^ (6.14)
where g = {hj | a j } ; I is the number of vectors of the star
{k} ; f is the number of elements of the point group of the
vector kj. e {k} ; gu,k.. = _,., = -kx , g u , e G, xU)(g) are
the characters of the small representation of the group
Gj^ ; Xrvn2 is the character of the irreducible represen-
tation [w]z

a, which enters in the representation [V]2;
n([V]a) is the number of irreducible representations [V]z

a

contained in the representation T0. If the vectors of the
star of the representation are such that each vector ki is
equivalent to the vector - klf then we have in accordance
with[39]

vectors of the star {k} are arranged in arbitrary manner
inside the BrilIouin zone, the only element of the point
group F with the aid of which the vector k can be trans-
formed into the vector - k is inversion. Using the gen-
eral formulas (6.14) and (6.17), we obtain in both cases

i.e., the Raman scattering is always allowed for the over-
tone and component transitions of the indicated symmetry
in the case of crystals having an inversion center. This
result agrees with the analogous conclusion of t l8], which
was obtained by directly constructing the characters of
the irreducible representations of the entire space group.
We note also that in accordance with formula (6.18), the
overtone transition for the reducible representation r,
which consists of two complex-conjugate irreducible rep-
resentations, is always allowed as a result of the scalar
component of the polarizability tensor.

By way of an example, let us consider the selection
rules in the second-order RS spectra for the group Clh-
Each element of this group represents a product of the
translation {e | a} (a = n ^ ^ n^.z + n3a3, nlf n2, n3 = 0,
± 1,. . .) by one of the elements of the type

\C \ 0}, \C2 | fti}, \i \ Ct1)}, {Oft | O-3f\ 10 • X*7 )

The notation is the same as in formula (6.14).
To satisfy the relation TX X T2 C [w]2

a, where TX and T2
are the irreducible representations of the group G, it is
necessary that the star {k} x {k2} of the representation
T̂  x T2 contain the star { 0 } . This is satisfied if the stars
{kj} and {k2} can be represented in the form

-k2,
(6.16)

If there exists an element g e G such that g ^ = - kx
(k e {k}i), then the stars {k}i and {k}2 consist of the
same vectors k. Under this condition, the product of the
representations rx x T2 can be expanded into a represen-
tation T0 with star {0} and a representation TX whose
star contains all the remaining vectors. The number of
irreducible representations [vfa contained in the repre-
sentation TX x T2 is determined from the formula

n«)-=i 2 xm. ( (6.17)

i s the character of the
xU>'(g) is the character

where g = {hj | aj} £ G, xU>(g)
small representation T^g) , and
of the small representation T-k^g).

We note that if r1 and T2 are complex-conjugate non-
real representations, then the following relation is sat-
isfied

' I X I 2 : H (6.18)

i.e., the product of complex-conjugate representations
always contains the unit representation.

Using relations (6.14) and (6.15) we can easily deter-
mine the selection rules for the overtone trangitions, and
obtain with the aid of (6.17) the selection rules for the
component transitions. In the particular case when the

here

a1( a2, a3, are the vectors of the elementary translations
(see C39]). The group of directions of the crystal is the
point group Cah = {e, C2, i, ah} . According to £39], in the
BrilIouin zone of the group under consideration there are
14 characteristic points, each of which can be set in cor-
respondence with the corresponding star of the irreduc-
ible representation of the group G. Let us consider some
of these points.

a) The point kx =
 1/2(b1 + b2). The corresponding star

of the irreducible representation T consists only of one
vector (I = 1), since all elements of the group F leave the
vector kt invariant. The point group of the vector kj is
therefore the group C ^ . It is also easy to verify that the
relation k = - k is satisfied (accurate to within equiva-
lence). Thus, it is necessary to use the general formula
(6.15). Using the results of [39], we find that the group
C^ has only one built-up two-dimensional representa-
tion f at the point under consideration. In Table VII are
indicated the matrix elements of the representations f
and Ty., and the characters of the representation rk ,
which are needed for the calculation in accordance with
formula (6.15). From the reality criteria we ascertain

Table VII

6-c*

X

1

Tk
X(ff)

n Ox
lo i)

{e\0}

2

(I

(5-?)
0

,0 -IX
U 0)

T(an-a2)j-

\i 0)
0

J)
1 1
2 a'J

0
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with the aid of Table IX that the irreducible representa-
tion f of the space group G is real. Using (6.15) and
(6.17), we obtain in this case

Thus, the overtone transition is allowed as a result of
the fully-symmetrical components of the polarizability
tensors a^, a-yy, azz, aXyj the composite transition is
allowed for all the components of this tensor.

b) The point k = 1/2(b1+ b2 + b3). This point, like the
preceding one, is on the boundary of the Brillouin zone.
The symmetry point group is the group C ^ . The built-up
representations of this group from the vector k
= /^(bi + b2+ b3) are one-dimensional (Table VIII). Using
the reality criterion (Table IX) we find that all the i r re -
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FIG. 14. Brillouin zone with character-
istic points for crystals of the CsBr type.

rules in the RS spectrum, and also data of infrared ab-
sorption, neutron scattering, and calculations of the type
of the dispersion curves, make it possible, generally
speaking, to assign the observed lines to the second-
order spectra, although concrete implementation of such
a program is frequently difficult.

Let us stop to discuss several examples of interpre-
tation of second-order spectra.

In [158>180: they investigated the second-order spectrum
in the crystal CsBr. The symmetry group of this crystal
is the space group O^. The unit cell contains two non-
equivalent atoms. The Brillouin zone for the group under
consideration is shown in Fig. 14. The vibrational levels
are classified in this investigation with the aid of the
compatibility relations for the irreducible representa-
tions of the group Gjj. In accordance with their polariza-
tion, the oscillations are separated into transverse and
longitudinal. According to the selection rules, the
second-order RS spectrum of this crystal is allowed
both for the overtones and for the composite tones at the
points T, A, T, X, A, R, S, S, Z, M. From the calcula-
tion of the dispersion curves given in [l6CJ, it follows that
the points r , M, X, A, R, S, 2 , and T are critical. As a
result of the satisfaction of the selection rules and of the
presence of a large number of critical points, a rather
large number of sharp maxima are observed in the spec-
trum (Fig. 15). Using the calculated values of the frequen-
cies, the authors of [116] attempt to interpret all the ob-
servable lines (Table X). A feature of the discussed spec-
trum is the fact that many combinations of phonon pairs
contribute to the same intensity maximum, thus making
their unique assignment difficult.

The second-order RS spectrum of the crystal GaP was
investigated in [161]. The lattice of this crystal is exactly
the same as of the cubic modification of ZnS (see Fig. 5).
The points r , L, X, and W are critical points of the

d u c i b l e r e p r e s e n t a t i o n s T X , T 2 , T 3 , a n d T 4 o f t h e s p a c e

g r o u p , w h i c h c o r r e s p o n d t o T ( 1 ) , T < 2 ) , T ( 3 ) , a n d T ( 4 ) a r e

n o n e q u i v a l e n t t o t h e i r c o m p l e x c o n j u g a t e s . C o m b i n i n g

t h e c o m p l e x - c o n j u g a t e r e p r e s e n t a t i o n s , w e o b t a i n t h e

p h y s i c a l l y i r r e d u c i b l e r e p r e s e n t a t i o n s T J = T X + T 3 a n d

TII = T 2 + T4 the basis of formula (6.18) we can al-
ready state that the overtone transitions are active in
Raman scattering, owing to the symmetry of the polar-
izability tensor components. Using the general formulas
(6.15) and (6.17) as well as Tables VIII-IX, we obtain

Thus, the overtone and composite transitions in the spec-
tra of the Raman scattering are allowed for all compo-
nents of the polarizability tensor.

Knowledge of the critical points and of the selection FIG. 15. Second-order RS spectrum of the CsBr crystal [160].
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Table X. Second
Experi-ment 158-4v, cm'1

25

40

54

75
105
125

134
134
134

—
163
176

LO, LA -

Calculation
Av, cm"1

24

41

52

83
105
125

134
135
133

155
163
182

order RS spectrum in the CsBr crystal

Assignment

LA(M)—TA2(M), LO(T) — LA(T)
LO(S)-LA(S), TOi(Z)-TAi{Z)
LO(T)-TO(D, L0(X) — T0(X), LO(T) — LA(T)
LO(S)—TA2(S), LO(Z)—TA1(Z)
L0{M)—TA2{U). L0{X) — TA{X), LO{S)-TA,(S)

LA (M) + TA, (A/), 2LA (T), TA (5) + TA2 (S)
2TO2(M). TO, (T)-f-LA](T), TO2(S) + TA,(S)
L0{X)+TA{X), LO{T) + LA(T), TO,(S) + LA(S)

TO (X) + LA (X), LO (A/) + TO2 (M)
L0(M)-'~LA(M)
LO (R) + LA{R), LO(T) + TO(T)
TOi(S) ]-TAt(S), L0(Z) + TA\(Z)
2LA{Z), 2LO(T), LO (5) 4- TO, (S), 2TO,(Z)
2L0(M), 2LO(T), LO (5) + rO,(5), LO (Z) + TOt(Z)
2L0{X), 2LO(S), 2LO(Z)

- longitudinal optical and acoustical branches, TO, TO], TO2, TA-, TA2,
TA - transverse optical and acoustic branches.

Brillouin zone. According to [159], all the overtone and
composite transitions are allowed in RS at each of these
points. Figure 16 shows the spectrum of this crystal at
20°K. According to calculations of the dispersion curves
of the GaAs crystal, it turns out that the longitudinal op-
tical branch (LO) and the transverse optical branch (TO)
intersect, so that LO > TO at the beginning of the
Brillouin zone, and TO > LO and almost reaches the
optical branch on the edge of the Brillouin zone. It is
assumed in [1613 that the dispersion curves of the vibra-
tional branches for GaP have approximately the same
form. Under this condition, it is possible to explain in
the following manner the observed RS spectrum of this
crystal (see Fig. 16). The observed spectrum can be sub-
divided into three regions. The interval 670-800 cm"1

corresponds to summary transitions of pairs of optical
phonons, the second region extends from 293 to 613 cm"1;
the corresponding lines are the results of the summary
combinations of pairs of optical and acoustic phonons;
in the 289-150 cm"1 interval, apparently, there appear
phonons of the transverse acoustic branch. The differ-
ence processes do not lead to the appearance of Raman
scattering, owing to the sufficiently low temperature of
the crystal. Lines with frequencies 366 and 422 cm"1

result from first-order RS scattering on transverse and
longitudinal long-wave optical oscillations. The intensity
peak at 289 cm"1 probably corresponds to the summary

Fre-
quency
cm"1

804

802
786
770
756
745
710721
705
687
650618
613
607
582
567

LO,

Table XI. RS spectrum of

Assignment

Maximum of two-phonon density
of states
2 X TO (W0
2 x TO (X)
2 X TO (W)
2xTO (L)
T0(X)-\-L0(X)
TO(L) i-LO(L)2 x LO (/-)
2 X LO (X)
t X LO (W)

\LAA-TO
J
Ji.l : LO

Fre-
quency
cm 1

548
546
533
570
495
471
460
450402
366
309
289
285
209
151

GaP crystal

Assignment

Maximum of TA + TO combinations
TOi (W)-'rTAt (W)
TO2(W)-\-TA2(W)
2 X LA (X)
TO (X)-'-TA (X)
2 \-LA(L)
L0(X) \-TA (X)
TO(L) \-TA(L)
f First-order lines
TA(L)-\ LA(L)
Maximum of 2 X TA combinations
2 X TA (W)
2 X TA (X)
2 X TA (L)

-A — longitudinal optical and acoustic branches; TO, TA, TA-, TA2 — trans-
verse optical and acoustical branches.

process of phonon pairs of the edge of the transverse
acoustic branch. The intensity peak at 804 cm"1 corre-
sponds to an overtone transition on a longitudinal long-
wave optical oscillation. The presence of several max-
ima in the region of 786 cm"1 is evidence that the trans-
verse optical branch is strongly shifted when the edge
of the Brillouin zone is reached. In Table XI are indi-
cated the possible assignments of the remaining ob-
served lines. Thus, the study of the second-order RS
spectra can yield useful information on the dispersion
curves of the vibrational branches of crystals.

Recently, new interesting results on RS of light in
crystals were obtained. These include[162] in which RS
was first observed in the metal Be and in the alloy AuAl2,
data on light scattering near the phase transition point in
SrTiO3,[183] which confirm the general theory of light
scattering near a second order phase transition point,
C112] new work on RS in quartz,"843 in which the authors
propose that the oscillation responsible for the phase
transition in this crystal is the result of resonant inter-
action of lines of first and second order, and also a de-
tailed theory of RS of light in crystals.[185]

0 Wll ZOO 300 400 500 600 700 800
Combination shift, cm"1

FIG. 16. Second order RS spectrum of the crystal GaP at 20°K
[159L
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