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1. FEATURES OF ELASTIC SCATTERING OF META-
STABLE 2°S HELIUM ATOMS

THE elastic scattering of excited helium atoms in a
gas of normal atoms has many features connected, first,
with quantum symmetry effects and, second, with the
unusual character of the interaction of the atoms. Heli-
um itself is among those few objects for which theoret-
ical calculation exist, so that a quantitative comparison
of theory and experiment is possible. In this review we
analyze the total and diffusion scattering cross sections,
and also the process of scattering of metastable atoms

He* (235) - He (115) — He (115) ++ He* (235), (1.1)

which is accompanied by excitation transfer. In this pro-
cess, the excitation is transferred from one identical nu-
cleus to the other without energy exchange of relative
translational or internal motion between the individual
atoms. Therefore scattering in accordance with the
scheme (1.1) can be regarded as a modification of the
elastic-scattering process.

The elastic scattering of metastable atoms in their
own gas is characterized by two interaction potentials
Vs and VA. They pertain to two different states of the
system of normal and metastable atoms, and differ in
the character of the symmetry of the system wave func-
tion relative to permutation of identical nuclei. The
antisymmetrical potential Vp corresponds to the anti-
symmetrical wave function of the system and has a min-
imum that results in the existence of the helium mole-
cule He? (the asterisk denotes the excited state). The
molecular term of this antisymmetrical state is 2°Z;.
The symmetrical potential Vg is pure repulsive, and
the state has the symmetry of the term 2°2}. The pres-
ence of two interaction potentials is essentially the con-
sequence of quantum symmetry effects, and therefore
the process of scattering of metastable helium atoms,
generally speaking, cannot be described by the classical
theory. The quantum theory of collisions between iden-
tical atoms was first developed by Massey and co-
workers.!""® The processes of elastic scattering of
metastable and normal helium atoms were theoretically
analyzed by Buckingham and Dalgarno.'® The calcula-
tion of the elastic-scattering cross sections for the
isotopes He-4 and He-3 is given in '""®, The diffusion
scattering cross section of metastable atoms of inert
gases was considered also by B. M. Smirnov et al.t®
on the basis of the asymptotic expression for the inter-
action energy of the excited atom and the atom in the
ground state, in the limit of large distances between
them.

Another feature of the metastable helium molecule

He? is the presence of a maximum on the potential-
energy curve V(R) at relatively large distances be-
tween the nuclei (R = 4.5a, and 2, = 0.53 x10"% cm is
the Bohr radius). This maximum is due to competition
of exchange forces of different types. The interaction
potentials of the normal and excited atoms were calcu-
lated by Buckingham and Dalgarno™® and were later
refined in “*'*! It must be emphasized that the magni-
tude of the maximum on the VA(R) curve is small (it
amounts to a fraction of an electron volt) and is deter-
mined by the difference between two large exchange
energies—the electron-exchange energy in the atoms
and the energy of simultaneous exchange of an electron
and a nucleus. Therefore the results of calculations of
the long-range repulsion are quite sensitive to the form
of the wave functions. As a result of the approximate
character of the calculation, both the very existence of
a long-range repulsion and the law governing the varia-
tion of the potential at large distances require experi-
mental confirmation and refinement.

For the study of the long-range interaction, particu-
lar interest attaches to experiments on the elastic scat-
tering of metastable and normal atoms at low tempera-
tures.

The first experimental determination of the coeffi-
cient of diffusion of the metastable helium atoms in their
own gas at 300° K belongs to Ebbinghaus.™®' Using an in-
direct method, Biondi'**! also obtained the value of the
diffusion coefficient at room temperature. A direct ex-
perimental measurement of the diffusion coefficient at
room and nitrogen temperatures was performed by
Phelps and Molnar."%*® The diffusion of the metastable
atoms of helium-4 and helium-3, in the entire temper-
ature interval from 4.2°K to 300° K, was investigated
in """, The total scattering cross section of the ex-
cited helium atoms was measured by the molecular-
beam method in "®°?*, The cross section of the pro-
cess {1.1) with excitation transfer was first measured
by Colegrove et al.”® at room temperature. In a wide
temperature interval, the cross section for the excita-
tion transfer was investigated by the same authors in
24 Greenhow'® also measured this cross section at
room temperature. Bendt'®®! determined the self-diffu-
sion coefficient of normal He-3 atoms in He-4 in the
temperature interval from 2° to 500° K. Bendt’s data
make it possible to calculate the geometrical self-
diffusion cross section of normal helium atoms.

In this review we discuss and compare the results
of theoretical and experimental investigations of the
cross sections of the elastic processes from the point
of view of reconstructing the potential of interaction be-
tween metastable and normal helium atoms.
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2. FUNDAMENTAL RELATIONS OF THE QUANTUM
THEORY OF SCATTERING

The scattering cross sections of different processes
are determined by the scattering amplitude f. The
quantum-mechanical expression for the amplitude {
should be determined with allowance for the symmetry
properties of the colliding atoms. The quantum theory
of the scattering of identical atoms in the unexcited
state is contained in the well known works of Massey
et al.'*"% We present the results of calculations of the
amplitude and of the differential scattering cross sec-
tion for exciting and normal atoms in the presence of
two interaction potentials.™® In the collision between
excited and normal helium atoms, the principle of iden-
tity of the particles is applicable only to the nuclei. In
the case of He-4, whose nuclei have no spin and are de-
scribed by Bose-Einstein statistics, the wave function
of the system ¢pg_g should be symmetrical with respect
to permutation of the nuclei, i.e.,

Dggp =D, (2.1)

The index ‘‘+’’ denotes symmetrization of the wave
function with respect to the coordinate of the nuclei. A
similar relation holds also for the scattering amplitudes
of these functions. The scattering probability is propor-
tional to the differential cross section

[ fB-E 2| f¢ ]2 (2.2)

where f. is the scattering amplitude of the function & ..
In the case of He-3, the nuclei of which have spin %/,
and obey Fermi-Dirac statistics, the total wave function
®p.p is antisymmetrical with respect to permutation
of the nuclei. This function is constructed in the usual
manner from products of spin and coordinate functions:

(2.3)

where y, and y_ are spin functions that are symmetri-
cal and antisymmetrical with respect to the nuclei, and
®_ is a coordinate function which is antisymmetrical
with respect to permutation of the nuclei. According to
Mott and Massey,m the differential cross section for
the scattering of unpolarized He-3 atoms is expressed
in terms of the amplitudes f, and f. by the formula

Dpp = 5Dyt 7Dy

[ ED [P o P ] £ (2.4)
In the presence of two interaction potentials, Vg(R)
and VA(R), the total wave function & of a system of iden-

tical atoms can be represented in the form®®’

D == @sPs (R) - 9aa (7); (2.5)

here g and ¢p are wave functions describing the elec-
trons in the atoms at a fixed position of the nuclei, and
¢g and @ are symmetrical and antisymmetrical with
respect to the permutation of the nuclei. The functions
¥g(R) and P4 (R) describe the relative motion of the nu-
clei (g is symmetrical and pA antisymmetrical with
respect to the nuclei), and satisfy the Schridinger equa-
tions with interaction potentials Vg(R) and VA(R), re-
spectively:

[AL K —Mu 2V, 4 (R)] ¥, o =0; (2.6)

here
k= Me (27)

2h

-
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is the wave number of the relative motion of the helium
atoms with mass M and relative velocity v.

The scattering amplitude of the functions g and y o
are connected in the usual manner with the scattering
phases of the partial waves:

fs )= 37

b 8

(20 1) lexp (2ip) — 1] Py (cos0),  (2.8)

I
=

fa®)=

(2141) fexp (2iy;) — 1] P; (cos ). (2.9)

e

1
2ik

]
S

The scattering phases ; and y; correspond to the po-
tential Vg(R) of the symmetrical state and to the poten-
tial Va(R), respectively.

Knowing the scattering amplitudes fg(8) and fA(9), it
is easy to find the amplitudes f, (8) and f_(6). To this
end it is necessary to symmetrize the wave function,
namely, it is necessary to take for f_(6) the symmetri~
cal part of the total scattering amplitude

fs (O)+74(0) (2.10)

and for f_(6) the antisymmetrical part. The permutation
of the nuclei corresponds to replacement of the scatter-
ing angle 6 by 7 — 6. The symmetrical (antisymmetrical)
part of the amplitude fg(6) is

4 (15 (0) == fs (—0)], (2.11)

and the symmetrical (antisymmetrical) part of the am-
plitude fA(6) is

5 U (0) F fa (m—O)L. (2.12)

The change of the sign in front of the second term in
(2.4) is due to the antisymmetry of the electronic wave
function @A relative to the permutation of the nuclei.
We obtain consequently for the amplitudes f the for-
mula

fe (0) = (/s () + 1 (O)] £ [fs (r—0)— fa (x—O)]}. (2.13)

The square of the modulus of these amplitudes can be
represented in the form

i @) :% s 0)+74 @) P fs(m—0)—fa(a—0} 2] £ S (0),
(2.14)

where S(6) are the interference terms containing prod-
ucts of the type fg A(6)ig A(m - 6). It is known'*! that the
scattering amplitudes fg(8) and fA(6) have ¢‘sharp’’ max-
ima at small values of 6, i.e., the functions fg A(¢) and
fS,A(ﬂ - 8) do not overlap, and their product is close to
zero. For this reason, the interference terms can be
neglected, and the differential cross sections |f, (9)|?
and |f_(9)!? turn out to be the same. Consequently, the
differential cross sections for the scattering of the
metastable atoms of helium-4 and helium-3 are equal
to each other:

[F@®F=|fpEP=]/FD
= s (O)+1a®) 24| fs(n—8)—fa(x—0)2L. (2.15)

The first term in (2.15) can be regarded as the probabil-
ity of direct elastic scattering of the excited and normal
atoms; the second term is due to the difference between
the potentials Vg and V, and describes the process of
scattering with excitation transfer (1.1).
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Knowledge of the differential scattering cross section
makes it possible to express the total cross section, the
diffusion cross section, and the excitation-transfer cross
section in terms of the scattering phases.
The total cross section Q is given by the formula

Q=2n S dOsin O f(0) |2 =4mk2 D) (21+1)sin2d;,  (2.16)
0 =0
where the even phases 6,7 = 8, are determined by the
potential Vg and the odd phases 6,},, = ¥,7,, are deter-
mined by the potential V.
The diffusion (transport) cross section is
T

o

Qg=2n S d0sin B (4 —cos0)|f(8) |2 = 4mk2 2 (L 1) sin® (8, — 6;44).
’ . (2.17)

The excitation transfer cross section Q;, is deter-
mined by that part of the differential scattering cross
section (2.15) which is connected with the difference
between the interaction potentials and the permutation
of the nuclei (the second term in (2.15)). The differen-
tial excitation-transfer cross section is

[fir (0) = | fs (3 —8) — fu (ru—B) . (2.18)

The transfer crossvsection Tyyp is given by

T

Q=21 S d0sin 0| fr (6)[2 =5 S d0sin 0] fg () — . (6) 2
o 0

= ke Z (21 = 1) sin? (B;—v2).(2.19)
1=0
All the cross sections (Q, Qg, and Qty) are uniquely
determined by the scattering phases g; and y;, which
are connected in turn with the form of the interaction
potentials Vg and Va.

3. INTERACTION POTENTIALS

The potentials of interaction between the metastable
and normal atoms in the *Z and °Zg states were calcu-
lated by Buckingham and Dalgarno in the first order of
perturbation theory with the aid of the Heitler-London
method. They obtained the following formula for the
interaction energy:

HWO—2H® 4 (H®— 2H®)
IO T2 (I _2[@)

Ve, o= (3.1)

where H" is the average energy of the Coulomb inter-
action between the electrons and the nuclei, H®’ is the
energy of the exchange interaction due to the electron
exchange, H*® is the exchange energy due to the ex-
change of nuclei, and H* is the exchange energy in the
case of simultaneous exchange of electrons and nuclei;
1K) are the corresponding normalization integrals.
values of HX) and I%K) as functions of the distances be-
tween the nuclei are given in "%, The term with H®

is due to the pure nuclear exchange, significant only

at small distances, and leads to the appearance of a
minimum at R =~ 2a,. It can be neglected in the region
R > 2a,. At the same distances, on the other hand, the
Coulomb energy H' is much smaller than the electron
exchange energy 2H®, owing to the strong screening of
the nuclei by the electrons. The difference between the
potentials Vg and VA at R > 2a, is due to the term H*.
For the symmetrical potential, the terms H® and H®

FuGoL’

add up and produce a repulsion interaction. For the
antisymmetrical potential, the competition between
these two terms, which enter with opposite signs, leads
to the appearance of a maximum of the long-range re-
pulsion. According to the calculations of Buckingham
and Dalgarno, the height of the ‘““hump’’ of the maxi-
mum at R = 4h, amounts to 0.29 eV. The decrease of
the long-range repulsion potentials is described by the
function

Vs, a (R) ~ aR? exp (-1,180—12) i bRexp (1,87 ',f)—) . (3.2)

Starting with the distance 7a,, the second term in (3.2)
is negligible (the value of H*’ in (3.1) is negligibly
small) and the potentials Vg and V5 practically coin-
cide. In this region, the potentials are likewise well
approximated by a power-law dependence in the form

(3.3)

Figure 1 shows plots of these interaction potentials as
functions of R. In the same paper, Buckingham and
Dalgarno discussed second-approximation corrections
to the interaction energy due to the Van der Waals
forces. The Van der Waals forces play an important
role at distances R > 4a,, and are determined by the
polarizability of the atoms. Since the polarizability of
the metastable atoms is not known with sufficient accu-
racy, Buckingham and Dalgarno plotted potential curves
for two values of the Van der Waals energy, -107° and
—-20R™® (in atomic units*). Using —20R"®, the maximum
of the repulsion turned out to equal 0.146 eV and to be
located at R = 4.25h,.

The work by Buckingham and Dalgarno attracted
considerable interest and simulated further theoretical
investigations. The most detailed calculations of the
interaction potentials were undertaken by Matson and
his coworkers.!*****! Unlike "%}, they used a variational
calculation method. It was confirmed in ™" that the
potential curve VA(R) has a maximum, the height of
which was estimated to be 0.19 eV at R = 4.5a,. The
authors of ! attribute the deviation from the results
of Buckingham and Dalgarno to the use of a better ap-
proximation for the wave functions. In a later paper,

Vs, a (R)=const. R75.

V{Riau.

S

[

3
T

FIG. 1. Potentials of the interaction between the metastable (23S)
and normal (1'S) helium atoms: 1—potentials calculated by Buckingham
and Dalgarno in the first approximation (B-D) [°]; 2—potential VA(R)
according to Poshusta and Matson (P-M) ['?].

*The atomic unit of energy is ¢? /a, = 27.21 eV, and the unit of
length is a5 = 0.53 X 107%cm.
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Poshusta and Matson'?! gave refined values of VA(R)
up to R = 6a,. According to "%, the height of the maxi-
mum is 0.138 eV at R = 4.5a,.* Figure 1 shows the in-
teraction potential of Poshusta and Matson. We note
that the height of the maximum, estimated in '**’ with
allowance for the second approximation for VA(R),
agrees fairly well with the calculation of Poshusta and
Matson. ! Quite recently, Dalgarno and his co-workers
made a new calculation of the static polarizability of the
helium atoms in the states 1'S, 2°S and others.™®! Using
the results of these calculations, they found that the
constant of the Van der Waals interaction —CR™® between
the metastable and the normal atoms of helium is C

= 29.1 a.u. This value of the constant C is larger than
those employed in the calculation of the interaction po-
tentials Vg(R) and VA(R) in ), The increase of the
Van der Waals interaction should lead to a certain low-
ering of the potential curve of the interaction in the re-
gion of large distances, compared with the potential in
[101 " The asymptotic behavior of the interaction energy
of the metastable and normal atoms of the inert gases
at large distances was considered by B. M. Smirnov et
al.®"%% The interaction energies as given by various
authors are listed in the table.

Interaction energy of metastable (2S) and normal
helium atoms as given by various authors
(in units of 107 a.e. = 0.0272 eV)

Vi Vg

i u:Yof B-D {19, 12 Asymptotic ‘Empirical po Empirical po-

| appmi;l(ri;tlmon PM ) P-8-Ch [7] i tential 3] BD [ | “tential (8]

|

4.0 10.35 3.2 13 3.2 2113 21
4.0 N 5.1
5.0 6.11 5.00 304 5.05 8.1 8.1
5.0 4.3 1.3 5.4
6.0 3.00 3.2 21 3.2 3.3 3.3
6.5 1.6 1.75
7.0 1.33 0.78 0.6 1.4 0.6
7.5 0.3 0,25
5.0 0,07 0.28 0 0.6 0.1
8.5 0.05 0.05
0 .23 0.1 0.23
10,0 .08 0.04 0.08

‘ |

The existence of a maximum of long-range repulsion
for helium was at first unexpected. Recently, however,
similar repulsion maxima were theoretically predicted
also for other excited atoms of the helium and hydrogen
molecules. 2 The presence of such a maximum is
apparently possible also for excited states of the neon
molecule.™ It can be assumed that the potential bar-
rier on the interaction curve exists also for excited
states of many molecules consisting of identical atoms.

4. EMPIRICAL POTENTIAL. CALCULATION OF THE
CROSS SECTIONS OF ELASTIC PROCESSES

The potential barrier hinders the formation of the
He} molecule and exerts a strong influence on the pro-
cesses of scattering of metastable and normal atoms.
It is therefore imporiant to have reliable data on the

1t should be pointed out that the height of the maximum is given in
the plot and in the tables of ['2] as 0.138 eV, whereas the text lists a dif-
ferent value, 0.08 eV.

.

185

magnitude of the long-range repulsion. Owing to the
approximate character of the theoretical calculations,
great interest attaches to the solution of the ‘‘inverse”’
problem —the reconstruction of the potential curve from
the experimental data.

In very rough outlines, the idea of reconstructing the
potential consists in the following: The scattering cross
section at a given average energy (temperature) is ob-
fained from the experimental data. The magnitude of the
cross section depends on the scattering radius a, and
the particle energy depends on the height of the potential
at this value of the radius. Knowing the dependence of
the cross section and the energy (temperature), it is
possible to obtain the potential curve. Obviously, this
method can be used to reconstruct only the repulsion
potentials. Actually, on the other hand, the repulsion
potential cannot be reconstructed in such a simple man-
ner. This is connected primarily with the fact that the
repulsion has a nonlocal character: the scattering is
connected with an entire region on the potential curve.
The nonlocality is manifest already in the very single
act of scattering, in the form of a change of the particle
velocity as a result of the interaction. In addition, the
nonlocality is due to the particle velocity distribution,
and in the quantum case to the uncertainty principle. In
fact, for the construction of the potential it is necessary,
using some heuristic considerations, to choose a poten-
tial function such that the cross sections calculated with
its aid and their temperature dependences agree with
experiment. In the case of helium, the theoretically
calculated potentials are in a semiquantitative agree-
ment with experiment. The experimental data make it
possible to correct and refine the interaction potential.

The long-range repulsion potentials VA(R) and Vg(R)
were reconstructed from the temperature dependence of
the diffusion coefficient and the diffusion cross section
in our paper.'»® The constructed empirical potential
in the region of large distances (R > 4a,) is shown in
Fig. 2; the corresponding values of the energy are listed
in the table. The empirical potential VA in the region of
the maximum differs from the potential of Buckingham
and Dalgarno (B-D) and coincides with the data of

=
S
©d
®

=750
825
500
4375

250

S N S N T S
. .

1 !

4 5

5 7 4 9 Ak,
FIG. 2. Long-range part of the He(2?S) — He(1! S) interaction poten-

tial: 1—the Buckingham and Dalgarno potential; 2—empirical potential.

The temperature scale on the right is calculated from the relation uvg? =

= 2V(R), where u = M/2 is the reduced mass and vd = (3kT/u)*2 is the dif-
fusion velocity.
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Poshusta and Matson (P-M). The empirical potential

can be represented with good accuracy by the asymptotic

form (when R < 6a,)

V4 (R) ~ AR?exp(—2,04R).
4=21,12 a.u. (4.1)
or
Vi(R)~CR®, (=75 a.u.

Here R is expressed in units of a,. The empirical poten-
tial at larger distances decreases more steeply than the
B-D first-approximation potential. Experiments show
that the difference between V and Vg is not significant
when R > Ta,. The potential Vg for R < 6a, was chosen
in accordance with the B-D second-approximation cal-
culation.

The use of the diffusion cross section for the recon-
struction of the potential is convenient because the
quantum diffraction effects are likewise much less pro-
nounced in the diffusion than in the total cross section.
This is connected with the fact that small scattering
angles make no noticeable contribution to the diffusion
cross section, owing to the factor (1 — cos 6) (see
(2.17)). In addition, the role of the quantum symmetry
effects connected with excitation transfer is small at
low temperatures, when the difference between the po-
tentials VA(R) and Vs(R) is small compared with each
of them. For the total cross section and the excitation
transfer cross section, the quantum effects are more
important.

We proceed now to calculate the elastic scattering
cross sections, using the empirical potential. We start
from the formulas of the quantum theory of scattering.
Although the diffusion cross section can be calculated
classically, for the sake of uniformity, we shall calcu-
late all the cross sections, Q, Q4, and Q¢y, by means of
the quantum formulas (2.16), (2.17), and (2.19). The
scattering phases will be determined from the Jeffries
quasiclassical formulas:

o o

& :'Sdﬂ’[liz*%—V(R)—i—%yﬁ]”z_SdR [;3_%‘!2)2] ,

where V(R) = Vg(R) for the phases B; and V(R) = VA(R)
for the phases ;. The lower limit of integration is the
largest root of the integrand. Expression (4.2) is valid
in the quasiclassical approximation, whose applicability
conditions, as is well known, is

a> 7.:L (4-3)

TR aV (a) » ho;

Here a is the radius of the scattering potential, and
V(a) is of the order of magnitude of the potential in this
region. For the interaction potentials of the normal and
metastable helium, shown in Fig. 2, the quasiclassical
conditions are satisfied up to velocities v ~ 4 x10* cm/
sec, which corresponds approximately to T ~ 20°K.
The integration in (4.2) was carried out graphically
for definite values of k in the interval from k = 1 x10°
cm™ (E = 0.038 x10% a.u.)tok =1x10°cm™ (E = 3.8
x107% a.u.). Figure 3 shows a plot of the phase against
the number at different energies E. We see that at high
energies (E ~ 107 a.u.) a difference appears between
the phases y; and §; for different potentials. At low en-
ergies, only several of the first few phases are of ap-
preciable magnitude. The number [ of phases that are

FUGOL’

FIG. 3. Dependence of the scat-
tering phases on the number at dif-
ferent energies E = i k? /M (in a.u.)

&

essential for the scattering is approximately equal to
the number of partial waves subtended by the charac-
teristic scattering radius, i.e.,

[ =~ ha.

(4.4)

Therefore, in calculating the cross sections at low en-
ergies, we can confine ourselves to several phases,
whereas at high energies the number of phases in-
creases.

The known scattering phases for the empirical poten-
tials were used to calculate the total scattering cross
section Q (2.16), their diffusion cross section Qg (2.17),
and the excitation-transfer cross section Q¢ (2.19).
The plots of all these cross sections against the energy
are shown in Fig. 4. The total and diffusion cross sec-
tions have rather large values: Q ranges from 0.6 x10™*
to 0.9 X107 cm?, and Qq from 0.3 x10™* to 0.7 x10™*
cm?. Such appreciable scattering cross sections are a
reflection of the existence of a long-range repulsion
between the metastable and normal helium atoms. The
increase of the cross sections with decreasing energy
is connected with the increase of the effective radius
of the scattering potential. The total and diffusion cross
section curves can be approximated with sufficient ac-
curacy, for large velocities, by a formula of the type

Q=ait, (4.5)
where v is the relative velocity, v = 2hik /M.
For the total cross section we have
@=>52.10" cm?, p=-2,8.10- cm®sec™* (4.6)

For the diffusion cross section, the interpolation coeffi-
cients are are equal to

ta=2,6-10"5 cm?, ps=2.10"2 cm®sec™ 4.7)

We note that an interpolation of the type (4.5) for the
total cross section is satisfactory when v = 2 x10° cm/
sec; the calculated values of Q(v) at low velocities in-
crease more slowly than in accordance with formula
(4.5). For low velocities (v < 2 x10® cm/sec), the de-
pendence of the total cross section on the velocity Q(v)
is approximated much better by a power-law function
of the type

Q=Cp~018 (km/sec), C,=8.101 ¢cm® (4.8)

The interpolation (4.5) for the diffusion cross section is
sufficiently good even at low velocities, owing to the
more rapid increase of Qg with increasing velocity (see
Fig. 4). The quantities « are the limiting values of the
scattering cross sections at high velocities.

The excitation-transfer cross section begins to in-
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FIG. 4. Cross sections for the scattering of metastable (23 S) and nor-
mal helium atoms: 1—total cross section Q; 2—diffusion cross section Q(g;
3—excitation-transfer cross section Qtr.

crease at energies above 0.6 X 107 a.u., and is much
smaller than the diffusion and total cross sections.
This is a reflection of the quality of the potentials Vg
and Vp at large distances, owing to the presence of a
“hump’’ on the potential Va. The value of Qty reaches
a maximum at energies on the order of 4 x107% a.u.
(~0.1 eV); in this case Q ~ 1.3 Xx10™*° cm?

The different cross sections are connected by simple
limiting relations at low and high energies. In the re-
gion of low values of k, the principal role is played by
s-scattering (I = 0). In formulas (2.16) and (2.17) it is
necessary to retain only the first terms with 7 = 0. The
zeroth phase §, is asymptotically equal to §, = —ka,
where a is the effective scattering radius at extremely
low energies. From (2.16) and (2.17) we obtain the fol-
lowing limiting relations for the total and diffusion
cross sections:

Q = Qq=4mna?, (4.9)

i.e., as k — 0 (ka < 1), the total and diffusion cross
sections become equal. For the considered potentials
VA and Vg, the condition ka < 1 is satisfied at atom
velocities v < 10* cm/sec. The excitation-transfer
cross section in this energy region is certainly equal
to zero, since the phases p; and y; are the same.
Starting with velocities of the order of v >10° cm/
sec, another limiting case ka >> 1 is satisfied. All the
partial waves with ! = ka contribute to the scattering.
To determine the connection between the limiting values
of the cross sections Q, Q4, and Qy, the analysis can be
carried out in the approximation of rectangular barriers
with effective radii ap(v) and ag(v), which depend on the
particle velocity. At large values of ka, the scattering
phases B; and y; are large compared with unity (Fig. 5).
Let us consider the limiting value of the total cross
section (2.16). The squares of the sine functions in these
expressions can be replaced by their mean values Y,
and the summation over ! can be replaced by integration.
The upper integration limit is kag for even phases and
kaA for odd ones. As a result we obtain

(4.10)

Q= n(as -+ akh).

The limiting value of the diffusion cross section can be
calculated analogously in that energy region where not
only the phases themselves are large, but also phase
differences of the type §; — y7,, are much larger than

o
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unity; then
Qu= " (ak-a4). (4.11)
Formula (4.11) is valid if
Elas—as| > 1. (4.12)

Indeed, for a rectangular area, the phases are asym-
ptotically equal to §; = —ka - In/2, and the differences
are §; — 67.. = 7/2 £ k(ag-aA). Therefore relation
(4.11) may be violated in the energy region where the
difference between the potentials is small. Where the
inequality (4.12) is satisfied, the following connection
exists between the cross sections Q and Qq:

Q =20,. (4.13)

Finally, in the energy region where the condition (4.12)
is satisfied, we obtain for the transfer cross section
Qo= (05 +0%) = 5 Qu = Q- (4.14)

The limiting relations (4.14) show that the diffusion
cross section is twice as large as the excitation-trans-
fer cross section and half as large as the total cross
section. As is well known, the difference between Q
and Qq is connected with quantum effects~the contri-
bution of small-angle scattering to the total cross sec-
tion. Relations (4.14) are valid at particle energies both
larger and smaller than the height of the ‘‘hump’’ on the
potential VA. However, the effective scattering radius
apa decreases at an energy exceeding the height of the
“‘hump.’’ As seen from Fig. 4 and from the interpola-
tion coefficients (4.6) and (4.7), the limiting relations
(4.14) are well satisfied for all three cross sections.
Indeed, at large values of k we get Q = 5.2 x10™** cm?,
Q4 = 2.6 X107 cm?, and Qty = 1.3 X107*° cm®.

We have also performed numerical calculations us-
ing the potential of Buckingham and Dalgarno. The re-
sults for the diffusion and excitation-transfer cross
sections agree with the corresponding calculations of
(81*  The cross sections are Qg and Q¢r with the B-D
potential, as expected, were larger than the cross sec-

Qy, 10 em?
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FIG. 5. Diffusion scattering cross section Qg: 1— calculation with B-D
potential; 2—calculation with empirical potential; 3—geometric self-dif-
fusion cross section (from [26]).

*The formula used in [®] to calculate the cross section Qg had a co-
efficient half as large as in (2.17). This decreased the results of the corre-
sponding numerical calculations. In the comparison of the Qd(V) depend-
ence for the different interaction potentials, we have doubled the data
of [®] for the differential cross section throughout.

[T Y
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tions calculated with the empirical potential, but their
energy dependences turned out to be similar. A check
has revealed appreciable discrepancies both in the val-
ues of the total cross section Q and in the energy de-
pendence Q(v). Apparently, an error was made in the
numerical calculations of the total cross section in ®,
This probably explains why the limiting values of the
cross sections as given by ™ do not satisfy relations
(4.14). Figure 5 shows the diffusion cross sections cal-
culated for the Buckingham and Dalgarno potential and
for the empirical potential. For comparison, the same
figures shows the diffusion cross section of normal
helium atoms as given by Bendt.*

5. EXPERIMENTAL INVESTIGATION OF THE DIFFU-
SION OF METASTABLE HELIUM-4 ATOMS AND
HELIUM-3 ATOMS IN A GAS OF NORMAL ATOMS

The diffusion cross section can be determined by an
experimental study of the diffusion. The diffusion coef-
ficient of the metastable atoms is determined by mea-
suring the kinetics of the decay of the metastable state
2°3 in the afterglow of discharge in helium. At suffi-
ciently low pressures and low gas densities, the de-
struction of the metastable atoms proceeds mainly as
a result of their diffusion to the vessel walls. The
change in the metastable-atom concentration M(t) is
described by a diffusion equation with a coefficient D

oM

—— - DAM =0. (5.1)
We shall assume that deactivation of the metastable
state takes place on the surface of the discharge vessel,
so that the following boundary condition is valid

Jusur =0. (5'2)

The time variation of the volume-average concentration
is exponential

M (t):]V[oexp( D—t) .

- (5.3)

where M, is the initial concentration of the metastable
atoms, and A is the ‘‘diffusion length’’ of the vessel. For
a cylindrical vessel of radius p and length L we have
= [(2.4/p)?+ (w/L)*]"*?, and for a spherical vessel X
=p/m.

The concentration of the metastable atoms in the
state 2°S is measured by determining the resonant ab-
sorption of the 3889 A line from an external source. At
low optical densities, the concentration is proportional
to the integral absorption of the resonant line, viz.,

M ~ Al/l,, where I, is the intensity in the absence of
absorption and Al = I, -1 is the magnitude of the ab-
sorption. The experimental setup and other details of
the experiment are described in 1731732},

The accuracy of the experimental results that follow
is determined by the errors in the measurement of the
total absorption (+5%) and by the uncertainty of the gas
temperature (+5-8% at low temperatures and + 3% at
room temperature). So large a temperature inaccuracy
is connected with the heating of the gas during the time
of the excitation pulse. Therefore the average error in
the determination of D amounts to approximately
+(5-10)%, and a somewhat smaller value of the diffu-
sion coefficient is more probable.
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FIG. 6. Time dependence of the metastable atom concentration M
(in the afterglow), T = 20°K, the pressures are indicated in relative units
P =P340 T/300) mm Hg.

The destruction of the metastable atoms was investi-
gated in helium-3 and in helium-4 in the temperature
interval 300-4° K and in the pressure interval 0.2-5
mm Hg. (The pressures are given in the relative units
P = P,,,T/300 throughout.) Under these conditions, the
observed experimental plots of M(t) in the afterglow
are exponential curves. This is illustrated in Fig. 6,
which shows plots of M(t) in a semilogarithmic scale
at liquid-hydrogen temperature and at different pres-
sures. The slopes of the straight lines have the mean-
ing of the diffusion collision frequency v. In accordance
with (5.3), the value of v is connected with the diffusion
coefficient by the relation

V=

(5.4)

The correctness of such an interpretation of the experi-
mental data is confirmed also by the fact that the depen-
dence of the argument of the exponential on the pressure
corresponds to the dependence of the diffusion coefficient
on P. Figure 7 shows the dependence of the collision
frequency of the pressure at different temperatures for
helium-3 and helium-4. The experimental points lie on
hyperbolas vP = const, i.e., for each temperature one
determines a DP = const. The values of these constants
are listed in the caption of Fig. 7. This method was
used to measure the temperature dependence of DP for
helium-3 and helium-4. Figure 8 shows this dependence.
The experimental points fit a power-law curve of the

type

D
St

Do 79,

¢="1.65 = 0,06. (5.5)

The diffusion coefficients for helium-3 and helium-4
differ in the entire investigated temperature interval
by a constant factor

D (He-3)

B (e = 1-15.

(5.6)

This factor is equal to the square root of the isotope-
mass ratio.
Let us proceed to a discussion of the experimental
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FIG. 7. Pressure dependence of the diffusion collision frequency (in
relative units P = P;,,T/300) for helium-3 (upper curves) and helium-4
(lower curves) {A? =0.5cm?). 1 — T =300°K, DP = 540 (He-3), DP
=470 (He-4); 2 —~ T=77°K, DP = 250 (He-3), DP = 210 (He-4);3 - T
= 4°K, DP = 32.5 (He-3), DP = 28 (He-4). O — experimental data, curves
— for DP = const.
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data and to a comparison with the theoretical results
on the diffusion cross section. According to the kinetic
theory of Chapman and Enskog (see "*') the diffusion
coefficient D is expressed in terms of the diffusion
cross section in the following manner:

(5.7)

D 3.1(1(‘»;47')12 t

R URAY NOg (1) '

here N is the particle density and Qg(T) is the average
diffusion cross section, equal to

N

Qui(T) (leli—)J S dvr’Qy (v) exp (~ ;/:; ) . (58)
0
As seen from (5.8), the integrand
f(v)::v"’exp(—‘;—{:;) (5.9)

has a maximum at a value of v equal to the character-
istic diffusion velocity

10x7 Y172
Ug — ( ) .

e (5.10)

If the cross section Qq(v) is constant or depends little
on v, then the quantity Qg(v) (5.8) can be taken outside
the integral sign at the point v = vq (or at the energy
Eq = 5«T/2). Therefore the diffusion velocity deter-
mines the temperature scale on going over from the
Qq(v) dependence to Qd(T) (this temperature scale is
shown in Figs. 2 and 5).
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~ Using the interpolation formula (4.5) for the diffusion
cross section Qg(v), we obtain

O T (BI) 6D

Expression (5.11), accurate to several per cent, coin-
cides with the value of Q4(v) at v = vg. Substituting the
average value Qq(T) in (5.7), we get the formula

. 3 (1627 /) /2
D32 gy -0.75Bg (16T /mM) ~ V2T

(5.12)

If we express the concentration N in terms of the rela-
tive pressure P and compare the values of the numeri-
cal constants, then (5.12) can be represented in the form

36,57 (5.13)

D — AOVYEDN = ——r
DP =0.34 107 DN = -2 s

where T is in degrees Kelvin. Expression (5.13) makes
it possible to calculate the theoretical temperature de-
pendence of the diffusion coefficient for the empirical
potential. The interpolation formula (4.5) for the cross
section Qq with a B-D potential (see Fig. 5) has the co-
efficients aq = 2.6 x10™* cm® and g4 = 4 X107° cm®/sec.
In this case the temperature dependence of the diffusion
coefficient is described by the expression

38,57

bP =5

(5.14)
Figure 9 shows a comparison of the experimental re-
sults obtained by various workers with the calculated
temperature dependences of the diffusion coefficient. We
see that our experimental data agree well, within the
limits of experimental error, with those calculated on
the basis of the empirical potential. The quantity DP
= 470 cm*sec mm Hg, measured by Phelps'*® at room
temperature, does not differ from our data. The values
obtained in an earlier paper‘** are DP = 410 cm®sec™
mm Hg for 300°K and DP = 130 cm%sec mm Hg for 7T7°K.
The last two values of DP are much lower than the val-
ues measured by us. As indicated by Phelps, the values
of DP obtained later in ") are more reliable. The val-
ues obtained for DP by Ebbinghaus and Biondi at 300° K
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FIG. 9. Comparison of the calculation and experiment on the diffu-
sion of metastable helium-4 atoms. Solid curve—calculation for the em-
pirical potential V(R) in accordance with formula (5.13); dashed—cal-
culation for B-D potential in accordance with formula (5.14); dash-dot
— for normal atoms (from {2}); @—our experimental data [°]; A—data
of Phelps [ ''¢]; X —experiment by Ebbinghaus ['?]; O—the results of
Biondi [ *4].
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differ from ours by 10-15%, which is within the limits
of the experimental errors indicated by these authors.

It follows evidently from Fig. 9 that the Buckingham
and Dalgarno first-approximation potential can not ex-
plain the entire aggregate of the experimental data on
the diffusion of metastable atoms in their own gas at
low temperatures. In essence, it was just these dis-
crepancies that made it necessary to construct the em-
pirical potential, which was chosen such as to reconcile
the experimental and theoretical values of DP in the en-
tire investigated temperature interval.

From the already indicated experimental fact that the
diffusion coefficients of the isotopes helium-3 and he-
lium-4 are inversely proportional to MY 2, it can be con-
cluded that the average cross sections Qy(T) are equal
(see (5.7)). This in turn is evidence of the equality of the
cross sections Q4(E) of the two isotopes at the same en-
ergies (but not at the same velocities). By the same
token, this confirms the theoretical conclusion (2.15),
namely that the differential scattering cross sections
lf(@)l2 are equal in the case of collisions of atoms whose
nuclei obey different statistics. In addition, it follows
from this experimental fact that the interaction poten-
tials for both isotopes can be regarded as the same.

The latter conclusion is quite natural, since the inter-
action potentials are determined principally by the ex-
change and the Van der Waals interactions, which do
not depend on the mass of the nucleus. Thus, experi-
ments with helium-3 afford a satisfactory experimental
confirmation of the correctness of the empirical poten-
tial.

Bendt'®! measured the diffusion coefficient D (3 —4)
of the isotopes helium-3 and helium-4. Using the for-
mula

2M
Myt M,

D (He-4) = ( )1/2D(3—>4) (5.15)
he calculated the self-diffusion coefficient D (He-4).
Obviously, the quantity D (He-4) calculated in this man-
ner does not take into account the quantum symmetry
effects, and is determined at high temperatures by the

geometrical self-diffusion cross section
(5.16)

where d/2 = 1.04 A is the radius of the helium atom.
Figure 8 shows a plot of Qg, and Fig. 9 a plot of (DP)g
in accordance with the data of Bendt. The diffusion
cross section of metastable atoms differs from the
geometrical cross section, first in magnitude (it ex-
ceeds the geometric cross section) and second in the
temperature dependence (a stronger increase with de-
creasing temperature). At high temperatures (T ~

~ 600° K) we have Qq = 2.6 X107*® cm?, which is almost
double the geometric cross section of normal atoms
(5.16).

Qg=nd? ~ 1,35-10 cm?,

6. ANALYSIS OF THE EXPERIMENTAL AND THEO-
RETICAL RESULTS FOR THE TOTAL CROSS
SECTION

The empirical interaction cross section reconstruc-
ted from diffusion experiments can be verified also
against other experiments: against measurements of
the total cross section and of the excitation-transfer
cross section. In this chapter we discuss the theoret-
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ical and experimental results for the total scattering
cross section of metastable helium atoms 2°S with nor-
mal helium atoms 1'S. We must point out immediately
the appreciable quantitative differences between the ex-
perimental data obtained by different authors, which
differ both from experiment to experiment and with the
calculation results.

Until recently, practically the only calculation avail-
able was that of Buckingham and Dalgarno, who used
their own potential in first approximation. It is difficult
to understand why, but it turned out that the numerical
values of the total cross section in "®! are incorrect
even for the potential (B-D) calculated by the authors
themselves. Therefore the interpolation formula for
the total cross section is a function of relative velocity,
given by the authors in ®!, was likewise incorrect. This
is all the more annoying, since the results of their cal-
culations were subsequently used by many experimen-
tors to compare their data with theory. We have re-
peated the calculations of the total cross section Q(v)
for the B-D potential using the scattering phase shifts
given in ted, Figure 10 shows the results of all the cal-
culations in the experiments. Curve 3 represents the
data of Buckingham and Dalgarno, curve 2 the results
of our calculations with the same potential, and curve 1
the dependence of the total cross section of the velocity
for the empirical potential. It is seen from Fig. 10 that
the discrepancy between curves 2 and 3 is quite appre-
ciable, especially at large velocities. As was indicated
in Ch. 4, the various cross sections of the elastic pro-
cesses are connected, in the limit of large velocities,
by limiting relations (4.14). The total cross section
from curve 2 at velocity 4.2 x10° cm/sec does not sat-
isfy these relations. Indeed, according to Buckingham
and Dalgarno, at v = 4.2 x10° cm/sec we have Q = 14.5
x107° cm?, Qg = 2.5 x107*® cm?, and Q. = 1.3 x107*°
cm?, i.e., the total cross section differs from the diffu-
sion cross section not by a factor of 2 but by a factor of
6. In addition, the dependence of Q(v) in accordance with
curve III contradicts the law governing the variation of
the B-D potential in the long-range repulsion region.

According to the well known paper by Massey and
Mohr,"™ the total scattering cross sections depend on

sec

FIG. 10. Comparison of the calculation results with experiment of the
total scattering cross section of metastable helium-4 atoms. Solid lines—cal-
culated Q(v) curves; 1—for empirical potential; 2—for B-D potential accord-
ing to our calculation; 3—calculation of Buckingham and Dalgarno. O, B,
A — experimental values; a—O—data of Rothe et al. {2'], M—data of Steb-
bings {'®] and Hasted ['®], A—data of Richard and Muschlitz [*°}, a'—
—O—data of Rothe decreased by a factor /7.
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the velocity in accordance with the law

Q (v) == const .p— /(1)

6.1)

If the interaction potential decreases in accordance with
a power law

V() ~ R™ (6.2)

This conclusion was obtained from a quantum analysis
and is valid with good accuracy. As indicated in Ch. 3
(see formula (3.3) in Fig. 1), when R > 7a, the B-D po-
tential can be approximated by power-law function with
n = 6. Therefore, at velocities v < 5 X 10° cm/sec the
cross section Q(v) for the B-D potential should decrease
like v"®*. This law is satisfied for curve 2 and is not
satisfied for curve 3.

The discrepancy between curves 2 and 1 is connected
with the differences in the interaction potentials —the
height of the hump and the law governing the decrease
of the long-range repulsion. For curve 1, in accordance
with the empirical-potential approximation (Vg A(R)
~12) the variation of Q(v) obeys the law

o

- 5\ 0,182

Q) =8-10715 (12) "1 (6.3)

The total elastic-scattering cross sections were mea-
sured with the aid of the molecular-beam method,t*#%?
Such experiments should be carried out at sufficiently
large angular resolution of the apparatus, in order to
register the contribution made to the total cross section
by the small-angle scattering. By resolution is meant
that minimal scattering angle 8,, registered in the given
instrument as the angle of deflection of the atom as a
result of the collision act. Massey and Burhop'® indi-
cate that the error in the determination of the total cross
section does not exceed 10% if 6, = 3.6° (at room temper-
ature). The directly determined quantity is the mean
free path X of the metastable atom, determined from the
beam attenuation. Knowing the free path A, we can de-
termine the average value

(6.4)

where N is the density of the scattering gas of normal
atoms. The average value Q is connected with the effec-
tive total cross section Q(v) in a rather complicated
manner, since the average cross sections include actu-
ally a double averaging—over the particle velocities in
the beam and in the scattering gas. The character of
the averaging depends on the ratio of the particle ve-
locities in the beam and in the gas, and also on the be-
havior of the scattering cross section itself as a func-
tion of the velocity. If the cross section does not de-
pend on the velocity, then the reduction of the experi-
mental data can be carried out by means of the proce-
dure described by Massey and Burhop'® (see also %),
For a power law potential of the form (6.2), a reduction
method was proposed by Berkling et al.[*®’ To obtain
the true cross section Q(v) by means of this procedure
it is necessary to use the relation
Z') (“’,rb.)‘z/n—l
F(n, r) *

Q)= (6.5)

where u is the velocity of the monochromatic beam,
x = u/(2«T/M)*? is the ratio of the velocity u to the
most probable gas velocity; the function F(n, x) is tab-

191
ulated in ®*; at large n and x (x > 2), the function
F(n, x), is close to unity.

The points of Fig. 10 represent the experimenial
values of Q(v), processed with the aid of the procedure
(6.5) at n = 12. The results of Stebbings"® and Hasted'**!
practically coincide: @ = 14,9 x107** ¢cm® and Q(v) = 10.5
x10** cm?® (F(12, 1) = 1.4). The resolution in the experi-
ments of "% was approximately 1°. The data of Rich-
ard and Muschlitz'®® were obtained with a mean resolu-
tion 6.5°. The experimental value is Q = (7.5 £ 0.5)
x107* cm?, and after reduction Q(v) = 5.5 x10™'° cm?.
Quite good resolution (8, = 1’) was attained in the ex-
periments of Rothe et al.'®?3 Unfortunately, the au-
thors did not give the measured values of Q. Insofar as
can be judged from the formula given in their article,
the experiments were reduced by a formula that differs
from (6.5) by a factor V@ = 1.77. Consequently Fig. 10
shows the data of the indicated experiments (curve a),
and also the values of Q(v) reduced by a factor V7
(curve a’). The values of Q(v) given in the paper of
Rothe et al.,'®™ can also be regarded after reduction
as overestimated on the basis of the following consid-
erations. The total scattering cross section should not
exceed double the diffusion cross section. At room
temperature, the results of different authors give a re-
liable value of the quantity DP = 470 cm%sec mm Hg,
from which we get Qg = 3.5 x107*®* cm?. These values
correspond to a relative velocity v = vq = 2.5 x10°
cm/sec. Consequently, the total cross section Q for
this velocity cannot exceed 7 x107** ¢cm®. The total
cross section given by Rothe et al.™! at this velocity
is Q = (12.7 £ 0.3) x107™*° cm®. This is precisely larger
by V7 times than the maximum estimate of the total
cross section for this velocity.

It is seen from Fig. 10 that once the data of "**! are
corrected by a factor of V7 (curve a’), they agree well
with the results of calculations of the total cross sec-
tion on the basis of the empirical potential (curve 1).

It must also be assumed that the data of Richard and
Muschlitz®® are in satisfactory agreement with the
calculation for the empirical potential, inasmuch as

the angular resolution of their instrument was insuffi-
cient to measure completely the small-angle scattering.
Therefore the total cross section obtained in these ex-
periments is overestimated. The data of Stebbings®
and Hasted'*®! differ somewhat from the calculations,
The reasons for these discrepancies are not clear. Thus,
with the exception of the data of "% all the results of
the later experiments are in good agreement with the
calculation of the total cross section Q(v) on the basis
of the empirical potential.

7. COMPARISON OF THEORY AND EXPERIMENT
FOR THE EXCITATION-TRANSFER CROSS SECTION

The excitation transfer is connected with the change
of symmetry of the state of the colliding atoms as a re-
sult of scattering. The cross section of this process
differs from zero only in the case when the interaction
potentials Vg and VA are different. The value of the -
transfer cross section and its dependence on the veloc-
ity are determined by the form of the potential curves.
According to O. B. Firsov,'™ the excitation transfer
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probability W is proportional to sin® ©t, where @ is the
transfer frequency and t ~ a/v is the characteristic in-
teraction time, with 2 ~ AV/h, where AV is the differ-
ence between the potentials Vg and VA. The probability
W should be averaged over the characteristic scattering
region. Therefore the dependence of W on the velocity
should be

i 14
Wzsm-(A a) .

M (7.1)

If AV depends little on velocity, then the transfer
cross section increases with decreasing particle en-
ergy, and has a maximum when v — 0. A similar situa-
tion occurs, for example, in collisions between hydro-
gen atoms or in the case of resonant charge exchange
of ions, when the two interaction potentials V§ and VA
have different signs at large distances and their differ-
ence changes slowly.

If AV changes rapidly as a function of velocity, then
the dependence of the transfer cross section on v can
be different. In the interaction between metastable and
normal helium atoms, both potentials have the same
sign at large distances, and their difference decreases
sharply with distance and tends to zero. For this rea-
son, the energy difference integrated over the charac-
teristic scattering region AVa decreases much more
rapidly than the velocity raised to the first power. In
this case, the transfer cross section also tends to zero
as v — 0. In the region of large velocities, which cor-
respond to small distances between the interacting
atoms, the difference of the potential energies of the
two states of the system is relatively large, and de-
pends little on the velocity. The energy of the colliding
particles exceeds in this case the height of the potential
barrier, and the latter no longer influences the charac-
ter of the dependence of the transfer cross section on
the velocity. A high energies, Q, will again decrease.
Consequently, in the presence of a long-range repulsion
on the potential VA(R), the excitation transfer cross
section has a broad maximum at energies on the order
of the height of the repulsion ‘“hump.’’ The maximum
value of Qi is the limiting value of this cross section
in relations (4.14).

Figure 11 shows the calculated dependences of the
excitation transfer cross section on the energy. The
solid curve pertains to the empirical potential. The

5 L7 7au.
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FIG. 11. Calculated plots of the excitation transfer cross section vs.

velocity. Solid curve—for empirical potential; dashed curve—for B-D poten-

tial with allowance for the second-approximation correction - 20R™ a.u.
(the upper velocity scale is for He-4, the lower for He-3).
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dashed curve represents the results of the calculation
of Qy, performed by Buckingham and Dalgarno™® for
their potential with allowance for the Van der Waals
correction —20R™ A.u. At low energies, Qr tends to
zero, since the potentials Vg and VA practically coin-
cide (see the table on p. 000). With increasing energy
of the atoms, the transfer cross section increases as a
result of the discrepancy between the potential curves.
The higher the maximum on the potential curve Vp, the
smaller the difference between VA and Vg at the given
colliding atom particle energy. Therefore the excitation
transfer cross section turns out to be smaller for the
B-D potential, which has a higher maximum, than for
the empirical potential. The difference between the
cross sections Qir at low energies is due to the differ-
ence between the asymptotic behaviors of the interaction
potentials.

The cross section for excitation transfer from the
metastable atom to the normal one was measured by
Colegrove and co-workers '™ and by Greenhow.??®
The method used by them makes it possible to measure
the averaged cross section of excitation transfer only
for atoms with nonzero nuclear angular momentum —for
helium-3. The gist of the method consists in the follow-
ing. A high-frequency discharge is used to produce ex-
cited metastable atoms. The excited gas is in a mag-
netic field and is eliminated by a polarized resonant
emission line (10,830 A) from an external source with
helium-4. Owing to the equality of the frequencies of
the transitions 2°S—2°P_ , (in helium-4) and 2°S,—2%S,
(in helium-3), it is possible to effect optical pumping
of the metastable helium-3 atoms in states with differ-
ent projections of the total angular momentum mj. The
optical pumping produces a nonequilibrium population
at these sublevels. In the case of right-polarized light,
in particular, the levels with mj = + Y, become enriched.
The lifetime 7 of the metastable nonequilibrium states
is determined by the collisions with the normal atoms,
which produce the excitation transfer. In the case of
collisions with normal atoms having momentum projec-
tions - 1/2 or + 1/2, electron excitation exchange takes
place without a change in the nuclear momentum. Thus,
after collision with a normal atom with mj - '/, a meta-
stable atom with mj - Y%, appears instead of a metastable
atom with mj = +,. The scheme of this process can be
written in the form

He* (m; = 1/2) -+ He (m; = — 1/2) —> He (m; == 1/2) - He* (m; == —1/2).
(7.2)
In other words spin flip takes place as a result of the
reaction (7.2). Therefore the line width of the nuclear
magnetic resonance between levels with mj = Y. and mj
= - 1/2 is determined by the cross section of the process
(7.2), i.e., by the cross section of the excitation transfer.

The line width Af of nuclear magnetic resonance for
the sublevels of the metastable atoms was measured in
(23-231 ' The value of Af is connected with the excitation
transfer cross section Qiy by the formula

Af o 1 - Nwlr R

(7.3)

it n

where N is the density of the normal atoms, and the bar
denotes averaging over the velocities. Generally speak-
ing, other inelastic collisions causing destruction of
metastable states, as well as the inhomogeneity of the
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magnetic field, also contribute to the line width. Esti-
mates show that the other inelastic processes play no
noticeable role under the conditions of the experiments
of 23 and the inhomogeneity of the magnetic field
can lead to an overestimate of Qtr. By using a modula-
tion technique, Colegrove et al.”®*»?! succeeded in elim-
inating the broadening of the resonance line due to the
field inhomogeneity. In ¥* they measured vQr in a
wide temperature interval from 4° to 500° K. These data
are shown in Fig. 12, together with the errors. For
room temperature, the value of vQtr was obtained also
by Greenhow.'*® His data exceeded the values of vQrt
measured in ! by a factor 1.5. These discrepancies
may be connected with the influence of the magnetic-
field inhomogeneity.

For a comparison of experiment with theory, the
value of vQr was calculated for the cross sections
Qir(v) listed in Fig. 11. The numerical calculation was
based on the formula

oo

Yo L () e e (~457)
)

(7.4)

The comparison results are shown in Fig. 12. We see
that the experimental values are in satisfactory agree-
ment with calculation based on the empirical potential.
Even the corrected Buckingham and Dalgarno potential
leads to greater deviation from experiment. Thus, ex-
periments on the excitation-transfer cross section con-
firm convincingly the correctness of the chosen empiri-
cal potential.

8. CONCLUSION

Let us summarize the experimental and theoretical
investigations of the elastic scattering of metastable
helium atoms in helium gas. Measurement of the dif-
fusion coefficient D in the temperature interval 300-4°K
yields a much smaller quantity for the metastable atoms
than for the normal helium atoms. The temperature de-
pendence D(T) follows approximately the T3 law, show-
ing by the same token that the diffusion cross section
changes with temperature approximately like T/¢,
Owing to the fact that, of all the elastic processes, dif-
fusion is least sensitive to quantum effects (to small-
angle scattering), classical similarity considerations
can be employed to establish the connection with the in-
teraction potential. The result is that the asymptotic
form of the potential should be close to R™*?, and the
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FIG. 12. Comparison of the experimental and calculated values of the
averaged quantity vQyr/n. Solid curve—calculation for the empirical poten-
tial; dashed curve—for the B-D potential. Vertical segments — experimen-
tal data with allowance for the errors (from {?¢]), @ — data of {?5].
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potential itself is repulsive. A comparison of experi-
ments on the diffusion of helium-3 and helium-4 leads
to the important conclusion that the interaction poten-
tials and the differential scattering cross sections of
isotopes having different statistics are identical. This
agrees with the theoretical prediction that the differen-
tial cross sections of the two isotopes are equal. An
experimental study of the total elastic-scattering cross
section also shows that the cross section is large. Sin-
gularities were also observed in the excitation transfer
cross section. Instead of the usually observed maximum
at low velocities and the monotonic decrease of Qtr with
velocity, the excitation transfer cross section in helium
at low temperatures is unusually small, increasing only
at high temperatures and reaching a maximum at T

~ 700-800°K. In other words, quantum symmetry effects
are anomalously small at low energies (E < 300°K).

The entire aggregate of the experimental data can be
explained not only qualitatively but also quantitatively on
the basis of the quantum theory of scattering and a cor-
rect choice of the interaction potential. The usual poten-
tial with attraction at large distances does not make it
possible even to describe qualitatively the process of
diffusion and excitation transfer. The already noted sin-
gularities of the elastic scattering of metastable helium
atoms are in agreement with the presence of a maximum
of a long-range repulsion on the potential VA(R). The
existence of such an unusual potential was predicted by
Buckingham and Dalgarno on the basis of theoretical
calculations based on the Heitler-London method. How-
ever, the results of this calculation are quite approxi-
mate, especially at large distances. As noted by Gor’-
kov and Pitaevskii’,m] the asymptotic form of the poten-
tials for the hydrogen molecule, obtained by the Heitler-
London method, has a slower dependence than R than
the exact form. The results of ! can be regarded as a
theoretical indication that in the case of the helium mol-
ecule the true asymptotic interaction is likewise steeper
than that calculated by the Heitler-London method."®
From this point of view, the results of the calculation
by Poshusta and Matsen, '?! carried out with the aid of
a variational method, are more reliable. However, the
latter were not carried out in the asymptotic region
R > 6a,. At the same time, the elastic-scattering pro-
cesses in the temperature interval 500-4° K are deter-
mined by the potential at large distances R ~ (5-10)a,.
Using the theoretical calculations, the interaction poten-
tial in the asymptotic region was reconstructed on the
basis of the experimental data on diffusion. The recon-
structed empirical potential coincides in the region of
the long-range repulsion maximum with the Poshusta
and Matsen potential and agrees approximately with the
asymptotic calculation of B. M. Smirnov et al.'™ for
R > 6a,. The height of the maximum on the VA(R) curve
is 5.1 X107 a.u., and is located at R = 4.5a,. At dis-
tances R > 6a,, the potential decreases like VA(R)
~ 75 R a.u. The potential Vg(R) was chosen such
that when R < 6a, it coincides with the potential Vg(R)
calculated by Buckingham and Dalgarno with allowance
for the Van der Waals correction, and when R > 7a, the
potential Vg(R) coincides with the asymptotic form of
the empirical potential VA(R). If these potentials are
used for the calculation of the cross sections, then all
the experimental data on the magnitude and temperature
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dependence of the diffusion cross sections of helium-3
and helium-4, the total cross section, and the excitation-
transfer cross section, without exception, are in good
quantitative agreement with the theoretical calculation.

The existence of a repulsion barrier at large dis-
tances makes it possible to establish simple approxi-
mate limiting relations (4.14) between the different
cross sections; these are confirmed by experiment. The
limiting relations between the total and diffusion cross
sections are satisfied already at velocities 2.5 x10°
cm/sec, which corresponds to interaction at distances
smaller than 6a,. The limiting value of the excitation
transfer cross section is reached in the region of the
repulsion maximum.

It should be noted that the existence of a ‘‘hump’’ is
confirmed also by experiments on elastic scattering of
metastable atoms in their own gas."®'®*"! The maxi-
mum of the long-range repulsion, besides the interac-
tion of the triplet metastable 2°S atoms with the normal
ones considered in this paper, was theoretically pre-
dicted"® for the potentials of the singlet metastable
helium molecule. An indirect experimental confirma-
tion of the existence of such a maximum for singlet
metastable atoms was obtained in *®, An analogous
long-range repulsion was predicted theoretically for
some other excited states of the helium molecule, of
the hydrogen molecule, " and also apparently for
neon. Repulsion maxima can exist also on plots of the
energy of the interaction between metastable helium
atoms and excited atoms of other noble gases. This
may pertain, for example, to the reaction of helium
atoms in the states 2°S or 2'S with neon (this process
plays an important role in an He-Ne gas laser) and
also to the series of Penning processes.

The method proposed here for reconstructing the
interaction potential from the experimental data can
be applied to all similar systems with long-range
repulsion.
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