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A T first glance, the scope of this review seems quite
narrow. However, the number of papers devoted to vari-
ous problems pertaining thereto has been exceedingly
large in recent years, and insofar as I can judge, the
flow continues to increase. This is connected primarily
with the fact that there are still many puzzling and not
fully explained phenomena in this region (as stated by
P. Anderson, "Mount Everest is right here"). In addi-
tion, it is very surprising that a small impurity of
transition-metal atoms in a magnetic metal can lead
to a large change, independent of the impurity concen-
tration, in the properties of the metal, for example to
a several-fold increase of the electronic specific heat
at low temperatures, or to an increase of the thermo-
electric power by several orders of magnitude. These
experimental facts have been explained only most r e -
cently. I repeat, however, there is still many unan-
swered questions.

I. LOCALIZED SPINS

Presently there is no more any doubt that all the sin-
gularities of the substances under consideration are
connected with the fact that the atoms of the transition
metals, which have in the isolated state unfilled d or f
shells and a nonzero electron spin, can retain this prop-
erty in many cases when imbedded in a nonmagnetic
metal. The question of the possible presence of such
localized spins in metals has been the subject of an ex-
tensive literature. The main ideas in this field belong
to J. Friedel and P. Anderson.cu I am unable to discuss
this question fully, but a few words are essential. In the
main, the matter reduces to the following. When a mag-
netic atom is placed in a metal, we can no longer speak
of individual energy levels. We can speak instead of an
increased density of states in some energy interval in
the conduction band. It should be noted that this takes
place, of course, only when the impurity-atom energy
level lies in the conduction band. But since the conduc-
tion band is very broad, this takes place quite frequently.
However, these states themselves are still quite close
to the former orbital states of the electrons in the iso-
lated atom; in these states, consequently, the electrons
spend an appreciable part of the time near one another,
and there is strong interaction between them. In the
isolated atom, the Coulomb interaction of the electron
leads to the known Hund rules, according to which, in
particular, the unfilled shell should have a maximum
spin. Since, as already noted, considerable Coulomb
interaction still remains when the impurity atoms are
placed in the metal, the Hund rules hold here, too. Of
course, all depends on the time that the electrons stay
near the impurity. Quantitatively, the possibility of

occurrence of a localized spin is determined by the
ratio of the Coulomb interaction of the electrons in the
d or f shells and by the probability of their transition
to the valence band. The latter is represented by the
extent of spreading of the former discrete energy level.

How does all this occur and to what changes in the
properties of the conduction electrons in the metals
does the presence of such quasibound states lead ? This
was demonstrated by P. Anderson using a very simple
model as an example. t l ] We write out the following
Hamiltonian

SB = 2 WP* + 2 *«n*« + T 2 Und*n»-« + 3 (VaUd* + V*diapa);
pa a pa (1)

here a p a is the annihilation operator of a conduction
electron with quasimomentum p and spin projection a,
da is the annihilation operator of a d electron with spin
projection a, npa = apaapa and nda = dada are the
occupation numbers, the energies ep and ed are reckoned
from the Fermi boundary, and the impurity level e<j is
assumed to be nondegenerate, with e^ < 0. The term
with U is the part of the electron Coulomb interaction
ensuring satisfaction of the Hund rule (see below), and
the last term corresponds to mixing between the e^
level and the conduction electrons. According to Ander-
son's estimate, U ~ 10 eV and V ~ 2 eV. Therefore, in
the zeroth approximation, we can neglect the last term.
The d electrons are then not bound with the conduction
electrons. According to the Pauli principle, if one elec-
tron with upward spin is located at the e^ level, then
the next electron can have only a downward spin. But
in this case its energy will be e<j + U. If this is a posi-
tive quantity, then the energy of such an electron lies
above the Fermi level, and the state is not filled. Natu-
rally, this reasoning is valid also when one electron
with downward spin is located at the e^ level. Thus, the
term with U causes the e,j level to correspond to a lo-
calized spin % (with projection + l/2 or -%)• Of course,
allowance for the term with V complicates the situation,
and a limited region of values of V and U, in which lo-
calized spins are possible, is produced.

We shall not go into the details in this question, and
consider instead, with the aid of the Hamiltonian (1), the
scattering, with spin flip, of an s electron by an impurity.
Assume that one electron with spin y2 is located at the
level e^ and a conduction electron with momentum p
and spin -% is scattered. Such a scattering can proceed
in two ways: a) The electron (p, -%) is transformed
into d, - L and then the electron (d, %) is transformed
into (p', / 2 ) . This corresponds to a transition amplitude

iv p.

*Review based on papers delivered by the author at the International
Symposium on Modern Physics, Trieste, July 1968, and at the Soviet-
American Symposium on Solid State Theory, Moscow, July 1968.

b) The electron (d, %) is transformed into (p', %) and
then the electron (p, -%) is transformed into (d, -%).
In this case we have

JU
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If we assume that the scattering is elastic and the metal
is isotropic, then ep = ep/, and the net result is

v\*u

Usually only the electrons near the Fermi boundary it-
self are significant, so that ep ~ 0. We then have a ma-
trix element independent of p and equal to

I V |2 (/

This is a positive quantity, since the existence of a lo-
calized spin in such a model requires in any case e^
< 0 and U+ €d > 0.

Three factors should be noted. First, the result is
equivalent to "exchange" interaction of the electron
spin with the impurity spin, in the form

where
J

~2N

Here N is the density of the host-metal atoms, intro-
duced for normalization purposes, and 0* are Pauli
matrices. Second, it follows from the foregoing con-
clusion that J < 0, i.e., the interaction has an antifer-
romagnetic character. Finally, e jo r U + e^ can be
close to the Fermi boundary, and then J is not a small
quantity. This is important, for usually spin interactions
of the type 0^2 have a true exchange origin, and the cor-
responding energies are smaller by several times than
the Fermi energy. Such an interaction, of course, is
also present, so that the resultant interaction is deter-
mined by two mechanisms. The remark made above
concerning the sign is always valid if the mechanism
described above is the principal one, i.e., in any case
when J is not small. However, in cases of rare-earth
impurities (i.e., unfilled f shells), the true exchange
interaction of the f or s electrons can sometimes play
a more important role, and the sign of J may be posi-
tive.

This equivalence of the Anderson Hamiltonian and
the exchange interaction was first demonstrated by
Kendo/21 in a manner approximately similar to that
described above, and then Schrieffer and Wolff obtained
this result rigorously by a canonical transformation of
the Anderson Hamiltonian."3 Of course, the Anderson
Hamiltonian is the simplest model, but even if it is as-
sumed that the £(j level is degenerate, corresponding to
an orbital angular momentum I, the Hamiltonian (1) can
still be transformed into the exchange type. To be sure,
the interaction energy 3C (p, p') then begins to depend
strongly on the quasimomenta p and p ' . According to
Kondo,C2:l it is proportional to the Legendre polynomial
P; (cos 9pp')- According to calculations by Bernard
Karolyi (oral communication), this circumstance is im-
portant in a numerical comparison of the theory with
experiment, since the different quantities contain dif-
ferent angular integrals of J. Since we are more inter-
ested in the fundamentals of the problem, we shall as -
sume J = const throughout.

I now proceed to different phenomena due to impuri-
ties with localized spins. There are very many such

phenomena, and it is difficult to cover them all. But I
shall attempt to report those that seem most important
to me. This group of problems can be represented in
the form of the symmetrical matrix shown in Fig. 1,
where O denotes ordering, S superconductivity, and K
the Kondo effect.

II. ORDERING (O)

Thus, we consider the interaction between the local-
ized spins and conduction electrons in the form

IV (K) < (2)

here a—Pauli matrices and S—impurity spin operators
(for S = %, S = a/2); the summation is over all the im-
purity atoms. The interaction (2) leads, as can be read-
ily seen, to interaction of the localized spins with one
another: one spin polarizes the conduction electrons,
and these in turn polarize another spin. If we assume
that IJ I <SC e-p (ejr-"Fermi energy), then we can confine
ourselves to the lowest order in perturbation theory,
i.e., to the second order. It is easy to see that the pro-
cess of interaction of two impurity spins via electrons
can be described by the picture shown in Fig. 2. The
impurity spin produces a pair—an electron and a hole
—which is then annihilated by interacting with the other
impurity spin.

Figure 2 not only illustrates the transfer of the spin
polarization by the electrons, but also is a Feynmann
diagram, with the aid of which it is possible to obtain
a quantitative measure of the effect; as a result we ob-
tain the well known Ruderman-Kittel-Kasuya-Yosida
(RKKY) formula[4]

where y(eF) = pom/27r2 is the density of the states of the
electron on the Fermi boundary, and

t /sin2pô  cos2p0/?\ (4)

p0 is the limiting Fermi momentum (for simplicity we
use throughout units in which R = 1). The Fourier trans-
form of the function f (R), which we denote by x(i)> is

l^\- (5)

Thus, the interaction decreases in absolute magni-
tude like 1/R3, and at the same time oscillates rapidly
with a period l/2p0 of the order of the interatomic dis-
tances. Since the impurities are randomly disposed,
this interaction is ferromagnetic for certain pairs, i.e.,
it tends to make their spins parallel, and antiferromag-
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netic for others. What kind of ordered states can occur
under the influence of such an interaction ? There are
two different approaches. Although each point of view
has its adherents, the question still remains unclear.

One approach is connected with the names Blandin,
Friedel,"3 and Marshall/83 The idea consists in the
following. The oscillating and decreasing interaction
cannot establish a long-range order in the metal. There-
fore a state is produced in which the spins are oriented
more or less randomly. Such a configuration is rigid
at sufficiently low temperature, but its symmetry does
not differ from the paramagnetic phase. There is there-
fore no exact phase transition, and all the singularities
of the thermodynamic characteristics, such as specific
heat or magnetic susceptibility, will have the form of
maxima that are smeared out somehow. Each spin can
be regarded as situated in a certain effective exchange
field, i.e., having an energy -S«Q (the quantity Q is
equivalent to y.0H, where H is a certain magnetic field;
iU0S is the magnetic moment of the impurity). We intro-
duce a field-distribution function, which naturally de-
pends only on the absolute value of Q; it is designated
p (Q). It is then assumed that all the spins can be re -
garded separately, and the obtained characteristics
must simply be averaged over Q with a distribution

P(Q).
Of course, to obtain numerical characteristics it is

necessary to know the function p (Q). No one has suc-
ceeded in calculating this function. However Klein and
Brout[7J performed a calculation for a somewhat differ-
ent interaction—the so-called Ising model, where S i ^
is replaced by S1ZS2Z and it is assumed that each of the
spins is equal to %. This substitution, of course, is a
major shortcoming of such a calculation.

There is, however, a more general dimensional con-
sideration, advanced by Blandin, to which there are
fewer objections. At large distances, the amplitude of
RKKY interaction decreases like 1/R3. With increasing
concentration c, the average distance between the im-
purities varies in proportion to c~1/3. Consequently, it
can be assumed that the function p (Q) is such that all the
average quantities with the dimension of energy, i.e., for
example, VQZ J or the characteristic values of the tem-
perature, are proportional to 1/R3 or c. To this end,
the function p (Q) must be of the form

/>(<?. T) = \i ( T • T ) • (6)

Even this leads immediately to many consequences.
For example, if p (0, 0) * 0, then at low temperatures
the impurity part of the specific heat and of the magnetic
susceptibility have the following form

452
~ 2 3
Ax = 2p (0, 0) |i»jVc,

(7)

(8)

where ju is the magnetic moment of the impurity, c the
concentration, and N the density of the atoms of the host
metal. According to (6), p (0, 0) ~ 1/c. Consequently,
AC and A^ do not depend on the impurity concentration.
Since AC depends linearly on the temperature this term
creates the impression that the linear electronic spe-
cific heat increases by a factor of several times, and
does not depend on the impurity concentration. The

same pertains to the magnetic susceptibility. Of course,
the concentration determines the "Curie temperature,"
i.e., the characteristic temperature ® beyond which this
"ordering" is not felt. According to (6), © oo c, i.e., the
temperature region where an increment of the type (7)
and (8) exists, decreases with increasing concentration.

Further, dividing (7) by (8), we obtain

AC
AX ' 0)

Consequently, p (0, 0) drops out. If we assume that /j.
« 2/j.gS, i.e., if we assume that the gyromagnetic ratio
is close to 2 (/xg—Bohr magneton), then we can attempt
to determine the impurity spin and compare it with the
measurements in the high temperature region T > 6 ,
where paramagnetism obviously obtains and the para-
magnetic susceptibility is given by

u * ~ 3T
The results obtained in Grenoble for Au + Fe and Cu
+ Mn are in splendid agreement with these considera-
tions.183 The Grenoble physicists have also made many
measurements to check two consequences of formula (6),
and on the whole agreement is obtained in all cases.

Favoring this model is also the smearing of all the
transitions (broad maxima of C and x instead of sharp
singularities), and the large coercive force following
magnetization. The latter is due to the fact that some
spin orientation is established in a strong magnetic
field, i.e., a function p (Q) is obtained. In this case it is
no longer anisotropic. This function exhibits stiffness,
i.e., it does not follow the variations of the external
field.

However, there are two fundamental objections. First,
since Q is a vector with a random orientation, its dis-
tribution function should strictly speaking be equal to
p (Q)dQ = px(Q)Q2dQ. And even if p^O) * 0, still p (0)
= 0, and this completely upsets the entire concept. The
second objection will be discussed later. There is also
experimental evidence against this concept. This will
also be discussed later.

We shall now discuss the second approach. This is
the Overhauser idea of the so-called spin density wave.
cw We imagine that the conduction electrons have be-
come aligned in such a way that a periodic spin density
distribution has been established (in particular, this
distribution can be homogeneous, i.e., ferromagnetism).
This, of course, means an increase in the electron en-
ergy. But if the Hamiltonian (2) is averaged over this
electron distribution, then we obtain again -Z/Q(Rn)Sn>
where n

Q (Rn) = 4 (ipj (Ra) <Wi|v (R,,)>

({.-.) denotes averaging over the electrons). Although
the field Q has different directions at different points,
the impurity spin is always oriented as required, and
the result is a decrease of the energy, which can com-
pensate for the increase of the electron energy. It can
be shown that this occurs below the Curie point, which
is proportional to the impurity concentration and is of
the order of © ~ cJ^ep (ep—Fermi energy), hi this
case the transition should be abrupt. The experimen-
tally observed smoothness of the transition can be at-
tributed to inhomogeneity of the impurity concentration.
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What kind of spin density wave is actually estab-
lished ? Obviously, this is determined by the energy
minimum. Let us assume that the wave has the form of
a helicon (i.e., the end of the vector Q describes a he-
lix) with a wave vector q. In this case the change of
energy per unit volume turns out to be

where the function x(q) is determined by formula (5).
It is assumed here that the metal is homogeneous and
the impurities are perfectly randomly oriented. The
function \(q) is monotonic, and its maximum value cor-
responds to q = 0. This means that a ferromagnetic
configuration is preferred in such a model.

In fact, in the derivation of (10) we did not take into
account the fact that the impurity atoms occupy definite
places in the crystal cells, and therefore the averaging
can be carried out only over the cells and not over the
positions in the cells. As a result we obtain

At' (cJ)*v{eF)S*±- /(R,,)cos(qRn)<p(Rn), (11)

where the summation is carried out over the entire
crystal lattice, and the function <p(Rn) takes into ac-
count the correlation of the cells in which the impurity
atoms may be located. The importance of taking this
function into account is connected with the fact that the
most significant in the sum over Rn are short distances,
on the order of the interatomic dimensions, where the
function <p(Rn) can differ greatly from unity, since the
correlation existing in the liquid state undoubtedly is
retained after the alloy is cooled.* However, since little
can be said concerning this function, it is usually as-
sumed equal to unity. The sum over Rn is then

lim [ S T S

where the summation is over the periods of the recipro-
cal lattice. It is convenient to subtract from this the ex-
pression for the ferromagnetic case, i.e., with q = 0. It
is then possible to go to the limit as P -— °°. As a result
we get

A E - \£ f O T - -(c^)2v( f:,,)S2 V[ 7 (q -•-K)-x(K)]. (11')

Concrete ca lcu la t ions for different types of l a t t i c e s show
that this s u m frequently has a m a x i m u m at q — 0. M o r e -
o v e r , no attention w a s paid h e r e to the an isotropy energy ,
which , obvious ly , wi l l tend to re la te the p e r i o d of the
wave to the p e r i o d of the c r y s t a l la t t i ce . It i s there fore
p e r f e c t l y probable that what i s actual ly r e a l i z e d i s not
the q that c o r r e s p o n d s to the min imum of the function
(11'), but another va lue , corresponding for example to
the n e a r e s t K.lm The foregoing e x a m p l e i s a v e r y s i m -
p le one . Other types of s p i n - d e n s i t y wave a re not e x -
c luded.

Insofar a s I know, the phys i ca l p r o p e r t i e s of th i s
m o d e l have not yet been suff ic ient ly inves t igated . If the
ef fect ive f ield v a r i e s in magnitude (for example , a plane
wave Ox = A c o s (q, R), Qy = Q z = 0), then in pr inc ip le
there i s no d i f ference between th i s and the p r e c e d i n g
approach, for a cer ta in dis tr ibut ion p (Q) i s a l s o o b -

ta ined, and it can b e shown that i t s gauge p r o p e r t i e s
(formula (6)) a re c o n s e r v e d . This i s p o s s i b l y the only
r e a l way of obtaining p (0) ~ 0. However , if f e r r o m a g -
n e t i s m or a he l i co id i s p r e s e n t , the e f fect ive f ield can
change only in d irec t ion but not in magnitude. In this
c a s e p (Q) ~ 6 (Q - Qo). In light of the foregoing r e a s o n -
ing, it may turn out that th i s contradic t s the e x p e r i m e n t .
Actual ly , the impuri ty part of the spec i f i c heat depends
in th i s c a s e exponential ly on the t emperature (AC
~ e ~ Q / T ) . N o n e t h e l e s s , there i s actual ly no c o n t r a d i c -
tion even in th i s c a s e .

Kondo w a s the f i r s t to note that the energy s p e c t r u m
of the e l e c t r o n s changes in the p r e s e n c e of impurities.1-1 1

Namely , in the v ic in i ty of the F e r m i energy , in a reg ion
of the o r d e r of © ~ c J 2 / e p , the ef fect ive m a s s of the
e l e c t r o n s (Fig . 3) i n c r e a s e s . Kondo introduced an ef-
f ec t ive f ie ld , and h is e x p r e s s i o n for A m / m was p r o p o r -
t ional to c / Q . Since Q i s i t se l f proport ional to c, the
change of the e f fect ive m a s s w a s independent of the c o n -
centrat ion and w a s of the o r d e r of unity. In an e x p e r i -
ment , th is should be mani fes t in the form of an i n c r e a s e
of the coef f ic ient in the l inear e l e c t r o n i c spec i f i c heat .
This m e a n s that the exper imenta l ly o b s e r v e d fact can
b e attributed not to the impuri ty part of the s p e c i f i c
heat , but to the e l e c t r o n i c part . However , as indicated
by K l e i n , t l 2 ] if the e x p r e s s i o n for the Kondo e l e c t r o n i c
s p e c i f i c heat i s d is tr ibuted over the distr ibut ion p (Q),
then it w i l l contain

and if p (0) * 0, then the integral diverges logarithmic-
ally. The resultant correction to the specific is propor-
tional not to T but to T In (®/T), something not observed
in the experiment. This is the second argument against
the conception of Blandin, Friedel, and Marshall.

In fact, Kondo's calculations must be refined.* The
correction considered by him is actually the first of an
infinite series. In the presence of long-range order,
these corrections are none other than the interaction
of the electrons with the spin waves,t and the change of
the effective mass has the same origin as that occurring
in the interaction between the electrons and the phonons.
In the case of ferromagnetic ordering, the correction to
the specific heat is proportional to T ln(©/T), which ap-
parently is evidence against ferromagnetism. In the case
of any antiferromagnetic structure, a correction propor-

FIG. 3

*This remark is due to I. E. Dzyaloshinskii.

"Unpublished results by the author of this review
tThe absence of a large contribution to the specific heat from the

spin waves themselves can be attributed to the anisotropy energy.



172 A. A. ABRIKOSOV

tional to T is obtained. In all cases, this correction is
independent of the concentration. The case of a random
effective field was not considered, but apparently Kon-
do's result remains qualitatively unchanged, i.e., the
argument against the conception of Friedel, Blandin, and
Marshall remain.

Finally, let me report experiments on the determina-
tion of the magnetic field at a nucleus with the aid of the
Mossbauer effect. The results of Violet and Borg,[13J

who determined the field at the nuclei of a small Fe im-
purity in Au, offer evidence, first, that the iron atoms
occupy definite positions in the cell (this is seen from
the distinct character of the quadrupole splitting of the
lines at temperatures T > @ ) . Second, at low tempera-
ture the result indicates that each atom is acted upon by
a field of definite magnitude. The line width is indepen-
dent of the concentration. To be sure, the dependence of
the transition temperature on the concentration has the
form ® ~ c a , where a < 1 (with different values in dif-
ferent investigations), and this may indicate an inaccu-
racy of this approach (for example, the correlation of
the impurity positions may come into play). The results
on Cu + Fe show that the p (Q) dependence is not 6-like
in this case. This can be interpreted as favoring the
conception of Blandin-Friedel-Marshall or may indicate
that the spin-wave density has a different form.

On the whole it can be stated that the first concept is
more fully developed than the second, so that it is too
early to draw final conclusions. I personally, however,
am more impressed by the spin-density wave concept,
which so far has encountered no real contradictions
(the nonlinear dependence of © on the concentration in
Au+ Fe contradicts both concepts, but it seems to me
that if this effect is real it would be easier to explain
within the framework of the second concept).

This is all I have to say about ordering at the mo-
ment, although I shall return to it in connection with
superconductivity and with the Kondo effect.

III. SUPERCONDUCTIVITY (S)

In this section I shall report only phenomena not con-
nected with ordering. The measurements by Matthias
and others on lanthanum with small admixture of rare
earths : i4: l have shown that superconductivity is very
sensitive to the presence of localized spins. The crit-
ical temperature (Tc) decreases rapidly with increasing
magnetic-impurity concentration, and one per cent suf-
fices to eliminate the superconductivity. The first ex-
planation of this effect is due to Herring, Matthias, and
Suhl.U5:l They explained the change of T c at low impur-
ity concentrations. Subsequently, L. P. Gor'kov and the
present author/163 using the method of temperature
Green's functions, constructed a theory suitable for all
concentrations (in the absence of ordering).

Physically, the action of magnetic impurities is based
on the possibility of electron scattering with spin flip,
which was already mentioned at the beginning of this r e -
view. As is well known (see, for example, [17]), in a
superconductor the electrons combine into the so-called
Cooper pairs with opposite spins. The pair dimension,
in other words the correlation length in the pure metal,
is of the order of KVF/T C (vf—velocity on the Fermi
boundary), i.e., usually 1CT4—10"5 cm. After being scat-

tered by the impurity, the electron of the pair can re -
verse its spin. In such a state, the pair is unstable. It
is clear that the effective scattering with spin flip should
suppress the superconductivity. This is actually the
case. The change of the critical temperature is de-
scribed by the formula

where ip(x) = [in r(x)] ' , T is the Gamma function,

and TS is time of electron travel without spin flip. At
small concentrations we have

At a concentration c c r such that

(13)

(14)

T c vanishes.
Abrikosov and Gor'kovci6] observed also the possibil-

ity of "gapless" superconductivity. The gap in the en-
ergy spectrum vanished at a concentration of approxi-
mately 0.9 c0. This means that even at T = 0 such a
superconductor can absorb quanta of arbitrary energy,
and its specific heat will depend linearly on the temper-
ature. However, the absence of resistance to a small
electric current is still retained. This is connected
with the fact that the so-called ordering parameter,
which characterizes the number of Cooper pairs in the
Bose condensate (see C17:l), must be proportional to the
energy gap, as is the case for a pure superconductor.
It can be stated that just as not all the particles enter
the condensate in a non-ideal Bose gas at T = 0, in a
superconductor with magnetic impurities not all the
Cooper electron pairs are at the level with lowest en-
ergy. The remaining pairs are distributed somehow
among the higher levels, and under certain conditions
reach the level corresponding to the decay of the pair
into individual electrons. I shall note here that, follow-
ing our prediction, it has turned out that gapless super-
conductivity is not a rarity and is encountered under a
variety of situations.

Subsequently Reif and Woolf,[18] using the tunnel-
contact method, verified the state density obtained in
such a theory. Apparently, in the case when the impur-
ity has really a localized spin (for example Pb with Gd
impurity), the agreement turns out to be good. To be
sure, according to these measurements, the gapless
superconductivity sets in at concentrations lower than
called for the theory of Abrikosov and Gor'kov. How-
ever, as shown by Fulde and Maki,cl9] this is apparently
attributed to the influence of ordering.

Many calculations were made of various properties
of superconductors with magnetic impurities, for ex-
ample the thermal conductivity or the absorption of
sound. I shall not discuss them in detail, however.
IV. SUPERCONDUCTIVITY AND ORDERING (SO)

From the formulas presented above for the change
of the critical temperature it follows that T c changes
appreciably in the region of concentrations such that
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1/TS ~ Tco. But the order of magnitude of 1/TS is
cJ2/£F) i-e-> precisely the ordering temperature ©. In
view of this, the intersection of the Tc(c) and ®(c) curves
has the form shown in Fig. 4a. This raises the question
of how the curves will behave subsequently, and in par-
ticular whether a phase that is simultaneously ordered
and superconducting can exist. This problem was solved
so far only for the case when the ordering corresponds
to ferromagnetism (F).lZ01

L. P. Gor'kov and A. I. Rusinovl2U have shown that
the coexistence of superconductivity and ferromagne-
tism is possible. If at the same time the spin-orbit in-
teraction (which leads to the appearance of a term pro-
portional to a 'px p ' in the scattering amplitude) is suf-
ficiently large in the metal, then, in accordance with the
prediction of :21], Tc and ® do not change in the region
of the intersection of the curves, and the entire region
below this point is occupied by the SF phase. This pre-
diction was refined by Bennemann,:22:l who called atten-
tion to the need for taking into account the change of the
time TS and the polarization of the spin by the exchange
field. Since this suppresses the scattering with spin flip
(the total spin of the electron and the impurity is con-
served, and the spin of the impurity is quenched by the
effective field), the real curve of T c might even go above
the curve for the disordered case (N) after the intersec-
tion (Fig. 4b). This refinement agrees with experiment.[2

Fulde and Maki1-193 calculated the critical tempera-
ture and the main properties in ferromagnetic ordering
and in the presence of an external field, and reached the
conclusion that the problem reduces to replacement of
1/TS ) which enters in the theory of Abrikosov and Gor'-
kov, by the combination

/2T.SO (15)

Here the second term is the consequence of the twisting
of the Cooper-pair orbits by the external magnetic field
(T^r is the usual transit time which enters the conductiv-
ity of the normal metal, vp is the velocity of the Fermi
boundary). The last term is the consequence of the or-
dering. Here I = NcJSz, and TQQ is the characteristic
transit time connected with the spin-orbit interaction.
The decrease of TQQ reduces the effect of spin order-
ing. The calculation of Fulde and Maki pertains to the
case when 1/TgQ 2> Tco. It is curious that there is a
region of concentrations where the critical field depends
nonmonotonically on the temperature. This is connected
with the fact that the moment I itself depends on the
field. Instead of the ordinary monotonically decreasing
curve, a curve with a maximum is obtained. This is
observed in the experiments of Crow, Guerstin, and
Parks.C24] On the other hand, if the effects of the spin-
orbit scattering are small, then the region of coexis-

tence of superconductivity and ferromagnetism is much
smaller, and there is a region of first-order phase tran-
sitions (Fig. 4c). This case is analyzed in detail by
Sarma, de Gennes, and Cyrot.[25] Here, too, a nonmono-
tonic dependence of the critical field on the temperature
is possible. There are many interesting details, which
I am omitting. Instead, I wish to stop and discuss two
particularly unusual aspects.

First, the question of pairing with nonzero momen-
tum. Fulde and Ferrel, and independently of them
Larkin and Ovchinnikov/263 advanced the following idea.
If we consider a system of electrons magnetized, say,
with the aid of impurity ferromagnetism, and disregard
scattering with spin flip, then at T = 0 a first-order
phase transition will take place into a purely supercon-
ducting phase at I = Ao/V2~, where I = NcJS and Ao is the
superconducting gap. It turns out, however, that at large
values of I = 0.755 Ao, a possibility appears of transition
into a special superconducting phase in which the Cooper
pairs have a nonzero momentum and A depends on the
coordinate with a characteristic period q^1 = (2.41/vjr)"1.
Such a phase has many interesting peculiarities; for ex-
ample, when T -C Ao, the specific heat depends on the
temperature like l/ln3(A0/T).

Unfortunately, apparently, this phase is not realized
in practice, at any rate if the electrons are polarized
by magnetic impurities. For this phase to be realized
it is necessary that the ordinary mean free path be
larger than the period of the structure. This is impos-
sible to realize even if the substance contains no impur-
ities other than the magnetic atoms, for as a rule the
energy of the potential interaction of the electron with
the impurities is of the order of the Fermi energy and
the energy J is several times smaller. Although in the
case of rare-earth impurity in lanthanum the potential
interaction is small, the spin-orbit interaction is to the
contrary large, and this greatly interferes with the ef-
fect.

I shall now describe one more hypothesis. The pre-
ceding hypothesis pertained to the case of a small gap
A and of developed magnetism. Another hypothesis, be-
longing to Anderson and Suhl,C27:l pertains to the opposite
case, that of strong superconductivity and weak magne-
tism, in other words to the concentration region where
0 <C T c . In this case we can assume the superconduct-
ing characteristics to be the same as for the pure metal.
Anderson and Suhl calculated the function x(q) which de-
termines, as already mentioned, the energy of the or-
dered state with a helical spin-density wave with wave
vector q. It turned out that when q < A0 /vp, the function
X (q) decreases in this case and becomes equal to zero
when q —• 0. This means that even in the homogeneous
model \ (q) is maximal not at q = 0 but at a finite value
of q, which turns out to be of the order of (p^A0/vf)13

~ (50 A)"1. This means that in this case we can expect
appearance of a spin-density wave with a period of the
order of 50 A. This phenomenon was called by the au-
thors "cryptoferromagnetism." Since the pair turns
out to be much larger than the interatomic distances,
we can expect the inhomogeneities of the impurity con-
centration to have less effect on the smearing of the
transition point, and the transition to become sharper
than without superconductivity. This is apparently in-
deed observed in the experiments.
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V. THE KONDO EFFECT (K)

I now proceed to the most difficult cell of the matrix
—the Kondo effect. It was observed, as far back as in
the thirties, that in noble metals the resistance fre-
quently has a minimum as a function of the temperature
(see lzai); this means that there exists a scattering
mechanism, whose efficiency increases with decreasing
temperature. In many cases a maximum was observed
below the minimum. It was ascertained subsequently
that this new mechanism of resistance is connected with
the magnetic impurities. The experiments were per-
formed with different combinations of the host metal
and the impurity, for example: AgMn, CuFe, AuFe,
MgMn, CuMn, ZnMn, AuV, AuMo, etc. The minimum
was observed only at sufficiently small magnetic-im-
purity concentrations, as a rule 0.1% and below. In
1956, N. E. Alekseevsktf and Yu. P. GaidukovC29J per-
formed measurements on gold with an exceptionally
small iron impurity, and found that the resistance, in
a large temperature interval, satisfies the law

, i / 1 \ 1-4 r>\
p = pi + p2Jn \-f-\ , (iv)

and then approaches a certain finite limit at lower tem-
peratures. There are therefore no more reasons for
calling this phenomenon the Kondo effect than there are
for calling ferromagnetism a Heisenberg or a Weiss
effect. But this has already been established in the lit-
erature, and I shall therefore also use this term.

There were many incorrect attempts to explain this
phenomenon, but only in 1964 did KondoC3C] present a
correct interpretation. The point is that usually the
part of the resistance connected with the presence of
the JCT • S interaction is calculated in the Born approxi-
mation. This was justified by the smallness of J (as I
have already noted, J need by no means be small). This
yielded a constant which was added to the ordinary re -
sidual resistance. Kondo calculated the next higher ap-
proximation for the scattering amplitude, and found that
the correction is of the order of J/€j? ln(ep/e) , where
e is the electron energy reckoned from the Fermi
boundary. If J < 0, the correction to the resistance has
a positive sign.

The appearance of the logarithm is important in what
follows, and I shall therefore present a simple deriva-
tion. Let us consider the amplitude for the scattering
of the electron by the impurity. In the initial state, the
quasimomentum of the electron is p, the spin projection
is a, and the impurity spin is M; in the final state we
have respectively p ' , a', and M'.

In the first Born approximation we have

0M

where |OM) denotes the equilibrium state of the elec-
trons and the impurity atom with spin projection M.
This expression is equal to

The factors 1 - np express the fact that the initial and
final states should be free.

In the second approximation we have

Simple calculation yields

Since ep/ = ep, it follows therefore that in the case of
ordinary potential scattering the number nP i would not
appear at all under the sign of the integral with respect
to pu but in this case, since the spin operators Sj are
not commutative, we have

) — aS,

I '
(18)

When integrating with respect to px we recall that all the
energies are reckoned from the Fermi surface, we as-
sume the limits to be symmetrical, and we put |e p |
<5£ ep. We then obtain

(19)

(all the sums over px are transformed into integrals,

YJ ~~* (2 I3 /d3P*' S ' denotes the principal value of the

integral).
The second term in this expression yields the loga-

rithm. (The remaining terms will be discussed later).
Confining ourselves to logarithmic accuracy, we obtain

2 (4-)2 v (e,.) (1 -np.) (1 -np) (YS)S'' In
max \ | g;; ], ,(20)

Thus, the result in this approximation reduces to the
substitution

(21)

The scattering amplitude begins to depend logarithmic-
ally on the energy of the electrons. Since the electrons
taking part in the electric conductivity have an energy
on the order of T, it follows that the exchange part of
the resistance has in this approximation the form

a i l - 4 ' v(e,) ! „ -£ ) , (22)

where Pexch o *s ^ e c o nstant Born value. This is the
result obtained by Kondo. In the temperature region
where the correction is small, formula (22) agrees well
with experiment.* I shall now comment on the result.
In the Born approximation, the resistance is independent
of the sign of J, but here it begins to depend on the sign,
becoming larger if J < 0, i.e., if the interaction has the
antiferromagnetic sign. A simple explanation for this
fact was proposed by Anderson. The next higher approx-
imations following the Born approximation take into ac-
count the correlations in the positions of the electron
and of the impurity. If J < 0, then the electron tends to

*With logarithmic accuracy, the exchange and potential scattering
do not interfere. Therefore the total resistance is Pexch + Ppot> where
Pexch is determined by formula (22).
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approach the impurity with an opposite spin orientation.
But when the spin orientation is opposite, scattering
with spin flip becomes possible, i.e., there is a reaction
channel which does not exist in the case when the spins
of the electron and of the impurity are oriented in paral-
lel. This means that when J < 0 the scattering amplitude
is larger than J > 0.

Further, from the manner in which this result is ob-
tained, it follows that two circumstances are significant
here. First, the sharpness of the edge of the Fermi sur-
face. This is precisely why, the scattering amplitude
ceases to depend on the electron energy as soon as | £p I
< T . A second important circumstance is the non-
commutativity of the spin operators. This takes place
if the spins are not polarized by an external or an in-
ternal magnetic field. If such a polarization does take
place, then the change of the spin orientation is con-
nected with the change of the energy. As a result, a
term ±Q appears in the denominator of the sum that
yields the logarithm. This means that if Q 2> T, then
the logarithmic integral will be cut off from below at
Q. In this case the resistance will also contain In (ep/Q).
In other words, the logarithmic term and the resistance
can increase with decreasing temperature in any case
only so long as Q < T . The role of Q can be played
either by the effective field introduced above (it has the
same order as the Curie temperature ©), or else by
p.oH, where H is the external magnetic field and (i0S is
the magnetic moment of the impurity. We shall assume
for the time being that there is no external field, and
the concentration is so small that 0 ~ cJ2/e;p is much
lower than the temperature at which the logarithmic
correction, which is of the order of J / £ F In (eF/T), be-
comes of the order of unity.

Before I proceed, let me discuss the question of the
so-called giant thermal emf. Let me remind you what
this is all about. If an electric field and a temperature
gradient exist in the metal, then the electric current is
given by

If the circuit is opened, then j = 0 and E = -(/3/CT)VT.
Introducing the potential E = V<p, we obtain dcp/dT
= - fi/o, i.e., the potential difference per degree is
- /3/CT. With the aid of the kinetic equation with a spe-
cified travel time, we obtain (see :31J)

tir
(23)

eT \ T (f) r2 -

where r(e) = l/w(s) is the time between the collisions
or their reciprocal scattering probability, v is the elec-
tron velocity, v is the density of states, and n is the
distribution function (the energies are reckoned from
ejr). The function 3n/8e is close to -6(e). The integrals
with this function are evaluated in accordance with the
rule

if the function F varies slowly in the vicinity of e = 0.
As applied to formula (23), this rule yields

(24)

With this, d<p/dT is of the order of T/eep, or of the
order of 10~8 V/deg at a temperature of the order of
1°K. Such values are actually observed in pure metals.

However, if the scattering probability contains a
term proportional to 2n(e) - 1, which varies rapidly in
the vicinity of e « 0, then this rule no longer holds.
Moreover, the quantity 2n(e) - 1 is odd in e, and con-
sequently the integrand in the numerator of (23) be-
comes a function that is even in e in the zeroth approx-
imation. This changes the result radically. The deriva-
tive y-(2n(e) - 1) is of the order of 1/T. If we substi-
tute this in (24), we see that the thermal emf is not de-
pendent on the temperature. The terms with 2n(e) - 1
are the result of the circling around the poles during
the integration of the intermediate states, as was the
case, for example, in the derivation of (19). It is much
more difficult to retain this dependence in the scatter-
ing probability. Kondo has shown that such terms ap-
pear in the scattering probability as a result of inter-
ference between the potential and exchange scattering.
If both are assumed to be isotropic, then the resultant
expression is

- 4 ^ - — v (£,.)•/*/(jeLC-h. (25)

where p e xch/p = J2S(S + 1)/[U2 + J2S (S + l)] is the ratio
of the "exchange" part of the resistance to the total r e -
sistance, U is the amplitude of the potential scattering.
It is assumed here that J -C U. The order of magnitude
of this expression is J3/eUep. If we assume that U ~ ep
and J ~ 0.2 ep, then we obtain 106 V/deg. The value ob-
tained in the experiment on AuFu was lO^-lO"5 V^eg-
Unlike in pure metals, in accordance with (25) d^/dT
does not depend on the temperature. The same is ob-
served experimentally down to very low temperatures,
where the thermal emf decreases in absolute magnitude.
This may be connected either with the ordering or with
the formation of a quasibound state, which will be dis-
cussed later. The sign of d(/?/dT is determined by the
ratio of the signs of J and U. For most alloys with a
Kondo effect the sign is negative. On the high-tempera-
ture side, the effect begins to decrease when the total
scattering begins to increase as a result of the phonons.

Let me remark that prior to Kondo's explanation, the
giant thermal emf was attributed to the interference
scattering upon ordering. The latter explanation is in
all probability incorrect, since giant thermal emfs oc-
cur also above the ordering temperature.

Let us return now to expressions (21) and (22). If the
concentration is sufficiently low, then we can arrive at
a situation wherein the correction becomes of the order
of unity even before reaching the Curie temperature G
~ CJ2/ep. What will occur in this case ? The first to
sum the principal terms were Suhl[33;l and the present
author."41

In the logarithmic approximation, the result (for T
= 0) is,

^ - - ^ ( l - ^ - ^ v t e , ) ! ! , ^ ) - 1 . (26)

If J > 0, then this expression can always be used. If,
however, J < 0, then this expression becomes infinite
at some energy. The same pertains to the resistance.
At some temperature



176 A. A. ABRIKOSOV

rp „ 2)J I V(E,-) /ni7\
TK = azre *', (27)

where a is a constant of the order of unity, we get p
— °°. This is the Kondo temperature. It does not depend
on the concentration. It is clear that the logarithmic ap-
proximation is insufficient at temperatures on the order
of or lower than TK- TWO ideas were proposed for solv-
ing this problem.

One method belongs to Suhl and Wong.l3il Maleev and
Ginzburg136-1 in Leningrad follow the same trend and
have formulated the method most clearly. It is assumed
that the scattering amplitude, as a function of the energy
regarded as a complex variable, is analytic in the entire
complex plane, in which a cut is drawn along the positive
axis from zero to infinity. The unitarity condition is then
used for the scattering matrix

i (1 —I) = l 1. \cV> j

If we write this operator equation in matrix form, then
we get on the right side a sum over the intermediate
states, which contain in addition to one electron also an
arbitrary number of electron-hole pairs. It is assumed
that these many-particle states make no essential con-
tribution. Under this assumption, the unitarity condition
is transformed into an equation for the scattering ma-
trix T. The solution is obtained with allowance for the
aforementioned analytic properties and the requirement
that the result must go over into the formula (26) ob-
tained from perturbation theory at high energies or
temperatures.

The shortcomings of this approach are as follows:
a) A certain doubt with regard to the limitation of the

intermediate states. The point is that, as can be readily
shown, perturbation theory can yield equations having
sufficient accuracy, but it is impossible to show that
they coincide with the equations of Suhl and Maleev with
better than logarithmic accuracy.

b) The assumption concerning the analytic proper-
ties of the scattering amplitude is not unique.

The results of this approach (I shall call it the uni-
tary approach) are as follows: At T = 0 and a — 0, the
effective electron-impurity scattering cross section
reaches the "unitary" limit

o = ̂ - ( 2 / T l ) , (29)

where the factor (21 + 1) takes into account the fact that
the "Kondo effect" can appear in each partial amplitude
separately, and the most important amplitude is natu-
rally the one in which it appears the earliest.

With decreasing temperature, the p(T) curve gradu-
ally approaches the corresponding value, with

/ 0.
(30)

{ ^

There is an additional specific heat proportional to the
impurity concentration. It has a maximum at some tem-
perature on the order of the Kondo temperature, and de-
creases like 1/ln3

 ( T K / T ) when T — 0. The thermal-
conductivity coefficient satisfies the Wiedemann-Franz
law, i.e., it can be obtained from the electric conductiv-

ity. Ther thermal emf was determined, but I shall not
stop to discuss it here. The magnetic moment of the
impurity was not calculated. The predictions agree with
experiment qualitatively, but the logarithmic law for
p(0) - p(T) has apparently not been confirmed quantita-
tively.

Another idea was advanced first by Nagaoka,C37:1 al-
though at present this idea is being developed not by him
but by Yosida"83 and by myself .C39J (KondoC40] and Ander-
son w u are also doing related work.)

The idea is based on the fact that the behavior of the
scattering amplitude at J < 0 is very similar to the be-
havior of electron-electron scattering amplitude in the
case when the electrons are attracted to one another.
As is well known, this is a symptom of the instability
of the ground state, and corresponds to the supercon-
ducting transition (see C17]). It is natural to assume in
this case, too, the formation of a certain "quasibound"
state of the electron with localized spin, of the type of
Cooper pairs in a superconductor. We are actually
dealing here with a collective effect, which is manifest
by the appearance of a certain electron-impurity cor-
relation. Just as in superconductors, however, the sit-
uation is similar in many respects to the situation when
true bound states appear.

I shall not report all the investigations in this field.
Those based on perturbation theory, as a rule, do not
take into account all the necessary diagrams. In par-
ticular, this pertains to work by Nagaoka himself for
the spin 1/2.

C3 ] In view of this, I consider attempts (for
example by HamannC42:l) at solving these equations more
accurately than by Nagaoka himself in his first papers
to be meaningless. On the other hand, there are inves-
tigations based on a variational approach. W0>4i:l How-
ever, as always, the accuracy of the results of such an
approach is difficult to check. What are the results of
the "bound state" idea? I find it difficult here to resist
the temptation of presenting my own result. l391

The calculation technique is based on representing
the spin operator with the aid of creation and annihila-
tion operators for fictitious fermions :C34:l

where St,fl, are the matrices of the corresponding spin,
say the Pauli matrices for S = x/z, and the term on the
right side is simply a notation for the sum (for example,
for S = V2we have Sz = /2(ai /2a1/2 - a-1/2a_1/2). Although
the introduction of such fermions means the introduction
of unphysical states (physical states are those in which
one of the occupation numbers n« is equal to unity and
the remainder are equal to zero), but we can get rid of
them when necessary. The introduction of quasifermi-
ons makes it possible to go over to the usual field-
theory technique (see : 43 ]). In particular, the scattering
amplitude is obtained by summing a two-dimensional
sequence of Feynmann diagrams, which we call a
"parquet." Examples are shown in Figs. 5a and 5d,
while Fig. 5e shows a diagram not pertaining to this
sequence. The dashed lines correspond here to ficti-
tious fermions a^, and the solid lines to electrons. This
is precisely how expression (26) was obtained in C34;l.
The diagrams of the "parquet," following a slight mod-
ification of the dashed lines and of the "bare" vertices,
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a c t u a l l y y i e l d t h e s c a t t e r i n g a m p l i t u d e w i t h r e q u i r e d

a c c u r a c y , a n d n o t o n l y w i t h l o g a r i t h m i c a c c u r a c y . S i n c e

I d i d n o t s u c c e e d i n p r o v i n g t h a t t h e c o r r e s p o n d i n g

e q u a t i o n s g o o v e r i n t o t h e S u h l - M a l e e v e q u a t i o n , : 3 5 ' 3 6 : l

t h e l a t t e r c i r c u m s t a n c e c a u s e s m e t o b e d o u b t f u l .

T h e f o r m a t i o n o f q u a s i b o u n d s t a t e s i s t a k e n i n t o a c -

c o u n t b y i n t r o d u c i n g " m e a n v a l u e s " o f t h e t y p e ( f e a / 3 ) •

T h e i r t o t a l n u m b e r i s f o u r , s i n c e ip a n d a c a n b e r e -

p l a c e d b y ip* a n d a + . A t f i r s t g l a n c e , s u c h q u a n t i t i e s

a r e n o t e q u i v a l e n t , s i n c e t h e y d o n o t c o n s e r v e t h e n u m -

b e r o f e l e c t r o n s . I n f a c t , h o w e v e r , s u c h a m a t r i x e l e -

m e n t d e n o t e s s i m p l y a t r a n s i t i o n o f t h e e l e c t r o n i n t o t h e

q u a s i b o u n d s t a t e . I n e x a c t l y t h e s a m e m a n n e r q u a n t i t i e s

o f t h i s t y p e d e n o t e i n s u p e r c o n d u c t i v i t y t h e t r a n s i t i o n o f

f r e e e l e c t r o n s i n t o a C o o p e r p a i r . H e r e , h o w e v e r , t h e

s i t u a t i o n i s s o m e w h a t d i f f e r e n t , s i n c e t h e " p a r q u e t " i s

a m u c h m o r e c o m p l i c a t e d s e q u e n c e t h a n t h e s u p e r c o n -

d u c t i n g " l a d d e r . " T h e r e s u l t s a r e a s f o l l o w s : w h e n

T = 0 i t c a n b e s h o w n t h a t t h e b o u n d s t a t e c a n b e p r o -

d u c e d o n l y w h e n J < 0 w i t h t o t a l s p i n S - % , T h e b i n d -

i n g e n e r g y i s e q u a l t o

g b ' K*F ( v , ' L , i )S "' e*P ( - -A, ,J1, i , i ) • ( 3 2 )

where K ~ 1. Unfortunately, the prob lem can be s o l v e d
only in the logar i thmic approximation, and t h e r e i s no
c o m p l e t e a s s u r a n c e that K * 0. This i s p r e c i s e l y what
p r e v e n t s us from obtaining the thermodynamic c h a r a c -
t e r i s t i c s at T * 0 for an arb i t rary spin. However, for
S = 1 there i s an important mit igat ion. In th is c a s e a
ladder i s obtained in p l a c e of the parquet at a total spin
S - x/ 2. As a r e s u l t (subject to s o m e additional a s s u m p -
t ions) , the p r o b l e m d o e s not differ great ly in c o m p l e x i t y
from superconduct iv i ty . The r e s u l t s for this c a s e a r e
a s fo l lows : t h e r e i s a t rans i t ion t e m p e r a t u r e T c , c o n -
nected with the binding e n e r g y at T = 0 by the re lat ion

? b = = 4 - r c , (33)

w h e r e y = 1.78. The bound s tate i s d e s t r o y e d by the
magnet ic f ield H c , which has the fol lowing asymptot ic
v a l u e s :

g\lB'-

gV-al

(34)

where A is of the order of the Fermi energy (it is con-
nected with T c by the relation T c = (2Ay/ir)
x exp [- N/2v (ep) | J I)], meaningthat it is practically
impossible to destroy this state with a magnetic field
at low temperatures.

The specific heat is given by

AC ---c N- 3.16-^- T -•>

A C ^ c N (1,08-f-O.Mi T ~ c ) , T -> Tc.
\ 1 c 1

( 3 5 )

T h e l i n e a r s p e c i f i c h e a t a t l o w t e m p e r a t u r e s i s e v i d e n c e

t h a t t h e r e i s n o e n e r g y g a p . O n e c a n s p e a k m o r e r e a d i l y

o f t h e a p p e a r a n c e o f a m a x i m u m i n t h e d e n s i t y o f t h e

s t a t e s a t t h e F e r m i b o u n d a r y i t s e l f . T h e w i d t h o f t h i s

m a x i m u m i s o f t h e o r d e r o f T c , a n d t h e m a x i m u m g r a d -

u a l l y s m o o t h e s o u t a s T — T c . T h e j u m p a t T = T c i s

a p p a r e n t l y n o t r e a l .

T h e m a g n e t i c m o m e n t i s g i v e n b y

AM fcN- ) 2 H
T : ~ T C T,

3.i r c

( 3 6 )

AM . . c A ' | _ ± № B - : ^ L i ^ t i ( l n .

T « \inli ••;. 7 C .

In m e a s u r e m e n t s o f t h e s u s c e p t i b i l i t y i n a w e a k f i e l d ,

t h e s i t u a t i o n c o r r e s p o n d s t o a n a p p a r e n t d e c r e a s e o f t h e

m a g n e t i c m o m e n t o f t h e i m p u r i t y b y a f a c t o r of 3 , but

n o t t o a v a n i s h i n g o f t h i s m o m e n t .

F o r t h e s p i n S = %, o w i n g t o t h e p a r q u e t s i t u a t i o n ,

i t i s i m p o s s i b l e t o o b t a i n s i m i l a r e x p r e s s i o n s , b u t t h e

m a g n e t i c m o m e n t c a n b e e x p r e s s e d i n t e r m s o f t h e v a l u e

of t h e " o r d e r i n g p a r a m e t e r " R, w h i c h s h o u l d b e c l o s e t o

AA7 •- = cN - — , r-^o ( 3 7 )

( t h e r e l a t i o n b e t w e e n H a n d T i s a r b i t r a r y ) . A s i m i l a r

r e s u l t w a s o b t a i n e d b y I s h i i a n d Y o s i d a . H 4 : l It f o l l o w s

t h e r e f o r e t h a t a t S = % t h e r e i s o n l y t h e p o l a r i z a b i l i t y

of t h e c o m p l e x , a n d n o m o m e n t i s l e f t a t a l l .

W i t h r e s p e c t t o t h e e l e c t r i c r e s i s t a n c e a t S = 1, i t

c a n b e s t a t e d t h a t i t a p p r o a c h e s t h e u n i t a r y l i m i t in a c -

c o r d a n c e w i t h t h e l a w ( t h e " e x c h a n g e p a r t ! )

( 3 8 )

T h e c o n s t a n t a c a n n o t b e d e t e r m i n e d e x a c t l y . L e t m e

r e m a r k t h a t t h e r e s u l t s o n t h e s p e c i f i c h e a t a n d o n t h e

r e s i s t a n c e a g r e e q u a l i t a t i v e l y w i t h t h e f i r s t p a p e r s o f

N a g a o k a . A l t h o u g h t h e p r e s e n t e d r e s u l t s a g r e e i n m a n y

r e s p e c t s w i t h t h e e x p e r i m e n t a l d a t a , n o n e t h e l e s s t h e y

d o n o t s e e m t o b e u n d i s p u t a b l e . W i t h o u t g o i n g i n t o t e c h -

n i c a l d e t a i l s , I s h a l l c o n f i n e m y s e l f h e r e o n l y t o t h i s

r e m a r k .

L e t m e r e p o r t a l s o r e s u l t s b y o t h e r s . A n d e r s o n , : 4 1 J

u s i n g a v a r i a t i o n a l p r o c e d u r e , o b t a i n e d t h e l a w A x

~ T " 1 / 2 a n d A C ~ T 1 / 2 f o r t h e c a s e S = % , w h i l e H a m a n n

a n d B l o o m f i e l d 1 - 4 2 - 1 o b t a i n e d A C ~ T 0 " 5 7 f r o m a n e x a c t s o -

l u t i o n o f t h e N a g a o k a e q u a t i o n f o r S = x / 2 . F r o m t h i s

s a m e r e s u l t , M u r a t e a n d W i l k i n s C 4 5 : l o b t a i n e d a v a r i a t i o n

l i k e 1 / l n 2 ( T c / T ) f o r t h e a p p r o a c h o f t h e r e s i s t a n c e t o

t h e u n i t a r y l i m i t a s T — 0 . I h a v e a l r e a d y m e n t i o n e d

m y o w n o b j e c t i o n s t o t h e s e a p p r o a c h e s .

F u r t h e r , t h e r e i s a p r e v a l e n t o p i n i o n , a l t h o u g h n o t

p r o v e d r i g o r o u s l y b y a n y o n e , t h a t t h e g r o u n d q u a s i -

b o u n d s t a t e m u s t b e s p i n l e s s a t a n y i m p u r i t y s p i n S ,

i . e . , t h e e l e c t r o n c l o u d m u s t c o m p e n s a t e f o r t h e i m p u r -

i t y s p i n . I h a v e s o m e d o u b t s w i t h t h i s r e s p e c t , s i n c e I

w a s u n a b l e t o o b s e r v e a n y l o g a r i t h m i c s i n g u l a r i t i e s i n

t h e d i a g r a m s w i t h t w o e l e c t r o n l i n e s f o r S = 1 . H o w e v e r ,

e v e n t o t a l s c r e e n i n g o f t h e l o c a l i z e d s p i n b y t h e c o n d u c -

t i o n e l e c t r o n s a t S = % , l e t a l o n e s u c h a p o s s i b i l i t y f o r

a n y s p i n , r a i s e s a g a i n t h e q u e s t i o n o f t h e c o r r e c t n e s s

o f t h e v e r y c o n c e p t o f t h e l o c a l i z e d s p i n a n d o f t h e v a -

l i d i t y o f t h e 3a • S i n t e r a c t i o n . T h i s h a s i n d u c e d m a n y

a u t h o r s , p a r t i c u l a r l y D w o r i n " 6 - 1 a n d S u h l , : 4 7 J t o s t a r t
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not from the "exchange in terac t ion" of the spins, but
from more fundamental models . The most promising
is the new approach by Suhl,"7 3 who considers the in te r -
action of the electrons with the impurity atom and of the
electrons with one another. It is stipulated a s a condi-
tion that the amplitude of the mutual scat ter ing of the
electrons in the t r iplet state must have a pole.

The solution of the coupled equations for the Green 's
function of the electrons and for the e lectron-electron
ver tex yields, after making some simplifying a s sump-
tions, the following resu l t s . At high tempera tures , the
res is tance increases logarithmically with decreasing T,
while the magnetic susceptibility follows the Curie law
with localized spin S = %. At low t empera tu res , the r e -
sis tance approaches the unitary limit in accordance with
a quadratic law, and the magnetic susceptibility attends
to a constant on the o rder of (37). Thus, the resu l t s of
the "quasibound" approach for the spin % a r e con-
firmed. However, in addition, Suhl's new method is
valuable because in principle it makes it possible to
clarify the question of the screening of the spin when
S > %. This apparently will be done in the near future.

What is the experimental situation? Measurements
of the res is tance by Daybell and Steyer t ' 4 " in CuFe and
CuCr show that as T —• 0 the value of p(T) ceases to in-
c rease and approaches a finite limit quadratically. The
limiting value of the effective c ro s s section for Cr was
2.4 t imes la rger than for Fe , and if it is to believed that
this is the unitary limit (as is obtained from all the
theor ies) , then it is c lear that the Kbndo effect takes
place not only for s - sca t te r ing .

The measurements of the magnetic susceptibility in
the same experiments show that the magnetic moment
dec reases when the tempera ture is decreased, but it is
difficult to say whether it vanishes . Anderson assumes
that these resu l t s agree well with his Ax ~ T~l/2 law,
but in my opinion they likewise do not contradict my
formulas, [39 : l although, of course , the lat ter per tain
only to the spin S = 1 and cannot claim to be universal .
From the formula for the Kondo tempera ture it follows
that if | J | < ejr, then T K <IC £F- However, as I have
already noted, J need not necessar i ly be smal l . This,
too, is confirmed by experiments by Kume1491 in gold
with vanadium as an impurity, where T g turns out to
be in the vicinity of 300° K. Incidentally, in these ex-
per iments , since a wide tempera ture interval can be
investigated, it is possible to confirm well the quad-
ra t ic decrease of the res i s tance . As to the magnetic
susceptibility, it behaves more readily like T"0 '2. Inci-
dentally, all the theoret ical calculations pertain actually
only to the case | J I <C ep, and it is therefore possible
that a comparison of the resul ts of Kume with the ex-
isting theory is not always meaningful. But a quadratic
law for the res i s tance , if it does exist , should be very
general , since it is not connected with the Fe rmi s t a -
t i s t i c s . Fur the rmore , the fact that it holds in the case
of AuV offers additional evidence against the unitary
re su l t s .

One more interest ing experimental resul t was ob-
tained by Frankel and co-workers l S 0 i with the aid of
the Mossbauer effect. They measured the field at the
iron nucleus in a dilute CuFe solution. It turned out
that although this field sa tura tes when the t empera ture

is decreased, in accordance with the law

where Ho is the external field, B j is the Brillouin func-
tion, and the saturat ion field H s a t itself depends on the
applied field up to very strong fields. The authors con-
clude therefore that the bound state at low tempera tures
is not destroyed up to MBgH0> (4-5) T c . This c o r r e -
sponds to the resul t (34) presented above concerning the
cr i t ical field at low tempera tu res .

I have purposely listed the main concept, since none
of them can st i l l be regarded as final. Let me note one
more interesting idea by Schrieffer, [5 i : l namely that all
the impuri t ies of the transit ion metals in nonmagnetic
fields have a localized spin, but for some of them the
Kondo tempera ture l ies above the melting point, and at
lower tempera tures the electron cloud screens the im-
purity spin completely. This reca l l s the p roverb : "All
men a re bald, but some have their baldspot overgrown
with h a i r . "

In conclusion, let me repor t one more resul t having
a bearing on the Kondo effect. I have in mind the tunnel
charac te r i s t i cs at smal l potential differences. If two
metals a re separated by a layer of insulator of thickness
of only severa l interatomic dis tances, then an e lect r ic
current may flow between the metals as a resul t of the
so-cal led tunnel effect. Usually the insulator is a film
of oxide on the surface of the meta l . This device is
called a tunnel contact. Such a contact, at not too large
voltages, has a l inear charac te r i s t ic , i .e. , a constant
res i s t ance . However, more detailed experiments have
shown that in many cases the effective res is tance d e -
pends on the potential difference and has a maximum
at V = 0. Applebaum and AndersonC52:l and Zawadowski
and Solyom attributed this to the presence of mag-
netic impuri t ies in an insulating layer between the met -
a l s . In this case , a a • S t e rm appears also in the tunnel
Hamiltonian, interferes with the exchange scat ter ing
without tunneling, and produces the same Kondo effect.
At low tempera tu res , the logarithmic integral is cut off
from below at eV, giving for the effective res is tance a
dependence on the potential difference in the form
In (ejr/eV) all the way to eV ~ T. These considerations
a re well confirmed by experiments of Wyatt, Rowell,C54]

and o the r s . In par t icu lar , MezeiC55:l has purposely in t ro-
duced chromium into an aluminum tunnel contact and
confirmed finally that the maximum is connected with
the magnetic impuri t ies .

VI. THE KONDO EFFECT AND ORDERING (KO),C56J

NEGATIVE MAGNETORESISTANCE

As already noted in the preceding chapter, an ex ter -
nal or internal field, by ordering the spin, leads to a
suppression of the Kondo effect. This means that below
a tempera ture T < Q, where Q is any internal effective
field of the o rder of e or JHB8 H , the logarithm takes the
form In (CY/Q) o r In (eF/VBgH), and ceases to increase
with decreasing tempera ture .

However, the role of the spin polarization is not l im-
ited to th is . The scat ter ing amplitude u • S leads to an
effective scat ter ing c ross section proportional to S(S + 1).
But in the case when the impurity spins a r e polarized,



MAGNETIC I M P U R I T I E S IN NONMAGNETIC METALS 179

all that is left of o • S is azS. Therefore S (S +1) in the
scattering probability is replaced by S2. Alternately,
we can say with respect to this effect that scattering
with spin flip becomes forbidden. Thus, besides the
fact that the logarithm becomes a constant, the coeffi-
cient in the resistance component connected with the
a • S interaction also decreases.

If the ordering is ferromagnetic or occurs under the
influence of an external field, then there is one more
effect, namely interference between the potential scat-
tering and the a • S interaction. Indeed, for an electron
with a spin projection along the field, we obtain a scat-
tering amplitude U - JS, as for an electron with a spin
against the field we get U+JS (of course, if T <§; Q; U
is the potential-scattering amplitude). The correspond-
ing scattering probabilities are proportional to U2

± 2JSU + (JS)2. The probability must be averaged over
all the impurities. If the ordering has an antiferromag-
netic or random character, then the interference term
vanishes following such an averaging. But if ferromag-
netism or polarization by an external field takes place,
then it remains. For the corresponding times we obtain

(it is assumed here that J <C U). The next to the last
term arises here as a result of interference. Since the
conductivities is due to "plots" and "minus" electrons
add up, the total conductivity will be proportional to

and to corresponding resistivity is
p ^ U- — 'i(JSf.

In the absence of interference we will have

,,^U*-> (JSf.

We have not taken the Kondo effect into account here.
If Q 3> TK, then we get for T « Q

(39)

Thus, when T ~ Q, the growth of the logarithm in the
second term stops, and S(S + 1) is replaced by S2. In
addition, a third negative term appears. The result of
all this is that the ordering causes not simply the ces-
sation of the growth of the resistance with decreasing
temperature, but also the appearance of a maximum on
the plot of the resistance against the temperature at
T m a x ~ Q. I emphasize once more that the maximum
is due to two causes, and can therefore occur also in
the case of antiferromagnetic ordering. Of course, to
this end it is necessary that the corresponding temper-
ature be lower than T m i n , at which the total resistance
has a minimum. If Q is connected with ordering, then
T m a x ~ ©, i.e., it is proportional to the concentration.
On the other hand, if it is due to the external field, then
T m a x is proportional to H.

In addition, it should be noted that an external field,
by polarizing the spins, must cause the resistance to be
decreased by the a • S interaction. This decrease can be
larger than the increase of the resistance due to the

twisting of the electron orbits, and the net result may
be negative magnetoresistance.

All these phenomena, namely the maxima, their po-
sitions, and the negative magnetoresistance, were ob-
served in the experiments and agree well with the fore-
going considerations (see lZBi). I shall not present the
rather complicated formulas, which furthermore can be
claimed to be rigorous only if the orientation of the
spins is connected with the external field, since, as al-
ready mentioned, the question of the type of ordering
has not yet been clarified. I note only that when /iggH
<C T, the correction to the resistance will obviously be
proportional to - (^BgHf/T2 or p(H) - p(0) ~ - (AM)2,
where AM is the impurity part of the magnetic mo-
rnent.18"

Of course, in the case when the Kondo effect actually
leads to the formation of bound states with zero total
spin, the question of ordering below the Kondo tempera-
ture becomes meaningless; however, if the spin is in-
completely compensated, then the question of ordering
at 0 < Tj£ still remains, but obviously it is meaningless
to solve it so long as the question of spin compensation
is unclear.

VII. KONDO EFFECT IN SUPERCONDUCTIVITY (SK)

There is a large number of papers in this field. Al-
most all deal with the case of small concentrations.
Apparently, a result most worthy of confidence was ob-
tained by Fowler and MakiC58] with the aid of a certain
modification of Suhl's theory. I obtained the same re -
sultE59] for S = 1 with the aid of the method I already
mentioned. According to these results, the bound state
cannot occur if T K is lower than the superconducting-
transition temperature of the pure sample. On the other
hand, if TK if higher than this temperature, then T c de-
creases, and in accordance with my calculations

67V (40)

For comparison I remaind you that if Tco 3> TK, then
the change of the critical temperature with changing
impurity concentration at low concentrations is of the
order

fir, (41)

Thus, according to these results, the critical tempera-
ture drops noticeably in the presence of the Kondo effect.
However, the results of a result by Ginzburg,lB02 based
on the unitary approach, according to which T c is in-
creased by the presence of magnetic impurities if Tc
<JC TK- For physical reasons, I consider this result
to be very doubtful.

In concluding this section, let me say that if TCo
^> TK, the Kondo corrections will nevertheless appar-
ently have an effect on the properties of superconduc-
tors. In any case, allowance for these corrections in
TS , which determines the properties of the supercon-
ductors with magnetic impurities, will improve the
agreement between theory and experiment.C61]

This concludes the present review. Of course, as
stated at the beginning I could not touch upon all the
problems connected with magnetic impurities. For ex-
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ample, the question of magnetic impurities in so-called
almost-ferromagnetic metals such as palladiuml6Zi was
completely left out. There are many interesting aspects
to that question, too, for example giant magnetic mo-
ments, a ferromagnetic transition under the influence
of a small magnetic impurity, and many others. But
these questions, in my opinion, call for a separate r e -
view no smaller in size that a present one, based on a
detailed exposition and development of Landau's concep-
tion of the Fermi liquid.
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