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THE RING GAS LASER

V. E. PRIVALOV and S. A. FRIDRIKHOV

Leningrad Polytechnic Institute

Usp. Fiz. Nauk 97, 377-402 (March, 1969)

IN the first lasers, use was made of a Fabry-Perot
resonator (flat mirrors). To decrease the diffraction
losses, the flat mirrors were subsequently replaced by
spherical ones. The field structure in a flat-mirror
resonator containing lenses is similar to the field struc-
ture in a resonator with spherical mirrors in a certain
region, and similar to the field structure of a ring res -
onator in the entire region. From this point of view, a
ring resonator can be regarded as the most general
type of resonator.

A laser with a ring resonator can be used to measure
angular rotation velocities with high accuracy, and it is
superior to all the hitherto known devices.11' This is
one of the reasons why great interest attaches to the use
of a laser of this type for navigational purposes.""53

The high monochromaticity and continuity of the oper-
ating conditions, which are needed for this case, govern
the choice of the active medium used in a laser intended
for such measurements. The initial investigations in
this direction hardly dealt with the processes in the ac-
tive medium. The discharge tube was considered in
these investigations as some sort of "black box." As
new effects became known, the investigators started to
pay more and more attention to the features of the be-
havior of the active medium in a ring resonator. The
study of the physical processes that determine the main
properties of the ring laser becomes more and more
timely. It is also to be expected that new theoretical
and experimental investigations will make it possible
not only to increase the possibility of measuring the
angular rotation velocity, but also to expand the scope
of the applications of ring lasers with various active
media. The purpose of the present view is to consider
the main properties of a ring resonator and of the gas-
eous active medium placed in this resonator, and to
systematize the published data on this subject.

1. FUNDAMENTAL EQUATIONS FOR THE RING
RESONATOR

From Maxwell's equations, which describe the elec-
tromagnetic field in free space, we can obtain the wave

equation for the electric field E

• E = 0, (l.D
where • is the d'Alambert operator. The Green's
function for this equation is r"1 exp (- ik • r). In the
case of two reflecting surfaces, the situation becomes
somewhat more complicated, and the solution of (1.1)
is written in the form"-1

ik
' 4̂T

1+cosB exp (— jkr) E, dS, (1.2)

where E m is the field of the m-th mirror (m = 1, 2),
r is the radius vector, S is the surface of the mirror
with E2, and 6 is the angle between r and the normal
to the mirror at the initial point of r (Fig. 1).

FIG. 1. Linear resonator with two spherical mirrors.

By analyzing the Huyghens principle in the Fresnel-
Kirchhoff form in the scalar form (1.2), we can obtainlal

the fundamental relations for an optical resonator with
two mirrors (we shall call it a linear resonator).

Many fundamental papers have been published by now,
considering the linear resonator from various points of
view (see, for example, t9~14:). The most convenient to
analyze is the confocal resonator, which is frequently
employed in practice, owing to its low diffraction loss.

The frequency spectrum of this resonator is deter-
mined by the equationllOi

v = ^ - [ 9 +4 . ( m + B + l ) ] , (1.3)

where L is the radius of curvature of the mirrors, equal
to the distance between them, m, n, and q are indices
characterizing the oscillation mode (q—longitudinal
modes, m and n—transverse modes).
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The field inside the resonator is given by
z-fl

, (1.4)
where

y __

H m and Hn are Hermitian polynomials of orders m and
n, respectively, and r is the Gramma function. The dis-
tribution of the TEMpoq mode field intensity in the (x, y)
plane has the form shown in Fig. 2.

The wave front at each point z (origin at the focus of
the mirror) has a curvature radius

R(z) = '- (1.5)

For the fundamental mode, the radius of the beam
(at which the field is decreased by a factor e compared
with the value on the resonator axis) is:

Any confocal resonator with mirrors 1 and 2 (Fig. 3)
can be represented by an equivalent resonator.

Indeed, it follows from (1.5) that if the front curva-
ture at the point z3 is 1/b, then there exist also other
points where the curvature has the same value. Let the
coordinates of these points be z = ±d/2; then they are
separated pairwise by a distance d = b ± Vb2- L2 . It
is seen from Fig. 3 that a confocal resonator with mir-
rors 1 and 2 separated by a distance L is equivalent to
three resonators, the mirrors of which have curvatures
1/b and are separated from each other by distances d1;
d2, and b.

Thus, the analysis of a resonator of any kind can be
carried out by choosing a confocal resonator as the
basis. In particular, the spectrum of a linear resonator
with arbitrary parameters can be written in general
form11" as

v = 4 (<?-'-'" l+i arccosVUgl) , (1.7)

where gi = 1 - (L/Rj) (i = 1, 2, Rj is the radius of cur-
vature of the mirrors, and L is the distance between
the mirrors).

The situation is somewhat different in the case of a
resonator having two flat mirrors. It was investigated
earlier (with external radiation incident on a Fabry-
Perot etalon) by very simple methods (the summation
method, the edge-value method"3), and later by other
methods/8 '11 '14 '153 which are convenient, in principle,
for all resonators.

The spectrum of such a resonator is

(1.8)

where M = 2 V2irN , /3 is a parameter determined by the
reflection coefficient, N = a2/XL is the Fresnel number,
a is the diameter of the mirror, and m = 1, 2, 3 . . . .

In some cases (for example, to produce a field struc-
ture equivalent to a confocal resonator in a resonator
with flat mirrors),1183 lenses are placed inside the r e s -
onator. In this case, the characteristics of the field in

FIG. 2. Distribution of the TEMgoq mode field intensity in the cross
section of a confocal linear resonator. L-resonator length.

FIG. 3. Field distribution in the longitudinal cross section of a con-
focal linear resonator. The dashed lines showed the equal-phase surfaces
of the resonator.

FIG. 4. Linear resonator with lenses.

the resonator, naturally, change. It turns out here that
any inhomogeneity inside the resonator can be made
equivalent to a lens. In the analysis of such a resonator
(Fig. 4), one can seek the field, in accordance with the
Huyghens principle, in the form of a product, each fac-
tor of which is represented by expression (1.2) written
out for all the remaining objects of the resonator.[173

It is required here that: 1) the fields on the mirrors be
expressed in similar fashion; 2) that the variables be
separable; 3) that the field be written in analogy with
(1.4).

On the basis of these three postulates, it is possible
to obtain the dimensions of the field spots for the reso-
nator shown in Fig. 4:

— 1 (1.8')
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FIG. 5. Ring resonator with
one spherical and three flat mir-

-21-&- - 2l+d-
FIG. 6. Linear resonator with elliptical lens; this resonator is equivalent

to a ring resonator [17 ].

where pnii are the coefficients of the optical distances,
and the frequency spectrum is given by the formula

The frequency spectrum of a triangular ring reso-
nator is written in the form[22:l

I ^^9_L.^(n !-i) j ~{m \ 1)J , n- even,

I -j- 7 - — ~>—̂ -(̂  H" 1) r— -̂(w ;!)], ft— Odd (-*-**--W

where L is the perimeter of the triangle. The spectrum
of the ring resonator can be obtained also by geomet-
rical-optics methods/23 '243

On concluding this section, we point out one more
possible generalization in the analysis of optical reso-
nators. Just like the stability d iagram l m of a reso-
nator with an inhomogeneity, plotted in coordinates
2P/LtNN/p/j.iN (ordinate axis) and 2p|U,u/pjLu4, can be used
in the case of an arbitrary resonator (for a linear reso-
nator it is given in :9:l), the plot of 1/RZ (ordinates) vs.
z/kw2 can be used to describe the properties of the field
at any point of the resonator/17-1 By eliminating z from
(1.5) and (1.6) we obtain

:"T) — J • (1.9)

and

cos <Zu = y . = .r, y.e=-0,

For a linear resonator, y = 1 and e = 0.
This problem can be solved by direct integration of

the fundamental equations, which leads to the same re -
sui t / An analysis presented in [17-2OJ is a gener-
alization of the theory of a linear (and not only a linear)
resonator. A resonator with an inhomogeneity is equiv-
alent to a ring resonator.U8"2i : Therefore the schemes
of Figs. 5 and 6 are equivalent. In Fig. 6, an elliptical
lens, which projects the different focal distances of a
spherical mirror of Fig. 5 on the vertical and horizon-
tal planes (fx = R cos 9/2, fy = R sec 9/2), is placed in
the resonator.

The coefficients of the optical distances for such a
ring resonator are given by the following formulasl171

Po=-4/,

fVu;

Knowing these coefficients, we can write the main
parameters of the ring resonator. The frequency spec-
trum, in particular, is given by:

cos a^ -•- 1 -r-

Such a transformation of (1.9) is possible because in the
case of a ring resonator y = 2, and e * 0 only if the num-
ber of the mirrors and n are both simultaneously odd.

l km* V- (1.12)

Equation (1.12) corresponds to a family of circles
(Fig. 7). Each confocal resonator with perimeter Lj has
its own circle. The points on the circle correspond to a
displacement inside the resonator. With increasing L,
the circles decrease.

By eliminating L from (1.5) and (1.6) we obtain an
equation of another family of circles (dashed line in
Fig. 7):

A displacement inside the resonator corresponds here
to a transition from one circle to another. For a ring

.FIG. 7. Diagram describing the distribution of the field in a confocal
resonator ["].

r e s o n a t o r ( f o u r f l a t m i r r o r s ) w i t h a l e n s , w e o b t a i n t h e

d i a g r a m s h o w n i n F i g . 8 . I n t h e c a s e o f a t r i a n g u l a r

r e s o n a t o r t 2 2 J w e o b t a i n a s i m i l a r d i a g r a m , t h e d i a g r a m s

f o r t h e v e r t i c a l a n d h o r i z o n t a l p l a n e s b e i n g d i f f e r e n t .

2 . R O T A T I O N O F R I N G R E S O N A T O R

L e t u s c o n s i d e r a s q u a r e r i n g r e s o n a t o r , i n w h i c h

t h e l i g h t b e a m f o l l o w s t h e p e r i m e t e r o f a s q u a r e ( F i g . 9 ) .

I n t h e c a s e o f a s t a t i o n a r y r e s o n a t o r , t h e l i g h t h a s a

f r e q u e n c y v i n t h e s y s t e m A ( a n d a t a n y o t h e r p o i n t o f

t h e r e s o n a t o r ) . I n t h e c a s e o f r o t a t i o n i n t h e d i r e c t i o n



156 V. E . PRIVALOV and S. A. FRIDRIKHOV

FIG. 8. Diagram characterizing
—z the field distribution in a ring resona-

m tor with four flat mirrors and a lens [17 ].

FIG. 9. Quadratic ring resonator.
1 -angle of incidence of beam on the
mirror, â  —angle of beam incidence on
mirror, <fio-ang\e between mirrors of
laser at rest, S2-angular velocity of
ring resonator.

cp0 = TT/2 (see Fig. 9). In the case of rotation, this angle
increases or decreases, depending on the direction of
the rotation:

where T ± is the time in which the light returns to the
i The travel time difference between the±

initial point.
two rays is

where R is the radius of rotation of the mirrors.
The frequency variation due to the Doppler effect

can be written in the form17-1

(2.5)

where t is the time of one cycle.
In our case t = T and At = AT/2. Therefore

Av+ = v -

indicated by the arrow, with frequency fi in the refer-
ence system of the mirror A, the frequency of the light
propagating in the direction 1 becomes different. The
Lorentz transformations for the wave vector k yieldC8:

2JIV cos at, (2.1)

where kj (i = 1, 2, 3, 4) is the component of the wave
vector k in the fixed coordinate system, kj are the com-
ponents of the wave vector in the coordinate system
moving with velocity v relative to the fixed system, c
is the velocity of light, j8 = v/c, and a; (i = 1, 2, 3) is
the angle of incidence of the beam on the mirror.

This means that in the system of the mirror A there
occurs a shift of the frequency of the light (Doppler ef-
fect of the first order) compared with the stationary
case, by an amount

A1v = Pvcosa1 (PCI). (2.2)

A similar reasoning can be used also for beam 2. In
this case a shift of the frequency in the opposite direc-
tion will take place, by an amount Au2 = \ Ai/j |. Thus,
when the ring resonator rotates, two frequencies ap-
pear at the output of the mirror A, differing by an
amount

Av^2pvcosa. (2.3)

From this general formula for the frequency splitting
in the nonrelativistic case we can obtain similar rela-
tions for a resonator of any geometry.

In particular, for a quadratic resonator

Qvl (2.4)

where I is the side of the square.
This result can be obtained in various manners.

Since analysis of each of them yields certain informa-
tion concerning the ring resonator, we shall stop to
discuss one more method of deriving (2.4).C25>28:| When
ft = 0, each side of the square belongs to a central angle

when /3 <C 1 we have

Av = Qvl
as in (2.4).

In experiments by SagnacE25>26:l with an interferom-
eter of a somewhat different construction (Fig. 10), a
semitransparent mirror was placed in a position nor-
mal to the positions of the other mirrors along the cir-
cles. In analogy with (2.1), in this case the Lorentz
transformation for the wave vector of beam 2 reflected
from the mirror yields

(2.6)
* Vi-Pa

For beam 1, which passes through mirror A and
completes the resonator in the counterclockwise direc-
tion, the frequency in the system of the moving mirror
A is transformed in accordance with formula (2.1), i.e.,
in the case of a moving mirror, the frequency of the
incident beam differs from that of the reflected one.
This difference is determined from the difference be-
tween ki and ki:

v = 2pvcosa (2.7)

It is easy to show that the change of frequency occurring
upon reflection from the remaining mirrors, in the co-
ordinate systems of these mirrors, does not result in a

FIG. 10. The Sagnac interferome-
ter!25'26].
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change of the frequency in the system of the mirror A.
The difference between the frequencies of rays 1 and 2,
which enter into the receiver after completing the cir-
cuit, is determined only by formula (2.7), which coin-
cides with the previously given formula (2.3).

Let us consider now the same situation from several
different points of view. When the resonator rotates,
the length of the optical path changes, and with it the
natural frequencies of the resonator ::27:l

Av (2.8)

On the basis of this, a formula was obtained for C28] for
the frequency shift of a (square) ring resonator

Av — -^— cos i (2.9)

where y is the angle between the vector U and the nor-
mal to the plane of the beam. This approach is used by
the authors of U], who were among the first to investi-
gate experimentally the frequency splitting in an He-Ne
laser with a ring resonator. The same approach was
used in l2ai. It is obvious that it contains nothing new
compared with the ideas discussed in the analysis of
Fig. 9. The analysis of a resonator in the form of a
continuous ring admits of another interpretation.l301

We can consider the interference of waves moving
opposite to each other in the gravitational field of a
rotating ring resonator, and obtain a formula for the
phase shift.:31J From this point of view, it is convenient
to analyze the frequency spectrum of a rotating reso-
nator. The analysis is carried out in the following man-
ner. i3zl The field of the resonator, in accordance with
C33]C33]

, is sought in the form

(2.10)

where F is the electromagnetic field tensor. Substituting
(2.10) into Maxwell's equations and taking into account
the fact that in a rotating coordinate system the induc-
tion D is replaced by

(here ke is the dielectric constant, x is the coordinate,
r is the vector characterizing the position of the rota-
tion axis in the plane of the ray,* we obtain for a plane
wavet

where fa are the natural frequencies of the ring reso-
nator. Since there are two such waves, the frequency
difference between them is

Av -= ,̂,,c2) 2Q sydv. (2.11)

Expression (2.11) is the most general among the pre-
viously obtained equations for the frequency splitting
following rotation of the ring resonator. In the case of
a quadratic resonator in vacuum, we obtain from (2.11)
the already familiar formula

The magnetic induction B is transformed analogously.
t[E*Ha]=E*XHa.

. Q!v
Av = cosy.

The presence of an active medium in a quadratic
resonator leads to the expression

Av = -^{i-^-[l-(fc.A™)H}coST, (2.12)

where a is the length of the active medium.
In addition to the active medium, there can be situ-

ated in a ring resonator additional elements, for exam-
ple a moving medium (the purpose of the latter will be-
come clear in Ch. 6). This leads to the appearance of
new terms in the expression for the frequency splitting
in the ring resonator. For a moving medium (with re -
fractive index n0) of length d in a ring resonator, this
expression takes the form134'1

Av = v - (2.13)
L — i (rc0— 1)-

where v is the velocity of the medium with the refrac-
tive index n0, S is the area of the annular resonator, V
is a unit vector in the direction of light propagation,
and n a is the refractive index of an active medium of
length a.

Expression (2.13) was obtained by considering the
tensor of the dielectric constant of the medium in a
rotating resonator. This method can be used in a par-
ticular case to derive also expression (2.12).

3. FUNDAMENTALS OF THE THEORY OF A RING
RESONATOR WITH A GASEOUS ACTIVE MEDIUM

The behavior of the active medium in a laser is best
characterized by the macroscopic polarizability of the
medium P. The general method of analyzing a gas
laserC3S] is applicable also in the case of a ring gas
laser (for example, t 38 ]). Maxwell's equations with the
boundary conditions customary for an absorbing medi-
um make it possible to write for an electric field E the
following wave equation:

where /j. is the magnetic permeability, e is the dielec-
tric constant, and a the conductivity of the medium.

Confining ourselves to the fundamental mode, ne-
glecting the dependence on x and y, and assuming the
Q factor of the resonator at the frequency vn to be

o - — (3.2)

we can write (3.1) for a plane-polarized wave in the
following manner:

Jg-'*Jt%-^=-^P. (3.3)

The solution of (3.3) for a ring laser is sought in the
form of two waves traveling opposite to each other*

(3.4)

where Un (z) = sin knz,

The expansion is in terms of the natural frequencies of the resonator.
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*»= inn

and L is the perimeter of the resonator.
Separation of the variables leads to the following

relations:

where P n are the corresponding Fourier transforms of
the polarizability.

From (3.6) we obtain self-consistent equations for
the determination of the amplitudes, frequencies, and
phases of both traveling waves. The number of equa-
tions in the case of a ring laser, naturally, is twice as
large than in the case of a linear laser.1353 This is fol-
lowed by analysis of the polarizability of the medium,
knowledge of which is essential for the solution of the
self-consistent equations. The polarizability is deter-
mined by the density-matrix method. In the first per-
turbation-theory approximation, the threshold condi-
tions are obtained from the equations

v, = Q,—1^(1), (3.8)

where \,

%ku

p is the magnetic element of the electric dipole moment,
2 (In 2)1/2ku is the width of the Doppler contour, N(t) is
the average density of the excited states, and u is the
most probable velocity of the atom.

Expressions (3.7) and (3.8) are the result of an analy-
sis of the following model: there are two standing waves;
on changing over from the results obtained for a linear
laser,13 '53 one traveling wave of each is cut off and we
are left with two waves traveling opposite to each other
and having different frequencies (3.8). This is precisely
the situation realized in a rotating ring laser.

In the second perturbation-theory approximation, two
dips appear on the velocity-distribution curve, and have
different depths:

where Ij is the radiation intensity, Ap the population in-
version, and W the equilibrium atom-velocity distribu-
tion.

Further, in the third order of perturbation theory,
we obtain the generation conditions. In place of exp (-£2

there appears in (3.7) the factor

L__/ i exp(_^)_/2exp(~ !?)/.(£),
where

) = j/n e.xp (--£2) - 2T] [1 -

An analysis of the stability of the opposing-wave r e -
gime makes it possible to show'383 that the stability is
minimal in the case when the frequencies of the oppos-
ing waves are equidistant from the center of the Doppler
contour. The point is that in this situation interaction of
the two waves proceeds via one group of atoms, i.e., the
coupling is maximal. The process of a second isotope
(for example Ne^ and Ne22 in the He-Ne mixture) in-
creases the stability of the system, since the asymme-
try of the amplification curve weakens the coupling be-
tween the opposing waves. In addition, in a rotating
ring laser, the region of instability of the opposing-wave
regime increases with the speed of rotation, whereas in
a gas ring laser there is no instability in the given ap-
proximation (as in C373).

It is possible to obtainC383 two opposing traveling
waves in a ring gas laser by solving Maxwell's equa-
tions in a slowly rotating coordinate system, using the
procedure of C32]. The analysis is then continued in the
usual manner: the same kinetic equations are analyzed,
the polarizability of the medium is obtained in the third
order of perturbation theory, the self-consistency equa-
tion is obtained for the amplitude and the phases, and
the conditions for the stability of the opposing-wave re-
gime are determined. The important difference"83 from
the procedure of :38] is that the coupling between the
waves via the mirrors is taken into account.

In this approximation, with account taken of the terms
of second order in the ratio of the natural line width to
the Doppler width, there appears a standing-wave insta-
bility region near the center of the amplification line.
The limit of the instability region, in the case of a ho-
mogeneously broadened line,"9-1 is

K- D2— iAC

at yn = - "m; A> c and D are functions of the level
widths.

For an inhomogeneously broadened line, the symmet-
rical arrangement of the opposing waves relative to the
center of the Doppler contour is unstable;0393 the half
width of the instability region is

7 at, Yai.

is the natural line width.

where yg is due to the spontaneous solution from the
upper working level to the lower working level.

Thus, by taking into account the modulation of the
population inversion at the beat frequency, obtained in
third order of perturbation theory, t43~483 we find that the
stability conditions of the two-wave regime are different
in a gas ring laser than in a solid-state laser, these con-
ditions being different for opposing traveling waves and
for waves traveling in the same direction. The ratio of
the traveling-wave amplitudes varies with the pumping.

When account is taken of the coupling between the
waves, due to the reflection from the mirror and the
temporal modulation of the population inversion, a r e -
gime may set in wherein waves with different ampli-
tudes, traveling in opposite directions, become
stable.1423

In fifth order of perturbation theory, with allowance
of terms of second order in the oscillation intensity, the
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instability region decreases with increasing amplitude
in the case of a laser at rest.C403 Since the laser has in
the general case different values of resonator Q for the
opposite directions, the two-wave regime is impossible
in the region whose upper limit can greatly exceed the
limit of the instability region.[403 Using the methods of
[*13, it can be shown that the widths of the stability r e -
gion and of the region in which the two-wave regime is
impossible increase with increasing pressure. The two-
wave regime in a ring laser becomes possible in the en-
tire range of detuning in which the self-excitation con-
ditions are satisfied, provided the Ne22 admixture is of
the order of several percent/403 This follows from the
expression for the critical concentration of the impur-
ity isotope, N2

where

-̂ V—Vo2,
Tat

7}0 is the excess of the pump level over threshold.
The Lamb procedure/351 of course, is not the only

one in the analysis of a gas ring laser. It is possible,
as usual, to consider Maxwell's equations in a rotating
coordinate system (analyzing the potentials A(r, t) and
cp(r, t) in lieu of the field intensity), obtain the condi-
tions for the self-consistent field and the equations for
the amplitude and the phases, and calculate the polar-
izability of the active medium on the basis of the Schrod-
inger equation written out in the occupation-number
space."7 '481

In the case of a ring laser without an active medium,
it was not necessary to ascertain from which mirror the
output signal is to be picked off. For a ring laser this
is important.1491 In a linear laser, the mirror surfaces
determine uniquely the spatial distribution of the anti-
nodes and nodes of the standing wave. In a (stationary)
ring laser, the opposing traveling waves also form a
standing wave, but the positions of the antinodes and
nodes become indeterminate. The question becomes
particularly interesting in a multimode regime. Rota-
tion of the ring laser leads to a splitting of the frequen-
cies, which can be regarded as a slow shift of the
standing-wave pattern. On a photoreceiver this is reg-
istered as modulation of a constant signal at the beat
frequency. The following reasoning can be employed :C493

If we write the expression for the field intensities, then
the condition that the intensity change in the active me-
dium be minimal leads to a connection between the
phases of the neighboring modes. They differ by TT. In
a multimode regime this leads to a difference between
the amplitudes of the beats obtained past mirrors that
have different distances from the distance tube. The
experimental results obtained for a ring resonator of
triangular form, one of the legs of which contained an
active medium (He-Ne mixture, X = 6328 A), agree with
the expected values. The inequality of the neighboring-
mode amplitudes makes an additional contribution to the
difference between the beat amplitudes.

The beat amplitudes differ also in the case of two dis-
charge tubes, and with increasing number of modes the
amplitude difference increases more sharply than in the

case of a single discharge tube. The unequal distances
between the tubes and the common mirror leads to an
additional phase shift between the neighboring modes,
and this in final analysis changes the ratio of the beat
amplitudes.

The opinion that a change in the resonator dimen-
sions influences both opposing waves in identical fash-
ion is rejected in :491. It is shown that the beat frequency
is modulated by the frequency (phase) of the change in
the resonator dimensions, leading to different output
signals from different mirrors.

4. EXPERIMENTAL INVESTIGATION OF THE COM-
PETITION OF THE OPPOSING WAVES IN A RING
LASER

Experimental investigations were made of the inter-
action between the traveling waves in a ring laser. In
C503 they used a triangular resonator (one flat mirror,
two spherical mirrors with R = 4 m, each side of the
equilateral triangle was 121 cm), and a discharge tube
with He-Ne mixture (X = 6328 A) was placed in one of
the legs of the resonator. One of the spherical mirrors
had a transmission coefficient almost 20 times larger
(T = 3.7%) than the two others. This mirror was backed
by one more mirror, as a result of which the intensity
of the beam traveling in the clockwise direction was
5-7 times larger than that of the opposing beam. If the
return mirror was covered in the one-mode regime,
then the coupling decreased, the number of modes in-
creased to three, and the total output power dropped to
almost one-half at the same pump power. The decrease
of the coupling was obtained not only by increasing the
transmission of the return mirror, but also by decreas-
ing the transmission of the resonator in front of the re -
turn mirror.1511 A similar effect was attained by in-
creasing the transmissions of the remaining mirrors
of the resonator.

The experiment confirmed the instability, noted in
3, of the regime in which waves with frequencies that

are symmetrical relative to the center of the inhomo-
geneously broadened line travel opposite to each other.
The ring laser consisted of a resonator with two spher-
ical mirrors (R = 1.8 m) and operating on the principle
of refraction of a prism/5 2 1 The laser operated at the
wavelength X = 6328 A and the Ne20 isotope (99.4%) was
used in the He-Ne mixture. The scanning system
changed the length of the resonator; the change of power
of the opposing beams was measured with two photore-
ceivers and was compared on a two-beam oscilloscope.
With the saturation regime attained (but in the case of
one mode in each of the opposing waves), suppression
of one of the opposing waves was observed when the r e s -
onator frequency passed through the center of the Dopp-
ler contour. When the multimode regime set in, all the
waves of one direction were suppressed when the condi-
tion of symmetrical arrangement relative to the center
of the Doppler contour was satisfied. The stability of
the two-wave regime was investigated experimentally
very thoroughly in C53].

Besides the investigations of the gas ring laser, theo-
retical and experimental studies are being made of solid-
state ring lasers. Most investigations are devoted to the

[39]

traveling-wave regime. [54-60J In particular, the question
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of obtaining the traveling-wave regime in a ring laser
with an external additional mirror is theoretically con-
sidered in CS6:I. The calculation is based on the methods
of long-line theory, and is valid for a ring resonator
with any active medium.

In many cases, stabilization of the frequency of the
gas ring laser may be necessary to increase the ex-
perimental accuracy. Methods for frequency stabiliza-
tion of a linear gas laser"1"83-1 are fully applicable in
this case, too. One must not forget that the frequency
characteristics of the gas laser become worse as a r e -
sult of instability in the discharge. lM'S5i Persistent at-
tention must therefore be paid to the methods of elimi-
nating noise from a plasma (mixed pumping1863 and
others).

5. FREQUENCY LOCKING IN A LASER WITH A RING
RESONATOR

In the case when the frequencies of the self-oscillat-
ing system and the external force acting on it are close,
three operating modes are possible:

1) periodic mode;
2) quasiperiodic mode with oscillations close to

sinusoidal, whose amplitude and phase vary periodically
(slowly);

3) beat mode (see, for example ca73).
These cases are frequently encountered in radio en-

gineering, so that these modes have been analyzed in
detail for vacuum-tube circuits. We shall stop to dis-
cuss the first of them in somewhat greater detail. It
was first analyzed by the authors of :88»89].

An analysis of the regenerative amplifier circuit
(Fig. 11) has revealed the following phenomenon.1693

When the generator frequency differs greatly from the
signal frequency of the external emf Eext , modulation
takes place and is determined by the difference between
P0 and vs. With increasing detuning, the generator fre-
quency is pulled in by the external signal and at a cer-
tain sufficiently small difference Av = v0 - vs the beats
disappear and only va remains. This is called frequency
locking or forced synchronization. The synchronization
band width is

Eext (5.1)

and the phase varies by 2ir within the synchronization
band.K9f

The phenomenon of frequency locking was investigated
in detail for vacuum-tube circuits.'70 '783 It is adequately
treated in monographs and text books (see, for example,
[79-82]̂  JJ. ghQuicj be noted that this phenomenon can take
place also in the case of combination interactions such
as resonance of the second kind,[873 etc. This investiga-
tion procedure was subsequently applied to the case of
mutual synchronization of two genera to rs . m ~ m

The oscillation-theory methods used to analyze forced
synchronization of vacuum tube generators can be used
in principle also for self-oscillating systems of any type.

The phenomenon of frequency locking is encountered
already in a linear laser. [35] In the normal three-mode
regime, when the distance between the beat frequencies
" a - vi a n d v* - vz become sufficiently small, a jump in
the beat frequency takes place. The smallest distance
that can be maintained between the beat frequencies be-

T

FIG. 11. Diagram of regenerative vacuum tube amplifier I69]. Eo-
supply-source voltage, Eext-amplitude of external signal.

fore they are locked is

Av _ J_ N + 2N2 lpEz\ 2 (5.2)

where Q is the quality factor of the resonator, N the
density of the excited atoms averaged over the resonator
volume, N2 the population of the upper working level, N-p
the threshold value of the excitation at vx = v0, p the di-
pole moment, E2 the amplitude of the field with frequency
v2, and fi Planck's constant.

The effect of frequency locking in a ring laser was
first considered from the point of view of the action of
an external force on the generator (and not mutual syn-
chronization).1883 The case considered was that when
the external action has a small amplitude. It was as -
sumed that there is only one traveling wave in a t r i -
angular resonator (one leg with an active element).

From the boundary conditions for the electric field
components it is possible to obtain the self-oscillation
frequency in the case when there is no external signal.
The appearance of the external signal leads to new
boundary conditions. The self-oscillation frequency
coincides with the frequency of the external signal if
they differ by an amount smaller than a definite value
e. The conditions for the maximum of e give the lock-
ing band

fiv _ 1, ET
~V nL l/0 ' (5.3)

where L is the perimeter of the ring resonator, E the
external field, Uo the amplitude of the self-oscillations,
T the transmission of the mirror through which the ex-
ternal action is applied.

Forced synchronization in a laser with a ring reso-
nator can be analyzed in greater detail by taking into
account the mutual synchronization of the opposing
waves.1893 Assuming the interaction to be sufficiently
small, we can write an equation for the field

(5.4)

where

A similar equation holds for the opposing wave E2.
Putting

Ei = e,E0 exp [i (vt + <f)],
(5.5)

where ej is the alternating part of the amplitude, and
using the approximation of slowly varying phases and
amplitudes, we can obtain equations for the latter.

In the synchronization regime we have
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q> — f) (5.6)

We put * = cp->l>. The condition for the stability of the
synchronous regime is

( T )

The equality in (5.7) yields the synchronization band

Ov _ y VW + u' if m =m

„. 6v „ ( 3 , 1 - , / /)2m2\f. C2 C2 / .

if mi = m2 = m.
For C * 0 and Dm <CCwe have

for C <C Dm

Sv

*L = Dm*.

We put m2 = ml (1 + M); this yields

v ~ 2k V n- '
Ml

The equation

(where Cx = (1/4TTC2) Im / R x [ Ax x [v x Ax ]]dvdk is
the wave amplitude), which describes the phases of the
waves generated by the laser, can be reduced to the fol-
lowing system of equations for the opposing waves

yx .--, (QC.V) - 1 £ - He a_»,_.v - £L Re {(< - 1
x exp (

where crx x is a characteristic of the frequency pulling
(via scattering).

It follows from these equations that at a rotation ve-
locity Q, < f23 there will be no beats between the opposing
waves. The width of the locking band is

Q, = - £ - h | / ( l + P)I-i-Zi. (5.8)

where TJ is the summary coupling coefficient, and p and
Lx take into account the Q of the resonator and the de-
tuning, respectively. The forced synchronization band
is proportional to the feedback echo coefficient.li71 The
dependence of this band on the resonator Q and on the
generation-frequency detuning relative to the Doppler
contour has a minimum.

Analyzing the conditions for the stability and exis-
tence of a two-wave regime, we can find that in a defi-
nite region the beat frequency is a double-valued func-
tion of the generation frequency v.wi The choice of the
branch corresponding to the real course of the curve
depends on the prior history (Fig. 12). This hysteresis
phenomenon is due to the change of the refractive in-
dices for the opposing waves under the influence of the
laser radiation. The increase of the coupling between
the wave and the decrease of the detuning leads to a
broadening of the hysteresis band.

FIG. 12. Hysteresis of the de-
pendence of the beat frequency Ac
on the generation frequency v [47 ].
v0 —lower locking frequency. v3 —

(5.7) upper locking frequency.
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An analysis of the intensity of the opposing beams
yields a linear dependence of the intensity difference
between the opposing beams on the angular velocity of
rotation inside the frequency locking band."73

This dependence can be used to measure the angular
velocity of rotation inside the locking band. In addition,
it is possible to measure the angular velocity in the
locking band by determining the phase difference of the
opposing waves.C90: The connection between the angular
velocity of the ring laser and the phase difference cp is
determined from the system of wave equations obtained
with allowance for the back scattering from the mirrors
and the inhomogeneities of the medium. Assuming that
the laser generation frequency is sufficiently remote
from the center of the Doppler line, we obtain1-90-1

where

Vi — v2 = 7f esin(q> — <jp0),

(2E)2 = ej -f ej + 2EJE2 COS (A, — A2),
fA,+A,

(5.9)

After experimentally determining € and <pQ, the find-
ing of the rotational velocity in accordance with (2.3)
reduces to a measurement of <p with the aid of an
"optical phase meter." l901 The proposed "phase
method" of measuring the velocity of rotation inside
the locking band supplements the beat method used
outside the locking band.

We can continue the list of papers devoted to an
analysis of the locking conditions (see, for example
C91'B2]). It is still difficult, however, to use the results
of these papers for the solution of applied problems.

An experimental study was also made of forced syn-
chronization in a laser with a triangular resonator. :89]

The dependence of the beat frequency on the detuning is
shown in Fig. 13. The dependence of the locking band
on the coupling between the waves (Fig. 14) also turns
out to be as expected. In the case of a large coupling

FIG. 13. Dependence of the beat frequency on the detuning [89].
"fc-phase difference of opposing waves, Ac/f-relative beat frequency,
Sp/p-relative locking band.
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FIG. 14. Dependence of the locking
band 5v on the coupling M between
waves [89].

1 2 J4 J t 78 MfO*

coefficient (which is regulated by means of an external
mirror), the frequency locking disappears (this is also
observed in radio engineering). The phase of the re -
flected wave also influences the size of the locking band.
Unfortunately, the absolute values of 6v are not given
in la9i. They can be found in C93~95:i

> where a system with
a square resonator configuration is described (0.5 me-
ters on each side). Without special measures, the syn-
chronization band was found to be 300-1000 Hz. By
regulating the transparency of the mirrors, it is pos-
sible to reduce the locking band to 50 Hz.CB5J

6. NONRECIPROCAL EFFECT AND POLARIZATION
OF RADIATION IN A RING RESONATOR

Frequency splitting in a ring resonator is called a
nonreciprocal effect. ] This effect takes place not only
when the ring resonator is rotated; for example, fre-
quency splitting is observed when a post is placed in the
path of a laser beam.[97:1 The experiment was performed
in a square resonator (92 cm long) with generation at a
wavelength A = 3.39 pt. Beats of the order of 5 kHz were
obtained when the point of a needle was inserted into the
beam (approximately 1 mm away from the axis of the
field). The effect is stronger when the needle is inserted
near the Brewster window. It is assumed that the phe-
nomenon is connected with the power-saturation effect.
The object inserted into the laser beam changes the
amplitudes of the opposing beams by different amounts,
leading to a difference in the refractive index. There is
no rigorous model of this effect, and no attempts were
made to obtain the dependence of the frequency splitting
on the system parameters. It may be that the approach
used by the authors of :49J would be successful for the
analysis of this phenomenon. It is possible that the phe-
nomenon is due to different spatial distributions of the
fields of the opposing waves.

Another method of splitting the frequency of a ring
laser C97'98J is to place in the resonator a disc whose
material has a refractive index n. Let the remainder
of the resonator have a refractive index n0. If the disc
is rotated around an axis which does not lie in one plane
with the laser beam, then the disc will have a velocity
component v m along the optical path. Therefore the
light crossing tht rotating disc will have a velocity

<=^±»<»
(the coefficient of v m is called the Fresnel dragging co-
efficient). The refractive index of the disc is

where N is an integer. From this, on the basis of ex-
pression (2.8), the frequency splitting is given by the
formula

Av'.= 2lvm'Lt (6.1)

By placing in the ring resonator a quartz disc at the
Brewster angle, it is possible to observe beats at fre-
quencies 1-20 kHz for an effective path of 17 mm in the
quartz and for a longitudinal velocity, v m

 = 125-2500
mm/sec. The experimental points agree well with the
calculated ones.C89:i The nonreciprocal element, as noted
in I89], may be not only a solid, but also a moving gas or
liquid. For example, it is possible to blow air through a
tube placed in one of the arms of the ring laser.C49] At
low rotational velocities, it is necessary to take into ac-
count the splitting due to the earth's rotation.w

Another possible nonreciprocal element is a Faraday
cell with polaroids:C2'S3'99'100:i a Faraday cell can be used
not only in the main resonator, where they hinder the
operation of the laser, but also in an external auxiliary
resonator. [101'102;1

Upon reflection from a dielectric surface, the plane
of polarization is rotated through a certain angle A,
which can be readily found with the aid of the Fresnel
formula relating the electric field amplitudes E and R
of the incident and reflected waves (see, for example,
m ) :

„ _ „ tg(q —P)

(p-polarization, the electric vector is in the plane of in-
cidence),

D _ p sin(q —P)
n'~ ^sinfa + P)

(s-polarization), where a is the angle of incidence and
/3 the angle of refraction. Hence

lgA{_ cos (a — P
tg7^ cos(a + P

(6.2)

The wavelength generated by the laser is determined
from the relation

The plane of polarization will not be rotated upon re -
flection from the dielectric in three cases: a) normal
incidence, b) when the planes of polarization and inci-
dence coincide, c) when the planes of polarization at
incidence are orthogonal.

The first case is realized in a linear laser, so that
operation with Brewster windows is possible for any
position of the window planes.

If we consider the ring laser from this point of view,
we are left with two other cases, of which the s-polari-
zation is the better for the following reasons: First, the
system is less sensitive to detuning, since A varies
much more slowly in the vicinity of TT/2 than in the vi-
cinity of zero, given the same change of tan Aj. Second,
automatic adjustment of the plane of polarization takes
place in the vicinity of Aj = TT/2 upon reflection from
the mirror, whereas the opposite takes place in the
vicinity of Aj = 0. Unfortunately, these two positions
are of no practical use in a ring laser, for in this case
the plane of the polarization of the radiation is deter-
mined by the resonator. Therefore external factors,
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for example the rotation of a discharge tube with
Brewster windows, will not lead to a simultaneous
change of both the radiation power and of the radiation
polarization plane.UO33

Thus, the generation that is possible in a ring laser
can have only two directions of the electric field vector
E: E either lies in the plane of the resonator or is per-
pendicular to it. It is seen from (6.2) that for p-polari-
zation the phases of E and R coincide only when the in-
cidence angles are larger than the Brewster angle.
This imposes one more limitation on the p-polarization
(in U03] it is introduced erroneously as s-polarization).
In practice (triangular and quadrangular resonators) no
p-polarization is encountered (the incidence angles are
smaller than the Brewster angle).

The most complete analysis of the polarization of
laser radiation was made in [104:l, where the Poincare-
sphere method was extensively used. This method was
also used by the authors of :i05:l to investigate a ring
laser with an isotropic element.

JV(O) = —5^L-;

Jo(MirA) is 3- Bessel function of zero order, /ii is the
first root of this function, and a is the radius of the
cylinder.

2) /3a » y a ; the solution of (7.1) is

7. OPTIMAL PARAMETERS OF A RING LASER

The laser radiation power is determined primarily
by the population inversion AN. In order to make the
latter maximal, the parameters of the active medium
are chosen to be optimal: a definite electron concentra-
tion ne is produced in the plasma, as well as a definite
electron temperature T e . In practice this reduces to the
proper choice of the discharge power supply and of the
gas parameters (or gas mixture).

The fundamental-mode field distribution over the res -
onator cross section E (x, y) has a Gaussian form.1-8"101

If spherical mirrors are used in the resonator, then the
longitudinal field distribution of the resonator is like-
wise not constant. In the case of a "plane-sphere" res -
onator, the resonator field distribution is a curve of the
Gaussian type, the maximum of which decreases and the
width increases on going from the flat mirror to the
spherical one. The field distribution on the mirrors of
a semi-confocal resonator is shown in Fig. 15.

The population inversion in the active laser medium
is also unevenly distributed. In the gas discharge, the
concentration of the excited atoms in an infinite cylin-
der should satisfy the equation :i06"108]

Oa ( i ^ + J- i^) -;- annaqe = $aNqe + yai\, (7.1)

where Da is the diffusion coefficient; n a and N—concen-
trations of the normal and excited atoms, qe
= ne(r)/ne(0), ne(0)—concentration of the electrons on
the cylinder axis, ne(r)—radial distribution of the elec-
tron concentration; aa—probability of collisions of the
first kind between the atoms and electrons on the cylin-
der axis; ya—probability of atomic collisions of the
second kind (on the axis); |3a— probability of collisions
of the second kind between atoms and electrons.

The boundary conditions are

= 0,

Two limiting cases are possible:
1) 7 a ^> /3 a ; then (7.1) has a solution

where

where Nj^ is the concentration of the excited atoms in
the case of a Maxwellian energy distribution: B a
= (3aa

2/Da; Ia(VBa) is a Bessel function of imaginary
argument. At small B a (smaller than 10) both solutions
are close in form.

If we wish to consider the population inversion AN,
then we must take into account not one excited level, as
in (7.1), but at least two levels. For example, for an
He-Ne laser it is necessary to solve the equations for
the 3s2 and 2p4 levels of neon (we refer here to the ex-
citation line with X = 0.6328 /z). In addition, it is neces-
sary to take into account the Is level of neon[1251 and the
d levels of neon.UC9 ' l lo: In the first approximation we
can simplify the problem for the He-Ne mixture and
consider separately only two working levels. For ex-
cited helium atoms 2XS) we can write an expression
similar to (7 .1) u u ]

d,-2
1 d-Vn,
>•[ dr I + ana,,ne = (7.2)

where onenjje is the number of helium atoms excited
by electron impact in the 2XS state, /3neNne is the num-
ber of metastable helium atoms destroyed by electron
impact, yNjjeNne is the number of neon atoms excited
by helium atoms in the state 21S , and ne = ne(0) J0((j.1r/a).
Clia: Assuming that the number N(2p4) of neon atoms ex-
cited in the state 2p4 is proportional to ne, and that the
number N(3s2) of neon atoms excited in the state 3s2 is
proportional to Njje, we can assume a n l that the inver-
sion of the populations in this case is AN(n/a)

FIG. 15. Radial distribution of
the field in a semiconfocal resonator:
1—field distribution on the spherical
mirror, 2—on the flat mirror.

= const •J0(/j.1r/a). The experimentally measured
quantity was not AN(r/a) but the amplification coeffi-
cient of the He-Ne mixture for the radiation with A
= 0.6328 [x, which has the same radial distribution as
AN(r/a), and good agreement was obtained.L111]

The radial distribution of the population inversion
in the He-Ne discharge changes with the discharge cur-
rent: it first increases in the same manner as the cur-
rent becomes smeared out, and finally saturation pro-
duces a dip on the axis. The distribution varies with
pressure (there is an optimal pressure at which AN on



164 V. E . PRIVALOV and S. A. FRIDRIKHOV

the axis is maximal), and absorption of the radiation is
observed starting with a certain pressure; the distribu-
tion also varies with the ratio of the mixture compo-
nents (it becomes sharper with increasing fraction of
helium); there exists an optimal component ratio at
which AN is maximal on the axis[113"115] (Fig. 16).

35
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FIG. 16. Distribution of the popu-
lation inversion (gain) over the cross
section p of the discharge tube [ u4> u s ].
l-PHe/PNe=7: l ; 2 - 5 : 1;3-
3 : 1;4- 1 : l;P = 0.8 torr.

0 2

Indeed, in lim, a tube of length I = 20 cm, was placed
in a resonator of length L = 1 m (the tube diameter,
3 mm, was much larger than the "wave spot" on the
spherical mirror of the resonator for the fundamental
mode), and the result was nx = 3.5:1 and n2 = 6.5:1
(X = 0.6328 /it). In the case of a non-confocal resonator,
the deviation of the maximum value of PHe/^Ne from
5:1 will be observed for tubes of any length. In accord-
ance with the foregoing considerations, the optimal n in
a "plane-sphere" resonator at L « I will be larger than
5:1 if R < 2L (R—radius of curvature of the mirror).
When R > 2L, the optimal n becomes smaller than 5:1.
Thus, in C1193, in a resonator with L « 1 m (Z « L, 2
diameter 6 mm), one spherical mirror was used with
R = 1.5 m. An optimal ratio PHe/pNe = 9 : 1 i s obtained
at a pressure p « 2 torr (A. = 0.6328 ji).

In a ring He-Ne laser, in the presence of spherical
mirrors, it is also necessary to take into account the
phenomenon described above. By virtue of the fact that
the resonator field distribution will be different in the
different arms, one should expect changes in the opti-
mal parameters for tubes placed in arms with different
field distributions. The reasoning advanced for the res -

Thus, the resonator field and the population inversion
have uneven distributions in the active medium. Appar-
ently, the laser radiation power is determined not by the
absolute value of AN in the active medium, but only by
the part that is in the region of the resonator field dis-
tribution and interacts effectively with the field.t1153 In
other words, the laser radiation power is determined by
the region where the distributions indicated above over-
lap.

Inasmuch as the distribution of the population inver-
sion changes with the pump and with the mixture param-
eters, it is possible to use the latter to regulate the
"overlap region," meaning also the output power of the
laser. In turn this means that the parameters of the
He-Ne mixture are optimal, depending on the type of
the resonator used in the He-Ne laser.11153 There is
a widely help opinion that for a He-Ne laser (with X
= 0.6328 ii and X = 3.39 /x), the optimal component ratio
is PHe/^Ne = 5:1, and the pressure is determined from
the relation pD = 2.9-3.6 torr-mm."163 The results of
C1183 were confirmed in some investigations (see, for
example, CU73). The point is that these measurements
were carried out in a confocal (semi-confocal) reso-
nator, and the length of the discharge gap was approxi-
mately equal to the resonator length. If a discharge tube
much shorter than the resonator is placed in a semicon-
focal resonator (Fig. 17a), then the optimal parameters
of the He-Ne mixture are determined by the location of
the tube in the resonator.C1183 The resonator field at the
spherical mirror is more smeared out than at the flat
mirror. Assuming that the laser radiation power is
maximal when the resonator field and the population
inversion have similar distributions, we can expect (on
the basis of the results of [114-11!0) that by placing the
tube near the spherical mirror it is possible to obtain
one optimal mixture-component ratio aL = PHe/PNe>
and by placing it near the flat mirror it is possible to
obtain another optimal component ratio n2, with n2 > nx.

FIG. 17. a) Semiconfocal resonator with short tube; b) ring resonator.

onator of Fig. 17a can be used also for the resonator of
Fig. 17b. The optimal mixture component ratio n is ex-
pected to be larger than 5:1 in arm III and smaller than
5:1 in arm IV. For a ring laser with resonator shown in
Fig. 17b (arm 120 cm, tube with i = l m , D = 6 mm,
R = 3 m), an optimal component ratio (X = 0.6328 n) of
3:1 was obtained in arm IV and 6:1 in arm Ul.azo} Using
spherical mirrors with R larger than the perimeter of
the triangle, a smoothing of the differences between the
arms was observed in lizn, this being apparently con-
nected with the change of the resonator field configura-
tion.

So far we have considered only the possibility of
changing the radial distribution of the population inver-
sion. Account should also be taken of the longitudinal
distribution of the population inversion. In a cylindrical
tube, it is practically homogeneous.

In a tube with a conical cross section : i21] it becomes
inhomogeneous, and the total gain increases. Indeed,
the gain per unit length of the discharge gap on the axis
of a cylindrical tube of an He-Ne laser is G = 11222

where Go is the function of the state of the active me-
dium, determined by the discharge current, by the pres-
sure, and by the ratio of the mixture component, and k0
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is determined by the tube geometry (k0 « I /a for an
He-Ne laser). Being interested only in the dependence
of the geometry of the cross section, we can make the
remaining conditions identical. We therefore seek the
geometrical part of the gain coefficient for a cylindrical
tube, in the form

k = \\k»f(S)dV, (7.3)

where V is the volume of the tube, and S is the area of
the cross section. For a cylindrical tube, assuming
f(S) = J0(/Ji1r/a), we have k = 0.43 I/a.. For a tube with
a quadratic cross section of the same area, k = 0.45 I/a..
Using (7.3) for the tube proposed in , we get

2.1 P i> 1 r I r \ , ,= "T~ \ \ — •Ml'!—I rdrdz, (7.4)

where

Scp = I dz = 4f (a* + a

a and b are the radii of the ends of the conical tube.
By placing the conical-cross-section tube in a confocal
ring laser (Fig. 18), we obtain in accordance with (7.4),
k = 0.475 I/a for a/b = 1.2 (the spots on the mirrors of
this resonator differ by approximately the same factor).
A still greater gain can be obtained by using parabolic
generatrices in a conical tube. Consequently, the use of
a tube with conical cross section in an He-Ne ring laser
is more advantageous than the use of a cylindrical tube.
Further optimization of the ring laser can be obtained
by placing tubes of different diameters l l23i and different
cross sections in the different arms of the resonator.

FIG. 18. Tube of conical cross sec-
tion in a ring resonator.

Thus, the use of the distribution of the population in-
version is one more source of increasing the power of
gas lasers, including ring lasers. To increase the effi-
ciency of utilization of this source, naturally, it is nec-
essary to investigate exhaustively the plasma of the gas
laser. This will make it possible, in particular, to ob-
tain a more rigorous interpretation of the results of
[ui,ii3,u4: T h e p r o b e a n d r e s o n a t o r plasma-parameter
measurements performed to data,U24"127] and also theo-
retical studies of the problem (see, for example, lim)
do not make it possible to assume that the dependence
of the radiation power on the plasma parameters has
been completely determined. Individual attempts, using
known data on the behavior of a plasma,C129>1303 to pre-
dict the dependence of the He-Ne laser power on the
discharge parameters (see, for example, C82>13i:l)j make
it possible to make only qualitative estimates. To solve

the problem of the role of the plasma parameters in
processes that take place in a gas laser it is therefore
necessary to improve further the procedures for laser-
plasma research.
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