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PROB LEMS connected with interactions between the
electron streams and various waves present in some
system have recently aroused great interest. One of
the causes of such an increased interest in these phe-
nomena is that under certain conditions amplification
or generation of various types of waves, both electro-
magnetic and acoustic, is possible in a system with
electron streams. Physically, the reason for the am-
plification and generation of waves in such systems is
the same, namely the Cerenkov radiation of some wave
or another by a charge moving with a ‘‘superwave’’
velocity.™r?!

The first investigations of such phenomena were
started relatively long ago (principally as applied to
a gas-discharge plasma). In an electron-ion plasma,
propagation of many types of waves is possible (espe-
cially in the presence of an external magnetic field;
see m), and the presence of electron streams or beams
leads as a rule to a growth, i.e., intensification or gen-
eration, of various waves in the system.“’“ In a gas-
discharge plasma, in final analysis, this leads to devel-
opment of instability.

The study of analogous phenomena in solids, in semi-
conductors and semimetals, in which the electron or
‘‘hole’’ streams can be produced by means of external
fields or with the aid of concentration or temperature
gradients, began only relatively recently. By now, a
relatively large number of published papers is devoted
to the study of various instability phenomena produced
by electron streams in solids. These papers can be sub-
divided, quite arbitrarily, into two groups: papers in
which excitations of the plasma types are investigated, '
and papers devoted to the buildup of various ‘‘lattice”’
waves by the electron screens. A characteristic feature
of the papers of the first type is that in excitations of
the plasma type the crystal lattices play a secondary
role, namely, the carrier streams excite a particular
wave that exists in the electron-hole plasma itself; the
second group, to the contrary, is characterized by the
fact that the lattice plays here an active role, and the
electron streams excite or intensify some lattice wave.*

In order to narrow down the circle of problems under
consideration, we shall discuss only the second of these
two large and independent problems, namely, we shall
investigate problems connected with intensification of
elastic waves in a lattice.

The intensification of elastic waves was first ob-
served experimentally by Hutson, McFee, and White, '™
who observed intensification of a transmitted ultrasonic
wave in piezoelectric semiconducting crystals of cad-

*We must emphasize once more that such a subdivision of the
excitations into “plasma’ and “lattice” branches is quite arbitrary and
is somewhat meaningless. The latter occurs in the vicinity of the so-called
coupled acousto-electromagnetic waves.

mium sulfide when the drift velocity of the electrons
exceeded the sound velocity.

The physical process occurring upon amplification
or generation of acoustic waves by a drifting stream of
electrons in a solid consists in the following: the trans-
mitted elastic wave leads to a redistribution of the elec-
trons in space in such a way that regions of increased
electron density are produced, i.e., a space charge is
produced. If the space charge is now made to drift (for
example, by means of an external field) in the wave di-
rection at a supersonic velocity, then, in analogy with
the free electrons, the space charge will emit phonons.

This is the physical nature of the effect of amplifi-
cation in the region of low frequencies, when the am-
plification or generation of the elastic waves is due to
Cerenkov radiation of the space charge produced by the
wave itself. At high frequencies, when the period of the
wave is too short to permit production of space charge,
the amplification of the acoustic waves is due to the
Cerenkov radiation of individual electrons, in analogy
with two-stream instability in a gas-discharge plasma.

In the first part of the review we shall consider the
qualitative picture of amplification of acoustic waves
in a solid in two limiting cases, when the carrier mean
free path is small or large compared with the ultra-
sound wavelength,

We shall show that in both cases, the possibility of
amplification of sound waves in the system is deter-
mined completely by the Cerenkov condition for the
radiation of phonons by the drifting electrons.

The second part is devoted to the derivation of dis-
persion equations that describe the propagation of sound
waves in conducting bodies with different character of
the interaction with the conduction electrons. The state
of the electron-hole plasma itself is not specified con-
cretely here, and consequently that part of the disper-
sion equation, which determines the interaction with
the electrons, contains in a natural manner the dielec-
tric tensor of the medium.

In essence, the nub of all the processes considered
here lies in the calculation of the dielectric tensor of
the crystal in the presence of directed streams of
charged particles. For this reason, the third part of
the paper is devoted entirely to the calculation of di-
electric constants of a medium in the presence of drift,
in various cases: low and high frequencies, influence of
the magnetic field, cyclotron and geometric resonances,
quantum oscillations, etc. It should also be noted that
the dielectric tensor of the medium determines not only
the plasma part of the damping or amplification of the
elastic waves, but also many other phenomena, includ-
ing also those of purely plasma nature, and therefore
its calculation for different cases is of independent in-
terest. The expressions derived for the dielectric con-
stants of the medium are then used to investigate effects
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of amplification (and associated phenomena) under vari-
ous conditions for different types of interaction between
the sound waves and the electron-hole carrier plasma.

1. QUALITATIVE ANALYSIS OF THE EFFECT OF
AMPLIFICATION. INTRODUCTORY REMARKS

As already mentioned, it was observed experimen-
tally that acoustic waves become amplified under con-
ditions when the carrier drift velocity exceeds the wave
velocity.'™ To illustrate the physical nature of this ef-
fect, let us consider the propagation, in a medium, of a
plane longitudinal electric wave

1.1)

The electric field of the wave E._ performs in a unit
time a work V Reo_E? on the medium; here Reo_ is
the conductivity of the medium to the alternating field
of the wave, and V is the volume of the system. The
sign of the work is determined by the sign of the con-
ductivity Rec; if Reo.. > 0, then the work performed
on the medium is positive and the transmitted wave at-
tenuates, giving up its energy to the medium; if Reog_,

< 0, then the medium gives up energy to the wave and
the amplitude of the transmitted wave increases. Thus,
in order to calculate the character of the interaction

of the wave (1.1) with the medium, at least qualitatively,
it is necessary to determine the sign of the conductivity
of the medium to the alternating field of the wave.

We shall show that a plasma medium in which there
is directional motion of charged particles with a veloc-
ity exceeding the phase velocity of the wave Vph = w/q,
has negative conductivity. To find the conductivity of
the medium, it is necessary to determine the response
of the system to the longitudinal wave (1.1), i.e., to find
the current induced by the wave in the system. Let us
assume for concreteness that the directed motion of the
particle in the medium is produced by an external con-
stant electric field Eq. Then we obtain for the ac com-
ponent of the current in the linear approximation in the
wave field

E. (z, 1) - E_eiot is:

E.lg.

(1.2)

here n, is the equilibrium value of the electron density,*
n.(z, t) is the small deviation of the concentration from
the equilibrium value, produced by the wave, vq is the
electron directional velocity due to the action of the ex-
ternal field Eq, and v .(z, t) is the alternating, i.e., vi-
bration, velocity of the electron in the electric field of
the wave. As seen from (1.2), the current induced by
the wave in the system consists of two parts: the first
term in (1.2), engv_ is the current of the oscillatory
motion of the electrons, which is usually taken into
account in conductivity theory; the second term in (1.2),
en_vVq, is the current due to the ordered motion of the
space charge. To determine n_ (z, t), we use the con-
tinuity equation

Jozzengva-Fen vy,

(1.3)

on ., .. .
eaa‘—dlv_y,_o.

Assuming for simplicity that the electron drift vq is di-
rected along the wave, i.e., vq Il q, we get from (1.3)

*We shall refer most frequently to electrons, but alil the statements
pertain to holes as well.
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- (1.4)

n. ((1), Q) =Ny o—qvq

In the simplest case, the vibrational electron velocity
v_ is equal to uE_, where p is the electron mobility.
In the general case (especially at high frequencies),
the mobility u is a complex quantity, but at present we
are interested only in the qualitative picture of the phe-
nomenon, and furthermore at low frequencies, so that
the mobility 1 can be regarded as pure real. Substitut-
ing (1.4) in expression (1.2) for the current, we obtain'®
%o (1.5)

j((ﬂ, q)=0. (o, 9E., o (o, q):T‘_m 5

Here 0, = enyu is the dc conductivity.
The obtained formula (1.5) for the conductivity shows
that Re¢_(w, q) reverses sign when

vy > % , (1.6)
i.e., when the electron drift exceeds the phase velocity
of the wave.

The condition under which the conductivity of the
plasma medium reverses sign is none other than the
condition for Cerenkov radiation,’ namely, the elec-
tron drift velocity must exceed the phase velocity of
the developing wave. The role of the Cerenkov radiator
is played here not by one particle, as is usually the
case, but by an assembly of particles—a local bunch of
charged particles of like sign, produced by the wave
itself. Whereas in ordinary Cerenkov radiation the
electromagnetic wave is emitted by each electron sep-
arately (provided the electron velocity exceeds the
phase velocity of the wave in the medium), in our case
the wave is radiated by the space charge moving as a
unit under the influence of the external constant field.
This is the mechanism amplifying the low-frequency
waves if the space charge can be formed within a time
equal to the period of the wave. I the wave is of high
frequency and no space charge is produced in the wave,
then the amplification is due to the Cerenkov radiation
of the individual electrons moving with ‘‘superwave’’
velocity.

Let us make a few remarks concerning the applica-
bility of the expression (1.5) for the conductivity. When
vd = Vph, as seen from expression (1.5), infinite reso-
nance takes place. In fact, when vq = vpp, formula (1.5)
is not applicable. This follows directly from the condi-
tion ny > n ., which leads to the requirement
|1 - (vd/vph)| > v.. /vph, and by the same token ex-
cludes the singularity (infinite resonance) at vq = Vph-
As will be shown below, at resonance, the current is
finite as a result of the diffusion of the space charge,
electron-phonon collisions, collisions with impurities,
etc., and also as a result of other factors, which can
be taken into account only in a more rigorous analysis
of the problem. The simple formula (1.5) for the con-
ductivity of the medium is valid only at low frequencies,
when thermal motion of the particles can be neglected.

The experimentally produced directional velocity of
the electrons in solids usually does not exceed 10°-6
x107 cm/sec, so that only relatively slow waves can
be amplified. The question of just which wave can prop-
agate and be amplified in the system depends on the
properties of the medium itself and calls for a special
analysis in each individual case. It is immediately
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clear, however, that the most suitable for amplifica-
tion are acoustic waves, the velocity of which in solids
usually amounts to 10°~10° cm/sec. The interaction
between an acoustic wave and a drifting stream of car-
riers can be realized in various ways, but this interac-
tion is most effective in piezoelectric semiconducting
crystals, where the wave passing through the crystal
is accompanied by an electric field. It is precisely in
piezoelectric semiconducting crystals, cadmium sul-
fide, where the amplification of ultrasound was first
observed in supersonic electron motion.™

The expression previously derived for the conduc-
tivity of the electron gas is valid only at low frequen-
cies, much lower than the effective electron-collision
frequency. One can, however, advance simple consid-
erations indicating that free electrons moving with
supersonic velocity can likewise emit phonons. The
reasoning in this case differs little from the case of
the ordinary (photon) Cerenkov radiation.'®

We shall consider the case of degenerate semicon-
ductors or semimetals at absolute zero temperature,
when the Fermi distribution function of the electrons
is a pure ‘‘step.’”’ In the case of equilibrium electron
distribution, in spite of the fact that the characteristic
velocities of the “‘excited’’ electrons are of the order
of the Fermi velocity, and consequently are much higher
than the velocity of sound, no phonons are generated in
the system, since all the states of the electrons with
energy lower than the Fermi energy are occupied. The
situation is different in the case of a non-equilibrium
system. Assume that electron drift with velocity v
was produced inside the semiconductor by means of
some mechanism. The presence of the electron drift
causes the Fermi function to shift by the vector vq4 in
velocity space, and therefore all the states with (v - vq|
< vy will turn out to be occupied, and the states with
lv —vd4l > vF, i.e., outside the Fermi sphere, are free.
In such a system, phonons can be generated provided
the electron drift velocity vq satisfies a definite re-
quirement. Let us determine this requirement.

The initial electron velocity vi (prior to the emis-
sion of the phonon) and the final velocity v¢ (after the
phonon emission) should satisfy the inequalities

[vi —vg|<vp, | Ve—Va|2up,
from which we get
a.m

The initial and final electron velocities, in addition, are
connected by the energy and momentum conservation
laws

\vi—vd]<|vf—vd|.

%mvzi:—;—mv’}—i-?nm, mv; =mv,+hiq, (1.8)
where hi is Planck’s constant. Substituting in (1.7) the
values of vi and vf obtained from (1.8), we get the condi-

tion that must be satisfied by the electron drift velocity:
(1.67)

i.e., the process of phonon emission by electrons be-
comes possible if the Cerenkov-radiation condition is
satisfied.

Similar reasoning can be used in the case of finite
temperature.'®*! To this end, let us consider the sim-

qvqe > o,

Al
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plest form of kinetic equations for the number of pho-
[11] 3
nons Ng in the stationary case
dn,
Ve g2 =2 A (@) D [fpra (A—Fp) (Vg + 1)
P
~Nafy (1 — fp1a)] 8 (epsq— &p— he); (1.9)

Here f,—electron distribution function, p—quasimomen-
tum, ep—electron energy, A(q)—characteristic constant
of interaction between the electrons and phonons, and
Vgr—group velocity of the sound waves in the x direction.
For simplicity we assume here that the drift velocity is
parallel to x and therefore the growth of the phonons
takes place in the same direction.

If the electron distribution is described by a Fermi
function with a certain temperature T, then the number
of phonons N((l“) in equilibrium with the electrons is de-
termined by a Planck distribution with the same tem-
perature T. It is precisely under these conditions that
the ‘‘collision integral’’ in (1.9) vanishes and the total
derivative is dNg/dt = 0.

Let now the electron distribution function be a shifted
Fermi function

£ e Py -8

forete T T

(1.10)

Then the number of phonons in equilibrium with the
shifted function (1.10) should seemingly be determined
by the ‘‘shifted’’ Planck distribution:

R(a(g)-qvy)

Nq(vy)=|e ®T

17, (1.11)

Actually, as will be shown later, when w > q-vq the
number of phonons is described by the distribution
(1.11), but when the Cerenkov condition (1.6) is satis-
fied the phonons no longer have the stationary distri-
bution (1.11).* This statement can be deduced rigorously
directly from the solution of Eq. (1.9):

Vg

Vg }D.‘:-"n o (1= 1p) 8(ey q—ep—ho) (1—e "B
Nq(@) =Ny (x=0)e "e - ; , '
%(/p a—fp) 8 {8y q—eq—h0) (1.12)
where the growth (damping) increment 7q is
2,
yq:—hEA- (@) DY (forq—Fo) 8 (Bpeq — Ep— R0D), (1.13)

p

Nq (x = 0) is the number of phonons specified on the
boundary x = 0. It follows from (1.13) that the sign of
the coefficient yq is determined by the sign of the dif-
ference qQ-vq — w, namely, if (w — q-vg4) > 0, then

v > 0 and as x — < the phonon distribution goes over
to the stationary value (1.11); on the other hand, if

(w = q-vg) < 0, i.e., the condition for the Cerenkov
radiation is satisfied, then yq < 0, and as x — « the
number of phonons in the system will increase without

*If we change over to a reference frame in which the electrons are
at rest in the mean, then the distribution function (1.10) goes over into
the usual Fermi distribution, in equilibrium with which the phonons
have a Planck distribution at the same temperature. Going back to the
laboratory frame, we obtain the distribution (1.11) [*?]. It is easy to
show that this reasoning is valid only when the electron drift velocity
is smaller than the velocity of sound. Indeed, for the phonons the sound
velocity plays the role of the limiting velocity, and therefore we can
obtain from such a reasoning the distribution (1.11) only when vq <
Vph.
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limit. We see here that we get not only amplification

of the ‘“boundary’’ phonons, but also internal generation
of spontaneous phonons, which grow along the drift di-
rection. We have imposed no condition whatever on the
electron temperature, so that the latter statement is
valid also for nondegenerate semiconductors and semi-
metals.

The foregoing qualitative investigation of the ampli-
fication of acoustic waves in semiconductors and semi-
metals covers two limiting cases: on the one hand, the
case of low frequencies, when the electron mean free
path in the solid is small compared with the wavelength,
and on the other hand, the case of an infinitely large
mean free path. This analysis, of course, is only illus-
trative in character, since it describes only the quali-
tative character of the phenomenon. In order to study
these effects more rigorously and in the entire fre-
quency region, it is necessary to construct a dispersion
equation that describes the propagation of the elastic
waves in solids with allowance for their interaction with
the electron-hole plasma of the carriers.

2. PROPAGATION OF ELASTIC WAVES IN SEMI-
CONDUCTORS

a) General Remarks

The presence of electrons and holes in a solid greatly
influences the processes that occur in the crystal lattice,
particularly the character of propagation of acoustic
waves. The character of this influence is determined,
first, by the interaction of the conduction electrons with
the lattice vibrations and, second, by the state of the
electron-hole plasma itself. If the electron-hole plasma
is in equilibrium, i.e., the real part of the conductivity
is positive, then its interaction with the lattice vibra-
tions leads to a damping of elastic waves in solids;* on
the other hand, if the plasma is not in equilibrium, the
waves may sometimes become amplified rather than
damped.

The distribution of elastic waves in crystals is de-
scribed by the equations of the theory of elasticity®*?*!

02%u;

ot

ikzm‘?Tl:=fi. (2.1)
where p is the lattice density, u the displacement vector,
Aiklm the elastic-modulus tensor,
1 (du; , du

= (3+52)
the strain tensor, and fj the volume force that deter-
mines the interaction between the phonons and the
electron-hole plasma.

Thus, the problem of the interaction of elastic waves
with conduction electrons reduces to a determination of
the explicit form of the force f. The determination of
the force f for different interaction mechanisms entails
certain difficulties, and we shall therefore consider this
question in greater detail in this section.

*The first indication that the conduction electrons play an essential
role in the absorption of acoustic waves in metals was obtained experi-
mentally by Bommell [!3] (see also ['*]). The first qualitative
explanation of this phenomenon was given by Pippard [*°]. The theory
of absorption of ultrasonic metals was subsequently developed by many
authors (see, for example, ['97!°]).
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The interaction between carriers and lattice vibra-
tions can be realized by several methods. In semicon-
ductors and semimetals with an ‘‘ionic’’ core (i.e.,
those whose lattice consist of charged ions of like sign),
the interaction is realized via the electric field accom-
panying the longitudinal wave in the lattice. The force
f has in this case the simplest form

f=ppE, (2.2)

where p(;, is the lattice charge density and E is the
self-consistent electric field produced in the sound
wave.

If the semiconductor crystal has piezoelectric prop-
erties, then the propagating elastic wave will be also
accompanied by an electric field resulting from the
piezoelectric properties of the medium. The expres-
sion for the force in this case is'?"

fi=B et (2.3)

Finally, a direct interaction between the electrons
and the lattice vibrations via the deformation potential
is also possible: the transmitted wave deforms the lat-
tice, leading to a change of the electron energy in the
conduction band (or of the hole in the valence band). In
a reference frame connected with the moving lattice,
the electron energy can be written in the form

(2.4)

Here €,(p) is the electron energy in the absence of the
wave, and Ajik is the tensor of the electron-phonon in-
teraction constants.* Formula (2.4) signifies that the
electrons exert on the lattice a force

&(p, r)= £ (P) + Ainliin;

7} (@)
37’; A’lll

fi= 2

a=e, h

§ i@, p o) ap. (2.5)
where £%(r, p, t) is the carrier distribution function
(a = e corresponds to electrons, & = h to holes). T

We note one feature of the interaction of acoustic
waves with electrons and holes in the presence of ex-
ternal fields, magnetic or electric.

Since the sound wave induces a current in the con-
ducting medium, this leads, in a magnetic field, to an
additional interaction between the electron and the lat-
tice vibrations. This interaction is due to the induction
fields which are produced when the conductor deformed
by the sound wave crosses the flux lines of the magnetic
field. An expression for the force acting on the lattice
in this case can be obtained from the general expression
for the stress tensor in a magnetic field (see ®*, Sec.
34)

- 1
Gik:})ﬂ)+4—p;1 (Hin —5 ﬁith) f

0y

where g5/ is the stress tensor in the absence of a mag-

*Strictly speaking, it is necessary to add to expression (2.3) the term
du de(p)
ot dp
effect [*2]. It is easy to show ['¢], however, that this term is always
small compared with those taken into account; their ratio is always of
the order of the ratio of the sound velocity to the characteristic electron
velocity, and is consequently smaller than 1072,

1 The values of Ajk in formulas (2.4) and (2.5) may, generally
speaking, not coincide (for more details see [2*24]).

, which corresponds to allowance for the Stewart-Tolman
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netic field, u is the magnetic permeability of the me-
dium, which for simplicity is assumed here to be a sca-
lar quantity independent of the lattice deformation. The
volume force due to the magnetic field is then:

_m _n 10D‘4J‘L.)
E=2L [(rov ) B = 41[(TWTT’ H],

where D is the electric-induction vector, j is the con-
duction current induced in the medium by the sound
wave, and H is the external magnetic field (in the deri-
vation of (2.6) we used Maxwell’s equations to eliminate
curl H). Formula (2.6) without the displacement curve
can be obtained in very simple manner also directly by
averaging the values of the Lorentz forces exerted on
the conduction electrons by the microscopic field h. The
‘‘induction’’ force (2.6) leads ultimately to a renormal-
ization of the interaction, and also to a certain addi-
tional interaction,**?*! which in most cases is small,

In the presence of an external electric field, an ad-
ditional interaction between the electrons and the lattice
vibrations is produced by the electrostriction effect,**
or, which is the same, by the dependence of the dielec-
tric constants of the medium on the deformation.'®’ We
shall show that this case can be reduced formally to the
piezoelectric interaction, in which the piezoelectric
modulus is determined by the electrostriction in an ex-
ternal electric field.”™ This is best demonstrated by
using the expression for the free energy per unit vol-
ume 2!

(2.6)*

N ! . 1 e
Fo FO L Rttt B P o aintnttn iy — g5 €Y Rl (2.7

here ajkim is the electrostriction-constant tensor and
6{3” is the dielectric tensor of the lattice (the explicit
forms of these tensors and the number of independent
constants are determined completely by the symmetry
of the crystal). Assuming that the electric field E con-
sists of Eq—the external field—and E_, —the field in-
duced by the sound wave—we obtain from (2.7) the vol-
ume force acting on the lattice:

or _ .,

fw =@ ntamnka ) 01[—1 , (2.3%)
i.e., the additional interaction proportional to the exter-
nal field reduces to the piezoelectric interaction with
effective piezoelectric modulus

Bi, n1 =B, ni -+ aimniEam-

When sound waves propagate in solids, the wave en-
ergy becomes dissipated, first because of thermal con-
ductivity (the presence of deformation leads to the ap-
pearance of a temperature difference), and second be-
cause of internal friction or viscosity. For single crys-
tals (but not for polycrystals), the absorption due to
thermal conductivity is small compared with the ab-
sorption due to viscosity (for a transverse wave it is in
general equal to zero). At low temperatures, however,
the situation is much more complicated. %2

Viscous absorption of sound waves can be taken into
account by adding to the volume force acting on the sys-
tem (in Eq. (2.1)), on the right side, a ‘‘dissipative
force” or a ‘‘friction force’’ fdiSS which, as is well

*[(rot H)H] = (curl H) X H.

known, 1!

is given by
%y

di
£, = Nikim g; Er

where 7jklm is the viscosity tensor. We shall not write
out this force each time, but we shall remember that
whenever we deal with complete amplification (or atten-
uation) of sound waves in a solid, it is necessary to take
into account fdi8s pesides the plasma part. The damp-
ing increment due to the viscosity, for example for lon-
gitudinal waves, is

hng=—nggr <0 (M=o ufjxlla).  (2.8)
In many-valley semiconductors and semimetals,
when the energy of the electron as a function of its
quasimomentum has several minima, the character
of the interaction of the ultrasonic waves with the
electrons can change appreciably. Under the influence
of the elastic deformation of the lattice, the electrons
may execute transitions from one minimum to the
other, and this leads to additional absorption of the
sound waves, to a decrease of the space charge in the
wave, and this in turn ensures a stronger interaction
between the phonons and the electrons even at high den-
sity of the latter.®®") In particular, as shown by Wein-
reich et al.'® with germanium and silicon as examples,
transitions between individual minima (the so-called
intervalley transitions) ensure the possibility of experi-
mentally observing the acoustoelectric effect and,. as
recently observed by Pomerantz,* the very effect of
amplification of ultrasonic waves in germanium. It
should nevertheless be noted that a consistent theory
of phonon-electron interaction in many-valley semi-

conductors encounters considerable difficulties (see
[31,34,35,36])

b) Dispersion Equations of the Propagation of Sound
Waves in Plezoelectric Semiconductors

For piezoelectric semiconductors, the force f is de-
termined by formula (2.3), and the electric field by
Maxwell’s equations

1 @D a3

oo T T e o

rotrot E - =

in which the induction vector is

D= — /m%;i = eV E — 4nfy, wtnr.
Assuming that the quantities u and E depend on the co-
ordinates and on the time in accordance with the plane-
wave law exp (iwt - iq-X), we obtain from (2.6) a dis-
persion equation for the propagation of elastic waves
in piezoelectric semiconductors in the absence of a
magnetic field

9 4nw® N
Det ‘ 00*8;; — hinssqiqn — ——;:; Be, im Uit By, i54sqm 1 =0, (2.10)
where

9:9; w?
e Wz—si'/ (o, q),

Tije= 85—

. 4n
&= (0, q) =&} el N (o, q).

If we neglect the solenoidal components of the field

2
(which is possible if E%zfj(% q)| « 1), then



110 v. L.

202
[y
P

i,/ ps (0, 4) s

and from (2.10) we get the dispersion equation first ob-

tained by Shaposhnikov®®® (see also 1~*!):
s 2 47Bg ioPg,iq ,
Det pu>-6,~j~7';q.,jq~~~gﬁ”ﬂ 2=, (2.11)
where
Ugim = (ILaillll/q

denotes the contraction of the corresponding tensor with
the vector q.

The dispersion equations (2.9) and (2.10) were ob-
tained for acoustic waves interacting only with conduc-
tion electrons; on the other hand, if the crystal contains
also holes, then these can be accounted for by making
the formal substitution

o 4n e /]
e (@, @) — &)’ 422 (ol (0, q) 1 0 (0, @)1,

where o{f)(w, q) is the complex conductivity tensor of
the holes.

In the presence of an external magnetic field H, in
addition to the fact that the dielectric constant of the
medium is a function of H, i.e., €jj = €jj(H), it is also
necessary to take into account in the equation of motion
(2.1) the magnetic force (2.6). It is easy to see that the
induction mechanism of the interaction differs from
zero only when ‘‘solenoidal’’ components of the elec-
tric field are present.

The additional ‘‘magnetic’’ interaction, as a rule, is
always smaller than the purely piezoelectric interaction
at all reasonable values of the magnetic field. On the
other hand, if the crystal symmetry and the chosen
propagation directions and the polarization of the sound
wave are such that the acoustic wave is not accompa-
nied by a prolonged electric field, then the piezoelec-
tric interaction decreases sharply (by an approximate
factor (vg/c)?), and then the relative role of the induc-
tion mechanism becomes less significant. Although this
case is of little interest, in view of the exceedingly
small coupling constant (of the order of (vg/c)’t® where
t? is the square of the constant of the electromechanical
coupling), a situation is nevertheless possible in which
this interaction can play an important role. This occurs
in those cases when any of the acoustic branches crosses
the electromagnetic branch. The dispersion equation of
the electromagnetic waves in the plasma medium, as is
well known,™* is of the form

w2
Det} ¢28;;—q:0,——5 &1 (@, q) ):0,

(2.12)
and in our notation it is given by Det | I‘ijl = 0. The lat-
ter determines precisely those values of the frequency
w and of the wave vector q at which Tjj' formally di-
verges.

The presence of an interaction between the waves
(even an arbitrarily weak one) leads under such condi-
tions to a change of the spectrum of the entire system.
This process can be represented illustratively in the
following manner. Assume that initially there are two
branches: acoustic, w = vgq, and electromagnetic, w
= w(a), which is determined from the solution of Eq.
(2.12). These are shown in Fig. 1a in the absence of
interaction. When the interaction between the acoustic
and electromagnetic waves is ‘‘turned on,’’ the spec-
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FIG. 1. Realignment of the spectrum of the system when the inter-
action is “turned on.” 1, 2—acoustic and electromagnetic branches
respectively; 1/, 2'—after realignment of the spectrum.

trum of the system changes and takes the form shown
in Fig. 1b. It is clear that such a change of the spec-
trum of the system is possible only if the acoustic and
the electromagnetic waves intersect.* (We recall that
it is meaningful to consider acoustic waves only in the
region w < 2nvg/a, where a is the lattice constant.)
The solution of Eq. (2.12) turns out to be most fre-
quently in the form of ‘‘fast’’ waves, which have no
intersection points with the acoustic branch. In the
presence of a magnetic field, however, anomalously
‘‘slow’’ waves can appear in the spectrum (2.12) (see
[3,4,43-471) " and then the situation described above be-
comes perfectly realistic. We shall not consider such
a possibility in detail, and therefore the entire reason-
ing is valid only far from the roots of Eq. (2.12).

If the medium in which the sound wave propagates is
not piezoelectric, then Eq. (2.10) goes over into the well
known equations of elasticity theory,! which describe
the propagation of elastic waves in crystals (for details
see “®1), This equation has three roots which are in
general different. The latter means that for each direc-
tion in the crystal there are three different elastic-wave
propagation velocities, and it is possible to separate
these waves into purely longitudinal and purely trans-
verse ones only for crystals having a definite symme-
try, and only along certain directions. The anisotropy
of the elastic-modulus tensor and the presence of a
piezoelectric effect in a medium that has both temporal
and spatial dispersion make it impossible to separate
the waves into purely longitudinal and purely transverse
ones: each direction of the wave vector q corresponds to
a wave whose displacement vector has components both
parallel and perpendicular to the wave propagation di-
rection. H it is assumed that the direction of wave prop-
agation in the crystal is chosen such that there is no
‘‘coupling’’ of oscillations as a result of the anisotropy
of the elastic moduli, then the separation of the waves
into purely longitudinal and purely transverse is still
impossible, owing to the presence of dispersion of the
longitudinal electric constant of the medium €qq(w, q)
in which the piezoelectric effect is present. If we intro-
duce an electromechanical constant characterizing the
ratio of the density of the electric energy to the density
of the elastic energy in the acoustic wave:

4nﬁ?j,qq 172 4nﬂ:'q" 172 u
C“:( pvsl!o) ' CL:( Pvzao ) (K—_—;)

for the longitudinal and transverse waves respectively,

*In the presence of damping (amplification) in any one of the oscil-
lation modes, the question of realignment of the spectrum of the system
turns out to be more complicated.




INTERACTION OF ELECTRON STREAMS WITH ELASTIC LATTICE WAVES

then the quantity determining the coupling of the oscil-
lations, owing to the dispersion of eqq(w, q), turns out
to be proportional to the fourth power of the electro-
mechanical-coupling constant. Since £? is of the order
of 3 x1072 even for such a relatively strong piezoelec-
tric as CdS,™®"*%*" it is clear that the coupling of the
oscillations can be neglected in most cases. K it is
assumed further that the direction of wave propagation
in the crystal is chosen such that there is likewise no
coupling of the oscillations as a result of the anisotropy
of the elastic moduli then the dispersion equation (2.11)
breaks up into dispersion equations for the longitudinal
and transverse waves, and these equations are the ones
used for the most part in the study of plasma intensifi-
cation of sound waves in piezosemiconductors.!”®2%2%%
26,37-41] We present this equation for the case of a lon-
gitudinal wave:
mz_q2p“( ;HS (m q)) =0. (2.13)
As seen from the last expression, in order to find the
damping or amplification, or else to determine the
change of the phase velocity of the sound waves as a
result of the interaction with the conduction electrons,
it is necessary to determine the longitudinal component
of the dielectric tensor of the medium. As will be shown
later, €gq(w, q) describes completely the plasma part of
the damping (amplification) of the waves for all types of
interaction between the lattice vibrations and the carrier
plasma.

¢) Dispersion Equation for the Propagation of Ultra-
sound in Intrinsic Semiconductors and in Semimetals

Let us consider the propagation of elastic waves in
intrinsic semiconductors and semimetals with equal
electron and hole densities. We assume that there is
no piezoelectric effect, so that the interaction of the
acoustic waves with the electron-hole plasma can be
realized only via the deformation potential. (Direct
interaction via the Coulomb field is obviously impos-
sible in crystals with equal electron and hole densities,
since the lattice has no charge.)

Let us transform the expression for the Fourier
transform of the force (2.5):

fi (0, @)= —4mign ) APRD(
a=e, h

o, q), (2.14)
where n~(w, q) is the Fourier transform of the nonequi-
librium carrier density induced in the crystal by the
sound wave. In the derivation of (2.14)) it was assumed
that the tensor of the electron-phonon interaction con-
stants does not depend on the quasimomenta of the car-
riers. To determine the nonequilibrium carrier density
nia)(w, q) it is necessary to construct the general ex-
pression for the current induced by the acoustic wave

in the system. In the case of piezosemiconductors the
analogous problem was solved in relatively simple
fashion: since the interaction is produced in the main
only via the electric field, it follows that j; = 0j;E;. For
semiconductors and semimetals, besides the electric
field produced as a result of violation of the local quasi-
neutrality of the electron-hole plasma, the carriers are
acted upon by an additional force due to the deformation
potential and the magnetic field. Assuming that there is

i
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no magnetic field (we shall return to this question later).
The total current is written in the form

). (2.15)

where the lower sign (plus) corresponds to holes and the
upper (minus) to electrons. Maxwell’s equations in this
notation are given by

]-(a)_(,g?) (E, T4 A(a) 0};:;;

/mzm £ (e (h) _(h
T E; = (A o) — AQoly up, (2.16)

where €jj and T'jj must be taken to mean the total tensor

£ (@, q) = £0d:; + 7 (0Ff -+ o).

Using the continuity equation for the electron and hole
components of the currents in (2.15), we can obtain the
non-equilibrium value of the electron and hole concen-
trations, which determine the force (2.14):

G, 2 G0 daiy G, 6,6 0 W)

n. (®, q) == 5 Oqq Agm Um— g3 I (0eq Aqm — Oaq Mg ) -

(2.17)

With the aid of (2.1), (2.14), and (2.17) we can easily
construct the dispersion equation of the ultrasonic
waves in intrinsic semiconductors and semimetals. We
shall not present its complete form, since it is too com-
plicated, and confine ourselves only to particular but
most important cases.

It |(w%c®e®)eijl < 1, the solenoidal components of
the electric field in (2.16) can be neglected, and then
the additional plasma term in the dispersion equation
will depend only on the longitudinal components of the
dielectric constants of the medium:

4migie, 1
elop & (w, q)

/4

{Gm AP 4 gAY 4 T g6 (A AW )2} .
0

(2.18)

The dispersion equation (2.18) is presented for the case
of longitudinal waves, and therefore ¢, o, and A should
be taken to mean quantities of the type €qq, 0qq, and
Aqq- From (2.16), in particular, it follows that even if
direct interaction with one type of carrier, say holes,
does not occur, i.e., A = 0, the influence of the holes
on the character of the propagation of the sound waves
still remains. Physically this is due to the fact that
local electron density is violated in the acoustic waves,
and this in turn leads to the appearance of a Coulomb
field with which the holes already interact. If we deter-
mine the imaginary part of the wave vector q, which de-
termines the absorption of the solid wave in the medium,
then we get for Ath) = 0

2aw?A (D2 1 {
bl S—— I, | O} le
e Te (@, D ot o

0¥ — q%i =

fmg— — (02 + (o)

(2.19)

We have used here the universal symbols ¢/ = Re o and
= Im ¢. Expression (2.19) means that in equilibrium
medlum (for which ¢©)’, o)’ > 0) we have Im q < 0 —
the sound wave can only attenuate. On the other hand, if
the expression in the parentheses of (2.17) is negative,
then the wave builds up. The latter occurs only when at
least one of the real parts of the conductivity is nega-
tive, i.e., one of the components of the medium is not
in equilibrium. Thus, if negative electron conductivity
is produced via the Cerenkov mechanism, the influence
of the holes becomes even stronger, for now they de-

4:10”‘) [ 16]{20’(
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termine even the very possibility of intensification of
the waves in the medium.

Assume that | 4ro(€,0)(w, q)| > w; it then follows
from the dispersion equation (2.18) that

2n63 [A© A(/u]z

gHrgtn
Img == pre Re&m+wm), (2.20a)
Avg 2nw2 [A) 4- AD]2 ( ogin
s e2pvd Im gt ,LU("J) : (2'20b)

These expressions will be determined later, after we
obtain the longitudinal conductivity of the medium
o(w, 9).

We stop now to discuss the influence of the magnetic
field on the character of propagation of the elastic
waves in conducting bodies. It is clear first of all that
in a magnetic field the longitudinal dielectric constant
of the medium becomes a function of the magnetic field,
but as already noted above this is not the only influence
of the magnetic field. In a magnetic field, the latter is
acted upon, besides the electron pressure (2.5), also by
the force (2.6). The deformed lattice now exerts on the
electrons and on the holes a force

a
(%3

F——e¢ (E+%[{m]+% Aikul—h) ,

(2.21)

which in turn leads to a change in the expression for the
current (2.15). The first and last terms of (2.21) are
obvious; as to the term (1/c)u X H, it is the consequence
of the transformation of the coordinate system %228
(we recall that the spectrum of the electrons (2.4) is
specified in a reference frame that is at rest relative
to the lattice,"®?®! whereas the entire analysis carried
out in the laboratory system). Depending on which of
the last two terms of (2.21) predominates, the interac-
tion between the electrons and the phonons can be real-
ized either via the deformation potential or via the
“‘induction’’ mechanism.

We can construct further dispersion equations de-
scribing the propagation of acoustic waves in the pres-
ence of a magnetic field; they are quite complicated and
will not be presented here.

3. DIELECTRIC CONSTANT OF AN ELECTRON-HOLE
PLASMA IN THE PRESENCE OF DRIFT

d) General Remarks. Conductivity of the Medium at
Low Frequencies

We have obtained above dispersion equations for the
propagation of acoustic waves in conducting bodies; it
is seen from these equations that the character of the
interaction of the elastic waves with the carriers is
determined completely by the complex dielectric ten-
sor of the medium, i.e.,

. 4l .
&i; (0, q) =¢ff + 501 (0, q);

(3.1)

Here eﬁ” is the dielectric constant of the lattice, which

henceforth can be regarded as isotropic (€{f’ = 6jj¢,),
and oij(w, q) is the complex conductivity of the plasma
carriers. Since the foregoing analysis was confined to
cases in which no acousto-electromagnetict*®! waves
were produced, only the longitudinal component o (w, Q)
= (aigj/0ij(w, q))/q° of the tensor oij(w, q) need be known
in order to consider the phenomena of amplification
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(attenuation) of acoustic waves. We shall therefore be
interested below in the calculation of only the longitud-
inal component ¢ (w, q), under the condition that direc-
tional motion of the particles exists in the system.

Calculations of the electronic dielectric constants
of the medium as applied to a gas-discharge plasma
were undertaken relatively long ago (see »*)), and
principal attention was paid to various types of insta-
bilities occurring in a gas-discharge plasma containing
electron beams. %%} An essentially similar prob-
lem has to be solved in a solid-state plasma, the only
difference being that the collisions of the electrons and
of the holes with the ‘‘lattice’’ play a more important
role here than in a gas-discharge plasma. At low tem-
peratures, for example, when the distribution of the
electrons or the holes becomes degenerate, new effects
appear (geometric resonance, quantum oscillations of
conductivity), which do not occur in an ordinary gas-
discharge plasma.

It will be shown below that the real part of the con-
ductivity of the electron or hole components of a solid-
state plasma becomes negative when the drift velocity
exceeds the phase velocity of the wave. This condition
is a rather general property of the medium, regardless
of how the carrier density is produced; it will be dem-
onstrated by means of a number of examples, that this
condition is satisfied also in the presence of different
resonances in the magnetic field.

Inasmuch as the longitudinal dielectric constant of
the medium always enters in the dispersion equations
(2.11), (2.18), and (2.28), independently of the type of
interaction between the phonons and the electrons, it
is convenient to consider, for the calculation of €;(w,q)
the following model problem: assume that the system
is acted upon by a plane longitudinal electric wave (1.1)
and it is necessary to find the response of the system
to this action, i.e., the current induced by the wave in
the medium.

We start with the simplest case, when the electron
or hole plasma can be described by the equations of
hydrodynamics of a charged liquid

(3.2a)
—Z'Tl-f—divnvr;(); (3.2b)

mn (—3—[‘; +(vV) v) = ¢E-|- VP —mnvv,

here n(x, t) is the electron density, T is the pressure
of the electron gas, v (x, t) is the hydrodynamic velocity
of the electrons, v = 1/7 is the effective collision fre-
quency, E ~ Eg + E_(x, t) is the electric field in the
medium. Using further the usual procedure of linear-
izing Egs. (3.2) with respect to the small deviation from
equilibrium values, produced by the wave, it is easy to
obtain an expression for the hydrodynamic current
j_(w, a) = e {nv)_, from which follows directly an ex-
pression for the longitudinal conductivity of the me-
dium [8,55,56]

S (3.3)

o (v, q) = T gvao) — T o) °
where vq = eEq7/m is the electron drift velocity, and
vt = vT/m is the thermal velocity. In the derivation
of (3.3) it was assumed that the pressure is P = nT,
just as for an ideal gas, and by assumption the temper-
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ature of the electrons T does not depend on the coordi-
nates or on the time.* In the case when the electron

gas is in the degenerate state, i.e., T < e‘-’F, where EOF
is the Fermi energy, the pressure gradient will be:(573

VP:%L—U%VIL,, (3.4)
where vy is the Fermi velocity, and the final expression
for 0)(¢€,q) will differ from (3.3) only in the fact that the
thermal velocity of the electrons v is replaced by
vg/V3 .

As expected, formula (3.3) differs from the elemen-
tary expression (1.5) only in the finite width of the res-
onance at vq = vph. Expression (3.3) can be obtained
from a kinetic analysis of the problem,"® by using
expansion of the distribution function in Legendre poly-
nomials.® %% %% From this it is possible to obtain in
particular, a criterion for the validity of formula (3.3):

‘1f$n{1)’>>%. (3.5)
We note that allowance for the dependence of the colli-
sion frequency on the electron velocity (if we disregard
the special case of heating of the electron gas by the
electric field (see °%), does not lead to a qualitative
change of formula (3.3).5*® It can be shown'®® that when
account is taken of the dependence of the collision fre-
quency on the velocity, the presence of directional mo-
tion of the electrons in the medium leads to a change
in the sign of the real part of the conductivity; the drift
velocity is then determined in terms of a certain effec-
tive collision frequency, which of course depends on the
predominant type of scattering. The form of the v(v)
dependence greatly influences the temperature depen-
dence of the conductivity.

e) Dielectric Constant of the Medium at High Frequen-
cies. Kinetic Analysis

To investigate also the damping and amplification of
acoustic waves in semiconductors and semimetals at
high frequencies, let us calculate o) (w, q) with the aid
of the kinetic equation. Instead of a real semiconductor,
we consider a gas of electrons (holes) of density n,,
placed in a homogeneous positive ‘‘background’’ having
the same density. The distribution function of such an
electron gas is determined from the solution of the ki-
netic equation

Ty T B L su—o,

m ov

(3.6)

where F is the force acting on the electron, F

= ~ e (Eq + E(x,t)). The change of the distribution
function due to the collisions will be taken into account
with the aid of the relaxation time

Stf — [l (3.7)

*This is valid only at low frequencies, when w < 15!, where 7¢
is the relaxation time of the energy (temperature) of the system. On the
other hand, if the frequency w is of the order of 7¢!, then it is necessary
to consider, besides Eq. (3.2), also the equation for the energy balance,
from which the nonequilibrium addition to the temperature is deter-
mined. It is easy to see that in this case the real part of the conductivity
will no longer reverse sign when condition (1.6) is satisfied, since
additional dissipation of the electric energy appears as a result of the
temperature oscillations.

113

where f,g is the spherically-symmetrical part of the
distribution function, and 7 is a constant that does not
depend on the energy. In such an approach, the colli-
sions that lead to the appearance of the electron-hole
pairs, and also to recombination and capture processes,
are not taken into account, so that formally all the con-
clusions are valid for an infinitely long carrier lifetime.

The presence of an elastic wave in the crystal leads
to violation of the local equilibrium value of the elec-
tron density, and therefore the distribution function f,,
which is spherically symmetrical in velocity space,
should be determined by the local value of the Fermi
energy, i.e.,*

fos (¥, v, 8) = Fo (2 (r, 1)). (3.8)

It is convenient to expand (3.8) in a series in the small
perturbation produced by the wave:

foo (1, ¥, £) = fo-t- Aeg 22,

where {, is the Fermi distribution and A€ is the change
of the Fermi energy as a result of the formation of
space charge in the wave:

2
Aep=gp(r, t)—e} =~ me},ﬂ%(r, t).

(3.9)

The complete distribution function f (r, v, t) will be rep-
resented in the form

Fr, v, ) =fotfor--@ (1, v, B), (3.10)
where {4, is the current increment due to the external
electric field, and ¢ (r, v, t) is the distribution function
component due entirely to the wave, and therefore pro-
portional to exp (iwt —igz). To calculate the response
of the system to the wave (1.1), i.e., to determine the
current

jo(r, t)=e S v (r, v, t) d®, (3.11)

it is necessary precisely to find the explicit form of the
functions ¢ (r, v, t). This problem is usually solved by
successive approximations in terms of the electric field.
One first determines f, —the term linear in the ‘‘weak’’
constant field Eq—and then ¢(r, v, t). The field Eq is
‘‘weak’’ in the sense of the electron drift and it is much
smaller than the characteristic electron velocity (ther-
mal or Fermi). tSubstituting in (3.11) the function

*We disregard here the effect of phonon dragging of the electrons,
considered by Holstein [¢']. Expression (3.8), generally speaking, should
be written in the form fg(r, v, t) = fo(v-u(r, t))ep(r, t), in accordance
with the fact that the electron distribution function is symmetrical in
the reference frame in which the lattice is at rest [62], It is easy to see,
however, that for semiconductors, allowance for these terms due to the
dragging effect in the expansion of fog makes a small contribution to the
interaction compared with other mechanisms, and is therefore dis-
regarded from now on.

1n a constant electric field, generally speaking, the electron gas
becomes heated, and therefore the analysis of the kinetic equation (3.6)
with a collision integral in the form of the r-approximation (3.7) calls
for certain caution. Nonetheless, it can be shown that even when
account is taken of the heating, the main results remain in force provided
the electron temperature is taken to mean the effective temperature
T=Tj[1 + (1/3)(v§ /v3)], where T} is the lattice temperature [>58:57].
For the method used here it is important only that the kinetic equation
in a constant field have a stationary solution and fy > f,,. Since the
kinetic equation (3.6) with the 7-term (3.7) does not contain the
equation for the stationary function fy, we are justified in choosing for
fy an equilibrium function (Boltzman or Fermi) with an effective
temperature that depends on the electric field.
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¢(r, v, t) obtained in this manner for the longitudinal
(i.e., z-component) of the current, we obtain'®*®

(o, q)=a(, @) E.—en. (0, 9 V; (3.12)

here
a(e, @)= —et S /i) [ (1+ (1 +Q)—5z~ ”qu ) -+ vg;d (1+Q)J lz"sv,ls)

Vo, )= — 2§ Ty, (14 50) 4 2] gy, (3.14)
where Q = 1 +iwT - iTqvy, and for simplicity we have
confined ourselves to the case of a longitudinal wave
ullq.

The expression for the current (3.12) is similar in
structure to formula (1.2) and has a simple physical
meaning. The first term in (2.12) is the current in-
duced by the electric field of the wave under the con-
dition that no space charge is produced in the wave
(en. (r, t) = 0). The second term is the space-charge
current or the diffusion current.

By eliminating from (3.12) the non-equilibrium elec-
tron density with the aid of the continuity equation, we
obtain the final expression for the current

j-(o, @) =0y (0, q) E.
and for the electron conductivity

oo, @)=a (0, 9) ;=g (3.15)

Let us consider first the expression for o) (w, Q). As-
suming the electron gas to be strongly degenerate, and
calculating the integrals (3 13) (using in this case the
fact that af,/9e ~ 6 (e - eF), we obtain the exclusive
form of the expression for o;(w, q))."*"’ In the general
case it is very cumbersome, so that we shall confine
ourselves only to two limiting cases: ql « 1 and ql > 1,
where ! = vp7 is the electron mean free path. In the
former case, when ql < 1, the result naturally, as-
sumes the form (3.3), in whlch VT is replaced by vF/3
In the region of large frequencies, when g > 1, we
have®%

[ 99 (1-26) 0]

0'”(0), q): (3.16)
and consequently the real part of (3.16) reverses sign
when the Cerenkov condition is satisfied.

In the case when the electron gas is not degenerate,
integration of expressions (3.13) is much more compli-
cated. The longitudinal conductivity can be determined
in this case by the Enskog method, by expandin ]g the dis-
tribution function in Hermite polynomials. (64,951 Just as
in the degenerate case, the real part of the conductivity
reverses sign when the Cerenkov-radiation condition is
satisfied.

f) Dielectric Constant of a Plasma Medium in a2 Mag-
netic Field. Geometrical and Cyclotron Resonances

Let us find the dielectric constant of the medium in
the presence of a magnetic field. We choose the coor-
dinate system such that the z axis is directed along the
magnetic field H, the y axis along the electric field Eq,
and the x axis along the direction of wave propagation.
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The drift velocity is in this case also directed along x
and equals vq = cEq/H (27 >> 1). The force acting on
the electron will now be

F=—c(E+E.+[TH]).

The solution of the kinetic equation (3.6) is best sought

in the form of an integral along the phase trajecto-
rieg: 86,67

{ -
ievn=§ fo(r, v, t)e v

—co

dz’
- (3.17)
corresponding to an adiabatic turning-on of the interac-
tion in the infinitely remote past.”’ We expand f (r, v, t)
in powers of the small deviation due to the presence of
external electric and magnetic fields ™

Fr, v, ) =Ffo (&) + @u(r, v, )+ @2 (r, v, 2), (3.18)
where*
@y (r, v, £) = af° Q [Aa—-sp+sp]e T -dT—, (3.19)
1 0 =
Po(r, v, 8) =5 24 S [Ae—gpt-el]2e T - (3.20)

—o0

The prime in (3.19) and (3.20) denotes that the corre-
sponding quantity should be taken at the instant of time
t’, A€ = €(v') — €(v) is the change of the electron en-
ergy due both to the constant electric field and to the
electric field of the wave. Using the equations bf mo-
tion of charged particles in crossed electric and mag-
netic fields (see, for example '*®) Sec. 22) and going
over to Fourier-transformed quantltles we obtain an
expression for the current induced in such a system
by a longitudinal electric wave. This expression is of
the form (3.12), but the coefficients a (w, q) and V(w, q)
will be equal tot® %"

a(o, q)
30 vy (qu ) Ang, va s .
et 2 G L g v (100 Tin Qe ]}

(3.21a)

n (#155)

Q
G Z m{"ﬁ’"(

»(24r:)) } (3.21b)

where A =1 +iwT(1 - qvq/w), ry is the Larmor radius,
r; = vE/Q (T > 1), Jm(x) is a Bessel function, and
gn(x) is a weakly oscillating function introduced by
Cohen et al.:"®?

/2

gn (@) = S J% (2 sin ©) sin 6 d6. (3.22)
[

In the derivation of (3.21) it was assumed that (vq/vF)
< 1 and (w/qvF) < 1, so that the squares of these quan-
tities could be neglected in comparison with unity. (In
semimetals and in semiconductors, the ratio of the
speed of sound to the Fermi velocity of the electron is

*The need for taking into account the increment ¢, which is quad-
ratic in the field is due to the cross term E_Eq.
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of the order of 1072-107%.) Formulas (3.21) are valid

for the strongly degenerate case, when the derivative

of the equilibrium distribution function with respect to
the electron energy is close to a §-function of the ar-

gument (€ - €§).

It is easy to see that from (3.21) it is possible to ob-
tain the longitudinal conductivity at low frequencies ql
< 1, but in a strong magnetic field 7 > 1. In the re-
sult we again arrive at formula (3.3), except that the
collision frequency v will be replaced by the effective
collision frequency vegf = (2° + v%)/v ~ %/v, which de-
pends on the magnetic field, and the drift is vq = cEq/H.

1) Geometric resonance. K the wavelength of the
perturbation (1.1) acting on the system turns out to be
of the same order as the Larmor radius of the classical
orbit of the electron in the magnetic field, then condi-
tions are produced for geometrical resonance in the
wave absorption. The geometrical resonance is possi-
ble only in degenerate semiconductors and semimetals,
when the revolution radii of all the electrons in the
magnetic field are practically equal; on the other hand,
if the electron is in a non-degenerate state, then the
thermal velocity spread of the electrons causes their
radii in the magnetic field to be different, and conse-
quently this resonance vanishes as a result of averag-
ing over the velocities. Thus, in the region of geomet-
ric resonance

(3.23)

Investigating the values of the coefficients a (w, q) and
V (w, Q) at qrj of the order of unity, we obtain for the
longitudinal conductivity™"

T ey, qri=~1.

A [t—go(gry)] \

BT |

30,
o) (0, q)= (ql;Jz J: R
L

(3.24)

We note first that the real part of (3.24) reverses sign
when the Cerenkov condition vq > w/q is satisfied. As
a function of the magnetic field, (3.24) experiences res-
onant bursts determined by the oscillations of the func-
tion go (x = qr;) (Fig. 2). These conductivity oscillations
ensure resonant changes in the amplification or absorp-
tion of longitudinal waves of a degenerate electron
plasma,

2) Cyclotron resonance. When the electron revolu-
tion frequency in the magnetic field & = eH/mc coin-
cides with the frequency w of the wave, cyclotron reso-
nance is produced in the absorption of the waves. For
an ordinary gas-discharge plasma, these phenomena
have been known for a long time (see, for example, **!,
Sec. 12, and the references therein); research on the
cyclotron resonance in solid-state plasma began much
later.[707*

If the medium is under the influence of both a con-
stant magnetic field and an electric field, which leads
to electron drift, resonant amplification of the waves
should be expected in place of resonant absorption.
Obviously, the condition for resonant cyclotron ab-
sorption € = w should be replaced, owingto the pres-
ence of the electron drift, by the condition = w’,
where w” = w[1 - (vq/vpn)] is the Doppler-shifted
wave frequency.

*Cyclotron resonance in the absorption of acoustic waves was first
predicted by Mikoshiba [7'].
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FIG. 2. Behavior of the function go(x)
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Unlike the geometrical resonance, which is possible
only in degenerate semiconductors and semimetals, cy-
clotron resonance is possible also in nondegenerate
ones. This is connected with the simple circumstance
that the frequency of revolution of the electrons in the
magnetic field (in the nonrelativistic approximation!)
does not depend on the electron velocity.

Near cyclotron resonance qrj = vo/vth, and since
vph is of the order of the speed of sound, we get qr;>> 1.
This makes it possible to use the asymptotic value of
the expression (3.21a) at large qr;. As a result we ob-
tain for the conductivity "’

3z (0r)2 (

qu, 173
o) (0, q) = —— 0o (a7 ——d) cth .

[

(3.25)

For the nondegenerate case, as can be readily shown,
expression (3.25) remains in force; it is merely neces-
sary to replace the coefficient 37/2 by 2V7 , and to take
the mean free path ! = vp7 to mean the quantity ! = vT7,
where v is the thermal velocity of the electrons.

Depending on the magnetic field, the real part of the
conductivity (3.25) experiences a number of resonances,
the positions of which are determined by the condition

r__ __Ya . _
ne _n( vq))(.)_.Q (n=1,2,3,...). (3.26)

Thus, in crossed electric and magnetic fields the reso-
nance condition depends on the electric field, leading to
a resonant change of the conductivity as a function of the
drift field (Figs. 3a and b).
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FIG. 3. Dependence of the conductivity on the ratio w/2 under
conditions of cyclotron resonance. 7 = 10° sec, w = 101 sec™, vg4 =0;
the values of Reg;((w, q) at vq = 2vg will differ only in sign from the
values at vg = 0.
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In a strong magnetic field, when the condition Q7 > 1
is satisfied, the energy spectrum of the electrons ceases
fo be continuous and Landau levels connected with the
quantization of the circular motion of the electrons ap-
pear.'"™! If in addition, the thermal energy of the de-
generate electron gas T is smaller than the energy hQ
(T <« 1), then it becomes possible to observe a num-
ber of effects connected with the quantization of the
electron energy. Without taking into account the spin,
the spectrum of the free electrons is

272
np =12 (04 4) o (3.27)
where n is a positive integer that determines the Landau
quantum level, ky is the projection of the quasimomen-
tum of the electrons on the direction of the magnetic
field. Let us consider the conservation law when a
quantum of energy fAw is absorbed by the electron

n2k:

(n+3) 1@+ + 19 = (r' 4 5) 1@+ 20 (k+q.2. (3.28)
In the case of a sufficiently strong magnetic field

(92 > fkzqz/m), for small wave vectors qz < kgz, it
follows from (3.28) that the absorption process is pos-
sible only when n’ = n. Then fikz/m = w/az = vph/cos 6,
where 6 is the angle between the direction of propaga-
tion of the wave and the magnetic field. The latter con-
dition denotes that the wave is absorbed predominantly
only by those electrons that move in phase with the
wave. All the electrons that take part in the kinetic
processes should have an energy on the order of the
Fermi energy, ‘‘smeared out’’ by an amount T, and on
the other hand, the energy should satisfy the condition
(3.27). These two rules permit the wave vector kg to
assume only values corresponding to the condition

€n,ky ~ e%‘, accurate to the value of the thermal smear-
ing of the Fermi level. When the magnetic field changes,
the position of the allowed intervals of k; changes, and
the effective number of electrons moving in phase with
the wave also changes. This leads to corresponding os-
cillations in the conductivity of the medium. When the
system contains electrons moving in a definite direction,
the oscillations of absorption'™ give rise to analogous
oscillations of wave amplification. As above, the prob-
lem reduces to finding the complex conductivity tensor
of the medium under the Landau quantization conditions
in the presence of directional motion of the electrons
(for details see [*7%17),

g) Dlelectric Constant of a Medium in the Presence of
Impurity Centers

Experimental investigations of the amplification and
generation of acoustic waves in piezosemiconductors
have shown that the agreement between theory and ex-
periment can be greatly improved by taking into account
in the analysis the processes of adhesion and capture of
carriers from the conduction bands by various impurity
centers.® %7 We shall therefore consider below the
problem of calculating the longitudinal dielectric con-
stant of a medium in the presence of impurity centers.
Depending on the number and on the character of im-
purity centers, many various cases are possible here,
and an analysis of all these cases would take up much

PUSTOVOIT

space. We therefore consider below only a model prob-
lem for a neutral impurity center, the levels of which
lie in the forbidden band at a depth €;; their concentra-
tion is N;. In the hydrodynamic model, the kinetic equa-
tion that determine the processes of ejection and cap-
ture of the electrons, will obviously be'®*!

2] 1 4. . ,

a—?—f*jdl"le‘—”gc—rcfca (3.292)

g 1 ...

%_?dlvh,:;gp—-rv—}—c, (3.29b)
one =ro—Tp 8o —ger diveE=4ne(p—n—un,), (3.29c)

[

where n is the electron density in the conduction band,
p is the hole density, and n¢ is the concentration of the
imperfections that capture the electron. The first term
on the right sides of (3.292) and (3.29b) describe the
thermal excitation of the captured carriers, with
Ep—E. £
Go=(Ne—n) Nov:Sye LTL, ge=mNSe T,

(3.30)

where Sp is the cross section for the capture of a free
hole by a center occupied by an electron, Sy is the cross
section for the capture of a free electron by an empty
impurity center, and N¢ and Ny are the effective densi-
ties of states in the conduction and valence bands, re-
spectively. The terms

(3.31)

take into account the decrease of the number of free
carriers as a result of their capture by the imperfec-
tions, G is the density of the carriers generated by the
light per unit time,

re=n(N;—n)vSs, ro=pnuwsS,

je = — eu,nE — eD,Vn, jp = euppE 5- eDpVp —

are respectively the electron and hole currents (iun, up
—mobilities, Dn, Dp—diffusion constants), and €g is the
width of the forbidden band.

To calculate €;(w, q), as above, it is necessary to
find the response of the system, i.e., the current pro-
duced by the action of the alternating field of the wave
(1.1) on the system. Linearizing the system (3.29) with
respect to the small perturbation due to the wave (1.1),
and eliminating the alternating density of the electrons
at the impurity centers, we obtain

o(d+-yn.—Lj=0, (3.32)
where the parameter £, which characterizes the influ-
ence of the impurity centers, is equal to

iw4vp+ Ny (I—fo) tSp

) [N (1—J) 68 51 1] T iavy ’ (3.33)

E=fowSnN; (ot~

here
St Eg_at

-t Ny—n]
v, =08, (ng+Nee T),

vp=0Sp(Po-Noe T ), fo= ,

and the hole mobility was set equal to zero for simplic-
ity. The physical meaning of the quantities vp, vp, and
NgvSnio, n{;’vsp can be readily established. It is easy to
see that as a result of linearization of the system (3.29),
in the general case there appear four characteristic dy-
namic times of the system: 7, = u;{ is the time of ejec-
tion of the electron from the impurity center, 7,= Nif,vSy
the time of capture of electron by center, 7, = n{’vSp the
time of capture of hole by center, and 7, = uﬁ‘ the time
of thermal ejection of hole from center into the valence
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band. It is important that these times depend both on the
electron density in the conduction band and on the tem-
perature of the system.

The equilibrium values of the concentrations n,, po,
n{ are determined by the system (3.29), if the left sides
of the equations are set equal to zero. From these equa-
tions we can determine the explicit form of the depen-
dence of the concentrations ng, p,, and ng on the quantity
G, which is proportional to the illumination of the sam-
ple.

From (3.32) and from the definition of the current we
can easily obtain a general expression for the conduc-
tivity of the medium.

ool -Zi
— Qg —ig¥dt "

(3.34)

a0, ) =Ty

It follows from (3.33) and (3.34) that the influence of
the impurity centers strongly changes the response of
the system to the variable field of the wave. It is seen
that the condition under which the real part of the con-
ductivity becomes negative and consequently amplifica-
tion is possible in the system, reduces to the Cerenkov
condition, in which, however, the carrier drift velocity
v = ueff(w,...)Eq is determined in terms of a certain
effected mobility, that depends in a rather complicated
manner on the presence of the impurity centers. As a
rule, peff < U, and therefore the threshold value of the
electric field, at which amplification becomes possible
in the system, is appreciably increased. It is also im-
portant that this threshold value of the electric field now
turns out to depend on the electron density both in the
conduction band and at the impurity centers. Physically
this process is connected with the fact that if the elec-
tron has time to interact with the impurity center during
a time of the order of the period of the wave (for exam-
ple, it can be captured and be ejected, or recombined),
then it loses the directional part of the momentum ob-
tained from the field, and thus the average directional
velocity of the electrons decreases.

The presence of impurity centers leads also to a
change of the effective conductivity of the medium, due
to the redistribution of the bound charges among the
impurity centers that capture them; this in turn leads
to a decrease of the amplification in the system.

We have considered before a model of a neutral im-
purity center with one level, characterized by four dy-
namic times; the model of a charged center with two
characteristic times is considered in %% (see
also [67,33,39])_

4. AMPLIFICATION OF SOUND WAVES

h) General Remarks. Amplification of Sound Waves in
Piezosemiconductors

We have obtained above dispersion equations de-
scribing the propagation of sound waves in conducting
bodies with different character of the interaction be-
tween the lattice vibrations and the electrons or holes.
The additional terms that appeared in the dispersion
equation as a result of allowance for interaction with
the carriers contain the longitudinal electric constant
of the plasma medium. Expressions for the complex
conductivity of the medium in the presence of drift were
then obtained in Ch. 3 for different limiting cases,

wi
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namely low and high frequencies near the geometric

and cyclotron resonances in a quantizing magnetic field
in the presence of impurity centers. It is now clear that
to investigate the character of the propagation of the
sound waves, their damping and amplification, the change
of the phase velocity, etc., it suffices to substitute the
obtained expressions for ¢ (w, d) in the dispersion
equations. The resultant number of possibilities, mean-
ing formulas, will then be quite large, and an investiga-
tion of all of them would require much space. Taking
this circumstance into account, and also the fact that
such an analysis entails no difficulty and the reader

can successfully perform it independently, we confine
ourselves below to a consideration of only a few very
general cases, which apparently are simplest to obtain
in experiments.

The first to observe the effect of amplification of
ultrasonic waves as a result of supersonic motion of
electrons in CdS piezosemiconducting crystals were
Hutson, McFee, and White.'™* CdS crystals are per-
haps the most suitable material for the investigation
of the amplification effect, for besides having a large
piezoeifect (approximately ten times larger than quartz)
they are also photosensitive, so that by varying the il-
lumination of the crystal it is possible to vary the car-
rier density in a sufficiently wide range (by approxi-
mately 10°-10° times for CdS). In the experiments, the
amplification in CdS was investigated at frequencies up
to 1000 MHz, corresponding to the region gl <« 1. There-
fore the expression for the growth increment is obtained
from the dispersion equation (2.11) by substituting in the
latter the longitudinal conductivity of the medium, de-
fined by formula (3.3):[72%26]

JR—
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(4.1)

here ¢, is the constant of electromechanical coupling
for transverse waves, vg; is the velocity of the trans-
verse waves, and rp is the Debye radius. Consequently,
when the electron drift velocity exceeds the sound ve-
locity, the electron absorption gives way to amplifica-
tion; if this amplification exceeds the lattice absorption
(see formula (2.9)), then the transmitted elastic wave
will grow.

The change of the phase velocity of the sound waves
is determined in similar fashion

. ! 2 v 2
o = : (4.2)
ol =Ty C1Eo s (1 vd \2 . wit? i s . .
(135 ) + S ey

For CdS crystals, the relative changes in the velocity
can reach 1%."*

The experimental setup of Hutson et al.'” for the ob-
servation of electronic amplification in CdS is shown in
Fig. 4. The sound wave was fed through an acoustic
guide of fused quartz to the CdS crystal, to which a con-
stant electric field was applied with the aid of a quartz
converter. The resultant signal was registered by a

*The possibility of amplification of ultrasonic waves and semi-
conductors was pointed out even earlier (see, for example, [°%°1], and
also [%1).
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il i

FIG. 4. Diagram of setup used in experiments on the amplification
of ultrasound [7?%%8]. 1—Piezosemiconductor crystal, a, a'—electrodes
for application of the drift field, 2—sound guide for fused quartz, 3, 3'—
quartz converters for the radiation and reception of sound waves.

second quartz converter. The orientation of the crystal
was chosen such that the fransverse elastic wave was
accompanied by a longitudinal electric field. The ex-
perimentally obtained dependence of the amplitude of
the arriving sound pulse on the applied external field
is shown in Fig. 5. The reversal of the sign of the elec-
tronic absorption occurred in a field of 700 V/cm,
amounting to a mobility of 285 cmz/V-sec for a trans-
verse sound wave (the Hall mobility in CdS is of the
order of 300 cm?V-sec'®), i.e., in splendid agreement
with the theory. As a result of the experiment with a
crystal 7 mm long, a gain of 18 dB was obtained at a
frequency of 15 MHz, and 38 dB at 45 MHz. The possi-
bility of technical application of the amplification of
ultrasound in piezosemiconductors has greatly stimu-
lated the experimental investigations in this region.
[e3-1111 The results show that the theory in the main
describes the experiment quite well; Fig. 6, for ex-
ample, shows for comparison two plots, one theoretical
based on formula (4.1), and the other experimental.®**
The increment of the gain (4.1) as a function of the
frequency reaches a maximum at w = wgvg/V €, VT, i.€.,
at a Debye screening radius of the order of the wave-
length.® The largest values of the gain increment
(for all other optimal conditions) is 1/2¢%we/V € vy
=1/2¢%w/vg1. For CdS crystals, for example, 2
=0.018, vg, ~ 1.8 x10° cm/sec (5 = 0.02, vg) =~ 4.3
x10° cm/sec; see [%%%11%113)y and therefore the max-
imum possible gain at 45 MHz amounts to about 130
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FIG. 5. Experimentally observed [7] dependence of the gain on the
drift field (CdS crystal length 7 mm).

*In comparing theory with experiment, it is necessary to bear in
mind the fact that in CdS crystals there is an appreciable number of
“adhesion and capture’ centers for carriers, and these greatly influence
the kinetics of the electrons, and consequently influence the gain. If
account is taken of the influence of these centers, then the agreement
between theory and experiment is greatly improved [82:3%102)
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FIG. 6. Dependence of gain (damping) of transverse ultrasonic waves
on the ratio of the drift velocity to the sound velocity [*®). Solid curve—
theoretical, dashed—experimental (CdS crystal, length 8 mm, w = 27 X
16.5 MHc).

dB/cm. Investigations have shown, however, that a
serious obstacle to an extensive use of this effect are
the appreciable losses to the conversion of the electro-
magnetic oscillations into acoustic oscillations, and in
addition, the appreciable level of the acoustic noise re-
sulting from the spontaneous generation of phonons. ™**
Nonetheless, Chubachi, Wada, and Kikuchi, "**® using
barrier-layer converters™'*~*'™ (both for the conver-
sion of electric oscillations into acoustic ones and as
electrodes for the application of the constant drift field),
obtained a net gain in a CdS crystal.*

Most piezosemiconductors, including cadmium sul-
fide, are characterized by very high carrier collision
frequencies (at any rate at room temperature'*%!%)
and therefore it is very difficult to obtain in the experi-
ments the conditions Q7 > 1 and @& ~ w, under which cy-
clotron resonance is possible.i’ Nonetheless, at helinm
temperatures, as shown by experiments on cyclotron
resonance with electromagnetic waves, %% the re-
laxation time 7 in CdS turns out to be of the order of
10™" sec, and therefore the condition ! 5> 1 (the free
path in CdS under these conditions is of the order of
2x107% cm) is satisfied at frequencies w >> 10'° sec™?,
which is perfectly feasible in experiments with sound
waves. We therefore present also the electronic part
of the gain increment in the region ql > 1, when the
conductivity is determined by formula (3.16):

g0 (124 rp)3

(1) o () (1+50)
where rp = VF/we. Expression (4.3) has been derived
for a longitudinal wave, and therefore vg is the veloc-
ity of the longitudinal wave. If the electron gas is not
degenerate, then the gain increment is obtained from
(4.3) by making the substitution vy — v3v. A charac-
teristic feature of expression (4.3) is the fact that it
does not depend on the relaxation time 7. The last term

(4.3)

*The temperature dependences of the gain and of the resistance of
the sample, measured also in ['®], from room temperature up to 380°
C, have confirmed the prediction made in [**] —the damping of acoustic
waves increases with increasing temperature (see also [*?]). The gap
energy obtained from these measurements for CdS (2.30 eV) agrees well
with the optical data (2.36 eV).

1 Cyclotron resonance in absorption of electromagnetic waves in CdS
was realized at helium temperatures in [12%!2!], The electromagnetic-
wave frequency was about 101°-10'! Hz. Since generation and reception
of acoustic waves of such frequencies were also realized experimentally
{122,231 | cyclotron resonance in CdS at hypersonic frequencies is thus
apparently feasible in principle.
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in the denominator of (4.3) is always larger than the
first, and therefore the dependence of the increment on
the drift velocity represents an almost straight line:
the gain increases linearly with increasing velocity of
the electron stream.

We now compare the gain increments in piezosemi-
conductors in the regions q/ <« 1 and ql >> 1. Since ex-
pressions (4.1) and (4.3) depend differently both on the
frequency and on the drift velocity, such a comparison
is best carried out at the maximum increments values
attainable at a fixed frequency, with all other param-
eters (carrier density, drift velocity) already at their
optimal values. Putting in (4.1) vq = vg [1 + QwiT/we,)],
which corresponds to the optimal values, and similarly
in (4.3), we obtain for the ratio of the increments in the
nondegenerate case

maxlmqq,«1 61 vy 1
= B By e v G0t (4.4)

Y= hax Im Qgis1 ~

where in the case of (4.3) it is assumed that |1 - (vq/vs)i
~ 1. For crystals of the CdS and CdSe type at room tem-
peratures we have vr/vg ~ 10%, 7~ 107°-10"" sec™,
and wy ~ 3 X10°n, sec”!, so that for all reasonable val-
ues of the carrier densities we have y > 1, and conse-
quently crystals with ql < 1 are more effective for am-
plification. As already mentioned, the difference in gain
between the regions ql < 1 and ql > 1 is connected with
the difference between the amplification mechanisms: in
the region gl <« 1 the wave is amplified by the space
charge drifting with supersonic velocity, and in the re-
gion gl > 1 it is amplified by individual ‘‘almost free’’
electrons, and in this sense this case corresponds more
closely to the mechanism of two-stream instability in a
gas-discharge plasma.™® ™%

It follows from (4.4) that the gain in the region ql
< 1 may greatly increase with increasing collision
frequency v = 77! compared with the gain in the region
ql > 1. In this connection, notice should be taken of
one feature of the amplification of sound waves in a
magnetic field,"*"'**) When no conditions for any reso-
nances have been satisfied as yet. Whereas in the ab-
sence of a magnetic field the gain determined by (4.3)
is small, with increasing magnetic field, when Q7 > 1,
the effective carrier collision frequency increases and
it is possible to go over gradually into the region qleff
~ ql(R7)"? < 1, where the gain increment is large. As
shown in Sec. g, the longitudinal conductivity of the me-
dium in the region where 27 > 1 and ql < 1 reduces to
formula (3.3), but with the formal substitution v — Q%v.
This means that the gain increment will be determined
by formula (4.1), so that we obtain in lieu of (4.4)

(4.5)

At the same time, of course, the threshold value of the
electric field in which the amplification takes place also
increases (see also 2%,

Experimental investigations of acoustic waves in
piezosemiconducting InSb crystals* have shown that in
a strong magnetic field the gain is well described by

Ve =Y (Q‘r)2 > Y-

*The piezoelectric constant for InSb was first measured in [**’] and
was found to be lejql = 0.06 + 0.005 C/m?. Accordingly, the electro-
mechanical coupling constant for longitudinal waves along the {111}
direction is 7 = 3.6 X 107
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formula (4.1), with the substitutions vq — cE/H and
v — Qz.uu]

So far, no one has succeeded in observing experimen-
tally geometrical and cyclotron resonances or quantum
oscillations accompanying amplification in piezosemi-
conductors. However, the use of piezosemiconducting
crystals as InSb, GaAs, Te, and high-efficiency film
hypersound converters,?~**! which operate also at
low temperatures, down to helium temperatures, %!
gives grounds for hoping that these experiments will be
realized. We do not present here the corresponding for-
mulas for the gain and for the change in phase velocity,
noting that they can be readily derived from expressions
(2.11), (3.24), and (2.25).

The presence of impurity centers, especially in such
piezosemiconductors as CdS and CdSe, greatly influ-
ences the character of the amplification of the ultra-
sonic waves in these crystals. To take them into account
it is necessary to substitute in the dispersion equation
(2.11) the value of the dielectric tensor obtained from
(3.34). Of course, for a more complicated model with
two or three types of impurity centers, the dielectric
constant of the medium is a more complicated function.
It is essential that the impurity centers lead, as a rule,
to a decrease of the effective mobility of the carriers,
and therefore the critical electric field in which ampli-
fication is possible increases sharply, and in some
cases, especially at low frequencies, when w < vn, vp
(see (3.33) and (3.34)) amplification is practically im-
possible. This is physically connected with the fact that
within a time on the order of the period of the wave the
carrier has time to be captured by the impurity center
or to recombine with the hole.

A comparison of the results of the experiments on
amplification in CdS and CdSe with the simplest models
of impurity centers, carried out in [9%102710%,109,116,131}
has shown that allowance for the processes of adhesion
or capture even within the framework of the simplest
models with one type of impurity center, leads to better
agreement between theory and experiment.*

We note that in comparing the theory of the amplifi-
cation with the experimental results we have used
throughout the model of an isotropic solid, although, on
the other hand, such crystals as CdS, CdSe, and ZnO
are elastically anisotropic. As shown recently by
Y. Kikuchi et al.,!**! allowance for the anisotropy of
the elastic and piezoelectric properties leads to the
conclusion that the most favorable direction for the
amplification of sound waves in CdS is not perpendicu-
lar to the C4 axis, but at an approximate angle 7/86.

i) Acoustoelectric Effect in Piezosemiconductors

In the acoustoelectric effect, when a wave passes

*In this connection we point out one circumstance. The presence of
impurity centers for photosensitive CdS and CdSe centers sometimes
leads to the phenomenon of temperature quenching of photoconduc-
tivity [¥%], and in a strong electric field, when the Joule heating is ap-
preciable, it makes the electric field distribution and the sample carrier
density inhomogeneous ['*?]. Under these conditions, the picture of the
amplification already changes appreciably, since the initially homo-
geneous sample, owing to the presence of impurity centers, becomes
inhomogeneous. Moreover, it can be shown ['33] that under certain
conditions this leads to the possibility of amplification of acoustic waves
in the continuous regime [1°%].
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through a crystal and drags electrons with it, part of
the wave momentum is transferred to the electrons,
so that a potential difference is produced at the termi-
nals of an open-circuited semiconductor; if the termi-
nals of the semiconductor are joined by an ordinary
conductor, then an acoustoelectric current is produced
in the circuit.* We shall consider this effect only in
piezoelectric semiconductors, where it can reach ap-
preciable magnitudes.

The expression for the acoustoelectric current in a
piezosemiconductor can be obtained by calculating the
average force exerted on the electrons by the sound
wave. It is not at all essential to specify concretely the
very state of the electron-hole plasma of the carriers,
and it suffices to assume that the medium (lattice plus
carriers) is described by a known dielectric tensor of
the medium.'™*® Such an approach has the advantage
that it makes it possible to describe the phenomenon
in many cases for which the form of the tensor € (w,q)
is known (see Ch. 3).

If an acoustic wave propagates through the crystal,
then the piezoeffect gives rise to an electric field E(r, t)
and the force acting on the electron is

f(r, ty= —eE(r, i). (4.8)

Under the influence of the alternating force f(r,t), the
electron density in the conduction band will vary from
point to point, and the average force acting on the elec-
trons in a unit volume will be

(F(x, )= (r, t)n(r, 1)) 4.7)

here n(r,t) is the electron density, and the angle brack-
ets (...) denote averaging over time and space in
scales greatly exceeding the period and the wavelength,
respectively. Using the fact that the electric field pro-
duced in the sound wave is potential and that E(r, t)

= —Vo (r, t), where ¢(r, t) is a scalar potential, and
using the relations

4By, migy
¢ (o, Q)Imul(mv q) (4.8)
and
n_ (0, 0)= 5o ¢*0 (0, @)+ 43B:, ngignie (@, q), (4.9)

we obtain for the force F (x, t), after simple transfor-
mation, 1%

(Fy=08 (235 )Im (), (4.10)

&y (@, q)
where S = pvgw?uj /2 is the acoustic-energy flux density
and u, is the amplitude of the sound wave (in the general
case it is a slow function of the coordinates and of the
time). Obviously, the dc current flowing through a unit
area of the short-circuited semiconductor will be

m () -

where . is the mobility. Comparing (4.11) with the ex-
pression for the electron damping or amplification of
the sound waves in piezosemiconductors (4.1), we see
that Weinreich’s relation™ is satisfied independently

(4.11)

T* T (F)= — St

*The idea of such an effect was apparently first advanced by Par-
menter (3],

PUsTOVOIT

on the form of the tensor of the dielectric constant of
the medium.*

If the semiconducting crystal is open-circuited, then
the acoustic emf will obviously be

I

S (Fyde= —- Se Yel

engls Yol T &

1

eng

£3C

(1 —e Yat9h (4,12)
Ll

where ye) = ¢%q Im (¢, /€, (w, q)) and « are respectively

the plasma and lattice components of the sound-wave

damping, and ! is the crystal length. In the derivation

of (4.12) we used the fact that S(x) = Sgexp (~(yel + @)x),

where S, is the acoustic-energy flux at the point x = 0.

When a directed flux of carriers is present in the
semiconductor, at a drift velocity exceeding the phase
velocity of the sound wave, ye] becomes negative and
consequently the sign of the acoustic emf is reversed.
It is important that such a change of the sign of the
acoustic emf does not depend on the magnitude of the
viscous absorption of the sound waves in the crystals,
and from this point of view an experimental investiga-
tion of the acoustoelectric effect is preferable to an
investigation of the gain, for it makes it possible, in-
dependently of the viscous absorption of the sound, to
determine the threshold of amplification of the sound
waves with sufficient accuracy.

An investigation of the dependence of the acoustic
emf on the drift field in CdSe crystals has shown that
the theory, in the main, describes the experiment
well.'*® The acoustoelectric effect is presently under
thorough experimental investigation by many authors,
[32’""“’1?:11 and turns out to be an even effect in ZnS

’

crystals.

j) Amplification in Nonpiezoelectric Semiconductors

We now consider the amplification of elastic waves
in semiconductors and semimetals in which there is no
piezoeffect.i The interaction of the sound waves with
the electrons can be realized in this case either via the
deformation potential, or if the lattice is charged, via
the Coulomb field accompanying the longitudinal wave
in such a lattice.

Let us start the analysis with the simplest case,
when there is one type of carrier and the interaction
with the acoustic wave is via the deformation potential.
The gain increment is then determined from expression
(2.19), where cM)(w, Q) must be set equal to zero. If
al < 1 and there is no magnetic field, then the electronic

*Nonetheless, this still does not mean that the Weinreich relation
has a universal character (see, for exampie [137]).

T The possibility of amplifying ultrasound in semiconductors and
semimetals via direct interaction between the electrons and the phonons
became immediately obvious following the experimental work of Esaki
[143:1%] who observed bending of the current-voltage characteristic in
bismuth in crossed electric and magnetic fields. Although the generation
of sound waves was not observed directly in Esaki’s experiment ['5%],
nevertheless the fact that the current oscillated at a frequency approxi-
mately equal to the natural frequency of the oscillations of the sample
and occuring only when the Cerenkov condition vq > vg was satisfied,
it was possible to deduce that acoustic oscillations were indeed generated
in the system [1**]. The theoretical papers [%:2%:96,74:75,136"148] that fol-
lowed ['**] indeed have demonstrated the possibility of amplification
of acoustic waves by a supersonec carrier flux.
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conductivity is determined by formula (3.3) and conse-
quently '

“ (1—5)

Sp2 B 2 ir2 .
puge €2 (1_L_d) + “’_0:‘ (1 +q2ri)e
s )

2nw2A%ey

(4.13)

Img= —

As in the case of a piezosemiconductor, the largest gain
is reached when the drift velocity is

ve=v, (1= 85 (14 ) (4.14)
where the upper sign corresponds to the largest gain
and the lower sign to the largest damping. At this value
of the drift, expression (4.13) becomes

A2p3g, 1

4eprd A ¥y

Img=+ (4.15)
In semiconductors and semimetals, the electron-phonon
interaction constant is usually of the order of several
electron volts, p ~ 5 g/cm®, vg ~ 2 x10° cm/sec, and
€, ~ 10. At these values of the parameters, assuming
qrp ~ 1, we get from (4.15)that Inq~ 1l cm ™ ata
frequency w/27 ~ 5 x10° Hz. If we compare the gain
due to the deformation potential and the gain due to the
piezoelectric effect, then the ratio of the increments,

in the case when the drift satisfies condition (4.14), is

[el-phon]  w2A%,

Ipiezo] Eﬁpv;ez .

Thus, the gain due to the electron phonon interaction is
effective only at high frequencies. For example, when
A =3x10"" erg, vg = 5x10° ecm/sec, ¢} ~ 0.02, p
~ 5 g/cm?, and €, ~ 10, the gains in piezosemiconductors
and impurity semiconductors or semimetals become
comparable at a frequency w ~ 3 X10* sec™'. At the
same frequency, the largest value of the increment
(4.15) is approximately 10° cm™", corresponding to a
gain of 8.3 x10° dB/cm.

At high frequencies, when ql > 1, the conductivity
is determined by expression (3.16), and we get for the
gain increment'®*!

2 ,__lii)
®3A %€ (rp) (1 Vg

T 12e2p0% _va\%, 4 (vr)\? 2
(1=55) e () (1 5rem)

Ug

Img =

. (4.16)

Just as in piezosemiconductors (see (4.3)), expression
(4.16) does not depend on the electron relaxation time 7.
Direct amplification of hypersonic waves in semi-
conductors was effected by Pomerantz'™ in n-Ge single
crystals doped with arsenic. If we now attempt to com-~

pare the experimental results with the predictions of
the theory, we must bear in mind the following very im-
portant circumstance. Expressions (4.13) and (4.16) de-
scribe amplification in simple semiconductors, where
the energy of the electrons as a function of the quasi-
momentum has only one simple minimum located at the
center of the first Brillouin zone. Therefore the acous-
tic wave propagating in such a crystal will be accompa-
nied by the appearance of space charge. A manifestation
of this effect is the fact that at large carrier densities
the increments (4.13) and (4.16) reach a maximum and
then begin to decrease sharply in proportion to 1/n,.
The situation is entirely different in the so-called
multivalley semiconductors and semimetals, where the
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energy of the electron as a function of its quasimomen-
tum has several minima located at different points of
the Brillouin zone. The direction of propagation of the
wave and the polarization vector can be chosen such

that the acoustic wave is not accompanied by the appear-
ance of space charge. The total compensation of the
space charge will occur when the shift of the energy of
the electrons in one group of minima is equal and oppo-
site in sign to the change of the energy of the electrons
in the other. Such a case is precisely realized in n-Ge
when the transverse sound wave propagates in the (100)
direction with the polarization along the {010) direction.
The attenuation (meaning also the gain) of such a sound
wave increases monotonically with increasing concen-
tration, ®**" and consequently, in spite of the weak in-
teraction via the deformation potential, the gain can
reach an appreciable value. The gain increment for the
transverse wave, when total compensation of the space
charge takes place, is equal to™*

wiAe (0197 (

T Sapdd TTE Galv P R (4.17)

Img= - %) ;
here A is the deformation potential for the transverse
wave, TR is the effective relaxation time with allowance
for the intervalley scattering (TR = 7i, + a’°D? where
Tiv is the time of intervalley scattering), and D is the
diffusion constant. The values for 7R as functions of
the carrier density n; and the temperature T are known
for germanium from the acoustoelectric effect.**%
Using (4.10), we can easily calculate that for germa-
nium (no = 10*° em®, w = 10" sec, T = 10" sec, T
= 10°K, and vq = 3vg), the gain amounts to approxi-
mately 800 dB/cm. Nonetheless, experiment™* yielded
a gain of 20 dB/cm.* Such a discrepancy between theory
and experiment is apparently connected with the fact that
such current densities in the sample are accompanied
by impact ionization processes, the electron plasma be-
comes strongly heated, and therefore the true values of
the parameters in (4.17) are known. It is also possible
that the space charge is not completely cancelled out in
the wave, and this greatly decreases the gain increment.
Let us examine now amplification in intrinsic semi-
conductors and semimetals, where the dispersion equa-
tion for the distribution of the acoustic waves is of the
form (2.18). For a low-frequency wave, the plasma part
of the attenuation (gain), due to either electrons or holes,
is determined by (2.20a). K there is no magnetic field,
and there is only an electric field leading to supersonic
motion of one of the types of carrier, say the electrons,
then the amplification of the sound wave can take place
only in exceptional cases, when the electronic part of the
amplification exceeds the attenuation introduced by the
holes. In order for amplification to take place in the

*The experiment was performed in the following manner: a current
pulse of the order of 20 A was applied to a germanium sample oriented
in the (100 direction (sometimes in the {110} direction), with length
1 cm and approximate area 0.01 cm?. The converters used were ferro-
magnetic films deposited on polished faces of the sample; in a constant
magnetic field, owing to the magnetostriction effect, these films absorbed
and emitted phonons at a frequency w/2m =9 X 10° Hz. The experiment
was performed at liquid-helium temperature. Besides amplification of
the pulse traveling through the sample, the experiment revealed also
generation of phonons (acoustic noise).
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system both as a result of the electronic and as a result
of the hole components of the plasma, it is necessary to
apply crossed electric and magnetic fields in such a
way that the electrons and holes drift in the propagation
direction of the sound wave. In this case, the magnetic
field should be strong and 7 > 1 both for electrons
and holes. We shall assume further that the conditions
for the quantization of the electron orbits by the mag-
netic field are not satisfied, i.e., T >> iQ(®), aQth)
(here, as everywhere, the indices e and h denote quan-
tities pertaining to electrons or holes, respectively).

If now qi(€) and q/{h) « 1, then the electron and hole
conductivities are determined by expression (3.3),
where vq = cEq XxH/H?, and the collision frequency v
should be taken to mean the effective collision frequency,
which depends on the magnetic field:

£ 0
Veff = Q(E)T(E)1

(1) 2
Vet = QmTen-

Substituting the electron and hole conductivities in
(2.28), we obtain the plasma part of the damping (gain)
of an ultrasonic wave propagating in an intrinsic semi-
conductor or semimetal:

Ud
{-—2d
oo %

o +of (1 td )24-[ 22Pp mgymy ¢ 72
vg b L3we2H? (m(e)f(h)"*"m(h)re)]

(4.18)

where Py is the Fermi momentum, which is the same
for electrons as for holes if the concentrations are
equal. Expression (4.18) describes the amplification in
the region of low frequencies where, besides the condi-
tion q/ « 1, it is also necessary to satisfy the require-
ments | 470{®)(w, Q) > we, and I41mf|h)(w, q)| > we,.
Formula (4.18) is valid for semiconductors and semi-
metals with a Fermi surface that does not differ too
much from spherical, and therefore, naturally describes
the amplification and attenuation of longitudinal waves
only.

The amplification of sound waves in crossed electric
and magnetic fields was investigated experimentally by
Toxen and Tansal'*® (see also ™**'%*%!1) on bismuth
single crystals. A transverse acoustic wave with fre-
quency w/27 = 15 MHz propagated along the bisector
axis, the electric field was applied in the binary direc-
tion, and the magnetic field changed in the bisector
plane from the trigonal axis to the binary axis. The
experimentally observed gain (approximately 14 dB/cm)
occurred at a drift velocity vq = cEq/H > 1.4 X10°
cm/sec, which corresponds precisely to the velocity
of the transverse waves in bismuth. In addition to the
amplification of the transmitted sound wave, generation
of ‘‘acoustic noise’’ was also observed, thus confirming
the statement made by Esaki''**! that the bending of the
current-voltage characteristic is connected with the gen-
eration of acoustic phonons in the system.™**** Un-
fortunately, it is difficult to carry out a more complete
comparison of theory with experiment, for the following
reasons. First, it is easy to show that the transverse
wave propagating along the bisector axis in bismuth
should not be accompanied by the appearance of space
charge, and therefore formula (4.18) is not applicable

WAy Agy)?

Img== — 2e2pr}
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directly to this case. The situation here is almost anal-
ogous to that with germanium,"®® but is further compli-
cated by the presence of a strong magnetic field and by
the presence of two types of carriers. Second, the ex-
periment itself (in the opinion of its authors) requires
additional verification and more thorough and deep in-
vestigations.

Let us discuss now resonant phenomena that can oc-
cur in the amplification of sound waves in semiconduc-

tors and semimetals situated in a magnetic field. "™
77,19)

If conditions (3.23) are satisfied, a geometrical res-
onance in the amplification of the waves is possible.
Corresponding expressions for the gain increments
can be obtained from (2.19) and (2.29), in which the
values of the longitudinal conductivity of the medium
(3.34) are substituted under conditions of geometrical
resonance.

Cyclotron resonance occurs when the conditions
(3.26) are satisfied, and in this case the conductivity is
expressed by formula (3.25). For example, for semicon-
ductors and semimetals, when the interaction is via the
deformation potential and there are two types of carriers
with identical parameters, we obtain from (2.20) and
(3.26)

(67,681

__0wjA?
12pe2evf, (

(grp)?
5 )

Tmg= zRecth (I2) . (4.19)
It is easy to see that this expression reverses sign when
the Cerenkov-radiation condition is reversed, i.e., when
vd > vs. As already noted above, resonance takes place
when nw’ = Q, where w’ = w[1 - (vd/vg)] is the wave
frequency modified by the Doppler effect. This means,
in particular, that the gain as a function of the drift field
also changes in resonant manner.

The difficulties encountered in the experimental in-
vestigation of these resonances in the amplification re-
gime are quite appreciable, and have not yet been over-
come. As to such resonances in the attenuation of sound
waves, they were investigated many times experimen-
tally in various substances.!***** If the inequalities T
< hQ < ezF are satisfied, then conditions are created
for the observation of quantum oscillations in the am-
plification of sound waves."2""'*! The gain increment
can be obtained in this case from formulas (2.12) and
(2.29) by substituting in them the expression for the
longitudinal conductivity of the medium under the Lan-
dau quantization conditions, i.e., (3.40). We shall not
present these cumbersome formulas, and confine our-
selves only to general remarks. I the electron drift
exceeds the velocity of the sound wave, then in place
of the oscillations in the damping there appear analo-
gous oscillations in the amplification of the sound waves.
In spite of the fact that the amplitude of the oscillations
of the conductivity itself, i.e., Re o(w, q) can reach
appreciable magnitude, nonetheless the amplitude of the
oscillations in the gain (or damping) is most frequently
greatly reduced. This is connected with the fact that the
attenuation (or gain of ultrasound in semiconductors and
semimetals) is not directly proportional to the real part
of the conductivity, and is determined by more compli-
cated expressions (see (2.11), (2.19), (2.20), (2.29)). This
in turn is explained by the fact that in semiconductors
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and in semimetals with almost spherical Fermi surface
(these are the only ones considered here) the sound wave
is always accompanied by the appearance of space
charge.* On the other hand, if the equal-energy surface
is characterized by several minima, then the inter-
minima transitions for transverse waves with definite
polarization and along definite directions lead to cancel-
lation of the space charge. In this case the growth in-
crement (as was explained with a particular example,
see (4.17)) may turn out to be a monotonic function of
the carrier density. A rigorous analysis of this prob-
lem for the amplification of sound waves in the pres-
ence of a magnetic field and near the resonances has
not yet been performed. However, if the wave is longi-
tudinal, then regardless of the form of the equal-energy
surface, it will be accompanied by a space charge, and
consequently the formulas presented above qualitatively
describe the amplification and attenuation of the longi-
tudinal waves. This explains, in particular, the oscilla-
tions in the variation of the phase velocity of longitudinal
sound waves in a quantizing magnetic field,"**"! due to
oscillations of the real part of the conductivity.

Like the classical resonances, quantum oscillations
in the amplification of sound waves have not yet been
experimentally investigated, but damping oscillations
are presently under thorough study (see [%°71%%)),

If an appreciable intensification of the sound wave
occurs in a semiconducting or semimetal crystal, then
the increasing deformation field can greatly change the
characteristics of the electrons, particularly their spec-
trum.™® In a spatially-periodic quasistationary field of
acoustic waves, the continuous spectrum of the electron
energies breaks up into a number of alternating allowed
and forbidden bands (we are speaking here of the energy
of electron motion in the direction of wave propagation).
At sufficiently large sound-wave amplitude, the produced
forbidden bands may turn out to be impenetrable to the
electrons, and this greatly influences the character of
the behavior of the electron in electric and magnetic
(especially quantizing™®*!) fields. If the band is suffi-
ciently narrow, such that the electron upon acquiring
energy in the electron field, reaches the top of the band
without colliding a single time, then when reaching the
first forbidden band, the electron experiences Bragg re-
flection and begins to oscillate in the allowed band with
a frequency w =~ eEgr/H, where A is the wavelength of
the sound, which determines principally the width of the
forbidden band."® Under such conditions the system
should probably radiate electromagnetic waves inten-
sively.

The main difficulty encountered in an experimental
investigation of the amplification effects is the release
of large thermal power in the amplification region (for
example, in the experiment of Hutson, McFee, and
White'”? the released power was approximately 100
W/cm®). Calculation, however, shows that it is possible
to reduce greatly the power released in the volume of

*An exception is a semimetal with equal electron and hole densities
characterized by identical parameters 7(¢) = 7(py) and mge) = m(). In
this case the sound wave, even in semimetals with a spherical Fermi
surface, will not be accompanied by space charge, and consequently
Im q ~ Reo (w, q). The latter follows directly from formula (2.28) if
we put it in %) = o h),
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the semiconductor in the case of amplification of flex-
ural waves in a thin piezosemiconducting plate'** (see
also ™)) and in the case of amplification of unique sur-
face waves in a layered system consisting of a thin
piezoelectric layer and a layer of a high-mobility semi-
conductor "®*! (see also M%),

The amplification of acoustic waves in layered
structure has not yet been realized experimentally,
apparently owing to the technological difficulties in
constructing the layered system.* At the same time,
direct amplification of Rayleigh surface waves in CdS
crystals has already been realized'**”’ (see also ''®*).

5. GENERATION OF ACOUSTIC WAVES IN PIEZO-
SEMICONDUCTORS

k) Kinetic Equation for Phonons

Besides amplification of an acoustic signal intro-
duced into the semiconducting crystal from the outside,
it is also possible to generate spontaneous oscillations
(acoustic noise) under conditions when the carrier drift
velocity exceeds the phase velocity of the corresponding
wave. In the investigation of the qualitative picture of
the amplification we have already encountered the gen-
eration phenomenon: the second term in formula (1.12)
describes a noise flux that grows in space. We shall
now consider this phenomenon in greater detail as ap-
plied to piezosemiconductors, where the effects of gen-
eration of acoustic waves become most strongly mani~
fest.

To describe the effects of generation of acoustic
waves in piezosemiconductors, it is obviously necessary
to obtain an equation of the type (1.9), describing the
evolution of the mean-square fluctuating amplitude of
the acoustic noise for a non-equilibrium medium with
carrier drift. The method of obtaining such a ‘‘kinetic
equation’’ as applied to pure plasma problems is well
known %" and corresponds essentially to the deri-
vation of the sign of the conservation of energy in a
dispersive medium (see the book of Agranovich and
Ginzburg ™),

Let us consider again the equations of motion of the
lattice (2.1) and Maxwell’s equations (2.9) with accounts
taken also of the spontaneous (random) sources: spon-
taneous oscillations of elastic stresses oilsi)(r t) and
spontaneous oscillations of the electric current J(S)(I‘ t)

= D(S) r,t
411 ot (e, t):
p 1G]
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FTE R Aikim T: ~ Wirim ;7,—,:7——-[3: ir Irh == Ml’: . (5-1)
¢ )
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o=t — \ Sdsr O (r—1', t— &) E; (v, 1) —4nB,;, ;l~——l"L T
(5.2)

Going over to the wave-packet representation, i.e.,
arating two characteristic scales of variation of the
properties of the system, namely a small-scale variation
and a large-scale variation, we can show (for more de-
tails see ''”!) that the system (5.1) and (5.2) for the
spectral density of the phonon radiation energy

sep-

*Nevertheless, the possibility of interaction of an electron beam

with this surface wave has already been experimentally demonstrated.
[166] .
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and uj (w,Qq; r,t) = Z}uaeia (eia—unit vector of polariza-

o
tion), leads to the following ‘‘kinetic equation’’

L vt E 2% (0, ) = Q% (0, q); (5.5)
here vg is the group velocity of the waves, and
I {L; (0, q) e%e?
15 (0, q) = — o (O D e} (5.6)

4
vy Re {L;j (o, q) efed}

is the growth increment of the waves with polarization
o. The right side of (5.5) determines the spontaneous
generation of phonons by a system at a finite tempera-
ture. To find the explicit form of Q¥(w, q) it is neces-
sary to determine the correlation functions of the ran-
dom inductions and random elastic stresses, which en-
ter in the right sides of the system (5.1) and (5.2). As
shown in "™ (see also ""%), for nonequilibrium me-
dium with drift

20 TV (@ @)

Q% (0, @) ~ 08 (0—qv®) { et + o

1 o—p(qEg) (gt € 1),(5.7)

where

En—— (Mq26n+(m|—m)q 2;), %4 (0, @)
ygl(w, q) is the electronic part of the gain increment,
Te and T; are the temperatures of the electrons and of
the lattice respectively, and p) and w are the compo-
nents of the viscosity tensor in an elastically-isotropic
medium, describing respectively the damping of the
longitudinal and transverse waves.

Let us consider now the simplest solutions of (5.5).
In the absence of electron drift (Eq = 0), the medium is
in equilibrium and the dependence on the coordinates
and on the time disappears. Then the spectral density
of the radiation energy is

7’:0)

Ty
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) (5.8)

e., it is determined by the Planck radiation in thermo-
dynamic equilibrium, regardless of the form of the ten-
sor €jj(w, q). In the stationary case, when the electron
drift velocity is directed, say, along x, a solution for
the spectral density of the radiation energy, which in-
creases in space, integrated over the wave vectors q,

is:
n/2 A 290D (8)
S dfsin 0 (1?8— 5050 x)
7 2n
iy
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where v and v are the velocities of the longitudinal
and transverse acoustic waves respectively, 6 is the
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angle between the vectors q and Eg, and (D) and » (+)
are the damping decrements per unit length for the
longitudinal and transverse waves. In the derivation

of (5.9) it was assumed for simplicity that only Bx,xx

= 0, and the remaining B; kI = 0. The integration over
the wave vector q was carmed out with the aid of the
theory of residues, and the poles of €j*(w, q) were dis-
regarded since they usually correspond to strongly at-
tenuating solutions.* The last term in (5.9) corresponds
to the radiation of waves ‘‘from the boundary.’’ For a
free boundary, on which the surface forces are equal to
zero and the displacement vector is specified, this term
will equal

2002 | uy (2= 0) e~V @=0x,

(5.10)

which corresponds to amplification of the longitudinal
wave ‘‘from the boundary.’’

The kinetic equations for the phonons make it also
possible to determine the time of establishment of the
noise in the piezosemiconductor when the drift is
‘‘turned on.”’ K the initial spectral density of the noise
at t = 0 has the Planck distribution (5.8), then the solu-
tion of (5.5) is given by

Q% (o, “‘) (= @) L g™ 00!, f oty
& 0 q= v q Pa o8
e—v%w )+ LD (1o 0, 1>,
q)
© (5.11)

where £ is the limiting value of the energy density at
x = 0 (see formula (5.10)). We see that the character-
istic time of establishment of the stationary solution
(5.11) is determined by the time of travel of the pho-
nons from the boundary x = 0 to the point under con-
sideration.

1) Spectral and Angular Distribution of Generated Noise

Expression (5.9) describes the spectral density of the
generated noise in a crystal of length x. We see that the
first term in (5.9) describes the radiation of longitudinal
waves and the second the radiation of transverse waves.
Substituting in (5.9) the value of the dielectric tensor
(3.3) for the case ql < 1, we obtain the explicit form of
the expression for the spectral density of the noise,
which will be investigated below. On the other hand the
case ql > 1, and also effects in a magnetic field, can
be considered analogously.

1t is seen from (5.9) that the directivity pattern of
the phonon emission is a rather complicated picture,
which is quite difficult to obtain even for the simplest
case when only Bx xx * 0 (of course, without resorting
to numerical methods) We shall therefore consider be-
low only the case when | y(8)x/cos 6| >> 1, and then the
decisive factor in the angular dependence of the genera-
tion is the behavior of the exponential in formula (5.9).
The opposite case, when the exponential can be expanded
in a series, is quite simple to analyze, but less interest-
ing, since it corresponds to weak acoustic-noise radia-
tion energy fluxes.

*In crossed electric and magnetic fields acoustoplasma waves may

appear [*3], and in this case it is necessary to take into account the
poles of eit‘ (w, q).

.
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Let us consider first only longitudinal waves, when
Bx,xx * 0, and the remaining components of the piezo-
tensor are equal to zero. For crystals of the type CdS
and CdSe, the symmetry of which is Cgy, this corre-
sponds to the case when the electron drift velocity is
directed along the Cg axis. Then from the expression

YD (9 = 2%” ( ‘:)’Un
substituting formula (3.3) for ¢,(w, q) we see that gen-
eration is possible only inside the cone 8 < §,, where 8,
is the limiting angle. An investigation shows!'"® that the
limiting angle first increases with increasing drift ve-
locity of the carriers, and reaches a maximum, and then
begins to decrease, approaching zero, and consequently
at a certain drift velocity the generation stops. We em-
phasize that we are referring here to radiation at a cer-
tain fixed frequency, and therefore the vanishing of the
generation at a considered frequency still does not mean
that there is no generation at other frequencies.

Let us consider now the directivity pattern of the
emission of transverse waves (as before, only Bx,xx
= 0), for which the increment is given by

P (0) = ,Ul(r::u‘iC”Tsuﬁﬁcos"ﬁlm(—e‘t—_——) .(5.13)
\ El\( ,cose)

v

-+ Zjjcos® € Im (eoa“ (03, o cose))) . (5.12)

It is seen from (5.13) that the generation begins (y (1)(6)
= 0) at a carrier drift velocity slightly exceeding the
velocity of the transverse waves, and the radiation di-
rectivity patterns constitute two lobes. These lobes
first become broader with increasing drifts, and then
narrow down to a certain limiting angle, not equal to
the initial one, after which the generation vanishes. As
in the case of longitudinal waves, this behavior of the
generation cone for transverse waves is connected with
the decrease of the electronic growth increment with
increasing drift velocity.

Let us consider now the case when Bx xz (or B8x xy)
differs from zero, and all the remaining [31 k1 = 0. For
crystals of the type CdS, CdSe, or ZnO this corresponds
to a drift velocity direction perpendicular to the Cgq axis.
It is immediately evident that the symmetry of the radi-
ation disappears in this case, and an additional azimuthal
dependence appears, thus greatly complicating the direc-
tivity pattern of the radiation. As to the longitudinal
waves, the directivity pattern of the radiation at a fixed
azimuthal angle ¢ corresponds to the case of emission
of transverse waves at Sy xx * 0.

Let us stop now to discuss the behavior of the spec-
tral density of the radiation energy as a function of the
carrier drift velocity. It is clear that the character of
this dependence is determined by two factors: first, by
the change of the directivity pattern of the radiation,
and second, by the dependence of the increment itself
on the drift velocity. Since the directivity patterns of
the emission of the longitudinal and transverse waves
are different, the character of the €,,(Eg) dependence
will also be different for the longitudinal and transverse
waves. If the crystal is not too long, so that
| y(8)x/cos 6| < 1, then the exponential in (5.9) can be
expanded in a series, and then, neglecting for simplicity
the viscous absorption, we obtain for the transverse
waves
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where 0, is the limiting angle determining the genera-
tion cone, cos 8, = v,,/vq. It is seen from (5.14) that &,
as a function of the drift first increases, principally as
a result of the broadening of the integration limits, and
then decreases when the first term in the denominator
of (5.14) exceeds the last term. The spectrum of the
generated frequencies then first increases (as w — 0)
in proportion to w*, and near

mzvz (I4ayrh)

grp € 1, oo™ < | (1 —;v—d cos 0) |
1

it increases in proportion to the square of the frequency,
becoming practically independent of the frequency when
qrp > 1. However, at a certain frequency, determined
by the viscous absorption, the generation ceases. Here,
unlike the theory of amplification of monocrhromatic
signals, the maximum radiation intensity is no longer
determined by the condition qrpy ~ 1.

Let us consider now the case of crystals with large
lengths x, when | y(0)x/cos 8 | > 1 and the exponential
of (5.9) cannot be expanded in a series. In the general
case the behavior of &, (n, Te, w, Eq) is rather com-
plicated, so that we shall consider only the case 8 = 0,
which corresponds to an experiment in which the noise
is registered by some converter which receives only
normally incident waves. Apparently, this was precisely
the case in the experiment of "™, In the absence of
viscous absorption we have for transverse waves

2 P S 7 D
£~ iy O ey (5.15)
(q*’)

and analogously for longitudinal waves at By xx = 0. It
follows from (5.15) that &, as a function of the frequency
first increases like w” exp (aw?), and then, when y (L (w)
begins to decrease and the viscous damping begins to in-
crease, a transition from the dependence (5.16) to for-
mula (5.14) takes place.

A direct experimental study of the spectral and angu-
lar distributions of the noise was made for CdS and ZnO
crystals by Zemon and co-workers'”"'®! (see also
L181-1831y \sing methods of Brillouin scattering of light.**

When the theory is compared with the experimental
results, it is necessary to bear in mind a very important
circumstance. As a rule, the results of measurements
of the spectral and angular distributions of the generated
acoustic noise are made in the acoustoelectric domain,
where the inhomogeneity in the distribution of the elec-
tric field is large. Since, as shown above, the spectral
composition of the radiation is quite sensitive to varia-
tions of the electric field, it is necessary to know, when
comparing the results of the experiments with the the-
ory, the true value of the distribution of the electric
field in the domain. This distribution must be substi-
tuted in formulas (5.9), (5.14), and (5.15), and the com-
parison must be made with allowance for this circum-
stance. Unfortunately, no such thorough analysis has
been performed to date. Nonetheless, it should be noted
that both experiment and theory show that the maximum
intensity of radiation of acoustic phonons does not occur
at the frequency w = vg/rp as in the case of amplifica-
tion of a wave with a stationary phase.
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m) Effects Connected with Generation of Acoustic Noise

1) Current saturation. An investigation of the pro-
cesses of amplification of acoustic waves in piezosemi-
conductors and semimetals has shown that an important
role is played by various effects connected with the gen-
eration of acoustic noise,®*®%105710% 1851 hyrincipal among
which is the sharp change of the current under conditions
of acoustic instability."***®1* Figure 7a shows a typical
current-voltage characteristic of piezoelectric semicon-
ductors, obtained from experiments on CdS and ZnO,!*%
18} The sharp break in the characteristic occurs at an
electric field value exceeding the threshold value corre-
sponding to generation of phonons in the sample. A sim-
ilar break was observed in the semimetal bismuth!*3*
in the presence of a strong (27 > 1) magnetic field (Fig.
Tb). The threshold value of the field in bismuth also cor-
responds to the condition of the appearance of acoustic
instability.'**? These phenomena were qualitatively ex-
plained by Hutson"®*" (see also "#7'*) who has shown
that the break in the current-voltage characteristic is
due to the acoustoelectric current produced by sound
waves that generate drift carriers. In piezosemiconduc-
tors in which there is no magnetic field, the resultant
acoustoelectric current is opposite in direction to the
ohmic current, and therefore the current-voltage char-
acteristic bends downward (Fig. 7a). In bismuth,™*>**
where the electrons and holes drift in a third direction
in crossed electric and magnetic fields, the acousto-
electric currents due to both the electrons and the holes
are directed along the ohmic current, adding up to the
latter, so that the current-voltage characteristics bend
upward (Fig. Tb).

It is possible to obtain an expression for the current
in piezosemiconductors under conditions of acoustic in-
stability by averaging the exact expression

G, ty=eln(r, t)v(r, t))=eng(2) vq(z) -e(n_ (r, ) v.. (r, t)), (5.16)

where n_ (r, t) and v_ (r, t) are rapidly oscillating quan-
tities connected with the acoustic noise. By determining
further, from the hydrodynamic equations for the elec-
trons, the connection between the drift field Eq(x) and
the hydrodynamic velocity vyq(x), and in addition express-
ing the average (n_(r, t)v_(r, t)) in terms of the inten-
sity of the growing fluctuations, it is readily shown that

agV

L
iy =2 F(2)d; (5.17)

0
here V is the potential difference across a sample of
length L, and

Fz, )= S %,‘:—)37;1—%?‘;‘1 (0, q) e* (o, q; T, 1) (5.18)

is the density of the acoustoelectric force exerted on
the electrons by the growing noise. Under generation
conditions yg) < 0, and therefore F < 0. This means
that under conditions of acoustic instability there will
be subtracted from the ohmic current o,V/L the acous-
toelectric current, which is described by the last term
of formula (5.17). Since the threshold of generation of

*In piezosemiconductors this phenomenon was first observed by
Smith [*®%] ; the same effect was first observed by Esaki in a strong mag-
netic field in bismuth [1%].
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acoustic phonons in the crystal coincides with the ve-
locity of the transverse waves, the deviations from the
ohmic value of the current should always begin in a
field corresponding to generation of transverse acoustic
waves. This fact indeed takes place in a large number
of experiments,®%1%%:185,107183] A4 gmall growth incre-
ments, when |y1,| < 1, it follows from (5.14) that the
acoustoelectric current subtracted from the ohmic in-
creases in proportion to the length of the crystal L;
this circumstance was observed in CdS by Japanese in-
vestigators.®

Experiments aimed at observing the saturation of the
current are usually carried out in a pulsed regime, by
applying to the sample a field for a time of the order of
several dozen microseconds. Assuming that the phonon
travel time through the crystal is much shorter than the
time of establishment of the field, and consequently of
the drift velocity, it is easy to determine the time evo-
lution of a current pulse passing through the sample if
the initial applied voltage pulse is rectangular. Substi-
tuting in (5.17) and (5.18) the nonstationary solution
(5.11), we obtain respectively for the instants of ‘‘switch-
ing on’’ and ‘‘switching off”’

. v
J@) =004
) ) L
¢ do dq F (0,q) [ Wex @ on (| Pe P }
S e T e T ey (1I——F— 55
0<t< L, (5.19)
Vg
(L
s dodB3qFo (0, @ , v, gyt [q_ V8T
i =w § G S e {1-F
vy (o, q) (1)
vfg'alc') v(g‘];;) (I—tvg5) . ; , L
+Lv(&).¢1)(e - )} b=

where
F (0, ) =Q" (0, 9) v (0, q),

Fo and y, are the values of #(w, q) and v (w, Q) at zero
electron drift velocity, and t = t, is the instant when the
field is turned on. Thus, the current in the circuit dif-
fers from zero in the interval t, < t < t, + L/vﬂg-}(), and
this is the current due to the ‘‘echo’’ of the acoustic
phonons in the crystal. The ‘‘echo’’ effect was first ob-
served experimentally by Maines and Paige®®" in
sincle-crystal CdS.

2) Occurrence of inhomogeneity. The acoustic noise
growing in the crystal makes it impossible for the dis-
tribution of the electric field and for the concentration
in the crystal to remain homogeneous, and these two
quantities must then depend on the coordinates (and also
on the time in the nonstationary case). Nonetheless, in
the analysis of all the effects it was tacitly assumed that
the system remains homogeneous. This means that the
formulas obtained above pertain only to small regions,
much smaller than the scales of the inhomogeneities.
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On the other hand, since the scale of the inhomogeneity
is as a rule much larger than the characteristic length
of the amplified or generated acoustic signal, it can be
assumed that these formulas pertain also to an inhomo-
geneous medium whose properties vary slowly. To de-
termine such a quantity as, say, the gain increment it
is already necessary to use formulas of the geometrical-
optics type:

I

A(L) == Ay exp (; Im q (z) dx, (5.20)

0
where A, is the amplitude of the sound signal at the
boundary x = 0. In particular, owing to the redistribu-
tion of the electric field in the crystal, the Cerenkov
condition may already turn out to be satisfied not in
the entire crystal. Indeed, from the equation for the
electric field

1 1

L
Ea(2) ::%+ETSF(z) dz— - F (@) (5.21)
0

it follows that at the start of the crystal, at small values
of x, the value of the electric field (and with it the val-
ues of the drift velocity of the electrons) is much
smaller than the value averaged over the sample; to
the contrary, in the other end of the crystal, at x = 4,
the electric field is stronger. Since an increase of the
electric field increases the acoustic-phonon density,
causing the field to increase, the system as a whole,

as shown by experiment, tends to an inhomogeneous
distribution of the electric field and of the phonon den-
sity, with a maximum that lies as a rule near the anode
part of an n-type crystal.* The appearance of such an
inhomogeneity in the crystal changes the character of
the amplification of the acoustic waves,*~%*" put it
affects most strongly the amplification of the longitudi-
nal acoustic waves, whose velocity is larger than that
of the transverse waves, so that it is necessary to have
a stronger electric field for their amplification. On the
other hand, the threshold of noise production, and con-
sequently of inhomogeneity production, regardless of
the crystal orientation, always corresponds to the ve-
locity of the transverse acoustic wave; therefore, the
inhomogeneity occurs before amplification of the longi-
tudinal waves becomes possible. Thus, the character
of the behavior of the amplification of the longitudinal
and transverse waves should be different in the experi-
ments.

3) Current oscillations. Acoustic domains. Experi-
ments with crystals in the regime when acoustic waves
are generated have shown that in some cases the satu-
ration of the current does not occur immediately, but
only after several oscillations in time. Sometimes the
system goes over in general to the regime of continuous
oscillations. The first to report such oscillations in CdS
crystals was Smith,"*®¥ after which these oscillations
were observed in various compounds, ! 19:,195,201-207]

A rough estimate of the period of the oscillations has

*The situation in crystals that are initially inhomogeneous is much
more complicated (see ['%1).
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shown that in some experiments'®® it is equal to ap-
proximately double the time of passage of the amplified
sound wave through the crystal, in others®'®2°%:2%" jt ig
simply equal to the time of passage of the sound waves
through the crystal, and in still others™*"! it is appar-
ently not connected in a simple manner with the time

of passage of the sound waves through the crystal, but
is determined principally by the volume properties of
the sample, particularly by the distribution of the car-
rier density and of the field. The proposed explanation
of the oscillations of the first type, according to McFee,
is that when the drift field is suddenly turned on, piezo-
electric sound waves are excited on the end faces of the
crystal. The waves propagating in the drift direction
will be amplified, and by the instant of arrival to the
anode end of the crystal, their amplitude reaches the
maximum value. The acoustoelectric field connected
with these waves is also maximal at the instant of ar-
rival of a packet of the wave at the crystal anode, and
the current through the crystal is minimal. Some of the
acoustic waves are then reflected, and the process can
continue until the ultrasonic flux is displaced back and
forth over the crystal. In order for the oscillations to
become continuous, the total gain after passage of the
sound wave in the forward direction must be sufficiently
large to offset all the losses in the crystal. If this con-
dition is not satisfied, the oscillations are damped, and
their amplitude should depend on the intensity of the
acoustic flux generated during the initial voltage jump.
It is obvious that with decreasing growth time of the
crystal voltage, the amplitude of the oscillation should
increase. McFee confirmed this experimentally. In ad-
dition, he observed noise pulses of sound, due to the
non-reflected part of the acoustic flux. As expected,
these pulses coincide in time with the current minima.
If the piezosemiconductor crystal is now placed in an
oscillating circuit (just as piezoelectric quartz is con-
nected for frequency stabilization) and a drift field is
applied to it, then electric oscillations should be pro-
duced in the circuit. Experiments with CdS reveal such
a generation, [2°%%0%!

The explanation of the oscillations of the second type,
with a period approximately coinciding with the time of
travel of the sound through the sample, is based on the
idea of the occurrence of acoustic domains, or regions
of strong fields and relatively large acoustic-wave den-
sity, moving in the crystal. The energy density fluctua-
tions of the acoustic noise lead to local changes in the
acoustoelectric force and in the space charge associated
with it. I the total voltage on the crystal is maintained
constant, then on regions with low noise intensity the
voltage will be smaller, and this will lead to a corre-
sponding decrease of the drift belocity of the electrons.
The decrease of the drift velocity of the electrons leads
to a decrease of the intensity of generation of phonons
in the non-domain regions and to an opposite effect in
the domain itself. In final analysis, this leads to a still
larger increase of the phonon fluctuations in the region
of the domain, ™! and thus the system may turn out to
be unstable. Direct probe measurements under genera-
tion conditions®*~?*! have confirmed this model. Un-
fortunately, there is still no more complete and rigorous
theory of these phenomena (see #'%2'%1),
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6. CONCLUSION

Among the questions that should have also been dis-
cussed in the review are various nonlinear effects,
which occur both in the amplification of monochromatic
acoustic signals and in the generation of spontaneous
noise oscillations. This is a very interesting branch of
acoustoelectronics, just beginning to be developed (and
is applicable primarily to piezosemiconductors, where
nonlinear effects are large); we confine ourselves only
to references to original papers in which these questions
are considered.'®"~**] Nonlinearities can be of two
types: electronic and elastic, connected with the non-
linear character of the equations of elasticity theory.

It is easy to see®"2'® that for piezosemiconductors

the electronic nonlinearity plays a decisive role, where-
as the anharmonicity becomes appreciable at much
larger lattice deformations. Electronic nonlinearity
should give rise, upon amplification of a sound wave
with frequency w, to higher harmonics 2w, 3w, etc.;
these phenomena were already observed in experiment,
[219,220]

The amplification of sound waves by streams of
charged particles, which we considered above, is one
part of a more general problem of the interaction of
electron streams with waves in solids. Recently, a
relatively large number of papers have been devoted
also to these problems, but since their analysis outside
the scope of our paper, we shall mention only the origi-
nal papers where these problems are considered. We
note that sound waves can also be generated and ampli-
fied with the aid of streams of charged particles pass-
ing over a surface or in a gap of a piezoelectric dielec-
tric; the theoretical analysis of these questions is the
subject of ¥2%#")  Experimentally, this phenomenon
was first observed by Jamanouchi and Shibayama.'??®

Besides acoustic waves, there can exist in solids
also spin waves,®® waves corresponding to optical
lattice vibrations, and also waves corresponding to
different types of ‘‘plasma’’ excitations of an electron-
hole plasma.®™ The possibility of amplifying spin waves
by electron beams has been considered in .#*, and the
amplification of optical oscillations in solids have been
the subject of #*»#*]  gpin and optical oscillations are
characterized by relatively larger velocity of excitation
propagation than sound waves, and it is still not clear
how to produce experimentally the conditions necessary
for the increase of the velocity of charged-particle
streams in solids. As to the buildup of plasma excita-
tions in solids by means of electron streams, there are
already many experimental investigations besides the
theoretical ones (see the review ).
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