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INTRODUCTION

I N this review, we shall attempt to present a picture
of the metal-optical phenomena, brought in correspond-
ence with the modern state of solid state physics, and to
demonstrate the great capabilities of metal optics, which
makes it possible to obtain extensive information con-
cerning the electron structure of metals.

Analysis of the status of this branch of physics, as
of the end of 1955, is presented in a review by Ginzburg
and the author.113 At that time, an important step that
stimulated the development of metal-optical research
was the application to optics (principally to the infrared
region of the spectrum) in 1953-1954, by DingleC23 and
GinzburgC3], of the theory of the anomalous skin effect,
previously developed by Pippard,C43 Reuter and Sond-
heimer, Chambers, C83Holstein[73 and others for mea-
surements in the microwave band. This theory elimi-
nated the contradiction between the experimental and
theoretical values of the light absorption coefficient A
at low temperatures. Experiment shows that with low-
ering temperature the indicated coefficient remains
quite large (see the review [13) whereas, according to
earlier theories by Drude and Zener,183 it should tend
to zero. According to the theory of the anomalous skin
effect, it is necessary to take into account the contribu-
tion made to A by surface losses, which remain finite
also at T = 0 in the case of diffuse reflection of the elec-
trons from the surface of the metal.* Allowance for this
circumstance, and also allowance for the quantum char-
acter of the interaction between the electron with the
photon and the phonons, as presented in 1954-1958 by
Gurzhi[10>113 and Holstein,tli3 has led to agreement be-
tween the experimental and theoretical temperature
dependences of A.

The review C1] presents a theory relating the optical
constants of metals with their microscopic characteris-
tics, based on the isotropic model of "almost free"
electrons, with account taken of the anomalous charac-
ter of the skin effect. It also emphasizes the importance
of metal-optical measurements, particularly measure-
ments in the infrared region, which make it possible to
determine the concentration of the conduction electrons.
An analysis was performed of the experimental papers,
indicating that no reliable data on the optical constants
of metals, particularly in the infrared region, were
available at that time. Moreover, for the infrared re -
gion there were no methods that made it possible to
perform measurements with good accuracy. Methods
of preparing samples for the investigation suffered
from major defects.

The diffuse reflection of electrons from metal surfaces has been con-
firmed by experiment I6'9].

During the elapsed time, new methods were devel-
oped for the measurement of optical constants of metals,
and the problem of obtaining samples of the required
quality was solved. As a result, reliable data were ob-
tained on the optical constants of a number of metals.

Appreciable progress was made also in the theoret-
ical analysis of the connection between the optical prop-
erties of metals and their basic microscopic character-
istics. The development of solid-state theory has led
recently to very fruitful ideas, connected with the con-
cept of pseudopotential. These ideas were developed
by Harrison/133 Heine,"4'153 Ziman1"-193 and a number
of other authors. According to these papers, the screen-
ing of the ion by electrons, and also the possibility of
using the smoothing of rapid oscillations of the electron
within the ionic residue, make it possible to work with
a pseudowave function and a pseudopotential. The pseu-
dopotential is in essence the difference between the
screened potential of the ion and the effective potential
connected with the rapid oscillatory motion of the elec-
tron inside the ion. It is much smaller than the initial
potential and represents a much smoother function than
the true potential. The pseudowave function corresponds
to the true wave function without allowance for the rapid
oscillations inside the ionic residue.

It became clear after the publication of the aforemen-
tioned papers that it is possible to assume in practice
for many problems that the valence electron "feels"
only the weak pseudopotential. This justifies the model
of the "almost free" electrons and makes it possible to
consider the optical properties of ordinary metals in the
infrared and in the visible regions of the spectrum also
on the basis of the concept of the "almost free" elec-
trons. But the properties of these "almost free" elec-
trons differ from the properties of "free" electrons.

Coherent scattering of electrons by the lattice planes,
even in the case of a weak pseudopotential, greatly af-
fects the optical properties of the metals.

Using the concept of the pseudopotential, it was pos-
sible to obtain simple relations between the optical con-
stants of the metal and its basic electronic characteris-
tics. Thus, measurement results made it possible to
determine the main characteristics of the conduction
electrons and the Fourier components of the pseudo-
potential. Since the same microscopic characteristics,
and primarily the Fourier components of the pseudo-
potential, determine both the band structure and other
properties that depend on the electron-ion interaction
(for example, the van Alphen-de Haas effect, cyclotron
resonance, the phonon spectrum and absorption of ultra-
sound in a magnetic field, the temperature of the transi-
tion to the superconducting state, etc.), it is possible to
use optically-obtained data to interpret other data.

The approach considered in the present paper can be
extended not only to metals in the crystalline state, but
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also to liquid metals, to alloys (both ordered and disor-
dered), and to the amorphous state of metals.

The presented relations hold for ordinary, i.e., non-
transition metals. It is not clear as yet to what extent
they can be transferred to transition metals. We shall
henceforth consider only non-transition metals.

A more detailed analysis of all the questions touched
upon in the present review can be found in l201.

1. THE KINETIC-EQUATION METHOD IN METAL
OPTICS

Optical measurements make it possible to obtain
two functions n (w, T) and K (W, T) (see [ U ) .* To estab-
lish the connection between n (w, T) and K (O>, T), on the
one hand, and the basic electronic characteristics of the
metal on the other, one uses the method of the kinetic
equation (see, for example [21>22>1]). The state of^the
electrons is described by a distribution function f (p, r, t)
that depends on the indicated arguments, t It satisfies
the following relation:

/(p, r, *) = /o(p)-F/(p, r, t), (1.1)

/0(p)=[exp(^=^) -J-l]~\ (1.2)

and f (p, r, t) is determined by the influence of the field
of the light wave. In all cases encountered at the pres-
ent time in metal optics it can be assumed that | f I
<C |f0 I . We can therefore use a linearized kinetic equa-
tion that should be solved simultaneously with the field
equations. The complete system of equations, written
out for the case when the metal occupies the upper half-
space, the z axis is perpendicular to the interface, and
light of frequency w, polarized along the x axis, is inci-
dent on the metal normally to the surface, has the fol-
lowing form:

&%x

!*=W.
2e f

(1.3)

(1.4)

(1.5)

We assume that g coincides with the direction of j (iso-
tropic case or polycrystal). In Eq. (1.3), account is taken
of the fact that 8f/8t = iwf, and the collision integral is
written in the form - vi. Such an approximate notation,
when account is taken of only the first term of the ex-
pansion of the collision integral in powers of f, is justi-
fied at high (room) temperatures, and also at low (he-
lium) temperatures. C22~24>io:l This approximation can
also be used as an extrapolation at medium tempera-
tures.

Equation (1.3) is classical. At high frequencies, how-
ever, when Ho; > kT, the interaction of the electrons with
the field of the light wave has a quantum character. The
electron, absorbing a quantum of light, changes its en-
ergy immediately by an amount HOJ. The difference be-
tween the classical and quantum cases is particularly
significant when the following inequalities are satisfied:

A list of the symbols employed in this paper is given at the end of
the review on p. 102.

tThe spin variables can be disregarded.

Hw » k© » kT (here ® is the Debye temperature), i.e.,
in low-temperature measurements. It is more correct
to use the quantum kinetic equation. Gurzhi, developing
work by Bogolyubov and Gurov[25:l and Klimontovich and
Silin,[28:l obtained a quantum kinetic equation for elec-
trons in a metal in the field of an electromagnetic wave.
:io,ii3 ^ g yj e q u a n t u m distribution function, one takes
the mixed representation of the density matrix. The
equation obtained for this function contains a certain
operator, which is a quantum generalization of the usual
collision integral. We shall not present here the com-
plicated expressions for this operator. We note only
that for metal-optical problems, in the case when the
inequalities

are satisfied, it is possible to introduce the effective
electron-phonon collision frequency t'ep(T) which, how-
ever, differs greatly at low temperatures from the clas-
sical electron-phonon collision frequency v%L(T). This
difference will be discussed in greater detail in Ch. 6.

The effective electron collision frequency, generally
speaking, can receive contributions also from inter-
electron collisions. The influence of the interelectron
interaction on this quantity is considered in works by
Ginzburg and Silin,C27: Pitaevskii,izel and Gurzhi.:29]

The interelectron interaction in metals is strongly sup-
pressed by the Pauli principle. An electron lying in the
Fermi smearing zone may collide only with another
electron from the same region. After collision, both
electrons should again fall somehow into the Fermi
smearing zone. It is possible to take all these colli-
sions into account by introducing an additional frequency
vee, which leads to additional absorption of light. Ac-
cording to C28J,

v (co n-v^tT) l"l I I *"° Y~\ • (16)

Here v%\ is the corresponding classical frequency of the
interelectron collisions, which is proportional to T2. In
the near infrared fiw ^> 2irkT and y__ 3> v^].. Thus, ob-
servation of the frequency of the interelectron collisions
is much more probable in optics than in statics. How-
ever, experimental investigations of the optical constants
of metals, performed in a wide range of temperatures,
have shown that even in optics we have vee <C v and it
can be observed only at helium temperatures in metals
in which there are no interband transitions in the near
infrared region. :30"32J

Finally, we note that scattering of electrons by im-
purities (by impurities we mean both chemical impuri-
ties and physical impurities, i.e., scattering by inhomo-
geneities, crystal boundaries, etc.) can be taken into
account by introducing the frequency ue^ of the colli-
sions with impurities.

Thus, we get for v the following expression:

(1.7)

Returning to Eq. (1.3), we note that

a/o
8E

The function 8fo/8E has a 6-like character, as a result



82 G. P . MOTULEVICH

of which the optical properties are determined by the
electrons on the Fermi surface.

The magnitude of the first term of Eq. (1.3) vz 8f/8z
determines the character of the skin effect. If this term
can be neglected, then we have the so-called normal skin
effect, which is realized primarily for liquid metals and
metals in the amorphous state. It also takes place for
certain metals in the crystalline state, in the visible
section of the spectrum, and in the near infrared region
at high (room) temperatures.

If vz 3f/8z 3> (iw + v)i, then the sharply anomalous
skin effect takes place. This case is realized for crys-
talline metals in the microwave band. In the infrared
region, it occurs only for metals of the first group at
low (helium) temperatures.

If the term vz 3f/az is small, but must still be taken
into account as a correction, then we deal with the
weakly-anomalous skin effect. This is the most wide-
spread case for metals in the crystalline state in the
infrared region of the spectrum. For polyvalent metals,
it occurs at all temperatures. For monovalent metals
it takes place at high (room) temperatures.

We shall dwell below only briefly on the features of
the general solution of the system of equations (1.3)-
(1.5), paying particular attention to the cases of prac-
tical importance, namely the weakly-anomalous and
normal skin effects.

a) Anomalous Skin Effect

The general solution of Eqs. (1.3)—(1.5) has been con-
sidered in a number of papers.111"3'5'33"353 In all the
papers they considered only a spherical Fermi surface.
In the general case, a nonlocal connection is produced
between the current density and the polarization inside
the metal and the electric field of the light wave. It is
then impossible to introduce a complex dielectric con-
stant e'. However, it is possible here, too, to use the
surface impedance Z and to relate to it the magnitude
of the effective complex dielectric constant eeff
= Kff - iKeff)2- Usually 1/1 eeff | < 1; then*

z = - 4it
V»'eff

(1-8)

The surface impedance characterizes completely the
reflection of the electromagnetic waves from the metal-
lic surface. The connection between the surface imped-
ance and the boundary conditions is analyzed in l37i and
is presented in m . Experiment makes it possible to de-
termine neff and Keff, using the properties of the r e -
flected light in the same manner as n and K are deter-
mined. We shall henceforth omit the subscript "eff."

Let us return to the solution of the system of Eqs.
(1.3)-(1.5). The solution of this system depends signif-
icantly on the character of the reflection of the electrons
from the surface of the metal. The experiment has
shown that if we are not interested in extremely oblique
incidence of the electrons on the surface of the metal,
then the reflection is diffuse both in the case of poly-
crystals and in the case of single crystals. [8 '9] Without

Allowance for the corrections connected with the terms sin2 </>/«' en-
tails no difficulties. The corresponding corrections for neff and Keff were
considered, for example, in [36 ]; they are given in Ch. 3 of the article.

stopping to discuss these methods, which were specially
developed for the solution of this system of equations,
we shall indicate that in place of the ordinary Ohm's
law there exists in this case between the current density
and the field an integral relation of the type

The kernel K differs significantly from zero if the argu-
ment is < 1. Such a connection between the current and
the field leads to an integro-differential equation for the
field in the metal, of the type

o
Its solution is complicated and cumbersome. The final
results are obtained only after numerical integration.
The decrease of the field g with increasing depth re -
mains very rapid, although not exponential.

Usually one obtains expressions for the real and
imaginary parts of the surface impedance Z in the form
of expansions in small parameters. We have already
mentioned that the anomalous skin effect is realized in
optics only for metals of the first group at low temper-
atures. In this case the inequality v/u> <C 1 is satisfied.
Therefore one uses as one of the parameters of the ex-
pansion the ratio u/u>. The second parameter is usually
the quantity vjr/w5. The smallness of this parameter
signifies that the path traversed by the electron in one
period is small compared with the depth of the skin
layer. The expressions for the real and imaginary parts
of the surface impedance in the case of the anomalous
skin effect are given in cl-3>38]

b) Normal Skin Effect

The normal skin effect has been discussed in many
papers, and particularly in the review.m It corresponds
to neglect of the first term in Eq. (1.3), after which the
equation changes from differential to algebraic. Under
this condition, the reflections of the electrons from the
boundary of the metal are insignificant, and all the opti-
cal constants are determined by volume effects.

The normal skin effect can be readily analyzed for a
single crystal with an arbitrary Fermi surface. We
choose the axes x, y, and z along the principal axes of
the e' ellipsoid. Then, for the experimental setup indi-
cated at the beginning of this section (z axis perpendic-
ular to the surface of the metal, field polarized along
the x axis), we have % ft j . We determine f(z) from (1.3),
substitute it in (1.5), and after changing over from the
volume integral to an integral over the Fermi surface,
we obtain

£-!) $x(z)=- 2e">%x (2)

here dSj? is an element of the Fermi surface; the index
"n" denotes that the corresponding quantity pertains to
the normal skin effect. We have taken the quantity
l/(iai + y) outside the integral sign, i.e., we have used
the theorem of the mean, and marked v with the index
x. Similar relations can be obtained for jy(z)and jz(z).
Thus, we obtain the following formulas for the compo-
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nents of the complex dielectric constant:

e :n_1== (1.9)

Determining experimentally the free complex quantities
ê 11, e'n, and ê n we can determine the six quantities

(N/m)i H V; (i = x, y, z).

For metals of the cubic system we have

§^-dsF = §-^-dsF=--§-?±-dsF = ±§v dsF, vx = vy = vz = v,

and formulas (1.9) and (1.10) simplify:

e'n —1= —- (to — iv)

m 3(2nft)3' ) V dsF.

(1.9a)

(1.10a)

Expression (1.9a) has the same form as for a free clas-
sical electron gas with a conduction-electron density N
and with mass m equal to the mass of the free electron.*
In just this sense, we shall call the quantity N, defined
by formula (1.10a), the density of the conduction elec-
trons, t

It is easy to estimate the magnitude of the discarded
terms. To this end, we substitute en from (1.9a) into
(1.4). We then substitute the solution for the field & in
(1.3), after which we obtain the following conditions un-
der which we can neglect the term vz Bt/dz (see the re-
view UJ):

• <C — or I ..c 6.

(1.11a)

(1.11b)

The inequality (1.11a) is satisfied for all the metals.
The inequality (1.11b) is by far not always satisfied.

The review contains formulas obtained for the
optical constants of metals by series expansion in the
parameters i>/u> and vp/oifi. These formulas do not hold
in the case when v is of the order of w. To determine N
and v from the experimental data it is convenient in this
case to use the following relation:"0'403

n—\.) - ffl(to-iv) m (1.12)

c) Weakly Anomalous Skin Effect

Experimental investigations have shown that the
weakly anomalous skin effect is the most widespread
for metals in the crystalline state. It was considered
in detail in [41>ao]. Unlike the general case, where there
are solutions either for v < u o r for v 3> w, for the
weakly-anomalous skin effect there were obtained ana-

Vonsovskii [39] has shown that a connection between the dielectric
constant and the conduction-electron density, similar to (1.9a) can also
be obtained by a quantum method, using the density matrix.

' One sometimes uses in lieu of N and m the quantities NVal and
meff, defined by the relation N/m = NVal/meff. Since we can determine
from experiment only the ratio N/m, the two approaches are equivalent.
We shall use the quantity N.

ly t ic so lut ions that a r e val id for any re la t ion between v
and w.

The so lut ion of the s y s t e m ( 1 . 3 ) - ( 1 . 5 ) for th i s c a s e
i s obtained by s u c c e s s i v e approx imat ions . The p r o b l e m
has a s m a l l p a r a m e t e r equal to

3 Vp n — tx
1 7 1 — i (v/a>) '

We sha l l a s s u m e , a s b e f o r e , that the f ie ld % in the
meta l c o i n c i d e s in d irec t ion with j ( i sotropic c a s e or
p o l y c r y s t a l s ) . * In the zeroth approximat ion , we n e -
g l e c t in (1.3) the t e r m v z a f / 3z , after which w e obtain
the n o r m a l skin ef fect c o n s i d e r e d above . The solut ion
for the f ie ld in the zero th approximat ion wi l l be s u b s t i -
tuted in the r ight s ide of Eq. (1.3) . We obtain the f i r s t -
approximat ion equation

P l i i + (i<B + v ) /=—^-^-ed ' (O) exp r - j ^ - ( n n - « x n ) ] ; (1 .3a)

Here g(0) i s the f ie ld on the sur face of the m e t a l . As
boundary condit ions we u s e the condit ions c o r r e s p o n d -
ing to the diffuse re f l ec t ion of the e l e c t r o n s f rom the
s ur fa ce of the m e t a l :

for vz>0 / = 0 if z = 0 a n d / = 0 a s z - * oc;
for vz<0 / = 0 a s z -+ oo.

Substituting the so lut ion of (1.3a) in (1.5) , we obtain

jx (*) = '- (0)
exp [-< ^- (nn — ; — B exp (— '-

-("n— "%)
dSF

(1.13)

B = 1 for vz > 0 and B = 0 for vz < 0. Equation (1.13)
shows that there is no local connection between jx(z)
and Sx(z). We calculate next the total current

and the s ur fa ce impedance t Z = I x / ^ x ( ° ) - Using the
centra l s y m m e t r y of the F e r m i s u r f a c e and confining
o u r s e l v e s to t e r m s of f i r s t o r d e r in ( v / c ) (n - in)/
[ l - i ( y / w ) ] , w e obtain

(Z)-1 = (Zn)-1(l — a), (1-14)
^ « _ ..2

-dSF, (1.15)
u-iv) (n-ix)

Kaganov and Slezov [42] considered the case of arbitrary anisotropy.
They were interested, however, only in the region v < CJ.

t For cubic symmetry and arbitrary orientation of the crystal, the di-
rection of j coincides in the zeroth approximation with the direction of £.
In the first approximation, in the presence of a field £x, both j x and jy dif-
fer from zero. With the same degree of accuracy, we obtain

cj) vxVyVz dSpIv
I >0

Here Iy is the total current along the y axis; Ix is the total current along
the x axis in the zeroth approximation. At an arbitrary orientation of
the crystal we have |Iy/Ix I < |a|. The presence of Iy leads to the appear-
ance of nondiagonal terms ZXy and exy. These terms, however, are small
and they can be neglected in practice. Thus, the obtained formulas can
be used in practice also for cubic single crystals. In the isotropic case or
in the case when the fourfold symmetry axes are parallel to the axes x
and z we have Iy = Zxy = e'xy = 0.
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_ 1 n — Ix »j>0
v\vz dSF/v

v^. dSpjv '
(1.16)

here Zn is the surface impedance for the normal skin

effect, / ( . . . )dSp is an integral over the part of
vz>o

the Fermi surface for which vz > 0. Using (1.8),
obtain

(e')-i (1-2a) = (e-')-', (1.17)

where en ' is given by formula (1.9a). The small correc-
tion term a can be calculated with lower accuracy and
one can use the expression obtained for the isotropic
case:

vF i-\-i (n/x)
T " (V/G>)+;

(1.18)

Formulas (1.17), (1.9a), (1.10a), and (1.18) give the con-
nection between the optimal constants of the metals and
N and v.

The complex expansion parameter used for the
weakly-anomalous skin effect is a combination of sev-
eral dimensionless ratios, namely

3 vF ') (v/m)-ti/ (2nfl)]
8 C 1 — (V/G) 8 l+V2/0)2 '

Here \ = 2TTVF/W is the path traversed by the electron
during the period of the field. After performing the ex-
periment, it is always possible to calculate the value of
this complex parameter and to establish the character
of the skin effect.

In concluding this chapter, we note that the optical
measurements in the infrared region make it always
possible, i.e., for any character of the skin effect, to
determine the quantity

2. INFLUENCE OF PERIODIC LATTICE POTENTIAL
ON THE OPTICAL PROPERTIES OF METALS*

The periodic lattice potential has a strong influence
on the optical properties of metals in both the visible
and infrared regions of the spectrum. In determining
the influence of the periodic potential of the lattice, we
use the concept of the pseudopotential, mentioned in the
introduction. We expand the pseudopotential in a Fourier
series:

t
The summation is over all the reciprocal-lattice vectors
g. The sign of the vector in the index g will be hence-
forth omitted. The experimental determinations of Vg,
performed both by the optical method :20>48~50] and by the
method of investigating the van Alphen-de Haas effect,
[51,52: s j l o w yjaf. y j e following inequalities are satisfied
for metals:

(2.2)
Ep

This makes it possible to use the weak-coupling approx-
imation, considered in detail in many papers, particu-
larly in C16»19>5".

The effects which we shall consider are the differ-
ences between N and NyaL Sp and Sf, and ( V F ) and vp;
all these differences are of the order of unity. There-
fore to determine the main features of the phenomenon
it suffices to take into account the terms of first order
in | Vg| / E p . This makes it possible to obtain simple
analytic expressions that determine the deviations of
the basic electronic characteristics N, S F , and (VF )
from the corresponding characteristics of free elec-
trons. In this approximation, the action of the sum of
the Fourier components of Vg is equal to the sum of the
action of each component. To each periodic potential in
coordinate space, described by a term of the sum (2.1),
there corresponds in momentum space a separate Bragg
plane, the equation of which is

pg(p — p«) = 0; (2.3)

Here 2pg = 27rKg, pg = |pg| is the distance from the
center of the band r to the Bragg plane. As already
indicated, in our approximation the action of the sum
of the Bragg planes is equal to the sum of the actions
of each Bragg plane.

Let us consider the action of one Bragg plane. Fig-
ure 1 shows the sphere of free electrons for a concen-
tration equal to the valence concentration. The plane
(Py, Pz) passing through the point 0 is the Bragg plane
that intersects the sphere of the free electrons. The
deviation of the motion of the electron from the free
motion is principally connected with the coherent scat-
tering by the lattice planes. This is realized only in
the case when the momentum of the electron is close
to the Bragg plane. Therefore, everywhere away from
the Bragg plane, the Fermi surface will coincide with
the sphere of the free electrons. Near the intersection
of the Bragg plane with the sphere of the free electrons,
the Fermi surface assumes the form shown in Fig. 1.
It is a surface of revolution with a symmetry axis per-
pendicular to the Bragg plane. Thus, the Bragg plane
changes the shape of the Fermi surface and its magni-
tude.

A similar conclusion can be drawn with respect to
the velocity of the electron on the Fermi surface, VF-
Far from the Bragg plane we have vp « vp. Near the
Bragg plane v F < v p .

The ring MjM2 on the Bragg plane (Fig. 2) between
the two circles obtained when the Bragg plane intersects
the Fermi surface, are not part of the Fermi surface,
since the energy of the electrons whose state is repre-

FIG. 1. Intersection of the free-electron
sphere and one Bragg plane. The Bragg plane
coincides with the plane (py, p2); FM = pF;
TO = pg. The zone with the higher number in
the band scheme is shown dashed. The plane
M'2M', is parallel to the Bragg plane.

The questions of this chapter are discussed in greater detail in [20'
43 —461
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_ = — z+signz

FIG. 2. Intersection of the Fermi surface with the Bragg plane and
with a plane parallel to the Bragg plane. On the left is shown the ring
M, M2 on the Bragg plane; on the right is shown the ring M'j M'2 on a
plane parallel to the Bragg plane.

sented by the points of this ring is not equal to Ep. The
wave function of the electron far from the Bragg plane
can be regarded as a plane wave, and that near the
Bragg plane can be regarded as a sum of two plane
waves.

a) Long Wave Region

We proceed to consider the influence of the periodic
potential of the lattice on the optical constants in the
long-wave region. By long-wave region we mean the
region in which the influence of the interband transitions
on the optical constants can be neglected. Each metal
has its own boundary of the long-wave region. However,
for a large group of non-transition metals, it is possible
to assume that the long-wave region is A. > 2-3 /i. The
optical properties of the metals are determined here by
the conduction electrons, i.e., by the electrons on the
Fermi surface. We shall use the scheme of expanded
bands.

We need to determine the influence of Vg on Sp, (vp),
and (vp)Sp. In our approximation, the electron energy
is determined from the second-order secular equation
(see, for example, [18>19>53:l). Introducing the dimension-
less quantities

i'±-pg
Pe

2mE
y =

P\\
Pe '
2m | V.

(2.4)

(2.5)

(p^ and Pn are the momentum components perpendicular
and parallel to the Bragg plane), we obtain the equation
of the equal-energy surface in the form
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(2.7)

(2.8)

(2.9)

We have already indicated that as a result of the ac-
tion of one Bragg plane the equal-energy surface is a
surface of revolution. The area element of the equal-
energy surface is

dS = 2nply (x) VUWW* dx,

where y(x) is determined by Eq. (2.6) at w = const; hence

dS = 2nmpsvdx. (2.10)

For the Fermi surface

dSF = 2nmpgvFdx. (2.10a)

It is easy to show that the change of the Fermi sur-
face considered above leads to a change in the volume
of the momentum space lying inside this surface, deter-
mined by quantities of second order of smallness. This
means that, with our accuracy, Ep = Ep and that far
from the Bragg surface pp = pp.

Let us use the obtained expressions to determine the
electronic characteristics of interest to us. We consider
first N. According to (1.10a) and (2.10a)

) vFdSF — V vF dx;

Therefore

JVyal ~N
A1 val

The limits of integrations are

(2.11)

(2.11a)

Using (2.9) and (2.10a), and taking into account the ac-
tion of all the Bragg planes, we obtain

Nvd-N _ v .-i Pe lvgl / 1 . Vg)
v̂al ^ * P°F £J- U + n / '

e
>}-) (i-Pg/pF), ^ arctg - ve \'

(2.12)

(2.12a)

The summation is over all the Bragg planes intersecting
the sphere of the free electrons. We note that when the
inequality Xg ̂ > £/2 is satisfied, meaning that

"pg
 g > 2 4 Us ) '

w = 1-| x' + y2 + sign (x) + (2.6) we get

On the Bragg plane x = 0 and w = wo± ij, i.e., E = Eo
± |Vg| (the index " 0 " denotes that the corresponding
quantity pertains to the free electrons). Near the Bragg
plane, when 4x2 « ; £2, the energy corrections are of first
order, ~ |Vg|, and far from the Bragg plane they are of
second order.

Equation (2.6) makes it possible to determine the in-
fluence of the Bragg plane on the electron velocity. This
plane does not change the velocity component parallel to
it, i.e., v|| = 8E/8pn = v°. The velocity component per-
pendicular to the plane, v^ = 8E/ap^, does change. In
terms of the variables (2.4) and (2.5), we have

(2.13)

and formula (2.12) is simplified.
Integrating dSp between the limits xg and Xg, we ob-

tain Sp. We then obtain the connection between the
pseudopotential and Sp, given by the following expres-
sions:

SF-SF

S°F

(2.14a)



86 O P T I C A L P R O P E R T I E S OF P O L Y V A L E N T N O N - T R A N S I T I O N METALS

))tgq), (2.14b)

s f ( z , | - ) , (2.14c)

E(z, *. •) =
: — s2 sin2 <p

(2.14d)
F(z, ip) and E(z, ip) are complete elliptic integrals of the
first and second kind respectively (see t 54 ]).

The influence of the pseudopotential on (vp) can be
obtained by using the relation

- ^ = ̂ 4 f - (2-15)

Inasmuch as the density of the electronic states on
the Fermi surface is (dY/dE)p ~ /dSp /vp , it follows
from (2.10a) that in the considered approximation, which
is linear in |Vg| /Ep , we have

= (_*_) s%, (2.15a)

i.e., the periodic lattice potential does not change the
density of states of the electrons on the Fermi surface.
Using this circumstance and assuming that ((1/vp))
s» l / ( v p ) , we obtain the following relations that make
it possible to estimate approximately Sp and (vp):

(2.16)

The formulas presented above for Sp, (VF ),
and ( (1/VF)) Sp are applicable to both cubic and non-
cubic metals. For non-cubic symmetry, ( V F ) S F deter-
mines Pr {N/m } ij.

b) Application of the Derived Formulas to Certain
Types of Structures of the Cubic System

In considering the concrete crystalline structures,
it is necessary first to clarify which Fourier compo-
nents are significant. Starting from the theory of weakly
coupled electrons, each Fourier component of the pseu-
dopotential can be represented in the form

VgC^FgcUgc. (2.17)

Here \JX is the Fourier component of the self-consistent
atomic potential, and is determined by the Fourier com-
ponent of the potential of the individual ion and by the
dielectric constant of the metal (the electron screening
is taken into account), while Fx is a structure factor
that depends only on the positions of the ions:U8'19'533

FM = ̂ -'2lexp(-tm); (2.18)

Here Nc is the total number of unit cells per unit vol-
ume, 1 is the lattice vector corresponding to the site I.
The same structure factor enters as a factor in the
structure amplitude, which determines the intensity of
the x-ray diffraction maxima for lattices containing
only one type of atom. If the lattice is primitive, then

for
for (2.19)

then it is necessary to take into account the effects of
interference of different sublattices. Let the positions
of the atoms making up the basis of the complex lattice

i 3

be determined by the radius vector r n = Z/Xniai (n = 1,
i=i

2 , . . . , s), where aj are the main lattice vectors. The
Bragg plane of interest to us will be determined by the
indices (n^n^ij). Then

p = V
™l"z"3 J^,

(2.20)

It is obvious that the only Vg that differ from zero
are those for which the structure factor is not equal to
zero. For optics there is an additional limitation: the
only important Vg are those for which the correspond-
ing Bragg plane intersects the sphere of the free elec-
trons .

The radius of the free-electron sphere, as is well
known, is determined by the expression

o o * / 3 An \ i/3 /o O1 \
p"F = Inn \-^-—\ ; (&.£\)

Here An is the number of valence electrons in the vol-
ume AT.

Using (2.20) and (2.21), we can readily determine
which Vg exert a strong influence on the optical proper-
ties of metals. Tables I and II list the results of calcu-
lations of Fg and pp pertaining to certain types of cubic-
system structures.

By way of an example let us consider lead—a tetra-
valent metal with face-centered lattice. For this metal
pp = 1.24 (27rK/a) (see Table II). It follows from Table I
that in this case only eight Bragg planes V u l and six
Bragg planes V200 are significant. Using (2.12), we ob-
tain

= 4,39

0,422 0,313

, (2.22)

(2.22a)

Relations (2.14) make it possible to calculate
(Sp - S F ) / S F in similar fashion.

Table I. Structure factors and distances to the center of the
zone of different Bragg planes for certain types

of structures of the cubic system

If the lattice is complex with a basis containing s atoms,

221

0.500
0.707
0.866
1.000
1.118
1.225
1.414
1.500

0
0_

4/2
0
0
0
8
0

g

0
0«)
0
4
4
4
0*)
0

1.500
1.581
1.658
1.732
1.803
1.871
2.000

0
0 _

4V2
0
0
0

o
0*)
0
4
4
4

Here {ihnana} — indices of physically equivalent Bragg planes; Pn,n2n3 — dis-
tance of Bragg plane to the center of the zone in momentum space; a—lattice period;
I Fnin2n3 |-modulus of the structure factor.

Lattices of (J-W type are known for alloys of the type (A3 B)2. For these alloys,
the structure factors marked by an asterisk will be different from zero, but they are
still small.
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Table II. Dependence of the radius of the free-electron
sphere on the concentration of the valence electrons

for certain types of cubic-system structures

Number
of va-

lence elec-
trons per
atoms

0.5
0.75
1
1.25
1.5
1.75
2
2.5

pO Il2nh\

face-
centered

0.620
0.710
0.782
0.842
0.895
0.942
0.985
1.061

body-
centered

0.492
0.564
0.620
0.668
0.710
0.748
0.782
0.842

dia-
mond

0.782
0.895
0.985
1,061
1.127
1.187
1.241
1.337

of/S-W
type

0.782
0.895
0.985
1.061
1.127
1,187
1.241
1.337

Number
of va-

lence elec-
trons per
atoms

3
4
5
6
7
8
9

10

face-
centered

1.127
1.241
1.337
1.420
1.495
1.563
1.626
1.684

body-
centered

0.895
0.985
1.061
1.127
1.187
1.241
1.290
1.337

dia-mond

1.420
1.563
1.684
1.790
1.884
1.970
2.048
2.122

of0-W
type

1.420
1.563
1.684
1.790
1.884
1.970
2.048
2.122

c) Short Wave Region

We shall designate as a short wave region the spec-
tral region in which interband transitions make an ap-
preciable contribution to the optical constants. These
are usually the visible and near-infrared regions.

An investigation of the interband transitions in met-
als makes it possible to determine the values of Vg. The
optical method of determining the Fourier components
of the pseudopotential has significant advantages over
other methods, such as the van Alphen-de Haas effect
or cyclotron resonance. The optical method is more
direct, requires no complicated calculations, and in ad-
dition is at present the only method which makes it pos-
sible to obtain the temperature dependence of Vg. All
the remaining methods are connected with measure-
ments at low temperatures and cannot yield the temper-
ature dependence of Vg.

It must be emphasized that the Fourier components
of the pseudopotential are the main characteristics that
determine not only the optical but also all other proper-
ties of metals, connected with the valence electrons and
with their interaction with the lattice. The very same
Fourier components with which we deal in optics deter-
mine the van Alphen-de Haas effect, the cyclotron re s -
onance, transport phenomena, absorption of ultrasound,
superconductivity, etc. Therefore the experimental de-
termination of Vg is of great interest.

To determine Vg from optical data it is necessary to
consider interband transitions connected with the cor-
responding Bragg planes. For the indicated transitions,
there is a peak in the combined interband density of
states at frequencies w ss 2 |Vg|/K, leading to the ap-
pearance of maxima in the interband conductivity a.
Thus, it is possible to determine | Vg I from the positions
of the maxima of the function a(o>).

Interband transitions between the electron states
near the Bragg plane were considered in c20.45'48.55^*
In this case it is more convenient to use the scheme of
reduced bands. In Fig. 1, the band with the higher num-
ber in the scheme of the reduced bands is designated by
the dashed lines. We shall need subsequently the elec-

The idea of weakly coupled electrons was first used for the calcula-
tion of e and a of alkali metals by Sergeev and Chernikhovskii [56]. How-
ever, only the development of the theory of the pseudopotential has
made it possible to understand the decisive role played by transitions
near the Bragg plane for the determination of e" and <T.

tron wave functions normalized to a unit volume. As
already indicated, for both lower and upper bands, they
can be regarded as linear combinations of two plane
waves:

i = «n exp ^-|-J + at2 exp '(P— 2
- ] •

p-2pe)r-

a" =

m\Ve\

(2.23)

(2.23a)

(2.24)

The electron energy in the upper and lower bands is de-
termined by formula (2.6). The energy difference in
transitions with conservation of the quasimomentum is

AE = 2 | Vg | V\ + X2 = Ti(ae Vl + X2, (2.25)

hug = 2\Vg\. (2.26)

For all the points of a plane parallel to the Bragg plane
we have X = const and AE = const. Light of frequency
w = AE/R can produce a transition from the lower band
to the upper one for all the electrons whose state is
represented by the points on the ring between the two
circles obtained from the intersection of the Fermi sur-
face with the indicated plane (ring MjMg on Fig. 2). In-
deed, the energy conservation law is satisfied for these
electrons and, in addition, the lower state is occupied,
since its energy is smaller than the Fermi energy by an
amount much larger than kT, and the upper state is free,
since its energy is larger than the Fermi energy by an
amount much larger than kT. The minimum frequency
of the interband transitions near the Bragg plane equals
Wg in this approximation. It corresponds to the ring
M!M2 on the Bragg plane (see Fig. 2).

If we disregard relaxation processes, then in the ap-
proximation under consideration the interband conduc-
tivity <Tg will have an infinitely large maximum at a fre-
quency Wg. Allowance for relaxation processes yields
finite values for erg. The relaxation processes can be
taken into account in the simplest manner by replacing
the 6 function, which expresses the energy conservation
law, by the Lorentz function ip(x) = y/ir(xz + y2). The pa-
rameter y, characterizing the smearing of the energy
levels, is assumed to be constant for the transitions
near the given Bragg plane. Such an allowance for the
relaxation processes is possible only in the first ap-
proximation.

Let us calculate ag —the contribution made to the
interband conductivity of transitions near the Bragg
plane under consideration. The value of <7g will be de-
termined from the losses of the electromagnetic field:*

5« = - T ; (2.27)

here Wg is the probability of absorption per unit time
of a quantum of light of frequency w. The bar denotes
averaging with respect to time. The time-dependent

For simplicity we confine ourselves to cubic crystals.
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Hamiltonian of the interaction of the electrons with the
electromagnetic field <#?i(t) is taken in the form1-57-1

(2.28)

(2.29)A (t) = -j (Ae-i("' + A V«»);

here A(t) is the vector potential of the electromagnetic
field.

We neglect terms proportional to A2, meaning that
we neglect two-photon processes compared with single -
photon processes.

Taking (2.27)-(2.29) into account, we obtain the fol-
lowing relation:

- a rNKf i l ^ lWl (2.30)

Calculation of the matrix element entails no diffi-
culty. We note only that its magnitude is proportional
to cos (Pg£). Thus, light gives rise to interband transi-
tions connected with the Bragg plane g only if the pro-
jection of the electric field of the light wave on the nor-
mal to the Bragg plane under consideration differs from
zero. For cubic metals, allowance for the action of all
the physically equivalent Bragg planes leads to isotropy
of <jg. og will contain only the factor n g /3 , where ng is
the number of physically equivalent Bragg planes. For
anisotropy metals, light of different polarization will
cause interband transitions connected with different
Bragg planes. This circumstance can be used to iden-
tify the experimentally observed maxima of erg.1*9'501

Using the connection between % and A

(2.31)

we obtain the following expression for the interband
conductivity:

7 = -4- dx

(2.32)

(2.33)

Here u' = w/wg, yg = yg/(Kwg).
The asymptotic value of crg when w ;§> wg does not

depend on yg and equals

Calculations show[20»48:i that the function CTg(w) has a
maximum in the region o>max » wg. The shift of the
maximum from this position is not large. It does not
exceed 6% and can be calculated by determining from
experiment the relative broadening of the energy levels
y'g This result justifies the possibility of determining
the Fourier components of the pseudopotential from op-
tical measurements.

Figures 3 and 4 show plots of t = wm a x /wg and Imax
against y'. Here Imax is the maximum value of the in-
tegral I, considered as a function of w'; o>max is the
frequency corresponding to I m a x , i.e., I(wm a x) = Imax-
Using Fig. 3, we can determine |Vg| more accurately
from the relation

2|yg|sBcojr = ̂ f ^ . (2.35)

(05

FIG. 3. Plot of t = comax / <°g against y'. 1

0.95

0.9
0 0.25 0.5

FIG. 4. Plot of the maximum value
of the function I(co') against y'.

2.5

0,25 0.5 0.75'

ent values of y'. It follows from the figure that

"max —M (2.36)

where u>1 < u m a x and corresponds to the value I
* 0.7Im ax. Relation (2.36) is justified in greater detail
in :20>4".

The considered picture of the interband transitions
relates the main structure of the bands of the interband
conductivity in metals with the Bragg splitting of the
energy. It differs from the picture observed in semi-
conductors, where the main structure of the interband-
conductivity bands is connected with the splitting of the
energy near the critical points, which are points of high
symmetry.* In metals, the points of high symmetry can
also produce small maxima of interband conductivity,
but these are much smaller than the maxima connected
with the rings on the Bragg planes, since the number of
electrons taking part in the transitions between the in-
dicated high-symmetry points is much smaller than the

4

3

2

1

a
0.5 1 2 3

FIG. 5. Form of the I(CJ') curve for three values of 7'.

Figure 5 gives the form of the I(OJ') curve for differ-

The influence of the critical points on the spectral density of lattice
vibrations was considered by Van Hove [5S] and by Phillips [59]. Later
similar considerations were applied by Phillips [60> 61 ] and by Brust et
al. [62 ] to electrons in metals. The role of critical points is also empha-
sized in the theoretical papers of Kohn [63] and Phillips [6I ] •
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number of electrons taking part in transitions near the
rings under consideration.*

By obtaining the values of |Vg| from the optical mea-
surements in the shortwave region, we can calculate N,
Sp, and (vp). These values can be compared with the
corresponding values obtained independently from mea-
surements in the long-wave region. The indicated pro-
gram is described in Ch. 6.

d) Dependence of the Main Electronic Characteristics
on the Temperature

There is an established point of view, according to
which the main electronic characteristics N, Sp, and
( V F ) for metals do not depend on the temperature. It
is based on the fact that the energy of the conduction
electron Ep « 10 eV is much larger than the thermal
energy kT, which at room temperature amounts to 0.02-
0.03 eV.

However, the dependence of the indicated electron
characteristics on T is connected not with the thermal
motion of the electrons, but with the thermal motion of
the ions. The lattice vibrations disturb its periodicity.
This causes Vg to decrease with increasing T. As a r e -
sult, N, S F , and (vp) increase. This question is con-

T20 441
sidered in greater detail in ' .

The Vg(T) dependence is connected with the fact that,
according to (2.17), the Fourier component of the pseu-
dopotential is proportional to the structure factor de-
fined by formula (2.18). The thermal vibrations of the
lattice cause the structure factor to contain a tempera-
ture factor exp [-W(T)], called the Debye-Waller factor.
A similar factor determines the intensity of the diffrac-
tion maxima in the "x-ray band".C84'65:i

The procedure for obtaining this factor is standard. l i9i

The radius vector of the site I is represented in the form

Vg(T) into formulas (2.12), (2.14), and (2.15), and deter-
mine the temperature dependences of the quantities N,
Sp, and ( V F ) .

To estimate the effect we must find Wg(T). An exact
calculation of this quantity calls for summing over the
entire spectrum of the elastic oscillations. This calcu-
lation is very cumbersome. However, we can estimate
the order of magnitude of Wg and the character of its
temperature variation by using the Debye model of a
solid. In this model, the solid is regarded as a continu-
ous medium, i.e., the Brillouin zone is replaced by the
Debye sphere. We assume for simplicity that the veloc-
ities of all three branches of the acoustic spectrum are
the same. In such a model, all three modes are degen-
erate for each value of q. We choose the polarization
vectors such that one oscillation has Uq II sc, and two
others have uq 1 SS. Then W = %ZCZT/1 uq |2. The ob-
tained relation is best satisfied for cubic crystals con-
sisting of atoms of only one type. Bearing principally
this case in mind, and taking into account the connec-
tion between the oscillation amplitude and the average
oscillation energy (see, for example, U91), we obtain

1—T + ±)zdz; (2.40)z — 1 ' 2 / v '

R, ] -:- Ui --= 1 + p (iql) - uj exp ( - iql)J; (2.37)

Here Uq is the vector amplitude of the lattice vibrations,
including the time factor exp (-ifiqt), and q is the wave
vector of the lattice vibrations. Subsequently, R; is sub-
stituted in (2.18) in lieu of 1. Recognizing that the Uq are
small, we expand the corresponding exponentials in se-
ries. The obtained expressions contain terms that have
factors in the form exp (±iq • 1) corresponding to crea-
tion or annihilation of phonons, as well as terms without
the indicated factors, corresponding to phononless pro-
cesses. Gathering the phononless terms back into an
exponential, we obtain the temperature factor exp (-W^),
where

Hence

F (ST) =

(2.38)

(2.39)

and the temperature factor enters in Vg. With our de-
gree of accuracy, we can insert the obtained functions

We note in addition that the points located on the ring MtM2 (see
Fig. 2) are not high-symmetry points and that in the transitions under
consideration, both the lower and the upper states have an energy that
differs from the Fermi energy by an amount much larger than kT.

Here M is the atom mass and © is the Debye tempera-
ture.

The function
I f z dz , x

f W - T j expz-1 +T,
o

differs from the known Debye function by an amount x/4.
The values of the Debye function are tabulated in w>ei\
Thus, recognizing that STfi = 2pg, we obtain

3 Ps
T"AT

.(2.40a)

The dependence of the ratio W(T)/W(0) on T/@ has been
calculated in [2°'44J.

As indicated above, the Debye-Waller factor deter-
mines also the temperature variation of the intensity of
the diffraction maxima. For x-radiation, the tempera-
ture factor of the intensity is equal to exp (-2W), and
Pg should be replaced by 2i7K sin B/\ (9—diffraction an-
gle, A.—length of the x-ray wave). Thus, we can use x-
ray measurements to calculate the temperature varia-
tion of N and compare it with the results of optical ex-
periments. Since the x-ray measurements are usually
performed in the range from room temperatures to ni-
trogen temperatures, let us calculate the change of N
in this interval. The different terms under the summa-
tion sign in (2.12) have different temperature factors,
since they have different pg. To estimate the value of
interest to us, we introduce a certain mean value W(T).
In the temperature interval indicated above, W is small
and exp (-W) « 1 - W. Under these assumptions we ob-
tain

here T r and T^ are the room temperature and nitrogen
temperature, respectively.

The results obtained in this section will be compared
with the experimental data in Ch. 6.
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3. METHODS OF MEASURING THE OPTICAL CON-
STANTS OF METALS AND METHODS OF PRE-
PARING THE SAMPLES

a) Methods of measuring n and K

A review of methods of measuring the optical con-
stants of metals, employed up to 1955 and intended prin-
cipally for measurements in the visible and in the near-
ultraviolet regions is contained in c u . New recently de-
veloped methods can be successfully applied also to the
infrared band. In this chapter we shall discuss the most
promising of these methods, namely polarization meth-
ods and methods based on the measurement of the coef-
ficient of reflection of light under normal incidence, with
subsequent application of dispersion relations of the
Kramers-Kronig type. In both cases one investigates
the reflected light. Only the reflected light can yield
the constants pertaining to a bulky undistorted metal.
Indeed, an investigation of transmitted light calls for
the use of very thin layers, the properties of which dif-
fer from the properties of bulk metal. The indicated
methods can be used in a wide spectral interval, includ-
ing the ultraviolet, the visible, and the infrared regions.
The accuracy and reliability of the polarization methods
is higher.

Polarization methods are connected with the measure-
ment of the ellipticity of the light. Linearly polarized
light incident on the boundary of a metal at an angle
<p * 0 is elliptically polarized after reflection from the
metal. By measuring the phase shift A between the p -
and s-components of the reflected light and the azimuth
p (tan p determines the ratio of the amplitudes of the
reflected light), we obtain two relations from which n
and K are determined.

If the inequality l/\e'\ <C 1 is satisfied, then

is well known,

(3.5)

sinq>'tg<p-cos2pn~ 1 —sin2p-cos A '
sin <p-tg (p-sin2p-sin A

1 — sin2p-cos A 'Y. — -

(3.1)

(3.2)

The minus sign in the denominator takes into account
the fact that in the case of normal incidence the p - and
s-components of the reflected light have a phase shift
A = 0.

In the infrared region, the indicated inequality is al-
ways satisfied for metals, and formulas (3.1) and (3.2)
can be used. In the visible region of the spectrum, the
value of le'l"1 may become appreciable. This means
that it is necessary to take into account the dependence
of the surface impedance on the angle of incidence. Al-
lowance for first-order terms in le'l"1 gives the follow-
ing connection between the complex refractive index,
which we denote in this case by n — iic, on the one hand,
and A and p on the other:

(3.3)

(3.4)

Here n and K are given by formulas (3.1) and (3.2). We
shall henceforth denote the optical constants by n and K
without the superior tilde sign.

The obtained values of the optical constants make it
possible to determine the absorbtivity and reflectivity
A and R of the metal for normal incidence of light. As

Measurement of A and p in the visible and ultraviolet
spectral regions can be readily carried out with the aid
of compensators and polarizers (see the review C1]).
There are no compensators for the infrared region,
therefore A must be determined by other methods. In
[20,32,36,47-48,67-69,70-71̂  ^ d e t e r m i n e d ^ g p h a s e shift
A = 7r(2k -1 ) /2 or A = ffk; here k is an integer. It turns
out here that the use of multiple reflection of light makes
it possible to increase greatly the accuracy of the mea-
surement. This is clearly seen from the following rela-
tion:

(3.6)

Here rp
m ) and r s

m ) are the components of the electric
vector of the reflected light wave after m-fold reflection
from a metallic mirror, Ap and As are the components
of the incident light wave, A is the phase shift after
single reflection, and p is the azimuth after single r e -
flection.

Thus, the phase shift increases by a factor m, i.e.,
Am = mA, and the resultant azimuth is determined from
the relation t anp m = (tanp)m . The use of multiple r e -
flection makes is possible to operate with smaller light-
incidence angles thereby facilitating the investigation of
longer wavelengths.

To increase the measurement accuracy, a modula-
tion null method is used. A block diagram of the method
is shown in Fig. 6. The illuminator produces a parallel

1
}

2
,/

3
I4

/
5

FIG. 6. Block diagram of the polarization method. 1—Illuminator,
2-polarizer, 3—investigated mirrors, 4—analyzer, 5-radiation receiver.

beam of unpolarized light. This light, passing through
the polarizer, becomes linearly polarized and is inci-
dent on a system of investigated mirrors, where it ex-
periences multiple reflection. The elliptically polarized
light obtained as a result of these reflections passes
through a second polarizer, which we call an analyzer,
and is incident on the radiation receiver. For the modu-
lation of the light, one uses either the rotation of one of
the polarizers, or a special shutter, not shown in Fig. 6.
The former method is used when the phase shift A
= 77(2k - l)/2 is measured, and the latter when A = 7rk
is measured. The measurements are carried out in
monochromatic light from a monochromator which is
placed either in a block called the illuminator or in a
block called the light receiver. The position of the
monochromator is not immaterial. It must be placed
in that block which is connected with the immobile po-
larizer or analyzer, so that the polarization of the light
caused by the monochromator does not come into play.

The intensity of the light passing through the polar-
izer-sample-analyzer system is

/ = -i/0|(J-)2mcos2ap-cos1!ctA+ (^y"1 sin2ap-sinaaA
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(3.7)

Here otn and as are the azimuths of the polarizer and
the analyzer. We see that a p and as enter in expression
(3.7) in exactly the same manner.

Let us consider a variant with a rotating polarizer.
For the resultant intensity it is immaterial whether we
rotate the polarizer or the analyzer. For concreteness,
we assume that we rotate the polarizer with a frequency
fi, i.e., a p = Qt, where t is the time; then

(3.8)

The quantities A, B, and y do not depend on the time. It
is seen from (3.7) and (3.8) that the alternating signal
vanishes when the following conditions are satisfied:

cosAra = (3.9)

Let us consider a variant with an additional rotating
shutter, which must be placed ahead of the polarizer so
as to eliminate the signal connected with the radiation
from the investigated mirrors themselves. The angle
a A (or a p) is set equal to 45°. It then follows from (3.7)
that the signal vanishes under the following conditions:

or

cosAm= — 1

cos A™ = + 1 ,

(3.10a)

(3.10b)

Considering the conditions (3.9) and (3.10), we see
that the use of a rotating polarizer has two advantages
over the use of an additional shutter. First, in the for-
mer case the minimum phase shift, which equals 90°,
occurs at smaller angles of incidence of the light on the
investigated mirrors than in the latter case, where it
equals 180°. This makes it possible to investigate longer
wavelengths with a smaller number of reflections. Sec-
ond, less stringent requirements are imposed in the
former case on the quality of the polarizers than in the
latter case. Indeed, conditions (3.9) and (3.10) are equiv-
alent to obtaining circular and linear polarization, r e -
spectively. In detection of the signal by means of a ro-
tating polarizer, we obtain a zero signal already in the
presence of a small part of unpolarized light transmitted
by the polarizer, whereas in the case when a linearly-
polarized light is obtained, this small part of the unpo-
larized light does not make it possible to obtain an abso-
lute null of the signal (a more or less deep minimum is
obtained).

In the investigation of both variants, we can operate
in two ways: 1) the wavelength of the light X is set and
the light-incidence angle <p and the azimuth of one of
the polarizers are varied until the signal vanishes. This
yields values of cp and four values of a, making it pos-
sible to determine 2pm corresponding to the given value
of Am- 2) The angle of incidence <p is set, and the wave-
length of the light A and the azimuth of one of the polar-
izers are varied until the signal vanishes. The four
corresponding values of a make it possible to deter-
mine analogously p m . A more detailed description of
the indicated methods, and also of the experimental
setups used to realize these methods, are found in the
papers cited at the beginning of this chapter.

One more modification of the polarization method is
based on measurement of the intensity of the reflected
light under certain specially chosen polarizer positions.
If, according to [72], one measures the following inten-
sities: I (?r/4. 0), I(TT/4, TT/2), and I(TT/4, TT/4) then, as
follows from (3.7), we get

(tgp)m =

cos Am = - — 1 — Itsr nl2"'2(tgp)"

(3.11a)

(3.11b)

The arguments of I are in this case the azimuths of the
polarizer and of the analyzer. It is possible to use also
other polarizer orientations. Thus, in C7S], the accuracy
of the method was increased by using the relation

(tgp)™ =

This method results in a somewhat lower accuracy in
the determination of the optical constants, since it is
not a null method and is more sensitive than the polar-
ization methods described above to the quality of the
polarizers and to the accuracy with which the optical
systems are adjusted.

The second group of methods, which is also widely
used, calls for the measurement of only the reflection
coefficient for normal incidence of light. These mea-
surements should be performed in a sufficiently broad
spectral interval. The indicated method was developed
by a number of authors.[74"78] It is described in detail
in the review by Stern.L79J

The gist of the method reduces briefly to the follow-
ing. One measures in the experiment the reflection co-
efficient for normal incidence |r(w)|2 in a wide spectral
interval w , < w < w2. From Fresnel's formulas for the
normal incidence of light we have

r = ! l i x l ! = lrle*P('6). (3.12a)

We consider further the complex function

(3.12b)

We obtain for it dispersion relations of the Kramers-
Kronig type, relating the real and imaginary parts of
the complex dielectric constant.C80] As a result we get
the following equation for the phase 6:

0 2»

or
<jln|r(m')|

dm'

J

In \da>'.

(3.13)

Since the measurements are usually carried out in a
limited interval w ^ u s u>2, the value of |r(w)| is ex-
trapolated both towards longer wavelengths u < w1 and
towards shorter wavelengths w > w2. The extrapolation
law is chosen such as to have n and K coincide with the
directly measured values of these constants in some re -
gion of the spectrum.

This method was used by various authors to deter-
mine the optical constants of a number of metals and
semiconductors at room temperature (see, for exam-
ple, "VS.Ol-ST]).
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A weak aspect of the last method is the need for ex-
trapolation of | r(w)| , and since the extrapolation is not
unique, the accuracy and reliability of the results are
reduced.

We shall not analyze here other methods of measur-
ing the optical constants of metals (for example inter-
ference methods), since they are much less promising
for measurements in a broad spectral range. All are
discussed in a number of review papers (see, for ex-
ample »»»,••-•«).

Modern methods make it possible to determine the
optical constants of good metals with an accuracy 1-2%.

b) Methods of Sample Preparation

We are interested in the optical constants of bulk
metals. Therefore the methods of preparing the sam-
ples for the investigation should result in samples that
satisfy a number of requirements. First, since the light
penetrates into the metal to a depth of the skin layer,
~2 x 10"6 cm, it is necessary that the properties of this
layer coincide or be very close to the properties of the
bulk metal. Second, the surface of the metal should be
plane and mirror-finished. Third, the total thickness
of the layer of metal should be sufficiently large so as
not to take into account reflection from the other sur-
face (this requirement is not essential).

At the present time there are two methods that yield
samples satisfying the foregoing requirements,* evapo-
ration of the metal in vacuum and its condensation on
polished substrates, or electric polishing.

The method of evaporation of metals in vacuum re -
quires a separate choice, for each metal, of the evapo-
rator material, the evaporation conditions, and the
method of preparing the substrate. In the investigations
reported in »,3i-»,»,«,«-« f9o-.« f t h e q u a l i t y o f the ob-
tained layers was monitored continuously both when de-
termining the evaporation conditions and when preparing
the samples for the investigation. Particular attention
was paid to the density, conductivity, temperature de-
pendence of the conductivity, and the residual resistiv-
ity of the metallic layers. Certain other characteristics
of these layers were also determined. As a result, it
was possible to obtain good mirror-finish layers with
properties that coincide with or are very close to the
properties of the bulky metal. The cited papers describe
the evaporation conditions of the investigated metals and
the preparation of the substrates for the sputtering.

The method of electric polishing also calls for spe-
cial control. Before the electric polishing, the samples
are ground and polished mechanically, and this results
in a case-hardened layer. The electric-polishing condi-
tions should be chosen such as to remove the entire
case-hardened layer and at the same time leave the
metal surface sufficiently flat and brilliant. A good
way of monitoring the complete removal of the case-
hardened layer is to use x-ray and electron-diffraction
investigations of the metal surface. The case-hardened
layer, in the case of polycrystalline samples, produces
broad smeared diffraction rings, which become narrower

as the layer is removed. Starting with a certain thick-
ness of the removed layer, the rings stop narrowing, and
this can indicate that the case-hardened layer has been
completely removed.* By way of an example we indicate
that for tungsten and its alloys, it is sufficient to remove
by electric polishing a layer of ~ 15 pi, for neobium and
its alloys with titanium it is necessary to remove a layer
~50 /i thick/93"943 and for aluminum it is necessary to
remove a layer ~100 fj. thick. Thus, by carrying out suit-
able control measurements, it is possible to obtain by the
indicated methods samples of the required quality.

Let us stop to discuss the influence of oxidation of the
metal surface. The experiments have shown that by evap-
oration in vacuum it is possible to make the specular
surfaces of many metals, such as indium, lead, tin, gold,
:2o,32] g o gQ0Cj that their oxidation proceeds very slowly.
Measurements of n and K, performed both immediately
after the preparation of the samples and after leaving
the samples for a day in the apparatus, have shown that
no changes take place in n or K. Even in such a lightly
oxidizing metal as lead, noticeable changes occur only
after several days. In [95-97]

; the rate of oxidation of the
investigated layers was larger. But even for these lay-
ers, control measurements performed by the authors of
the cited papers have shown that the thickness of the
oxide layer is small.t Since the effects which we shall
consider are of the order of unity, a slight influence of
the oxide layer, on the order of 10%, can be neglected.

4. OPTICAL CONSTANTS OF NON-TRANSITION
METALS

In a brief review it is impossible to present the re -
sults of the measurements of the optical constants of
all the non-transition metals. We shall pay particular
attention to polyvalent metals. The influence of the lat-
tice on the behavior of the valence electrons of these
metals is stronger than in the case of monovalent met-
als, t

To obtain maximum information concerning the elec-
tron structure of metals from optical investigations, the
latter should satisfy a number of requirements. First,
it is necessary to measure both the optical constants n
and K (or the real and imaginary parts of the complex
dielectric constant). Second, the spectral interval of the
investigation should be sufficiently broad. To obtain
characteristics pertaining to the conduction electrons
as well as to the electrons that take part in the inter-
band transitions, this interval must include both the in-
frared and the visible regions of the spectrum. Third,
the measurements should be carried out in a wide tem-
perature interval. Particular interest attaches to mea-
surements at helium temperatures, since the determi-
nation of the Fourier components of the pseudopotential
by an optical method is carried out. most accurately at

Special notice should be taken of the fact that mechanical polishing
does not produce samples of the required quality, owing to the case-har-
dened layer.

For single crystals, a similar criterion is afforded by the width of the
diffraction spots.

t Formulas for taking into account the influence of surface oxide
layers on the results of metal-optical measurements are given in [9S].

t A discussion of the optical properties of noble monovalent metals
is contained in the review of Suffczynski [" ] and in the papers of Ehren-
reich, Cooper, Phillipp [82~84] and Beaglehole [10°]. The optical proper-
ties of alkali metals are considered in a paper by Mayer and Hietel [!01 ].
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these temperatures. The use of a wide temperature in-
terval for the optical investigations makes it possible
to obtain the temperature dependence of the main elec-
tronic characteristics. Fourth, comprehensive mea-
surements are needed, i.e., the main optical measure-
ments should be supplemented by measurements of
many other properties of the samples (structure, den-
sity, static conductivity, etc.). Only such comprehensive
investigations will make it possible to obtain samples of
the required quality and to determine more fully the
microscopic characteristics of the metals.

At the present time, investigations satisfying the
foregoing requirements were performed only for indi-
umC47] and lead/41" The results of the measurements
of n and K for these metals are presented below in the
form of tables.* We present also the most reliable re -
sults for tin,"6 '69 '1023 aluminum/90 '96-9" and zinc.:49'103J

Investigations of these metals were made in less detail
and call for further measurements from the point of
view indicated above. For many other polyvalent non-
transition metals, such as gallium, thalium, beryllium,
magnesium, and cadmium, we confine ourselves only to
references to the available literature, for in the case
of these metals it is necessary above all to verify the
quality of the investigated samples.

It should be noted that the lack of data on the sample
quality does not make it possible to use the results of
most of the earlier investigations. The point is that dif-
ferent sample-preparation methods can yield different
structures of the investigated layer, and this can lead
to appreciable changes in the properties determined by
the valence electrons, particularly the conduction elec-
trons, and their interaction with the lattice (owing to
the change in the band structure and the additional scat-
tering, which is connected with impurities, crystal-
lattice defects, and crystallite boundaries).

The results obtained by a number of authors, besides
lacking data on the quality of the investigated samples,
are not useable also because they are presented not in
the form of tables, but in the form of plots with very
inconvenient scales. It is impossible to determine n
and K from these plots with any degree of accuracy. The
foregoing pertains, in particular, to the work of Hodgson,
[">4,io5: W o o d a l l j Lenham, and Treherne/1 0 6 '1 0" and a
few others.

Before we present tables of experimental values for
a number of polyvalent metals, let us consider the qual-
itative picture of the dependence of n and K on A and T.
Figures 7-10 show by way of an example the results of
the measurements of the optical constants of lead.

As follows from Figs. 7 and 9, the experimental func-
tions n(A.) and K(X) are monotonically increasing in the
long-wave region. The temperature measurements in
this region have shown that the n(T) dependence is sig-
nificant over the entire interval. When the temperature
is lowered, as expected, n decreases. This decrease is
significant not only on going from room temperature to
nitrogen temperature, but also on going from nitrogen
temperature to helium temperature. The /c(T) depen-

The results of the measurements of the optical and many other pro-
perties of the investigated samples of indium, lead, aluminum, and tin
are described in greater detail in [20].

w

FIG. 7. Dependence of n of lead
on X at three temperatures (long-wave
region).

1 2 3 4 5 S 7 S 9 10 11
A, M

3r

0 0.5 1.0 1.5 2.0 2.5
>; M

FIG. 8. Dependence of n of lead on X at three temperatures (short-
wave region).

FIG. 9. Dependence of K of lead
on X at three temperatures (long-wave
region).

0 I 2 3 4 5 6 7 8 S 10 11 11

fir
T-293'K

7S'K
I, If.

0 05 1.0 15 2.0 25
FIG. 10. Dependence of K of lead on X at three temperatures (short-

wave region).

dence for this interval is more appreciable in the long-
wave end of the interval, where K increases strongly
with decreasing temperature. On going from room tem-
perature to nitrogen temperature, K changes much more
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than on going from nitrogen temperature to helium tem-
perature. On the whole, the dependence of *con the tem-
perature is much weaker than the dependence of n on the
temperature.

It follows from Figs. 8 and 10 that the function n(X)
has maxima in the short-wave region. The magnitude
and widths of the maxima depend on the temperature.
With decreasing temperature, the maxima become nar-
rower and larger. The function K(A) has singularities in

the same spectral regions as n(X), but they are much
less pronounced.

We present tables III-VII of the experimental data of
n and K of certain non-transition metals of groups 4, 3,
and 2.
Each table contains also references to papers not used
in the present review, since they did not satisfy the con-
ditions indicated above (see also Table VIII). The re -
sults pertain to polycrystalline samples. We shall not

Table HI. Optical constants of lead* (from [4")

0.45
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.59
0.60
0.61
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.85
0.88
0.90

r= 293° K

1.44,
1.54
1.62
1.7051.756

1.81
1.87
1.90
1.91
1.91s
1-9*5
1.9451 94,
1.8951.855

1.78.
1.71
1.63.
1.57
1.525

1.50,
1.47
1.44
1.41
1.40

3.18
3.20
3.25
3.30
3.34
3.37
3.41
3.43
3.44
3.45
3.46
3.47
3.49
3.51
3.53
3,57
3,64
3.73
3.84
3.96
4.09
4.18
4.35
4.56
4.68

T =

1.56
1.57.
1.65
1.6761.70
1.78
1.8751.96.
2.01
2.06
2.10
2.11
2.13
2.08
1.965

1.80
1.58
1.39
1.28
1.185

1.13
1.09
1.05.
1.01
0.983

78° K

3.20
3.22
3.22
3.24
3.31
3.39
3.45
3.47
3.46
3.44
3.42
3.38
3.28
3.19
3.10
3.07
3.13
3.24
3.41
3.58
3.73
3.86
4.05
4.25
4.37

T=4,2°K

—
1.82
1.97
2.11
2.17
2.26
2.29
2.34
2.39
2.28
2.09
1.85
1.5451.3051.17,
1.09
1.04
1.0050.976
0.940
0.904

—
3.46
3.51
3.52
3.52
3.50
3.45
3.38
3.16
it.lW
2.89
?, 82
2.89
3.06
3.26
3.46
3.61
3.78
3.97
4.16
4.27

The optical constants of lead were inve

V.
M

0.95
1.00
1.05
1.10
1.15
1.20
1.30
1.40
1.50
1.60
1.80
2.00
2.20
2.40
2.60
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

T= 293° K

1.385
1.38
1.3851.40
1.415

1.44,
1.50
1.58
1.6451.775

2.05
2.32
2.63
3.03
3.45
4 27
5.39
6.58
9.04

11.7
14.1
16,4
18,7
21.0
23.2
24.6

4.99
5.32
5.62
5.98
6.31
6,59
7.23
7.74
8.30
8.90

101,
112
12.2
13.2
14.45

16.4
18,6
20,8
24.8
28.1
30,9
33.6
35.8
37.4
39,2
40.5

0.917
0.848
0.801
0.743
0.678
0.651
0.58;
0.566
0.575
0,611
0.683
0.78;
0.901
0.997
1.195

1.53
2.01
2.48
3.99
5.41
7.16
8.82

10.5
12.3
14.4
16,3

stigated also in [M-31'"

8°K

4.67
5.00
5.30
5.63
6.00
6.28
6.96
7.5E
8.22
8.93

10.2
11.3,
12..%
13.7514.8,
17.3
20.4
22.9
28,7
33.9
38.7
43.9
49.1
54.4
59.1
63.5
"31

0.821
0.721
0.656
0.574
0.485
0.417
0.312
0.285
0.275
0.300
0.336
0.387
0.448
0.541
0.614
0.81
1.10
1.49.
2.15
2.95

3.75
4.50
5.56
6.70
7.90
9.20

2°K

4.57
4.90
5.22
5.58
5.92
6.29
6.96
7.59
8.24
8.94

10.3,
11,5,
12.7.
13.9515.05

17.3
20.1
23.1
28,6
34,4

39.9
45.5
50.6
55.9
61.3
66.5

In this review we publish only part of the experimental data of I48]. A morej
complete table can be found in the cited paper.

M
T= 293° K
n

0.73
0.80
0.93
0.99
1.20

1.35
1.50
1.70
2.00
2.50

2.18
2.40
3,15
3.44
3.76

3.57
3.31
3.13
3.10
3.63

a., u

Table IV
T = -8° K

I

. Optical
T=4 2°K

constants
a.,
M

a) Infrared region (from [x'"]).
6.29
6.62
7.28
7.34
7.63

8.04
8.67
9.88

11.8
14.8

2.24
2.27
3.43
3.92
3.53

2.76
2.09
1.75
1.65
1.69

0.668
0.620
0.588
0.533
0.502
0.480

6.19
6.42
7.17
6.94
6.45

fi.99
7.98
9.29

11.4
14.6

X

2.95
3.70
3.05

2.55
1.99
1.51
1.38
1.39

a.

7.62
7.15
5.98

6.64
7.80
9.35

11.4
14.6

3.0
3.5
4.0
5.0
6.0

7.0
8.0
9.0

10.€
11.(1
12.0

n

T= 293

4.41
5.27
6.19
8.49

11.0

13.8
16.6
19.3
22.0
24.8
27,8

x

oi
K

17.8
20.5
23.2
28.5
33.1

37.1
40.6
43.8
46.4
49.0
51.6

b) Visible and ultraviolet regions (at T = 293
1.418
1.249
1.121
0,889
0.780
0,709

5.
4.
4.
3.
3.
3.

In the region 0.6 —
crepancy,

007
789
512
922
575
318
0.7(i,

0.468
0.447
0.425
0.398
0.361

0.703
0.722
0.701
0.676
0.905

3,124
2.91[
2.487
1.906
1.93

%

tin
T —

1.88
2.13
2.46
3.75
4.97

6.51
8,17

10.0
12.4
15,7
18.2

X

'rom |
0.347
0
0
0
0

325
298
275
257

78° K T= 4

18.0
21.1
24.2
29,7
35.5

41,4
47.0
51,7
55.8
59,8
63.8

1
1

58
95

2.13
3

4
6
7

10
1?,
15

n

102]).
1.012
0.980
1.037
1.119
1.117

75
73

89
05
90
1
6
3

,2° K

18.0
21.1
24.2
30.0
35.8

41.6
47.4
53.3
58,7
63.4
67,0

X

2.227
2.396
2.762
3.308
3,333

the data of the cited papers are subject to a slight dis-
ivhich is probably connected with the inaccuracy of the measurements of

the optical constants for the extreme points of the employed spectral interval
The optical constants of tin were investigated also in [61, 104, 106, 110— 112, 113—115 1
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Table V. Optical constants of indiurr
X,
JU

0.55
0.60
0.65
0.70
0.72
0.74
0,75
0.76
0.80
0.82
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80

r= 295° K
n

0.70
0.795
0.90
1.01
1.07
1.13
1.17
1.19
1.32
—

1.45
1.59
1.72
1.81

1.84

1.87
1.95
_

2,06
2.19
—

2.33

2.49
2.64

H
4.70
5.02
5.42
5.83
6.00
6.18
6.26
6.31
6.60
—

6.78
7.18
7.44
7.77

8.38

9.00
9.70
_

10.35
11.0

—
11.8

12.5
13.1

r = 4,2°K1n | x
0.695
0.77
0.835
0.99
1.09
1.20
1.26
1.33
1.59
1.65
1.71
1.73
1.65
1.49
1.41
1.35
1.31
1.28
1.28
1,30
1.32
1.35
1.36
1.39
1.45
1.48
1.52
1.56
1.61
1.65

4.70
5.08
5.50
6.00
6.20
6.40
6.45
6.50
6.65
6.68
6.72
6.85
7.00
7.25
7.60
8.00
8.42
8.88
9.24
9.60
9.95

10.3
10.6
10.9
11.45
11.9
12.2
12.6
12.9
13.2

X.
M

1.85
1.90
1.93
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
3.0
3,5
4.0
5.0
6.0
8.0

10,0

L (from L"J)
T= 295" K
n
_

2.80
2.97
—

3.13

3.30
3.48

3.65
3.81
—

4.00
4.70
6.0
7.27
9.77

12.4
18.4
24.8

The optical constants of indium were investigated also in
116—1181

X

13.8
14.5
—

15.0
—

15.6
—

16.3

16.9
17.6
—

18,3
20.9
23.9
26,7
32.2
37.2
45.3
51.9

T =
n

1.70
1.75
1.78
1.84
1.88
1.92
1.96
1.98
1.99
2.00
2.00
1.99
1.97
1.95
1.93
1.92
1.90
2.05
2.3
3.1
4.2
7.5

13.5

,2°K
x

13.5
13.85
14.2
14.6
14.8
15.0
15.3
15.6
16.0
16.2
16.5
16.8
17.2
17.5
17.8
18.25
20.9
23.9
26.7
32.7
38.7
50.6
62.3

40, 95—97, 106—107, 110,

X, fl

1.20
1.50
2.00
2.50
3.0
4.0

Table VI
T = 295° K

X

Optical constants of
T = 78°K [1
n A, UX ^

T
n

a) Infrared region (from I90]).
0.95
1.14
1,75
2.4
3.2
4.8

X, u

9.6
12.1
16,1
19.8
23.5
30.0

0.63
0.78
1.30
1.7
2.2
3.2

n

9.6
12.1
16.1
19,8
23,5
30.1

X

5.0
6.0
7.0
8.0
9.0

6
9

12
15
21

X, IX

b) Visible and near infrared regions (at T = 295°K, from

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

'in

0.32
0.41
0.50
0.60
0.77
0.98
1.26
1.50

3.72
4.06
4.59
5.01
5.46
5.97
6.40
6.72

0.80
0.85
0.875
0.90
0.95
1.00
1.10
1.20

aluminum
= 295°K

X
T= 78°K
n x

7
5
6
6
1

37.6
44.4
51.0
58.1
62,1

4.4
6.5
9.1

n

37,8
44.9
52,0

X

96,1.9]),

1.78 6,87
1.91
1.82
1.70
1.40
1.17
0.85
0.78

6.90
6.87
6.97
7.22
7.58
8.33
9.16

j96, ii9j ^ t,esj(jes tne directly-measured data listed in the table, there are given
also the values of the optical constants obtained after taking into account the influence
of the oxide film

The optical constants of aluminum were investigated also in f70'72) 83'89'104>
| 1O6—1O7, 110 — 111, 113, 117, 120 — 1271

Table VII. Optical constants of zinc

X, IX

1.23
1.55
2.14
2.68
3.19
4.0

n X X, M

a) Infrared region (from [49]).
1.17
0.95
1.01
1.26
1.86
2.58

4,92
7.28

10.65
13.3
16.6

5.0
6.0
7.0
8.0

1 10.0
21.3 II

3.77
5.8
7.6
9.05

15.3

X

26.2
31.6
36.1
40.7
47.6
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Table VII (cont'd)

b) Visible and near infrared regions (from Fig. 2 of [103]).
2.39
2.07
1.82
1.69
1.64
1.59
1.56
1.52

Here hw — quantum energy. The two columns of 2n«/X pertain to polarizations
perpendicular to and parallel to the c axis. The discontinuity in the values of 2nx/X
in the region 1.2 — 1.18 eV is connected with the change over to a different light re-
ceiver. This discontinuity does not affect the positions of the maxima of 2n«/X.

The optical constants of zinc were investigated also in [s0' 104> 106' 1°8> 110~lll>
113, 128 —132 1

24.1
37.4
44.7
53.3
54.0
55.3
57.0
57.0

11.6
15.3
19.4
22,5
22.6
23.0
23.2
22.6

1.48
1.44
1.41
1.36
1.28
1.20
1.18
1.12

55.3
52.9
45.4
35.3
21,7
13.6
—

22.4
22.0
20,8
19.9
18.7
18.0
11.5
12.1

1.09
1.04
1.01
0.96
0.93
0.86
0.81
0.78 —

12.5
12,7
12.1
12,2
11.4
8.0
7.7
7.6

Table VIII. Literature on
the experimental inves-
tigation of the optical
properties of certain

non-transition
polyvalent metals

3.767-101

X 1-(«2/K2)1-B,'

Me-
tals

Ga
Tl
Be
Mg

Cd

10
n
87
50

50

Literature

6, 109-112, il6, 118, 133-134
6
121

, 106
132,
, 106

130, 135-136
110-112, 117, 121, 130,
37
108, 110-113

consider the anisotropy of the optical constants, which
appears for metals with non-cubic lattice. The study of
the anisotropy of n and K carried out at the present time
by a group of physicists headed by Woodall.C50'108'112J

Unfortunately, the measurements of the optical constants
of the anisotropic metals, carried out by this group, per-
tain so far to mechanically polished samples, making it
impossible to obtain the constants of the non-distorted
metal.

5. DETERMINATION OF THE MICROSCOPIC CHAR-
ACTERISTICS OF A METAL FROM THE EXPERI-
MENTAL VALUES OF n AND K

a) Long-Wave Region

Experiment shows that for polyvalent metals, at all
temperatures, a weakly-anomalous skin effect is real-
ized.120'30 32>47-49'69] Therefore it is reasonable to use
formulas (1.9a), (1.10a), (1.17), and (1.18) in the long-
wave region of the spectrum. Taking (2.16) into account,
we obtain the following formulas for the reduction of the
experimental results:*

0,1115-1022 (5.1)

*In formulas (5.1) and (5.2), terms of order le'l"1 are neglected com-
pared with unity. For metals in the long-wave region, this is perfectly va-
lid, since le'l"1 ~ 10"3 -10"4.

2 = 0.06254 -10-10 (vF) x-
njv.

<!%• V A'v,! '

(5 .2 )

'/*>,W°"] • (5-4)

(5.5)

(5.6)

Here w = 1.884 x 1015/A.; /3r and /32 are the corrections
connected with anomaly of the skin effect; X is ex-
pressed in microns and the remaining quantities in
cgs esu.

Formulas (5.1)-(5.6) make it possible to determine
the microscopic characteristics of the investigated
metals.* To this end it is necessary to know, besides
the optical constants of the metals n and K also Nv a i
and vp, which calls for measurements of the density
of the investigated samples. We note that since the val-
ues of Nv a i and vp are used only to determine (vp),
which enters in the formulas for /32 and /32, the values
of N and v are not very sensitive to Nvaj and v F . There-
fore the last two quantities can be determined with a
lower accuracy. After the calculations are completed,
it is necessary to verify the character of the skin ef-
fect. For the weakly-anomalous skin effect, 0i and /32,
as well as the real and imaginary parts of the complex
expansion parameter (1.18), should be smaller than
unity, t

It was indicated above that to obtain the microscopic
characteristics pertaining to the conduction electrons
it is necessary to use measurements in the spectral
interval in which the influence of the interband transi-
tions on the optical properties can be neglected. The
indicated interval can be determined experimentally
as the interval in which the calculated values of N and
v do not depend on X. By way of an example, Fig. 11
gives the results of the calculation of N for lead at

*The solution of the system of equations (5.1)- (5.5) is best ob-
tained by successive approximations, assuming in the zeroth approxi-
mation that 0i =j32 =0.

t Usually (32 > 0i, i.e., the influence of the anomaly of the skin ef-
fect on v is much larger than the influence on N.
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N-iO ,cm~-
5r

U.2 •«
8 9 10 11 12

FIG. 11. Values of
(*. I I 15- l»"2 . ,H —n2/x2) 1

for different wavelengths for lead at three temperatures. In the regions
2.5-12 M for T = 293°K, 3-12 fi for T = 78°K, and 2-12 M for T =
4.2°K this quantity gives the concentration of the conduction electrons.

three temperatures. It is seen from the figure, that
in the interval 3-12 /! the calculated values of N do
not depend on A. Consequently, measurements in this
spectral interval can be used to determine the charac-
teristics of the conduction electrons of lead.

The determination of N and v in conjunction with
measurements of the static conductivity ost and the
ratio of the residual resistance to the resistance at
a given temperature R r e s /R , make it possible to cal-
culate v , , I, 6 and the average crystal di-
mension L. To this end, it is convenient to use the
following relations:*

"res
"IT

X
" 2nx '

(5.7)

(5.8)

Thus, measurements of the optical constants in the
long-wave region, in conjunction with measurements of
P; °"st> and R r e s / R make it possible to determine the
following microscopic characteristics: N, (vp), S F , V.

"ep> "ep> "e
pendences.

I, and 6, and also their temperature de-

b) Short-Wave Region

In the spectral region where an appreciable role is
played both by interband and intraband transitions
(these are usually the visible and near infrared re -
gions), we use the additivity of the complex dielectric
constant e', i.e., we assume that

6=1+8,. + ^ (T = <j«, + cr; (5.9)

the quantities ee and ere pertain here to the conduction
electrons and ?and a to the interband transitions.

The contribution of the conduction electrons to e and
a can be determined with the aid of the microscopic
characteristics obtained in the long-wave region of the
spectrum, after which it is easy to determine the con-
tribution of the interband transitions. Confining our-

In (5.7) no account is taken of the frequency of the interelectron
collisions vee, since experiment shows that vee <v [20'30 ~32'47 ~48 ].

selves to terms of first order in px and /32, we obtain
for the contribution of the conduction electrons the fol-
lowing formula :[20'47'48]

R 2v2

Pl+ (,)24-v2
' I

(5.10)

(5.11)

Greatest interest attaches to the function <J(U>), since
the positions of its maxima determine the Fourier com-
ponents of the pseudopotential. The measurements at
helium and nitrogen temperatures make it possible to
separate CT with greater accuracy than measurements
at room temperature, since the contribution of the con-
duction electrons to a is small at low temperatures.

For polyvalent metals in the visible and in the near
infrared regions, maxima are observed on the CT(W)
curve. This makes it possible to break up cTinto indi-
vidual bands, assuming that a = S^g- The widths of

the bands and their positions are minimal at helium
temperature, increasing noticeably with increasing
temperature to room temperature. Therefore the ac-
curacy with which the bands are separated is maximal
at room temperatures. Figure 12 shows by way of an
example the dependence of CT(W) of indium on Kw at he-
lium temperature. One can see clearly two maxima
corresponding to the two bands of erg. Similar relations
are obtained for other metals. The observed bands can
usually be identified with transitions determined by dif-
ferent Bragg planes. In the case of anisotropic metals,
it is convenient to use here measurements of cf per-
formed on single crystals in polarized light. C49'5C'103]

For isotropic metals or in the case of polycrystalline
samples of anisotropic metals, it is possible to use the
relative values of 5g, and also additional information
from other effects, in particular from the van Alphen-
de Haas effect/20'47"483

The positions of the maxima and the widths of the
bands of the interband conductivity make it possible to
determine by means of formula (2.35) the absolute val-
ues of the Fourier components of the pseudopotential.
In practice one can put t « 1.05 in this formula in the
case of those bandwidths that are normally observed
in the experiments.

' CGS£
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FIG. 12. Dependence of the interband conductivity <?(OJ) on hcj for
polycrystalline indium at T = 4.2°K. • — experimental values; o ln
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Thus, measurements in the short-wave region make
it possible to obtain the absolute values of the Fourier
components of the pseudopotential |Vg| and to calculate
with their aid the same electronic characteristics that
are determined independently from measurements in
the long-wave region.

6. COMPARISON OF THE EXPERIMENTAL RESULTS
WITH THE THEORY

a) Determination of the Fourier Components of the
Pseudopotential by the Optical Method. Interband
Transitions

It was indicated in Ch. 2 that the optical measure-
ments in the short-wave spectral region (i.e., in the
region where interband transitions are significant)
make it possible to determine, from the positions of
the maxima of the interband conductivity, the absolute
values of the Fourier components of the pseudopotential
|Vg|. This was performed for lead, tin, aluminum, in-
dium, and zinc. Experimentally, Vg can be determined
also from the van Alphen-de Haas effect and from cy-
clotron resonance. This case requires a complicated
mathematical reduction of the experimental results.
At the present time, such a reduction has been per-
formed only for aluminum and lead at helium temper-
atures. Table IX presents a comparison of the values
of |Vg| for aluminum and lead, obtained by an optical
method [20'46'48J and by the method of the van Alphen-de
Haas effect.'51'523 The accuracies with which the larger
and smaller components were determined are ~2-5%
and ~5-10%, respectively. It is seen from the table
that the values of |Vg| obtained by both methods are
in sufficiently good agreement.

Table X lists the values of |Vg| determined by the
optical method for certain non-transition polyvalent
metals in the temperature range from room tempera-
ture to helium temperature.

The experimental and theoretical forms of the inter-
band conductivity bands are compared in [20»48]. To this
end, the aluminum band la2o0 was used, since it is suffi-
ciently well isolated from the other bands and is located
in the spectral region where the contribution of the con-
duction electrons to the total conductivity is small. In
addition, no structure connected with the spin-orbit in-
teraction should be observed in the aluminum bands.
Comparison has shown that the experimental and theo-
retical forms of the bands are in sufficiently good
agreement.

Table IX. Determination
of the Fourier compo-
nents of the pseudo-

potential by
various methods

Metal

Al
Pb

IViiil, eV |V,

m
£-% 3

0.22
1.11

0.24
1.14

I. eV

zii

0.72
0.70

0.76
0.53

An investigation of the dispersion of the interband
conductivity makes it possible to determine, from the
widths of the experimental ag(a>) curves, the relative
broadening of the energy levels yg, by using the rela-
tions (2.36). Further, from (2.32)-(2.33) it is possible
to calculate the absolute values of <rg. A comparison
of the experimental and the theoretical absolute values
of ag has shown, that the experimental values are ap-
proximately half as large as the calculated ones.* The
indicated difference, apparently, is connected, first,
with the fact that AE, which enters in formula (2.25),
changes slightly"53 along the plane of the ring M ^ on
Fig. 2, and second, with the fact that the equality (2.25)
is not satisfied in the region of the intersection of sev-
eral Bragg planes.

On the whole it can be assumed that the results of
an investigation of the interband conductivity confirm
the assumption that the structures of the bands of the
interband conductivity in the visible and in the near in-
frared regions of the spectrum are connected in the
main with the Bragg energy splitting.

b) Determination of the Main Electronic Characteristics

We proceed to the question of determining the main
electronic characteristics N, Sp, and (vp) from the op-
tical measurements. We have already mentioned that
the indicated quantities can be obtained, first, from
measurements in the long-wave region and, second, they
can be calculated from formulas (2.22)-(2.22a) using the
quantities |Vg| listed in Table X. The results of the de-
termination of N by two independent methods are listed
in Table XI. The accuracy with which N is determined
from the long-wave measurements is ~2%, and the cal-
culation accuracy is ~10%. It is seen from the table
that for polyvalent metals N < Nv a i . It is seen further
that the results of the determination of N by both meth-
ods practically coincide. A certain discrepancy is ob-
served for aluminum. The causes of this discrepancy
call for a further analysis. It is quite possible that it
is connected with the influence of the interaction be-
tween electrons: this influence was considered in
[28-29,138-139]

The results of Table XI show that the difference be-
tween N and Nvai is determined in the main by the
Fourier components of the pseudopotential. A similar
picture is obtained for Sp and (vp) . The deviation of
these characteristics from the values corresponding
to free electrons (at a concentration equal to the va-
lence concentration) is also determined mainly by the
Fourier components of the pseudopotential. This is
seen from Tables XII and XIII.

Table XII lists also the values of S F / S F obtained
both by the optical method and by the method of inves-
tigating the anomalous skin effect in the microwave
band. We see that, with the exception of aluminum, the
results of both methods are in agreement (the error in
the determination of SF /Sp is approximately 10%).

Let us stop to discuss the accuracy of the formulas
derived in Ch. 2. To this end, we compare the results
of the calculation of the ratio Sp/Sp by means of for-

*Theories based on the special role of high-symmetry points give
values ofUg which are smaller than the experimental ones by a factor of
5-10. [61f.
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Table X. Values of | Vg I determined by the optical
method, for certain non-transition polyvalent metals

T, °K
Vi I,
eV

I v3l,eV
Litera-
ture eV

iv, 1,
eV

Litera-
ture

Pb 4.2
78

293
1.11
1.13
1.17

0,70
0.65
0,51

In 4,2
295 0.59

0.28
0.27

0.28
0.27

Al
Sn 4.2

78
293

0.61
0.60
0.57

0.30
0.30
0.22

295 0,22 0.72

Zn 293 0.74 0.50 <0.36
For Pb, Al, and In we have |V, I = |Vm I and |V21 = |V200|; for In - |Vj| = IV02 I;

for Zn - |V, I = |V,fo,, I, IV, I = IVooo, 21, IV31 = |V,i0, 01. for Sn - IV, I w |V1011 «
* IV2001. IV21 * IV2201

 x lv2ii I (for Sn, the indicated identification of the Fourier
components of the pseudopotential is at the present time still not unique).

Table XI. Concentration of the conduction electrons N,
obtained from measurements in the long-wave
region and calculated from the values of the

Fourier components of the pseudopotential | Vg I

Metal

Pb

Sn

T, °K

4,2
78

293

4,2
78

293

N/N-t

from long-
wave mea-
surements

1.11
1.15
1.23

1.12
1.12
1.30

from
' V

1.13
1.13
1.25

0.96
0.99
1.41

wval
%.

4

4

lit-
era-
ture

20, 48

20

Metal

In

Al

Zn

T, •£

4.2
295

78
295

293

N/Na

from long-
wave mea-
surements

1.42
1.76
1.25
1.31

0.51

from
' V
1.52
1.70

2.02

<0.79

•Vval
JV

3

3

2

lit-
era-
ture

20, 47

20, 43

49

mulas (2.14), based on the solution of a second-order
secular equation, with the calculation of this quantity
based on the solution of a fourth-order secular equa-
tion. The latter calculation was performed for lead in
C52]. Using the values V u l and Vao, determined from
the van Alphen-de Haas effect (see Table IX), we ob-
tain S F / S F = 0.589 in accordance with :52] and 0.638 in
accordance with formulas (2.14). Further, for the den-
sity of the electronic states on the Fermi surface* we
obtain (dY/dE)F/(dY/dE)oF = 1 using a second-order
secular equation and 0.87 (for lead) using a fourth-order
secular equation.C52] It can thus be assumed that the e r -
ror in the formulas of Ch. 2 is approximately 10%.

Tables XII and XIII make it also possible to estimate
the accuracy of the approximate formulas (2.16). Com-
paring the data of the third and fourth columns, we find
that the error in the approximate formulas is also of
the order of 10%.

c) Temperature Dependence of the Electronic Charac-
teristics

The optical method is at present the only one that
makes it possible to obtain the temperature dependence
of |Vg|, N, SF , and ( v F ) in a wide temperature range.
This temperature dependence is given in Tables X-XIII.
When the temperature increases from that in liquid he-
lium to room temperature, |Vg| of the investigated met-

The experimental determination of the density of states of the elec-
trons on the Fermi surface with the aid of the electronic specific heat in-
cludes the phonon "overgrowth" considered in [142> 143 ]. This phonon
"overgrowth" does not come into play in optics [144].

als drop by approximately 4-25% (with the exception of
|VU1| for lead, which increases by about 6%), N increase
by about 5-25%, and S F and <vF) increase by approxi-
mately 3-12%. Figure 13 shows by way of an example
the N(T) dependence observed for all the investigated
metals. The increase of N on going from nitrogen tem-
perature to room temperature is larger than on going
from helium temperature to nitrogen temperature.
Above room temperature, the N(T) dependence should
be even stronger. This conclusion is in qualitative
agreement with the results of the determination of the
optical constants of tungsten at high temperatures.a45J

Table XII. Values of S F / S F calculated
from | Vg | and measured by the optical
method and by the microwave method

Metal

Pb

Sn

In

Al

Zn

T°, K

4,2
78

293

4,2
78

293

4.2
295

78
295

295

no 1 vg |
Fromformula(2,14)
0.61
0.61
0.62

—

0.72
0.77

0.81

-

Fromformula(2,16)
0.53
0.53
0.56

0.49
0.50
0.59

0.71
0.75

0.82

-

Optical mea-
surements

0.53
0.54
0.56

0.53
0.53
0.57

0.69
0.77
0.64
0,66

0,50

Refer-
ence

20, 48

20

20, 47

20

49

Measurements
in the micro-
wave band

Sp/S°p

0.55

0.55

-

1.0

0.41

Refer-
ence

140

141

-

141

141
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Table XIII. Values of (vp) x 108 (cm/sec) calculated
from | Vg I and measured by the optical method

no IV |

Pb

Sn

4.2
78

293
0.85
0.85
0.92

0.97
0.97
0.92

0.97
0.98
1.01

1.84
1.83
1.82

In 4.2
295

1.22
1.29

1.24
1.31

1.20
1.34

Al
4.2

78
293

0.93
0.94
1.12

1.00
1.00
1.08

78
295 1.67 1.65

1.30
1.33

Zn 293 0.92

1.74

2.02

1.82

FIG. 13. Temperature dependence
of the conduction electron concen-
tration, obtained from measurements
in the long-wave region.

Table XIV. N(T)
dependence for

Al and Pb,
obtained by
optical and

x-ray methods

100 2№

Metals

Al

Pb

"Op-
tics"

1.05

1,07

"X-
ray"

1.01
1.11

U n f o r t u n a t e l y , t h e o p t i c a l c o n s t a n t s w e r e d e t e r m i n e d

i n t h a t r e f e r e n c e o n l y f o r t h e n e a r i n f r a r e d r e g i o n ,

w h e r e t h e c o n t r i b u t i o n f r o m t h e i n t e r b a n d t r a n s i t i o n s

m a y b e a p p r e c i a b l e .

I t f o l l o w s f r o m T a b l e X I t h a t t h e t e m p e r a t u r e d e p e n -

d e n c e of N i s d e t e r m i n e d b y t h e t e m p e r a t u r e d e p e n d e n c e

of | V g | .

I t w a s s h o w n i n C h . 2 t h a t t h e N ( T ) d e p e n d e n c e , a s

w e l l a s t h e t e m p e r a t u r e c h a n g e s of t h e i n t e n s i t y of t h e

d i f f r a c t i o n m a x i m a i n t h e x - r a y b a n d , a r e d e t e r m i n e d

b y t h e D e b y e - W a l l e r f a c t o r . U s i n g t h e r e s u l t s of [ 1 4 8 ] ,

i n w h i c h t h e D e b y e - W a l l e r f a c t o r w a s d e t e r m i n e d f o r

t h e c u b i c m e t a l s A l a n d P b f r o m x - r a y m e a s u r e m e n t s ,

t h e t e m p e r a t u r e d e p e n d e n c e of N w a s c a l c u l a t e d f o r

t h e s e m e t a l s i n lzo>iii.* A c o m p a r i s o n of t h e r e s u l t s of

t h e c a l c u l a t i o n of t h e r a t i o N ( T r ) / N ( T N ) f r o m x - r a y

d a t a w i t h t h e r e s u l t s of t h e o p t i c a l e x p e r i m e n t s i s f o u n d

i n T a b l e X I V . ( H e r e T r a n d T J J a r e t h e r o o m a n d n i t r o -

g e n t e m p e r a t u r e s , r e s p e c t i v e l y ) . W e s e e t h a t t h e v a l u e s

of t h e r a t i o o b t a i n e d b y d i f f e r e n t m e t h o d s a r e i n g o o d

a g r e e m e n t .

T h u s , t h e t e m p e r a t u r e d e p e n d e n c e of t h e e l e c t r o n i c

c h a r a c t e r i s t i c s a g r e e s w i t h t h e t h e o r y .

d ) C o l l i s i o n F r e q u e n c i e s o f C o n d u c t i o n E l e c t r o n s a n d

of E l e c t r o n s T a k i n g P a r t i n t h e I n t e r b a n d T r a n s i t i o n s

O p t i c a l m e a s u r e m e n t s i n t h e l o n g - w a v e r e g i o n m a k e

i t p o s s i b l e t o o b t a i n t h e e f f e c t i v e e l e c t r o n c o l l i s i o n f r e -

q u e n c y v. If t h e s t a t i c c o n d u c t i v i t y a n d t h e r a t i o o f t h e

r e s i d u a l r e s i s t a n c e t o t h e r e s i s t a n c e a t a g i v e n t e m p e r -

a t u r e a r e m e a s u r e d s i m u l t a n e o u s l y w i t h t h e o p t i c a l

N o account was taken in C 4 ] of the temperature dependence of the
lattice constant. This dependence was taken into account in [ 2 0 ] and in
the present paper.

T a b l e X V . C o l l i s i o n f r e q u e n c i e s of

c o n d u c t i o n e l e c t r o n s a n d of e l e c t r o n s

t a k i n g p a r t i n t h e i n t e r b a n d t r a n s i t i o n s

Metal

Pb

Sn

In

Al

Zn

78
293

4.2
78

293

4.2
295

78
295

Conduction electrons Electrons taking part in
interband transitions

0.41
0,87
3.07

0.53
0,77
2.27

0.58
2.24

0.72
1.21

293

v. Vep* »m and v20o— B

0.40
0.86
3.06

0.48
0.72
2.21

0.54
2.19

1.05

20,47

4*)
6«

V,.

*The values given for tin are those pertaining to the band

m e a s u r e m e n t s , t h e n i t i s p o s s i b l e t o d e t e r m i n e y e p

" e d ( s e e C h . V ) . T h e r e s u l t s of t h e d e t e r m i n a t i o n o f v

a n d vep f o r c e r t a i n m e t a l s a r e l i s t e d i n T a b l e X V .

O p t i c a l m e a s u r e m e n t s i n t h e s h o r t - w a v e r e g i o n m a k e

i t p o s s i b l e t o d e t e r m i n e , t h e b r o a d e n i n g of t h e e n e r g y

l e v e l s f r o m t h e w i d t h of t h e dg(u) b a n d s , a n d t o e s t i m a t e ,

b y u s i n g t h e u n c e r t a i n t y r e l a t i o n , t h e e f f e c t i v e c o l l i s i o n

f r e q u e n c y ug f o r t h e e l e c t r o n s t a k i n g p a r t i n t h e i n t e r -

b a n d t r a n s i t i o n s n e a r t h e B r a g g p l a n e g ( s e e C h . I I ) . T h e

r e s u l t s of t h e d e t e r m i n a t i o n of v i n a n d v200 a r e a l s o

l i s t e d i n T a b l e X V f o r a n u m b e r of m e t a l s .
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A comparison of v with vg shows that vg > v. The
temperature dependence of vg is much weaker than the
temperature dependence of v, and accordingly at low
temperatures vg 3> v.

The short lifetimes of the electrons taking part in the
interband transitions may be due to the strong interelec-
tron interaction. This interaction is larger than the cor-
responding interaction for an electron on the Fermi sur-
face, since the energies of the ground and excited states
differ from the Fermi energy by an amount greatly ex-
ceeding kT. The inter electron interaction can lead to
the collective Auger effect indicated in m>l4n

) which
also reduces the lifetime of the excited state.

Let us examine the temperature dependence of the
electron-phonon collision frequency êp> which deter-
mines the optical properties of metals. This tempera-
ture dependence is much weaker than the temperature
dependence of the analogous frequency ^Si, which enters
in the static electric conductivity. The reason is the
quantum character of the interaction of the electron with
the photon and with the phonons. This question is con-
sidered theoretically in IIO~1Z\

At high temperatures, when T > ©R and there are
many phonons, the interaction of the electrons with the
phonons, both in optics and in statics, leads to approx-
imately the same collision frequency, i.e., vep « v%k
at T > ©R. Here ®R is the characteristic temperature,
obtained from the temperature dependence of the resis-
tance. It is close to the Debye temperature. At low tem-
peratures T <C ®R there are few phonons, especially
high-energy ones. Therefore, in static phenomena, the
electron is practically unable to absorb high-energy
phonons. Nor does the electron have enough energy to
emit such phonons. As a result, we get f<Sp(T) ~ T5

when T <C ©R.

In optics, an electron absorbing a quantum of light
is ejected far beyond the Fermi-surface smearing
level. In this case it cannot absorb high-energy pho-
nons, of which there are none, but it can emit the en-
tire phonon spectrum. This leads to a large collision
frequency. According to C1O"12]

) yep(T) — 0.4 iv® when
T « : ©R; here v&= 0.94 t-ep(@R).

Figure 14 shows theoretical plots of vep/v® and
v%p/v@ on T / ® R , obtained in . The figure shows the
large discrepancy between these curves when T is close
to zero.

The experimental temperature dependence i^ep(T) is
given in Table XV. The main qualitative effect is seen
immediately. Even at helium temperatures, vep remains
a large quantity, equal to (4-5) x 1013 sec"1. For com-
parison we indicate that for gold at room temperature
vep = 4 x 1013 sec"1. The ratio t'epAep a t helium tem-
perature for the investigated metals is equal to 104-106.

To compare the theoretical and experimental tem-
perature dependences, it is best to consider the ratios
of the frequencies yep pertaining to different tempera-
tures. In this case all the coefficients, which are theo-
retically determined with low accuracy, drop out. The
comparison shows that the theory yields the correct
temperature dependence of fep(T). This is clearly seen
from Fig. 14, which shows besides the theoretical curve
also the experimental dependence of ^epA1® o n T / ® R
for Pb, Sn, and In.1120'31"32*36'47-1 The value of ©R was de-
termined from the temperature dependence of the static

1 2 3 T/6S

FIG. 14. Experimental and theoretical dependences of the electron-
phonon collision frequencies on the reduced temperature. Solid curve-
theoretical dependence of vep(T)/vQ on T/0R; dashed -theoretical de-
pendence of i>ep (T)/f© on T/OR; the experimental values of Pep(T)/i>9
for indium, tin, and lead.

conductivity. It turned out to be equal to 85° K for Pb,
187° K for Sn, and 190° K for In. The coefficient v& was
determined by aligning the experimental values pertain-
ing to the room temperature with the theoretical curve.
It turned out here that VepC^ta)/1'® a n d l'ep(THe)A'© fit
the curve quite well (here TN = 78° K and TRe = 4.2° K).
In particular, the mean value of y(THe)A@for the three
indicated metals turned out to be 0.42, which is in good
agreement with the theoretical value 0.40. Thus, theory
yields the correct temperature dependence of ^ep(T).

The experimental data given in [20>47>48:l make it also
possible to compare the experimental and theoretical
absolute values of yep- According to the theory, vep
« ygp when T > ®R. For lead, tin, and indium T r > ®R
(here T r is the room temperature), but yep is approxi-
mately 30% larger than v%p.

Thus, the absolute values of ven, obtained from ex-
periment, are approximately 30% larger than the theo-
retical ones. The reason may be that the theory does
not take accurate account of the high-frequency acoustic
and optical oscillations.

7. CONCLUSION

On the whole, it can be assumed that the experiments
confirm the theory presented in the present article. The
optical properties of non-transition metals in the infra-
red and visible parts of the spectrum can be success-
fully described by the weak-coupling scheme. The dif-
ference between the characteristics of the conduction
electrons, which determine the optical properties in the
infrared region of the spectrum, and the characteristics
of the free electrons is determined principally by the
Fourier components of the pseudopotential, correspond-
ing to Bragg planes intersecting the free-electron
sphere. The optical properties in the visible and in the
near infrared regions of the spectrum are determined
principally by the interband transitions connected with
the Bragg energy splitting. The electronic character-
istics obtained from measurements in both indicated
regions of the spectrum are in good agreement with
each other.

Metal optics makes it possible to obtain a number of
fundamental electronic characteristics of metals: the
concentration of the conduction electrons, the average
velocity of the electrons on the Fermi surface, the total
area of the Fermi surface, the Fourier components of
the pseudopotential, and the effective electron collision
frequencies. The results obtained by the optical method
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are in good agreement with the analogous results ob-
tained from other effects. However, metal optics, com-
pared with other effects, gives the largest assortment
of microscopic characteristics. In addition, at the pres-
ent time only optics yields the temperature dependence
of the indicated characteristics. We can hope that fur-
ther development of metal-optic investigations will fur-
ther increase their role in the development of metal
physics.

LIST OF SYMBOLS

e ' = e - i e s e - i a = (n - i/c)2 — Complex dielec-

tric constant;
n - i/c — complex refractive index;
e^ = Re e', e2 = - I m e';
e — dielectric constant;
ee — contribution made to the dielectric constant by

the conduction electrons;
e"— contribution made to the dielectric constant by

the electrons taking part in the interband transitions;
a — conductivity;
CTe — contribution of conduction electrons to the con-

ductivity;
a — contribution of the electrons taking part in the

interband transitions to the conductivity;
g — electric field of light wave;
A. — wavelength of light; u — cyclic frequency of light;

c —^velocity of light;
f = f0 + f — electron distribution function; f0 — equi-

librium electron distribution function;
f — nonequilibrium addition to the electron distribu-

tion function;
j — current density;
E — electron energy;
Ep — Fermi energy;
Ep — Fermi energy for free electrons at a concen-

tration Nv a i ;
m — mass of free electrons;
e — electron charge;
N — conduction-electron concentration;
Nv a i — valence electron concentration;
Na — atom concentration;
p — electron momentum;
pp — Fermi momentum for free electrons at concen-

tration Nv a i ;
«T—wave vector of electron;
v — electron velocity;
( V F ) — average electron velocity on the Fermi sur-

face;
vp — velocity of free electrons on the Fermi surface

at concentration N v a i ;
Sjr — total area of the Fermi surface in momentum

space;
Sp — area of Fermi surface for the free electrons at

concentration Nv a i ;
v — effective electron collision frequency;
i/gp — electron-phonon collision frequency;
ygl — classical electron-phonon collision frequency;
fee — interelectron collision frequency;
i>ed — frequency of collisions between the electron

and impurities or defects;

/ — mean free path of electron;
6 = X/(2TTK) — skin-layer depth;
T — absolute temperature;
k —Boltzmann's constant;
V — pseudopotential;
Vg — Fourier component of pseudopotential;
g — reciprocal-lattice vector;
a —lattice period for cubic systems.
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