ТРЕХЧАСТИЧНЫЕ РАСПАДЫ *К*-МЕЗОНОВ *)

Б. Обэр

Трехчастичные распады К-мезонов позволяют проверять важные гипотезы теории слабого взаимодействия: о правилах отбора, форме гамильтониана и т. д., но их изучение является более трудным, чем изучение распадов $K \rightarrow 2\pi$ **).

*) Перевод с рукописи выполнен А. Д. Долговым.
 **) Подробные экспериментальные данные по распадам К→ 3л приведены в таблицах, составленных В. В. Анисовичем (стр. 508).

Б. ОБЭР

В последние годы было получено значительное количество экспериментальных результатов, отраженных в прекрасных обзорах Чувило (1964)¹, Триллинга (1965)², Кабиббо (1966)³ и Виллиса (1967)⁴. В настоящем докладе я буду ссылаться на данные, приведенные этими авторами, если они не устарели, и на сентябрьское издание таблиц Розенфельда и др. ⁵.

К сожалению, по многим фундаментальным проблемам, таким, как нелептонное правило $\Delta I = 1/2$ или величина формфакторов K_{l3} -распада, преждевременно делать определенные высказывания.

Я рассмотрю сначала распады $K \rightarrow 3\pi$, затем лептонные распады и не буду касаться редких распадов, таких, как ллу или луу.

I. РАСПАДЫ $K \rightarrow 3\pi$

1. Я коротко остановлюсь на проблеме нарушения CP в распаде $K^0 \rightarrow 3\pi$, поскольку практически не имеется опубликованных данных по этому вопросу. Наиболее низкое опубликованное значение отношения ширин составляет ⁶

$$R = \frac{\Gamma \left(K_S^0 \longrightarrow \pi^+ \pi^- \pi^0\right)}{\Gamma \left(K_L^0 \longrightarrow \pi^+ \pi^- \pi^0\right)} \leqslant 0.45$$

на 90%-ном уровне достоверности. Однако авторы работы ⁶ предполагали справедливость правила $\Delta I = 1/2$. Если это правило нарушается в распадах $K \rightarrow 2\pi$, то его не следует применять, и в результате верхний предел для R окажется порядка единицы.

Поиски зарядовой асимметрии в двух наиболее значительных экспериментах $^{10, 17}$ со статистикой около 2000 распадов $K^0 \rightarrow \pi^+ \pi^- \pi^0$ имеют точность в несколько процентов, в то время как теоретически ожидаемое значение асимметрии составляет порядка одной тысячной.

Таблица І

		Ширина		
	Время жизни, 10-8 сек	абсолютное значение, 106 сек-1	в % к полной	
$ \begin{array}{c} K^+ \\ K^+ \rightarrow \pi^+ \pi^+ \pi^- \\ K^+ \rightarrow \pi^+ \pi^0 \pi^0 \\ K^0 \\ K^0 \rightarrow \pi^0 \pi^0 \pi^0 \end{array} $	$1,236\pm0,003$ 5,37 $\pm0,12$	$80,9\pm0,24,50\pm0,021,38\pm0,0518,6\pm0,44,09\pm0,19$	$100 \\ 5,57{\pm}0,03 \\ 1,71{\pm}0,07 \\ 100 \\ 22,0{\pm}1,0$	
$K^0 \rightarrow \pi^+ \pi^- \pi^0$		$2,34\pm0,07$	$12,6\pm0,3$	

Распады $K \rightarrow 3\pi$

2. Парциальные ширины. Новые данные по измерению ширин распадов K^+ , представленные в 1966 г. в Беркли Ауербах и др.⁷, а также определение времени жизни K_2^{0-8}

$$\tau_{K_2^0} = (5, 15 \pm 0, 14) \cdot 10^{-8}$$
 cer

и отношения 9

$$\frac{\Gamma(K_L^0 \longrightarrow \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \longrightarrow \pi^+ \pi^- \pi^0)} = 1.69 \pm 0.12$$

позволяют улучшить точность значений парциальных ширин (табл. I). С этими новыми значениями мы можем заново проверить изотопические правила отбора. При этом мы будем использовать стандартные поправки к фазовому объему:

$$\begin{split} \Phi_{++-} &= 1,000, \\ \Phi_{+00} &= 1,248, \\ \Phi_{+-0} &= 1,225, \\ \Phi_{000} &= 1,495. \end{split}$$

Для иллюстрации изменения результатов со временем в таблицах приведены также значения, принятые в 1965 г.

Таблица II

Проверка отсутствия переходов с $\Delta T = 5/2$

	Триллинг ²	Виллис 4
$\frac{\frac{\gamma (++-)}{4\gamma (++00)}}{\frac{\gamma (000)}{\frac{3}{2} \gamma (+-0)}}$	$1,03\pm0,04$ $1,07\pm0,13$	$1,01{\pm}0,05$ $0,96{\pm}0,06$

Сравнение ширин распадов K^+ (а также K^0) между собой позволяет проверить отсутствие переходов с $\Delta I = 5/2$ (табл. II). Если симметричное конечное состояние с I = 3 присутствует, то *)

$$\frac{\gamma(\pi^{+}\pi^{+}\pi^{-})}{4\gamma(\pi^{+}\pi^{0}\pi^{0})} \neq 1 \quad \mathbf{n} \quad \frac{\gamma(\pi^{0}\pi^{0}\pi^{0})}{3/2\gamma(\pi^{+}\pi^{-}\pi^{0})} \neq 1.$$

Так как отсутствие переходов с $\Delta I = 5/2$ удовлетворительно подтверждается экспериментом, мы можем проверять правило $\Delta I = 1/2$, сравнивая распады K^0 и K^+ :

$$\frac{\gamma \, (\pi^{+} \pi^{-} \pi^{0})}{2\gamma \, (\pi^{+} \pi^{0} \pi^{0})} = 1, \quad \frac{\gamma \, (\pi^{0} \pi^{0} \pi^{0})}{\gamma \, (\pi^{+} \pi^{+} \pi^{-}) - \gamma \, (\pi^{+} \pi^{0} \pi^{0})} = 1.$$

Эти два соотношения не являются совершенно независимыми. Данные (табл. III) указывают на возможное нарушение правила $\Delta I = 1/2$.

	Триллинг 2	Виллис 4
$\frac{\frac{\gamma (+-0)}{2\gamma (+00)}}{\gamma (++-)-\gamma (+00)}$	0,89±0,07 0,91±0,13	$0,86 \pm 0,05$ $0,81 \pm 0,04$

Проверка отсутствия переходов с $\Delta T = 3/2$

Таблипа III

3. Мы можем проверить изотопические правила отбора, сравнивая энергетические спектры. Как известно, в линейном приближении

^{*)} у представляет собой приведенную ширину распада, равную частному от деления ширины на соответствующую поправку к фазовому объему. (Прим. nepes.)

матричный элемент распада может быть записан в виде

$$|M| = 1 - \frac{a}{m_{\pi}^2} (S_3 - S_0) = 1 - aY,$$

где $S_i = (p_K - p_{\pi_i})^2$, $S_0 = 1/2 (S_1 + S_2 + S_3)$, a = const; при этом спектр представляет собой произведение фазового объема на квадрат этого матричного элемента. В линейном приближении

$$|M|^2 = 1 - \frac{2a}{m_\pi^2} (S_3 - S_0).$$

Аналогично сравнению ширин для проверки отсутствия переходов с $\Delta I = -5/2$ имеется следующее правило:

$$a(+00) = -2a(++-),$$

и для проверки отсутствия переходов с $\Delta I = 3/2$

$$a(+-0) = a(+00).$$

Таблица IV демонстрирует современное положение дел; в ней приведены новые данные для распадов $K^+ \rightarrow \pi^+ \pi^+ \pi^- u \ K^0 \rightarrow \pi^+ \pi^- \pi^0$; к сожалению, нет ничего нового для $K^+ \rightarrow \pi^+ \pi^0 \pi^0$. Неопределенность в отношениях умышленно увеличена, чтобы учесть возможную систематическую ошибку. Некоторые из приведенных результатов пока не опубликованы. В спектрах не обнаружено нарушения правил отбора.

Таблица IV

	a (++)	a (+00)	a (+-0)
Триллинг (1965 г.) Новые данные	0,093±0,011 0,095±0,015 ¹⁷ 0,102±0,015 (Рутгерс) (в цечати) 0,096±0,007	$-0,25\pm0,02$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Среднее значение (1908 г.)	0,090 <u>+</u> 0,007	$-0,25\pm0,02$	$-0,21\pm0,015$
	Предсказание правила $\Delta T = 1/2$	1965 r.	1968 г.
$\frac{a(+-0)}{2a(++-)}$	1	$1,29{\pm}0,25$	1,09±0,13
$\frac{a (+00)}{2a (++-)}$	-1	$-1,34{\pm}0,24$	$-1,30\pm0,19$
a(-1,-0)			

Данные по спектрам π -мезонов в распадах $K \rightarrow 3\pi$

Выше предполагали линейную зависимость матричного элемента от $S_3 - S_0$. Наличие квадратичных членов не учитывалось. Экспериментальные данные по квадратичным членам имеются только для распада $K^+ \to \pi^+ \pi^- \pi$ дают для b, определяемого согласно формуле

$$|M|^2 = 1 - 2aY + bY^2$$
, значения ¹¹
 $b = -0.068 \pm 0.058,$
 $b = +0.05 \pm 0.07.$

Единственное указание на нарушение правила $\Delta I = 1/2$ имеется в отношении ширин распадов $K^0 \rightarrow \pi^+ \pi^- \pi^0$ и $K^+ \rightarrow \pi^+ \pi^0 \pi^0$, но, на мой взгляд, в этой области необходимо дальнейшее экспериментальное исследование.

Рис. 1. Экстраполяция спектра л-мезонов в точку $E_{\pi} = 0$ для проверки предсказаний алгебры токов. Приведены результаты Иллинойской группы (Phys. Rev. 157, 1233 (1967)) по распаду $K_2^0 \rightarrow \pi^+\pi^-\pi^0$.

4. Алгебра токов. Я собираюсь обсудить предсказания Кэллана и Треймана¹², касающиеся экстраполяции в точку $E_{\pi} = 0$ спектра $K \rightarrow 3\pi$ -распадов. Эти предсказания следуют из гипотезы частичного сохранения аксиального тока (PCAC) и алгебры токов. Хара и Намбу получили соотношение между амплитудами распадов $K \rightarrow 3\pi$ и $K \rightarrow 2\pi$:

$$\lim_{q_{\pi}\to 0} A(++-) = 0, \quad \lim_{q_{\pi}\to 0} A(++-) = \frac{1}{2f_{\pi}} A(+-)$$
$$\lim_{q_{\pi}\to 0} A(+00) = 0, \quad \lim_{q_{\pi}\to 0} A(+00) = \frac{1}{2f_{\pi}} A(00),$$
$$\lim_{q_{\pi}\to 0} A(000) = \frac{1}{2f_{\pi}} A(00),$$
$$\lim_{q_{\pi}\to 0} A(+-0) = 0, \quad \lim_{q_{\pi}\to 0} A(+-0) = \frac{1}{2f_{\pi}} A(+-).$$

На рис. 1 и 2 представлены спектры π -мезонов в распадах K^0 , измеренные в университете штата Иллинойс и Саклэ; на рис. 3 и 4 — экстраполяция для K^{\pm} , данная Нефкенсом ¹³. Линейная экстраполяция, хотя и недостаточно обоснованная, по-видимому, согласуется с предсказаниями теории.

Рис. 2. То же, как и на рис. 1, для группы Саклэ.

Для распада $K^+ \to \pi^+ \pi^0 \pi^0$ (см. рис. 4) спектр π^0 был получен в предположении, что $a_0 = -\frac{1}{2} a_+$. В настоящее время не имеется экспериментальных данных по спектру π -мезонов в распаде $K^0 \to \pi^0 \pi^0 \pi^0$. Предполагая матричный элемент постоянным, Кэллан и Трейман получили также хорошее согласие и для амплитуды распада $K^0 \to 3\pi^0$. Бушиа и Мейер ¹⁴, используя алгебру токов, которая оказалась столь эффективной для наклонов спектров, получили предсказания для связи ширин $K \rightarrow 3\pi$ и $K \rightarrow 2\pi$:

$$\frac{\gamma_2 (+-0)}{2\gamma (+00)} - 1 = \frac{\gamma_2 (000)}{\gamma (++-) - \gamma (+00)} - 1 = \frac{2\gamma (00)}{\gamma (+-)} - 1.$$

Экспериментальная ситуация по распадам $K \rightarrow 2\pi$ в настоящее время не

Рис. 4. То же, как и на рис. 1, для $K^+ \to \pi^+ \pi^0 \pi^0$ (по ¹³).

вполне ясна *), чтобы сделать заключение о справедливости этих соотношений, связывающих отклонение от правила $\Delta I = 1/2$ в распадах $K \to 3\pi$ и $K \to 2\pi$.

*) Два точных эксперимента дают $\frac{\Gamma(00)}{\Gamma_{\text{tot}}} = \begin{cases} 0.335 \pm 0.014^{15}, \\ 0.288 \pm 0.021^{16}. \end{cases}$

п. лептонные распады

Я не буду говорить о зарядовой асимметрии в распадах $K^0 \rightarrow \pi l v$, которая наблюдалась в экспериментах, проведенных в Колумбийском университете и Беркли, так как она обсуждалась в другом докладе. Мы рассмотрим, во-первых, правила отбора и затем вопрос об определении формфакторов.

1. Первым вопросом по лептонным распадам, разумеется, является вопрос о наличии амплитуды с $\Delta Q = -\Delta S$. Здесь не имеется ничего нового. Обозначим через x отношение двух амплитуд:

$$x = \frac{g}{f} = \frac{A}{A} \frac{(\Delta S' = -\Delta Q)}{(\Delta S' = +\Delta Q)} = |x| e^{i\varphi}.$$

Классическое определение g и f следующее:

$$A (K^{0} \longrightarrow \pi^{-}e^{+}v) = f,$$

$$A (\overline{K}^{0} \longrightarrow \pi^{-}e^{+}v) = g.$$

В предположении *СРТ*-инвариантности зависимость от времени лептонных распадов может быть записана в виде

$$N^{\pm}(t) = (1+x)^2 e^{-\gamma_1 t} + (1-x)^2 e^{-\gamma_2 t} \pm 2 (1-x^2) \cos \Delta m t e^{-\frac{\gamma_1 + \gamma_2}{2} t} + 4x \sin \varphi \sin \Delta m t e^{-\frac{\gamma_1 + \gamma_2}{2} t};$$

 $x \sin \varphi$ или $\operatorname{Im} x - CP$ -нарушающая часть.

Экспериментальная ситуация приведена на рис. 5. Знак Im x определяется по знаку Δm . Все авторы согласуются между собой, выбирая

Рис. 5. Экспериментальные данные по $x = \frac{\Delta S = -\Delta Q}{\Delta S = \Delta Q}$.

неправильный знак $\Delta m =$ $= m(K_s) - m(K_L) > 0.$ Однако из всех измерений знака разности масс следует $\Delta m < 0$. Мы должны поэтому изменить знак сделав $\operatorname{Im} x$ отражение относительно действительной оси всех экспериментальных точек. Поскольку большинство экспериментов относится только к *К*_{ез}-распаду, а остальные главным образом к Ke3, низкая величина измеренной амплитуды с $\Delta Q = -\Delta S$ не доказывает малости этой амплитуды в Киз-распаде, как было отмечено Сак-COM 18

Я напомню, что верхний предел отношения амплитуды с $\Delta Q = -\Delta S$ к амплитуде с $\Delta Q = \Delta S$ на 90%-ном уровне достоверности *) составляет 0,5 в

распаде K^{0} -мезона, в то время как он равен 0,13 в распаде Σ и 0,16 для K_{e_4} -распада. В настоящее время проводится ряд экспериментов, кото-

^{*)} По докладу У. Виллиса на конференции в Гейдельберге.

рые должны дать статистику в несколько тысяч случаев K_{e3}^0 -распада на расстояниях от мишени в одно время жизни K_{S}^0 -мезона.

2. Лептонное правило $\Delta I = 1/2$. Как и для распадов $K \rightarrow 3\pi$, мы можем проверять правило $\Delta I = 1/2$, сравнивая ширины лептонных распадов K^0 -и K^+ -мезонов.

Наибольшие трудности возникают из-за разброса экспериментальных результатов. В таблицах ⁵ можно найти всевозможные значения измеренных абсолютных и относительных ширин. Так, например, для отношения ширин $\Gamma (K^+ \to \pi^0 e^+ v) / \Gamma (K^+ \to \pi^+ \pi^+ \pi^-)$ значения меняются от 0,50 \pm 0,03 до 0,90 \pm 0,16. Таким образом, проверка правила $\Delta I = 1/2$ сильно зависит от того, какие результаты вы используете. В табл. V собраны данные, приведенные в Гейдельберге. Видно, что согласие с правилом $\Delta I = 1/2$ не является слишком плохим.

Таблица V

	Триллинг 2	Виллис 4
$\frac{\Gamma (K^{0} \rightarrow \pi/\nu) / \Gamma (K^{+} \rightarrow \pi/\nu)}{\Gamma (K^{0} \rightarrow \pi l \nu)} / \frac{\Gamma (K^{+} \rightarrow \pi \mu \nu)}{\Gamma (K^{+} \rightarrow \pi l \nu)}$	1,06±0,06 1,07±0,14	$0,91\pm0,04$ $1,14\pm0,09$

. Пептонное правило $\Delta T = 1/2$

Отметим тривиальный факт, что если существуют переходы с $\Delta S = -\Delta Q$, то правило $\Delta I = 1/2$ не может быть справедливо.

3. Структура амплитуды распада. В предположении чисто векторного взаимодействия наиболее общая форма амплитуды $K \to \pi l v$ -распада следующая:

$$M = \frac{G}{\sqrt{2}} \left[f_{+}(p_{K} + p_{\pi}) + f_{-}(p_{K} - p_{\pi}) \right] J^{l},$$

где p_K и p_π — 4-импульсы K- и π -мезонов, G — универсальная константа слабого взаимодействия, f_+ и f_- — формфакторы, являющиеся функциями переданного импульса, и J^l — лептонный ток.

Член, содержащий f_{-} , пропорционален массе лептона, так что можно определить f_{+} , исследуя K_{e3} -распад. Используя найденное значение f_{+} , из данных по $K_{\mu3}$ -распаду можно найти отношение $\varepsilon = f_{-}/f_{+}$.

4. K_{e3} -распад. В табл. VI приведены данные по измерению f_+ . Для f_+ предполагалась линейная зависимость от q^2 с параметром λ_+ :

$$f_+(q^2) = f_+(0) (1 + \lambda_+ q^2/m_\pi^2).$$

Наиболее точный эксперимент по распаду K_{e3}^{0} был выполнен Базилем и др. ¹⁷. Этот эксперимент со статистикой 7000 электронных распадов дает

$$\lambda_{+} = 0.022 \pm 0.012$$

Авторы при оценке ошибки учли все возможные систематические эффекты.

Значения λ_+ для распадов K^0 и K^+ хорошо согласуются друг с другом, что подтверждает правило $\Delta \widetilde{I} = 1/2$, рассмотренное выше. Среднее значение λ_+ для K^0 и K^+ составляет

$$\lambda_{+} = 0.02 \pm 0.006$$
.

5. К_{µ3}-распад. Этот распад интенсивно изучался в связи с проверкой *Т*-инвариантности, так как *Т*-инвариантность запрещает нормальную

 ,,.	Литература	Техника	Число случаев	λ.
K0	Люэрс Фишер Файрстоун Лоуис Кадык Базиль 17	ВПК ИК ВПК ФПК ВПК ИК	153 762 240 531 7000	$0,07{\pm}0,06 \ 0,15{\pm}0,08 \ {-}0,01{\pm}0,02 \ {+}0,08{\pm}0,10 \ {-}0,01{\pm}0,15 \ 0,022{\pm}0,012$
<i>K</i> +	Браун Борреани Иенсен Беллотти Имлэй Калмус	КПК ВПК КПК ФПК ИК ФПК	217 230 407 953 1393 515	$0,038\pm0,045\ -0,04\pm0,05\ -0,01\pm0,029\ 0,045\pm0,018\ +0,016\pm0,016\ +0,028\pm0,013$
	Средние значения:	$(\lambda_{+})_{K_{0}} = (\lambda_{+})_{K_{+}} =$	$0,013\pm0,0$ $0,023\pm0,0$	$\begin{array}{c} 009\\008 \end{array} \right\} \begin{array}{c} \lambda_{+} = 0,02 \pm \\ \pm 0,005 \end{array}$
пузь фрес кова	Обозначени прьковая камер новая пузырько я камера.	е техн а, ИК — п вая камера	ики: В аскровая , КПК — ко	ПК — водородная камера, ФПК — сепоновая пузырь-

Формфактор Кез-распада (по таблицам 5 и 17)

к плоскости распада компоненту поляризации мюона (рис. 6). Некоторые модели нарушения *СР*¹¹ предсказывают для нормальной компоненты поляризации величину порядка 20%; электромагнитное взаимодействие в конечном состоянии может привести к эффекту порядка 1%. Имею-

Рис. 6. Поляризация в распаде $K_{\mu3}^0$ (γ — ось z). $\mu = \frac{p_{\mu}}{|p_{\mu}|}$, $n = \frac{[p_{\pi}p_{\mu}]}{|[p_{\pi}p_{\mu}]|}$, $t = [\mu n]$

щиеся экспериментальные данные приведены в табл. VII.

Таблица VI

Наиболее точный эксперимент имеется по распадам K^{0} мезона ¹⁹. Схема экспериментальной установки приведена на рис. 7. Авторы отбирали случаи, когда плоскость распада горизонтальна и измеряли компоненту поляризации, параллельную магнитному полю. Их результат

$$P_n = 0.02 \pm 0.012.$$

Отсюда следует Im $\xi = 0.014 \pm 0.066$. Таким образом, мы можем считать ξ действительным. Для определения ξ существует несколько возможностей:

а) Изучение отношения ширин. Как известно из K⁰_{e3}-распада, λ₊ мало́ и можно учитывать только первые члены разложения, приведенного в докладе Кабиббо³:

$$K_{\mu3}/K_{e3} = 0.648 + 0.126 \operatorname{Re} \xi + 0.019 \xi^2 + 1.41 \lambda_+ + 0.47 \lambda_- \operatorname{Re} \xi.$$

Поляризация µ ⁺ (компонента, нормальная к плоскости [p _л p _µ]					
	Литература	Техника *)	P_N	Imţ	
K+	Кэлахан и др. (ци- тируется по до- кладу ³)	ФПК		$0,8^{+0}_{-0};9$	
	Группа Х ₂ (цити- руется по докла- ду ³)	ФПК	$-0,08\pm0,10$	$0, 1^{+0}_{-0,3}$	
K0	196 19B 19a	Счетчики ИК Счетчики	$\begin{smallmatrix} 0,02\pm 0,07\\-0,05\pm 0,18\\0,002\pm 0,012 \end{smallmatrix}$	$0,11{\pm}0,35 \ 0,1{\pm}0,5 \ 0,014{\pm}0,066$	
	*) Обозначения техники см. в табл. VI.				

На рис. 8 изображено отношение $K_{\mu3}^+/K_{e3}^+$ как функция Re ξ . Видно, что заданному отношению ширин отвечают два значения ξ . Обычно используют данные по спектрам или графику Далица, чтобы сделать выбор между двумя решениями.

Рис. 7. Экспериментальная установка для K⁰-эксперимента, выполненного в Беркли Мичиганской группой.

б) Изучение графика Далица К_{из}-распада. Плотность точек на графике Далица записывается в виде

$$\rho(\xi, E_{\mu}, E_{\pi}) = \frac{f_{+}^{2}}{2\pi^{3}M_{K}^{2}} \left[A(E_{\pi}, E_{\mu}) + B(E_{\pi}, E_{\mu}) \operatorname{Re} \xi + C(E_{\pi}) |\xi|^{2} \right].$$

Таблица VII

Определение по спектру Определение по отношению и угловым корреляциям ширин K^+ Браун $1,8\pm1,6$ Шэкли $0,17\pm0,75$ $0,7\pm0,5$ $0,1\pm0,7$ $+0.6\pm0.5$ Джакомелли Биси Кэлахан Йенсен $-0,4\pm0,4$ $0,72\pm0,37$ $+0,75\pm0,5$ Авербах Кэлахан $0,0\pm 1,0$ Гарланд $+1.3\pm0.5$ Среднее значение $\xi^+ = +0,6\pm 0,16$ K^0 Карпентер $1,2\pm0,8$ Алэр $1,1\pm0,9$ Кулюкина $-0,2\pm1,0$ 0.66 ± 0.9 Люэрс $0,9\pm0,9$ Де Буар Среднее значение $\xi^0 = +0.86 \pm 0.46$

Таблица VIII Данные по отношению $\xi = f_{-}(0)/f_{+}(0)$ (по таблицам ⁵)

На рис. 9 изображен график Далица, на котором приведены линии равных плотностей для различных значений ξ. Если наложить на эту

Рис. 8. Зависимость $K_{\mu_3}^+/K_{e_3}^+$ от Re §.

диаграмму функцию эффективности детектора $f(E_{\pi}, E_{\mu})$, то трудности такого способа становятся очевидными.

В двух наиболее значительных экспериментах, выполненных в университете штата Иллинойс и Саклэ²⁰, изучался график Далица, и их результаты приведены в виде χ^2 -кривых на рис. 10 и 11. Первый из этих рисунков дает два возможных решения $\xi = -4$ и $\xi = +1,2$ с несколько большей вероятностью для 1,2, а второй — примерно те же значения, но с обратными вероятностями.

Вместо изучения графика Далица некоторые группы измеряли энергетический спектр мюонов или угловые корреляции. Их результаты, как и результаты групп, измерявших отношение ширин, собраны в табл. VIII.

Данные, приведенные в табл. VIII, взяты из таблиц⁵, изданных до Гей-

дельбергской конференции. Средние значения составляют:

$$K^+: \quad \xi = 0.60 \pm 0.16$$

 $K^0: \quad \xi = 0.86 \pm 0.46$

Не следует забывать о проблемах, существующих в измерении отношения ширин, как было отмечено выше. На Гейдельбергской конференции были доложены результаты двух новых измерений:

$$\begin{array}{rl} K^{+}: & K_{\mu3}/K_{e3} = 0.65 \pm 0.05 \ ^{21}, \\ K^{0}: & K_{\mu3}/K_{e3} = 0.71 \pm 0.07. \end{array}$$

Эксперимент по K^+ -распаду, выполненный группой X₂, позволяет существенно улучшить положение дел в определении $K_{\mu3}/K_{e3}$ и выбрать определенное значение ξ .

Рис. 9. График Далица для $K^{0}_{\mu 3}$ -распада. Пунктирные лиции представляют лиции равной плотности для $\xi = 0, -2,$ и -4 $\lambda = 0,02$ --- $\xi = -4,0,$ --- $\xi = -2, 0, \cdots \xi = 0, 0$

Среднее значение ξ с учетом новых результатов по спектрам и отношению ширин составляет

$$\xi = 0.6 \pm 0.3.$$
 (I)

6. Полная поляризация. Поляризация мюона была вычислена Кабиббо и Максимовичем²²:

 $\mathbf{P} = \frac{\mathbf{A}}{|\mathbf{A}|}, \quad \mathbf{A} = A\left(\xi, E_{\pi}, E_{\mu}\right) \mathbf{p}_{\pi} + B\left(\xi, E_{\pi}, E_{\mu}\right) \mathbf{p}_{\mu} + m_{K} \mathrm{Im} \, \xi \left[\mathbf{p}_{\pi} \mathbf{p}_{\mu}\right].$

Последний член описывает поляризацию, перпендикулярную к плоскосги распада, которую мы уже обсуждали. На рис. 12 изображена зависимость 5 от компонент поляризации $\chi^2/2F$

плоскости распада. Измерение в 8 6 χ^{2}/DF DF = 534 Z 0 -4 -2 0 2 6 È

Рис 10 Результаты Иллиноиском группы по анализу графика Далица. Подгонка с постоянными формофакторами по анализу графига Датица

Рис 11 Результаг групны (аклэ $\chi = \delta$ (\$) для постоянного и действительного ξ

поперечной компоненты более чувствительно к величине ξ , чем измерение продольной, и имеет то преимущество, что результаты слабо зависят от q^2 .

4 УФН, т 95 вып 3

В табл. ІХ приведены имеющиеся экспериментальные данные. Наилучший эксперимент²³ по измерению поляризации µ в распаде K⁺ выпол-

Рис. 12. Зависимость поляризации от §. Ожидаемая средняя поляризация как функ-ция ξ.

Рис. 14. Зависимость $K_{\mu3}^0/K_{e3}^0$ от λ_- , определяемого согласно $f_{-}(q^2) = f_{-}(0) \left(1 + \lambda_{-} \frac{q^2}{m_{\pi}^2}\right)$ для различных значений ξ.

пусть теоретики попытаются объяснить его. Лаборатория линейных ускорителей, Орсэ, Франция

Среднее значение $\Gamma(K_{u3})/\Gamma(K_{e3})^{+,0}$, данное Виллисом⁴.

нен европейской группой Х₂. Было изучено 5.10⁶ остановившихся K^+ мезонов и обнаружено 10 000 случаев Киз-распада. Результаты этой группы приведены на рис. 13. Среднее для K^0 и K^+ значение ξ составляет

$$\xi = -1.0 \pm 0.2.$$
 (II)

Чтобы объяснить разницу между (I) и (II), можно предположить, что f_- изменяется как функция q^2 . На рис. 14 показана для различных значений & величина отношения ширин как функция λ_{-} . Видно, что требуется *P*, λ₋ ~ 0,4, чтобы добиться совместности

Рис. 13. Результаты группы Х₂ по измерению поляризации.

между отношением ширин, равным 0,74 *), и значением (II). Это значение отношения ширин, по-видимому, исключается результатами группы Х₂. Если мы улучшим точность определения ширин, мы можем существенно улучшить наше знание величины 5. И если различие в двух результатах будет подтверждено,

Таблица IX

Данные по отношению $\xi = f_{-}(0)/f_{+}(0)$ (определение по поляризации мюона)

	Лите- ратура	^р т	Reţ
<i>K</i> ⁰	24 25	$-0,29\pm0,29$ $-0,28\pm0,12$	$_{-1,1\pm0,5}^{-1,1\pm0,5}$
K^+	23	$-0,40{\pm}0,12$	$-0,75{\pm}0,3$

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

Я приношу извинения за то, что не привел ссылки на экспериментальные работы. данные которых были использованы в докладах Триллинга² и Кабиббо³.

- 1. И. В. Чувило, Труды XII Международной конференции по физике высоких энергий, Дубна, 1964, стр. 151. 2. G. H. Trilling, Proc. of the Intern. Conference on Weak Interactions, Argonne,
- 1965, стр. 115.
- 3. N. C a b i b b o, Proc. of XIIth Intern. Conference on High-energy Physics, Berkeley, 1966, crp. 29.
 W. J. Willis, Report on Heidelberg Conference on High-energy Physics, Geneva,
- 1967.
- A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galti-eri et al., UCRL-8030, September 1967.
 L. Behr, V. Brisson, P. Petiau et al., Phys. Lett. 22, 540 (1966).
- 7. L. B. Auerbach, J. G. MacDobbs, A. K. Mann, Phys. Rev. 155, 1505 (1967). T. J. Devlin, J. Solomon, P. Shepard et al., Phys. Rev. Lett. 18, 54
- 8. (1967)
- 9. CERN-Orsay-Paris Collaboration, Heidelberg Conference, 1967.
- 10. B. M. Nefkens, A. Abashian, R. J. Abrams, Phys. Rev. 157, 1233 (1967).
- 11. N. Cabibbo³ привел результат Rutgers'a и L. Moscoso (частное
- N. Сартово привел результат к и t g e r s a и L. Moscoso (частное сообщение) результат, полученный в Саклэ.
 С. G. Callan, S. B. T r e i m an, Phys. Rev. Lett. 16, 153 (1966); Y. H a r a, Y. N a m b u, Phys. Rev. Lett. 16, 875 (1966).
 B. M. N e f k e n s, Phys. Lett. 22, 94 (1966).
 B. o u c h i a t, P. M e y e r, Phys. Lett. B25, 282 (1967). Профессор Л. Б. Окунь иссель и собщение и
- указал па аналогичную работу А. Д. Долгова и В. И. Захарова (Ядерная физика 7 (2), 352 (1968)). 15. J. L. Brown, J. A. Kadyk, G. H. Trilling et al., Phys. Rev. 130, 769
- (1963).
- 16. M. Chretien, V. K. Fischer, H. G. Crouch et al., Phys. Rev. 131, 2208 (1963).
- 17. Р. Basile et al. (в печати). Я благодарен В. Тигlay и В. Thevennet за сообщение результатов до опубликования.
- 18. R. Sachs, Phys. Rev. B138, 943 (1965).
 19. a) K. K. Young, M. J. Longo, J. A. Helland, Phys. Rev. Lett. 18, 806 (1967).
 6) D. Bartlett, C. E. Friedberg, K. Koulianos, D. Hit-chinson, Phys. Rev. Lett. 16, 282 (1966).
 19. B. R.J. Abrams, A. Abashian, D. B. M. J. C. B. R.J. Abrams, A. Abashian, D. M. B. M. B.
- R. E. Mischke, Phys. Rev. Lett. 17, 606 (1966).
 20. D. W. Carpenter, A. Abachian, R. J. Abrams et al., Phys. Rev. 142, 871 (1966), cm. Takke¹⁰.

- X₂ Collaboration *), CERN-Orsay-Paris Collaboration, Heidelherg Conference, 1967.
 X₂ Collaboration *), CERN-Orsay-Paris Collaboration, Heidelherg Conference, 1967.
 N. C a b i b b o, A. M a k s y m o v i c z, Phys. Lett. 9, 352; 11, 360 (1964).
 X₂ Collaboration *) (в печати).
 R. J. A b r a m s, A. A b a s h i a n, D. W. C a r p e n t e r et al., XIIIth Intern.
- 25. L. B. Auerbach, A. K. Mann, W. K. McFarlane, Phys. Rev. Lett. 17, 980 (1966).

дискуссия

К. Руббиа:

Замечание по поводу проверки $\Delta \mathrm{Q} = \Delta S$: улучшение точности проверки справедливости правила $\Delta Q = \Delta S$ необходимо по двум «практическим» причинам.

1) Для интерпретации экспериментов по асимметрии лептонов в распадах K^{0} -мезонов. В этом эксперименте требуется знание величины $\frac{|1-x|^2}{1-|x|^2}$. Для малых xэта величина определяется Re x:

$$\frac{|1-x|^2}{|1-|x|^2} \approx 1 - 2 \operatorname{Re} x + ($$
члены ~ x^2).

^{*)} X₂ Collaboration: Aachen-Bari-Bergen-CERN-École Politechnique-Nymegue-Padoue-Orsay-Turin.

Б. ОБЭР

2) Для связи в условии унитарности возможных CP-неинвариантных амплитуд. Наибольший член представляет собой CP-нечетный лептонный распад с $\Delta Q = -\Delta S$. Для малых x его вклад определяется Im x.

В настоящее время относительно величины х известно следующее:

$$|\operatorname{Im} x| \leq 0.4$$
 | Re x | ≤ 0.2 ,

например из доклада Виллиса на Гейдельбергской конференции.

Можно предложить регенерационный опыт по измерению Im x с помощью техники «нулевых измерений». Можно ожидать 10- или, возможно, даже 100-кратного увеличения чувствительности по сравнению с мировыми данными по этому вопросу. Определим амилитуды:

$$\Delta Q = \Delta S \quad \text{для} \quad K^0 \longrightarrow \pi^- e^+ v : -1,$$

$$\overline{K}^0 \longrightarrow \pi^+ e^- \overline{v} : -1,$$

$$\Delta Q = -\Delta S \quad \text{для} \quad K^0 \longrightarrow \pi^+ e^- \overline{v} : -x^*,$$

$$\overline{K}^0 \longrightarrow \pi^- e^+ v : -x.$$

Состояние | t > может быть разложено по собственным состояниям оператора CP | K_1 > и | K_2 > следующим образом:

$$|t\rangle = |K_2\rangle + \rho |K_1\rangle = \frac{1+\rho}{\sqrt{2}} |K^0\rangle - \frac{1-\rho}{\sqrt{2}} |\overline{K}^0\rangle,$$

где ρ — мера (CP = +1)-примеси в долгоживущем состоянии; тогда (знаки +, — относятся к заряду лептона)

$$A^{+} \sim (1+x) \rho + (1-x),$$

$$A^{-} \sim (1+x^{*}) \rho + (1-x^{*}).$$

и следовательно, для вероятностей распада получим

$$\begin{split} N^+ &= |1-x|^2 + |1+x|^2 |\rho|^2 + 2 \operatorname{Re}\left[\rho (1+x) (1-x^*)\right] \\ N^- &= |1-x|^2 + |1+x|^2 |\rho|^2 - 2 \operatorname{Re}\left[\rho (1-x) (1+x^*)\right] \end{split}$$

После толстого регенератора є « р и, следовательно,

$$\rho = \rho_0 \exp \left\{ i \left(\Delta m + \frac{i \Gamma_{S'}}{2} \right) t + i \varphi_\rho \right\} .$$

В результате получим

$$N^{\pm} = |1 - x|^{2} + |1 + x|^{2} e^{-\Gamma_{S}t} |\rho_{0}|^{2} \pm \{2 (1 - |x|^{2}) \cos (\Delta mt + \varphi_{\rho})\} |\rho_{0}| e^{-\Gamma_{S}t} / 2 - -4 \operatorname{Im} x \cdot \sin (\Delta mt + \varphi_{\rho}) |\rho_{0}| e^{-\Gamma_{S}t} / 2.$$

Числа распадов N_++N^- и N^+-N^- выражаются следующим образом ($ho\ll$ 1):

$$\begin{split} N^{+} + N^{-} &\sim 2 \mid 1 - x \mid^{2} + 8 \operatorname{Im} x \cdot \sin \left(\Delta m t + \varphi_{\rho} \right) \mid \rho_{0} \mid e^{-\Gamma_{S} t/2} \\ N^{+} - N^{-} &\sim 4 \left(1 - \mid x \mid^{2} \right) \cos \left(\Delta m t + \varphi_{\rho} \right) \mid \rho_{0} \mid e^{-\Gamma_{S} t/2}. \end{split}$$

Предлагается сравнивать эти распады с распадами в отсутствие регенератора нормированными так, чтобы дать то же число распадов при $t \gg 1/\Gamma_S$. Число распадов в отсутствие регенератора равно

$$\begin{array}{l} N_0^+ + N_0^- \sim 2 \mid 1 - x \mid^2, \\ N_0^+ - N_0^- \sim 4 \operatorname{Re} \varepsilon \; (1 - \mid x \mid^2). \end{array}$$

Интересующая нас величина в случае вклада амплитуды с $\Delta Q = -\Delta S$, очевидно, равна

$$\chi = \frac{N^+ + N^-}{N_0^+ + N_0^-} = 1 + 4 \operatorname{Im} x \cdot \sin (\Delta m t + \varphi_{\rho}) e^{-\Gamma_S t/2} |\rho_0|$$

Практически $\rho_0 \approx 0.07$ и $\sin (\Delta m t + \phi_0) \approx 0.71$ при t = 0. Мы ожидаем при $t \approx 0$ $(\chi - 1) \approx 0.2$ Im x.

Учитывая, что Im $x \ll 0.4$, $(\chi - 1) \ll 0.08$, что является большим числом. Если мы сможем добиться в измерении χ точности $\sim 10^{-2}$, то на величину Im x можно наложить ограничение примерно в 10 раз более точное, чем известно в настоящее время (Im x < 0.05!). Необходимо лишь приближенное знание амплитуды регенерации, если Im $x \approx 0$. Не возникает никаких трудностей от поглощения за исключением того, что эффект несколько уменьшается. Величина ожидаемого эффекта может быть непосредственно отнесена к разности $N^+ - N^-$, которая ведет себя как

$$\cos\left(\Delta mt + \varphi_{\rho}\right) |\rho| e^{-\Gamma_{S}t/2},$$

поскольку $|\mathbf{1} - |x|^2| \approx 1$, если |x| мал.