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LOCAL STRUCTURE OF TURBULENCE IN AN INCOMPRESSIBLE VISCOUS FLUID AT

VER Y HIGH REYNOLDS NUMBERS*
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Usp. Fiz. Nauk 93, 476-481 (November, 1967)

We shall denote by

x2, x3, t), s = l, 2, 3,

the velocity components at time t in a point with rec-
tangular Cartesian coordinates x1; x2, x3. When studying
turbulence it is natural to consider the velocity com-
ponents Ua(P( in each point P = (x1; x2, x3, t) of a region
G under consideration of the four-dimensional space
(xi, x2, x3, t) as random variables in the sense in which
this is done in the theory of probability (see the paper
by Millionshchikov'13 concerning such an approach).

Denoting by A the mathematical expectation of the
random quantity A, we assume that

K a n d ( f f ) 2

are finite and bounded in each bounded subdomain of the
region G.

We introduce in the four-dimensional space
(xi, x2, x3, t) new coordinates

(1)

where P w ' = (x{u), x2
u), xju i , tluJ) is a fixed point in the

region G. We note that the coordinates ya in an arbi-
trary point P depend on the random quantities UQ^P ' 0 ' )
and thus themselves are random variables. The velocity
components are in the new coordinates equal to

Wa(P) = Ua(P)-Ua(P"»). (2)

Let the points p(k), k = 1, 2, ..., n, which in the sys-
tem of coordinates (1) have the coordinates yW and
s' ), lie in the region G for some fixed values of the
quantities Ua(P ). We can then define a 3n-dimensional
conditional probability distribution law F n for the quan-
tities WW = Wa(p(k)), a = 1, 2, 3, k = 1, 2, ..., n, for
given Û °> = Ua(P<0)).

Generally speaking the distribution law F n depends
m\ tn\ in\ t\r\ /1r\ llon the parameters x ,̂ , t , U v(k)

Definition 1. Turbulence is called locally homogene-
ous in the region G if for any fixed n, y(k), and s(k) the

a
distribution law F n is independent of x^", t, and U^' JSO
long as all points P(k) are located in G.

Definition 2. Turbulence is called locally isotropic
in the region G if it is homogeneous and if moreover the
distribution laws mentioned in definition 1 are invariant
under rotation and mirror reflection of the original sys-
tem of coordinate axes (xi, x2, x3).

Compared with the concept of isotropic turbulence
introduced by Taylor[2: our definition of locally iso-
tropic turbulence is different first of all in that in our
definition it is necessary that the distribution laws F n

*Reprinted from Dokl. Akad. Nauk SSSR 30, 299 (1941), Sub-
mitted originally December 28, 1940.

are independent of t t0), i.e., that there is stationarity in
time, and more broadly in that the limitation is im-
posed only upon the distribution laws for velocity differ-
ences and not for the velocities themselves.

2. The isotropy hypothesis in Taylor's sense is well
verified experimentally in the case of turbulence caused
by the passage of a current through a lattice (see [3]).
In the majority of other cases of practical interest it
can be considered only as a very rough approximation
to reality even for small regions G and very large
Reynolds numbers.

In contrast it seems to the author very plausible that
in an arbitrary turbulent flow with sufficiently large
Reynolds number* R = LU/V in sufficiently small reg-
ions G of the four-dimensional space (xj., x2, x3, t) which
are not too close to the boundaries of the flow or to
other singularities of it, to a good approximation the
local isotropy hypothesis is realized. Under "small
region" we understand a region the linear dimensions
of which are small compared with L and the time dimen-
sions small compared with T = U/L.

It is natural that in such a general and somewhat un-
defined formulation the assumption now put forward can
not be proved rigorously .t To make possible its experi-
mental verification for different specific cases we show
in the following a few consequences of the hypothesis of
local isotropy.

*L and U denote here typical scales for length and velocity for the
flow as a whole.

t We give here only a few general considerations in aid of the pro-
posed hypothesis. For very large R one can represent turbulent flow as
follows: on the average flow (characterized by the mathematical expec-
tations Ua) are superimposed "first order ripples" consisting in disor-
dered shifts of different volumes of the fluid with diameters of order
/(!)=/ (where / is the Prandtl mixing length) with respect to one an-
other; the order of magnitude of the velocities of these relative shifts
are denoted by v( l); first order ripples for very large R turn out in
turn to be unstable and superimposed upon them are "second order"
ripples with a mixing length K2) < /(D and relative velocities v(2> <
v( i); such a process of a consecutive reduction of turbulent ripples goes
on until for ripples of some sufficiently large order n the Reynolds num-
ber

turns out to be sufficiently small that the influence of the viscosity on
the n-th order ripple be already appreciable and would prevent the
formation on them of ripples of n + 1 st order.

From the energy point of view the process of turbulent shifts can
naturally be represented as follows: first order ripples absorb energy
from the average motion and transfer it successively to higher order
ripples, while the energy of the smallest ripples is scattered into thermal
motion thanks to viscosity.

Because of the random mechanism of transferring motion from lower
order ripples to higher order ripples it is natural to postulate that within
regions of space which are small compared to /d) the small higher order
ripples are approximately subject to a statistical regime which is spatially
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3. We shall denote by y the vector with components
yi, y2, y3 and we consider the random quantities

Wcu(y) = Wa(yi, 1/2, y3) = Ua(xi + yi, x2 + y,_, x3-y3, t)
— Ua(xi, x2, x3, t). (3)

Because of the assumption of local isotropy their
distribution laws are independent of Xi, x2, x3, and t.
For the first moments of the quantities Wa(y) it follows
from local isotropy that

Wl(y) = 0. (4)

We turn therefore to a study of the second moments*

From local isotropy it follows that

ym-y'", y'"~ya')\.

(5)

(6)

This equation allows us to restrict ourselves to sec-
ond moments of the form BaJ3(y, y). For them

where
ri = y\ + y\ + 2/3, !/<« = '• cos 9a, 6aB = 0 when a ^ p ,

SaB = l when a = p\ (8)

Bid (r) --lwt (r, 0, 0)]*, )

5 m ( r ) ^ [W2(r, 0, 0)]2. i ^ '

F o r r = 0 we h a v e

Bid (0) = Bnn (0)^-^Bdd(0) = -^Bnn(0) - 0, (10)

( I D

We o b t a i n e d E q s . (6) to (11) w i thou t u s i n g t h e a s s u m p -
t ion t h a t t he fluid i s i n c o m p r e s s i b l e . F r o m t h a t a s s u m p -
t ion fo l lows t h e e q u a t i o n

r i £ * L = _ 2 £ , (12)
Or x '

wh ich m a k e s i t p o s s i b l e to e x p r e s s B n n in t e r m s of
B d d . F r o m (12) and (11) fo l lows t h a t

a\ = la\ (13)

It i s , m o r e o v e r , e a s y to c a l c u l a t e t h a t ( a s s u m i n g i n c o m -
p r e s s i b i l i t y ) t h e a v e r a g e s c a t t e r i n g of e n e r g y p e r un i t
t i m e and un i t m a s s i s equa l to

isotropic. Within small time intervals it is natural to assume this regime
to be approximately stationary even in the case when the flow as a whole
is not stationary.

Since for very large R the differences Wa(P) = Ua(P) - Ua(P<°>) of
the velocity components in neighboring points P and P'°) of the four-
dimensional space (xt ,x2 ,x3, t) are determined almost exclusively by
the higher order ripples, the scheme proposed here leads us also to the
local isotropy hypothesis in small regions G in the sense of the defini-
tions of Sees. 1 and 2.

*A11 results of Sec. 3 and completely analogous to those obtained
in ['],[2],and [" ] for the case of isotropic turbulence in Taylor's

= 15™2.

4. We consider a coordinate transformation

(14)

(15)

The v e l o c i t i e s , k i n e m a t i c v i s c o s i t y , and a v e r a g e e n -
e r g y s c a t t e r i n g , a r e in t h e new s e t of c o o r d i n a t e s e x -
p r e s s e d by the fo l lowing e q u a t i o n s

Wa = Wa—, v' = v-2-, e ^ e — U 6 )

We m a k e now the fo l lowing h y p o t h e s i s :
F i r s t s i m i l a r i t y h y p o t h e s i s . T h e d i s t r i b u t i o n s F n for

l o c a l l y i s o t r o p i c t u r b u l e n c e un ique ly d e t e r m i n e t h e
q u a n t i t i e s v and "e.

T h e c o o r d i n a t e t r a n s f o r m a t i o n (15) wi th

T) = A,=

and

1 , / vor = — y —
a V -

(17)

(18)

l e a d s to t h e q u a n t i t i e s v' = 1, e ' = 1. T h e r e f o r e by v i r -
tue of t he s i m i l a r i t y h y p o t h e s i s wh ich we have a s s u m e d ,
t h e c o r r e s p o n d i n g funct ion

Bid(r') = R,,,(O ( I 9 )

m u s t be t h e s a m e for a l l c a s e s of l oca l ly i s o t r o p i c t u r -
b u l e n c e . T h e e q u a t i o n

= ^ v i B , , m (20)

s h o w s in c o n n e c t i o n with what we have done e a r l i e r t h a t
t he s e c o n d m o m e n t s B a | 3 ( y u ) , y l 2 ) ) in t he c a s e of l o c a l l y
i s o t r o p i c t u r b u l e n c e a r e un ique ly e x p r e s s e d in t e r m s of
v, 1, a n d the u n i v e r s a l funct ion /3{jd.

5. To d e t e r m i n e t he b e h a v i o r of t he funct ion j 3 d d ( r )
for l a r g e r ' we i n t r o d u c e one m o r e h y p o t h e s i s :

Second s i m i l a r i t y h y p o t h e s i s . * If t he a b s o l u t e m a g -

n i t u d e s of t h e v e c t o r s y w and t h e i r d i f f e r e n c e s

y ( k ) _ y ( k ) ( w h e r e k ^ k ' ) a r e l a r g e c o m p a r e d to X then

t h e d i s t r i b u t i o n l a w s F n wi l l un ique ly d e t e r m i n e t he

q u a n t i t i e s "e and wi l l be i n d e p e n d e n t of v,.
We put

y - a ^ S" = 1 _ , (21)

w h e r e y'a and s ' a r e def ined in a c c o r d a n c e wi th E q s .
(15), (17) , and (18). S ince for any k

e ' -e" . - 1,

for r ' l a r g e c o m p a r e d to X' = 1 w e h a v e by v i r t u e of t h e
h y p o t h e s i s a s s u m e d h e r e

*In terms of the schematic exposition of turbulence given in foot-
note *, X is the scale of the smallest ripples the energy of which is
directly scattered into thermal motion due to viscosity. The meaning of
the second similarity hypothesis lies in the fact that the mechanism of
energy transfer from larger to smaller ripples is for ripples of intermedi-
ate order, for which /*k' is larger than X, independent of the viscosity.
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On the other hand, it follows from Eq. (21) that W e n o t e i n c o n n e c t i o n w i t h th i s l a s t f o r m u l a that for
„„ , „ 1 D, . ,, I . . ,. r small compared to X because of (13) the following re-
Bdd (O = wBdd (r ) == w pdd (r ). ^ ^ h o l d g

Thus, for large r ' ^ {r) ^ M a (r) ( 2 5 )

whence 1 M- Millionshchikov, Dokl. Akad. Nauk SSSR 22, 236
2 (1939).

pdd(r')^C(r')\ (22) 2G_ L T a y l o r > P r o c > Roy_ Soc_ (London) A151, 429

where C is an absolute constant. By virtue of (17), (20), ^ *„''„ , , x ^ j > , , ^ ^ , A . „, . ,
and (20) for r large compared to X, n

 S" G 0 1 ^ 1 1 1 f d - ) , Mode rn Development s i n Elm
Dynamics, Oxford University Press, Vol. 1, S 95 (1938).

-lrl (23) 4T. V. Karman, J. Aeronaut. Sc. 4, 131 (1937).
From (23) and (12) we conclude easily that for r large
compared to X Translated by D. ter Haar


