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1. INTRODUCTION effect, the variation of the refractive index is produced
in this case, as a result of the "alignment" of the

1.1. Effects of Self Interaction of Electromagnetic molecules in the field. The refractive-index increment,
Waves in a Nonlinear Medium. Experimental Data which depends on the intensity of the light wave, can

A also be connected with the nonlinearity of the electron
MONG the nonlinear optical effects that have been in- polarization. Finally, the change of the density, and

tensely investigated in recent years, a special position is consequently also of the refractive index, can be con-
occupied by effects of self-action of powerful light waves. nected with heating due to dissipation of energy by the
Self-action effects are connected with the dependence of powerful light wave. A more detailed discussions of
the complex dielectric constant (complex refractive in- these effects will be deferred to Sec. 1.2, and we shall
dex) on the intensity of the propagating wave. The ap- turn now to an examination of the singularities of the
pearance of this dependence can be connected with vari- wave phenomena in media with a refractive index that
ous physical causes. Electrostriction in a light field leads depends on the intensity of the light wave. It is possi-
to the appearance of a pressure ρ = Ε2/8ττ · p9e/ dp ble to explain many features of the wave processes
(E— intensity of light field, p— density, e—dielectric without resorting to a detailed consideration of the
constant), which changes the density in the region oc- physical mechanism of the nonlinearity, confining one-
cupied by the light beam, and consequently also the re- self to a phenomenological description of the polariza-
fractive index of the medium. In a liquid, a strong light tion of the medium. The phenomenonlogical effects of
field leads to orientation of the anisotropically polarized the self-action are described by the odd terms (with
molecules, owing to the interaction with the induced respect to the field E) in the expansion of the non-
dipole moment; the medium then becomes anisotropic linear part of the polarization of the nonlinear medium
and the average refractive index for the orienting field with respect to the field, that is, if we represent the
increases. This effect is customarily called the high- i-th component of the vector of the nonlinear polariza-
frequency Kerr effect; as in the well known static Kerr tion P\nl) in the form
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i kEjEh + XiikiEjEkEi -f- XijhimEjEkEiEm

+ XlJUmnEJEkE,EmEn+...

then the effects of self action are described by the
tensors XjjkZ> Xiiktan» e*-c· The corresponding expan-
sion of the complex dielectric constant in powers of
the field is (we use a symbolic notation; A is the am-
plitude of the wave)

ε = ε0 4~ ε 2 1 A j 2 -j- ε 4 1 A j 4 -j- . . . , ( 1 . 2 )

where e0 is the linear dielectric constant (the asymp-
totic value of e as A — 0), and e2, e4, e 6 . . . are the
complex quantities whose real and positive parts can
have, in general, arbitrary signs, (it is easy to see
that t 2 is determined by the tensor XjjkZ* e4 by
Xijk/mn> e t c-> e« = f-ό + ie0", e3 = e2 + i e £ , . . . ) Unlike
such well known nonlinear optical effects as the genera-
tion of harmonics and parametric processes, where
waves interact at several strongly differing frequencies,
during the process of self-action the wave remains
quasimonochromatic, and the effect itself becomes
manifest in a change of its amplitude, polarization,
form of the angular or frequency spectrum. The classi-
fication of the possible variants of self-action of light
waves in nonlinear media can be obtained by using (1.2)
and simple qualitative considerations. Assume that we
are dealing with the propagation of an unmodulated (in
time) harmonic wave Ε = (%) Aexp (iu>t - k o - r ) + c.c.
in a medium with a refractive index in the form (1.2).
Then the imaginary parts of the coefficients e2, £ 4 , . . .
will be connected with effects of nonlinear absorption,
and the total damping decrement of the wave in the
medium is

δ = 6 0 -4- δ2 [ 4̂ j 2 + 6 4 ] ^4 |4 + . . . (l.2a)

60 = koeo'/2e^, 62 = k 0e 2/2e^); on the other hand, the
real parts of these coefficients are connected with the
corrections to the phase velocity.

The total eikonal of a plane harmonic wave contains
in this case the nonlinear additions (eo, e4 <^ e^)

.fnn _ "i I ^ |a *o., 1 e;! Λ ρ fc0 z (1.3)

the wave is accelerated or decelerated, and this can
influence, generally speaking, the efficiency of the wave
interactions in the nonlinear medium. However, par-
ticular interest is attached to effects connected with
nonlinear additions to the real part of e in the case of
bounded beams. These effects give rise here to a new
important physical effect, which can be called non-
linear refraction of the light rays. Indeed, in the field
of a bounded light beam, a medium which is initially
homogeneous becomes optically inhomogeneous by
virtue of (1.2); the refractive index of the medium is
now determined by the distribution of the intensity of
the propagating wave. In order to reveal the main fea-
tures of the nonlinear-refraction effect, we confine
ourselves to allowance for the lowest-order (and con-
sequently largest) nonlinear term in the expansion (1.2).
It is obvious that the character of the nonlinear refrac-
tion is determined by the sign of e2. In a medium with
ei > 0 (usually realized in the high-frequency Kerr
effect, in electrostriction in the field of an intense light
wave, and sometimes as a result of heating of the
medium in the light field; for more details see Sec. 1.2)

the regions of maxiifium Intensity are simultaneously
(l . l) also the optically densesfregions. In this case the

nonlinear refraction should lead, obviously, to a con-
centration of the ener'gy—the peripheral rays are de-
flected in a region where the field is maximal. This
effect is called self-focusing of the light beam. An
exceedingly important circumstance, which distin-
guishes the self-focusing effect on other nonlinear op-
tical effects, is its "avalanche" character. Indeed, in
a medium with e2 -> 0 even a weak increase of the in-
tensity in some section of the light beam leads to a
concentration of the rays in this region, and conse-
quently to an additional increase of the intensity; the
latter increases the effect of nonlinear refraction, etc.

In linear optics, the growth of the field in a focal
point of an optical system is hindered by diffraction.
A similar role is played by diffraction also in self
focusing; here, however, as we shall show later, the
diffraction effects are far from always capable of
compensating the nonlinear refraction.

An elementary analysis of the main laws connected
with self-focusing can be performed by considering the
behavior of the light rays on the boundary of a beam
having a rectangular distribution of the amplitude
(Fig. 1). Assume that in a nonlinear medium with
e2 > 0 and e2' = 0 there propagates a cylindrical beam
of radius a; then by virtue of (1.2) the refractive index
outside the beam is η = n0 = ej / 2, and inside the beam
η = n0 + n2 | A | 2 ( n 2 / n 0 = e 2 /2e 0 ) . The rays incident on
the boundary of the beam from the outside move from
a medium which is optically denser to a medium with
lower optical density; consequently, at sufficiently
large angles φ, total internal reflection is possible.
The critical angle corresponds to a ray whose inclina-
tion 90 to the beam axis is

e0 = arecos(— ^ , a ) . (1.4)

Rays with θ > θ0 emerge to the outside, and rays with
θ <. θ0 return to the axis. In a beam whose phase front
at the entrance to the nonlinear medium is plane, the
angle θ is determined by diffraction:

(1.5)

The relative contribution of the nonlinear refraction
and diffraction to the behavior of such a beam can be
estimated by comparing the angles θ0 and θ^.

a) When θ0 < θ^, the beam spreads, but the rate of
this spreading is smaller than in a linear medium.

b) When θ0 = θ^ (nonlinear refraction compensates
for the diffraction spreading completely), the dimen-
sions and the form of the beam unchanged when the
beam propagates in the nonlinear medium. The beam
produces for itself a unique optical waveguide, in
which its propagates without divergence. This mode is
customarily called self-trapping of the wave beam.

FIG. 1. Illustration of the derivation of a formula for the critical
power of a beam, transported without divergence (self-trapping) in a
nonlinear medium. The shaded area is occupied by the beam.



S E L F - F O C U S I N G AND D I F F R A C T I O N OF L I G H T IN A N O N L I N E A R MEDIUM 611

Using (1.4) and (1.5)-, it is easy to verify that the con-
dition θ0/- θ$ imposes a requirement only on the total
power of the beam and on the*nonlinearity of the medium.
Indeed, from (1.4) we get

(1.6)

c r

C I 256n 2

is the critical power of the, self-trapping beam. .
c) When θ0 > Θ& (and consequently Ρ > P c r ) the

rays are deflected towards the beam axis—self-focusing
takes place. In this case the nonlinear medium acts
like a positive lens. Its equivalent focal distance can be
easily estimated by using formula (1.6).

Introducing the diffraction length Rd = k0a
2/2

= a/9(j, we find from (1.6) that the condition θ0 - 0d
is equivalent to the condition

The quantity rn/, which has the dimension of length,
can be called the effective self-focusing length. Indeed,
the diffraction divergence can be treated as a result of
the action of a defocusing lens with focal distance R(j;
then the equality Rni = Rd corresponds to the focal
distance of a system of two lenses becoming infinite
(Z^1 = Rn^ - R^1). In beams of large "supercrit ical"
power we have, with sufficient degree of accuracy,
z f ~ R n j ( R n / ^ R d ) ( s e e F i S - 2)-the behavior of the
beam is well described by the geometrical-optics ap-
proximation, and the diffraction effects hardly come
into play.

The important role of the effects of nonlinear re-
fraction in the propagation of intense electromagnetic
radiation in a material medium, and the possibility of
the occurrence of the effect of self focusing, were first
indicated by Askar'yan in1-1-1, which was published in
1962. In 1964, Talanov [ 2 3 calculated the profile of the
beam that becomes self-trapped ( P = Per) i n a medium
with η = n0 + n2 | A | 2. The conditions for self-focusing
of electromagnetic waves in a nonlinear were dis-
cussed by Keldysh1-3-1, and finally, Chiao, Garmire, and
Townes1-4-1, considered the problem of self-trapping of
a wave beam in a nonlinear medium as applied to the
optical range and to laser technology. Townes and his
co-workers considered the nonlinear polarization
mechanisms capable of leading to self-trapping, inves-
tigated the profiles of the self-trapping beams, dis-
cussed the factors determining the diameter of the
self-trapping beam, etc. Estimates of the value of Per*
given i n t 4 \ have shown that self-trapping effects
should be observed even at moderate laser powers, but

4 I
f
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FIG. 2. Picture of self-focusing in a nonlinear medium, of a light
beam with a power in excess of critical. The bounded beam (of radius
a) of "supercritical" power with a plane phase front becomes self-

in any rate in liquids with a large Kerr constant (for
CS2, n2 = 9 x 1(T12 cgs esu and, according to (1.6), P c

= 10 kW).
The foregoing investigations stimulated new theoret-

ical and experimental research in the field of self-
focusing of powerful electromagnetic waves, and the
overwhelming number of them were connected with the
problem of self-focusing and self-trapping of intense
laser beams in liquids and solids.*

In theoretical papers published in 1965 and in the
first half of 1966, they investigated the dynamics of
self focusing of a beam with Ρ > P c r (see [5>6>14J -
this question was not considered in ι1"*}); in'·6 '1 4-',
particular attention was paid to factors determining the
self-focusing length and to the rate of growth of the
field intensity, in^ 6 ' 1 6 ' 7 4^ they discussed the behavior
of complicated beams in a nonlinear medium;
i n [7,8,4ο,4ΐ,β2,β5] _Qj e nonstationary processes occurring
in self-focusing, etc. In approximately the same time,
the self-focusing effect was reliably recorded experi-
mentally. The first experimental observations of self
focusing were reported by Pilipetskii and Rustamovi-20^1,
who photographed in their experiments narrow glowing
filaments excited in organic liquids by a focused ruby-
laser beam. At the present time there is no longer any
doubt that the effect of self focusing becomes manifest
in most experiments on the propagation in liquids of
powerful light beams generated by Q-switched lasers.
These included, first of all, experiments on the obser-
vation of stimulated Raman scattering (SRS) and
stimulated Mandel'shtam-Brillouin scattering (SMBS),
where the self-focusing effects leads to a sharp lower-
ing of the stimulated scattering threshold
(see£io,i2,i5,i7-i9j); t o a c n a n g e i n the rate of growth of

the stimulated-emission components with distance'·18'42-1,
to a strong deformation of the angular spectrum of the
stimulated-scattering components'-13^, etc. Although
these experiments do yield a certain amount of infor-
mation on the self-focusing effect as such (in '-18^, in
particular, they estimated experimentally the critical
power P c r in this manner) and on the structure of the
beam at the exit from the cell with the self-focusing
liquid (see, for example,'-10^, they cannot, of course,
replace a detailed study of the dynamics of self-focus-
ing. From among the investigations of the self-focusing
phenomenon proper, the most substantial is that of
Chiao, Garmire and Townes'-11-1, who traced with the
aid of a specially developed microscopic procedure the
dynamics of the behavior of an intense ruby-laser beam
in carbon disulfide (CS2).

It was established in these experiments that the
initially unfocused light beam with sufficiently homo -
geneous amplitude and phase fronts becomes com-
pressed in a nonlinear liquid into a thin filament of
practically constant radius, ~15μ. The experimental
setup is shown in Fig. 3. The diffraction-bounded

focusecl in a medium with n2 > 0 at a distance Rni = (a/2X/no/n2 I A | 2 ;
the nonlinear medium is equivalent to a certain degree to a gathering
lens with a focal distance Rni, but the paths of the rays are different, see
also Fig. 9.

*At the same time it must be mentioned that in the first investigations
on self-focusing, considerable attention was paid to the features of this
effect in a plasma. (In a plasma self-focusing is the result of redistribu-
tion of the density.) In the present review we are unable to dwell in de-
tail on this interesting question; we note only that a thorough analysis
of different variants of self focusing in a plasma was published recently
by Litvak [SB-OI].
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FIG. 3. Diagram of the experiment of Townes et al,, in which
self-focusing of light was experimentally observed. (The illustra-
tion is taken from I 1 ' ] )• The diffraction-bound beam is separated

with the aid of a diaphragm from the Q-switch ruby-laser beam and
and is guided to a cell with CS 2 . The structure of the beam in dif-
ferent cross sections is viewed in a microscope. Photographs, b,
c, d, and e show the evaluation of the beam as it propagates along
the cell (different photographs correspond to different boundary
conditions, photograph e corresponds to a complicated beam that
becomes stratified by self-focusing.

beam of 0.5 mm diameter and 10—100 kW power was
guided to a cell with CS2; the evolution of the beam
was observed with the aid of a thin plate that disturbed
the beam little, and a microscope. It was established
experimentally that the compression of the beam into
a narrow filament occurs at a distance ζ — Rn/ (in the
experiment, at Ρ = 90 kW, 2a = 0.5 mm, and n2 = 9
x 10"12 cgs esu they obtained Rni = 12 cm; the calcu-
lated value of Rn/ was 11 cm). As expected, decrease
of a by one-half decreased Rni by one-half. The criti-
cal power of the beam at the input, at which the wave-
guide propagation mode set in, was P c r = 25 kW. This
is approximately double the value of P c r determined
from (1.6). It is interesting that the presence of beam
compression is not always monotonie; deviations from
monotonicity are particularly noticeable at Ρ ^ Per
(Fig. 3c).

The authors ofLUj investigated the profile of a self-
trapping beam and found that it is close to that calcu-
lated in^ 2 > 4 j. Many authors observed narrow light
channels in self-focusing liquids by photographing the
ray of a ruby laser in the cell from the side and from
the end 1- 2 0 ' 2 1 ' 1 5 ' 1 8 ' 1 0^. The data obtained in this manner
also contained valuable information. It must only be
borne in mind that the observation of the filament in
itself cannot always be ascribed to self-focusing; in the
medium, a unique space-time selection of nlamentary
laser radiation takes place in the medium in the pres-
ence of optical breakdown. (Thie circumstance was
pointed out by the authors ofL2i- ) An important ex-
perimental result, which was reliably established in the
indicated investigations, is that sell locusmg oi the
beam as a whole is usually not obcer·, ed. Quite typical

is the breakdown of the beam in a self-focusing medium
into a multiplicity of " h o t " filaments (Fig. 4). More-
over, even self-focused filaments which are at first
glance homogeneous (with diameter ~30—50 μ) have,
as shown by a thorough investigation (see1-43'105^) a fine
structure and break up into filaments of 3—5 μ diame-
ter. It is interesting that the appearance of such
"hyperfine" filaments is accompanied by a number of
new phenomena (a sharp increase of the intensity of
scattering at an angle 90°, breakup of a laser pulse,
etc.).

An exceedingly interesting question is that of the in-
fluence of self-focusing effects on the propagation of
laser beams in solids. Although much less has been
done to date in this region than in self-focusing in
liquids, there are data that offer evidence of a possible
contribution of self-focusing to the mechanism of
damage to optically transparent glasses and crystals.
A characteristic photograph (from'-42J) of the picture of
damage to optical glass in the field of a ruby laser is
shown in Fig. 5; analogous observations were reported
also by the authors of [ 4 ' J . Data which apparently also
pertain to self-focusing are contained i n L 6 3 j , where the

FIG. 4. Thin self-focusing filaments of
Stokes SRS radiation excited by a ruby laser
in nitrobenzene, photographed from the end
of the cell. The upper and lower photo-
graphs are made through a polarizer in two
orthogonal positions. The polarization of
the laser radiation was circular, that of the
filaments was linear and arbitrary.

FIG. 5. Pictuie diosiag til." d;>tniUion of upiicjl glj^s in the field
of a ruby laser. The lo.i^ dunncl of di winter " Α μ. A'hich is clearly
seen on the photograph, is Jilficuit to -•-plain v/iinout resorting to the
self-focusing conv.opt.i(fi.)in [*2 j ; .
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propagation of a giant pulse of a ruby laser in quartz
was investigated at helium temperature. The effects of
self focusing in a NaCl crystal are discussed ϊ η ί 9 7 ^ .

Self-focusing is undoubtedly the most interesting but
not the only consequence of the presence of a nonlinear
correction of the real part of the dielectric constant.
We note first of all that in media with n2 < 0 nonlinear
refraction leads to a defdcusing of the powerful wave
beam. The causes of appearance of this effect are
quite varied, but the most important of them is heating
of the medium, connected with dissipation of the energy
of light beam. Although thermal effects can apparently
play a definite role also in the propagation of short
laser pulses (see, for example, the theoretical esti-
mates made i n L 4 0 ) 4 i > l i 2 j ) , their action is strongest on a
light beam in the steady state, when a stationary tem-
perature gradient is established (the time of establish-
ment of the stationary state* is τ j — a2/K, where κ is
the coefficient of thermal conductivity of the medium
for typical cases and exceeds 10~l sec). The stationary
thermal defocusing of the beam of a He-Ne laser was
observed in^ 4 4 j , and in an argon laser in'-144-1. The re-
sults of the experiment described inL44^ are shown in
Fig. 6; we see that even at relatively high radiation
intensities and lower losses (the hexane investigated
inL"4J has o0 - 1Q"2 cm"1 at λ =* 0.6 μ) the effect of
thermal defocusing can be appreciable.

Finally, we must point out also a large group of
problems connected with self action of time-modulated
waves in a nonlinear medium. Apparently, the first to
call attention to the possible appearance of effects of
this type was Ostrovskii, who demonstrated in a paper
published in 1963'-^ that the envelope can become
noticeably deformed in a medium with η = no + ite | A f.
A more detailed analysis performed recently
(see C21'3^) with account of the dispersion spreading of
pulses, has shown that it is possible to trace a very
interesting space-time analogy in problems of self-
action of modulated waves: the character of the varia-
tions of the spatial modulation (angular spectrum) and
temporal modulation (frequency spectrum) due to self-
action is in many respects the same, and is expressed
in terms of comparable parameters.* The temporal
analog of the spatial self-focusing is the effect of self-
compression of wave packets, which was calculated in
the cited papers.

A large number of problems is connected with the
self-action of electromagnetic waves in absorbing
media. Besides the already mentioned problems in-
volving the propagation of waves in media with non-
linear absorption, special mention should be made of
effects of self-action in active media, particularly in
saturating laser amplifiers (see, for example ,^2 5~2 B '9 8 j 9 9}.
Theoretical and experimental investigations made in
this field by Basov and co-workers [ 2 5~ 2 7 j have shown
that the self-action connected with the dependence of
the refractive index on the intensity of the wave can

1.5
FIG. 6. Relative broadening of a

helium-neon laser beam (maximal power
Ρ - 60 MW, λ = 0.63 μ) after passing
through a hexane-filled cell 98 cm
long. Ordinates- ζ = (a — aoj/a(2a -
beam diameter; for power Ρ — 65 MW);
abscissas—laser power and relative units °-5

(decibels). The plots are taken from

*Precisely the same analogy exists in the theory of nonlinear inter-
actions of modulated waves; the influence of the spatial and temporal
modulation of the waves on such processes as generation of optical
harmonics, parametric amplification, is expressed in terms of comparable
parameters and obeys common laws; see [3O,ioi ] .

become manifest here more strongly than in passive
media.

Thus, the results of the investigations performed to
date show that problems connected with self-action of
waves occupy one of the central places in modern non-
linear optics. There is every reason for assuming it is
just the self-action effects which determine the main
features of the behavior of powerful light beams in the
majority of material media, including active media of
lasers themselves. It is interesting that in many cases,
the self-action connected with broadening of the angu-
lar and frequency spectra can be observed simultane-
ously'- l i S~ i I B j. The purpose of the present review is to
describe the modern status oi theoretical and experi-
mental investigations in this important field of laser
physics. Principal attention will be paid in the review
to effects oi variation of the angular spectrum of a
bounded beam in a passive medium with n^ > 0 (self-
focusing); these effects become manifest in experi-
ments with powerful pulsed lasers most strongly, and
as a rule they dominate. The theoretical part of the
review (Sees. 2 and 3) is aimed at describing the
mathematical formalism used in the theory of self-
action of light beams. It must be emphasized that al-
though crude and semiquantitative notions of the mecha-
nism and dynamics of self-action have already been
formulated, many problems remain unsolved to this
very day; these are discussed in detail in Sees. 2 and 3.
The main exposition is preceded by a small section in
which we summarize the information on the physical
processes that lead to self action (mechanisms of non-
linearity of the refractive index).

1.2. Mechanisms of Nonlinearity of the Refractive Index
of a Material Medium

In this section we consider briefly the physical
causes oi the appearance of terms with €2, t4) etc. in
the expansion (1.1). Before we go over to the concrete
examination of different mechanisms of nonlinear
polarizability, let us discuss the consequences result-
ing from a phenomenological analysis of nonlinear
polarization. Using the expansion of the macroscopic
nonlinear polarization in powers of the field (similar
to (l . l)), the total steady-state response ot a nonlinear
medium to an arbitrary field Ε ( r, t) is

i ! l l i (1.8)D(r, t) = = p 0E

where p'™'' is the nonlinear polarization ol the medium)
and can be written in the form (we »o over to expres-
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sion of the electric induction in terms of the compon-
ents, and take into account only terms that lead to self-
action)

D,(r, t)= \ dtt , Γι) Ej(t-tu r-r.)

-^in \ dti J dt-i ^ dt3 ^ dti \ dr 2 ^ dT3%iJkl ( i t , t2, t3, r,, r,, r3)

Ό ο ο
xEj(t~tu r~-rl)Ek(t-tl-t2; r-r,-r2)

X Et(t — t1 — t2~-t3; r — r4 — r2 — r3) + . . . (1.9)

Formula (1.9) takes into account the fact that both the
linear and the nonlinear response of the medium at the
"point" ( r, t) are determined not only by the field at
this point, but also by the fields in neighboring "points/
that is, (1.9) takes into account the temporal and
spatial dispersion of the linear and nonlinear suscepti-
bility of the medium. Here and throughout we shall be
interested henceforth in the response of the medium to
an action of a special type—a quasimonochromatic
wave

= ^-Α(Γ, i)exp[i(moi-k0r)H-C.C. (1.10)

For a quasimonochromatic wave, the relative widths of
the frequency and angular spectrum of which are small,
the complex amplitude A ( r , t) is slowly varying func-
tion (compared with exp [ i (cuot - k0 · r ) ]) of the coo rdi -
nates and of the time.

For an analysis of the effects of self action of the
wave (1.10) it is sufficient to consider only those com-
ponents of the induction D, whose " fas t" dependence
on r and t is in the form exp [i(u;ot — k o r) j . In many
problems on self-action it is possible to confine one-
self in the allowance for the dispersion properties of
the medium to a quasistatic approximation (the com-
plex amplitudes in (1.9) can be regarded as functions
that vary slowly compared with e(t i , rx) and
x(ti, ta, t3, Γι, ra, T-J), and can be taken outside the
integral sign). Then

Μ υ = ε,,·(ωο, ko)Aj(r, t) exp i (ωοί —fcor) (l.H)

and
/ ) i n l ) = Αηχα/α ([£>o> k0; ω 0; /%; ω0, k0; — ω0; — k0)

X AjAhAt exp [i ( ω ο ί — k o r ) ] (1.12)

(we take into account only the nonlinear term of lowest
order, and therefore of largest magnitude); a medium
for which only Xjjk/ is significant is called cubic). If
we are dealing with linear induction, then the quasi -
static approximation in the allowance for the spatial
dispersion is usually perfectly satisfactory. The same
cannot be said, however, with respect to the temporal
dispersion; the linear inertial properties of the medium
become strongly manifest in many problems involving
self-action of light pulses. It is frequently necessary
therefore to use in lieu of ( l . l l ) a more general ex-
pression, which is obtained from (l . l l) by expanding
A(t - ti, r) in a Taylor series:

(1.13)

It is possible to take into account in similar fashion
also "nonquasistatic" effects, due to spatial dispersion;

in this case the expansion of tie type (1.13) contains
corresponding spatial derivatives.

The quasistatic approximation, as a rule, is per-
fectly satisfactory for a nonlinear susceptibility. In an
overwhelming majority of cases of spatial dispersion,
we can neglect in (1.12) (the spatial dispersion (perhaps
the only important exception is striction nonlinearity),
and assume that the effects of self-action are described
by the spectral component of the tensor χ in the form

χ (ω; ω; ω; —ro) = χ (ω = ω-;-ω — ω) (1.14)

(we use here a general notation, which takes into ac-
count all the frequency arguments (see L 3 5 ' 3 6 ] ) and later
on we shall sometimes write, for brevity, simply
x(u>) in lieu of (1.14)).

Allowance for the temporal dispersion of the non-
linear susceptibility in the band of the signal (1.10) can
be made by going over to an expansion of the type (1.13).

In the general case, an arbitrary component of the
nonlinear-susceptibility tensor contains both real and
imaginary parts:

tUhi (ω) = "/Aiki (ω) + ixlm (ω). (1.15)

The rea l p a r t χ'(ω) determines the nonlinear addition
to the phase velocity of the harmonic wave of frequency
ω, and the imaginary part ( χ " ) the nonlinear absorp-
tion; they a r e connected with each other by relat ions of
the Kramers-Kronig type ^36^. The tensor Xjjk/ has
nonzero components for all groups of point symmetry
and isotropic media. The nonzero components Xjjk/,
determined by the symmetry propert ies of the medium,
can be found for all crys ta l c lasses i n [ 3 3 > 3 8 ] .

Using the matr ix of the components Xjjk/, we can
calculate the components of the vector of the nonlinear
induction Ό)η^, which determine the effects of self-
action. In two cases—isotropic and cubic medium—we
can write for Di quite general formulas.

F o r an isotropic medium

βι

(η1) = 12πχ1122Ε;(ΕΕ). (1.16)

F o r cubic crys ta l s (in part icular, for crys ta l s such a s
LiF, NaCl, etc.)

Dlni) = 12πΧι122£; (EE)-f 4π ( X l i l l -3 X l l 2 2 ) £?. (1.17)

An est imate of the absolute values of the components
χ must obviously be based, already on an analysis of
the concrete physical mechanism.

1.2.1. Mechanisms of nonlinearity of the refractive
index of a liquid.

In accordance with (1.16), we can write for a liquid

ε - ε0-f-ε2 μ ρ (1.18)

where

" — " ο ~»2 | ·Λ | , n3~n(,-r^—. ^ 1 . 1 9 ;

The contribution to n2 due to changes in the density of
the medium in light field (these changes can be due to
electrostriction and heating, if the medium has absorp-
tion) and due to changes in the polarizability of the
molecules (due to the nonlinear addition to the elec-
tronic polarizability, and in the case of anisotropic
molecules also due to their orientation along the field
of the wave) can be estimated by using the Clausius-
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Mosotti equation and the corresponding dynamic equa-
tions (see'·3- ). For an isotropic medium

where ρ is the density of the medium and a the polar-
izability of the molecule. In a strong light field, ρ and
ώ contain terms that depend on the field; when account
is taken of the lowest-order term, we can write

Substituting (1.21) in (1.20) and putting η = n0 + Δη,
where Δη is the correction to the refractive index for
the action of the field, we have

= Κ-1)Κ + 2)[^-+|^]6«-»· (1-22)

Let us turn first to an analyses of the quantity ( Δη)ρ.
The contribution made to it by electrostriction can be
determined by solving a wave equation having in its
right side an additional term due to the electrostriction
pressure,

Here u is the velocity of the acoustic wave,
u = (ρβ)~ , where β is the compressibility, 2F/u is
the decrement of the damping of the acoustic wave, and
γ = 2ηοΡοθη/dp. The stationary solution of (1.23) makes
it possible to determine the striction addition to the
refractive index in the field of an unmodulated wave of
amplitude

(Δ«)Ρ = # Ρ 4 Γ | Λ | 2 £ 5 n2U|2s_«»-e2|/l|i!, (l.24)

where Kp = 72/3/87Γηολο can be called the electrostric-
tion coefficient. The result (1.24) does not depend on
the type of wave polarization; in striction self-action,
elliptic and plane polarizations are on par. Of great
importance from the point of view of revealing the
mechanism of electrostriction self-action in experi-
ments is the temperature dependence of Kp, usually
dKp/dT > 0.

In the field of a modulated wave it is necessary to
consider the nonstationary solution (1.23); such cal-
culations for a specified field were made in1-39'40 λ In
the general case it is necessary to take into account
also the reaction of the medium on the field. Then,
in general, it is not advantageous to use the concept of
nonlinear susceptibility, and (1.23) must be solved
simultaneously with the field equations (see Sec. 2).
Thus, in problems of self-action, a separate analysis
of the nonlinear properties of the medium and of the
electrodynamic problem is, generally speaking, not
always justified. For more detailed explanations see
Sees. 2 and 3.

The change of density (and consequently of the re-
fractive index) connected with the heating (due to the
dissipation of energy of the light wave) leads, generally
speaking, to nonstationary effects, even in the field of
an unmodulated wave (see^4 5 j). Indeed, for time inter-
vals shorter than the time of establishment of a sta-

tionary temperature gradient ~ a2/*, where κ is
the coefficient of thermal conductivity of the medium),
we have

Cp is the specific heat. Usually τ^ = 0.1 — 1 sec, and
consequently for laser pulses it is necessary to use
(1.25). For most media de/dT < 0, and the thermal
effect leads to defocusing. The characteristic defocus-
ing times were estimated i n t 4 0 ] . At the same time, for
( ae/θΤ) > 0, heating leads to self-focusing; this cir-
cumstance was discussed in detail in^45^1*. The station-
ary problem of thermal self-action (which has a bear-
ing on experiments with gas lasers) is discussed
i n [45,114] _

The nonlinear addition to the refractive index in
liquids with anisotropic molecules is connected with
the orienting action of the light field on the molecules —
their alignment in the field. When this circumstance is
taken into account, we have for the distribution function
of axially-symmetrical anisotropic molecules with re-
spect to the angle, in first approximation, (see'-85'53'113-')

-aJ(3cos29-l)|Xj2. (1.26)ιΙΩ

Here df2 is the solid-angle element, θ is the angle
between the symmetry axis of the molecule and the
field direction, and an and aL are the principal
polarizabilities of the molecule. In a field of a plane-
polarized wave of constant amplitude, the stationary
addition to the refractive index, due to the Kerr effect,
was calculated in'·39-1:

(An)a ==-*- Καλ0\ Α \ 2 = η 2 μ | 2 . (1.27)

According t o W ; dK^/dT < 0. The calculated values
of the parameters Ka and Κβ for different liquids are
listed in Table I, which is taken from t39^. Formula
(1.27) can be used also to estimate self-action of modu-
lated waves, if the modulation period Tm 3> τ
= 47rb2iykT—the relaxation time, which is determined
by the dimensions of the molecule b and by the viscos-
ity ν (usually τ =" 10~12 sec). When Tm = τ it is
necessary to solve the relaxation equation for the
polarizability simultaneously with the field equations
(see Sees. 2 and 3). An important circumstance dis-
tinguishing the Kerr nonlinearity from the striction
nonlinearity is the appearance of anisotropy due to the
alignment of the molecules in the field. In a field which
is plane-polarized along the χ axis, a medium with
orienting molecules becomes birefringent, and the
components of e are

Table I

Liquid

Carbon
tetra chloride

Carbon disulfide.
Hexane
Cyclohexane
Metaxylene
Benzene
Toluene
Chlorobenzene
Bromobenzene

V » '

1.21

2.53
1.06
1.06
1.20
1.33
1.25
1.20
1.50

κ α . ιοβ

0.67

32.6
0.45
0.78
7.59
5.73
6.55
9.93

14.35

Liquid

Nitrobenzene
Aniline
Chloroform
Acetone
Methyl

alcohol
Ethyl

alcohol
Butyl

alcohol

0.92
1.00
1.03
0.75
0.58

0.66

0.64

Α'α·108

26.04
3.22
1.70
1.03
0.17

0.21

0.41

Ίίπ~ϊ)ϊ POCP
(1.25)

*It is noted in [41 ] that for t < τι = a/u heating even in a medium

with de/dT < 0 should lead to a noticeable self-focusing of a homogene-

ous light beam (see also [ ι12 ]).
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ε,̂ ε, + ̂ μ ρ , ε,( = Β1ζ = 8 ο - ί ί 2 1 ΐ ρ (1.28) Tab% Η

—the self focusing component is precisely Εχ. By
virtue of (1.28) we have for a circularly polarized wave,
in lieu of (1.27),

(1.29)

Liquid :

cs
CeH5NO2

C5H5COCI

*o P ;« 107

3,9
3.3
0.7
3.3

B s t xl0 7

3.9
382

0.5
223

—for circularly-polarized radiation the power neces-
sary to obtain the same addition to η increases by a
factor of 4. Attention was called to this circumstance
i n m and [ 3 9 ] . It must be emphasized that the foregoing
conclusion pertains to the case when the circularly-
polarized wave becomes self-focused as a whole. A
more detailed analysis shows, however, that such self-
focusing has low probability; in a nonlinear medium a
circularly polarized wave is unstable, and its self-
focusing results in wave channels not with circular but
with linear polarization. In this case the critical power
is only double the critical power for linearly polarized
light (seeC l 0 4 '1 0 6 ], and also the plot of Fig. 20, which is
taken fromC l o o ]).

The anisotropy induced by an intense light wave in
liquids with anisotropic molecules was recorded
directly inL43^. The scheme of this experiment is
shown in Fig. 7. Light from a xenon lamp, blocked in
the absence of a laser beam by a system made up of
a polarizer and analyzer, is incident on a photomulti-
plier whenever the laser pulse makes the liquid in the
cell anisotropic*. The Kerr constant is calculated from
the experimentally determined difference of the re-
fractive indices nn — ηχ = λοΒΑο (Αο—laser field). The
values of BOpt determined experimentally inl-43^
(optical Kerr effect) for a number of liquids are listed
in Table II, which gives also the values of the static
Kerr constant B st (n2 = ( %M0BOpt).

It was shown in t 5 1 ] that when anisotropy is induced,
elliptically polarized light experiences rotation of the
ellipse axes. Using this circumstance, the authors oft51]

determined the nonlinear addition to the refractive in-
dex in different liquids. These measurements were
repeated in t 5 2 ] ; the absolute values deviated greatly
from the data of i S i l (see also the refined data inC l o o : l).

Ruby laser

4 Η

Photo-/
mult. ̂ S P

FIG. 7. Diagram of experiment in which a high-frequency Kerr effect
was observed [ 4 3 ] . Radiation from xenon lamp (S) experiences a rota-
tion of the plane of polarization in the cell with the investigated liquid
(C), if the cell is illuminated simultaneously by a powerful coaxial beam
from a ruby laser. P—polarizer; A—analyzer; F , , F 2 -filters passing the
radiation of the xenon lamp (λ — 5000 A); D ! , D 2 , D 3 —diaphragms;
L,, L2 —lenses.

*This effect is one example of cross modulation of waves in a non-
linear medium.

A calculation based on formulas such as (1.26) is
valid for fields that are not too strong; when the field
intensity increases it is necessary to take into account
the higher-order terms, corresponding to inclusion of
terms with | A | 4 and higher powers of the field in (1.2).
The limiting value of the nonlinear addition to e0 is
reached when all the molecules are completely aligned
with the field: when A — °° saturation takes place of
the high-frequency Kerr effect (Fig. 8). The concrete
law governing the saturation is discussed, for example,
in[Vis] (See Sec. 3). Although οrientational effects and
striction are the principal mechanisms of self-focusing
of light in liquids, it is necessary in many cases to
take into consideration also a few other effects. Thus,
Townes and his co-workers'-105-' explain the formation
of "hyperfine" laser filaments as being due to the ad-
dition to an increment in n. connected with the growth
of the polarizability of the molecules excited in stimu-
lated Raman scattering. A general discussion of this
question was published recently by Askar'yan^46^, who
considered the contribution made to η by excited
atoms and molecules. Finally, Hellwarth[107] recently
developed a theory of the nonlinear refractive index
with allowance for correlations between molecules; it
turned out that noticeable additions to η can occur for
symmetrical molecules.

1.22. The most effective mechanism that can lead to
self-focusing in solids is electrostriction. The static
values of the critical powers turn out to be low in this
case (see t 4 ]) (we must remember the statements made
above concerning the role of the nonstationary pro-
cesses; thermal effects can also be appreciable).

The nonlinear electron polarizability is usually
small; it yields usually n2 - 10"14—10~15 cgs esu. In
semiconductors with a narrow forbidden band, however,
such as Te, we can expect appreciable values of n2.
Although no concrete measurements of n2 have been
made as yet, an approximate estimate can be made by
starting from experimentally-measured values of the
tensor of the quadratic polarizability (according to ^102^
Xijk — ΙΟ"6 cgs esu) and the general theory of nonlinear
properties of semiconductors t54]. A rough estimate
yields for Te the value n2 — 10~12 cgs esu; the latter
leads us to expect self-action to be observed in Te in
a beam of a CO2 gas laser. We note, finally, that the

FIG. 8. Dependence of the
dielectric constant of a nonlinear
medium on the intensity of the
light wave, with allowance for
the saturation effect (for the
Kerr effect).
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foregoing summary does not exhaust, of course, all the
possible mechanism of nonlinearity of the refractive
index. For example, the possibility of self focusing in
a medium with anomalous dispersion that depends on
the intensity was considered in^3?^.

2. GEOMETRICAL OPTICS OF A NONLINEAR MEDIUM

As was already indicated in Sec. 1, the effects of
self-action lead to a change in the angular spectrum of
the propagating quasimonochrdmatic wave (these
changes will be called here and henceforth self-focus-
ing and self-trapping) and to a change in the frequency
spectrum (these effects be called self-contraction of
wave packets). Although for a real quasimonochro-
matic wave (for example, for a short laser pulse having
a finite angular spectrum) both indicated phenomena
occur, in general, simultaneously, in order to simplify
the exposition, it i s sensible to carry out their theo-
retical analysis separately. The results will then make
it possible to discuss the entire problem as a whole. In
this section we turn first to an analysis of the problem
of self-focusing of a light beam in the geometrical-
optics approximation (k = 2π/λ —•<*>). Such an analysis
makes it possible to reveal the main features of the
nonlinear refraction of light rays under different con-
ditions; we note, incidentally, that inasmuch as the ef-
fects of nonlinear refraction are dominating at light-
beam powers greatly exceeding the crystal value (see
formula (1.6)), the geometrical-optics picture reflects
correctly the main features of the phenomenon of self
focusing of beams possessing " s u p e r c r i t i c a l " power
also at finite values of λ, particularly for three-
dimensional beams (see also Sec. 3).

2.1. Stationary Self-focusing of a Bounded Beam in
Cubic Lossless Medium. Fundamental Equations

In accordance with the foregoing, we turn to the
investigation of the effect of self-focusing of unmodu-
lated waves (stationary self-focusing). Stationary self-
focusing is described by the wave equation

(2.1)rot rot Ε -+- - ^ ,.2 = 0

together with material equations of the type ( l . l ) (the
linear and nonlinear responses of the medium are a s -
sumed to be in the steady-state); for a cubic medium

D = ε0Ε + 4πΡ(η1) = έ0Ε + 4πχΕΕΕ. (2.2)

Equation (2.1) can be analyzed on the basis of the
method of slowly varying amplitudes, which greatly
simplifies the initial equation. The idea of the method
consists in the fact that a bounded weakly converging
or weakly diverging beam can be represented in the
form

Ε = ~eA (μ (rp); / μ [rp]) exp [i («rf-kr)] +C.C, (2.3)

where μ is a small parameter characterizing the dif-
ference between the beam and the plane wave
Ε = (%) eEoexp [icut - k · r)], a deviation due to the
nonlinearity of the medium and to diffraction. Account
is taken in (2.3) of the change in the complex amplitude
A both along the beam ρ and across it (we take in
first approximation the same ρ as for a plane wave).
The changes across the beam are faster, since a

transition into the shadow region takes place.
Substituting (2.3) in (2.1), assuming that the non-

linear polarization is of order μ, and confining our-
selves to first-order terms in μ, we arrive at a
simplified equation that describes the effect of self-
action of a harmonic wave in a cubic medium:

2ik-?P- = A_LA + k1 2 l ' A. (2.4)
OZ 6o

Here Aj, is a two-dimensional Laplace operator in the
plane perpendicular to the beam or to the axis ζ II p.
When €2 = 0, Eq. (2.4) goes over into the parabolic
equation using the approximate theory of
diffractionC55>563. Thus, (2.4) corresponds to the so
called quasioptical approximation, and can describe the
self-action of a normal wave in both an isotropic and
an anisotropic medium.

Introducing the eikonal s of complex amplitude:

— iks), (2.5)

which is an addition to the eikonal of the plane wave
(see (2.3)), we obtain from (2.4) the system

* M 0 •

._|S = 0.

(2.6)

(2.7)

for a two-dimensional beam and a three-dimensional
cylindrically-symmetrical beam, (2.6) and (2.7) take
the form

0 ds I ds γ _ 8ΖΛ§ , 1 / dMp , m dA0 \
Bz " · " V dr ) — e 0 "*" AM, I ar' """ r dr } 'Bz

dA

(2 8)

ds dA0 m ds

Here m - 0 corresponds to a two-dimensional beam
and m = 1 to a three -dimensional beam. In the right
side of (2.8) there are two "forces" determining the
behavior of the eikonal (wave front): the "force" con-
nected with the nonlinear refraction and the diffraction
"force."

2.2. Geometrical Optics of a Cubic Medium. Self-
focusing Length. Nonlinear Aberrations

A feature of the equations of nonlinear geometrical
optics

„ as ι a, y _ e2A0

BAQ . ds dA0 . A^ I S2s , m i i 1 _
~te+~oT~Tr h 2 \ari~r~T~aT)~

(2.10)

(2.11)

distinguishing it from the equations of linear optics, i s
the fact that the equation for the eikonal (2.10) is no
longer independent of the equation for the amplitude
(2.11), as a result of which its solution, which deter-
mines the paths of the rays, depends essentially in
general not only on the initial phase front but also on the
form of the amplitude profile of the wave. It is impos-
sible to obtain an analytic solution of Eqs. (2.10) and
(2.11) in general form for arbitrari ly specified initial
profiles s ( 0 , r ) and A o (0 , r ) . At the same time, we
can point to several particular solutions that are of
practical interest.

We recal l first that in a linear medium ( e 2 = 0)
Eqs. (2.10) and (2.11) are satisfied, in particular, by
cylindrical and spherical waves (they are written here
in a form corresponding to quasioptic approximation):
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-~2(z+R) ' " · Μ + 1 \ 1 + " ' - { a(^ + l) I W'Vi>

where R is the radius of curvature of the initial wave
front (R > 0 corresponds to a diverging wave, R < 0
to a converging wave); F is an arbitrary function which
specifies the distribution of the amplitude across the
beam. Since all the rays cross at a single point (at the
focus Zf = -R), there is no aberration.

In a nonlinear medium ( £2 / 0) a natural generali-
zation of these solutions will be cylindrical and spheri-
cal waves with variable radius of curvature

El
ΐ

where β'1(ζ) is the radius of curvature, φ(ζ) is the
addition to the eikonal due to the change in the wave
propagation velocity, f (z) is the dimensionless width
of the beam, Eo is the field intensity on the beam axis.
At the entrance to the nonlinear medium we have for
ζ =0

β (0) = B-\ φ (0) = 0, / (0) = 1, (2.14)

(2.14a)

We note that in a cubic medium aberrationless
focusing is realized not for an arbitrary initial ampli-
tude profile of the beam (compare with (2.12) for a
linear medium), but only for a parabolic profile (2.13).
A solution in the form (2.13) is, in essence, one of the
self-similar solutions for (2.10) and (2.11).

Substituting (2.13) in (2.10) and (2.11), we arrive at
the following ordinary equations for the functions β,
φ, and f:

αφ
"57

~dz

dif

dz

2εο°

1

c

-jf-d+m),

di
dz '

2e2£o *)
,a2/2+m iz\ •

(2.15)

(2.16)

(2.17)

Taking into account the boundary conditions (2.14), the
first integral of (2.17) is

I df y__ 4e2£g ^ c C = J 4e2£o (2 18)

For the case of a spherical wave (m = 1), the inte-
gration of (2.18) leads to the following dependence of
the beam width on the distance covered by the wave in
the nonlinear medium

the intensity of the wave on Ihe beam axis, Ao(z, 0)
= Eo/f2(ζ). When f (ζ) ,τ~ 0*j the amplitude Ao —• °°;
the corresponding point i | | pnthe ζ axis is a focus.
The quadratic equation obtained from (2.19) at f = 0
determines in the general case two focal points, Zf;i
and Zf,2: ^ ^ ± ^ <

ζϊ^«ΐΓ~7Γ' ^ (2.20)

^ ^ /^Ι (2.21)

When e2 > 0 the nonlinear medium exerts a focusing
action on the light beam, and when £2 < 0 a defocusing
action (f(z) never vanishes). A parameter character-
izing the focusing properties of the nonlinear medium
for a beam with an amplitude distribution described by
formula (2.13) is the quantity (seeC6'14'16])

By virtue of (2.13), the width of the beam determines

Λ η 1 = α / ^ ν · ( 2 · 2 2 )

It follows from (2.20) that the quantity RnZ determines
the distance at which a light beam with a plane phase
front (R-*1») and with amplitude distribution (2.14a)
becomes self-focused in a linear medium (see Fig. 2)*.
For a converging beam (R < 0) the focal distance in
a nonlinear medium with e2 > 0 decreases. Moreover,
an initially diverging beam R > 0 becomes self-focused
upon entering into the nonlinear medium if R is not too
small. The critical value of the divergence is

Rcr = Rn/·
The second focal point (2.21) exists only for a con-

verging wave (R < 0, | R | < Rnz), and in this case
Zfj2 > Zf j ] t. Using (2.10) we can determine also the
trajectories of the rays in the nonlinear medium:

— = Γ(ζ)β(ζ), ( 2 · 2 3)

r(*) = rQf(z). (2.24)

The trajectories of all rays are similar (self-similarity
of the solution).

Figure 9 shows the rays in the self-focusing of a
three dimensional beam (m = 1) for different· ratios of
R to Rn/· The change of the intensity on the beam axis
Ao(z, 0) = E 2/f 2(z) for the case R — °° (plane initial
phase front of the beam) is shown by curve 1 of Fig. 10.

For the case of self-focusing of a two-dimensional
beam (m = 0) we obtain, after integrating (2.18), a
more complicated expression for the width of the beam
in an arbitrary cross section ζ

^-11,(2 .25)

*Equation (2.17) can be used also to investigate stationary thermal
defocusing of laser beams. In this case it is necessary to reverse in this
equation the sign of e2 (now e2 means the addition to the dielectric con-
stant, obtained on the basis of the stationary solution of the equation of
thermal conductivity), and take into account the damping of the light
wave. We then have in lieu of (2.17) f" = 2e2Eg/eoa

2 [exp(-S0z)]/f3.
For the case of greatest practical interest, a-y/eo/e2Eo » δ'ό (which
is characteristic of gas-laser beams of small and medium power) the
beam divergence angle in the medium is directly proportional to the
beam power Ρ, θ (z) =af'/f = e 0 + 1/IT • dn/dT · P/nKa( 1 -exp[-6 0 z])
(the notation is the same as in formula (1.25)). When δ0ζ -»· °° the di-
vergence reaches a stationary value. For more details see [ 1 1 4 ], where
the results of the calculation are compared with experimental data on
the propagation of an argon-laser beam in liquids.

*Thus, the results of the calculation confirm the validity of the qual-
itative estimates made in Sec. 1. Formula (2.22) was verified experiment-
ally by Townes and co-workers [ 11 ]. It must be borne in mind that the
character of the dimension of the beam under the square root in (2.22)
has in the general case of an arbitrary beam the meaning of an effective
radius of curvature of the amplitude profile (see also formulas (2.32) and
(2.33)). Therefore in experimental papers (such as [ 1 8]) the formulas
for Rn l contain in lieu of a the quantity a/J, where J is the ratio of the
radius of the beam to the characteristic radius of curvature (for a
Guassian beam? = 1). The value of ϊ is determined from the slope of
the plot of Rni against P. We note, incidentally, that formula (2.20)
points to an additional possibilities of verifying the theory, and conse-
quently, of a more detailed study of the dynamics of self-focusing when
the form of the phase front of the incident beam changes.
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where cos a == ,Rn//]R| < 1, and

, (2.26)

where sinh α = R n / / | R | > 1.
Formula (2.25) describes the behavior of beams in

a strongly focusing nonlinear medium ( |R | > Rn/) ac-
cording to (2.25), the beatn is periodically focused and
defocused; the number of focal points is infinite:

· (2-27)

In particular, a two-dimensional beam with a plane
phase front (R = °°) and an amplitude distribution
(2.14a) becomes self-focused at a distance

Zf, 1 = ~2 ^nl (2 . 28)

The corresponding plot for the intensity on the axis is
shown in Fig. 10, curve 2). In the case of a weakly
focusing medium, when R n ; >• |R |, there is only one
focal point

z < = -
Rcha Γ sh2a

- ] · (2.29)

If the beam has an amplitude profile different from
parabolic (2.13), then it is no longer self-focused at a
point as a whole, and aberration appears. In this case
the focal distance for a beam with sufficiently smooth
profile can be estimated in the following manner. In the
first approximation, one can seek the eikonal in the
same form as in the absence of aberration:

5 = - ^ Ι ^ Ι + φ ( ζ ) . (2.30)

Then the general solution of the equation for the am-
plitude (2.11) has the form of the arbitrary function

«-A'bfe-l· (2.31)

Substituting A? from (2.31) into (2.10), we expand the
function F in powers of the transverse coordinate r
and obtain, with allowance for (2.30), the following
equation for the width of the beam:

Comparing (2.32) with (2.17) we see that the role of Rni
is assumed by

i?'-i=l/ ° (<> ·}ΐ\
ηί V £2£gF"(O)' \6.όό)

where l / F " ( 0 ) characterizes the radius of curvature
of the intensity profile of the incoming beam on its
axis (see (2.31)). Near the focal point, where aberra-
tion plays an important role, Eq. (2.32) and its solutions
no longer hold.

A somewhat more general analysis, which makes it
possible to take into account aberration phenomena, can
be made for a two-dimensional beam. After introducing
new independent variables

" = l l · / = 4» (2.34)
Eqs. (2.10) and (2.11) reduce to a system of first-order
equations

g. + u g._ v g = 0, (2.35)
dj dJ τ du n (0 "ifti

L W (_/-__ — (V \6·όΌ)
ds dx dx

where γ = e2/2e0. We note that (2.35)-and (2.36) have
the same form as the equations describing nonstationary

FIG. 9.Trajectories of rays of three-dimensional light beam with ini-
tial amplitude distribution A2, = E2, (1 + 2r2 /a2 ). In all the Figures the
cross section z 0 j corresponds to the entry into the medium of the con-
verging wave (R < 0). a) |R| > Rnl—weak convergence of the beam (one
focus is produced); b) |R| = Rni—critical convergence; c) |R| < R n i -
strong convergence, two foci are produced. The cross section ζ = z 0 2

corresponds to entrance of a diverging wave (R > 0). a) R < Rni (no
focus), b) R = Rni (no focus) c) R > Rni (no focus).

isentropic flow of a barotropic liquid ( s e e ^ 5 7 ^ and
differ from the latter when £2 > 0 and y > 0 only in
the sign of y. This circumstance is very important,
since a change in the sign of y transforms the system
from a hyperbolic one into an elliptical one. It is known
that the system (2.35) and (2.36) can be reduced to a
linear system by a hodograph transformation. The
latter makes it possible to construct a sufficiently
general procedure for the analysis of the equations of
nonlinear geometrical optics. It can be shown, how-
ever, that the system has one particular solution of
practical importance

-=-ψΜ^)' (2.37)
/=(/.+ϊ^)Λ-(ϊ^ϋ). (2.38)

Formulas (2.37) and (2.38) describe, in the geometrical-
optics approximation, the propagation of a wave having
at the section ζ - 0 a plane phase front (u = 3s/ 9x = 0)
and an intensity distribution

J(x, O) = / och-»(i). (2.39)

in a nonlinear medium.
In constructing the ray trajectories for this case, we

can use the analog of the isocline method, used to con-
struct trajectories of motions on the phase plane. We
note first that the angle between the wave vector ρ and
ζ axis (unit vector Zo) for near-axis rays is approxi-
mately equal to u, since

tg pz0 ~ pz0 ~ — = u. (2.40)

Using the implicit solution of (2.37) and (2.38), we can
plot the field of the ray vectors on the (x, z) plane. The

FIG. 10. Variation of intensity
along the axis of the light beam:
1 —Aberrationless self-focusing of
three-dimensional beam; 2—aber-
rationless self-focusing of a two-
dimensional beam; 3—aberration
self-focusing of a two-dimensional
beam.

OS 1
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FIG. 11. Ray trajectories in a two-
dimensional light beam propagating in
a nonlinear medium with ej > 0. For
ζ = 0 and u = ds/dx = 0,1 = I 0cosh 2

(χ/α); e2 Eo /e0 = 1 /8 is a parameter.

-1.0 -0.5

lines tangent to these vectors at each instant will be the
ray trajectories. The rays constructed in this manner
are shown in Fig. 11 for the coefficient e2E

2./e0 = 1/8,
while Fig. 12 shows the corresponding plots of the dis-
tribution of the intensity in different sections of the
beam. The rate of growth of the intensity on the beam
axis is shown by curve 3 of Fig. 10.

It follows from Fig. 11 that initially the rays ap-
proach the beam axis and self-focusing takes place;
however, unlike the self-focusing of a wave with initial
profile (2.14a), which was considered above, rather
strong aberrations occur in the self-focused beam in
the present case. The peripheral rays cross the ζ
axis later than the near-axis rays. The light intensity
reaches a (finite) maximum in a plane located at a
distance Zf from the boundary of the nonlinear medium,

7 on (·) ΛΛ\
Λ f = ώ/ΐ n i . \ ώ. 11/

When ζ > Zf the rays begin to intersect.

FIG. 12. Distribution of intensity
over the cross section of a two-dimen-
sional light beam propagating in a non-
linear medium, for different values of the
parameter z/a. The beam parameters are
the same as for Fig. 11.

Aberrational self-focusing is apparently the most
typical for real beams. Although for three-dimensional
beams the picture of the: ^aberrations cannot be easily
calculated analytically (in this sense, the example
considered above is a fortunate exception), it is clear
that the rate of growth of the field on the axis of real
three-dimensional beams subject to aberration will be
lower than on curve 1 of Fig. 10. The aberrations can
play a certain role in the formation of the proper op-
tical waveguide.

2.3. Stationary Self-focusing of Complicated Beams.
Role of Linear and Nonlinear Absorption

The analytic results obtained above pertain to waves
close to cylindrical and spherical and having a suffi-
ciently smooth amplitude front. A complete calculation
of the behavior of beams of more complicated structure
is possible, apparently, only by numerical methods
(seeL29])_ However, interesting analytic results can be
obtained by the perturbation method, that is, by assum-
ing the changes of the amplitude and phase fronts of the
plane wave due to the nonlinearity to be small. In this
case, an appreciable simplification of the equations
makes it possible to consider the self-action problem
under assumptions which are much more general than
those used so far, with respect to the properties of the
nonlinear susceptibility of the medium (in particular,
to take into account the linear and nonlinear absorption,
the spatial dispersion of the nonlinear susceptibility,
the finite relaxation times, etc.).

We turn first to stationary self-focusing of compli-
cated beams in a cubic lossless medium. Assume that
a plane homogeneous wave with complex amplitude

A = Eoexv{-ik£-Elz} (2.42)

propagates in such a medium. Let us trace the behavior
of small perturbations of the square of the real ampli-
tude a and of the eikonal ψ, that is, let us represent
the real amplitude and the eikonal in the form

For small perturbations (a ~ μ', u ~ μ', where μ' is
a small parameter characterizing the perturbation),
Eqs. (2.10) and (2.11) become linearized and reduce to
a single equation of the elliptic type for a perturbation
of the intensity a

sr + ̂ i « = 0 . (2.44)

In the two dimensional case (Δχ = 32/θχ2), Eq. (2.44)
has a general solution for arbitrary boundary conditions

a{x, 0) = Φ(χ, 0) HU>(I, 0) = «<,(*),

α (χ, ζ) = ±[Φ(χ + ίΤζ) + φ(χ—ϊΤζ)]-^[ΐι<1(χ + ΐΓζ) + ιιι)(χ-Ιΐζ)],

(2.45)

where Γ 2 = e2Eo/2fc0, and Φ and u0 are analytic func-
tions. The presence of the solution (2.45) thus makes
it possible, in the case of a two-dimensional beam, to
trace the spatial development of a perturbation of ar-
bitrary type. For a Gaussian beam with a plane phase
front

-IS -1.0 -0J OS IJ> !J a

uo(x, 0) = 0, Φ (ζ, 0) =

we obtain from (2.45)

(2.46)
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(2.47)

that is, the Gaussian beam reveals a tendency to be-
come stratified on propagating in the nonlinear medium.
The characteristic distance at which the perturbations
build up appreciably is Zf - aj/2r =* Rn/—the self-
focusing length which figured earlier in the more exact
theory (see (2.33), (2.41))*.

It is impossible to write general solutions for a
three-dimensional beam; in this case the functions
φ(χ, y) and uo(x, y) can be expanded in Fourier inte-
grals and it is possible to trace the behavior of indi-
vidual Fourier components:

Φ (ζ

Substituting (2.48) in (2.44),.we have

(2.48)

(2.49)

—in the perturbation method, the self-focusing length
Rni is the increment of exponentially growing perturba-
tions. The fact that the perturbation method makes it
possible not only to trace the qualitative picture of the
behavior of the beam, but also to determine the self-
focusing length, can be used for the calculation of the
value of Rn; under much more general assumptions
concerning the properties of the medium than was the
case in Sees. 2.1—2.3.

Let us account first for the influence of the dissipa-
tive processes on self-focusing. In the presence of
linear and nonlinear absorption (quadratic in the field,
for example two-photon absorption, see formula (l.2a)),
the equation for the amplitude in the system (2.10) and
(2.11) is altered and takes the form

^ + | ί ^ Ι + ^Δ±« + 2δ0̂  + 2δ2̂  = 0. (2.50)

Assume first that δ0 > 0 and δ2 = 0. We consider a
linear system in which a plane damped wave propa-
gates, Ao = EJJexp ( -2δ2ζ). Representing the intensity
of the perturbed wave in the form

(2.51). - * α )}<"φ(-2δ0ζ)

and linearizing the system (2.10), (2.50), we obtain an
equation for

j-j- + -ρ- exp (— Δο0ζ) = Ό. \Ζ.ΌΖ)
z ni

Equation (2.52) has a solution that grows with increas-
ing ζ and is expressed in terms of the modified Bessel
functions:

Γ β Σ Ρ ( —

ηι J · (2.53)

(When δ0 — 0, formula (2.53) goes over into (2.49);
α(ζ) ~ exp(z/Rn/).) We see from (2.53) that linear
losses increase the self-focusing length. An approxi-
mate estimate of the self-focusing length Zf can be
obtained by assuming that the argument of the Bessel
function changes by unity over this length:

From (2.54) there follows directly also the character-
istic difference between the self-focusing in a dissipa-
tive medium and self-focusing in a lossless medium.
Whereas in the latter, by virtue of the relation Zf
= RnZ, the power necessary for self-focusing is the
smaller the larger the length over which the self-
focusing is observed*, in a lossy medium there is a
minimum self-focusing threshold power; it is deter-
mined from the equation Rn/ = δο1. The meaning of the
latter equation is obvious; the effect of self-action of
the wave, which leads to self-focusing, accumulates
only over distances not exceeding the photon mean free
path in the medium.

It is possible to determine in similar fashion the
self-focusing length in a medium with δ0 < 0 (active
medium). We have

a = a°I°1{l^)I°[JlSir]- (2.55)
in this case, obviously, Zf < Rn; the self-focusing of
the beam is faster than in a lossless medium. At large
gains (RnZ δ0 3> 1) we can write Zf δ0 = In RnZ δ0. One
cannot disregard, apparently, the appreciable shorten-
ing of the self-focusing length as a result of amplifica-
tion in experiments on stimulated Raman scattering
(here δ0 < 0 for the scattered radiation), and also in
the analysis of the angular and spatial structure of the
radiation of certain types of lasers (particularly semi-
conductor and CO2 lasers).

With the aid of calculations similar to those de-
scribed above, we can calculate the value of Zf also
for a medium with nonlinear absorption. Considering
the most typical case δ0 = 0 and δ2 > 0, and a per-
turbed wave in the form

\z]-\ (2.56)

(2.57)

When 62 — 0 formula (2.57) goes over into (2.49). In
accordance with (2.57), we can define Zf as follows
(see also t 7 2 ] )

Z^Ra+ψΙ. (2.58)

It follows from (2.58) that the presence of nonlinear
absorption increases the self-focusing length. In this
case Zf does not vanish even if Ρ — °°, and tends to a

2/ /

we obtain the formula

a (2) = a 0-

f
value ka2/2- ei, which is determined by the diffrac-

2tion length of the beam R<j = ka2/2 and by the nonlinear
properties of the medium. The ratio 62Ά2 is deter-
mined to a considerable degree by the radiation wave-
length. In liquids, where £2 is determined essentially
by the high frequency Kerr effect, and e2' by two-pho-
ton absorption at the wavelength of a ruby laser we
usually have Rd£2'/e2 <C Rn^. However in experiments
at shorter wavelengths (in particular, in the study of
self-focusing of radiation of optical harmonics of ruby

*The difference in the numerical factors involved in the value rni are
connected here and throughout with differences in the definition of the
effective diameter of the beam.

*It must be recalled, of course, that in this section we use the geo-

metrical-optics approximation, that is, we are dealing with lengths

Zf < Rj or powers Ρ > P c r (see formulas (1.6) and (1.7) and the cor-

responding results of Sec. 3).
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and glass lasers), situations in which £2/€2 - R n i /Rd
are possible*.

The change of the field intensity of the self-focusing
wave, taking into account in formula (2.54)—(2.58), is,
of course, not the only consequence of dissipative
processes. Heating of the medium can also be very
significant. As indicated in Sec. 1, a stationary distri-
bution of the temperature is established only after
times exceeding τχ =* a2//c, so that the problems of
the influence of thermal effects on self-focusing of
laser pulses (whose durations usually do not exceed
10"3 sec) turns out to be essentially nonstationary.

Problems of nonstationary self-focusing do arise,
however, and not only in connection with the problem of
self-focusing in a dissipative medium. There is a
clearly pronounced tendency in recent years towards a
shortening of laser pulses (pulses of 10"9 sec duration
are now typical; there are reports of generation of
powerful pulses of duration 10"10—1(TU sec; see^49^)
makes it necessary to take relaxation processes into
account also for one of the "fastest" self-focusing
mechanisms, that due to the Kerr effect. We present
below an analysis of the features of nonstationary self-
focusing, using as an example Kerr self-focusing and
self-focusing due to electrostriction.

2.4. Nonstationary Self-focusing. Nonlinear Dispersion.
Chromatic Envelope Aberration. Spatial Dispersion
of Nonlinearity.

To investigate nonstationary self-focusing it is
necessary to introduce derivatives with respect to time
in (2.10) and (2.11), and to solve these equations jointly
with the material equation characterizing the behavior
of the nonlinear polarization (we can no longer use the
simple algebraic connection between the polarization
and the field (see t 6 2 ] )) . The time derivatives in the
abbreviated equations come from expansions of the
type (1.13); confining ourselves, as before, to the
geometrical-optics approximation, we need include in
them only terms with the first derivatives of the com-
plex amplitudest. The system of equations of the non-
stationary self-focusing due to the Kerr effect then
takes the following form:

1 SA0 dA0 . 5s OAo

ΊΓ ~af + If + Tr IF ~r Ύ
(2.60)

(ν—group velocity of light),

T-£ + P = 4 - (2.61)

(Here τ is the relaxation time, see Sec. 1.) To calcu-
late the self-focusing length we shall use, as before,
the perturbation method; now, however, we shall trace
the behavior of one spectral component of the space-

*It must be borne in mind that the Kramers-Kronig relations hold
for the real and imaginary parts of e2 (see [36 ]).

tThis corresponds to the first approximation of dispersion theory, in
which account is taken only of the effect of the group delay of the wave
packet. Allowance for the second derivatives (the dispersion spreading of
the packet) is beyond the scope of geometrical optics, and it must be
made together with an allowance for the diffraction spreading of the
beam (see Sec. 3).

time Fourier expansion. w£ represent the intensity
A2., the transverse derivative-: of the eikonal, and the
quantity ρ (proportional to the corresponding com-
ponent of the anisotropic tensor; see Sec. 1) in the
form (cf. formula (2.4,3))

(2.62a)

(2,62b)

(2.62c)

Substituting (2.62) in (2.59)—(2.61) we arrive at an
equation for a:

from which we can easily determine the self-focusing
length of the specified spectral component {v, a ' 1 ) :

Z f,(v, β"1) = ( 2 · 6 4 )

where, as before, Zf is determined from the real part
of the increment of (2.63). It is seen from (2.64) that
in a relaxing medium the self-focusing length of a
modulated wave increases with increasing modulation
frequency u. The indicated effect can be called
"chromatic aberration" for the envelope. As a result
of the indicated aberration, sufficiently short wave
packets are not self-focused as a unit, but a space-time
stratification of the packet takes place: the focal points
for the different spectral components are distributed
over a length which increases with increasing ν τ. The
physical cause of this effect is quite obvious—the non-
linear response of the system is different for different
modulation frequency, nonlinear dispersion of the phase
velocity takes place of the form [ l + (ι^τ)2]~1/2 (decel-
eration or acceleration of the modulated wave as a re-
sult of nonlinearity is smaller than that of the unmodu-
lated wave) *.

It is possible to consider in similar fashion also the
nonstationary processes occurring in striction self-
focusing—to this end Eqs. (2.59) and (2.60) must be
solved simultaneously with the wave equation (cf (1.23))

Using the perturbation method (see (2.62)) we can cal-
culate the quantity

Z f (v, a~') = i?nl ^ = = _ _ ί _ = _ - — - 1 - (2 fi6)

where τ χ = a/u. From (2.66) we see that chromatic
aberration takes place in striction self-focusing as well
as in Kerr self-focusing. However, in the case of
striction the nonlocal character of the nonlinear re-
sponse of the medium leads to important peculiarities.
Indeed, the aberration has now not a relaxation but a
resonant character; the minimum value of Zf corre-
sponds not to ν = 0, as for the Kerr effect, but to
ν - τ'Ι or a = u/v = Aac—the wavelength of sound at
the frequency v. In this case

Ζ™'"(ν, a"I) = i?ni V"2Xac'Z6, Where Ζδ = α/2Γ (Xac<Z6).

Thus, the acoustic coupling transverse to the beam can
greatly change the rate of self-focusing, if the pertur-

*The effect of nonlinear dispersion is significant, of course, also in
self-action of plane wave packets; see Sec. 3.6.
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bations of the light wave and the acoustic waves are
matched, and a = A a c .

Summarizing the results pertaining nonstationary
self-focusing, we must emphasize once more that they
characterized the behavior of individual space-time
Fourier components; for an analysis of the behavior of
the laser pulse as a whole, it is necessary to take into
consideration the energy distribution of the spectrum.
At the same time, the qualitative regularities revealed
above (nonlinear chromatic aberrations, effects of
spatial dispersion of the nonlinearity) remain, of
course, in force. We note, finally, that the foregoing
results can be used directly to interpret experiments
in which the envelope of laser radiation contains a
sharply pronounced frequency v0 (for example, the
frequency of the intermode beats in a giant-pulse laser
or the repetition frequencyof the spikes in a powerful
free-running laser*). In particular, in striction self-
focusing, acoustic waves of frequency v0 can lead to a
decay of the self-focusing beam into filaments with
transverse scale a0 - u/i/0. This effect should become
especially strongly manifest if the acoustic waves at-
tenuate little over the beam width Zg > a. The latter
is well satisfied in solids, especially in solids at low
temperatures, where Ζ6 can reach tens and hundreds
of centimeters. In liquids, on the other hand, the ef-
fects of spatial dispersion of striction nonlinearity can
probably determine the fine structure of a beam al-
ready self-focused as a result of the Kerr effect (see
Sees. 1 and 4).

The foregoing procedure can be used also in the
analysis of thermal nonstationary self-focusing-41>45]

and defocusing. To this end it is necessary to add in
the right side of (2.65), in accordance with^40'112^, a

t
term describing Δ ρ ^ η η » where Ptherm ~ "f^o J EE*dt

0

is the rise in the pressure of the medium at the instant,
which would be produced by the heat release without a
change in density, and γ is the derivative of the pres-
sure with respect to the internal energy per unit vol-
ume, taken at a constant volume. Here, obviously, the
self-focusing length will be a function of the time
(temporal aberrations), and Zf = Zf ( t ) . Temporal
aberrations, just like the chromatic aberrations con-
sidered above, will lead to a space-time stratification
of the laser pulse. A number of estimates concerning
this effect are contained ίη^40>41>112λ According to*-4^,
when t < τχ one can have Zf < Rni even in a medium
with de/di < 0. When- t > τ±, Zf increases mono-
tonically and then becomes an imaginary quantity; by
virtue of the integral character of the thermal effect at
sufficiently large time segments, the thermal defocusing
suppresses the self-focusing; at the same time, in
media with 3e/3T > 0 (see'-45^) the situation is re-
versed—here the heating of the medium should lead to
self-focusing.

*According to [ 5 0 ] , the average power of such a generator can reach
1-2 MW at a pulse duration 10'3 sec. This power exceeds the critical
value for many liquids and is close to the critical power in solids, in
which the self-focusing is due to striction (for glass P c r * 4 MW, for
calcitePct « 4 MW; see [4 ]).

2.5. Self Action of Plane Wave Packets. Spectrum
Broadening in a Nonlinear Medium

When we considered self-action of wave packets
above, we paid principal attention to the influence of
time-varying modulation on the change in the angular
spectrum (spatial self-focusing) of the waves. At the
same time, as indicated in Sec. 1, the presence of
nonlinear additions to the refractive index leads to
modification of the complex envelope of a plane wave
packet.

The propagation of a modulated plane wave is de-
scribed in the geometrical-optics approximation by the
system (compared with (2.59) and (2.60)):

ν gt + dz~ 2ε0 ' U.D/a;

1 ^ + ̂  = °· (2.67b)

the solutions of which are

Here F characterizes the amplitude modulation of the
wave and So the phase modulation. It follows from
(2.68) that if the wave is modulated only in amplitude
at ζ = 0 (So = 0) then, as the wave propagates in the
nonlinear medium, the self-action effect leads to the
appearance of phase modulation. The change in fre-
quency is determined here by the formula

. _ e2E'tkz_SF(t-z)v) ( 0 M \
2e0 dt

At sufficiently large z, the modulation frequency
becomes large and it is necessary, generally speaking,
to take into account the dispersion properties of the
medium in the next-higher approximation (see Sec. 3.6).
The phase modulation described by (2.68) can lead to a
noticeable broadening of the spectrum of the light pulse.

We note, finally, that in a medium without dispersion
(or with very small dispersion), Eqs. (2.67) take into
account in the next higher approximation the change of
the group velocity of the wave as a result of the non-
linearity of the medium:

(2.70a)

(2.70b)

2e0 '

dAg

βζ "

where ξ = t - z/v is the "running" coordinate. In such
a medium, the amplitude is deformed like a simple
wave (see Fig. 13):

but the frequency increases in some sections and de-
creases in others^ 2 3 ]. It follows from (2.71) that
noticeable distortions of the envelope occur at charac

FIG. 13. Distortion of the form of the envelope of a plane wave pro-
pagating in a medium with e = e 0 — e2 IA|2. As the wave propagates
(along the ζ axis), the intially harmonic envelope becomes distorted.
When e2 > 0, a dip is produced on the rear end of the pulse.
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teristic lengths R - τρ ν · fcoAsE2, (τρ—period of am-
plitude modulation). We see therefore that R >• RnZ
under the usually realized conditions (R/Rni

/ g even for τρν =* a).

3. WAVE OPTICS OF A NONLINEAR MEDIUM

In this section we consider effects connected with
the finite wavelength; we take into account the fact that
the behavior of the beam is determined not only by the
effects of nonlinear refraction, which we considered in
Sec. 2, but also by diffraction phenomena. As in Sec. 2,
we consider primarily spherical and cylindrical waves

3.1. Stationary Aberrationless Self-focusing in a Cubic
Medium with Allowance for Diffraction

We consider first the stationary processes in a
medium with e = €0 + SaA2, £2 > 0. The initial equations
in this case are (2.8) and (2.9). We represent the
eikonal in the form

β(ζ) = Γ 1 5 - (3.1a)

(3.1b)

and we write for the amplitude

Just as in Sec. 2, we shall use the boundary condition
(2.14). Substituting (3.1) into (2.8) and (2.9) and con-
fining ourselves to the near-axis part of the beam (to
this end it is necessary to expand in the nonlinear term
in powers of r and retain only terms ~r a) we can ob-
tain an approximate equation for the beam width f:

d2'~ ' • l . (3.2)

Here, as before, RnZ = av/€0/2£2E5 is the self-focus-
ing length and Rd = ka2/2 is the diffraction length of
the beam. It is best to study (3.2) separately for the
cases m = 0 and m = 1.

1. m = 1. We consider first the three-dimensional
beam, which is of greatest practical interest. When
m = 1, the first integral of (3.2) takes the form

where C = l/R2 - 1/Rn; + l/Rd. Comparing (3.13) with
(2.18), we can easily verify that, when account is taken
of diffraction, the first integral, has the same form as
in the geometrical-optics approximation, and only the
coefficient of f"2 changes. The character of the behav-
ior of the beam depends now on the relation between the
quantities Rn/ and R(j or between the total power of the
beam Ρ = a|PoA

2/8 and the critical power P c r , deter-
mined from the equality Rn/ = Rd:

p- = slfe-2- (3-4)
When Ρ > P c r (

R n Z < R d) t h e coefficient of Γ 2 in (3.3)
is positive; the qualitative picture of the behavior of a
three-dimensional beam in a cubic medium does not
differ from the geometrical-optics picture investigated
Sec. 2 (see the ray trajectories on Fig. 9, which apply
fully also to the case considered here). In this case the
diffraction changes only the spatial scale connected
with the nonlinearity; therefore, at finite values of λ
we can use the corresponding formulas of Sec. 2, sub-
stituting in them in lieu of Rn/ the quantity

η<™ ~ ρ , I i— Ξ. ι *· — » . ι r ι ι · (ι c\
nl m ^ ρ . ; Γ '^~ \ Per / \ο* Ο)

In particular, when P ^ P c r a three-dimensional beam
with a plane phase front and parabolic amplitude pro-
file becomes self-focused into a point, just as in the
geometrical-optics approximation, but this occurs not
over a length Rn/, but a length Rdjf > RnZ·* It is im-
portant to emphasize that although the critical power
does not depend on the transverse beam dimension a
(see (3.4) and also (1.7)), the rate of the self focusing
is determined essentially by the transverse structure
of the beam. It follows from (3.5) that whereas for
sufficiently broad beams (Rn/ < R d ) we have R~j
~ a, just as in the geometrical-optics approximation,
when Rn2 -- Rd (P — P C r) the dependence of Rdjf on
a may become inverted. The latter leads to the exist-
ence of an optimal transverse spatial scale aOpt, de-
termined from the condition 3Rdjf/9a = 0, for which
the self focusing proceeds at the fastest rate. Accord-
ing to (3.5) we have

^ ^ = 4 - ^ . (3.6)

This circumstance was pointed out by Bespalov and
Talanov f-18-1. It is particularly important for beams
with complicated amplitude profiles (inhomogeneous
beams); inhomogeneities with dimensions a ~ a o p t will
become particularly strongly emphasized as a result
of self-focusing in a nonlinear medium, t Estimates
of aopt for typical experimental conditions are as
follows: if e 2 - ΚΓ11 cgs esu (Kerr effect in CSa),
k = 105 cm"1, then a power flux of 100 MW/cm2 yields
aopt - 100 μ. It is interesting that the inhomogeneity
of the spatial structure of ruby-laser emission from a
relatively inhomogeneous crystal is of the same order
of magnitude (see'-68-1). This means, quite probably,
that experiments in which the self-focusing effect of
strongly inhomogeneous laser beams is revealed by
stimulated-scattering (after reaching a certain thresh-
old light-field intensity) yield not the quantity R^if,
which characterizes the entire beam as a whole, but a
quantity on the order of Z f _ m i n (see (3.6)). This ap-
parently explains the discrepancies noticed in a number
of experimental papers (see, for example,1-10-1) between
the theoretically and experimentally determined self-
focusing lengths.

*Formula (3.5) is, as already noted, the consequence of the relation
j V = R'ni - R ? . which follows from (3.3). A similar result is ob-

tained also from the Talanov's calculation (see [5·1 6 ]). On the other
hand, Kelley [1 4] presents without proof a somewhat different formula
for Rnf .resulting from the relation l/Rff = 1/R.u - 1/Rd, where
Rff = n0a

2/4 (c/n2)'/2 (y/F-y/P^T1 (compared with (3.5)). The
brevity of the article [ 14 ] makes it difficult to clarify in detail the causes
of the discrepancy; we merely emphasize once more that all the results
based on (3.3) pertain to the near-axis part of the beam. We note,
finally, that in the experiment the difference between formula (3.5) and
Kelley's formula is insignificant already when Ρ exceeds Pc t by 2 - 3
times.

t We recall that, in accordance with the results of Sec. 2, the self-
focusing of individual inhomogeneous sections proceeds independently
in a medium in which there is no spatial dispersion of the nonlinearity,
so that the results of the developed theory are fully applicable to each
of the self-focusing filaments.



S E L F - F O C U S I N G AND DIFFRACTION OF LIGHT IN A NONLINEAR MEDIUM 625

The results on the self-focusing of beams with plane
phase fronts are illustrated by the diagrams of Fig. 4a;
the shaded areas are those of ̂ the non-self-focusing
profiles. Figure 14b shows the corresponding diagrams
for beams having a finite divergence on the boundary of
the nonlinear medium (R is finite). The figure shows
the region of initial divergences θ = a/R, for which
self focusing is possible, as well as a plot of the focal
distance against the initial divergence. These results
follow directly from (3.3). Indeed, by means of a deri-
vation similar to that given in Sec. 2 we obtain with
allowance for diffraction (cf. (2.20)) l/Zf = 1/R
+ V1/R2 — 1/R2. Letting Zf — °°, we can obtain the

ni d
critical values of the divergence angle 0 c r limiting the
region of self-focusing beams:

The angle 0Opt lies between Θλ and Θ2—a beam having
such a divergence becomes self-focused faster than all
others. It must be borne in mind here that the power
Ρ(ϋν necessary for self-focusing of a diverging beam
is larger than P C r · Calculation based on the foregoing
formulas yields

*P = M I + T F ) · (3.6a)

For inhomogeneous diverging beams, the threshold
powers Ρ ^ ν can be smaller (but still larger than P c r ) ,
owing to the stratification similar to that of a beam
with a plane front; this circumstance was pointed out
by1-74^, who considered the self focusing of a diverging
beam in the geometrical-optics approximation and who
determined the angle 9 c r - 2 .

When Ρ = P c r (R n; = R<j) we get, in accordance
with (3.2), df/dz = const. A beam with a plane front
(R —· °°) and Ρ = P c r propagating in a cubic medium
retains its transverse cross section (df/dz = 0), that
is, the wave-guide propagation mode is realized (self-
trapping). Finally, when Ρ < P c r . the behavior of the
beam in the medium is determined essentially by the
boundary conditions and by diffraction; nonlinear re -
fraction leads only to quantitative corrections.

When Ρ > P c r the foregoing results agree with the
experimental data, as shown by the experimental papers
(see, for example , t l 0>1 1 > 4 8^), only at distances ζ that
are smaller than the self-focusing length Rn/. When
ζ > R ^ , the rays behave not in the manner shown in
Fig. 9, but form quasihomogeneous wave channels, that
is, in experiment the self-focusing goes over continu-
ously when ζ > RnZ into the self-trapping mode. The
absence of such a transition in the theory developed
above cannot be ascribed to inclusion of phenomena
occurring only in the near-axis part of the beam. The
results of a numerical analysis of this problem, pre-
sented in1-14'29^, show that although allowance for the
deviation of the beam profile from parabolic does slow
down the rate of growth of the field intensity on the
beam axis,* it is insufficient to explain the formation
of the channels. The reasons for the automatic forma-
tion of the proper wave channel and the factors deter-
mining its structure and transverse dimensions (and
consequently also the limiting field intensity obtained
as a result of self-focusing) are of primary interest
and have not yet been explained in full. Their discus-

zf ία "opt

"a 'opt

FIG. 14. Plots illustrating
the conditions for optimal
self-focusing of Gaussian
beams with plane (Fig. 14a)
and spherical (Fig. 14b) phase
front. Plots of Zf = Zf(a) for
beams with plane phase front
and of Zf = Zf(0) for diverging
beams characterize the retions
of initial conditions, for which
the self-focusing is possible;
the values of Zt.mn correspond
to the optimal self-focusing.
The shaded areas are those of
the non-self-focusing profiles.

sion will be presented below; however, before we pro-
ceed to this discussion, it is expedient to consider
briefly the results of the solution of (3.2) for the two-
dimensional case, whereas the problems listed above
are peculiar only to the three-dimensional beam.

2. When m = 0 Eq. (3.2), with allowance for the
boundary conditions (2.14), has as a first integral

/<i/\2 2 1 _ „ _ 1 2 1
\di) ~'Tfi)^~ t*fi5~*' ' jRi~S^J" + fl|- (3.7)

The behavior of the beam is determined by the value of
the parameter C. If C < 0, that is,

— 4rV (3.7a)

(as R — °° we get C <. 0 if Rnl < Rd), then self-
trapping is produced, wherein the width of the wave
beam oscillates within the following limits, which are
obtained from the condition df/dz = 0:

{ 3 · 8 )

The radius of the wave beam with a plane phase front
(R — °°) remains constant when Rn; = R^. The running
power of the two-dimensional beam is equal in this case
to the critical value

p, _ lie , .

which is inversely proportional to the dimension a
(compare with the three dimensional beam, Eq. (3.4)).

Strongly focused or strongly defocused beams, which
do not satisfy the condition (3.7a), do not become self-
trapped. However, in this case nonlinear refraction
leads to a decrease of the dimension of the focal spot;
the corresponding calculations were performed in'-6-'.

3.2. Dynamics of Formation of the Optical Waveguide.
Stationary Self-focusing of Three-dimensional Beam
in a Medium with Saturating Nonlinearity

One of the possible explanations of the experimen-
tally observed formation of a optical waveguide when
ζ > Rn; is the decrease of the nonlinear refraction in
strong fields, owing to the saturation of the nonlinear
polarization (see Sec. 1.2 and Fig. 1). Indeed, the ex-
tremely high field intensities reached at the focal point

*We are dealing were, in final analysis, with allowance of the non-
linear aberrations in the waveguide theory.
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make it necessary, in general, to take into account the
higher-order terms in the expansion of (1.2). A de-
crease in the "strength" of the nonlinear refraction
due to saturation, together with diffraction, ensures
finite dimensions of the focal region. To verify this,
let us turn to an analysis of the equation for the width
of the beam in a medium with saturating nonlinearity.
We shall know already specify e in general form*:

and by virtue of the existence of the saturation effect
we have

ι- , as, i- Senl (M) n i i Ϊ1\
lim Snlv^o) ~ ε sat» * i m — Λ Λ Β — = U- W<i iJ

Taking (3.10) into account and confining ourselves, as
before, to the near-axis part of the beam, we obtain an
equation for f (compare with (3.2))

r / E>2 \ ~i

(3.12)'S ( f ) 4 1

Here e^' denotes the first derivative with respect to

the argument and characterizes the slope of the non-
linear characteristic of the dielectric constant as a
function of the intensity (in a cubic medium, in first
approximation, e (^ = e2).

The behavior of a beam in a medium with saturating
nonlinearity can be traced qualitatively by analyzing
the right side of (3.12). It is easy to see that the
initially-negative right-hand side of (3.12) can reverse
sign with decreasing normalized beam radius f; at
first the rather strong nonlinear refraction decreases
to such an extent, that it can already be compensated
for by the diffraction divergence. The wave-beam
radius corresponding to the condition of exact com-
pensation (d2f/dz2 = 0, f = 1)

(3.13)

now depends on the power. If the slope of e'y de-
creases monotonically with increasing field intensity,
the quantity E2£ny in the denominator of (3.13) has a
maximum, and consequently there exists a minimum
dimension of the proper optical waveguide. In order to
obtain more concrete relations, we shall specify the
law of the saturation of the dielectric constant in the
form proposed in'·7-1: en/ = £2A2/1 + £2A0/£sat; in
typical cases £ s a t ~ £0 (the decrease of the gradient
of the dielectric constant, and consequently of the non-
linear refraction, in strong fields and for the satura-
tion law indicated above is illustrated in Fig. 15). Then

The optimal condition corresponds to €2E0 = esat, and
consequently the minimum radius of the proper optical
waveguide is

<™ = ϊέ?Γ· (3.15)

*Saturation was taken into account in [6 ] in first approximation
(in the expansion of (1.2) we took into account not only the term with
e 2 , but also with e 4 < 0) with the aid of equations similar to (2.8) and
(2.9). Simple estimates of the self-focusing conditions in a medium with
e = e 0 + e2Ao + £4AQ were presented recently in [64] , where a condi-
tion of the type (1.6) served as the basis for the analysis.

FIG. 15. Theoretical profiles of
nonlinear addition to the dialectric
constant eni = eni(r/a) for a Gaussian
beam at a different field intensities
on the axis. Curve 1 corresponds to
e2Ej/esat = 4, curve 2-eoEfj/esa, =9.
Abscissas—normalized radius of the
beam.

2
r/a

that is,/amin ~ λ0.* The optimal power of the self-
trapping wave beam is

Ρορΐ = 2 Ρ α / ΐ ^ ϋ , (3.16)

that is, the optimal power coincides in order of magni-
tude with the critical power (it exceeds it by several
times).

The behavior of a beam with arbitrary divergence at
the entrance into a medium with saturating nonlinearity
can be analyzed by writing down, as before, the first
integral of the equation for f (in this case (3.12))

(3.17)

(3.18)

(*)H~

As before, a weakly converging (or weakly diverging)
beam (C < 0) becomes self-trapped at ζ = 0; in the
general case, the diameter of the waveguide channel
oscillates (see also1-6-1, where these oscillations were
calculated in first approximation). Beams of super-
critical power that are strongly focused t on the bound-
ary cannot become self-trapped, just as in the case of
a cubic medium; the effect of self-action leads here to
a change in the focal distance and to a decrease in the
dimensions of the focal spot. The minimum cross sec-
tion of the beam in a medium corresponds to the condi-
tion df/dz = 0 and in the case of P/Pcr - ^ 1 it is equal
to

(3.19)

(I)
where a*"' is the focal cross section of the beam in a
linear medium. Figure 16 shows plots of the quantity

*It should be noted that this result, strictly speaking, is already be-
yond the accuracy limit of the quasioptical approximation used in the
calculation; therefore, for an exact estimate of amjn , the calculation
method should be improved. At the same time, the qualitative picture
established in the present section remains, of course, in force.

tThus, strong prefocusing of a sufficiently homogeneous beam en-
tering into a nonlinear medium can prevent self-trapping, if the latter is
for some reason undesirable and it is necessary at the same time to ob-
tain considerable light-wave field intensities. The light-field intensities
obtained even in sufficiently strong self-focusing organic liquids with
the aid of short-focused lenses can exceed those obtained by the self-
focusing effect. The power fluxes observed in self-trapping are p s t —
Pc rlira2, and for a = 30 μ and CS2 we have p s t . =» 109 W/cma; for ni-
trobenzene this figure is several times larger. At the same time, it must
be borne in mind that for "hyperfine" filaments (a =* 1—3 μ, see for
example [ 4 8 ]) the power flux can reach 101 ° — 1 0 " W/cm2, and the
corresponding light-field intensity is ~ (2 - 3) Χ 107 V/cm (see [103 ]).
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FIG. 16. Plots of the
parameter Φ = [a<»/a<n»]
characterizing the decrease
of the area of tlje focal plot
for a three-dimensional
beam in a medium with
e = eo+e2 |A|2 - e 4 |A|4

vs. the ratio P/Pc r. The
parameter of the curves is
α = a/R—half the angle of
the convergence of the beam

~p- focus by a spherical lens[6 ] .

Φ = [a^vaj n ^] z characterizing the change of the area

of the focal plot due to self-focusing, as calculated for
not too large ratios P / P c r (see1-6^).

Thus, allowance for the saturation effect eliminates
the singularity at the focus (by virtue of (3.19) the
dimension of the focal region is finite). However, the
process of formation of the proper waveguide at
ζ > Rn/ still remains unexplained; apparently it is
connected with the simultaneous action of saturation
and losses.

3.3. Self Focusing in a Strongly Nonlinear Medium.
Propagation of a Field in Self-trapping Beams.
Loads of Proper Optical Waveguide

The self-focusing theory developed above on the
basis of the use of the parabolic-equation method makes
it possible to analyze the behavior of nearly plane waves
in a weakly nonlinear and weakly absorbing medium.
The change in the dielectric constant due to the self-
action of the wave should be not only slow but also
small ( £n/ *C e0). However, in the process of self-
focusing of powerful light beams the intensity of the
field can become so large that the nonlinear and non-
linear parts of the optical refractive index turn out to
be quantities of the same order (en/ =* e0).* In this
case the eikonal of the complex amplitude becomes
comparable with the eikonal of the plane wave, which
is taken as the basis of the solution, and the amplitude
of the wave is no longer a slow function of the coordi-
nates; the parabolic-equation method becomes inap-
plicable in this case. At the same time, if the wave re-
mains practically plane in a medium with large non-
linearity (weakly diverging or weakly converging beam
with transverse dimension larger than the wave length,
a 3> λ), then it is possible to retain the quasioptical
approach for the description of the diffraction of such
a beam. Namely, one can again choose as the basis of
the solution a plane wave, but, unlike the case of a
weakly nonlinear medium, it is necessary to take
directly into account the variation of the wave number
(compare with (2.3) and (2.5)):

Ε = γβΛ(μζ, ]ffLr)expii (ωί- J ke(idz)| . (3.20)

Substituting (3.20) into the nonlinear wave equation and
taking into account the effect of self-action in the cubic
medium, we obtain in the usual manner two real equa-
tions (compare with (2.8) and (2.9))

(3.22)

The addition to the eikonal of the plane wave describes
here only the curvature of the phase front, that is, we
have in the spherical-wave approximation

s = ̂ . (3.23)

Equation (3.22) has as an integral the beam-power con-
servation law

P^lAlrdr (3.24)

(neff = keff/k0 is the effective refractive index in the
nonlinear medium), from which it follows, in particu-
lar, that the power necessary for self-trapping of the
beam depends on the radius of the beam (this was first
pointed out in ̂ ) . A similar dependence was connected
above with the saturation effect (see (2.13)).* The
waveguide propagation of the beam corresponds to a
plane phase front ( s - 0); the ordinary differential
equation obtained from (3.21),

^ - o ( 3 · 2 5 )

describes the amplitude profiles of the self-trapping
beam. We note that in the quasioptical approximation
we have in (3.25) k | f f - k2 - 2k(keff - k) (see also
(2.6) with 8s/8r = 0). Equation (3.25) can be reduced
to a dimensionless form

where

A (r) =

1 dAo -r p

r dr

-Λ,

(3.26)

A numerical analysis of (3.26), performed with a com-
puter C*,67^ has shown that at the principal mode the
amplitude in the transverse cross section decreases
monotonically with increasing distance from the beam
axis. The calculation of the amplitude profile makes
it possible to calculate also the critical power of the
self-trapping beam

Pa=-

which is approximately 1.8 times larger than the am-
plitude of the power calculated for the near-axis part
of the beam (3.4); at the same time, (3.27) differs little
from (1.6). The higher modes of the waveguide beam in
a cubic medium, as shown in [ 6 6 ' 6 7 ] , have the character
of damped oscillations of the amplitude with respect to
the coordinate r (the picture of the distribution of the
amplitude in the cross section of the beam is in the
form of rings, the number of which depends on the
number of mode). The critical power of the beam in-
creases with the number Ν of the mode approximately
like 2N2 - 1.

3.4. Self-focusing of Complicated Beams in Wave Optics

Just as in Sec. 2, this problem can be treated by a
perturbation method, but now the calculation should be

* According to data by Townes and Brewer [l°3 ], the nonlinear ad-
dition to η reaches 0.2 in filaments of ~ 2 μ diameter.

*It was proposed in [74 ] to take saturation into account by substi-
tuting into the equation for the power the total value of n; compare
with the results of Sec. 3.2.
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based Eqs. (2.8) and (2.9). If we are dealing with a
lossless cubic medium with stationary self-focusing,
and if there is no spatial dispersion of the nonlinearity,
then the need for such an approach is obviated for
relatively large-scale inhomogeneities; its results (at
any rate, those that can be obtained by analyzing the
behavior of one Fourier component) are already con-
tained in the formulas of Sec. 3.1. Indeed, self-focusing
of an individual inhomogeneity sets in if the total power
contained in it exceeds the critical value. On the basis
of an analysis of the formula for R ^ we can establish
optimal dimensions of the most rapidly self-focusing
inhomogeneity (see (3.6)). Of course, when taking into
account the losses it is necessary to introduce diffrac-
tion corrections into the formulas of Sec. 2.4. The
same pertains also to the formulas of Sec. 2.5 for non-
stationary self-focusing. An analysis shows that now
the critical power corresponding to different spectral
components is different; for the Kerr effect it increases
like 1 + {vr)z: we are dealing here with quantitative
corrections. On the other hand, the most interesting
qualitative effect connected with the nonstationary be-
havior in the self-trapping problem is the appearance
of a finite rate of formation of the optical waveguide in
the relaxing medium; this circumstance was discussed
i n [7,8] W e 3^11 consider this question briefly in what
follows.

3.5. Dynamics of Development of the Optical Waveguide
in a Relaxing Medium

Let us consider the process of formation of a wave-
guide in a medium in which the nonlinearity is deter-
mined by the Kerr effect. Assume that at the instant of
time t = 0 a light beam whose power is equal to the
critical value enters into the nonlinear medium at
ζ = 0. The nonstationary equations are of the form

1 BA0 , dA0 ds dA0 Ao

(3.30)

We introduce in lieu of t a new independent variable
ξ = t - z/v. Then we get in place of (3.28)-(3.30) the
system

dAg

dz

(3.31c)

in which the first two equations have the same form as
in the case of the stationary problem, and the inertia
of the nonlinear polarization is taken into account by
the third equation. We shall seek the solution of the
system (3.31), as before, in the form of a spherical
wave with variable radius of curvature

-} (3.32)

with boundary condit ions at ζ = 0

β (0,0 = 0, φ (0,ί) = 1. ./(Ο, ί) = 1.
(3.33)

ο for «<o.
Confining ourselves to the near-axis part of the beam,

we obtain an equation fοr|the function f (ζ, ξ) charac-
terizing the variation of ijie beam width and its ampli-
tude : "j, , .

" •"• (3.34)
1 82/ exp I

-<ίη.

Equation (3.34) differs from the analogous equation of
the stationary theory of self trapping (see (3.2)) in the
time-dependent integral in the nonlinear term; it is
easy to see that the role of the non-stationary processes
is determined by the relation between ξ and T.* Let
us verify first that (3.34) describes the limiting cases
of a beam propagating in a linear medium and of the
stationary self-trapping beam considered above.

The nonlinearity of the medium does not influence
the propagation of the beam when ξ « τ . In this case,
the last term of (3.34) can be neglected, and the func-
tion

p — 1 + (z/if,))2 (3.35)

describes the spreading of the beam due to the diffrac-
tion divergence; Ao ~ f~2. The foregoing means that the
frontal part of the laser pulse, corresponding to
ξ <C τ (and the entire pulse if the pulse duration is
Τ ρ < τ ) does not become self-trapped in a medium with
inertial nonlinearity. It is also easy to see that the
stationary self-trapping mode, in which the function f
does not depend on z, is attained only at sufficiently
large indeed, let 9f/9z = 0, then, recognizing that the
beam power, in accordance with the conditions of the
problem under consideration, is equal to the critical
value (R n / = R<J)J w e arrive at the equation

1 1 Γ 1 / η — Ε Λ Ί ί9 oc\
-ττ- = —\-^-exp Μ — Μ Λ ι . Ko.ab)

which is satisfied if f = 1 and ξ —* °°. For an analysis
of the phenomena occurring in the region of formation
of the optical waveguide we take into account the fact
that, by virtue of the foregoing, the function f (the
width of the beam) depends little on the variable ξ;
therefore we can take it outside the integral sign in
(3.34). Then, solving the ordinary differential equation
for f, we obtain

/ a = l + (_^.) 2

e 3 £p(_i), 0<|<τ ρ (3.37)

(we note that the solution (3.37) describes also the
limiting cases indicated above.) Using (3.34) , we can
determine the rate of "growth" of the waveguide from
the condition f = const. For simplicity we put f2 = 2,
corresponding to ζ = Rd when ξ = 0. By virtue of (3.37),
the equality f2 = 2 remains in force if the following
relation is satisfied

jr. (3.38)

Relation (3.38) pertains to the region ζ > Rd, and
connects the length of the optical waveguide ζ with its
development time t. For the rate of growth of the
waveguide u w we get from (3.38)

±- = L + *L. (3.39)

*We note that by using (3.34) we can construct for nonstationary
self-focusing a more general theory than given in Sec. 2, not confined to
the region in which the perturbation method is valid.
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FIG. 17. Phases of development of the proper optical waveguide
formed by a powerful light wave. The region occupied by the waveguide
is shaded; the dashed lines show the shape of the beam in the absence of
nonlinearity. The maximum length of the waveguide L is reached at the
instant of termination of the pulse t = rp. After t > τρ the waveguide is
detached from the boundary ζ = 0 and- its length decreases, since uw < v.
Finally, when ζ = Lct, the waveguide vanishes.

According to (3.39), the rate of growth of the waveguide
is equal to the velocity of light when τ = 0 (u\y = v);
when T / 0 we have uw<v, and with increasing ζ the
growth rate decreases. The difference between the
growth rate Uw and'the velocity of light ν causes the
length of the optical waveguide produced during the time
of the laser pulse to be smaller than the distance
traversed by the wave, and consequently only part of
the laser pulse becomes self-trapped (Fig. 17). Using
(3.38) and (3.39) we obtain for the length of the optical
waveguide formed during the time Tp

ζ + 2τν\η^- = τρν, (3.40)

and for the energy efficiency (η) of the self-trapping
process, which is equal to the ratio of the light energy
transported through the waveguide to the total energy
of the light pulse, we get

By virtue of the difference between the velocities u w

and v, the optical waveguide vanishes at ζ = L c r

= Rdexp(Tp/2r)—the wave becomes detached from the
waveguide. The role of the inertia effects is deter-
mined by the values of τ, τ/τρ, and z/R^. Estimates
show that whereas in the case of Kerr self-focusing of
ordinary giant pulses the foregoing effects are not very
effective ( r p •* 10"9 sec, r =* 10'12 sec, and L c r is
quite large), they cannot be neglected for lasers with
synchronized modes (τρ — 10 ~ n —10 ~12 sec). Much
stronger inertial effects should arise in striction self-
focusing. The foregoing results are not applicable,
strictly speaking, to striction self-focusing, since this
phenomenon differs from the Kerr self-focusing in the
nonlocal character of the nonlinear response (see Sec.
2). However, if the mean free path of the acoustic
phonon Ζ5 = u/2T is much smaller than the width of
the beam a ( Z o <S. a), the formulas of that section can
be used for approximate estimates by replacing τ by
τ ι (see Sec. 2.5). Of course, this does not exclude the
need for a rigorous theory of striction self-trapping.

3.6. Self-contraction of Wave Packets—Allowance for
the Second Time Derivatives

The effect of self-action of a plane modulated wave
in a dispersive medium with nonlinearity of the cubic
type is described by the following abbreviated equation
(we consider for simplicity a non-relaxing medium; if
the relaxation time is finite it is necessary to take into
account the "nonlinear dispersion")

9ik^-— Irk" d2.4 , k*e2\A\3 . /„ . - \

where ξ = t - z/v and ν = Qw/ 9k; obviously ^ ω

= -ν'ω/νζ. In a linear medium ( | 2 = 0), Eq. (3.42) de-
scribes the dispersion spreading of a wave packet.

If we introduce the normalized quantities

* =—ifp—· £=-π?—· ε 2=-ε 2Μ;ω, (3.43)

then (3.42) can be written in the form

~7i ΛΪΪ2—^ ρ \O.Tt^t^

A comparison of (3.44) with (2.4), which describes
the stationary spatial self-focusing, shows that there
is a mathematical analogy between the behavior of a
plane wave packet and spatial self-focusing of a two-
dimensional beam. Therefore all the derivations and
the corresponding conclusions of Sec. 3 remain in
force here, provided we make the formal substitutions
ζ -» ζ, χ — X, e2 —· e2, and a — τ/k |-k£,w|. The only
essential difference lies in the fact that the spatial
self-focusing occurs in a medium with e2 > 0, and the
self-contraction of the wave packets occurs when
? 2 > 0, that is, when £&'ύω < 0 or ezv^ > 0. Using
the foregoing space-time analogy, we can, for example,
write down directly the values of the space scales

j«=^U f (3.45a)

Λ-τ ι/- (3.45b)

where R^ is the length over which an appreciable
spreading of a pulse of duration τρ takes place in the
linear medium, and Rn/ is the length over which self-
contraction of the pulse takes place. The pulse will
retain its shape if Rn/ = R ,̂ and in this case the energy
density of the stationary pulse in the cross section of
the wave is

Wa-
 cKk[KJ (3.46)

and is inversely proportional to the pulse duration. The
corresponding stationary profiles were considered
in [ 2 4 ; l (compare with the results of Sec. 3.3).

If the energy and momentum are larger than critical
(W 3> W c r ) , then modulation of the wave takes place,
as a result of which an initially modulated wave breaks
up into wave packets.

4. NONLINEAR OPTICAL EFFECTS IN THE FIELD
OF SELF-FOCUSING BEAMS

The appreciable increase in the intensity of the light
field, caused by the self-focusing, can obviously be the
cause of a strong change in the character of the behav-
ior of other optical effects that depend on the wave in-
tensity. The results presented in Sees. 2 and 3 of this
review make it possible to present a simple quantita-
tive criterion for estimating the contribution of self-
focusing.
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Indeed, self-focusing effects in experiments with
unfocused or weakly focused beams can certainly be
neglected if the length L over which the behavior of
the beam is studied* satisfies the condition

L«Rnl. (4.1)

To the contrary, the effects of self-focusing are quite
appreciable if L - Rn/ or L > Rn/; in the latter case
self-trapping sets in, the factors determining the ef-
fective lengths of the filaments (and accordingly their
lifetimes) are not yet fully clear. The contribution of
self-focusing effects in strongly focused homogeneous
beams, for which self-trapping is possible, can be es-
timated by using diagrams of the type shown in Fig. 16
(see also Fig. 14).

In accordance with the foregoing and with the data
given in Sec. 1, the self-focusing effects should have
the greatest influence on other nonlinear optical effects
in liquids, particularly in those where the Kerr con-
stant is large. Moreover, the registration of threshold
nonlinear optical effects, such as stimulated Raman
scattering (SRS) are stimulated Mandel'stham-Brillouin
scattering (SMBS) in initially unfocused laser beams
serves frequently as a method of indication (and fre-
quently also as a method of quantitative study) of the
self-focusing effect. Indeed, for example, since, the
effect of stimulated Raman scattering takes place, only
at field intensities

(4.2)E>E0 = j / -

(here δ0, as before, is the damping decrement, see
Sec. 2, and σ is the imaginary part of the Raman
susceptibility; see, for example^36-1), it follows that
observation of SRS in a beam in which the initial field
intensity is Ε < Eo offers evidence of self-focusing.
The first direct experiments of this type were appar-
ently described by l'Allemand and Bloembergen[10^ t .
It was established in these experiments that the critical
wavelength of an SRS generator (Raman laser) can be
greatly decreased by placing between its cell and the
pump laser an additional cell with a strongly self-
focusing liquid. Typical experimental results, obtained
in t 1 0^, are illustrated by Fig. 18. The ordinates repre-
sent here the threshold length necessary for self-
excitation of a nitrobenzene Raman laser, and the
abscissas represent the length of the self-focusing cell
with bromobenzene (which has an appreciable Kerr
constant; see Sec. 1). A study of the dependence of the
effect on the distance between cells ^-10^ has shown that
the effect is retained only at distances smaller than
10-15 cm; the divergence of the filament radiation in
air is large.? In^10^ they also measured the diameters
of the filaments obtained as a result of self-focusing;
they turned out to be ~20 — 80 μ; it was established at

*We must bear in mind here, of course, the remark made in connec-
tion with formula (3.6); for complicated beams it is apparently neces-
sary to use in (4.1) the length Ζ f m,n.

t i t should be noted, to be sure, that the hypothesis that self-focus-
ing can have a possible influence on SRS was already advanced earlier;
it is contained, in particular, also in [4 ] .

t Calculation of the divergence in air, based on the diffraction form-
ulas for a round aperture, is apparently a crude approximation; we are
dealing with radiation from the open end of a waveguide.

FIG. 18. Experimental depend-
ence of the threshould length of a
Raman laser using nitrobenzene,
LthD as a function of the length L
of the cell with the self-focusing
liquid (bromobenzene) [ 1 0 ] .

SO SO WO 120
Z,mm

the same time that the number of filaments increases
with increasing cell length (compare with data of Sec.
3), and that observation of SRS makes it possible to
estimate the increase of the radiation intensity due to
the self-focusing; in l-1 0 ] this increase reached two
orders of magnitude. Similar or nearly similar results
were reported in papers t l 5 '1 7^ published almost simul-
taneously with1-10^. To register the increase of the
light-field intensity due to the self-focusing they used
in t 1 5^ not only SRS, but also the effect of generation of
the second optical harmonic in a quartz plate placed in
the path of the self-focusing beam. According to the
estimates given in C l 5 ] , the power density in self-focus-
ing filaments in organic liquids reaches 2 x 109 W/cm2.
The foregoing results allow us to state that the influ-
ence of self-focusing frequently plays the decisive role
in the excitation of SRS in liquids with large Kerr con-
stant. ΐη^10'17^ there is noted good correlation between
the self-focusing properties of liquids and the constant
of the high-frequency Kerr effect measured in [ 4 3 ] .
From the point of view of self-focusing ability, the
liquids can be arranged in the following sequence (in
decreasing order of self-focusing properties): CS2,
nitrobenzene, bromobenzene, benzene, and acetone.
Addition of strongly-self-focusing liquids to such
liquids as CC14 or cyclohexane has made it possible to
lower greatly the SRS threshold; the latter denotes that
in experiments with mixtures, an appreciable role is
played by self-action effects. It is important to em-
phasize that the phenomenon of self-focusing influences
not only the SRS threshold (we note that by virtue of
this circumstance the magnitude of the threshold is
determined not so much by the cross section of the
spontaneous scattering, as by the value of the Kerr
constant; see Table ΙΠ, which is taken from^™]), but
also changes many of its important characteristics.
Notice should be taken here above all of the change in

Table ΙΠ. Threshold powers necessary for
excitation of SRS in certain self-focusing

liquids (all normalized to CS2)
 c™].

Liquid

cs 2
Nitrobenzene
Toluene
Benzene

Expetimental
threshold

1,0
1,3
4,9
5,2

Calculated thres-
hold from data

on the Kerr
constant

1,0
1,2
5,0
5,7

Calculated thres-
hold from data

on the spontane-
ous scattering

1,0
6,1
9,5
3,6
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the angular structure; calculations t l 3 ] show that it is
precisely the filamentary structure of the beams which
accounts for the differences betjween the angular struc-
ture of the scattered radiation and the structure pre-
dicted by the plane-wave theory. The shape of the SRS
spectral lines is also strongly changed in self-focusing
beams. In a number of cases particularly in the self
focusing in ultrathin filaments, anomalous line broad-
ening is observed [ n 6 " U 8 ] , The latter is connected with
the strong changes of the complex envelope (see Sees.
2.5 and 3.6). Self-focusing can greatly influence the
forward-backward asymmetry of the Raman radiation;
it is not excluded that an important role can be played
in this case by the self-excitation of the Stokes oscilla-
tions in individual sections of the filaments, owing to
reflection from inhomogeneities. The latter can lead
in general to a disintegration of the filaments. Thus,
besides the influence of self-focusing on stimulated
scattering, an inverse reaction can take place and can
be quite noticeable.

The SRS affects particularly strongly the structure
of the "hyperfine" filaments (with diameter up to
1-2 μ) observed in certain self-focusing liquids. Ac-
cording to Townes and co-workers ^105^, the excitation
of molecular oscillations increases the value of nz and
greatly influences the diameter of these filaments; the
transformation of the energy of the coherent molecular
oscillations into heat is attributed by the authors of '-105^
to the short lifetime of the "ultrathin" filaments.
Finally, in self-focusing, an appreciable change can
take place in the character of the competition between
the different molecular oscillations in the SRS and the
different types of scattering. We note that SMBS is
also observed in self-focusing beams; certain informa-
tion on this topic is contained in t l2>69>77^. It is inter-
esting that a definite role can be played in this case
also by self-focusing of hypersound, occurring during
the scattering process [ 9 6 ] * . It must be emphasized that
the information on the self-focusing effect itself, ob-
tained from experiments on SRS with laser beams
which are not focused beforehand, it not confined to the
semiquantitative conclusions described above. Com-
prehensive experiments performed in 1 - 1 8 ' 7 1 ' 7 2 ' 7 3 ] make
it possible to determine the critical power Per and to
investigate the influence of different factors on the
self-focusing length, particularly linear absorption.

The aforementioned investigations are based on the
experimentally observed fact that the threshold input
necessary far the appearance of SRS coincides, for
many liquids, with the power at which an optical wave-
guide is produced in an experimental cell of length L,
that is, it corresponds to the approximate satisfaction
of the equality L — R^J • t Using the foregoing cir-
cumstance and the formula for Rjjj* in the form

(4.3)

*The latter circumstance may possibly account for the difference
between the frequency shift of the SMBS components in beams of
powerful lasers and the shift measured in weak light fields.

t At the same time, if the Raman scattering cross section is very
small, a situation is of course possible in which the power density nec-
essary for noticeable increase of the Stokes SRS component can
greatly exceed the power density in the self-focusing filaments [70 ] .
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FIG. 19. Experimental dependence of the threshold power (raised
to the 1 /2 power) necessary for self focusing of a beam in a cell of
length L, on L", for benzene, toluene, and nitrobenzene. The plots were
taken from [18].

(see formula (3.5) and the discussion pertaining to it),
Wang^18^ determined the critical power (defined as the
asymptotic value of Ρ as L — °°) and the geometric
factor if (we recall that 5 = 1 for Gaussian beams;
see Sec. 2). Typical experimental plots, obtained
i n [ 1 8 ] , are shown in Fig. 19. A study was made of the
self-focusing of giant ruby-laser pulses in organic
liquids. The critical powers determined from these
plots were 0.064 MW for benzene, 0.019 MW for
nitrobenzene, and 0.055 MW for toluene. The calculated
values for benzene and nitrobenzene were respectively
0.085 and 0.021 MW; the value of the factor sr was also
determined experimentally (from the slope of the
straight lines of Fig. 19) and found to be ϊ = 2.

Using a similar procedure, Wang t l o o ] determined
the ratio of the critical powers for circularly and
plane-polarized beams (Fig. 20) in CS2- As seen from
the diagrams, the critical powers differ not by a factor
of 4, but only by a factor of 2, thus confirming the
assumption of the instability of the circularly polarized
wave in a medium with a large Kerr constant. Detailed
data in this respect for other liquids are contained
in^ 1 0 4 ^ where it was established that the ratio of the
critical powers for two types of polarization fluctuates
between 1.3 and 2.2.

Similar measurements were made in1-7^ with
strongly absorbing liquids; carbon disulfide was used
with absorbing additives (which change the absorption
coefficient from δ0 = 0.002 cm"1 to δ0 = 0.125 cm"1).
The experimental plots obtained i n t 7 2 ] are shown in

FIG. 20. Experimental dependence of
the threshold power (raised to the 1 /2 pow-
er) necessary for self focusing of a beam in
a cell of length L with CS2 , on L"1, for cir-
cularly-polarized and plane-polarized radia-
tion.

0,1 Δ Circular polarization

> Lineal polarization

Ί 6 β 10 12 fi
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FIG. 21. Experimental plots simi-
lar to those of Fig. 19, for carbon
disulfide with different absorbing
additives.

Fig. 21; the solid lines are the theoretical curves based
on formulas similar to (4.2) with allowance for damping
(see Sec. 2). The foregoing denotes that, at any rate
for giant pulses and for dampings δ0 ^ 0.1 cm"1, the
influence of dissipation on the self focusing is deter-
mined essentially by the damping of the field. Similar
conclusions can be drawn also from the experimental
results ofi73^ on the increase, due to damping, of the
beam power necessary for self-focusing at a specified
length in benzene in nitrobenzene; the media investi-
gated there had δ0 < 0.3 cm""1. The nonlinear optical
phenomena affected greatly by self-focusing, even in
the case of liquids, are of course not confined to SRS
and SMBS. We must point out here also stimulated
Rayleigh scattering1 1 8 4'8 5 3. The anomalously large
asymmetrical broadening of the Stokes component of
the SRS due to stimulated Rayleigh scattering can be
attributed, according to L l 9 ' 8 6 : ) , to their very strong self-
focusing.

The self-focusing effect should also greatly influ-
ence the course of other nonlinear phenomena. The
sharp increase of the light field in self-focusing beams
should obviously facilitate the observation of the non-
linear scattering at the second harmonic t87>SB\ Qf
particular interest is in this case the study of the ef-
fect of the intermolecular interaction. It is interesting
that nonlinear isotropic scattering at frequencies
close to the frequency of the fundamental wave was ob-
served in self-focusing beams. Some results of its
study are reported i n [ 1 8 3 ] . In thin filaments, the power
of the scattered radiation reaches several watts. The
regions of intense nonlinear scattering turn out to be
distinctly localized. Such a scattering is reported also
in'-48^, where its appearance is connected with the
scattering of the energy of coherent molecular vibra-
tions obtained in the case of SRS.

An appreciable change of the wavelength in self-
focusing beams can influence processes determined by
the spatial dispersion. Among the possible effects we
should mention here, in particular, the effect of non-
linear rotation of the plane of polarization in optically
active liquids. In order of magnitude, the specific
angle of nonlinear rotation equals "O)/cfn2Eo/no,
where f is the optical-activity constant. Interesting

features are possessed^y the effect of circular
dichroism in a nonlinea* optically-active medium [ 8 9 : ].
It should be noted tha| the spatial dispersion can influ-
ence also the self-focusing effect itself, in that it de-
termines, alongside with diffraction, the magnitude of
the critical power, but this effect is negligibly small in
the optical range. Finally, in strong fields of self-
focusing beams, parametric interactions are possible
involving the cubic term of the expansion of the elec-
tronic polarizability in powers of the field-interactions
at which 2ωρ = u>i + w 2

C 3 S ]. It is possible that it is
precisely this effect which causes the observation of
many Stokes and anti-Stokes components of SMBS in
liquids under conditions when the cell with the liquid
is decoupled from the laser L i a : l . It should be noted, to
be sure, that an amplification of this type, as shown by
an analysis L 7 9 ' l o 9 ' l l o : i , can take place only in the case of
interaction between waves having nonparallel wave
vectors, thereby causing the amplified signal to acquire
a peculiar angular structure.

Let us note, finally, that, at any rate the initial
stages of the self-focusing process can be treated as
a process of frequency-degenerate (in the case of
stationary self-focusing) parametric amplification of
the type under consideration, or nondegenerate ampli-
fication (in the case of nonstationary self-focusing).
This circumstance was pointed out i n t 2 9 : l . Indeed, the
formulation of self-focusing problem as considered by
the perturbation method is completely analogous to the
parametric-amplification problem. The optimal value
of the rapidly self-focusing inhomogeneity aopt (see
(3.6)) corresponds in "parametr ic" language to the
synchronism conditions for the amplification of two
plane waves of frequency ω (or one spatially-modu-
lated wave) in the field of the plane pumping wave of
the same frequency. An analogous "parametr ic"
treatment can be used also for the defocusing effect-
here a weak plane wave of frequency u> increases in
the field of a spatially-modulated pump wave at the
same frequency. The parametric approach to an ex-
planation of the occurrence of defocusing is discussed
in'·7 9^; the same reference gives also a nonlinear
theory of parametric amplification in a cubic medium;
this theory can be regarded as the spectral theory of
strong interactions.

5. CONCLUSION

The experimental and theoretical material presented
in the review thus offers evidence that much progress
has been made in the study of self-actions of powerful
electromagnetic waves. The main physical effects have
been predicted and observed experimentally, and a
mathematical apparatus has been developed and makes
it possible to trace at least qualitatively the main
features of these self actions (to estimate the spatial
scales of the processes, to reveal the influence of
various properties of the medium, of the beam
geometry, etc.). The effect most thoroughly investigated
at present is spatial self-focusing. At the same time, a
number of important questions must still be investi-
gated further in this case, too.

1. It is necessary first of all to perform experi-
mental investigations yielding reliable quantitative in-
formation on self focusing and self-trapping in different
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media, and to reveal the physical self-focusing mecha-
nisms. It is not sufficiently clear as yet whether
striction self-focusing is obseived in experiment.
Indirect data on the observation of SRS in beams that
are not focused beforehand, in such liquids as CC14

and alcohol [ 1 7 ' 3 9 ] , and of SMBS in CC14 and water (this
necessitated the use of very long cells'-1^) confirm, as
it were, the possibility of such self-focusing; this ques-
tion, however, is far from completely studied. Recently,
the hypothesis was advanced that striction determines
the fine structure of self-focusing beams t62>75] *. The
reason for this is the nonlocal character of the stric-
tion response. This circumstance was discussed in
detail in1-75^; it is interesting that, as established here,
the equations of striction self-focusing have much in
common with the equations of superconductivity theory.
A sufficiently general consideration of the instability of
the light beam is given in t 7 6 ^. A clarification of the
contribution of striction effects is quite important for
the study of the behavior of powerful light beams in
crystals.t ι

2. The dynamics of formation of the applicable wave-
guide is not fully explained as yet. Worthy of particu-
lar attention are questions on the limiting power
density (the diameter and the total power) carried by
the waveguide (we note that, according to theoretical
estimates and experimental data, it reaches
ΙΟ9—1011 W/cm2) and the factors governing the limiting
length of the waveguide (according to E 4 8 ; ) , the "ultra-
thin" filaments are very short-lived, see also'-103^).
Possible causes of the "break" of the waveguide are
the finite growth velocities (see Sec. 3.5), inhomogenei-
ties, strong conversion of the energy into scatter radi-
ation (in particular, due to SRS and SMBS t 7 7 ' 1 0 5 ]), and
self excitation due to inhomogeneities.

There are many unclear items in the picture of non-
stationary self focusing. Experimental data are neces-
sary to estimate the role of the thermal self-focusing
and defocusing of laser pulses. It is of interest to study
the effects of nonlinear dispersion, which can influence
the behavior of ultrashort laser pulses.

3. The theory of self focusing (including the theory
of complicated beams) has been developed to date only
for spatially-coherent fields. It is of interest to
generalize it to include the case of spatially-incoherent
radiation. This can be done, for example, with the aid
of formulas (2.45), where the field at an arbitrary point
of the nonlinear medium is expressed, within the limits
of applicability of the perturbation method, in terms of

*At the same time, the fine structure is connected in [105 ] with
stimulated Raman scattering.

tin crystals admitting generation of a second optical harmonic,
noticeable self action can also be connected, as shown in [8 0 ], with
the reaction of the second harmonic on the fundamental radiation.
Estimates made in [80 ] show that the corresponding value of n2 can
reach ~ 10'12 cgs esu. It must also be kept in mind that in electro op-
tical crystals self-action can be connected with the effect of optical de-
tection. The produced static field deforms the surfaces of the refractive
indices. This circumstance was noted by Zanadvorov [81 ]. We note,
finally, that a change in the optical parameters of the LiNbO3 crystal
at power levels which still do not lead to breakdown, was noted in [82 ]
and [83 ], where these changes were registered in experiments on the
generation of optical harmonics.

arbitrary boundary conditions at the input; the latter
makes it possible to calculate the statistical charac-
teristics of the field at any cross section of the
medium from the statistical properties of the field at
the input. It is of interest to calculate the beam spread-
ing due to the statistical inhomogeneity of the medium.

4. Considerable interest attaches to effects of non-
linear defocusing of relatively low-power (P < P C r )
laser beams in different media—a problem directly
connected with the study of the propagation of powerful
radiation over large distances. The results of the cor-
responding experimental and theoretical investigations
are given inC 4 4> 1 1 4 ]. Of course, the thermal effect is not
the only cause of nonlinear defocusing of powerful
radiation with Ρ < Peri it * s a l s o necessary to take
into account such effects as evaporation, ionization,
etc.

5. When speaking of the wave theory of the self-
focusing effects (and of the theory of self-action as a
whole in general), it must admitted that, owing to the
complexity of the problem, analytic results can be ob-
tained only for a few beam models. Therefore, in order
to obtain more detailed data, it is inevitably necessary
to integrate the equations numerically. Many results
made in this direction are contained in ^ 1 4 ] , and much
material is present i n ^ 2 9 ] . However, even the latter
task cannot be regarded as complete. When speaking

of the theory, it should also be noted that polarization
effects in self-focusing have not been extensively in-
vestigated (in particular, the effect of the instability of
a circularly polarized wave, discussed i n t l 0 4 ' 1 0 6 : l ) . To
take these phenomena into account, it is necessary to
include in the theory an analysis of the vector charac-
ter of the fields.

6. Finally, a timely problem is the unification of
the theory of self-focusing with the theory of stimulated
scattering. Such a general consideration makes it pos-
sible to reveal the mutual influence of the indicated ef-
fects, that is, the action of self-focusing on stimulated
scattering, and the no less important reaction, which
can, probably, explain many features of the behavior of
the " h o t " filaments. Particularly important in the
construction of such a theory is allowance for nonsta-
tionary processes; owing to the latter, the influence of
self-focusing on the SRS and SMBS is different.

7. Although the theory of self-action of wave packets
is in general at the same level as the theory of spatial
self-focusing (moreover, a "unified" theory of space-
time instability of wave packets in a nonlinear medium
has been developed on the basis of the perturbation
method in1-2^), experimental data are in this case much
more skimpy. The cause of this are the larger values
of the space scales than in the case of self-focusing.

However, when Ε ~ 10~7 V/cm (in ultrathin fila-
ments), these lengths amount to several centimeters
and the corresponding effects are observable (they are
registered experimentally by the broadening of the
spectrum of the laser pulses). In the radio band (in
artificial lines with nonlinear elements) the effects of
self-action of time-modulated waves were originally
observed by Ostrovskii. Figure 22 shows oscillograms
of a harmonically modulated wave (carrier frequency
300 Hz) at the input and output of a nonlinear line. One
can see clearly the growth of the modulation coefficient
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FIG. 22. Oscillograms of a harmonically-modulated wave at the
input (top) and output (bottom) of a nonlinear line (carrier frequency
300 kHz). The increase in the depth of the modulation connected with
the self-action effect is clearly seen.

(compare with the data of Sec. 3.7). In the same experi-
ments there was observed also the transformation of
amplitude modulation into a phase modulation in the
nonlinear line, which was discussed in t 2 7 ^.

In conclusion we must emphasize that the problem
of spatial self-focusing of bounded beams can be re-
garded as one of the divisions of the presently develop-
ing nonlinear diffraction theory. Work on the creation
of theoretical methods and the development of physical
concepts is far from complete in this case. To be sure,
it can already be stated that one of the most effective
methods in this field is apparently the method of para-
bolic equation, which is similar in spirit to the method
of slowly varying amplitudes, the latter being in essence
the theoretical basis of nonlinear optics.*

Using the procedure developed in Sees. 2 and 3, we
can consider the effects of self-action of a bounded
beam, due to nonlinear absorption. This problem is of
independent interest without regard to self-focusing,
since it is precisely on the basis of its solution that
one can correctly interpret experiments on the deter-
mination of the cross section of nonlinear absorption.
By way of an example we can present the results of t90-1

for a medium with two-photon absorption (6 0 = 0,
£2 = 0, t'l fO); Fig. 23 shows a modification of the
amplitude profile of a Gaussian beam in a medium with
nonlinear absorption.

It is interesting that in the case of focusing of a
wave in a nonlinear medium it is possible to connect the
input and output powers by the simple relation

-Pout i 1 in -Pita' V & - - U

where P i j m = ϋηλ ο/32πδ 2 is the limiting power emerg-
ing from the focus and does not depend on Pin (when
Pin — °° and P o u t — P i j m ) , and is determined only by
the wavelength and by the cross section for two-photon
absorption (see also^3 4 3).

Diffraction effects can play an important role in the
generation of optical harmonics (of course, also in the
absence of self-focusing). This problem in the theory
of diffraction in a nonlinear medium was considered
in[90-94] _ similar problems are encountered also in the
theory of parametric amplifications; allowance for the
finite aperture can yield important corrections in this

FIG. 23. Transformation of the am-
plitude profile of a Gaussian beam in a
medium with nonlinear (two-photon)
absorption. Curve 1 corresponds to the
section ζ = 0, 2-z = (2δ2Ε§)"1;
3-z=10(2S2Eg)-1.
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0,5

r/a

case. Finally, an important role can be played by the
spatial limitation of the beam also in the dynamics of
laser generation. An analysis of the generation of a
giant pulse, based on the analysis of the parabolic equa-
tion, is given in[-95-'.

*At the same time, as already indicated, there are important prob-
lems which are at the limits of the applicability of the quasioptical ap-
proximation.
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