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FERROMAGNETIC resonance (FMR) is produced
when an alternating high-frequency field excites homo-
geneous precession of the magnetic moment in a con-
stant magnetic field. The reaction of the system of
magnetic moments to the alternating electromagnetic
field can be described with the aid of the magnetic
permeability u (w) (w—frequency of alternating field),
whose frequency dependence reveals the resonant
character. Calculation of the magnetic permeability
is an important problem in the theory of FMR and can
be performed in different ways, depending on the
model chosen. It is usually assumed that the ferro-
magnetic properties of metals are connected with the
magnetic moments, localized in the crystal lattice
sites, of the incompletely filled d and f shells of the
atoms. The system of magnetic moments is described
by an equation of the Landau-Lifshitz type 1], Another
approach is to consider a single interacting-electrons
system, having a nonzero total magnetic moment
ML2:3], We note immediately, however, that the fre-
quency dependence of the magnetic permeability near
the resonance frequency is in general not very sensi-
tive to the model used for the metal in the analysis.

Ferromagnetic resonance can be observed when the
length of the electromagnetic wave is large compared
with the dimensions of the sample and is used, as a
rule, in observations of FMR in ferromagnetic die-
lectrics (or ferrites). The reason is that the refrac-
tive index of a ferrite differs markedly from unity in
the centimeter band, in which the FMR is observed.
Consequently, the customarily employed samples are
small compared with the wavelength, i.e., a quasi-
stationary situation is produced.

The inverse case (skin effect) takes place in
metals, owing to the high density of the conduction
electrons. Therefore it is natural to observe FMR in
metals by using reflection of the electromagnetic
wave. It is convenient to describe the reflected waves
by using the concept of surface impedance, and the
FMR is manifest in the frequency dependence of this
impedance.

Excitation of inhomogeneous precession of mag-
netic moments —spin waves—is customarily called
spin-wave resonance 4], The existence of the spin
wave is due to exchange interaction between the
electrons. From the macroscopic point of view, al-
lowance for exchange interaction is manifest in spa-
tial dispersion—the dependence of the magnetic
permeability p on the wave vector k, i.e., i =
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=u (w, k). It must be noted that the spin-wave dis-
persion law is likewise not a feature of the model
used for the metal, and can be written in the case of
long waves in the form

© =0y () + 4 (ak)?,

where the constant A is of the order of the Curie
temperature 6, and a is the lattice constant; the
activation energy hw, is determined by the magnitude
of the real magnetic field acting inside the metal, and
depends on the angle ¢ between the wave vector k
and the static moment Mg.

Attention must be called to a very curious circum-
stance typical of the high-frequency properties of
ferromagnets. Exchange interaction—the true cause
of ferromagnetism—enters directly only in that part
of the high-frequency magnetic susceptibility which
is connected with the spatial dispersion. The charac-
teristic frequencies in u (w) are determined by the
relatively weak relativistic interaction (the aniso-
tropy energy, the interaction with the external field,
dipole-dipole interactions). Therefore the role of
spatial dispersion in ferromagnets (especially in
ferromagnetic metals, see below) is very appreciable.

This is formally manifest in the fact that the role
of the spatial dispersion is measured, in the analysis
of the electromagnetic properties of a ferromagnet,
not by the ratio (a/A)?, where A = 2r/k is the length
of the electromagnetic wave, but by the quantity
(A/fiwg)(a/A)%, as can be seen directly from the
spin-wave dispersion law. Although this quantity
should be compared not with unity but with the rela-
tive deviation from resonance Aw/w, the minimum
value of which is determined by the line width, the
condition (A/Hw,)(a/A)? 2 Aw/w, can, of course, not
be satisfied at radio frequencies (A ~ 1—10 cm) even
in the most perfect dielectric samples. In metals,
however, the relation of interest to us is satisfied
relatively easily, since the wavelength in a metal is
smaller by several orders of magnitude than the
wavelength in vacuum, owing to the skin effect. Of
course, this condition is satisfied if the relative
deviation from resonance determined by the FMR line
width, is sufficiently small. FMR in very pure metals
and at low temperatures has been extensively investi-
gated of late. Such experiments reveal relatively
narrow FMR lines-—on the order of several dozen
Oersted (cf., e.g.,L%8]), We shall show that allowance
for the spatial dispersion in the metal leads to a
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shift and broadening, of the same order of magnitude,
of the FMR line. Thus, allowance for spatial disper-

sion is a vital problem in the theory of FMR in metals.

We emphasize once more that the appearance of
spatial dispersion in magnets is facilitated by the
unique features of the law of dispersion of the spin
waves, whose dynamic part (dependence on the wave
vector) is determined by the large exchange energy,
and whose activation energy is determined by small
relativistic interactions. In dielectrics, in which the
spatial dispersion is significant in the exciton-ab-
sorption regionl’d, the situation is different: both the
activation energy and the dependence on the wave
vector are caused by the same interactions. The
““facilitating’’ circumstances for dielectrics are the
smallness of the wavelength in the optical band and
the existence of very narrow lines.

The effects of spatial dispersion in a metal are
significant both in the magnetic permeability and in
the conductivity . The conduction electrons, owing
to the skin effect, not only cause the magnetic-moment
inhomogeneity necessary for the appearance of the
exchange effects, but can themselves be readily
placed under conditions of strong spatial dispersion
(anomalous skin effectl8)).

Ferromagnetic resonance is observed in relatively
strong magnetic fields, in which the influence of the
magnetic field on the dynamics of the conduction
electrons becomes appreciable. The motion of the
electrons in the magnetic field produces, in particu-
lar, galvanomagnetic effects and gives rise to heli-
cons and other weakly-damped waves in the metall®,
This region became accessible to experimental re-
search relatively recently, after highly perfected
ferromagnetic metals became available. Reed and
Fawcettt!) measured the magneto-resistance of
nickel and iron at low temperatures. Anderson and
Goldt11d observed the de Haas-van Alphen effect in
nickel. Grimes(12) observed a helical wave in nickel.

The most characteristic difference between FMR
in metals and FMR in dielectrics is connected with
the specific role of the conduction electrons. The
plasma approach to a ferromagnetic metal denotes
allowance for the temporal and spatial dispersion of
the magnetic susceptibility in the analysis of the col-
lective excitations in the electron gas. In other
words, a ferromagnetic metal can be regarded as a
plasma, whose wave properties reveal not only the
characteristic branches of the oscillations of the
electron gast?13J but also the specific magnetic
branches connected with the macroscopic oscillations
of the magnetization.

The complicated dependence of the magnetic
permeability and of the specific conductivity on the
frequency and on the wave vector lead to a highly
unique pattern of propagation of the waves in such
media., The high-frequency properties of ferro- and
antiferromagnetic metals and semiconductors have
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recently been the subject of a large number of theo-
retical investigations (4],

1. FUNDAMENTAL EQUATIONS

In considering the electromagnetic properties of
a ferromagnetic metal, it is necessary to start from
Maxwell’s equations

do. %
roth =——], rote= — % % , 1)

where b is the magnetic induction, j the current
density, e and h the intensities of the electric and
magnetic alternating fields respectively, and ¢ the
speed of light.

Equations (1) must be supplemented with the
material equations, which in the case of a spatially
homogeneous medium are

jr, =\ o{r—r, t—1t)e(, t)dr dt’,

o

b(r,f)=\ p(r—r, t—¢)h(r, £')dr dt'. 2)

e

The integral form of the material equations (2)
reflects the nonlocal character of the connection be-
tween the current and the magnetic induction, on the
one hand, and the electric and magnetic fields on the
other. In the case of a spatially homogeneous medium,
the integral relations (2) contain the difference
kernels o (r — r’) and 4 (r — r’), and this facilitates
the subsequent transition to the Fourier representa-
tion. When account is taken of the boundaries the
metal, of course, ceases to be homogeneous and
relations (2), generally speaking, no longer-hold. In
many cases, however, it is possible to use the ex-
pressions obtained for o and ;3 in the case of an un-
bounded metal (see below).

In the analysis of FMR we shall confine ourselves
to the linear theory. This means that o and 3 do not
depend on the amplitude of the high-frequency field,
but depend, of course, on the external static mag-
netic field He.

The current density can be calculated with the aid
of the distribution function f of the conduction elec-
trons. The current density is determined by the ex-~
pression

i wp ) vin, 3)

where v is the electron velocity.

We confine ourselves to a classical treatment, al-
though in relatively strong magnetic fields the quanti-
zation condition hwy > T (wy is the cyclotron fre-
quency and T the temperature) may turn out to be
satisfied. Nonetheless, this analysis is fully justified,
since allowance for the quantization of the electron
motion leads to a superposition of small oscillations
on the “‘classical’’ curves; the amplitude of these
oscillations is determined by the relations
Hwy /€p (€ is the limiting Fermi energy), the mag-
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nitude of which is comparable with unity only in fields
on the order of 10% Qe *

The electron distribution function f is determined
from Boltzmann’s kinetic equation

-g—f—{—vaﬁ—%—;%—,Lee%r#(%)cof& (4)
Here ¢ and Ty = 2wy ™! are the phase and the
period of revolution of the electrons in their orbit,
and (0f/8t)gq1 is the collision integral.

The collision integral (8f/0t)coll describes (along
with other dissipation mechanisms) the interaction of
the electrons with the magnetic-moment density
oscillations—with the spin waves. However, it is not
our task to describe in detail the dissipative mecha-
nisms, and all the more to calculate the relaxation
constants. Where possible, we shall omit the colli-
sion integral entirely (for example when w > v,
where v is the mean collision frequency). In some
cases we shall use the T-approximation, i.e., replace
the true collision integral by the expression f/7
=vf (T—mean free path time). Such a substitution is
in fact justified only under conditions of anomalous
skin effectl16J, when the “‘incoming’’ integral term in
the collision operator is much smaller than the ‘‘out-
going’’ one. In the region of the normal skin effect
the character of the collision operator should not be
of any interest to us at all—in this case the final
formulas contain only the macroscopic characteris-
tics of the metal, namely the electric-conductivity
tensor components.

We note also that we start from the ‘“‘gas’’ ap-
proximation. In almost all cases, however, allowance
for the Fermi-liquid interaction does not change the
final results (seel!?), sec. 1).

We present the known expression for the Fourier
components of the conductivity tensor oj) (w, k) in
a number of limiting casesl18:%J,

A. Conductivity in the Absence of a Magnetic Field

Under the conditions of the normal skin effect
(kl « 1, where I = vy7, v{ is the electron velocity on
the Fermi boundary), the conductivity is strongly de-
pendent on the relation between the frequency w of
the electromagnetic field and the collision frequency
V.

When w <« v the metal is characterized by a
static conductivity a{f{) (oy for an isotropic metal).

When w > v the conductivity of the metal is
imaginary U7}

Dip

cik=i~—m . (5)

*This statement is valid, strictly speaking, for static quantities
(resistance etc.). In the high-frequency region (especially near res-
onances), effects are possible (for example, quantum cyclotron res-
onance ['**], which are determined just by the quantization of the
electron motion in the magnetic field.
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The matrix elements Dji coincide in order of mag-
nitude with the square of the metal plasma frequency.
For an isotropic metal we have in the gas approxi-

mation
4nNe2

m* ! (6)
where N is the electron density and m* the modulus
of the effective mass.

Under the conditions of the extremely anomalous
skin effect (kI > 1) we are interested in the tensor
elements oji that are transverse to the direction of
the wave vector

2
Dip = 0idin, ol =

_ 3n Bap 7
Tob =7 Tk @
where
8e2 2;71:
. L nan{;
Bap = Sy | K 40

0

and n is a unit vector normal to the Fermi surface
and K(¢) is the Gaussian curvature of the surface at
the points where ny = 0. For an isotropic electron

spectrum
E_“l Ne2
4 polkl oF (8)

Here p; is the radius of the Fermi sphere.

Oap =

B. Conductivity in a Magnetic Field

In a ferromagnetic metal, the conduction electron
is acted upon by the Lorentz force (e/c)v X B,
where B =H + 47M, and H is the magnetic field
acting inside the ferromagnet, this field must be de-
termined by solving the magnetostatic problem. The
conductivity ojix is determined by the value of the
induction B.*

In considering a metal in a magnetic field, we
shall assume that the magnetic field is sufficiently
strong, i.e., we shall assume the inequality wg7 > 1
to be satisfied. This means that the radius r of the
electron orbit is much smaller than the mean free
path I.

The parameter that determines the spatial dis-
persion of the electric conductivity is kR, where
R=I|(v —iw)/wH]: R coincides with the cyclotron
radius r when w < v. Under conditions of weak
spatial dispersion (kR <« 1) the transverse part of
the conductivity tensor takes the form

v—im 1
(0F:4
1 v;U—Hi(o (9)

The indices « and B take on the values x and y.
The z axis is chosen along the magnetic field direc-
tion (k Il B).

Ne2 oy
m*  of—(0-F-iv)?

Oap ((’)7 0) =

*We do not take into account the anomalous Hall effect, since
it is not significant at low temperatures [*°].
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If the alternating-field frequency is small com-
pared with the cyclotron frequency, |w + iv| << wy,
expression (9) assumes a simpler form. The factor
preceding the brackets in (9) becomes Nec/B. Ex-
pression (9) is valid for one group of carriers under
the assumption that the spectrum is isotropic.

In a strong magnetic field, for a closed Fermi
surface, the Hall elements of the electric conductivity
(axy = —0oyx) are much larger than the diagonal ele-
ments oxx and oyy (loxy| » oxx,yy). In the case of
two groups of carriers we have

(Ny—Ny)ec
Oxy = ,,_11)’&’_ ’

(10)

where N; (N,) is the electron (hole) density. The
expression for the Hall elements of the electric con-
ductivity is independent of the electron dispersion
law if the Fermi surface is closed.

Interest also attaches to the asymptotic behavior
of the conductivity tensor of a metal with equal elec-
tron and hole densities (N; = N, = N). In this case
the off-diagonal (Hall) elements of the tensor oy B
vanish (w > v):

_i e 0
~ Nec OFy
A O (11)
O

The case kR « 1 is rarely realized in metals. The
foregoing formulas may be useful for ferromagnetic
semiconductors (ferrites). In a metal one usually has
the inverse condition

kRO (12)

Let us consider the asymptotic behavior of the
conductivity tensor under condition (12) in the case
when the wave propagates transversely to the mag-
netic field (k 1 H)[9 . The z axis, as before, is
chosen along the magnetic field, and the x axis along
the wave vector. The diagonal elements of the tensor
oik are asymptotically equal to

) - dai Ne2 T (w--1v) -
C 3Ne2(v—ie) [, T (e-4-iv) 7o+ iv) |
Oyy = ke [ BT T ] -

The off-diagonal elements of the tensor turn out in
this case to be smaller by a factor kR than the
diagonal ones, and they can be neglected. Expression
(13) at frequencies close to nwyg, where n is an in-
teger, describes the cyclotron resonance 13l px_
panding cot [7 (w + iv)/wH] near nwH, we get

3i Ne2 331

oo, k)=—- (k| P, o—nogtiv ' (14)

In the case of low frequencies (|w + iv| < wH)
we can replace cot[n{w + iv)/wH] by wH/m(w + iv),
and then o (w, k) takes the form

3 Ne? 15
o (@, k) =Z TR (15)
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The foregoing asymptotic expressions for the
conductivity tensor are extremely simple, and the
fact that facilitates the calculations greatly is that
they can be used when boundary-value problems are
considered. This possibility is based on the “‘indif-
ference’’ of the electrons to the boundary conditions
when kR > 1. As shown by Azbel’ and Kaner (8] the
impedance calculated with the aid of the expression
for the conductivity of an unbounded metal differs
from that obtained by solving the exact boundary-
value problem by an inessential real factor on the
order of unity. The insensitivity of the electrons to
the boundary conditions in the case of the anomalous
skin effect (when H = 0) becomes manifest, in par-
ticular, in the fact that the values of the impedance in
specular and diffuse reflection of the electrons from
the metal boundary differ only by the factor 8/9.[8’20]
The physical cause of the insensitivity of the surface
impedance to the boundary conditions for the elec-
trons lies in the fact that the main contribution to the
impedance is made by electrons gliding along the
surface of the metal, which consequently do not col-
lide with the boundary.

We shall now discuss the expression for the mag-
netic permeability of the metal. If we assume that the
magnetic moments are localized in the lattice sites,
then the magnetic permeability can be calculated with
the aid of an equation of the Landau-Lifshitz type, de-
scribing the precession of the moment M in a mag-
netic field

aM
T =Y[M, Heg]—

A
Mz

where vy is the gyromagnetic ratio, and the effective
magnetic field for an isotropic metal takes the form

[1\11 le }Ieff”: (16)*

Hegr — H+ oAM. (17)

Here a is a volume constant equal to Aa¥ugMsg,
where pupB is the Bohr magneton.

The dissipation is taken into account in (16)
phenomenologically with the aid of the reciprocal re-
laxation time A of the magnetic moments. The ques-
tion of the form of the dissipative term in the equation
for the magnetic moment is the subject of a special
analysis (cf., e.g.,[m) and will not be dealt with here.

The solution of (16) in the linear approximation
with respect to the alternating part of the magnetic
moment m leads to the following expression for the
magnetic permeability of an unbounded metal () iy
the simplest case when the wave propagates along the
magnetic field:

Py iy 0
Bir (o, Ky=:1 —ipe  py O} (18)
0 0 1

90— (0} )

AnyM, (@ 4 ik
M e e P fpHls (0 3 14) (19)

Q2 —(w-+ir)?

*[M, Heff] =M x Heff'
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where £ =yMg(ak?+ H/Mg) and € = Q + 4ryMg.
The z axis is chosen along the direction of the wave
vector.

Neglecting dissipation (A = 0), the elements of the
tensor turn out to be singular at the point w = Q.
This is the consequence of the resonant absorption of
the energy of the electromagnetic field. In a number
of cases the absorption of the energy is determined by
the effective magnetic permeability 22!, which repre-
sents a combination of elements of the tensor pujk.
This leads to a change in the frequency of the reso-
nance absorption.
" On approaching the resonance frequency, it is ob-
viously impossible to neglect the exchange term in
(19) (this was already mentioned in the Introduction).
Since the wave-vector values determined from the
dispersion equation are in general complex, allowance
for the exchange interaction leads both to a shift and
to broadening of the resonance line, and by the same
token changes the form of the resonance curve.

Formulas similar to (18) and (19) can be obtained
by starting from other more realistic models, which
take into account the role played by the conduction
electrons in the formation of the magnetic moment of
the metal [23), The most general approach to this
problem is probably the Fermi-liquid approach, in
which the ferromagnetic metal is regarded as a sys-

tem of Fermi particles with exchange interaction and
with a magnetic moment. The magnetic permeability
was calculated for this model by Kondratenko [3,24]
(see the Appendix).

The formulas for the magnetic susceptibility of an
unbounded metal can be used to calculate the surface
impedance of a ferromagnet in those cases when the
following boundary conditions are satisfied for the
magnetic moment: either m = 0 on the boundary, or
else 0m/on = 025}, This is possible as a result of
the following: Usually in the calculation of the im-
pedance it is convenient to continue the electric and
magnetic fields to the region outside the metal. Such
a continuation can be effected in two ways, either by
assuming that e(z) is an even function and h(z) an
odd one, or vice versa.

If the condition m = 0 on the boundary is satisfied,
then, by continuing the magnetic field in odd fashion
to the region z < 0 we obtain for the Fourier com-
ponent of the linearized equation (16)

FIG. 1.
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—omg =y [M, hy—ok?m;)+ vy [m, H], (20)
from which we get
my = x (0, k) hy, (21)

where X(w, k) is the susceptibility of the unbounded
metal. We shall denote the impedance* in the case
m(0) =0 by &{p. For an even continuation of the
electric field we obtain from Maxwell’s equations

ac

gp: 2 g u (o, z)de (22)

W) e, np(o, 2)

Here € (w, X) = 4ric (w, x)/w and pu(w, X) are re-
spectively the dielectric constant and the magnetic
permeability of the metal, determined by the elements
of the tensors ojix and uwjik in accordance with the
geometry of the problem. We have gone over to inte-
gration with respect to x, where x = ck/w is the
refractive index of the wave with wave vector k.

In the case when 9m/9n on the boundary, relation
(21) can be obtained by means of an even continuation
of the magnetic field. The surface impedance (&p) is
given in this case by

e (0w, z)dx
1?2—8((1.), z)”’(m’ I) '

(23)

It should be noted that the even and odd continua-
tions of the field e correspond to very special
boundary conditions for the electron distribution func-
tion, but this circumstance does not play an important
role, owing to the already mentioned insensitivity of
the impedance to the behavior of the electrons on the
boundary. If we neglect the spatial dispersion of the
magnetic susceptibility, then the resultant expres-
sions for the impedance either merely coincide
(normal skin effect) or differ by an inessential factor
(limiting anomalous skin effect). If there is no spatial
dispersion of either the magnetic permeability or the
dielectric constant, we get from (22) and (23) the well
known expression

ty b= (£01)"" (24

Given a general boundary condition for the mag-
netic moment, neither an even nor an odd continuation
of the field allows us to use the magnetic susceptibility
of the unbounded metal.

2. NORMAL SKIN EFFECT

The dielectric constant of a metal under the con-
ditions of the normal skin effect is imaginary in the

*The surface-impedance tensor can be introduced in invariant
fashion by means of the equality e, = éa,B[h X n]B, which holds on
the boundary (n — unit vector normal to the surface) or with the aid
of the relation Zgg = deq/dJ B, where Jg is the component of the
total current in the volume of the metal. The two definitions ate
equivalent, (Zg8 = 4ﬂCaB/c), but we shall make use of both.
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case of low frequencies and real but negative at high
frequencies. In either case, the electromagnetic field
does not penetrate into the metal. At low frequencies
the electric field attenuates at a skin-layer depth

6 = ¢/V 2roqw, and at high frequencies it is totally re-
flected.

Analysis of the behavior of a ferromagnetic con-
ductor under the same conditions shows that the fre-
quency dependence of the magnetic susceptibility
4= pu{w) alters the electromagnetic properties of the
metal appreciably. This circumstance is most evident
at high frequencies (wTt > 1). The dispersion equa-
tion k® = w%pu/c? takes in this case the form

(25)

It is easy to see that in a relatively narrow region
of frequencies, wy < w < wg, an undamped electro-
magnetic wave can propagate in the metal. Its dis-
persion is given by

0f 0g + 0pc2k?

o= Ry
w0} --c2k

(26)
The corresponding plot is shown in Fig. 1. This wave
has anomalous dispersion. The possible existence of
a wave with negative group velocity in a high-fre-
quency plasma, in the region where € < 0 and p <0,
was first pointed out by Pafomov %! (see also 12621y,
A ferromagnetic metal is a natural example of a
medium in which this situation can be realized.
Under FMR conditions, the low frequency case is
frequently realized. Then the metal is characterized
by a static conductivity o, and the wave vector is
complex. In the case when the wave propagates
parallel to the magnetic field (k 1| H || Oz) we have

(e o i) = i T o
where the indices + correspond to circularly polar-
ized waves. In the case of transverse propagation
(k Il Ox) the dispersion equation of the resonating
wave takes the form
4t _ Anioee M _
c2 Ky c2

ko 4100
+ = 2

(27)

4dniicho  QF—w?
QQ—e? *

(28)

The extraordinary wave, in which the magnetic field
is parallel to the constant field H, does not interact
with the magnetic moments. In the case of transverse
propagation, the frequency of the homogeneous reso-
nance is equal to yH, and in transverse propagation
it is equal to y (HB)Y2,

In the general case when the wave propagates at
an angle ¢ to the direction of the magnetic field, the
frequency of the homogeneous resonance, as can be

easily verified, is equal to vH cos ¢ + )/(HB)V2 sin ¢.

The impedance of a ferromagnetic metal under the
conditions of the normal skin effect was calculated by
Ament and Rado 2" and subsequently by a number of
authors [28-31,

When spatial dispersion is taken into account in
the Landau-Lifshitz equation, the need arises for an
additional boundary condition for the magnetic mo-

ment. Ament and Rado [27] proposed that the normal

derivative of the magnetic moment vanishes on the
boundary: 0m/dz|,_g = 0. However, a number of
considerations lead to a more general boundary con-
dition in the form

dm
»67—{-)(m:0. (29)

This condition, as shown by Pinkus [301, is due to the

character of the anisotropy field on the boundary.
According to (30} we have with good accuracy

X = —(wy/we)a™, where hw, is the surface-aniso-
tropy energy, which can greatly exceed the volume
energy, and hwg is of the same order of magnitude
as the exchange integral. We see from (29) that the
parameter X must be compared with the magnitude
of the wave vector k. Even in the case of the shortest
waves we have ka ~ 1072, and x/k = 10 when wjy

~ 0.1 wg, i.e., the condition m = 0 is satisfied ap-
proximately on the boundary. The Ament and Rado
condition 9m/on = 0 is thus valid only if there is no
surface anisotropy.

Following[31], let us calculate the surface imped-
ance under boundary condition (29). Let the magnetic
field H 1| Oz be parallel to the surface of the metal,
and let the wave propagate normally to the surface
along the y axis. For the case of a magnetic field
normal to the surface of the metal, the surface im-
pedance can be obtained from the expression derived
below by simply changing the notation.

The solution of the dispersion equation of the
electromagnetic waves in the metal is in this case

2 (kd)*= _Z?M?*‘ (F(YDW—)Z il/(ZwHT h (4‘:‘:);8)?)2_‘8;_2’
(30)

where d = a(A//J.BMS)VZ. In the derivation we took
account of the fact that the parameters d/¢ and
H/47Mg are small compared with unity.

The conditions of continuity of ez and hx on the
boundary, as well as the boundary condition (29) for
the magnetic moment, will be written in the form

h’lx + hzx = hOxv
kyhyg - kohoy = Axigg Choxs

4

K3 (iky + %) hye + K2 (g - %) hox =0.

(31)

To derive the last equation of (31) we used the fact
that near resonance we have

k282 ,
mix:Whix (i=1, 2). (32)
From the condition for the compatibility of the
system (31) we get
4nioy = Feakey (kq+ kg —i%) (33)
¢ TR A kgkg -k —iX (k- k)

Substituting here the values of k; and k, from (30),
we obtain an explicit expression for the impedance.
For comparison with the results of Ament and Rado!?"! s
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it is convenient to change over to their notation.
Putting

d \2 ® , H 4a0p0d . o, .
(—S-) :Mz, 4nYMs:m, 4IIMS=T]’ ¢ C—Cs éux}té,
we get _
g (Un—em=2dFhx-dfox (34)

n—o?—(1+ix—EF | n—0Z-2(01+Fix
We introduce the effective permeability by means
of the formula

_ (Peff )“2 _ 4migg
tefg/ 1 e e

(35)

peff =4’ — iu” is defined, in accord with (30), (33),
and (35), as follows:

’ P N4+1—2i¢ 2
K ogp = % (U _l,_zp):[NV + i+E ]’

—i-+E YN F1=2i (36)
where N=xk1(n-w'?+x).
If £ =0(dm/8n =0 on the boundary), then
Hhots =y (37)
If £ = (m =0 on the boundary), then
U eff :m_ijg (38)

Expressions (37) and (38) coincide with the results
of Rado and Weertman 132}, The connection between
u' and p” at different values of £ is shown in Fig. 2.
The experimental points were taken from [3). As
seen from the figure, the results of the experiment
can be described by assuming that £ varies, depend-
ing on the external magnetic field and the frequency,
in the range 0.4—1.0. We note that £ ~ 1 means that
the exchange interaction on the boundary plays the
same role as surface anisotropy.

The shift and broadening of the resonance, as
follows from (36)—(38), are of the same order of
magnitude, regardless of the behavior of the moments
on the boundary:

AH _ 4nM, d
H — H &~

If we neglect the spatial dispersion, then, accord-
ing to (24), the impedance becomes infinite at the
resonance frequency if there is no dissipation. Al-
lowance for spatial dispersion makes the impedance
finite at all frequencies. This justifies the neglect of
the dissipative terms in Eq. (16), provided that

(39)

7»<<4nyMs%.

At reasonable values of the quantities involved,
4ryMgd/6 ~ 108 sec™!. The FMR line shape, under

the conditions of the normal skin effect and with al-
lowance for spatial dispersion of the magnetic suscep-

tibility was calculated in {257,

3. LIMITING ANOMALOUS SKIN EFFECT

The actual calculation of the impedance of a ferro-
magnetic metal under the conditions of the anomalous
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skin effect is a very difficult task, in view of the
nonlocal connection between the current and the field.
If the reflection of the electrons from the metal
boundary has an arbitrary character, the surface
impedance is expressed in a rather complicated
manner in terms of the kernel of an integral equation
relating the Fourier components of the current
density and of the field. In such a general formulation
of the problem, the surface impedance can be calcu-
lated in a number of limiting cases (3334 or else
investigated by numerical methods (5] However, the
use of the expressions for the dielectric constant and
the magnetic permeability of an unbounded metal, as
already mentioned, does not give rise to an appreci-
able error in the surface impedance, and this greatly
facilitates the calculation.

Let us rewrite the expression for the dielectric
constant in accord with formula (8) in the following
manner:

3 ("21,6_ i Zo 3m (x)ic

=0 r = 20 To=—F —5— -
e (0, 7) 4 oWgr z ’ 0 4 w2

(40)

vy = pp/m is the Fermi velocity and x = ck/w.

Let the magnetic field be perpendicular to the
surface of the metal. For a wave propagating along
the magnetic field, the permeability, in accordance
with (18), is

_ yH 4oy —o— il (ked)? opa?

41
W (@ )= VH —o—ih—+ (kod)2 wp22 (41)

where kg =w/c and wp = 4ryMg.
Using formula (22), we obtain for the case when
m =0 on the boundary

YH +wp—o ~ihd-(ked)? @p2?
W (kgd)? 25+ (vH — o — ih) 28 — izgoys

=2,

12

zdz,  (42)

e 8

Far from the resonant frequency w, =yH we can
neglect the spatial dispersion and put d = 0. In this
case it is convenient to express the permeability in
the form u = |pu| ew, where
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hoar q.
tgﬁ:ﬁ——m)WH——_m—) (O O << m). (43)
[33]

The impedance ¢y is in this case equal to
2 / 2o
G (g ) lppreT T B

Thus, in the case of the anomalous skin effect, the
singularity of the surface impedance is of the order
of |wp ~w) 23, and not |wy — w|™Y? as in the
normal skin effect.

Allowance for spatial dispersion leads to finite
values of the impedance even if the dissipative mech-
anisms are neglected. The ferromagnetic resonance
becomes manifest in this case in the presence of an
extremum on the plot of Re § against the frequency
or the external magnetic field. Exchange effects also
cause a shift of the resonance frequency and a line
broadening; the two are of equal order of magnitude.
Considering yH — w near resonance as a small
parameter, we get

A~ (B a0 L) daM,. (45)

The impedance for 8m/8n = 0 on the boundary
differs from (45) in a numerical factor on the order
of unity.

The case of a magnetic field parallel to the surface
is considered in 341,

The exact form of the resonance curve can be in-
vestigated only numerically. We note in this connec-
tion the work of Hirst and Prange [35], in which the
FMR curves are calculated for a number of metals
by starting from the assumption that the electrons
are diffusely reflected from the boundary and from
the condition dm/dn|z-¢ = 0. Their calculated plots
of Re ¢ against the external field He for nickel,
with the field oriented parallel to the surface, at a

frequency of 5 MHz, are shown in Fig. 3 (A = aMé/Z).

The line shape, as noted in their paper, is determined
in general by three parameters—the electron effec-
tive mass, the exchange constant, and the anisotropy.
Therefore a comparison of the calculated curves with
the experimental ones is difficult.

4. FERROMAGNETIC METAL IN A STRONG
MAGNETIC FIELD. WEAK SPATIAL DISPERSION

So far we have neglected the influence of the
magnetic field on the motion of the conduction elec-
trons. In this case the alternating field hardly pene-
trates into the metal and the interaction between the
spin waves and the electromagnetic field occurs in a
narrow layer of width 6. This situation may not oc-
cur if the metal is placed in a strong magnetic field,
at which the cyclotron radius becomes smaller than
the mean free path:

r<1. (46)
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It has become clear relatively recently that weakly
damped electromagnetic waves can propagate in the
metal under these conditions. Helical waves were
observed in many metals; magnetohydrodynamic
waves were observed in bismuth, which has equal

electron and hole densities. The existence of weakly
damped electromagnetic waves leads to positive
values of the effective dielectric constant and causes
many resonance effects. The theory of electromag-
netic waves in metals in a magnetic field was in-
vestigated by many (see the review [9), which refers
also to the experimental papers).

Analysis of a ferromagnetic metal in a strong
magnetic field under the condition (46) reveals a
close analogy with the theory of the electromagnetic
properties of ferrodielectrics. In the frequency
region in which the effective magnetic permeability
is positive, a ferromagnetic conductor has selective
transparency and exhibits resonance properties simi-
lar to those observed in dielectrics. As a result of
the strong interaction between the oscillations of the
magnetic moment and the weakly-damped waves, a
change takes place in the picture of electromagnetic
wave propagation in metals.

As already mentioned, the parameter characteriz-
ing the spatial dispersion of electrons in a magnetic
field is the quantity kR. When kR <« 1 there can
propagate in the metal helical and magnetohydrody-
namic waves. The coupling between the spin and
electromagnetic waves at kR <1 was investigated by
Stern and Callen ¥ and by Blank 37,

Let us consider an unbounded ferromagnetic metal
(N;y = Ny) under the conditions of helical-wave propa-
gation.

In a strong magnetic field, the dissipative elements
of the conductivity tensor are proportional to 1/HZ,
and the Hall components to 1/H, if the number of
holes is not equal to the number of electrons. The
metal is thus characterized under these conditions by
a Hall conductivity and a magnetic permeability (18)
and (19). For simplicity we shall disregard the
spatial dispersion of the magnetic permeability. Al-
lowance for this dispersion causes an insignificant
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change in the overall dispersion picture. We shall
discuss later (see Sec. 5) a number of effects due to
allowance for the exchange interaction.

From Maxwell’s equations it is easy to obtain the
dispersion equation of the coupled spin and helical
waves:

% ——45—;—”6-— [0, (w, cos? @ - o, sin? @) — a?]? (47)

X {wM + (mr“)a_'mz)u2 o (wr cos? @ H-0, sin? P— m2]1/2 , cos @ I_l}7

where wy = YH, wy = yB, wM = 4ryMg, and ¢ is the
angle between k and H.

It follows directly from (47) that when gy > 0 we
have k%< 0 at all frequencies.

The dependence of k% on w is shown schematically
in Fig. 4. The dashed lines denote the plots of k?
against w for helical and spin waves when their in-
teraction is neglected. The spin wave has in this ap-
proximation the form w =wy, where wy
= [wy (wrcosle +wasin2<p)]172. The parameter of the
coupling between the spin and helical waves is the
ratio Mg/H, which in general is not small.

Equation (47) does not hold when ¢ =7/2. This
direction is exceptional, for when ¢ =7/2 the helical
waves are strongly damped [38). The damping of the
helical waves is small if cos ¢ > r/l.

When ¢ = 0 the spectrum of the waves assumes
the simple form:

(48)

K ARO[O® @g—®
+ c2 or—@

At low and high frequencies the spectrum ap-
proaches that of a helical wave.

The condition kR «< 1 imposes a limitation an the
closeness to the resonance point (w =wy). Using
formula (47), we obtain

W, —0 2
! > oy —o- M

2 2
4 (DH

(49)

In the general case of wave propagation at an ar-
bitrary angle to the magnetic-field direction, the part
of the field of the coupling wave (47) which is trans-
verse to k is elliptically polarized. Let us introduce
a coordinate system x, 7, { with the { axis along k
and the x axis perpendicular to the vectors k and H.
The ellipticity coefficient is given by

124

FIG. 4.
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(50)

When ¢ = 0 the wave becomes circularly polarized.
The wave is plane-polarized. When ¢ # 0 and in the
relatively narrow frequency interval wgwy ( cosch
+wy/wr sin?@) = w? = wawr.

Proceeding to elliptically polarized waves ey
= ey * Bey, and eliminating the alternating field, we
write the system of Maxwell’s equations in the form

o2, 4 4no i~

0;2 = (am £ V!’;xxgnn) gx"ei =0 (51)

Here

Oxn=0g|c0s@|™, pin=Im pyq.

The tensor ﬁaﬁ is given by

~ 1 ( ©g (0, c0s2 @+ v, sin? ) — w2
o2

i®zr COS
Hap = G et 2) . (52)

—iwpg COS @ ®r0, — ©2
We introduce the surface impedance for elliptically
polarized waves with the aid of the formulas

e (0)= Ji=Jx + B/,

where J is the total current in the volume of the
metal. The elements of this impedance are connected
with the elements of the tensor Zyg by the following
relations:

2.0+ 27, (53)

<

S Zen |
’ 1 2

2 =g Cex— L)~ 2.
Expressing with the aid of Maxwell’s equations the
electric field on the boundary in terms of the total
current in the volume of the metal, and using the dis-
persion equation of the coupled waves, we obtain after
simple calculations

Zi _‘—‘(Zxx +Z7m) +

(54)

1 T e M L
V (l—"xx‘i‘urn) (nn )1/;" ’ (55)
i 1/ T~ ~ (il )”—u’ 1/
z—_ ity o m) Tkl (5
¢ V Gxn “’ p‘ﬂﬂ) (P« an)1/2
. o~ (172 u 1/2
7z _ i f“) ~ ~ [(Mxxl"n'n) - x-q] 57
¢ (1% (P‘fxx Pnn) (Irxxﬁnn)i/z ( )

Thus, in the employed approximation, the imped-
ance element Z, is real in the region of existence of
the weakly damped wave (47), owing to the penetration
of the wave with ‘‘+’’ polarization into the metal. The
element Z_ is imaginary, corresponding to the re-
flection of the wave with ‘‘-’’ polarization from the
surface of the ferromagnet.

The dependence of the surface impedance on the
frequency, the magnetic field, and the angle ¢ is in
general quite complicated. In the simplest case of
longitudinal propagation we have

4R 0 —®
= ®o,
ore V 1/(1) — ’
=—i2" Voo, ]/m“+m
Z. ey O oo *

(58)

(59)
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Recently Grimes 12} reported an experiment with

a nickel film, in which he observed standing electro-
magnetic waves. Without going into the details of the
calculation of the excited coupled wave in the reso-
nator, let us discuss Grimes’ experiment.

When a standing wave is excited in the film, the
wave vector assumes discrete values and, depending
on the method of wave excitation, it turns out to be
equal to nr/d or (n + 1/2) n/d, where d is the thick-
ness of the film (depending on whether the surface of
the film is in a node or antinode of the electric field).

Thus, the values of k are fixed. If, in addition,
the frequency is also fixed, then resonance excitation
of the wave in the film should be observed at a cer-
tain value of the external magnetic field Hg. In
Grimes’ experiment, the standing wave was excited
at several frequencies. This made it possible to ob-
tain the dependence of the resonance frequency on the
magnetic field. The electromagnetic wave was propa-
gated parallel to the direction of the magnetic field,
which in turn was perpendicular to the surface of the
metal. The dependence of w on the resonance values
of the external magnetic field He in the region He
> 8 kOe is a straight line, the extrapolation of which
leads to a crossing of the H axis at the point Hyp
= 6.5+ 0.2 kOe. According to!®] this value of the
field corresponds, within the limits of the experi-
mental error, to the value of the saturation magnetic
moment of nickel (Hp = 4rMg). The second har-
monic was excited in the experiment of[12], i.e.,

k =r/d.

Let us consider the dispersion equation of the
coupled spin-helical wave (48). In the geometry of
the experiment of 1), H + 4rMg = Hg, where H is
the field inside the film. Hence H = He — 47Mg and
consequently B = He. Equation (48) thus assumes the
form
vil,—o

VHe (RO =0 e

(60)

The w = w (Hg) curve corresponding to Eq. (60)
is a hyperbola passing through the points w =0, He
=0, and w = 0, Hg = 4rMg; the asymptotes of the
hyperbola are the straight lines w =y (He — Hy)
+wp and w :ykzéz(He — Hy), where Hj
= —8rMg (k6)¥/[1 — (k8)?1% and w,
= —wM(k8)(1 + (k6)%)/[1 — (k6)%)? (Fig. 5). Only

the hyperbola sections sufficiently close to the
asymptotes have physical meaning, since the magnetic
field is bounded from below by the condition r <.
When [ ~ 107% cm this yields H > 10° Qe.

The upper branch of the hyperbola corresponds to
excitation of homogeneous FMR, whereas the lower
one represents the helical branch of the coupled wave
and corresponds to excitation of inhomogeneous os-
cillations.

The solutions of (60) with respect to the frequency
are

2 167,
20, =yH [ 14108 1)/ (1—koop e eoe | (61)
Assuming that ké < 1, as apparently was the case
in the experiment of 12 , we obtain:
for the upper branch

o, = yH (14250 peo?) (62)

and for the lower branch

wo_ = yHk8* (1 —%ﬁ) . (63)

As seen from (63), the helical branch crosses the
He axis at the point Hy = 4rMg.

If the dissipation is small, the system of resonance
frequencies shown in Fig. 6 should be observed. If
1/l « 1, this is possible for several harmonics
(2n+ 1> (r/l)n? or n< 2l/r). The damping con-
nected with the relaxation of the magnetic moment is
always much smaller than the damping due to elec-
tron scattering.

The ability of a helical wave to propagate in a
metal is connected, as is well known, with the charac-
ter of the electron trajectories on the Fermi sur-
face 38} The results of a theoretical and experi-
mental investigation of the electron spectrum of
nickel 4] give grounds for assuming that at an arbi-
trary orientation of the magnetic field the greater
part of the electron trajectories are closed curves.
There is no cancellation of the electron and hole
volumes in nickel. These conclusions agree with the
observation of the helical wave. It should be noted
that open trajectories exist in nickel in a relatively
narrow angle interval, on the order of several de-
grees near the (111) directions. This should lead to

n=3
n=2
n=/
/ 7123
n=2
=l
V4

(27

s
FIG. 6.
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the vanishing of the spin-helical wave at a suitable
orientation of the magnetic field.

The connection of the helical waves with the oscil-
lations of the magnetic moment is also manifest in
the shift of the frequency (62) and the broadening Aw
of the FMR line:

Ao = Awyr + 0y (£0)? 7" ) (64)

where Awpp is the natural line width of the ferromag-
netic resonance. As seen from formulas (62) and (64),
the shift of the resonance frequency exceeds by a
factor I/r the attenuation due to the scattering of the
conduction electrons.

Rodbell [} observed in his experiments ferromag-
netic resonance in nickel with a line width AH on the
order of 50 Oe. An FMR line width on the order of
40 Oe was obtained in the experiment of 1. The
resonance-frequency shift (62) can be observed if the
thickness of the film is of the same order as or

smaller than 6 (4rMg/AH)Y?, i.e., on films S 107* cm.

Observation of the coupled spin-helical wave makes
it important to examine the connection between spin
waves and other electromagnetic excitations in
metals 25411 In metals with equal electron and hole
densities (N; = N, = N), as already mentioned, prog)a—
gation of magnetohydrodynamic waves is possible ()
The character of their propagation differs with the
ratio of the wave frequency to the ‘‘Doppler broaden-
ing”’ kygv, where kyg is the projection of the wave
vector k on the magnetic field H. If

v & kyty € © £ O, (65)

then, using the asymptotic form of the conductivity
tensor (11) and the usual equation for the magnetic
permeability, we obtain the following dispersion equa-
tion for the coupled spin and magnetohydrodynamic
waves (¢ = n/2):

2 ?

ke =

cos2¢

Badil 2wy ein? g w2 cos?
oot {(0} — }) sin? ¢ 4 2(0,0, — 0?) cos® ¢

+ [(0% — w?)%sin? @ {4 (0y0)2 cos? ]i/2}, (66)
where vy = H/[4rN(m; + | m,|)]¥? is the Alfven
velocity and m;, is the hole mass.

The wave coupling parameter is, as before, the
ratio 4rMg/H. However, whereas in the case of a
helical wave only one wave propagated (correspond-
ing to the plus sign in (47)), in a metal with equal
densities of the two groups of carriers both waves
can propagate under the condition (65). Neglecting
the interaction, the wave corresponding to the minus
sign in (66) goes over into an Alfven wave, and that
corresponding fo the plus sign goes over into a fast
magnetosonic wave (according to (65), w/k > vy).
Calculations show that the spectrum of the coupled
fast wave is analogous to the spectrum of the coupled
helical wave, shown in Fig. 4. The dependence of the
wave vector of the Alfven wave on the frequency has
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a nonresonant character. This dependence is shown
in Fig. 7.

When ¢ = 0 the expression (66) simplifies to

[0] Wy F+ ©
by = s Oy ; o

In the general case (¢ = 0) coupled magnetohy-
drodynamic waves have elliptic polarization. When
@ =0 the field is circularly polarized, and the elec-
tric field vector rotates in opposite directions in the
+ waves. In a narrow interval of angles ¢ close to
7/2, the character of the wave propagation is appreci-
ably altered.

In the particular case ¢ =/2, the asymptotic
form of the tensor oj (in the x, n, { system) is

— {OWE 0 0
Oip = 011( 0 oM 0 ) .

0 0 — 00

With this, the fast magnetosonic wave propagates
just as in an ordinary metal [9], without interacting
with the oscillations of the magnetic moment. The
wave corresponding to the choice of the minus sign
in the solution of the dispersion equation is in this
case not the analog of the Alfven wave, but has the
following spectrum:

(67)

(68)

o} of—o?

o (69)

2 02 —wg0;

The wave vector is real in a relatively narrow
frequency interval wy < w < (wawr)¥2. The trans-
verse part of the electric field in this wave is parallel
to H.

The condition for the existence of the aforemen-
tioned coupled waves kHvy << w or H > (47Nm)Y?%,
can be satisfied in ordinary metals only in fields on
the order of 10° Oe. In metals with low carrier
density this condition is perfectly realistic.

Let us consider the propagation of coupled mag-
netohydrodynamic waves in metals with N; = N,
under conditions of strong spatial dispersion, when
the following inequality is satisfied:

v& oL kygrg & o, (70)

which can hold in fields that are not too strong and
satisfy the condition
Ve & Vo- (71)

It can be shown that when the inequalities (71)
are satisfied the tensor ¢jk is diagonal, and when

{42]
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¢ #= 0 we have
| 0yy | € |022]-

Consequently the z-component of the electric field in
the coupled wave is negligibly small. Assuming e, to
be equal to zero, we obtain from Maxwell’s equation

the following dispersion equation for the coupled wave

s 02 ©F—of . T (72
R = a0 (for e ). )

The slow magnetosonic wave has in this case an
imaginary wave vector in the entire frequency varia-
tion interval.

When ¢ = 0 the spatial dispersion of the conduc-
tivity plays no role and both waves become weakly
damped. Their spectrum coincides with the spectrum
given by expression (67).

In the derivations of the formulas given in this
section, we made use of the isotropic dependence of
the electron energy on the momentum. The generali-
zation to an arbitrary carrier spectrum is in most
case unimportant and is contained in 3l However,
when the inequality (70) is satisfied, the character of
the electron spectrum turns out to be important,
owing to the dominant role of the collisionless damp-
ing. As shown by Kaner and Skobov [43’9], weakly
damped waves in a metal having an arbitrary Fermi
surface can propagate under conditions (70) only if
the magnetic field is parallel to the crystal symmetry
axis. In this case there is no collisionless damping
(Landau mechanism). In the case of arbitrary orienta-
tion of the magnetic field relative to the symmetry
axes, the collisionless damping is appreciable, as a
result of which the dispersion equation has no real
solutions. An exception is an electromagnetic wave
linearly polarized along H (for details see [43]). The
dispersion equation of this wave in a ferromagnetic
metal takes the form (when ¢ = 0)

hk2 ( 02—k )1/2}sin 2q) l'l,

P P
M= ety (e5) 172, (73)
where y(€F) is the density of the electron states on
the Fermi boundary.
Estimates given in show that the wave (73) can
exist in magnetic fields bounded by the inequality
O

o \va

[43]

(74)

For good metals, N~ 10% and this condition im-
plies H < 10%,V4, We emphasize that this wave is
brought about by the anisotropy of the Fermi surface.
This wave does not exist when ¢ = 0. As seen from
(73), the wave vector is real in the entire admissible
region of frequencies, with the exception of the inter-
val wy < w < wg. The impedance of the wave with
polarization is

2 __ 2
(0] (054

4n h .
ZTIT] = - -2—;; I Sin 2(]) | -l'/-ﬁ)z—-(l)a(t)r . (75)
Coupled magnetohydrodynamic and spin waves can
probably be observed in sufficiently pure iron at low
temperatures, since the concentrations of the elec-

trons and holes in iron are equal [40),

5. FERROMAGNETIC METAL IN A STRONG
MAGNETIC FIELD. STRONG SPATIAL
DISPERSION (445,23

Let us consider the propagation of an electromag-
netic wave in a ferromagnetic metal under spatial-
dispersion conditions, when the condition

ER > 1 (76)

is satisfied. Of greatest interest from the physical
point of view is in this case a geometry in which the
magnetic field is perpendicular to the wave propaga-
tion direction. This circumstance is connected with
the fact that weakly damped waves can propagate at
this field orientation, whereas in the case of a mag-
netic field parallel to the wave vector the coefficients
of the dispersion equation turn out to be complex and
the results are essentially analogous to those in the
absence of a magnetic field.

Let us direct the Oy axis along k and the O, axis,
as before, in the direction of the magnetic field H.
The tensor ojk is in this case diagonal and is deter-
mined by formula (13). Owing to the diagonality of the
tensor ojk, the dispersion equations of the extraordi-
nary and ordinary waves separate:

heti

k2 :——fém Oz (0, k), (77)
_ 4mio detp

k2= =3 ™ Oz ((,0, k) (78)

The extraordinary wave (77), in which the magnetic
field is parallel to the constant field, does not inter-
act with the oscillations of the magnetic moment. In
the ordinary waves the field components ex and ey
vanish.

Using (13) and the expression for the magnetic
susceptibility (18), (19), we write the dispersion equa-
tion of the ordinary wave in the form
0} ©2 + wyak? — 2

= —n o —
@2 4 00k? — 2

(0]

Here
0y =y (HB)"2, 0w, = yB; o=y (H + Blandw. = 2yB.

Inasmuch as the ‘“volume’’ terms are significant
only in the immediate vicinity of the resonance, they
can be neglected in a qualitative study of the spec-
trum (79). The spectrum then depends essentially on
the relations between the quantities wy, wa, and wqy.
For a number of cases in which the frequencies wr,
wg, and wH are of the same order of magnitude, the
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spectral dependence is shown schematically in Fig. 8.
Weakly damped waves can obviously exist near the
ferromagnetic-resonance frequency wr, near the
antiresonance wgy, and near the cyclotron frequencies
nwy. The latter case was investigated by Kaner and
Skobov [*) for an ordinary metal.

Near the frequency wy, the wave vector in (79)
becomes infinite, corresponding to spin-wave reso-
nance. This gives rise to excitation of spin wave with
a known dispersion law:

m=(o,+a-2%’—r—lc2. (80)

When the resonance ‘‘detuning’’ is large compared
with the exchange term, |wy — w | > @wk¥/ 2wy, there
exists near the FMR frequency an electromagnetic
wave with dispersion law

n Of 3 9 wr
m:m,+7m3—(ma—mr)ctgn o (81)
The condition for its existence is
(DE
.5 L WArwp
k< vy a

Condition (76) is in this case easily satisfied. As
seen from (81), the wave has anomalous dispersion.
Near antiresonance, when |w — wa| » ak? there
exists a wave with a dispersion law
GR0F e s (82)

® =0y — —5——
a 20q 0}

Inasmuch as the condition kr > 1 is violated at
the antiresonance point itself, the condition for being
close to this point is

Wy —® > (—6!-‘-)20)‘\1, (6L=——£——) .

r wy,

This wave also has anomalous dispersion.
Finally, near the cyclotron frequency, at

FIG. 8.

vy < nwH — w < wH, the expression for the wave
spectrum becomes

(- w/nwy)l o} —(noy)?
k= ré3, TofT(neg)? (83)

In connection with formula (83), we note that the
cyclotron frequency, or a multiple thereof, can coin-
cide with the FMR frequency when wy = nwp. This
is possible, since the cyclotron frequency wy is de-
termined by the effective mass (wyg = eB/m*c). The
frequencies will coincide at definite field values,
equal to

4eM
TR o

We see therefore that in order for the frequencies to
coincide it is necessary to satisfy the condition 2m

< gm*. The spectrum of a the weakly damped wave
(when H = Hy) is written in the form

D0 )1/2 (85)

o=or— (gt

We proceed to calculate the surface impedance.
Neglecting exchange effects, the magnetic permeabil-
ity takes the form

m?l — w2 (mf — ©2) 4 2iA 0O,
W (0)= ( (u)),—mz)z—i—lkk“(lnz . (86)

As before, we rewrite (86) in the form

O<<¥d<<n). (87

2A0OL@ 1
(02 — 0?) (02— o)

pe=luled, tgd=

Assuming for simplicity that w < wy, we represent
€(w, X) in the form

0}c (022172
w2r z

0<<@<<n/2).

(88)
Using expressions (87) and (88), we find with the aid
of (22)

g (0, z) = — e=io, tg@ :%
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(89)

Outside the region of existence of the weakly damped
waves, neglecting dissipation (v =A = 0), the im-
pedance (89) turns out to be imaginary, corresponding
to total reflection of the external electromagnetic
wave. We note that in the limiting case A K w K p
expression (89) can be obtained from the expression
for the surface impedance of the metal under condi-
tions of anomalous skin effect in the absence of a
magnetic field, if we introduce the effective conduc-
tivity geff = opwyT. In the region of weakly-damped
waves (80) —(83), the impedance becomes complex.
It is easily seen from expression (87), in the region
of existence of the weakly-damped waves ¢ ==, and
¢ can be set equal to zero. The phase in formula
(89) then becomes equal to 7/6.

One might expect the impedance to be real in the
region of existence of undamped waves, as for exam-
ple in the case when helical waves propagate in a
metal or when electromagnetic waves propagate in a
dielectric. The complex impedance is in this case the
result of the anomaly of the skin effect and is due to
the fact that the field in the metal near the boundary
is a superposition of both damped and undamped
waves.

Near the cyclotron resonance frequency w < wgyg
with |wg —w| > v we have
- 2 no na )2 —an \ 23 e2r nog—ao % ca
e () =) v e
(in deriving this formula we assumed for concreteness
that wg, wy < wH).

We indicated earlier that the FMR frequency can
coincide with the cyclotron frequency wpg. Observa-
tion of this effect in the case of an isotropic energy
spectrum requires a simultaneous variation of both
the frequency of the electromagnetic wave and the
applied field H. In the case of an anisotropic spec-
trum there is a more favorable possibility of realiz-
ing this effect. When the electron energy has an
anisotropic dependence on the momentum, the cyclo-
tron frequency depends, as is well known, on the
orientation of the constant field relative to the
crystallographic axes. At certain field directions in
a plane parallel to the surface of the metal, the cy-
clotron frequency may turn out to be equal to the
frequency of the ferromagnetic resonance. As ex-
pected, an abrupt change should take place here in
the shape of the resonance curve.

Calculation[“] shows that the surface impedance,
neglecting dissipation, has in this case a root singu-
larity at the resonance point (£ ~ | w — wrl"i/z),
unlike the singularity |w — wr ]'2/3 obtained under
the conditions of the anomalous skin effect (89).

If the spatial dispersion of the magnetic permea-
bility is neglected, the character of the behavior of

the magnetic moments on the boundary plays, of
course, no role, and the surface impedance ¢g dif-
fers as before from £, in all the cases considered
above only by a factor on the order of unity.

Let us examine now the influence of spatial dis-
persion near resonance on the shape of the resonance
curve. From the physical point of view, the most
interesting is the frequency region in which
cot(rw/wy) > 0. We note first that in this case, as
shown by calculations, the exchange effects make no
contribution to the width of the curve, but do cause a
shift of the resonance. In the vicinity of the shifted
resonance frequency, allowance for spatial dispersion
leads to an appreciable change in the form of the
resonance curve.

Let us investigate first the surface impedance in
the case m(0) = 0. Assuming as before that
w < wH, we write down the dispersion eguation (79)
near resonance in the form

P(m)=2"+n2®-+-1=0, (91)

where we went over to the dimensionless variable
x =k/q, ¢° = wiﬁczr, B = a/4r. The parameter
n = t/pq?, where ¢ = (wp — w)/Q, characterizes the
closeness to resonance. The function w (k) is shown
schematically in Fig. 9. As seen from the figure, the
w (k) curve has an extreme at the value w = wy,
which is the end point of the spectrum. At frequencies
larger than wy the weakly-damped waves (80) and
(81) are excited in the metal, whereas at lower fre-
quencies the field does not penetrate into the metal.
The frequency wr should be identified with the
shifted resonance frequency. The shift of the reso-
nance can be readily obtained from the conditions
P(mng Xg) = 0 and Py (7, xq) = 0. Hence x§ = ¥,
ng = ( —73)( 3/2)2/5 ~ —2, and the shifted frequency is

o; = 0, — N2 ~ o, -+ 2QPq¢2. (92)
When H ~ 10% Oe, 6¢ ~ 10'% erg, and 6y, ~ 107° cm,
the resonance shift has the following order of magni-
tude:

O — oy 2/

90_)3/5( ) 10,

. 3
wpMs &5r (93)

zggr—ﬁquv(

This corresponds to a shift of the resonance field on
the order of 10—100 Oe. We note that the FMR line
width due to the electron collisions is small com-
pared with the shift, by virtue of the smallness of the
parameter (kI)~l.

We shall write for the surface impedance &y

©p

@4

@’ ,___LA.

FIG. 9.
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9 v z dzx
L= e Je()= Qm (94)
[1]
and near 7 =7, we get
oni -
P MG o _ 35
|5 —n10) """ > 9

Far from resonance (when | 7| > |1 |), expression
(89) is valid.

Thus, allowance for the spatial dispersion of the
magnetic permeability leads to a root singularity of
the impedance, unlike the singularity |wp — w |7%/®
obtained without allowance for the exchange interac-
tion. The frequency dependence of the impedance at
m = 0 on the boundary is shown in Fig. 10. When the
exchange constant approaches zero, the maximum
value of Im ¢, increases when w > wy, the reso-
nance shift tends to zero, and the curve approaches
its limiting form.

We investigate in similar fashion the surface im-
pedance in the case when 9m/dz|z~0 = 0:

e 2 g2 3 )3/ ¢ (a2t de
(=2 p? (7‘2‘%) Je () Js(m)= % Bl (96)

Let us consider Jg(7n) when 1 > 1y. In this case
the integral does not contain any singularities on the
path of integration. It is easy to see that in this
region dJs(n)/dn > 0. When n > 7, we have

Js (m) = 2nm2/3/3 Y 3= 0. (97)

On the other hand, near the end point of the spec-~
trum the integral is equal to

Is (no+5)ﬁ—“2§(n—710)1/2<0; (98)

Thus, there exists a value 7 > ny at which Jg(7)
vanishes (estimates show that it lies between zero
and unity). The existence of a zero of the function
Jg (1) causes the imaginary part of the impedance
{g to vanish.
When 7 < 17y the denominator in (96) has real roots.
Near 7,
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FIG. 10.
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yt
Jo o — - (mo—m) 2 (99)

When 71| > |n,|, as already mentioned, ¢g dif~
fers from &y only in a real factor on the order of
unity.

The final resonance curve at m’(0) = 0 is shown
in Fig. 11. We note that in this case the real part of
the impedance vanishes at resonance.

Comparison of the resonance curves of Figs. 10
and 11 shows that the surface impedance near the
resonance is greatly different in the two limiting
cases (m =0 and m’(0) = 0 on the boundary). In
this connection it is of interest to calculate the im-
pedance under the general condition (29). Omitting

the calculations, which can be found in [25], we pre-
sent the final result
Cx/iCs + 5 (Mo— M) 172, 1 < Moy

= . 1/2 (100)

—iC/Ce % (M—") ) N>,
where the constants are C; = 4wy /5¢Bg® and C,
=4q/5. As seen from (108), when the general condi-
tion (29) is satisfied on the boundary, the impedance
remains constant at resonance.

We note that when resonance is approached from
the high-frequency side, the derivative (d/dn)Re ¢
has a singularity. On approaching the lower frequen-
cies, the derivative d/dn Im ¢ becomes infinite.

The region of applicability of the obtained formulas
is determined by the inequalities (76) and (46).
Putting k =gxy(xy~ 1) we obtain

kR~ [:( r2 )2MS—]U5,

101
d1.a O¢ (0)

which amounts to 10? in fields H ~ 10? Oe. We note
that the condition kR > 1 is easily satisfied near
FMR, since the effective magnetic permeability be-
comes anomalously large in the immediate vicinity of
the resonance.

The anomalous behavior of the surface impedance
as a function of the character of the boundary condi-
tion for the magnetic moment becomes understand-
able if we consider the distribution of the field inside
the metal. For simplicity we confine ourselves to the
case m{(0) = 0. The electric field in the metal is de-
scribed by the expression

| Aon
|\ 4Cn
Iy 0
| 1\
I\ I\
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I.
|

FIG. 11.
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e(z)= (102)

h(0) o ¢ z (ela2% | o—iqzxy gy
i cfgd é zd4nzd 1 '
When 7 < 71y, the denominator of the integrand in (102)
has two roots located close to the real axis and lying
in the upper and lower half-planes. Integrating in the
upper and lower quadrants of the half-plane x > 0 in
the first and second integrals, respectively, we ob-
tain |n| > |ny| in the frequency region Re n < 0
(i.e., in the region of the existence of weakly damped
waves) for the field at infinity

® ( exp(—i|n|""%g2)
<pq? 3[n}??

The first term corresponds to the propagation of a
wave with anomalous dispersion (81). The phase in
this wave builds up towards the boundary, whereas
the energy propagates towards positive z. The second
term in (103) describes the weakly-damped spin

wave (80).

Near the end point of the spectrum, the real posi-
tive roots of the dispersion equations coalesce. At
frequencies smaller than vo;ﬁ there are no weakly
damped waves. Let us consider the distribution of
the field in this case. We transform expression (102),
expressing the field in terms of the amplitude E; of
the incident wave:

e(z)=2h (0) 4 exp<i|n|“2qz>) (103)

2|n %2

2 o Ey ¢ x_dz C0S gzT
°) “??ﬁq‘ﬂﬂpé R (104)

As indicated above, near the frequency of the
shifted resonance, the impedance {y has a root
singularity. The same singularity is possessed also
by the integral in (104). Calculating the integral with
allowance for this circumstance, we get

€ (z) = 2E, cos (gzz,), (105)

i.e., the field has the form of a standing wave. The
incident wave experiences in this case total reflection
and the energy does not penetrate inside the metal.
Under the more general boundary condition (29),
the field inside the metal is at resonance again a
standing wave, and the parameter X determines the
phase of the field. This is the cause of the appreci-
able dependence of the impedance at resonance
(w =wyp or N =1) on the boundary condition for the
magnetic moment.

6. INTERACTION OF SPIN-HELICAL WAVES WITH
SOUND WAVES. TRIPLE RESONANCE (4!

So far we have not taken into account the fact that
some waves can propagate in the metal besides the
electromagnetic oscillations. There are a large num-
ber of papers devoted to coupled sound and electro-
magnetic waves in metals 47,481 Op the other hand,
the question of the coupling between the magnetic
(spin) and elastic waves, which leads under certain
conditions to ferroacoustic resonance, was discussed
many times [49)

Iz

Leaving aside problems involved in the theory of
sound propagation in magnets [°*) we shall discuss
in the present section only those features in the in-
teraction between magnetic and sound waves, which
are due to the existence of collective excitations in
the system of electrons in the magnetic field. For
simplicity we shall consider the interaction between
a spin-helical wave and sound.

The initial system of equations to be considered
consists of the Maxwell equation, the equations of the
dynamic theory of elasticity, and the equations of
motion of the magnetic moment. The assumption that
the conditions for the propagation of helical waves are
satisfied (r << I, kR < 1) denotes that we can use
formula (10) for the electric conductivity (we are
considering metals with an unequal number of elec-
trons and holes). It is obvious that in the simplest
case of wave propagation along a magnetic field, the
equations for the longitudinal and transverse waves
separate in a medium which is isotropic with respect
to elastic and magnetostriction properties. The dis-
persion equation for a transverse circularly-polarized
wave is

(1_ w? (1_ dnoge yB—w ) _ AnyM; i‘?” 1 Ano o
k252 ) k%2 yH —o)  yH—o 32-( k2c? )
L Anope To o 4o dny'M,  yMy P (106)
k2c2 52 k2c2 B vH —w s

where s is the speed of sound, V%\/I = (y'MS)2/41rp,
vh = B¥/4np, p is the density of the medium, and '
is the magnetostriction constant. We have confined
ourselves to consideration of magnetostriction and
induction interaction between the electron, spin, and
lattice subsystems. The deformation reaction was
disregarded. Concerning its role in a magnetic field
see 48]

The right side of (106) is small compared with
unity, since v}y/s? < 1 and v%/s? < 1. The depend-
ence of k? on w described by this equation is shown
in Fig. 12.

The condition for resonance between the sound and
coupled spin-helical waves consists in equality of the
wave vectors and of the frequencies:

_ Anogs? yB—o

_ 5% . (107)
c? YH—o

The two resonance frequencies determined for (107)
are
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201, = yH 4 4niogsic™® + [(YH + 4nogs?c?)? —16n04c 25 yB]“)
(108)
from which it follows that the resonance is realized
only if
H}

H+ g, = 2Ho,

H:=4aNms>. (109)

Far from the resonance frequencies, the corrections
to the unperturbed dispersion laws are small - they
are proportional to the right side of the equation.
Near the resonant frequencies w; ; the coupling be-
tween the oscillation branches becomes, naturally,
stronger and the corrections to the amplitude disper-

sion laws increase:
4nyM, vy Vg
=+ 1/ nop (Vs UM T
05,0 \YH—0y,2 ¢ T

If 47rMs/ H « 1, then a weak coupling exists between
the magnetic and helical waves, and we can speak of
three types of quasi-independent oscillations, for
which the dispersion equation is best written in the
following form:

(1~5) (1= 552 (1—7r)

w— 0.)1 2
wy,2

(110)

»

4mO o Ano o

~Te gz (1 k2s2)+"5( - szr) (111
4nopgo 40w

+m Tg—( \,H)+2 = Vs,

where the parameters Ne = 4TMg/H, ng = 4rMgv};/Hs?,
and 74 = Va/ s“ are the constants of the coupling be-
tween the different waves. The existence of three
types of weakly-interacting waves makes it possible

to realize a “‘triple’’ resonance, i.e., one temporal
agreement of the frequencies and wave vectors of the
sound, magnetic, and helical waves. This equality

will take place at a magnetic field H = Hgp, where

H =4naNms? ~ 108 3; (112)

Here wy =wjy =wg = yHg, = 41roHszc'2.
Let us consider the splitting of the dispersion
curves in this case. The dispersion equation (111)

near the frequency wg of the triple resonance is
(1—2) = .+ ) (1—5r) + 2amend 2. (113)

Putting 1 — w/wy = x(ninens)’/s, we rewrite (113)
in the form

2% =gx+2, (114)

where € = (1 + M + 1g)(NeNing) V3. We note that
inasmuch as € > 3 always, all the roots of (114) are
real.

Using the smallness of the two coupling constants
(nj, Mg < Mg), i.e., the fact that € > 1, we can
easily find the ‘‘separation’’ of the dispersion curves
in the region of resonance.

Putting ¢ = 1 (nening) V3
for the spin-helical wave

o=0,{1+% ni’h,

, we find the following:
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and for the sound wave

o=on [1-(32)"]

The dependence of the frequency on the wave vector
near the resonance frequency is shown in Fig. 13. We
note that the acoustic branch of the oscillations re-
mains practically unchanged in this case.

A similar analysis can be made for the spin-
Alfven and other types of coupled electromagnetic
waves.

7. CONDUCTION ELECTRONS AND THE SPECTRUM
OF THE SPIN WAVES

In considering the high-frequency properties of a
ferromagnetic metal, we were interested in the inter-
action between the collective excitations in the system
of conduction electrons and the spin waves. The spec-
trum of the spin waves was assumed specified. There
exists, in addition, a direct interaction between the
electrons and the spin waves. This interaction con-
sists in absorption and emission of spin waves by the
conduction electrons and is accompanied by spin flip
of the electron. It leads, in particular, to finite re-
laxation times for both the electrons and the magnons,
causing threshold effects in the damping of the spin
waves. Generally speaking, this interaction is small,
thus justifying the foregoing analysis. The interac-
tion between the spin waves and the collective excita-
tions of the electron system, as shown before, re-
aligns the long-wave part of the magnon spectrum.
The magnons taking part in the direct interaction with
the electrons have large momenta (on the order of
the Fermi momentum). Thus, both interactions can
be considered independently.

The direct interaction of magnons with electrons
is analogous in many respects to electron-phonon
interaction in metals. Just as the latter, it leads to
singularities in the spin-wave spectrum, similar to
the Migdal-Kohn singularities 051,52) jp the phonon
spectrum. A specific feature of a ferromagnetic
metal is the fact that the Fermi surfaces correspond-
ing to the two possible conduction-electron spin
orientations turn out to be shifted apart as a result
of the exchange interaction. As a rule, this separa-
tion is on the order of v 6cer.

'z
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The cause of the singularities in the spectrum of
the spin waves can be understood by starting from
the following considerations. The singularities in the
spectrum exist at those values of the magnon mo-
menta at which the mechanism of the direct interac-
tion with the electrons is turned on or off. These
values of the momentum are threshold values, corre-
sponding to the vanishing of the spin-wave damping.
The direct interaction of the electron and of the spin
wave are accompanied by the laws of conservation of
momentum

p+a=p (115)

and of energy

e (p) =¢7 (p). (116)

Here p and p’ are the momenta of the electron in
the initial and final states, q is the momentum of the
magnon, € (p) is the energy of an electron with spin
oriented along the (+) or opposite the (-) direction of
the magnetization. Equation (116) takes account of
the fact that the magnon energy is small compared
with the Fermi energy.

In the initial and final states, the electron is on
the Fermi surfaces corresponding to opposite spin
orientations. From the momentum conservation law
(115), which is illustrated in Fig. 14, it follows that
the threshold values of the momentum are q =p,

+ p_, where p; are the limiting momenta for the
electron with opposite spin directions.

In the case of an arbitrary electron dispersion
law, the threshold values of the momentum are de-
termined in similar fashion, but depend on the direc-
tion of the wave vector of the spin wave. In the case
of an isotropic electron spectrum, the threshold values
of the magnon momenta form in p-space two concen-
tric spheres with radii p = p, + p_ (the analog of the
Kohn surface). At an arbitrary dispersion law, these
surfaces are determined by the shape of the Fermi
surface.

The possible existence of a singularity in the
spin-wave spectrum at q = ﬁh + p. was first pointed
out by Kohn !52! (see also!®3)). The singularity in the
magnon spectrum at q =p, — p. was pointed out by
Kondratenko [**! and independently by Kontorovich (54!,
The character of the singularity in both cases is the
same: Aw ~ x ln x, where x=q — (p, +p_). One

o (p) <

FIG. 14.
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can obviously speak of changes in the spectrum if the
damping is relatively small. In our case the small-
ness of the damping is ensured by the smallness of
the parameter Vg /ex L24] singularity of the type
x In x is quite weak, but the complication of the elec-
tron energy spectrum can, generally speaking, lead
to an intensification of the singularity (5]

As shown in') a quantizing magnetic field
greatly intensifies the Migdal-Kohn singularity in the
phonon spectrum. Continuing the analogy between the
spin waves and phonons, we might expect an intensi-
fication of the singularity at q =p, — p_, and also
the appearance of a number of resonance effects in
the spectrum and damping of the spin waves, analogous
to those existing in the phonon spectrum of metals in
a magnetic field (oscillations of geometric reso-
nance ") acoustic cyclotron resonance (8 giant
quantum oscillations of the phonon damping [**y.
However, owing to the small value of the ‘‘separation’’
of the Fermi surfaces of the electrons with opposite
spin directions, these effects are impossible in the
spin-wave spectrum. The influence of the orbital
motion of the conduction electrons on the spectrum of
the spin waves in a metal was investigated in 601,
Whereas the aforementioned resonance effects can
exist only in practically unattainable magnetic fields,*
an effect which does not depend on the magnetic field,
that of renormalization of the spin-wave velocity,
occurs in not too strong fields determined by the con-
dition kr <« 1. Namely, when kr « 1 the spin-wave
spectrum has the following form:

(117

Boer
o=V g,

Expression (125) was obtained for the case when the
spin-wave vector is oriented perpendicular to the
direction of the constant field. Thus, the coefficient
of k% in the spin-wave spectrum turns out to be
Ver/0c times larger than the term ca®/h, which
has the opposite sign at H = 0. This circumstance
leads to the presence of a minimum on the dispersion
curve shown in Fig. 15. The absolute value of the
minimum is quite small, Aw ~ wV 0c/€F (hwH/€R).
We note that owing to the large value of the ‘“separa-
tion’”’ of the Fermi surfaces, the existence of re-
normalization of the spin-wave spectrum does not
depend on the relation between the frequency w of
the spin wave and the electron free path time 7.

The foregoing direct interaction between the spin
waves and the conduction electrons can appear also
when a sound wave propagates in a ferromagnetic
metal. The phonon spectrum of a ferromagnetic metal
was investigated by Kontorovich and Oleinik 1]
They have shown that the spectrum of the phonons in
a ferromagnetic metal has singularities at a phonon

*For example, the condition for the existence of giant quantum
oscillations in the spin-wave spectrum is the inequality pgH >

ec(ec /GF )
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momentum value equal to p, + p_ as well as 2p,.
Whereas the singularities of the first type arise as

a result of the interaction between the phonons and
the spin waves and correspond to electron transitions
from one Fermi surface to the other, the singularities
of the other type are connected with the decay of the
phonon into an electron and hole, occurring without
spin flip. Thus, in a ferromagnetic metal there takes
place a splitting of the ‘“ordinary’’ Migdal-Kohn
singuliarity into two singularities corresponding to
the two Fermi surfaces of the magnetized conduction
electrons.

As noted in [#1) at a certain critical value of the
magnetic field, on the order of 10! QOe, the sound and
spin-wave frequencies can coincide at the singularity
point g =p, — p. (a unique type of ‘‘triple’’ reso-
nance, see Sec. 6). The quality of the frequencies in
the case of the ‘“triple’’ resonance leads to a rela-
tively large shift of the frequency of the ferro-
acoustic resonance, and this may be one of the methods
of observing this singularity.

8. REMARKS ON ANTIFERROMAGNETIC RESONANCE
IN METALS

The resonance dependence of the magnetic suscep-
tibility on the frequency, which changes appreciably
the character of the collective excitations of the metal,
takes place not only in ferromagnets but also in anti-
ferromagnets. In considering the collective excita-
tions in antiferromagnetic metals, one must bear in
mind the following circumstances.

1. The static magnetization of an antiferromagnet
(compared with a ferromagnet) is quite small. This
causes the resonant dependence of the magnetic
susceptibility to appear in a narrower frequency
region te2]

2. In uniaxial antiferromagnets with positive
anisotropy constant, the antiferromagnetic-resonance
frequencies are shifted (compared with ferromagnets),
even in the case of not too strong fields, into the
shorter wavelength region. Owing to this, a situation
readily arises in which it is possible to neglect the
influence of the magnetic field on the electric con-
ductivity, but it is necessary to take into account its
frequency (temporal) dispersion. In other words, in
considering the wave properties of an antiferromag-
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netic metal one can frequently use the plasma for-
mula for the effective dielectric constant of the elec-
tron gas. We note that in this case (which is exotic
for a ferromagnetic metal), weakly damped waves
can propagate in the antiferromagnetic metal, and
under favorable conditions (thin antiferromagnetic-
resonance lines), additional waves appear, due to
exchange interaction of the spins 63l

3. The magnetic structure of the antiferromagnet
is quite sensitive to the magnitude and direction of
the magnetic field. This, naturally, becomes manifest
in the high frequency properties of the antiferromag-
netic metal, particularly in the frequency dependence
of its surface impedance (63l

APPENDIX

Magnetic Susceptibility of a Ferromagnetic Metal

Following [2“, let us consider a system of electrons
with non-zero total magnetic moment, situated in a
magnetic field H. We shall assume that the magnetic
field is weak. Thus, the magnetic field plays the role
of an ordering factor of the electron spins; its influ-
ence on the electron spectrum can be neglected.

We confine ourselves to the isotropic case and
consider for simplicity a single-band model.

The magnetic moment of the system is determined
by the expression

(A.1)

M= —2iuy lim
T

—-+-0

¢ odatp
Y Gy " Sunpa (),

where € is the adiabatic parameter, éi(i =X, Yy, 2)
are the Pauli spin matrices, and Gaﬁ(p) are the
Fourier components of the electronic Green’s func-
tion.

The magnetic susceptibility can be calculated in
the usual manner:

e M
Ain= g

(A.2)

with the aid of (A.1), if we know the variation of the
Green’s function in an external alternating field.

Let the system be under the influence of a small
perturbation uyg. The change of the Green’s function
in the apﬁ)roximation linear in u is, as is well
known [6¢ R

8Gap = Gap () Uxys (k) Go (p+ k) — iy, (8) Gyop (P 1)

x 5 (—2%{’)T Gyay (@FK) Uys (k) Gpy, (0) Fvn’zvsw (2, q; k). (43
Here I'ggys (P, 4 k) = Tygys(p, a4, p+k g ~k) is
the vertex part (for a definition and the properties of
the vertex part see [G“).

Putting Uy (k) = 2upSysh and using (A.1), (A.2),
and (A.3), we obtain for the susceptibility the follow-
ing expression:

A4 er i R
@i © SepGpy (P) Syeloa (P1-k)

Kin = — 4ipy, lim \
T

510 d
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By virtue of the exchange character of the interelec-
tron interaction, only the following components of the
vertex part differ from zero (the indices 1 and 2
designate the orientations of the spin along and oppo-
site the direction of the field H):
longitudinal Ty, Tamss, Iizgs Tz

A5
and transverse rIya,, I'y.. (A-5)

The longitudinal components of the vertex part
correspond to the exchange correlation between the
electrons without the spin flip, and cause excitations
of zero-sound type (for details see [24]). The trans-
verse components of [' correspond to exchange
correlation between states differing in the spin direc-
tion, and are connected with excitations of the spin-
wave type. It is thus obvious that the magnetic sus-
ceptibility is determined by the transverse compon-
ents of the vertex part.

In fact, we direct the z axis along the magnetic
field H. The Green’s function of the electrons Gyp
can be represented identically in the form

Gop (P) =Gy (p) Pap - G_ (p) Pap, (A.6)

where PE = 1/2) 604[3 + Sé are projection operators
and Gi(p) is the Green’s function of the electrons
with spins in states 1 and 2, respectively:

e e Fr (A7
Here € is the frequency variable, & the adiabatic
parameter u the chemical potential (which, of course,
is the same for both electronic subsystems), €. (p)
is the energy of electrons with spins in states along
and opposite the field, and a, are normalization con-
stants on the order of unity.

Using (A.5), (A.6), and the properties of the Pauli
matrices, we obtain for the elements of the magnetic
susceptibility X, = x; £ iXs (X1 = Xxx = Xyy: X2 = Xxy
= —Xyx), corresponding to circularly polarized
waves,

L2 dip o
v (0K = —2igh lim { e et {62 (65 p-11)

o4 (A.8)
— G (1) Gs (r) | G G @ Cr 0 T (5 n}

Here TI', denote the components of the vertex part
Ty45 and TI'yyy, respectively. Thus, to calculate the
susceptibility (A.8) it is necessary to find the explicit
form of the transverse components of I

As shown by Landau in the general theory of the
Fermi liquid [65) the spectrum of the collective exci-
tations of a Fermi system is determined by the poles
of the vertex part, resulting from the coalescence of
the singularities of the Green’s functions of the elec-
trons at small momentum transfer (k— 0). Let us

consider the equation for the vertex part
T , 1; k) — ) ) ’
apys (P P'5 k) =Tapys (p, p’) (A.9)
. d .
— 1§ st Taves (22 @ Gy (0) Gy (0 H) Dy (91 575 )

where T''V is the part of I" which contains no singu-
larities (and this is why we put k = 0 in it). This
equation can be written formally in the form

L =T®m i LGET (A.10)

or in equivalent form

P =TI TGGTW. (A.11)

We denote by I'Y the limit of the vertex part when
k approaches zero. Setting k equal to zero in (A.11)
and eliminating with the aid of the obtained expres-
sion for I'” the non-singular part I W from (A.10),
we obtain a formal equation relating I' and T'®

I'=T°—iI®[GG—(GC)] T. (A.12)

Inasmuch as the interelectron interaction between
that leads to the spin flip consists in emission (ab-
sorption) of a spin wave, the quantity I'Y can be set
in correspondence with the diagram

and accordingly, with the analytic expression

I'®(p, p’; 0)=¢ (p) D ()¢ (p"), (A.13)

where D(w) =(w — Z}LBH)—1 is the propagator of the
spin wave (with k = 0).

Expression (A.13) can be obtained by direct calcu-
lation. To this end, we determine in explicit manner
the reaction of the system to a small disturbance and
compare it with (A.3). By the same token we obtain
the necessary equation for I'Y, the solution of which
is (A.13).

Let the field of a circularly-polarized wave be de-
scribed by the expression

Ny () =g cos wt, } (A.14)

iy (1) = hg sin o,

The Hamiltonian of the interaction between the
electrons and the alternating magnetic field is written
in standard form

Hyg=2xp | dr i (2) Sagh () 5 ) (A.15)

or in terms of circularly-polarized waves
Hug—pn \ deg @) (Soho+Suh ) g (0 = iy (A416)

Here p(x) and ¢*(x) are the quantum operators of
the particles. The change of the latter, in the approxi-
mation linear in Hj,¢, is determined in accordance
with the equation of motion by the expression
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Tal®) =Ya@)+i | @1V Vo @] (A.17)
and t
TE@=vi@+i § v ve,
where e

V)= Vi+ Vi@, Vi) = o g

(Hy is the unperturbed Hamiltonian of the system).
Commuting the operator eltot with H; and recog-

nizing that the only term of the unperturbed Hamilton-

ian which does not commute with Hy is

2upHJ Pg(x) S5p¥p(x)dr, which describes the inter-

action of the electrons with a constant magnetic field,

we obtain the explicit form of the operator V,(t):

o= gy § arvi o sipvs 2. (A18)
Formula (A.17) thus assumes the form
Fa () = Sapip (2) and $a (=) = $ySya, (A.19)
where
—i(w—2p H)t - Ji{w—2p o H)E
. ughSape B ughSap® B A.20)
S () =dap +—— 5 s o—ongH —id .

Using (A.19), (A.20), and (A.6) we obtain the vari-
ation of the Green’s function

1(\1)—2uBH)l — {0~ 2uBH)t

Wghe

he
8C o — NBYE bghe =
=B w—2ugH+id [6-

®—2ugH —id (G- —G.] Séﬁ‘

(A.21)
Going over in (A.21) to the Fourier representation

and comparing it with (A.3), we arrive at equations

for the transverse components of I'{ near resonance:

—Gy]Sap+

2L (p)— G (p)
1— S(Zﬂ:)4r (P ¢ —0)GL(g) G_(g— m)~3:(;)L?I:%,(A.22)
G gt
1= { GlaT2 (5, 65 @) 6 () 6. (g0 = S =E ) (A.23)

Near resonance we can neglect unity in the left
side of (A.22) and (A.23). We shall seek their solution
in the form
+ a2 EP) ()

Iy (p, o' 0)= o 2np (A.24)
where q(p) = G7! - G2,
Substituting (A.24) in (A.22) and (A.23), and
recognizing that
d4p
—i{ 16— N gl =nen- (A.25)

(n, is the density of the particles in the states 1 and
2), we obtain the normalization constant a:
b
a=(ny—n_) 127&1_ ,

where M is the total magnetic moment of the metal.

The quantities g(p) are smooth functions of the
argument and can be taken near the limiting momen-
tum pg. As seen from (A.24), the quantity
v (u/M) g(p,) plays the role of the constant of in-
teraction between the electrons and the spin waves.

BLANK and M. I.
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The quantity g(py), as seen from its definition, is
proportional to the energy gap €; between the Fermi
surfaces of the electrons in states 1 and 2. For
s-electrons, for example, €y~ Vocer and the inter-
action constant is ~ { ugfcer /M)V?, and for d-elec-
trons €y~ 6¢c and the coupling constant is
~ (upoc/M)V2,

We can now easily obtain with the aid of (A.24) the
vertex part. Putting in (A.12)

g (e (p) A 26
Fi**l/M 0% PugH (R’ ( )

we obtain for the polarization operation I (k)
(=i § %gw) G. (p) [G_(p—K)—G_ (p, e—a)]. (A-27T)

When k tends to zero, the integral (A.27), as can
be verified by direct calculation, is proportional to
ak? where « is of the same order of magnitude as
the Curie temperature. Thus, the spectrum of the
spin waves has the usual structure.

The expressions for the magnetic susceptibility
(A.8) take on, with the aid of (A.26), the following
final form:

Y+ (0, kY= —2ip3 llm S Pap {G;{; (p) G= (p+k)

(A.28)
- ig () G (1) G (p-+-0) § oy S0 e R )

Near resonance, the first term can be omitted. In
the case of an isotropic dispersion law (see (A.7)),
the integrals in (A.28) can be readily calculated, and
the susceptibility is written in standard fashion:

upMy

, (A.29)
QFo

Y (0, k)=
where M) = M6c/€f is the saturation magnetic
moment.
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