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.FERROMAGNETIC resonance (FMR) is produced
when an alternating high-frequency field excites homo-
geneous precession of the magnetic moment in a con-
stant magnetic field. The reaction of the system of
magnetic moments to the alternating electromagnetic
field can be described with the aid of the magnetic
permeability n (u>) ( OJ—frequency of alternating field),
whose frequency dependence reveals the resonant
character. Calculation of the magnetic permeability
is an important problem in the theory of FMR and can
be performed in different ways, depending on the
model chosen. It is usually assumed that the ferro-
magnetic properties of metals are connected with the
magnetic moments, localized in the crystal lattice
sites, of the incompletely filled d and f shells of the
atoms. The system of magnetic moments is described
by an equation of the Landau-Lifshitz type '-1^. Another
approach is to consider a single interacting-electrons
system, having a nonzero total magnetic moment
M[2.3]# W e n o t e i m m e d i a t e l y , however, that the fre-
quency dependence of the magnetic permeability near
the resonance frequency is in general not very sensi-
tive to the model used for the metal in the analysis.

Ferromagnetic resonance can be observed when the
length of the electromagnetic wave is large compared
with the dimensions of the sample and is used, as a
rule, in observations of FMR in ferromagnetic die-
lectrics (or ferrites). The reason is that the refrac-
tive index of a ferrite differs markedly from unity in
the centimeter band, in which the FMR is observed.
Consequently, the customarily employed samples are
small compared with the wavelength, i.e., a quasi-
stationary situation is produced.

The inverse case (skin effect) takes place in
metals, owing to the high density of the conduction
electrons. Therefore it is natural to observe FMR in
metals by using reflection of the electromagnetic
wave. It is convenient to describe the reflected waves
by using the concept of surface impedance, and the
FMR is manifest in the frequency dependence of this
impedance.

Excitation of inhomogeneous precession of mag-
netic moments—spin waves—is customarily called
spin-wave resonance M . The existence of the spin
wave is due to exchange interaction between the
electrons. From the macroscopic point of view, a l -
lowance for exchange interaction is manifest in spa-
tial dispersion—the dependence of the magnetic
permeability n on the wave vector k, i.e., £ =

= n (ui, k ) . It must be noted that the spin-wave dis-
persion law is likewise not a feature of the model
used for the metal, and can be written in the case of
long waves in the form

where the constant A is of the order of the Curie
temperature 9C and a is the lattice constant; the
activation energy fiu>0 is determined by the magnitude
of the real magnetic field acting inside the metal, and
depends on the angle * between the wave vector k
and the static moment M s .

Attention must be called to a very curious circum-
stance typical of the high-frequency properties of
ferromagnets. Exchange interaction—the true cause
of ferromagnetism—enters directly only in that part
of the high-frequency magnetic susceptibility which
is connected with the spatial dispersion. The charac-
teristic frequencies in M (W ) are determined by the
relatively weak relativistic interaction (the aniso-
tropy energy, the interaction with the external field,
dipole-dipole interactions). Therefore the role of
spatial dispersion in ferromagnets (especially in
ferromagnetic metals, see below) is very appreciable.

This is formally manifest in the fact that the role
of the spatial dispersion is measured, in the analysis
of the electromagnetic properties of a ferromagnet,
not by the ratio ( a / \ ) 2 , where A. = 2ir/k is the length
of the electromagnetic wave, but by the quantity
(A/Ro;0)(a/A)2, as can be seen directly from the
spin-wave dispersion law. Although this quantity
should be compared not with unity but with the re la-
tive deviation from resonance Ao;/o;0, the minimum
value of which is determined by the line width, the
condition (A/noj0)(a/A)2 i. Aui/o>o can, of course, not
be satisfied at radio frequencies (A ~ 1—10 cm) even
in the most perfect dielectric samples. In metals,
however, the relation of interest to us is satisfied
relatively easily, since the wavelength in a metal is
smaller by several orders of magnitude than the
wavelength in vacuum, owing to the skin effect. Of
course, this condition is satisfied if the relative
deviation from resonance determined by the FMR line
width, is sufficiently small. FMR in very pure metals
and at low temperatures has been extensively investi-
gated of late. Such experiments reveal relatively
narrow FMR lines—on the order of several dozen
Oersted (cf., e.g.,^5 '6^). We shall show that allowance
for the spatial dispersion in the metal leads to a
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shift and broadening, of the same order of magnitude,
of the FMR line. Thus, allowance for spatial disper-
sion is a vital problem in the theory of FMR in metals.

We emphasize once more that the appearance of
spatial dispersion in magnets is facilitated by the
unique features of the law of dispersion of the spin
waves, whose dynamic part (dependence on the wave
vector) is determined by the large exchange energy,
and whose activation energy is determined by small
relativistic interactions. In dielectrics, in which the
spatial dispersion is significant in the exciton-ab-
sorption r e g i o n ^ , the situation is different: both the
activation energy and the dependence on the wave
vector are caused by the same interactions. The
"facilitating" circumstances for dielectrics are the
smallness of the wavelength in the optical band and
the existence of very narrow lines.

The effects of spatial dispersion in a metal are
significant both in the magnetic permeability and in
the conductivity a. The conduction electrons, owing
to the skin effect, not only cause the magnetic-moment
inhomogeneity necessary for the appearance of the
exchange effects, but can themselves be readily
placed under conditions of strong spatial dispersion
(anomalous skin e f f e c t ^ ) .

Ferromagnetic resonance is observed in relatively
strong magnetic fields, in which the influence of the
magnetic field on the dynamics of the conduction
electrons becomes appreciable. The motion of the
electrons in the magnetic field produces, in particu-
lar, galvanomagnetic effects and gives rise to heli-
cons and other weakly-damped waves in the m e t a l ^ .
This region became accessible to experimental r e -
search relatively recently, after highly perfected
ferromagnetic metals became available. Reed and
Fawcett'-1-' measured the magneto-resistance of
nickel and iron at low temperatures. Anderson and
GoldLl l j observed the de Haas-van Alphen effect in
nickel. Grimes'-12-' observed a helical wave in nickel.

The most characteristic difference between FMR
in metals and FMR in dielectrics is connected with
the specific role of the conduction electrons. The
plasma approach to a ferromagnetic metal denotes
allowance for the temporal and spatial dispersion of
the magnetic susceptibility in the analysis of the col-
lective excitations in the electron gas. In other
words, a ferromagnetic metal can be regarded as a
plasma, whose wave properties reveal not only the
characteristic branches of the oscillations of the
electron gas1-9'13^, but also the specific magnetic
branches connected with the macroscopic oscillations
of the magnetization.

The complicated dependence of the magnetic
permeability and of the specific conductivity on the
frequency and on the wave vector lead to a highly
unique pattern of propagation of the waves in such
media. The high-frequency properties of ferro- and
antiferromagnetic metals and semiconductors have

recently been the subject of a large number of theo-
retical investigations^-14-'.

1. FUNDAMENTAL EQUATIONS

In considering the electromagnetic properties of
a ferromagnetic metal, it is necessary to start from
Maxwell's equations

J. dt (1)

where b is the magnetic induction, j the current
density, e and h the intensities of the electric and
magnetic alternating fields respectively, and c the
speed of light.

Equations (1) must be supplemented with the
material equations, which in the case of a spatially
homogeneous medium are

j(r, t)--= \ a(r — r', t — t')e(r', t') dt' dt',

b(r, t)= \ |i(r —r', t — t') h (r\ t') dt' dt'. (2)

The integral form of the material equations (2)
reflects the nonlocal character of the connection be-
tween the current and the magnetic induction, on the
one hand, and the electric and magnetic fields on the
other. In the case of a spatially homogeneous medium,
the integral relations (2) contain the difference
kernels a (r - r ' ) and n ( r - r ' ) , and this facilitates
the subsequent transition to the Fourier representa-
tion. When account is taken of the boundaries the
metal, of course, ceases to be homogeneous and
relations (2), generally speaking, no longer hold. In
many cases, however, it is possible to use the ex-
pressions obtained for a and £ in the case of an un-
bounded metal (see below).

In the analysis of FMR we shall confine ourselves
to the linear theory. This means that a and £ do not
depend on the amplitude of the high-frequency field,
but depend, of course, on the external static mag-
netic field He-

The current density can be calculated with the aid
of the distribution function f of the conduction elec-
trons. The current density is determined by the ex-
pression

J 2e vf rip, (3)

where v is the electron velocity.
We confine ourselves to a classical treatment, a l-

though in relatively strong magnetic fields the quanti-
zation condition fiwjj > T (CJH is the cyclotron fre-
quency and T the temperature) may turn out to be
satisfied. Nonetheless, this analysis is fully justified,
since allowance for the quantization of the electron
motion leads to a superposition of small oscillations
on the "c lass ica l" curves; the amplitude of these
oscillations is determined by the relations

ej? (ep is the limiting Fermi energy), the mag-
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nitude of which is comparable with unity only in fields
on the order of 108 Oe.*

The electron distribution function f is determined
from Boltzmann's kinetic equation

dp at j c o l l "• (4)

Here cp and TJJ = 27TU;H~1 are the phase and the
period of revolution of the electrons in their orbit,
and (9f/9t) c o l l *s the collision integral.

The collision integral (3f/9t )Coll describes (along
with other dissipation mechanisms) the interaction of
the electrons with the magnetic-moment density
oscillations—with the spin waves. However, it is not
our task to describe in detail the dissipative mecha-
nisms, and all the more to calculate the relaxation
constants. Where possible, we shall omit the colli-
sion integral entirely (for example when « » v,
where v is the mean collision frequency). In some
cases we shall use the T-approximation, i.e., replace
the true collision integral by the expression f/V
— vi (T—mean free path time). Such a substitution is
in fact justified only under conditions of anomalous
skin effect'-16-', when the "incoming" integral term in
the collision operator is much smaller than the "out-
going" one. In the region of the normal skin effect
the character of the collision operator should not be
of any interest to us at all—in this case the final
formulas contain only the macroscopic characteris-
tics of the metal, namely the electric-conductivity
tensor components.

We note also that we start from the " g a s " ap-
proximation. In almost all cases, however, allowance
for the Fermi-liquid interaction does not change the
final results (see^17^, Sec. 1).

We present the known expression for the Fourier
components of the conductivity tensor 0^(0; , k) in
a number of limiting cases'-18 '9-'.

A. Conductivity in the Absence of a Magnetic Field

Under the conditions of the normal skin effect
(kl « 1, where I - VOT, V0 is the electron velocity on
the Fermi boundary), the conductivity is strongly de-
pendent on the relation between the frequency OJ of
the electromagnetic field and the collision frequency
v.

When u> « v the metal is characterized by a
static conductivity a\^ (<7o f° r a n isotropic metal) .

When w » v the conductivity of the metal is
imaginary '-17-1:

a'" = 1-^-- (5)

*This statement is valid, strictly speaking, for static quantities
(resistance etc.). In the high-frequency region (especially near res-
onances), effects are possible (for example, quantum cyclotron res-
onance [14S], which are determined just by the quantization of the
electron motion in the magnetic field.

The matrix elements Djk coincide in order of mag-
nitude with the square of the metal plasma frequency.
For an isotropic metal we have in the gas approxi-
mation

"> *- !«' i- ,„* ' (.0)

where N is the electron density and m* the modulus
of the effective mass .

Under the conditions of the extremely anomalous
skin effect (kl » 1) we are interested in the tensor
elements crik that are transverse to the direction of
the wave vector

01x6 ~ 4 |k| '
(7)

where

3 (2.n, Jf«p)

and n is a unit vector normal to the Fermi surface
and K(cp) is the Gaussian curvature of the surface at
the points where nz = 0. For an isotropic electron
spectrum

3.1 A'?2 «

Here p0 is the radius of the Fermi sphere.

B. Conductivity in a Magnetic Field

In a ferromagnetic metal, the conduction electron
is acted upon by the Lorentz force ( e/c)v x B,
where B = H + 4irMz and H is the magnetic field
acting inside the ferromagnet; this field must be de-
termined by solving the magnetostatic problem. The
conductivity aik is determined by the value of the
induction B.*

In considering a metal in a magnetic field, we
shall assume that the magnetic field is sufficiently
strong, i.e., we shall assume the inequality QJST » I
to be satisfied. This means that the radius r of the
electron orbit is much smaller than the mean free
path I.

The parameter that determines the spatial dis-
persion of the electric conductivity is kR, where
R = I | ( v — iu> )/i)H |: R coincides with the cyclotron
radius r when w « v. Under conditions of weak
spatial dispersion ( kR « 1) the transverse part of
the conductivity tensor takes the form

— 1
v — do

(OH (9)

The indices a and /3 take on the values x and y.
The z axis is chosen along the magnetic field direc-
tion (k II B) .

*We do not take into account the anomalous Hall effect, since
it is not significant at low temperatures ["].
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If the alternating-field frequency is small com-
pared with the cyclotron frequency, \u> + iu\ « O;H>
expression (9) assumes a simpler form. The factor
preceding the brackets in (9) becomes Nec/B. Ex-
pression (9) is valid for one group of car r iers under
the assumption that the spectrum is isotropic.

In a strong magnetic field, for a closed Fermi
surface, the Hall elements of the electric conductivity
(aXy = —ffyx) a r e much larger than the diagonal ele-
ments CTXX

 a n d ffyy (I ffxy I >;> Cxx.yy)- ^n *-ne c a s e of
two groups of car r ie rs we have

_ (
°X'J ~

(10)

where Nt (N2) is the electron (hole) density. The
expression for the Hall elements of the electric con-
ductivity is independent of the electron dispersion
law if the Fermi surface is closed.

Interest also attaches to the asymptotic behavior
of the conductivity tensor of a metal with equal elec-
tron and hole densities ( Nt = N2 = N). In this case
the off-diagonal (Hall) elements of the tensor
vanish (OJ » v):

Nee
aa»--—B-

(OH

0 (11)

The case kR « 1 is rarely realized in metals. The
foregoing formulas may be useful for ferromagnetic
semiconductors (ferrites). In a metal one usually has
the inverse condition

kR ;> i. (12)

Let us consider the asymptotic behavior of the
conductivity tensor under condition (12) in the case
when the wave propagates transversely to the mag-
netic field (k 1 H) [ . The z axis, as before, is
chosen along the magnetic field, and the x axis along
the wave vector. The diagonal elements of the tensor
oik are asymptotically equal to

- a((D,k)

f , -T (co
1 rrVr

I 2 | k

n; (to-j-i'v)
2TFKr'

"I j
! (13)

The off-diagonal elements of the tensor turn out in
this case to be smaller by a factor kR than the
diagonal ones, and they can be neglected. Expression
(13) at frequencies close to nujj, where n is an in-
teger, describes the cyclotron resonance ^ . Ex-
panding cot [TT(O> + ii^)/wH] near na>H» we get

(14)

In the case of low frequencies (\u + iv\ « UH)
we can replace cot [K ( OJ + iy)/o>H 1 by U)H/T(W + ie),
and then a (a>, k) takes the form

a (<o, k) = -j-3J
4 (co + iv) \V\R

(15)

The foregoing asymptotic expressions for the
conductivity tensor are extremely simple, and the
fact that facilitates the calculations greatly is that
they can be used when boundary-value problems are
considered. This possibility is based on the "indif-
ference" of the electrons to the boundary conditions
when kR » 1. As shown by AzbeP and Kaner ^ , the
impedance calculated with the aid of the expression
for the conductivity of an unbounded metal differs
from that obtained by solving the exact boundary-
value problem by an inessential real factor on the
order of unity. The insensitivity of the electrons to
the boundary conditions in the case of the anomalous
skin effect (when H = 0) becomes manifest, in par -
ticular, in the fact that the values of the impedance in
specular and diffuse reflection of the electrons from
the metal boundary differ only by the factor //

9.'-
8'20-'

The physical cause of the insensitivity of the surface
impedance to the boundary conditions for the elec-
trons lies in the fact that the main contribution to the
impedance is made by electrons gliding along the
surface of the metal, which consequently do not col-
lide with the boundary.

We shall now discuss the expression for the mag-
netic permeability of the metal. If we assume that the
magnetic moments are localized in the lattice sites,
then the magnetic permeability can be calculated with
the aid of an equation of the Landau-Lifshitz type, de-
scribing the precession of the moment M in a mag-
netic field

where y is the gyromagnetic ratio, and the effective
magnetic field for an isotropic metal takes the form

Here a is a volume constant equal to Aa2/AigMs,
where p-B is the Bohr magneton.

The dissipation is taken into account in (16)
phenomenologically with the aid of the reciprocal r e -
laxation time A of the magnetic moments. The ques-
tion of the form of the dissipative term in the equation
for the magnetic moment is the subject of a special
analysis (cf., e.g.,1-21-1) and will not be dealt with here.

The solution of (16) in the linear approximation
with respect to the alternating part of the magnetic
moment m leads to the following expression-for the
magnetic permeability of an unbounded metalC l ] in
the simplest case when the wave propagates along the
magnetic field:

/ Hi in2 0\
H;A (to, k) =: — i\iz Hi 0 ,

0 0 1
j — (Q)-HA)3

QJ — (

(18)

(19)

*[M, Heff] s M x Heft.
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where fi = yM s ( ak2 + H/M s) and ti^ = SI + 4iryMs.
The z axis is chosen along the direction of the wave
vector.

Neglecting dissipation (X = 0), the elements of the
tensor turn out to be singular at the point w = S2.
This is the consequence of the resonant absorption of
the energy of the electromagnetic field. In a number
of cases the absorption of the energy is determined by
the effective magnetic permeability ^22\ which repre -
sents a combination of elements of the tensor Ufa.
This leads to a change in the frequency of the r e so -
nance absorption.

On approaching the resonance frequency, it is ob-
viously impossible to neglect the exchange term in
(19) (this was already mentioned in the Introduction).
Since the wave-vector values determined from the
dispersion equation are in general complex, allowance
for the exchange interaction leads both to a shift and
to broadening of the resonance line, and by the same
token changes the form of the resonance curve.

Formulas similar to (18) and (19) can be obtained
by starting from other more realistic models, which
take into account the role played by the conduction
electrons in the formation of the magnetic moment of

H],

the metal [23] The most general approach to this
problem is probably the Fermi-liquid approach, in
which the ferromagnetic metal is regarded as a sys-
tem of Fermi particles with exchange interaction and
with a magnetic moment. The magnetic permeability
was calculated for this model by Kondratenko^3'24-1

(see the Appendix).
The formulas for the magnetic susceptibility of an

unbounded metal can be used to calculate the surface
impedance of a ferromagnet in those cases when the
following boundary conditions are satisfied for the
magnetic moment: either m = 0 on the boundary, or
else 3m/9n = 0 ̂  . This is possible as a result of
the following: Usually in the calculation of the im-
pedance it is convenient to continue the electric and
magnetic fields to the region outside the metal. Such
a continuation can be effected in two ways, either by
assuming that e ( z ) is an even function and h(z) an
odd one, or vice versa.

If the condition m = 0 on the boundary is satisfied,
then, by continuing the magnetic field in odd fashion
to the region z < 0 we obtain for the Fourier com-
ponent of the linearized equation (16)

from which we get

(20)

(21)

where x( w, k) is the susceptibility of the unbounded
metal. We shall denote the impedance* in the case
m( 0) =0 by £p. For an even continuation of the
electric field we obtain from Maxwell's equations

[i (co, x) dx
x2— e (co, x) \i (co, x)

(22)

Here e (w, x) = Aria (u>, x)/w and /*( w, x) are r e -
spectively the dielectric constant and the magnetic
permeability of the metal, determined by the elements
of the tensors a fa and Ufa in accordance with the
geometry of the problem. We have'gone over to inte-
gration with respect to x, where x = ck/u> is the
refractive index of the wave with wave vector k.

In the case when 9m/8n on the boundary, relation
(21) can be obtained by means of an even continuation
of the magnetic field. The surface impedance (£ n) is
given in this case by

E (co, x) dx
2 — E (CO, x)[l(C0, X) (23)

It should be noted that the even and odd continua-
tions of the field e correspond to very special
boundary conditions for the electron distribution func-
tion, but this circumstance does not play an important
role, owing to the already mentioned insensitivity of
the impedance to the behavior of the electrons on the
boundary. If we neglect the spatial dispersion of the
magnetic susceptibility, then the resultant expres-
sions for the impedance either merely coincide
(normal skin effect) or differ by an inessential factor
(limiting anomalous skin effect). If there is no spatial
dispersion of either the magnetic permeability or the
dielectric constant, we get from (22) and (23) the well
known expression

\ (24)

Given a general boundary condition for the mag-
netic moment, neither an even nor an odd continuation
of the field allows us to use the magnetic susceptibility
of the unbounded metal.

2. NORMAL SKIN EFFECT

The dielectric constant of a metal under the con-
ditions of the normal skin effect is imaginary in the

FIG. 1.

*The surface-impedance tensor can be introduced in invariant
fashion by means of the equality ea = Cafi^1 x "l/S. which holds on
the boundary (n — unit vector normal to the surface) or with the aid
of the relation Za|g = dea/dj^, where Jfi is the component of the
total current in the volume of the metal. The two definitions are
equivalent, (Zaj3 = 4ff£a|3/c), but we shall make use of both.
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case of low frequencies and real but negative at high
frequencies. In either case, the electromagnetic field
does not penetrate into the metal. At low frequencies
the electric field attenuates at a skin-layer depth
6 = c/V 27TCTOW, and at high frequencies it is totally r e -
flected.

Analysis of the behavior of a ferromagnetic con-
ductor under the same conditions shows that the fre-
quency dependence of the magnetic susceptibility
ju = /i(oj) alters the electromagnetic properties of the
metal appreciably. This circumstance is most evident
at high frequencies (UT » 1). The dispersion equa-
tion k2 = u;2e^v/c2 takes in this case the form

rn?
(25)C* 0)r—0)

It is easy to see that in a relatively narrow region
of frequencies, u>v < w < a>a, an undamped electro-
magnetic wave can propagate in the metal. Its d is -
persion is given by

(26)

The corresponding plot is shown in Fig. 1. This wave
has anomalous dispersion. The possible existence of
a wave with negative group velocity in a high-fre-
quency plasma, in the region where e < 0 and n < 0,
was first pointed out by Pafomov[26] (see a l so [ 2 6 a J ) .
A ferromagnetic metal is a natural example of a
medium in which this situation can be realized.

Under FMR conditions, the low frequency case is
frequently realized. Then the metal is characterized
by a static conductivity CTQ>

 a n ^ the wave vector is
complex. In the case when the wave propagates
parallel to the magnetic field (k II H II Oz) we have

± ¥2) = - (27)

where the indices ± correspond to circularly polar-
ized waves. In the case of transverse propagation
(k II Ox) the dispersion equation of the resonating
wave takes the form

4 —o>2 (28)

The extraordinary wave, in which the magnetic field
is parallel to the constant field H, does not interact
with the magnetic moments. In the case of transverse
propagation, the frequency of the homogeneous r e so -
nance is equal to yH, and in transverse propagation
it is equal to y(HB)1 / 2 .

In the general case when the wave propagates at
an angle <p to the direction of the magnetic field, the
frequency of the homogeneous resonance, as can be
easily verified, is equal to yH cos <p +y( HB)1 '2 sin y .
The impedance of a ferromagnetic metal under the
conditions of the normal skin effect was calculated by
Ament and Rado and subsequently by a number of
authors [28"31].

When spatial dispersion is taken into account in
the Landau-Lifshitz equation, the need arises for an
additional boundary condition for the magnetic mo-

ment. Ament and Rado t 2 7 j proposed that the normal
derivative of the magnetic moment vanishes on the
boundary: 3m/3zjz_Q = 0. However, a number of
considerations lead to a more general boundary con-
dition in the form

^ L + Xm = 0. (29)

This condition, as shown by Pinkus ^ , is due to the
character of the anisotropy field on the boundary.
According to '•30^ we have with good accuracy
X = - ( w a / ^ e ) a l > where nwa is the surface-aniso-
tropy energy, which can greatly exceed the volume
energy, and lia;e is of the same order of magnitude
as the exchange integral. We see from (29) that the
parameter x must be compared with the magnitude
of the wave vector k. Even in the case of the shortest
waves we have ka ~ 10~2, and — 10 when
~ 0.1 u>e, i.e., the condition m = 0 is satisfied ap-
proximately on the boundary. The Ament and Rado
condition dm/ctn = 0 is thus valid only if there is no
surface anisotropy.

Following^31, let us calculate the surface imped-
ance under boundary condition (29). Let the magnetic
field H II Oz be parallel to the surface of the metal,
and let the wave propagate normally to the surface
along the y axis. For the case of a magnetic field
normal to the surface of the metal, the surface im-
pedance can be obtained from the expression derived
below by simply changing the notation.

The solution of the dispersion equation of the
electromagnetic waves in the metal is in this case

2(kdf= - - JL-+(_ -gL—V-i / / H co2
Sid?

(30)
where d = a( A / H B M S ) . In the derivation we took
account of the fact that the parameters d/d and
H/47rMs are small compared with unity.

The conditions of continuity of e z and hx on the
boundary, as well as the boundary condition (29) for
the magnetic moment, will be written in the form

K i}ki + t) hix + k\ (ik2 + Z) h2x = 0.

(31)

To derive the last equation of (31) we used the fact
that near resonance we have

From the condition for the compatibility of the
system (31) we get

4jtI<T0 «.

(32)

(33)

Substituting here the values of kj and k2 from (30),
we obtain an explicit expression for the impedance.
For comparison with the results of Ament and
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it is convenient to change over to their notation.
Putting

A . Y a . B L A N K a n d M . I . K A G A N O V

o 3-fOsHz

= ( 0 ,
i n M s

we get

^ '
We introduce the effective permeability by means

of the formula

eff

(35)

Meff =ti' ~ w" i s defined, in accord with (30), (33),
and (35), as follows:

where N = K~1 ( TJ — a/2 + K ).
If = 0(am/an = 0 on the boundary), then

A' + l — 2i
X|J,eff = (A'-j)2

(36)

(37)

(38)

I f £ = ° o ( m = 0 o n t h e b o u n d a r y ) , t h e n

E x p r e s s i o n s ( 3 7 ) a n d ( 3 8 ) c o i n c i d e w i t h t h e r e s u l t s

o f R a d o a n d W e e r t m a n [ 3 2 j . T h e c o n n e c t i o n b e t w e e n

/ / a n d n " a t d i f f e r e n t v a l u e s o f £ i s s h o w n i n F i g . 2 .

T h e e x p e r i m e n t a l p o i n t s w e r e t a k e n f r o m [ 3 2 j . A s

s e e n f r o m t h e f i g u r e , t h e r e s u l t s o f t h e e x p e r i m e n t

c a n b e d e s c r i b e d b y a s s u m i n g t h a t £ v a r i e s , d e p e n d -

i n g o n t h e e x t e r n a l m a g n e t i c f i e l d a n d t h e f r e q u e n c y ,

i n t h e r a n g e 0 . 4 — 1 . 0 . W e n o t e t h a t £ ~ 1 m e a n s t h a t

t h e e x c h a n g e i n t e r a c t i o n o n t h e b o u n d a r y p l a y s t h e

s a m e r o l e a s s u r f a c e a n i s o t r o p y .

T h e s h i f t a n d b r o a d e n i n g o f t h e r e s o n a n c e , a s

f o l l o w s f r o m ( 3 6 ) — ( 3 8 ) , a r e o f t h e s a m e o r d e r o f

m a g n i t u d e , r e g a r d l e s s o f t h e b e h a v i o r o f t h e m o m e n t s

o n t h e b o u n d a r y :

H H 6

I f w e n e g l e c t t h e s p a t i a l d i s p e r s i o n , t h e n , a c c o r d -

i n g t o ( 2 4 ) , t h e i m p e d a n c e b e c o m e s i n f i n i t e a t t h e

r e s o n a n c e f r e q u e n c y i f t h e r e i s n o d i s s i p a t i o n . A l -

l o w a n c e f o r s p a t i a l d i s p e r s i o n m a k e s t h e i m p e d a n c e

f i n i t e a t a l l f r e q u e n c i e s . T h i s j u s t i f i e s t h e n e g l e c t o f

t h e d i s s i p a t i v e t e r m s i n E q . ( 1 6 ) , p r o v i d e d t h a t

At reasonable values of the quantities involved,
4wyMsd/6 ~ 108 sec"1 . The FMR line shape, under
the conditions of the normal skin effect and with a l -
lowance for spatial dispersion of the magnetic suscep-
tibility was calculated in [ 2 5 ] .

3. LIMITING ANOMALOUS SKIN EFFECT

The actual calculation of the impedance of a ferro-
magnetic metal under the conditions of the anomalous

FIG. 2.

skin effect is a very difficult task, in view of the
nonlocal connection between the current and the field.
If the reflection of the electrons from the metal
boundary has an arbitrary character, the surface
impedance is expressed in a rather complicated
manner in terms of the kernel of an integral equation
relating the Fourier components of the current
density and of the field. In such a general formulation
of the problem, the surface impedance can be calcu-
lated in a number of limiting cases L33>34] or else

foci
investigated by numerical methods . However, the
use of the expressions for the dielectric constant and
the magnetic permeability of an unbounded metal, as
already mentioned, does not give r ise to an appreci-
able error in the surface impedance, and this greatly
facilitates the calculation.

Let us rewrite the expression for the dielectric
constant in accord with formula (8) in the following
manner:

3ni x0• O J i t i , • •"•0
6 ( 0 ) , x ) = - r ^ ~ = 1 —

( 4 0 )

v o = P o / m ^ s t h e F e r m i v e l o c i t y a n d x = c k / w .

L e t t h e m a g n e t i c f i e l d b e p e r p e n d i c u l a r t o t h e

s u r f a c e o f t h e m e t a l . F o r a w a v e p r o p a g a t i n g a l o n g

t h e m a g n e t i c f i e l d , t h e p e r m e a b i l i t y , i n a c c o r d a n c e

w i t h ( 1 8 ) , i s

V- K x ) =

y H + a M — a — i l + ( A 0 d ) 2 ( o M * 2
( 4 1 )

w h e r e k 0 = u ) / c a n d C L > M = 4 7 r y M s .

U s i n g f o r m u l a ( 2 2 ) , w e o b t a i n f o r t h e c a s e w h e n

m = 0 o n t h e b o u n d a r y

" — ! X 0 O ) M

x d x . ( 4 2 )

F a r f r o m t h e r e s o n a n t f r e q u e n c y w r = y H w e c a n

n e g l e c t t h e s p a t i a l d i s p e r s i o n a n d p u t d = 0 . I n t h i s

c a s e i t i s c o n v e n i e n t t o e x p r e s s t h e p e r m e a b i l i t y i n

t h e f o r m / J = i M I e ^ , w h e r e
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( 0 < * < 3 l ) .l g u — (yB-a>)(yH-a>)

The impedance ? r i s m th is c a se equal t o '

1 l/2
I

i 9 / q o

(43)

(44)

Thus, in the case of the anomalous skin effect, the
singular i ty of the sur face impedance is of the o rder
of | a>r - o> | ~2/s, and not | o>r - u> | ~1/2 a s in the
no rma l skin effect.

Allowance for spat ia l d i spers ion leads to finite
values of the impedance even if the d iss ipat ive m e c h -
a n i s m s a r e neglected. The fe r romagne t ic r esonance
becomes manifes t in this case in the p r e s e n c e of an
ex t r emum on the plot of Re £ agains t the frequency
or the external magnet ic field. Exchange effects a l so
cause a shift of the r e sonance frequency and a line
broadening; the two a r e of equal o rde r of magni tude.
Consider ing yU — u> nea r r e sonance a s a s m a l l
p a r a m e t e r , we get

A / / ~ •£-< \ 1/5 (45)

T h e i m p e d a n c e f o r 8 m / 3 n = 0 on t h e b o u n d a r y

d i f f e r s f r o m (45) in a n u m e r i c a l f a c t o r on t h e o r d e r

of u n i t y .

T h e c a s e of a m a g n e t i c f i e ld p a r a l l e l t o t h e s u r f a c e

is cons idered in '•34-'.
The exact form of the r e sonance curve can be in -

vest igated only numer ica l ly . We note in this connec-
tion the work of Hi rs t and Prange ^ , in which the
FMR curves a r e calculated for a number of me ta l s
by s ta r t ing from the assumpt ion that the e lec t rons
a r e diffusely ref lec ted from the boundary and from
the condition 9 m / 3 n | z = o = 0. The i r calculated plots
of Re £ agains t the ex terna l field H e for nickel,
with the field or iented pa ra l l e l to the surface , at a
frequency of 5 MHz, a r e shown in F ig . 3 (A = a M | / 2 ) .
The line shape, a s noted in their paper , is de te rmined
in gene ra l by t h r ee pa rame te r s—the e lec t ron effec-
t ive m a s s , the exchange constant, and the anisot ropy.
Therefore a compar i son of the calculated cu rves with
the exper imenta l ones is difficult.

4. FERROMAGNETIC METAL IN A STRONG
MAGNETIC FIELD. WEAK SPATIAL DISPERSION

So far we have neglected the influence of the
magnet ic field on the motion of the conduction e l e c -
t r o n s . In this case the a l te rna t ing field hardly p e n e -
t r a t e s into the me ta l and the in te rac t ion between the
spin waves and the e lec t romagne t ic field occurs in a
na r row layer of width 6. This si tuation may not o c -
cur if the meta l is p laced in a s t rong magnet ic field,
at which the cyclotron r ad ius becomes s m a l l e r than
the mean f ree path:

r<l. (46)

It has become c l ea r re la t ive ly recen t ly that weakly
damped e lec t romagnet ic waves can propagate in the
meta l under these condit ions. Helical waves were
observed in many me ta l s ; magnetohydrodynamic
waves were observed in bismuth, which has equal
e lec t ron and hole dens i t i e s . The exis tence of weakly
damped e lec t romagnet ic waves leads to posi t ive
values of the effective d ie lec t r i c constant and causes
many re sonance effects. The theory of e l e c t r o m a g -
netic waves in me ta l s in a magnet ic field was in-
vest igated by many (see the review'-9 , which r e f e r s
a l so to the exper imenta l p a p e r s ) .

Analysis of a fe r romagnet ic meta l in a s t rong
magnet ic field under the condition (46) r e v e a l s a
c lose analogy with the theory of the e lec t romagne t ic
p r o p e r t i e s of f e r r o d i e l e c t r i c s . In the frequency
region in which the effective magnet ic pe rmeabi l i ty
is posi t ive, a fe r romagnet ic conductor has se lec t ive
t r anspa rency and exhibits r e sonance p r o p e r t i e s s i m i -
l a r to those observed in d i e l e c t r i c s . As a r e s u l t of
the s t rong in teract ion between the osci l la t ions of the
magnet ic moment and the weakly-damped waves, a
change takes place in the p ic tu re of e lec t romagne t ic
wave propagat ion in m e t a l s .

As a l ready mentioned, the p a r a m e t e r c h a r a c t e r i z -
ing the spa t ia l d i spe r s ion of e lec t rons in a magnet ic
field is the quantity kR. When kR « 1 the re can
propagate in the meta l hel ical and magnetohydrody-
namic waves . The coupling between the spin and
e lec t romagnet ic waves a t kR « 1 was invest igated by
Stern and Ca l l en [ 3 6 ] and by B l a n k [ 3 7 ] .

Let us consider an unbounded fe r romagnet ic meta l
(N4 ^ N2) under the conditions of hel ical -wave p r o p a -
gation.

In a s t rong magnet ic field, the d iss ipa t ive e lements
of the conductivity tensor a r e propor t ional to l /H 2 ,
and the Hall components to l /H , if the number of
holes is not equal to the number of e l e c t r o n s . The
me ta l is thus cha rac t e r i zed under these conditions by
a Hall conductivity and a magnet ic pe rmeabi l i ty (18)
and (19). F o r s impl ic i ty we shal l d i s r e g a r d the
spat ia l d i spers ion of the magnet ic pe rmeabi l i ty . A l -
lowance for this d i spers ion causes an insignificant



544 A . Y a . BLA N K a n d M. I . KAGANOV

change in the overall dispersion picture. We shall
discuss later (see Sec. 5) a number of effects due to
allowance for the exchange interaction.

From Maxwell's equations it is easy to obtain the
dispersion equation of the coupled spin and helical
waves:

= ^fpL [cor (cor cos2 <p + <oa sin2 «p) - en2]'1 (47)

X {(oM ± (corcoa — co2)1/2 [<oa (cor cos2 q> + coa sin2 cp — co2]1/21 coscp |~x},

where a>2 = yH, a;a = yB, U;M = 47ryMS) and <p is the
angle between k and H.

It follows directly from (47) that when O-JJ > 0 we
have ki< 0 at all frequencies.

The dependence of k+ on u> is shown schematically
in Fig. 4. The dashed lines denote the plots of k2

against u> for helical and spin waves when their in-
teraction is neglected. The spin wave has in this ap-
proximation the form OJ = air, where <j)'r
= [ojr (wrcos2(p +<A)3Laini<p)]i'2. The parameter of the
coupling between the spin and helical waves is the
ratio M s /H, which in general is not small.

Equation (47) does not hold when cp = ir/2. This
direction is exceptional, for when <p = ir/2 the helical
waves are strongly damped[38-1. The damping of the
helical waves is small if cos q> > v/l.

When <p = 0 the spectrum of the waves assumes
the simple form:

_ 4JIQ-HCO coa — co

"
(48)

At low and high frequencies the spectrum ap-
proaches that of a helical wave.

The condition kR « 1 imposes a limitation an the
closeness to the resonance point (LO = CJ^) . Using
formula (47), we obtain

CO,. — CO (49)

In the general case of wave propagation at an a r -
bitrary angle to the magnetic-field direction, the part
of the field of the coupling wave (47) which is t rans-
verse to k is elliptically polarized. Let us introduce
a coordinate system x, r\, £ with the £ axis along k
and the x axis perpendicular to the vectors k and H.
The ellipticity coefficient is given by

«rwa — 0)2

coa (cor cos2 tp + coa sin
2 cp) — co2

1/2 (50)

When <p = 0 the wave becomes circularly polarized.
The wave is plane-polarized. When <p * 0 and in the
relatively narrow frequency interval u a u r (cos2tp
+ w a / o ; r sin2<p ) > u>2 s o)ao;r.

Proceeding to elliptically polarized waves e±
= ex ± /3e,j, and eliminating the alternating field, we
write the system of Maxwell's equations in the form

4JTCO r (51)

Here

The tensor

= crH|coscp| \ [i"xn = lm \i

is given by

a>a (cor cos2 cp + coa sin
2 cp) — co2

— icoM cos cp
icoMcoscp\
corcoa —co2j

We introduce the surface impedance for elliptically
polarized waves with the aid of the formulas

e±(0) = Z±7± + Z' /T , J± = JX ± fU,,, (53)

where J is the total current in the volume of the
metal. The elements of this impedance are connected
with the elements of the tensor "Zap by the following
relations:

—-?- (Zxx — Znt)) —

: 2P
1 + P2

2P '

) (54)

Expressing with the aid of Maxwell's equations the
electric field on the boundary in terms of the total
current in the volume of the metal, and using the d is-
persion equation of the coupled waves, we obtain after
simple calculations

\V2_
xx + [Ar.n (55)

-, (56)

(57)

Thus, in the employed approximation, the imped-
ance element Z + is real in the region of existence of
the weakly damped wave (47), owing to the penetration
of the wave with " + " polarization into the metal. The
element Z_ is imaginary, corresponding to the r e -
flection of the wave with " - " polarization from the
surface of the ferromagnet.

The dependence of the surface impedance on the
frequency, the magnetic field, and the angle cp is in
general quite complicated. In the simplest case of
longitudinal propagation we have

COLC

FIG. 4. z = -i
r + co •

(58)

(59)
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Recently Grimes "- reported an experiment with
a nickel film, in which he observed standing electro-
magnetic waves. Without going into the details of the
calculation of the excited coupled wave in the r e so -
nator, let us discuss Grimes' experiment.

When a standing wave is excited in the film, the
wave vector assumes discrete values and, depending
on the method of wave excitation, it turns out to be
equal to n?r/d or ( n + V2) 7r/d, where d is the thick-
ness of the film (depending on whether the surface of
the film is in a node or antinode of the electric field).

Thus, the values of k are fixed. If, in addition,
the frequency is also fixed, then resonance excitation
of the wave in the film should be observed at a cer-
tain value of the external magnetic field He . In
Grimes' experiment, the standing wave was excited
at several frequencies. This made it possible to ob-
tain the dependence of the resonance frequency on the
magnetic field. The electromagnetic wave was propa-
gated parallel to the direction of the magnetic field,
which in turn was perpendicular to the surface of the
metal. The dependence of co on the resonance values
of the external magnetic field He in the region He

> 8 kOe is a straight line, the extrapolation of which
leads to a crossing of the H axis at the point H M
= 6.5 ± 0.2 kOe. According to t 3 9 ] , this value of the
field corresponds, within the limits of the experi-
mental error, to the value of the saturation magnetic
moment of nickel ( H M = 47rMs). The second har-
monic was excited in the experiment of ^12 , i.e.,
k = ff/d.

Let us consider the dispersion equation of the
coupled spin-helical wave (48). In the geometry of
the experiment of[12], H + 47rMs = He, where H is
the field inside the film. Hence H = He - 47rMs and
consequently B = He . Equation (48) thus assumes the
form

(60)

The u> = a> (H e ) curve corresponding to Eq. (60)
is a hyperbola passing through the points OJ = 0, He

= 0, and u = 0, He = 47rMs; the asymptotes of the
hyperbola are the straight lines w = y ( He - Ho)
+ u)0 and u) = yk262(He - Ho), where Ho

= -8 r rM s (k6 ) 2 / [ l - (kS)2]2 and w0

= -u>M(k<5)2(l + ( k 6 ) 2 ) / [ l - (kS)2]2 (Fig. 5). Only

the hyperbola sections sufficiently close to the
asymptotes have physical meaning, since the magnetic
field is bounded from below by the condition r < I.
When I ~ 10"2 cm this yields H > 103 Oe.

The upper branch of the hyperbola corresponds to
excitation of homogeneous FMR, whereas the lower
one represents the helical branch of the coupled wave
and corresponds to excitation of inhomogeneous os-
cillations.

The solutions of (60) with respect to the frequency
are

2fi>± = " (61)

Assuming that k<5 « 1, as apparently was the case
in the experiment of '-12 , we obtain:

for the upper branch

fc'fiO (62)

and for the lower branch

(63)

As seen from (63), the helical branch crosses the
He axis at the point Hjyj = 47rMs.

If the dissipation is small, the system of resonance
frequencies shown in Fig. 6 should be observed. If
T/1 « 1, this is possible for several harmonics
( 2n + 1 » (r/l )n2 or n < 2Z/r) . The damping con-
nected with the relaxation of the magnetic moment is
always much smaller than the damping due to elec-
tron scattering.

The ability of a helical wave to propagate in a
metal is connected, as is well known, with the charac-
ter of the electron trajectories on the Fermi sur -
face [38] The results of a theoretical and experi-
mental investigation of the electron spectrum of
nickel ^40-' give grounds for assuming that at an arbi-
t rary orientation of the magnetic field the greater
part of the electron trajectories are closed curves.
There is no cancellation of the electron and hole
volumes in nickel. These conclusions agree with the
observation of the helical wave. It should be noted
that open trajectories exist in nickel in a relatively
narrow angle interval, on the order of several de-
grees near the (111) directions. This should lead to

CO

FIG. 5.

ff
FIG. 6.
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the vanishing of the spin-helical wave at a suitable
orientation of the magnetic field.

The connection of the helical waves with the oscil-
lations of the magnetic moment is also manifest in
the shift of the frequency (62) and the broadening Au>
of the FMR line:

Ato = AcoM -f coM (64)

where AWM is the natural line width of the ferromag-
netic resonance. As seen from formulas (62) and (64),
the shift of the resonance frequency exceeds by a
factor l/v the attenuation due to the scattering of the
conduction electrons.

Rodbell ^ observed in his experiments ferromag-
netic resonance in nickel with a line width AH on the
order of 50 Oe. An FMR line width on the order of
40 Oe was obtained in the experiment of ^ . The
resonance-frequency shift (62) can be observed if the
thickness of the film is of the same order as or
smaller than 6 ( 4irMs/AH)1/2, i.e., on films < 10~4 cm.

Observation of the coupled spin-helical wave makes
it important to examine the connection between spin
waves and other electromagnetic excitations in
metals [2V>411. In metals with equal electron and hole
densities ( Nt = N2 = N), as already mentioned, propa-
gation of magnetohydrodynamic waves is possible *•*' .
The character of their propagation differs with the
ratio of the wave frequency to the "Doppler broaden-
ing" knv0, where kjj is the projection of the wave
vector k on the magnetic field H. If

v •€ kHv0 (65)

then, using the asymptotic form of the conductivity
tensor (11) and the usual equation for the magnetic
permeability, we obtain the following dispersion equa-
tion for the coupled spin and magnetohydrodynamic
waves (<p * 7r/2):

l ~ co*) sin2 q> + 2(coro)0 - to2) cos2 <p

(66)
± [(col — co2)2 sin4 cp + 4 (coMco)2 cos4 (f]i/2},

where v a = H/[47rN(m1 + | m2 | )]1 / 2 is the Alfven
velocity and m2 is the hole mass .

The wave coupling parameter is, as before, the
ratio 4TTM S /H. However, whereas in the case of a
helical wave only one wave propagated (correspond-
ing to the plus sign in (47)), in a metal with equal
densities of the two groups of car r iers both waves
can propagate under the condition (65). Neglecting
the interaction, the wave corresponding to the minus
sign in (66) goes over into an Alfven wave, and that
corresponding to the plus sign goes over into a fast
magnetosonic wave (according to (65), w/k > VQ).
Calculations show that the spectrum of the coupled
fast wave is analogous to the spectrum of the coupled
helical wave, shown in Fig. 4. The dependence of the
wave vector of the Alfven wave on the frequency has

FIG. 7.

a nonresonant character. This dependence is shown
in Fig. 7.

When <p = 0 the expression (66) simplifies to

(67)

In the general case (<p * 0) coupled magnetohy-
drodynamic waves have elliptic polarization. When
cp = 0 the field is circularly polarized, and the elec-
tric field vector rotates in opposite directions in the
± waves. In a narrow interval of angles <p close to
7r/2, the character of the wave propagation is appreci-
ably altered.

In the particular case q> = n/2, the asymptotic
form of the tensor cr^ (in the x, rj, £ system) is

,-HOCOH1 0 0 \

0 iWftti)'1 0
0 0

Oik = (68)

With this, the fast magnetosonic wave propagates
just as in an ordinary metal ^ , without interacting
with the oscillations of the magnetic moment. The
wave corresponding to the choice of the minus sign
in the solution of the dispersion equation is in this
case not the analog of the Alfven wave, but has the
following spectrum:

C2 (O2 — (l)aO)r '
(69)

The wave vector is real in a relatively narrow
frequency interval w r < w < (wa^r )^ 2 - The t rans-
verse part of the electric field in this wave is parallel
to H.

The condition for the existence of the aforemen-
tioned coupled waves kHVo « u> or H » (47rNm)1/2Vo
can be satisfied in ordinary metals only in fields on
the order of 106 Oe. In metals with low carr ier
density this condition is perfectly realist ic.

Let us consider the propagation of coupled mag-
netohydrodynamic waves in metals with Nt = N2

under conditions of strong spatial dispersion, when
the following inequality is satisfied:

v < co < kHv0 < coH, (70)

which can hold in fields that are not too strong and
satisfy the condition

Va € »0- (71)

It can be shown[42j that when the inequalities (71)
are satisfied the tensor oik is diagonal, and when
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cp * 0 we have 4lt

€ \oz

C o n s e q u e n t l y t h e z - c o m p o n e n t o f t h e e l e c t r i c f i e l d i n

t h e c o u p l e d w a v e i s n e g l i g i b l y s m a l l . A s s u m i n g e z t o

b e e q u a l t o z e r o , w e o b t a i n f r o m M a x w e l l ' s e q u a t i o n

t h e f o l l o w i n g d i s p e r s i o n e q u a t i o n f o r t h e c o u p l e d w a v e

( f o r <t¥=Jjr).• c o s (72)

The slow magnetosonic wave has in this case an
imaginary wave vector in the entire frequency varia-
tion interval.

When cp = 0 the spatial dispersion of the conduc-
tivity plays no role and both waves become weakly
damped. Their spectrum coincides with the spectrum
given by expression (67).

In the derivations of the formulas given in this
section, we made use of the isotropic dependence of
the electron energy on the momentum. The generali-
zation to an arbitrary carr ier spectrum is in most
case unimportant and is contained in ^37^. However,
when the inequality (70) is satisfied, the character of
the electron spectrum turns out to be important,
owing to the dominant role of the collisionless damp-
ing. As shown by Kaner and Skobov'-43'9 , weakly
damped waves in a metal having an arbitrary Fermi
surface can propagate under conditions (70) only if
the magnetic field is parallel to the crystal symmetry
axis. In this case there is no collisionless damping
(Landau mechanism). In the case of arbitrary orienta-
tion of the magnetic field relative to the symmetry
axes, the collisionless damping is appreciable, as a
result of which the dispersion equation has no real
solutions. An exception is an electromagnetic wave
linearly polarized along H (for details see ^43^). The
dispersion equation of this wave in a ferromagnetic
metal takes the form (when ip * 0)

_—— = o) —5 ^-I sin 2cp ~\

M --- — 11/2. (73)

where y ( ep ) is the density of the electron states on
the Fermi boundary.

Estimates given in [431 show that the wave (73) can
exist in magnetic fields bounded by the inequality

(74)- 5 L ( - ^ ) 3 > ! .
"HI V "a I

For good metals, N ~ 1O22 and this condition im-
plies H « 103ULJ^4. We emphasize that this wave is
brought about by the anisotropy of the Fermi surface.
This wave does not exist when cp = 0. As seen from
(73), the wave vector is real in the entire admissible
region of frequencies, with the exception of the inter-
val usr < LO < oja . The impedance of the wave with
polarization is

1/
\

ha
~2M

(75)
7 ' r coz — G)a<or

C o u p l e d m a g n e t o h y d r o d y n a m i c a n d s p i n w a v e s c a n

p r o b a b l y b e o b s e r v e d i n s u f f i c i e n t l y p u r e i r o n a t l o w

t e m p e r a t u r e s , s i n c e t h e c o n c e n t r a t i o n s o f t h e e l e c -

trons and holes in iron are equal [40]

5 . F E R R O M A G N E T I C M E T A L I N A S T R O N G

M A G N E T I C F I E L D . S T R O N G S P A T I A L

D I S P E R S I O N [ 4 4 ' 4 5 ' 2 5 ]

L e t u s c o n s i d e r t h e p r o p a g a t i o n o f a n e l e c t r o m a g -

n e t i c w a v e i n a f e r r o m a g n e t i c m e t a l u n d e r s p a t i a l -

d i s p e r s i o n c o n d i t i o n s , w h e n t h e c o n d i t i o n

kR » 1 ( 7 6 )

i s s a t i s f i e d . O f g r e a t e s t i n t e r e s t f r o m t h e p h y s i c a l

p o i n t o f v i e w i s i n t h i s c a s e a g e o m e t r y i n w h i c h t h e

m a g n e t i c f i e l d i s p e r p e n d i c u l a r t o t h e w a v e p r o p a g a -

t i o n d i r e c t i o n . T h i s c i r c u m s t a n c e i s c o n n e c t e d w i t h

t h e f a c t t h a t w e a k l y d a m p e d w a v e s c a n p r o p a g a t e a t

t h i s f i e l d o r i e n t a t i o n , w h e r e a s i n t h e c a s e of a m a g -

n e t i c f i e l d p a r a l l e l t o t h e w a v e v e c t o r t h e c o e f f i c i e n t s

of t h e d i s p e r s i o n e q u a t i o n t u r n o u t t o b e c o m p l e x a n d

t h e r e s u l t s a r e e s s e n t i a l l y a n a l o g o u s t o t h o s e i n t h e

a b s e n c e of a m a g n e t i c f i e l d .

L e t u s d i r e c t t h e O x a x i s a l o n g k a n d t h e O z a x i s ,

a s b e f o r e , i n t h e d i r e c t i o n o f t h e m a g n e t i c f i e l d H .

T h e t e n s o r ofa i s i n t h i s c a s e d i a g o n a l a n d i s d e t e r -

m i n e d b y f o r m u l a ( 1 3 ) . O w i n g t o t h e d i a g o n a l i t y o f t h e

t e n s o r a ^ , t h e d i s p e r s i o n e q u a t i o n s of t h e e x t r a o r d i -

n a r y a n d o r d i n a r y w a v e s s e p a r a t e :

k =

4jtio>

4jrico det u
0 V-yy

, k).

(77)

(78)

The extraordinary wave (77), in which the magnetic
field is parallel to the constant field, does not inter-
act with the oscillations of the magnetic moment. In
the ordinary waves the field components ex and ey
vanish.

Using (13) and the expression for the magnetic
susceptibility (18), (19), we write the dispersion equa-
tion of the ordinary wave in the form

cô  + coja/c2 — to2• Ctg JT . ( 7 9 )

H e r e

co2 = y (HB)V\ coa = yB; W l = y {H + 5 ) a n d « 2 = 2 V 5 -

I n a s m u c h a s t h e " v o l u m e " t e r m s a r e s i g n i f i c a n t

o n l y i n t h e i m m e d i a t e v i c i n i t y o f t h e r e s o n a n c e , t h e y

c a n b e n e g l e c t e d i n a q u a l i t a t i v e s t u d y o f t h e s p e c -

t r u m ( 7 9 ) . T h e s p e c t r u m t h e n d e p e n d s e s s e n t i a l l y o n

t h e r e l a t i o n s b e t w e e n t h e q u a n t i t i e s u > r , u a , a n d W I J .

F o r a n u m b e r o f c a s e s i n w h i c h t h e f r e q u e n c i e s u r ,

o ; a , a n d O J H a r e of t h e s a m e o r d e r o f m a g n i t u d e , t h e
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c ) d )

FIG. 8.

spectral dependence is shown schematically in Fig. 8.
Weakly damped waves can obviously exist near the
ferromagnetic-resonance frequency u)r, near the
antiresonance wa, and near the cyclotron frequencies
nun . The latter case was investigated by Kaner and
Skobov[9j for an ordinary metal.

Near the frequency cj r , the wave vector in (79)
becomes infinite, corresponding to spin-wave reso -
nance. This gives r ise to excitation of spin wave with
a known dispersion law:

v « n o > u — OJ « wi

s p e c t r u m b e c o m e s

[, t h e e x p r e s s i o n f o r t h e w a v e

(1- ( 8 3 )

2tor
ft2. (80)

W h e n t h e r e s o n a n c e " d e t u n i n g " i s l a r g e c o m p a r e d

w i t h t h e e x c h a n g e t e r m , j o > r — OJ | > au>ik
2/2uj2, t h e r e

e x i s t s n e a r t h e F M R f r e q u e n c y a n e l e c t r o m a g n e t i c

w a v e w i t h d i s p e r s i o n l a w

» = <* + • ? - A («4-*)ctB«-£r.
The condition for its existence is

(81)

Condition (76) is in this case easily satisfied. As
seen from (81), the wave has anomalous dispersion.

Near antiresonance, when | u> — wal >:> a k 2 , there
exists a wave with a dispersion law

I n c o n n e c t i o n w i t h f o r m u l a ( 8 3 ) , w e n o t e t h a t t h e

c y c l o t r o n f r e q u e n c y , o r a m u l t i p l e t h e r e o f , c a n c o i n -

c i d e w i t h t h e F M R f r e q u e n c y w h e n w r = n e o n - T h i s

i s p o s s i b l e , s i n c e t h e c y c l o t r o n f r e q u e n c y U > H i s d e -

t e r m i n e d b y t h e e f f e c t i v e m a s s ( U > H = e B / m * c ) . T h e

f r e q u e n c i e s w i l l c o i n c i d e a t d e f i n i t e f i e l d v a l u e s ,

e q u a l t o

( 8 4 )

W e s e e t h e r e f o r e t h a t i n o r d e r f o r t h e f r e q u e n c i e s t o

c o i n c i d e i t i s n e c e s s a r y t o s a t i s f y t h e c o n d i t i o n 2 m

< g m * . T h e s p e c t r u m o f a t h e w e a k l y d a m p e d w a v e

( w h e n H = H n ) i s w r i t t e n i n t h e f o r m

1/2 ( 8 5 )

2(0,,
• k \ ( 8 2 )

I n a s m u c h a s t h e c o n d i t i o n k r > 1 i s v i o l a t e d a t

t h e a n t i r e s o n a n c e p o i n t i t s e l f , t h e c o n d i t i o n f o r b e i n g

c l o s e t o t h i s p o i n t i s

(0o —(
T h i s w a v e a l s o h a s a n o m a l o u s d i s p e r s i o n .

F i n a l l y , n e a r t h e c y c l o t r o n f r e q u e n c y , a t

We proceed to calculate the surface impedance.
Neglecting exchange effects, the magnetic permeabil-
ity takes the form

/ v (tOa — to2) ((Or — CO2) -f~ 2î.(O(Oa(Ojvr tan\
IX (CO) = z~~$—: ^ — 5 • \ O O j

A s b e f o r e , w e r e w r i t e ( 8 6 ) i n t h e f o r m

oit> t . c r f l = = m C O a O > M — ( 0 < ^ < J t ) . ( g 7 )

, w e r e p r e s e n t

= - ^ - ( 0 < < p < n / 2 ) .

( 8 8 )

U s i n g e x p r e s s i o n s ( 8 7 ) a n d ( 8 8 ) , w e f i n d w i t h t h e a i d

o f ( 2 2 )

A s s u m i n g f o r s i m p l i c i t y t h a t co «

e ( a ) , x ) i n t h e f o r m

e ( m , J ) = _
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v0c
2 (0)2 \l/2. 1/3

1 3 y 3 c ''
(89)

Outside the region of existence of the weakly damped
waves, neglecting dissipation ( v - A = 0), the im-
pedance (89) turns out to be imaginary, corresponding
to total reflection of the external electromagnetic
wave. We note that in the limiting case A « OJ « v
expression (89) can be obtained from the expression
for the surface impedance of the metal under condi-
tions of anomalous skin effect in the absence of a
magnetic field, if we introduce the effective conduc-
tivity ffeff =ao^HT. In the region of weakly-damped
waves (80)—(83), the impedance becomes complex.
It is easily seen from expression (87), in the region
of existence of the weakly-damped waves S- = w, and
(p can be set equal to zero. The phase in formula
(89) then becomes equal to 7r/6.

One might expect the impedance to be real in the
region of existence of undamped waves, as for exam-
ple in the case when helical waves propagate in a
metal or when electromagnetic waves propagate in a
dielectric. The complex impedance is in this case the
result of the anomaly of the skin effect and is due to
the fact that the field in the metal near the boundary
is a superposition of both damped and undamped
waves.

Near the cyclotron resonance frequency co « O>H
with | WJJ — LO | » v we have

t p "" 31/1 "

(in deriving this formula we assumed for concreteness
that u>a. <̂ r < ">H)»

We indicated earlier that the FMR frequency can
coincide with the cyclotron frequency U>H- Observa-
tion of this effect in the case of an isotropic energy
spectrum requires a simultaneous variation of both
the frequency of the electromagnetic wave and the
applied field H. In the case of an anisotropic spec-
trum there is a more favorable possibility of real iz-
ing this effect. When the electron energy has an
anisotropic dependence on the momentum, the cyclo-
tron frequency depends, as is well known, on the
orientation of the constant field relative to the
crystallographic axes. At certain field directions in
a plane parallel to the surface of the metal, the cy-
clotron frequency may turn out to be equal to the
frequency of the ferromagnetic resonance. As ex-
pected, an abrupt change should take place here in
the shape of the resonance curve.

Calculation ^u' shows that the surface impedance,
neglecting dissipation, has in this case a root singu-
larity at the resonance point (S ~ | w — cor |

 2),
unlike the singularity | u — u>r \'

2'3 obtained under
the conditions of the anomalous skin effect (89).

If the spatial dispersion of the magnetic permea-
bility is neglected, the character of the behavior of

the magnetic moments on the boundary plays, of
course, no role, and the surface impedance £s dif-
fers as before from £ r in all the cases considered
above only by a factor on the order of unity.

Let us examine now the influence of spatial d is -
persion near resonance on the shape of the resonance
curve. From the physical point of view, the most
interesting is the frequency region in which
cot(7ra;/u;H) > 0. We note first that in this case, as
shown by calculations, the exchange effects make no
contribution to the width of the curve, but do cause a
shift of the resonance. In the vicinity of the shifted
resonance frequency, allowance for spatial dispersion
leads to an appreciable change in the form of the
resonance curve.

Let us investigate first the surface impedance in
the case m( 0) =0 . Assuming as before that
u) « LOR, we write down the dispersion equation (79)
near resonance in the form

p (n) = x5
 + T|I3 + 1 =0, (91)

where we went over to the dimensionless variable
x = k/q, q5 = wLy3c2r, p = a/4n. The parameter
•q = £//3q2, where £ = (w r - w)/i2, characterizes the
closeness to resonance. The function a>(k) is shown
schematically in Fig. 9. As seen from the figure, the
co (k) curve has an extreme at the value u> = LO'X,
which is the end point of the spectrum. At frequencies
larger than w r the weakly-damped waves (80) and
(81) are excited in the metal, whereas at lower fre-
quencies the field does not penetrate into the metal.
The frequency ui'r should be identified with the
shifted resonance frequency. The shift of the r e so -
nance can be readily obtained from the conditions
P(T?O, x0) = 0 and Pi(?7o>

% 3 2 /
Vo = ( - 3/2)2/5

= 0. Hence xjj = 3/2,
- 2 , and the shifted frequency is

(92)

"5When H ~ 104 Oe, 6C ~ 1013 erg, and <5L ~ 10"5 cm,
the resonance shift has the following order of magni-
tude:

n 3/5 2/5 (93)

This corresponds to a shift of the resonance field on
the order of 10—100 Oe. We note that the FMR line
width due to the electron collisions is small com-
pared with the shift, by virtue of the smallness of the
parameter (kl ) ~ i .

We shall write for the surface impedance £ r

FIG. 9.
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2 to xdx
• = r - ni ficq3 TVI"

a n d n e a r TJ = TJ0 w e g e t

2ni ,
- T i o l 1 / 2 n < % .

(94)

(95)

Far from resonance (when | TJ | » | TJ0 | ) , expression
(89) is valid.

Thus, allowance for the spatial dispersion of the
magnetic permeability leads to a root singularity of
the impedance, unlike the singularity | u>r — a; |~2 '3

obtained without allowance for the exchange interac-
tion. The frequency dependence of the impedance at
m = 0 on the boundary is shown in Fig. 10. When the
exchange constant approaches zero, the maximum
value of Im fr increases when u> > a;r, the reso-
nance shift tends to zero, and the curve approaches
its limiting form.

We investigate in similar fashion the surface im-
pedance in the case when 9m/3z | z = o = 0:

r • O 6 )

2ni .
; ^ f - ( i1o — i \l/2 ( 9 9 )

L e t u s c o n s i d e r J S ( T J ) w h e n TJ > TJ0 . In t h i s c a s e

t h e i n t e g r a l d o e s n o t c o n t a i n a n y s i n g u l a r i t i e s o n t h e

p a t h o f i n t e g r a t i o n . I t i s e a s y t o s e e t h a t i n t h i s

r e g i o n d J s ( T ) ) / d T j > 0 . W h e n r/ » TJ0 w e h a v e

( 9 7 )

O n t h e o t h e r h a n d , n e a r t h e e n d p o i n t o f t h e s p e c -

t r u m t h e i n t e g r a l i s e q u a l t o

T h u s , t h e r e e x i s t s a v a l u e TJ > TJ0 a t w h i c h J S ( T J )

v a n i s h e s ( e s t i m a t e s s h o w t h a t i t l i e s b e t w e e n z e r o

a n d u n i t y ) . T h e e x i s t e n c e of a z e r o o f t h e f u n c t i o n

J s ( TJ ) c a u s e s t h e i m a g i n a r y p a r t o f t h e i m p e d a n c e

f s t o v a n i s h .

W h e n TJ < TJ0 t h e d e n o m i n a t o r i n ( 9 6 ) h a s r e a l r o o t s .

N e a r TJ0

1
l\
l \1 «

1
1
!
i
i
i

.?,

v \
NX

When | TJ | » |TJO |, as already mentioned, fs dif-
fers from £ r only in a real factor on the order of
unity.

The final resonance curve at m' ( 0) =0 is shown
in Fig. 11. We note that in this case the real part of
the impedance vanishes at resonance.

Comparison of the resonance curves of Figs. 10
and 11 shows that the surface impedance near the
resonance is greatly different in the two limiting
cases (m = 0 and m' ( 0) = 0 on the boundary). In
this connection it is of interest to calculate the im-
pedance under the general condition (29). Omitting
the calculations, which can be found in1-25-1, we p re -
sent the final result

1 (n - rio)1/2], r, > r,0,

where the constants are Ct = 4wr/5c/3q3 and C2

= 4q/5. As seen from (108), when the general condi-
tion (29) is satisfied on the boundary, the impedance
remains constant at resonance.

We note that when resonance is approached from
the high-frequency side, the derivative (d/dTj)Re t
has a singularity. On approaching the lower frequen-
cies, the derivative d/drj Im £ becomes infinite.

The region of applicability of the obtained formulas
is determined by the inequalities (76) and (46).
Putting k = qx0 (x0 ~ 1) we obtain

kR. [(•&)•
I 1/5 (101)

which amounts to 102 in fields H ~ 10 Oe. We note
that the condition kR » 1 is easily satisfied near
FMR, since the effective magnetic permeability be-
comes anomalously large in the immediate vicinity of
the resonance.

The anomalous behavior of the surface impedance
as a function of the character of the boundary condi-
tion for the magnetic moment becomes understand-
able if we consider the distribution of the field inside
the metal. For simplicity we confine ourselves to the
case m( 0) = 0 . The electric field in the metal is de-
scribed by the expression

FIG. 10. FIG. 11.
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e(z) = h(0)
r \ -

* -f- e'l<lzx) dx (102)

W h e n T J < T ) 0 , t h e d e n o m i n a t o r o f t h e i n t e g r a n d i n ( 1 0 2 )

h a s t w o r o o t s l o c a t e d c l o s e t o t h e r e a l a x i s a n d l y i n g

i n t h e u p p e r a n d l o w e r h a l f - p l a n e s . I n t e g r a t i n g i n t h e

u p p e r a n d l o w e r q u a d r a n t s o f t h e h a l f - p l a n e x > 0 i n

t h e f i r s t a n d s e c o n d i n t e g r a l s , r e s p e c t i v e l y , w e o b -

t a i n | T) | » 1 7 7 o I i n t h e f r e q u e n c y r e g i o n R e 7 7 < 0

( i . e . , i n t h e r e g i o n o f t h e e x i s t e n c e o f w e a k l y d a m p e d

w a v e s ) f o r t h e f i e l d a t i n f i n i t y

< w - ^ o i w m m ( e x V ( - i \ r ] \ - i / 3 q z ) e x p ( 1 | T | \ i / 2 q z ) •

'-)•

( 1 0 3 )

*•'"'- ~*w cW\ 3 | t , | 2 / 3 ' 2|t,|3-

T h e f i r s t t e r m c o r r e s p o n d s t o t h e p r o p a g a t i o n of a

w a v e w i t h a n o m a l o u s d i s p e r s i o n ( 8 1 ) . T h e p h a s e i n

t h i s w a v e b u i l d s u p t o w a r d s t h e b o u n d a r y , w h e r e a s

t h e e n e r g y p r o p a g a t e s t o w a r d s p o s i t i v e z . T h e s e c o n d

t e r m i n ( 1 0 3 ) d e s c r i b e s t h e w e a k l y - d a m p e d s p i n

w a v e ( 8 0 ) .

N e a r t h e e n d p o i n t o f t h e s p e c t r u m , t h e r e a l p o s i -

t i v e r o o t s o f t h e d i s p e r s i o n e q u a t i o n s c o a l e s c e . A t

f r e q u e n c i e s s m a l l e r t h a n LO'Y, t h e r e a r e n o w e a k l y

d a m p e d w a v e s . L e t u s c o n s i d e r t h e d i s t r i b u t i o n of

t h e f i e l d i n t h i s c a s e . W e t r a n s f o r m e x p r e s s i o n ( 1 0 2 ) ,

e x p r e s s i n g t h e f i e l d i n t e r m s o f t h e a m p l i t u d e E o o f

t h e i n c i d e n t w a v e :

x d x c o s q z x

( 1 0 4 )

A s i n d i c a t e d a b o v e , n e a r t h e f r e q u e n c y o f t h e

s h i f t e d r e s o n a n c e , t h e i m p e d a n c e £ r h a s a r o o t

s i n g u l a r i t y . T h e s a m e s i n g u l a r i t y i s p o s s e s s e d a l s o

b y t h e i n t e g r a l i n ( 1 0 4 ) . C a l c u l a t i n g t h e i n t e g r a l w i t h

a l l o w a n c e f o r t h i s c i r c u m s t a n c e , w e g e t

i . e . , t h e f i e l d h a s t h e f o r m o f a s t a n d i n g w a v e . T h e

i n c i d e n t w a v e e x p e r i e n c e s i n t h i s c a s e t o t a l r e f l e c t i o n

a n d t h e e n e r g y d o e s n o t p e n e t r a t e i n s i d e t h e m e t a l .

U n d e r t h e m o r e g e n e r a l b o u n d a r y c o n d i t i o n ( 2 9 ) ,

t h e f i e l d i n s i d e t h e m e t a l i s a t r e s o n a n c e a g a i n a

s t a n d i n g w a v e , a n d t h e p a r a m e t e r X d e t e r m i n e s t h e

p h a s e o f t h e f i e l d . T h i s i s t h e c a u s e o f t h e a p p r e c i -

a b l e d e p e n d e n c e o f t h e i m p e d a n c e a t r e s o n a n c e

( w = u > ' r o r t] = r i 0 ) o n t h e b o u n d a r y c o n d i t i o n f o r t h e

m a g n e t i c m o m e n t .

6 . I N T E R A C T I O N O F S P I N - H E L I C A L W A V E S W I T H

S O U N D W A V E S . T R I P L E R E S O N A N C E
 [ 4 6 ]

S o f a r w e h a v e n o t t a k e n i n t o a c c o u n t t h e f a c t t h a t

s o m e w a v e s c a n p r o p a g a t e i n t h e m e t a l b e s i d e s t h e

e l e c t r o m a g n e t i c o s c i l l a t i o n s . T h e r e a r e a l a r g e n u m -

b e r o f p a p e r s d e v o t e d t o c o u p l e d s o u n d a n d e l e c t r o -

m a g n e t i c w a v e s i n m e t a l s ^
i l

'
i 8

\ O n t h e o t h e r h a n d ,

t h e q u e s t i o n o f t h e c o u p l i n g b e t w e e n t h e m a g n e t i c

( s p i n ) a n d e l a s t i c w a v e s , w h i c h l e a d s u n d e r c e r t a i n

c o n d i t i o n s t o f e r r o a c o u s t i c r e s o n a n c e , w a s d i s c u s s e d

m a n y t i m e s ^ 4 9 ^ .

F I G . 1 2 .

L e a v i n g a s i d e p r o b l e m s i n v o l v e d i n t h e t h e o r y o f

s o u n d p r o p a g a t i o n i n m a g n e t s
 [ 5 0 ]

, , w e s h a l l d i s c u s s

i n t h e p r e s e n t s e c t i o n o n l y t h o s e f e a t u r e s i n t h e i n -

t e r a c t i o n b e t w e e n m a g n e t i c a n d s o u n d w a v e s , w h i c h

a r e d u e t o t h e e x i s t e n c e o f c o l l e c t i v e e x c i t a t i o n s i n

t h e s y s t e m o f e l e c t r o n s i n t h e m a g n e t i c f i e l d . F o r

s i m p l i c i t y w e s h a l l c o n s i d e r t h e i n t e r a c t i o n b e t w e e n

a s p i n - h e l i c a l w a v e a n d s o u n d .

T h e i n i t i a l s y s t e m o f e q u a t i o n s t o b e c o n s i d e r e d

c o n s i s t s o f t h e M a x w e l l e q u a t i o n , t h e e q u a t i o n s o f t h e

d y n a m i c t h e o r y o f e l a s t i c i t y , a n d t h e e q u a t i o n s o f

m o t i o n o f t h e m a g n e t i c m o m e n t . T h e a s s u m p t i o n t h a t

t h e c o n d i t i o n s f o r t h e p r o p a g a t i o n o f h e l i c a l w a v e s a r e

s a t i s f i e d ( r « I , k R « 1 ) d e n o t e s t h a t w e c a n u s e

f o r m u l a ( 1 0 ) f o r t h e e l e c t r i c c o n d u c t i v i t y ( w e a r e

c o n s i d e r i n g m e t a l s w i t h a n u n e q u a l n u m b e r o f e l e c -

t r o n s a n d h o l e s ) . I t i s o b v i o u s t h a t i n t h e s i m p l e s t

c a s e o f w a v e p r o p a g a t i o n a l o n g a m a g n e t i c f i e l d , t h e

e q u a t i o n s f o r t h e l o n g i t u d i n a l a n d t r a n s v e r s e w a v e s

s e p a r a t e i n a m e d i u m w h i c h i s i s o t r o p i c w i t h r e s p e c t

t o e l a s t i c a n d m a g n e t o s t r i c t i o n p r o p e r t i e s . T h e d i s -

p e r s i o n e q u a t i o n f o r a t r a n s v e r s e c i r c u l a r l y - p o l a r i z e d

w a v e i s

A 4 . - i o g ( o y B — u> \ _ i n y M s
 V

'M I , 4 n t 7 H

- p c 2 y H - a , ) ~ y H - < o T
2

" [
 l

 I A

n t 7 H c o

, ' i n a j j a i v
a ,

A 2 c 2 s 2

( 1 0 6 )

w h e r e s i s t h e s p e e d o f s o u n d , v ^ = ( y ' M s )
2

/ 4 7 r p ,

v | = B
2

/ 4 7 r p , p i s t h e d e n s i t y o f t h e m e d i u m , a n d y '

i s t h e m a g n e t o s t r i c t i o n c o n s t a n t . W e h a v e c o n f i n e d

o u r s e l v e s t o c o n s i d e r a t i o n o f m a g n e t o s t r i c t i o n a n d

i n d u c t i o n i n t e r a c t i o n b e t w e e n t h e e l e c t r o n , s p i n , a n d

l a t t i c e s u b s y s t e m s . T h e d e f o r m a t i o n r e a c t i o n w a s

d i s r e g a r d e d . C o n c e r n i n g i t s r o l e i n a m a g n e t i c f i e l d

s e e
[ 4 8 ]

T h e r i g h t s i d e o f ( 1 0 6 ) i s s m a l l c o m p a r e d w i t h

u n i t y , s i n c e v ^ / s
2
 « 1 a n d v | / s

2
 « 1 . T h e d e p e n d -

e n c e o f k 2 o n o j d e s c r i b e d b y t h i s e q u a t i o n i s s h o w n

i n F i g . 1 2 .

T h e c o n d i t i o n f o r r e s o n a n c e b e t w e e n t h e s o u n d a n d

c o u p l e d s p i n - h e l i c a l w a v e s c o n s i s t s i n e q u a l i t y o f t h e

w a v e v e c t o r s a n d o f t h e f r e q u e n c i e s :

y B — t o

y H — ( o

( 1 0 7 )

T h e t w o r e s o n a n c e f r e q u e n c i e s d e t e r m i n e d f o r ( 1 0 7 )

a r e
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and for the sound wave
(108)

from which it follows that the resonance is realized
only if

L
H+ M >2H°> m = (109)

Far from the resonance frequencies, the corrections
to the unperturbed dispersion laws are small - they
are proportional to the right side of the equation.
Near the resonant frequencies CJJJ the coupling be-
tween the oscillation branches becomes, naturally,
stronger and the corrections to the amplitude disper-
sion laws increase:

If 4?rMs/H « 1, then a weak coupling exists between
the magnetic and helical waves, and we can speak of
three types of quasi-independent oscillations, for
which the dispersion equation is best written in the
following form:

c>2 \ IA

= ne

/ \. yH )

(111)
o) \ , n 4JICTW(O

where the parameters rye = 47rMs/H, TJS = 47rMsv
2

M/Hs2

and ?7i = v | / s 2 are the constants of the coupling be-
tween the different waves. The existence of three
types of weakly-interacting waves makes it possible
to realize a " t r i p l e " resonance, i.e., one temporal
agreement of the frequencies and wave vectors of the
sound, magnetic, and helical waves. This equality
will take place at a magnetic field H = H c r , where

Here

HlT = iiiNms- ~ 103
 3;

w0 = yH c r = 4TTO-{JS2C~2.

(112)

Let us consider the splitting of the dispersion
curves in this case. The dispersion equation (111)
near the frequency wo of the triple resonance is

Putting 1 - w/w0 =x(TjiTjeT)s)
1/6, we rewrite (113)

in the form

Z» = B* + 2, (114)

where € = (?je + T^ + rjs)( VeViVs)'1^- W e n o t e that
inasmuch as e > 3 always, all the roots of (114) are
real .

Using the smallness of the two coupling constants
(rji, 7js « Tje), i.e., the fact that e » 1, we can
easily find the "separation" of the dispersion curves
in the region of resonance.

Putting e — '7e(T'eT'iTls) ^3> w e ^ m d the following:
for the spin-helical wave

The dependence of the frequency on the wave vector
near the resonance frequency is shown in Fig. 13. We
note that the acoustic branch of the oscillations r e -
mains practically unchanged in this case.

A similar analysis can be made for the spin-
Alfven and other types of coupled electromagnetic
waves.

7. CONDUCTION ELECTRONS AND THE SPECTRUM
OF THE SPIN WAVES

In considering the high-frequency properties of a
ferromagnetic metal, we were interested in the inter-
action between the collective excitations in the system
of conduction electrons and the spin waves. The spec-
trum of the spin waves was assumed specified. There
exists, in addition, a direct interaction between the
electrons and the spin waves. This interaction con-
sists in absorption and emission of spin waves by the
conduction electrons and is accompanied by spin flip
of the electron. It leads, in particular, to finite r e -
laxation times for both the electrons and the magnons,
causing threshold effects in the damping of the spin
waves. Generally speaking, this interaction is small,
thus justifying the foregoing analysis. The interac-
tion between the spin waves and the collective excita-
tions of the electron system, as shown before, r e -
aligns the long-wave part of the magnon spectrum.
The magnons taking part in the direct interaction with
the electrons have large momenta (on the order of
the Fermi momentum). Thus, both interactions can
be considered independently.

The direct interaction of magnons with electrons
is analogous in many respects to electron-phonon
interaction in metals. Just as the latter, it leads to
singularities in the spin-wave spectrum, similar to
the Migdal-Kohn singularities C51'52^ in the phonon
spectrum. A specific feature of a ferromagnetic
metal is the fact that the Fermi surfaces correspond-
ing to the two possible conduction-electron spin
orientations turn out to be shifted apart as a result
of the exchange interaction. As a rule, this separa-
tion is on the order of V 0c eF*

= co0(l FIG. 13.
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The cause of the singularities in the spectrum of
the spin waves can be understood by starting from
the following considerations. The singularities in the
spectrum exist at those values of the magnon mo-
menta at which the mechanism of the direct interac-
tion with the electrons is turned on or off. These
values of the momentum are threshold values, co r re -
sponding to the vanishing of the spin-wave damping.
The direct interaction of the electron and of the spin
wave are accompanied by the laws of conservation of
momentum

p + q = p' (H5)
and of energy

B± (p) = 8T (p'). (H6)

Here p and p ' are the momenta of the electron in
the initial and final states, q is the momentum of the
magnon, e* (p) is the energy of an electron with spin
oriented along the (+) or opposite the (-) direction of
the magnetization. Equation (116) takes account of
the fact that the magnon energy is small compared
with the Fermi energy.

In the initial and final states, the electron is on
the Fermi surfaces corresponding to opposite spin
orientations. From the momentum conservation law
(115), which is illustrated in Fig. 14, it follows that
the threshold values of the momentum are q = p +
± p_ , where p± are the limiting momenta for the
electron with opposite spin directions.

In the case of an arbitrary electron dispersion
law, the threshold values of the momentum are de-
termined in similar fashion, but depend on the direc-
tion of the wave vector of the spin wave. In the case
of an isotropic electron spectrum, the threshold values
of the magnon momenta form in p-space two concen-
tric spheres with radii p = p+ ± p_ (the analog of the
Kohn surface). At an arbitrary dispersion law, these
surfaces are determined by the shape of the Fermi
surface.

The possible existence of a singularity in the
spin-wave spectrum at q = p+ + p_ was first pointed
out by Kohn[52] (see also [ 5 3 V The singularity in the
magnon spectrum at q = p+ — p_ was pointed out by
Kondratenko[24j and independently by Kontorovich [54-1.
The character of the singularity in both cases is the
same: Am ~ x In x, where x = q — (p+ + p_ ). One

can obviously speak of changes in the spectrum if the
damping is relatively small. In our case the small-
ness of the damping is ensured by the smallness of
the parameter V e c / e p [ 2 4 ] . A singularity of the type
x In x is quite weak, but the complication of the elec-
tron energy spectrum can, generally speaking, lead
to an intensification of the singularity [ 5 5 j .

As shown in^5 , a quantizing magnetic field
greatly intensifies the Migdal-Kohn singularity in the
phonon spectrum. Continuing the analogy between the
spin waves and phonons, we might expect an intensi-
fication of the singularity at q = p+ — p_ , and also
the appearance of a number of resonance effects in
the spectrum and damping of the spin waves, analogous
to those existing in the phonon spectrum of metals in
a magnetic field (oscillations of geometric r e so -
nance ^57 , acoustic cyclotron resonance'-58 , giant
quantum oscillations of the phonon damping' ).
However, owing to the small value of the "separat ion"
of the Fermi surfaces of the electrons with opposite
spin directions, these effects are impossible in the
spin-wave spectrum. The influence of the orbital
motion of the conduction electrons on the spectrum of
the spin waves in a metal was investigated in '60^.
Whereas the aforementioned resonance effects can
exist only in practically unattainable magnetic fields,*
an effect which does not depend on the magnetic field,
that of renormalization of the spin-wave velocity,
occurs in not too strong fields determined by the con-
dition kr « 1. Namely, when kr « 1 the spin-wave
spectrum has the following form:

co = yH —ye c e F (ka)\ (117)

Expression (125) was obtained for the case when the
spin-wave vector is oriented perpendicular to the
direction of the constant field. Thus, the coefficient
of k2 in the spin-wave spectrum turns out to be
V £;F/6>C times larger than the term Ca2/h, which
has the opposite sign at H = 0. This circumstance
leads to the presence of a minimum on the dispersion
curve shown in Fig. 15. The absolute value of the
minimum is quite small, Aui ~ o)V 6»c/£F ( h^H/ e R) •
We note that owing to the large value of the "separa-
tion" of the Fermi surfaces, the existence of r e -
normalization of the spin-wave spectrum does not
depend on the relation between the frequency to of
the spin wave and the electron free path time T.

The foregoing direct interaction between the spin
waves and the conduction electrons can appear also
when a sound wave propagates in a ferromagnetic
metal. The phonon spectrum of a ferromagnetic metal
was investigated by Kontorovich and Oleinik^61-'.
They have shown that the spectrum of the phonons in
a ferromagnetic metal has singularities at a phonon

*For example, the condition for the existence of giant quantum
oscillations in the spin-wave spectrum is the inequality

FIG. 14.
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momentum value equal to p+ ± p_ as well as 2p±.
Whereas the singularities of the first type ar ise as
a result of the interaction between the phonons and
the spin waves and correspond to electron transitions
from one Fermi surface to the other, the singularities
of the other type are connected with the decay of the
phonon into an electron and hole, occurring without
spin flip. Thus, in a ferromagnetic metal there takes
place a splitting of the "ordinary" Migdal-Kohn
singuliarity into two singularities corresponding to
the two Fermi surfaces of the magnetized conduction
electrons.

As noted in [ 6 1 i , at a certain critical value of the
magnetic field, on the order of 104 Oe, the sound and
spin-wave frequencies can coincide at the singularity
point q = p+ — p_ (a unique type of " t r ip l e" r e so -
nance, see Sec. 6). The quality of the frequencies in
the case of the " t r ip l e" resonance leads to a re la-
tively large shift of the frequency of the ferro-
acoustic resonance, and this may be one of the methods
of observing this singularity.

8. REMARKS ON ANTIFERROMAGNETIC RESONANCE
IN METALS

The resonance dependence of the magnetic suscep-
tibility on the frequency, which changes appreciably
the character of the collective excitations of the metal,
takes place not only in ferromagnets but also in anti-
ferromagnets. In considering the collective excita-
tions in antiferromagnetic metals, one must bear in
mind the following circumstances.

1. The static magnetization of an antiferromagnet
(compared with a ferromagnet) is quite small. This
causes the resonant dependence of the magnetic
susceptibility to appear in a narrower frequency
region [ 6 2 ] .

2. In uniaxial antiferromagnets with positive
anisotropy constant, the antiferromagnetic-resonance
frequencies are shifted (compared with ferromagnets),
even in the case of not too strong fields, into the
shorter wavelength region. Owing to this, a situation
readily arises in which it is possible to neglect the
influence of the magnetic field on the electric con-
ductivity, but it is necessary to take into account its
frequency (temporal) dispersion. In other words, in
considering the wave properties of an antiferromag-

netic metal one can frequently use the plasma for-
mula for the effective dielectric constant of the elec-
tron gas. We note that in this case (which is exotic
for a ferromagnetic metal), weakly damped waves
can propagate in the antiferromagnetic metal, and
under favorable conditions (thin antiferromagnetic-
resonance lines), additional waves appear, due to
exchange interaction of the spins [63-1.

3. The magnetic structure of the antiferromagnet
is quite sensitive to the magnitude and direction of
the magnetic field. This, naturally, becomes manifest
in the high frequency properties of the antiferromag-
netic metal, particularly in the frequency dependence
of its surface impedance '63-'.

APPENDIX

Magnetic Susceptibility of a Ferromagnetic Metal

Following[24], let us consider a system of electrons
with non-zero total magnetic moment, situated in a
magnetic field H. We shall assume that the magnetic
field is weak. Thus, the magnetic field plays the role
of an ordering factor of the electron spins; its influ-
ence on the electron spectrum can be neglected.

We confine ourselves to the isotropic case and
consider for simplicity a single-band model.

The magnetic moment of the system is determined
by the expression

M = - (A.I)

where e is the adiabatic parameter, S*(i = x, y, z)
are the Pauli spin matrices, and G a ^ ( p ) are the
Fourier components of the electronic Green's func-
tion.

The magnetic susceptibility can be calculated in
the usual manner:

dhh

(A.2)

with the aid of (A.I), if we know the variation of the
Green's function in an external alternating field.

Let the system be under the influence of a small
perturbation nap. The change of the Green's function
in the approximation linear in u is, as is well
known [641

p-Cap (p) -iCan (p)

+ *> (p, q; ft).

Here Tapy6 (p, q; k) = Tapy6{p, q, p + k, q - k) is
the vertex part (for a definition and the properties of
the vertex part see"-64-").

Putting U y 5(k) = 2^BSy5h and using (A.I), (A.2),
and (A.3), we obtain for the susceptibility the follow-
ing expression:
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-4u!
n lim \ _

(A.4)

By virtue of the exchange character of the interelec-
tron interaction, only the following components of the
vertex part differ from zero (the indices 1 and 2
designate the orientations of the spin along and oppo-
site the direction of the field H):

longitudinal
and transverse (A.5)

The longitudinal components of the vertex part
correspond to the exchange correlation between the
electrons without the spin flip, and cause excitations
of zero-sound type (for details see [ 2 4 j ) . The t rans-
verse components of F correspond to exchange
correlation between states differing in the spin direc-
tion, and are connected with excitations of the spin-
wave type. It is thus obvious that the magnetic sus-
ceptibility is determined by the transverse compon-
ents of the vertex part.

In fact, we direct the z axis along the magnetic
field H. The Green's function of the electrons GQ,^
can be represented identically in the form

(p) • G_ (p) ( A . 6 )

w h e r e P * „ = ( V 2 ) 6 a n ± S^, o a r e p r o j e c t i o n o p e r a t o r s

a n d G ± ( p ) i s t h e G r e e n ' s f u n c t i o n o f t h e e l e c t r o n s

w i t h s p i n s i n s t a t e s 1 a n d 2 , r e s p e c t i v e l y :

( A . 7 )
x e — E ± (p) — jj,-;-i8 s g n E '

H e r e € i s t h e f r e q u e n c y v a r i a b l e , 6 t h e a d i a b a t i c

p a r a m e t e r ju t h e c h e m i c a l p o t e n t i a l ( w h i c h , o f c o u r s e ,

i s t h e s a m e f o r b o t h e l e c t r o n i c s u b s y s t e m s ) , e ± ( p )

i s t h e e n e r g y o f e l e c t r o n s w i t h s p i n s i n s t a t e s a l o n g

a n d o p p o s i t e t h e f i e l d , a n d a ^ a r e n o r m a l i z a t i o n c o n -

s t a n t s o n t h e o r d e r o f u n i t y .

U s i n g ( A . 5 ) , ( A . 6 ) , a n d t h e p r o p e r t i e s o f t h e P a u l i

m a t r i c e s , w e o b t a i n f o r t h e e l e m e n t s o f t h e m a g n e t i c

s u s c e p t i b i l i t y x± = Xi ± 1X2 ( X i = X x x = X y y , X2 = X X y

= — X y x ) . c o r r e s p o n d i n g t o c i r c u l a r l y p o l a r i z e d

w a v e s ,

X± (d), k) = — 2i\xB l i m

( A . 8 )

H e r e F ± d e n o t e t h e c o m p o n e n t s o f t h e v e r t e x p a r t

r 2 n 2 a n d F 1 2 2 i , r e s p e c t i v e l y . T h u s , t o c a l c u l a t e t h e

s u s c e p t i b i l i t y ( A . 8 ) i t i s n e c e s s a r y t o f i n d t h e e x p l i c i t

f o r m o f t h e t r a n s v e r s e c o m p o n e n t s o f F .

A s s h o w n b y L a n d a u i n t h e g e n e r a l t h e o r y o f t h e

F e r m i l i q u i d ^ 6 H t h e s p e c t r u m o f t h e c o l l e c t i v e e x c i -

t a t i o n s o f a F e r m i s y s t e m i s d e t e r m i n e d b y t h e p o l e s

o f t h e v e r t e x p a r t , r e s u l t i n g f r o m t h e c o a l e s c e n c e o f

t h e s i n g u l a r i t i e s o f t h e G r e e n ' s f u n c t i o n s o f t h e e l e c -

t r o n s a t s m a l l m o m e n t u m t r a n s f e r ( k — 0 ) . L e t u s

c o n s i d e r t h e e q u a t i o n f o r t h e v e r t e x p a r t

r a p v « ( p . * ' ; * ) = r # v M p , p ' ) ( A 9 )

w h e r e F 1 J i s t h e p a r t o f F w h i c h c o n t a i n s n o s i n g u -

l a r i t i e s ( a n d t h i s i s w h y w e p u t k = 0 i n i t ) . T h i s

e q u a t i o n c a n b e w r i t t e n f o r m a l l y i n t h e f o r m

= r<l> — i r a > G G r

o r i n e q u i v a l e n t f o r m

( A . 1 0 )

( A . l l )

W e d e n o t e b y F ^ t h e l i m i t o f t h e v e r t e x p a r t w h e n

k a p p r o a c h e s z e r o . S e t t i n g k e q u a l t o z e r o i n ( A . l l )

a n d e l i m i n a t i n g w i t h t h e a i d o f t h e o b t a i n e d e x p r e s -

s i o n f o r F ^ t h e n o n - s i n g u l a r p a r t F ( 1 ) f r o m ( A . 1 0 ) ,

w e o b t a i n a f o r m a l e q u a t i o n r e l a t i n g F a n d F ^

r ^ r w - i r 0 1 [ G G - ( G C ) a ) ] r . ( A . 1 2 )

I n a s m u c h a s t h e i n t e r e l e c t r o n i n t e r a c t i o n b e t w e e n

t h a t l e a d s t o t h e s p i n f l i p c o n s i s t s i n e m i s s i o n ( a b -

s o r p t i o n ) o f a s p i n w a v e , t h e q u a n t i t y F w c a n b e s e t

i n c o r r e s p o n d e n c e w i t h t h e d i a g r a m

a n d a c c o r d i n g l y , w i t h t h e a n a l y t i c e x p r e s s i o n

Va (p , p'; <o) = g (p) D ((o) g (p ' ) , ( A . 1 3 )

) " 1w h e r e D ( j j ) = ( u ; — 2 / i g H ) " 1 i s t h e p r o p a g a t o r o f t h e

s p i n w a v e ( w i t h k = 0 ) .

E x p r e s s i o n ( A . 1 3 ) c a n b e o b t a i n e d b y d i r e c t c a l c u -

l a t i o n . T o t h i s e n d , w e d e t e r m i n e i n e x p l i c i t m a n n e r

t h e r e a c t i o n o f t h e s y s t e m t o a s m a l l d i s t u r b a n c e a n d

c o m p a r e i t w i t h ( A . 3 ) . B y t h e s a m e t o k e n w e o b t a i n

t h e n e c e s s a r y e q u a t i o n f o r T^°, t h e s o l u t i o n o f w h i c h

i s ( A . 1 3 ) .

L e t t h e f i e l d o f a c i r c u l a r l y - p o l a r i z e d w a v e b e d e -

s c r i b e d b y t h e e x p r e s s i o n

hx ( f ) r = / i 0 c o s at, "1

hy (() — A Q s i n tat. J ( A . 1 4 )

T h e H a m i l t o n i a n o f t h e i n t e r a c t i o n b e t w e e n t h e

e l e c t r o n s a n d t h e a l t e r n a t i n g m a g n e t i c f i e l d i s w r i t t e n

i n s t a n d a r d f o r m

Hm = 2 ( i B \ dt !|>i (x) Sa ( iIi (t) yB (x)

o r i n t e r m s o f c i r c u l a r l y - p o l a r i z e d w a v e s

( A . 1 5 )

( A . 1 6 )

H e r e # ( x ) a n d 41* ( x ) a r e t h e q u a n t u m o p e r a t o r s o f

t h e p a r t i c l e s . T h e c h a n g e o f t h e l a t t e r , i n t h e a p p r o x i -

m a t i o n l i n e a r i n H j ^ , i s d e t e r m i n e d i n a c c o r d a n c e

w i t h t h e e q u a t i o n o f m o t i o n b y t h e e x p r e s s i o n
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dt'[V(t'), (A.17)

and

where

F (t) = F, (t) + F+ (t), F, (t) = eiH<>t Hie~iH"1

( Ho is the unperturbed Hamiltonian of the system).
Commuting the operator eiH<>t with Hj and recog-

nizing that the only term of the unperturbed Hamilton-
ian which does not commute with Hj is
2^gHj ^a(x) S^^ip^(x) dr, which describes the inter-
action of the electrons with a constant magnetic field,
we obtain the explicit form of the operator Vt ( t ) :

Formula (A.17) thus assumes the form

where

$a(x) = Sa

[lBhSUe~
1 ' co —2a

,|3% (x) and 1>a

1 ^

(x)--=yySya,

a — 2\iBH —

(A.19)

flH>i (A.20)
id

Using (A.19), (A.20), and (A.6) we obtain the var i -
ation of the Green's function

(A.21)
Going over in (A.21) to the Fourier representation

and comparing it with (A.3), we arrive at equations
for the transverse components of Tf near resonance:

Near resonance we can neglect unity in the left
side of (A.22) and (A.23). We shall seek their solution
in the form

(A.24)

(A.25)

where q ( p ) = G +
1 — G, 1 .

Substituting (A.24) in (A.22) and (A.23), and
recognizing that

dip
)-G_(p)\- - = n+ — n_

(Oj. is the density of the particles in the states 1 and
2), we obtain the normalization constant a:

a2 = (n+ — raj"1 = -jjj- ,

where M is the total magnetic moment of the metal.
The quantities g(p) are smooth functions of the

argument and can be taken near the limiting momen-
tum pp. As seen from (A.24), the quantity
V ( ^ B / M ) g(Po) plays the role of the constant of in-
teraction between the electrons and the spin waves.

The quantity g(po), as seen from its definition, is
proportional to the energy gap £Q between the Fermi
surfaces of the electrons in states 1 and 2. For
s-electrons, for example, e0 ~ ^^C e F a n d the inter-
action constant is ~ ( / ig^cep/M)1 /2 , and for d-elec-
trons £Q ~ 0C a n d the coupling constant is

We can now easily obtain with the aid of (A.24) the
vertex part. Putting in (A.12)

g(p)g(p') (A.26)r - r i / ( i B

we obtain for the polarization operation n ( k )

_(p-k)-G_(V, e-co)].

When k tends to zero, the integral (A.27), as can
be verified by direct calculation, is proportional to
ak2, where a is of the same order of magnitude as
the Curie temperature. Thus, the spectrum of the
spin waves has the usual structure.

The expressions for the magnetic susceptibility
(A.8) take on, with the aid of (A.26), the following
final form:

X±((o, k ) = -
T-H-0 (A.28)

(2a)*
1
J '

Near resonance, the first term can be omitted. In
the case of an isotropic dispersion law (see (A.7)),
the integrals in (A.28) can be readily calculated, and
the susceptibility is written in standard fashion:

(A.29)

where Mo =
moment.
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