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I. INTRODUCTION

l\T present it is customary to divide nuclear reac-
tions into two classes: a) processes in which the en-
ergy and the momentum of the incident particle are
distributed over many degrees of freedom of the
nucleus and b) direct reactions, which are distinguished
by the transfer of the energy and the momentum pri-
marily to a single nucleon or to a comparatively small
group of nucleons (deuteron, triton, alpha-particle etc.).

At low and medium energies the processes of the
first type reduce essentially to the formation and de-
cay of compound nuclei. At high energies in reactions
of this type a large number of particles is observed to
be emitted which are either weakly or not at all cor re-
lated (in the c m . system for the reaction) with the
direction of motion of the incident particle.

On the other hand direct processes are character-
ized by the emission of one or several particles which
carry away practically completely the energy and the
momentum imparted to the nucleus. In such a case a
small amount of momentum and, as a rule, a very
small amount of energy is transferred to the residual
nucleus (frequently the nucleus remains in the ground
state or a state of low excitation). The angular distr i-
butions of particles emitted in direct processes are
sharply anisotropic and have only a weak dependence
on the energy of the initial particles.

Possible Approaches to the Theory of Nuclear Reac-
tions at High Energies

With respect to the reactions in which a large frac-
tion of the energy and the momentum of the incident
particle is transferred to the main part of the nucleus
the theory is at the stage of very rough models. They
may be subdivided into three groups: the simple sta-
tistical model, thermodynamic models, the cascade
mechanism.

The simple statistical model involves the assump-
tion of the slowness of variation of the reaction ampli-
tude compared to the phase space (the consequences
arising from such an assumption are explained below;
cf., pp. 00—00). The validity of the basic assumption
in this model is limited by the existence of quasista-
tionary states of nuclei which decay with the emission
of nucleons or of compound particles. In the case of
light nuclei and not very high degrees of excitation this
means that the reaction amplitude varies as a function
of the relative energy of a pair of final particles in a

resonance manner. But if the energy of excitation of
the residual nuclei is sufficiently high so that the
probability for their decay is determined by the den-
sity of levels of the final nucleus, then the spectrum of
the final particles will be of the evaporation type.

The essence of the thermodynamic models consists
of the assumption that the nuclear reaction proceeds
in two stages: at first the energy of the colliding par-
ticles is redistributed between the degrees of freedom
of the system under consideration (i.e., thermodynamic
equilibrium is established), and then the system be-
gins to disintegrate (to cool off). As is well known, at
low energies of the colliding particles the formation of
the compound nucleus does in fact take place, and this
fact can be easily interpreted, since the widths of the
excited nuclear levels are sufficiently small (i.e., the
lifetime of the compound nucleus is much greater than
a characteristic nuclear time). But with an increase
in the excitation energy the partial widths of the levels
also increase. Moreover, it appears probable that
although the number of quasi stationary levels is great,
it is still finite (in analogy with the bound states of a
particle in a potential well). Therefore, the possibility
of formation of an equilibrium compound system at
high energies becomes doubtful. Under such circum-
stances a theoretical discussion of specific phenomena
becomes highly speculative and difficult to check by
experiment, since the thermodynamic considerations
in nuclear physics often turn out to be on the border-
line of applicability owing to the relatively small num-
ber of systems in the statistical ensemble and to the
important role played by fluctuations as a result of
this.

The idea of the intranuclear cascade processes
(usually calculated by means of the Monte Carlo
method) consists of the nucleus being regarded as a
set of free independent nucleons with one of which the
incident particle collides. The nucleon which acquires
the momentum and the energy (or, in other words, the
secondary particle) collides with other nucleons etc.
The predictions of the cascade model lack pronounced
qualitative characteristics, in other words they are not
unique, and, therefore, there is never any certainty
that even those experimental data that agree with this
model could not be explained in a different manner.
This circumstance is of considerable importance if we
take into account the fact that the cascade model has
a rather poor physical basis: an examination of the
simplest examples convinces one of the necessity of
taking into account the relative motion of the nucleons
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and the structure of the nucleus even at high energies.
To a large extent, for the reasons indicated above,

the theory of processes involving large transfers of
energy and momentum to the nucleus will not be con-
sidered in this article. However, this does not mean
that we consider that an empirical study of such
phenomena is not worthy of attention. Perhaps it may
be this very region that will bring surprises which are
by no means infrequent in the history of nuclear phys-
ics.

Current ideas on the nature of direct processes r e -
duce, in short, to the assumption that a reaction of
such type is the result of the collision of the incident
particle with some virtual particle (nucleon, deuteron,
alpha-particle etc.) emitted by the target nucleus for
a short period of time. A quantitative formulation of
this kind of concept leads to the formalism of Feyn-
man diagrams (the well known impulse approximation,
in particular, corresponds to the simplest of such dia-
grams) . The application of this method to the theory of
direct reactions brought about by high energy particles
constitutes the object of the present review.

In this first section the necessary general informa-
tion and definitions are given. Section II is devoted to
a brief presentation of the essence and of the physical
content of the method of Feynman diagrams. In Sees.
Ill and IV pole diagrams are investigated (attention is
primarily directed to the methods of identifying the
pole mechanism and to pointing out the experiments
required to achieve this aim). In the last section V the
so-called final state interaction is considered (i.e.,
processes of the "rescat ter ing" by the residual
nucleus of the products of a virtual reaction). We are
also here pursuing the goal of making manifest such
observed effects which would enable one to establish
the mechanism of the process (i.e., the number and the
kinds of virtual particles and virtual reactions).

What is Achieved by Utilizing High Energy Particles
for Studying Nuclei ?

In nuclear physics it is customary to say that the
energy introduced into a nucleus by some external
agency is high if it is considerably in excess of the
average binding energy per nucleon in the nucleus
(6—9 MeV). Thus, in order of magnitude the high en-
ergy region begins from 100 MeV.

It is possible to study nuclear reactions at high en-
ergies with two aims in mind: to investigate the
properties of the nucleus itself or to obtain information
on the interaction between elementary particles and
nucleons. In the former case the question naturally
arises: what new information can be provided by
utilizing high-energy particles? Here one must first
of all point to three circumstances.

The first of these consists simply of the fact that as
the energy of the incident particles is increased the
range is extended of the values of the kinematic varia-

bles allowed by the conservation laws and by the r e -
lationship between the energy and the momentum of the
free particle (the so called physical region).

A second less trivial circumstance is that the exis-
tence of nucleon isobars and of the associated reson-
ance energy dependence of the amplitudes for the
scattering of mesons by nucleons can under certain
conditions be utilized for identifying the virtual proc-
esses constituting the mechanism of the reaction.

Finally, a third specific source of information are
the reactions of meson capture and of double charge
exchange of pions. These reactions can enrich our
information concerning reduced widths for deuterons,
tritons, a particles etc., or, in other words, concern-
ing the structure of the "cloud" of virtual particles
surrounding the nucleus.

It is necessary to emphasize that even at very high
energies nuclear structure can affect the course of
direct nuclear reactions in an essential manner. The
cross sections for reactions of this type at high ener-
gies will contain the same constants (reduced widths)
as in the case of low energies. An independent deter-
mination of these constants from experiments at low
and at high energies must give consistent results if our
ideas regarding the mechanism of direct processes
are correct.

The possibility of a unified description, in the sense
indicated above, of direct nuclear reactions over a
broad range of energies is significant also in the case
when for one reason or another the nucleus is utilized
merely as a target containing nucleons. Indeed, in
order to determine on the basis of an experimentally
measured nuclear cross section the unknown charac-
teristics of an elementary event (i.e., the interaction
of the incident particle with the nucleon) it is neces-
sary to obtain in an independent manner information
concerning the mechanism of the reaction and the con-
stants determined by the nuclear structure.

Amplitude, Cross Section, Phase Space

The amplitude for the reaction

l + 2-*3 + 4 + ...+n (1.1)

is the term applied to the complex quantity Mpa re la-
ted to the differential cross section dapa by the equa-
tion

(1.3)

Here the indices a and /3 denote the discrete quantum
numbers of the initial and final states, Pj and Pf are
the total four-momenta of these states, pj, p2 p n

are the momenta of the particles participating in the
reaction, v t and v2 are the velocities of particles 1 and
2. In formulas (1.2), (1.3), and everywhere in subse-
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quent d iscuss ion we shal l a s s u m e h" = c = 1 un less ex-
pl ici t ly s ta ted o the rwise . The quantity vi2 is n u m e r i c -
ally equal to the flux densi ty j 0 under the condition that
one pair of colliding pa r t i c l e s is p resen t per unit vol -
ume.

The probabil i ty of the react ion du>pa is r e la ted to
the differential c r o s s section by the equation

rfaRa = ——-, (1-4)

hz=(Pz~ Pa)2- (1-9)

where At is the duration of the observation. This
means that the reaction probability per unit time
is determined by the expression

da.'pa
At

(1.5)

where d(Jaa is given by formula (1.2).
The final aim of the study of every nuclear reaction

is the establishment of the functional dependence of
the amplitude on the kinematic variables—the momenta
and the energies of the initial and the final particles.

The number of independent kinematic variables is
determined by the number of particles participating in
the reaction, by the conservation laws, by the relation
between the energy and the momentum for a free par-
ticle and by the invariance of the amplitude under rota-
tions and Lorentz transformations (or Galilean t rans-
formations if all the particles are nonrelativistic).

If the amplitude does not depend on the spin states
of the particles before and after the reaction then all
the kinematic variables must be invariants of the
transformations of the coordinate systems and the
total number of such independent invariant variables
is equal to 3n - 10, where n is the total number of par-
ticles participating in the reaction (it is assumed that
n > 4). We note that in addition to the invariant func-
tions the amplitude also contains the factor
(2 St • 2 S2 ••• 2 &n>~1/2 where gn are the total energies
of the particles participating in the reaction. The in-
variant variables can be chosen in different ways. For
example, for n = 4 (two particles in the final state)
their number is equal to 2, and they can be chosen in
the following manner:

s12 = (P1 + P2)
t, <ia = ( / \ - /> , ) • . (1.6)

Here P a r e the four -momenta of the pa r t i c l e s , with

where % is the total energy of the pa r t i c l e .
We note that in v i r tue of the conservat ion laws we

have

As may be eas i ly seen, s12 is the squa re of the total
energy of pa r t i c l e s 1 and 2 in the i r cen te r of m a s s s y s -
;em, while t j 3 d e t e rmines the squa re of the t r a n s f e r r e d
momentum. Moreover , one could a lso ut i l ize the v a r i a -
ble t23 = t14:

But between s12, t13, and t23 t h e r e exis ts the l inear r e -
lation

+ ml (1.10)

where m a r e the m a s s e s of the pa r t i c l e s .
As pointed out previously , the t e r m "h igh energy

p a r t i c l e " in nuclear physics does not exclude the
possibi l i ty that the pa r t i c le can be nonre la t iv is t ic . In
such a c a s e instead of s12 , t13 o r t23 it i s convenient to
ut i l ize the va r i ab les "s12, ^i3 or F23 which a r e invariant
with r e spec t to Galilean t rans format ions and ro ta t ions :

2 + 2

3= — (P2 — 2 — m3)(E2 — E3).

Here

( L I D

(1.12)

(1.14)

i s the kinetic energy of the nonre la t iv is t ic par t ic le .
Up to t e r m s of o r d e r E2/m.2 we have

si2 = «i2 — (mi + m2)2, ti3 = ti3— (mi —

F r o m (1.8) and (1.15) it follows that

where

Q = mi-\-m2— m3 — mk.

We note that

= hi — 2 i + m4 —
1 — m3)Q, \

2 — m3) Q. )

(1.15)

(1.16)

(1.17)

(1.18)

It i s a lso c l e a r that s ^ / 2 ( m j + m-) is the kinetic en-
e rgy of the pa r t i c l e s i and j in the i r cen te r of m a s s
sys tem.

If reac t ions involving production of t h r ee pa r t i c l e s
a r e being considered , then n = 5 and the number of
invar iant va r i ab les will be 3 x 5—10 = 5. In this c a se
one can se lec t as independent va r i ab l e s , for example

S45, (1.19)

o r the cor responding nonre la t iv is t ic va r i ab l e s .
When the reac t ion ampli tude depends on the spin

s t a t e s of the pa r t i c l e s then it contains invar iants
formed from s p i n - t e n s o r s and momenta . The coeffi-
c ien ts assoc ia ted with these invar iants a r e functions of
the invariant va r i ab l e s and a r e r e f e r r e d to as invar -
iant ampl i tudes . They de te rmine the complete dy-
namics of the p r o c e s s (or, in o ther words , the mechan-
i sm of the react ion) s ince the construct ion of the
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spin-tensors themselves is a purely kinematic prob-
lem the solution of which can be carried through to the
end if the spins of the particles are known.

The number of invariant amplitudes determining the
number of independent experiments required for a
complete reconstruction of the amplitude from the ex-
perimental data is generally speaking, equal to

. . . x (2 / n (1.20)

where J are the spins of the particles. In the n = 4
case the conservation of parity reduces this number
by approximately a factor of two.

The increase in the number of invariant variables
and of invariant amplitudes with increasing n is the
first reason why the study of nuclear reactions with
the emission of a large number of nucleons becomes
extraordinarily complicated. Indeed, in this case it is
necessary either to test experimentally the theoretical
predictions concerning the behavior of several func-
tions of a large number of variables, or, if there ex-
ists no quantitative theory of the phenomenon, to r e -
construct these functions from the experimental data.
In the present state of nuclear experiments it is hardly
possible to achieve either one of these two objects.
The second circumstance preventing the elucidation of
the mechanism of the reaction in the case of large n
(practically for n > 5) is the fact that in this case the
so-called phase space often turns out to be a much
more rapidly varying function of the kinematic varia-
bles than the amplitude itself.

The phase space AV is usually the term used to de-
note the integral

AF=jj b(Pi-Pf)d*p3d
3pi...d

3pn. (1.21)
G

The domain of integration G in (1.21) corresponds to
the given ranges of variation of the momenta of the
final particles. It is clear that if I M ^ I 2 is a function
of the kinematic variables which varies much more
slowly than the phase space AV, then it is the latter
that will in the main determine the variation of the
differential cross section (1.2). If G encompasses the
whole range of variation of the momenta p3, p4, ..., p n

determined by the conservation laws, then formula
(1.21) gives the total phase space of the reaction V
which for sufficiently large n will significantly affect
the dependence of the total cross section for the reac-
tion on the energy of the colliding particles.

The integration in (1.21) for arbitrary n can be
carried out only numerically. However, in the nonrela-
tivistic limit the integral (1.21) can be evaluated
analytically. In this approximation we have for the
total phase space

= n — 2, (1.22)

(1.23)

(1.24)

(W is the total kinetic energy of the final particles in
their center of mass system) and

ifl i s o d d[ ( T
) = 1 *d»

l 2 2 Yn(3l-5)\\. if U s even. (A)

Remaining within the framework of the nonrelativis-
tic approximation it is not difficult to obtain also the
dependence of the differential cross section on the
kinematic variables as determined by the phase space.
For example, for the energy spectrum of one of the
final particles we obtain, setting IM^^I2 = const

3n-14

dE3 V W \ m' W )
Here

(1.25)

. . . + mn, (1.26)

L.27)

where Ooa is the total cross section.
For the angular correlation between two of the final

particles (for example, 3 and 4) we have

"56...n s 3/2
) Viz),

(1.28)

where z is the cosine of the angle between the momenta
of particles 3 and 4 in the center of mass system for
the reaction,

ya

+ m6 -|- . . .
(m3-t-m") (

(1.29)
(1.30)

If m" is considerably larger then the mass of either
one of the particles 3 or 4, then a « 1 and formula
(1.29) becomes considerably simplified:

cp(z) (1.31)

From the formulas given above it follows that the
dependence on the kinematic variables determined
only by the phase space alone can be quite sharp. This
can be illustrated by several examples.

Figures 1, 2, and 3 respectively show the spectra
for protons, deuterons, and tritons produced in the
capture by the C12 nucleus of stopped if mesons. The
dotted curves calculated by means of formulas
(1.25)—(1.27) correspond to energy spectra deter-
mined by the phase spaces for the reactions

\ j - p J i • — - > 2n, (1.32)
where
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FIG. 1. The energy spectrum of the protons in the reaction
C12 + n -• Be* + p + 3n. Dotted curve — phase space, solid curve
a-particle mechanism.

O 60 80

£f, MeV
FIG. 3. The energy spectra of the tritons in the reaction C12

+ n -> Be' + t + n. Dotted curve — phase space, solid curve —
a-particle mechanism.

.MeV

FIG. 2. The energy spectrum of the deuterons in the reaction
C12 + n -> Be8 + d +• 2n. Dotted curve — phase space, solid curve
a-particle mechanism.

T h e s o l i d c u r v e s a r e o b t a i n e d u n d e r t h e a s s u m p t i o n

t h a t t h e m e c h a n i s m of t h e r e a c t i o n s (1.32) r e d u c e s t o

t h e e m i s s i o n b y t h e C 1 2 n u c l e u s of a v i r t u a l a p a r t i c l e

w h i c h c a p t u r e s a if m e s o n . In t h i s c a s e t h e a m p l i t u d e

f o r t h e r e a c t i o n d e p e n d s on t h e m o m e n t u m d i s t r i b u t i o n

of t h e v i r t u a l a p a r t i c l e s w h i c h a t s u f f i c i e n t l y low

m o m e n t a of t h e r e s i d u a l B e 8 n u c l e u s i s w h o l l y d e t e r -

m i n e d b y t h e e f f e c t i v e r a n g e of t h e f o r c e s b e t w e e n an

a p a r t i c l e a n d t h e B e 8 n u c l e u s a n d b y t h e e n e r g y r e -

q u i r e d t o s e p a r a t e t h e a p a r t i c l e f r o m t h e B e 8 n u c l e u s .

A s c a n b e s e e n f r o m F i g s . 1 a n d 2, t h e d e p e n d e n c e d e -

t e r m i n e d b y t h e p h a s e s p a c e t u r n s ou t t o b e s o s t r o n g

t h a t t a k i n g i n t o a c c o u n t t h e a v a i l a b l e a c c u r a c y i t i s no t

p o s s i b l e t o m a k e a n y c o n c l u s i o n s r e g a r d i n g t h e m e c h -

a n i s m of t h e r e a c t i o n b a s e d on t h e e x p e r i m e n t a l d a t a

on t h e e n e r g y s p e c t r a of t h e p r o t o n s a n d d e u t e r o n s .

A c o m p l e t e l y d i f f e r e n t s i t u a t i o n e x i s t s in t h e c a s e

of t h e e n e r g y s p e c t r u m of t r i t o n s ( F i g . 3) . In t h i s c a s e

t h e n u m b e r of f i n a l p a r t i c l e s i s s m a l l e r a n d t h e p h a s e

s p a c e t u r n s ou t t o b e a m u c h s m o o t h e r func t ion w h i c h

s i g n i f i c a n t l y d i f f e r s f r o m t h e s h a p e of t h e c u r v e f o r

d i f f e r e n t i a l c r o s s s e c t i o n e v a l u a t e d on t h e a s s u m p t i o n

of t h e " a - p a r t i c l e m e c h a n i s m " f o r t h e c a p t u r e of

7r m e s o n s ( t he t h e o r e t i c a l c u r v e s in F i g s . 1—3 h a v e

b e e n t a k e n f r o m t h e a r t i c l e by Kolybasov^ 1 - ' , a n d t h e

e x p e r i m e n t a l d a t a f r o m t h e p a p e r b y V a i s e n b e r g and

c o - w o r k e r s ' - 2 - ' ; cf., a lso ' - 3- ' ) .

F i g u r e 4 s h o w s t h e a n g u l a r c o r r e l a t i o n b e t w e e n t w o

n e u t r o n s p r o d u c e d in t h e f i r s t t w o r e a c t i o n s (1 .32 ) .

T h e d o t t e d c u r v e i s c a l c u l a t e d by m e a n s of f o r m u l a s

(1 .28)—(1.30J f o r t h e c a p t u r e of a if m e s o n b y a f r e e

a p a r t i c l e a t r e s t , i . e . , i t i s e n t i r e l y d e t e r m i n e d by t h e

p h a s e s p a c e of t h e r e a c t i o n s

H e 4 -'• j t " —
j M - 3 / i ,

( 1 . 3 3 )

T h e f a c t t h a t b o t h r e a c t i o n s ( 1 . 3 3 ) a r e d e s c r i b e d b y a

s i n g l e c u r v e i s e x p l a i n e d b y t h e s t r u c t u r e o f t h e f u n c -

t i o n <p(z) w h i c h d e p e n d s o n l y o n t h e m a s s e s o f p a r t i c l e s

3 a n d 4 a n d t h e t o t a l m a s s o f a l l t h e r e m a i n i n g p a r t i -

c l e s . T h e s o l i d c u r v e 1 c o r r e s p o n d s t o t h e " a - p a r t i c l e

m e c h a n i s m " f o r t h e c a p t u r e o f a if m e s o n m e n t i o n e d

above. F o r compar i son Fig. 4 also shows expe r imen-

ta l data of Ozaki et al.'•*•', which a r e in te rpre ted by

some authors (cf., for example, [ 5 > 6 ] ) as a confirmation

of the two-nucleon mechan i sm for pion absorption (in

Fig. 4 curve 2 co r r e sponds to such a " d e u t e r o n m e c h -

a n i s m " ; al l the theore t i ca l c u r v e s in th is d i ag ram a r e

F I G . 4 . A n g u l a r c o r r e l a t i o n o f n e u t r o n s f o r m e d i n t h e r e a c t i o n s

Dotted curve — phase space for the reactions

, t - -[• H e * ->• p r : ln , (( -;- 'in.

S o l i d c u r v e 1 — a - p a r t i c l e m e c h a n i s m , c u r v e 2 — d e u t e r o n m e c h a -

n i s m .
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taken from the paper by Kolybasov'-7-'). As can be seen
from Fig. 4, at present one can hardly draw such a
conclusion with certainty, and for the solution of this
problem it is necessary to decrease the experimental
e r ror by at least a factor of two (we note that a number
of other facts also provide ground for doubting the
dominant contribution of the two-nculeon mechanism
of pion absorption by C12 and Ole nuclei (cf.[1"3])).

II. FEYNMAN DIAGRAMS

Amplitudes Instead of Wave Functions

The method of Feynman diagrams differs from the
well-known Schrodinger formalism by the fact that it
enables us to avoid the explicit use of nuclear wave
functions. This latter fact is essential particularly in
the case when we consider direct reactions with the
emission of nuclear particles more complicated than
nucleons, or when such particles occur in the inter-
mediate stages of the reaction in virtual form (for ex-
ample, in the reactions of meson capture, double
charge exchange of pions, and others). Indeed, the
nucleus can almost never be regarded as a stationary
system of deuterons, tritons, a particles, etc. since
the distance between the "internal levels" for each of
these particles can not be regarded as large compared
to the nuclear levels. In terms of classical physics
this means that the motion of the center of mass of a
particle in the nucleus is not slow compared to the mo-
tion of nucleons within the particle itself. In other
words, the individuality of the compound particles in
the nucleus is lost or, more exactly, their number is
not conserved: they are formed and dissociate with a
period equal in order of magnitude to the duration of a
direct reaction (i.e., to the time of passage of a fast
particle through the nucleus). Insofar as the wave func-
tion for the nucleus cannot be represented in the form
of a product of " internal" wave functions of the parti-
cles and a wave function describing their relative mo-
tion, the reactions involving compound particles (real
or virtual' have a different appearance in the Schro-
dinger formalism than reactions in which only nucleons
participate. This circumstance does not correspond to
the experimental facts according to which no qualitative
difference is observed between direct reactions involv-
ing the emission of nucleons or of compound particles.
Such a "nonequivalence" of compound particles and of
nucleons does not occur in the method of Feynman dia-
grams, in which any nucleus appears in the theory on
the same basis as an elementary particle.

In the diagram method the basic concept of the

FIG. 5. Diagram for the decay A->B

theory is not a wave function, but an amplitude of a
real or a virtual process. Moreover, the real and the
virtual processes are described by the same amplitude
but only corresponding to different values of the kine-
matic variables.

Amplitude of the Virtual Process

We consider the decay

A—y-B ]-y (2.1)

of the nucleus A into the nucleus B and the particle y
which we represent by the diagram shown in Fig. 5.

If the decay is actually possible, then as a conse-
quence of the conservation laws and of the relations
between the energy and the momentum for each of the
particles all the kinematic variables are fixed and are
determined by the masses of the particles. Specific-
ally, the momenta p-g, p v of the nonrelativistic parti-
cles B and y in their center of mass system are de-
termined by the equations

P B = — Vu <

mBu -

(2.2)

(2.3)

while their kinetic energies Eg and E v are respectively
equal to

mBy
2m f

(2.4)

If the decay is virtual, i.e., if it occurs only for a
finite time, then the energies of the particles Eg and
E y cannot be measured exactly, while the momenta,
being variables canonically conjugate to the spatial
coordinates, can have completely definite values at
each instant of time. Therefore relations (2.4) do not
exist (it is said that the particles B and y are "off the
mass shell'?):

2m r
F =fc q (2.5)

while the laws of conservation of energy and momenta
are valid as before in virtue of the homogeneity of
space and time:

.„ = (). (2.6)

Thus, in this case we have two independent varia-
bles the values of which are not fixed by the conserva-
tion laws: the energy of one of the particles (Eg or Ev)
and the square of the momentum q2 in the center of
mass system. The invariant amplitudes describing
the virtual decay are functions of the variables indica-
ted above. But the amplitudes for the real decay are
numbers corresponding to the values of these functions
at points determined by equations (2.3) and (2.4).

In an analogous manner one can introduce the am-
plitudes for other more complicated virtual processes.
In particular, the simplest mechanism for the reaction
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A(x, xy)B of quasielastic scattering of particle x by
particle y reduces to two virtual processes: the decay
A — B + y and the elastic scattering y(x, x)y (cf., Fig.
6). The invariant amplitudes for the process of scat-
tering of real particles, as has been elucidated in the
preceding section, are functions of two independent
variables, for example, s x v and t ^ . But if the parti-
cle y is virtual and as a result of this is off the mass
shell, then the amplitude for the scattering process
will also depend on one more variable P^ * m 2 1 ' .
According to the conservation laws we have

Therefore

(2.7)

(2.8)

with, in contrast to the scattering of real particles,
t A B * mL Correspondingly in the nonrelativistic ap-
proximation we have

mB
(2.9)

In t h e c a s e of r e a l s c a t t e r i n g q 2 s a t i s f i e s E q . ( 2 . 3 ) ,

a n d t h e n w e h a v e

^AB ~2mvQ. ( 2 . 1 0 )

E q u a t i o n ( 2 . 1 0 ) d o e s n o t h o l d f o r v i r t u a l s c a t t e r i n g .

T h u s , t h e i n v a r i a n t a m p l i t u d e s f o r e l a s t i c s c a t t e r -

i n g w i l l d e p e n d i n t h e e x a m p l e u n d e r _ c o n s i d e r a t i o n o n

t h r e e v a r i a b l e s s x v , t ^ a n d t ^ g ( o r t ^ g ) - S i n c e t h e

k i n e t i c e n e r g y o f t h e v i r t u a l p a r t i c l e y i s n e g a t i v e if

t h e t a r g e t n u c l e u s A i s s t a b l e t h e n t h e v a l u e s o f a l l

t h r e e v a r i a b l e s w i l l , g e n e r a l l y s p e a k i n g , d i f f e r f r o m

t h o s e w h i c h a r e r e a l i z e d i n t h e s c a t t e r i n g o f f r e e p a r -

t i c l e s . H o w e v e r , i t i s i m p o r t a n t t o e m p h a s i z e t h a t

b o t h r e a l a n d v i r t u a l s c a t t e r i n g i s d e s c r i b e d b y t h e

s a m e a n a l y t i c f u n c t i o n s b u t o n l y c o r r e s p o n d i n g t o d i f -

f e r e n t v a l u e s o f t h e i n v a r i a n t v a r i a b l e s .

A m p l i t u d e o f Q u a s i e l a s t i c S c a t t e r i n g

W e n o w d e t e r m i n e t h e f o r m o f t h e a m p l i t u d e f o r t h e

r e a c t i o n A ( x , x y ) B c o r r e s p o n d i n g t o t h e m e c h a n i s m o f

q u a s i e l a s t i c s c a t t e r i n g d e s c r i b e d a b o v e . F o r s i m p l i c -

i t y w e s h a l l a s s u m e t h a t a l l t h e p a r t i c l e s a r e s p i n l e s s ,

s o t h a t e a c h o f t h e t w o v i r t u a l p r o c e s s e s w i l l b e d e s -

c r i b e d b y o n e i n v a r i a n t a m p l i t u d e .

W e d e n o t e t h e a m p l i t u d e f o r t h e v i r t u a l d e c a y ( 2 . 1 )

b y M j , a n d t h e a m p l i t u d e f o r t h e e l a s t i c s c a t t e r i n g

y ( x , x ) y b y M 2 . T h e n i n a c c o r d a n c e w i t h ( 1 . 5 ) t h e

p r o b a b i l i t y o f d e c a y d W j d u r i n g a s m a l l t i m e A t w i l l b e

g i v e n b y

I2 A7'
dWi _= At • -6(PA~Pn^P,J)d

spBd^pljt (2.11)

The factor ATdSy/2ir in (2.11), where AT is a macro-

*By PY, PA, PB respectively we have denoted the four-mo-
menta of particle y and of nuclei A and B.

FIG. 6. Diagram for quasielastic scattering.

scopic time large compared to the reaction time At,
takes into account the increase in the dimensionality of
the phase space as a result of the fact that the energy
of the virtual particle %„ has become an independent
degree of freedom. The probability dW2 for elastic
scattering will be given by

f 6 (Py + Px_ p-y _ P'x) cPp'x (2.12)

(Here the primed quantities refer to the final state.)
The probability dW for the complete process as a
whole will evidently be obtained by integrating the
product dWtdW2 over all the values of the energy and
the momentum of the virtual particle y. Carrying out
this integration we obtain

-P*)- (2.13)

Comparing (2.13) with (1.5) we find that the desired
amplitude M of the complete process as a whole is
given up to a phase factor by the equation

M =. MiM2 At. (2 .14)

In o r d e r t o f ind At w e c a n u t i l i z e t h e u n c e r t a i n t y

r e l a t i o n

Agw-A*=--1, (2.15)

w h e r e A %y i s t h e d e v i a t i o n of t h e e n e r g y of t h e v i r t u a l

p a r t i c l e f r o m t h e m a s s s h e l l . S i n c e Q i s c o n s i d e r a b l y

s m a l l e r t h a n m w e c a n u t i l i z e t h e n o n r e l a t i v i s t i c

r e l a t i o n b e t w e e n t h e e n e r g y a n d t h e m o m e n t u m . T h e n

w e h a v e

: E,, - Py
2m, 2m „

(2.16)

Substituting (2.16) into (2.14) we obtain

) M2(tAB, sxy,txx) (2.17)
T 2

where

= — Q ---- mD ••]- m — rnA ( 2 . 1 8 )

i s t h e b i n d i n g e n e r g y o f t h e p a r t i c l e y t o t h e n u c l e u s B .

W e n o w c o m p a r e f o r m u l a ( 2 . 1 7 ) w i t h t h e d i a g r a m o f

F i g . 6 . U t i l i z i n g t h e d i a g r a m w e c a n e a s i l y w r i t e d o w n

t h e e x p r e s s i o n f o r t h e a m p l i t u d e if w e a g r e e t o m a k e

t h e v e r t i c e s c o r r e s p o n d t o t h e a m p l i t u d e s M , a n d M 2 ,
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and the internal line to the factor proportional to
2my/(py — 2myEy) which is called the propagator.

General Formula for the Amplitude Corresponding to a
Feynman Diagram

The qualitative argument carried out above can be
replaced by a more rigorous one based on utilizing the
apparatus of second quantization. With its aid we can
obtain the amplitudes for reactions involving a larger
number of virtual particles and processes. Moreover,
just as in the example of quasielastic scattering con-
sidered above the amplitude can be represented graph-
ically by means of the following correspondence rules:

a) to each r- th vertex we set in correspondence the
amplitude of the virtual process M r :

b) integration over independent (i.e., not fixed by
the conservation laws) four-momenta of the virtual
particles corresponds to the element of phase volume
d3kdE/(27r)4 (k is the momentum of the virtual particle,
E is its kinetic energy);

c) to each internal line we set in correspondence
the propagator

2im

where r\ > 0 is an infinitesimal increment which indi-
cates the rule for going around the poles in the course
of integration.

To this we should add that at each vertex the law of
conservation of four-momentum holds, and that the
common coefficient of the amplitude is the phase fac-
tor iv~ J where v is the number of vertices in the dia-
gram (i.e., the number of virtual processes). If the
diagram contains v vertices and n internal lines, then
the number I of independent four-momenta of virtual
particles is given by the relation

l = n — v + l. (2.19)

In accordance with what is stated above the amplitude
for the process has the form

M = N ... Mv i dEt (2.20)

N = -
n) ... (kl-2mnEn-ii\) '

- m^mi . . . mn. (2.21)

The expression (2.20) is also valid when the part i-
cles participating in the reaction have arbitrary spins.
Only in this case the integral sign should be interpre-
ted also as involving a summation over the components
of the spins of the virtual particles.

The amplitude (2.20) has been written on the as-
sumption that all the virtual particles are nonrelativis-
tic, while the initial and final particles can have arbi-
t rary energies. Just such a situation is realized in
nuclear reactions (in particular, also at high energies)
when the energy and the momentum transferred to the
nucleus are small.

For one and the same reaction one can indicate an

FIG. 7. Final state interaction.

infinite number of Feynman diagrams. For example,
for the reaction A(x, xy)B, in addition to the diagram
of Fig. 6 there exists also a set of comparatively sim-
ple diagrams taking into account the interaction of the
virtual particle y with the residual nucleus (Fig. 7).
The mechanism corresponding to this diagram con-
tains, compared with the diagram of Fig. 6, one more
virtual reaction—scattering (elastic or inelastic) of the
particle y by the nucleus B (with the inelastic scatter-
ing capable of occurring both with an increase or a de-
crease in the kinetic energy of the colliding particles
y and B). Thus, generally speaking, the total amplitude
for the reaction represents a sum of an infinite number
of terms of the type (2.20). In the modern theory of
nuclear reactions as a rule one takes into account one
or several diagrams, and in the best case the sum of a
selected infinite series of diagrams.

One can indicate several considerations which to a
greater or lesser extent justify the selection of dia-
grams usually carried out.

The first of these consists of the fact that the am-
plitudes for virtual reactions (for example, of the type
of the decay of a nucleus into two particles) are differ-
ent for different particles, and can be much larger for
some of these than for others. In this case the repre-
sentation of the amplitude for the reaction in the form
of a series of Feynman diagrams will be similar to the
series arising in perturbation theory but not in terms
of the constant of strong interaction, but in terms of
the effective values of the amplitudes for the virtual
processes, and this is not the same thing.

A second important circumstance is that in order to
explain the variation of the differential cross sections
it is essential to separate out from the amplitude the
most rapidly varying terms. A function varies most
rapidly near its singular points. Therefore, the prob-
lem consists of picking out such diagrams the singu-
larities of which are situated closest of all to the
physical region. The singularities of the amplitude
(2.20) can be determined on the one hand by the singu-
larities of the amplitudes for the virtual processes,
and on the other hand by the denominator of the inte-
grand. The latter means that even in the case when
the amplitudes for the virtual processes are constants
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the integral (2.20) nevertheless represents a definite
function of the invariant kinematic variables entirely
determined by the mechanism of the process, i.e., by
the number and by the type of the virtual particles and
also by the sequence of the reactions in which they
take part. Thus, the problem arises of finding the
singularities of the integrals (2.20) and of selecting
from them those nearest to the region in which a study
of the differential cross section is being made. It is
essential that these singularities can be found without
evaluating the integral itself which is not always pos-
sible to perform analytically.

Singularities of the Diagrams

The rules for finding the singularities of Feynman
diagrams were indicated in a general form by
Landauf8-' and have been developed with reference to
nonrelativistic diagrams by Blokhintsev, Dolinskii,
and Popov^14-' (cf., also^12-'). These rules consist of
the requirements that the values of the energies and
the momenta of all the virtual particles at a singular
point must:

a) satisfy the laws of conservation of four-momen-
tum at each vertex of the diagram;

b) lie on the mass shell;
c) satisfy the "stretching" equation

V a,XrPr 0,
r=l

V ar--=\. (2.22)

Here P r are the four-momenta of the virtual particles,
the summation is carried out over all the internal
lines and \ r is a sign factor equal to ±1 depending on
whether a given internal line is directed along or op-
posite to the positive direction of the closed circuit of
the diagram (the choice of this direction is, naturally,
arbitrary). From these rules it follows, in particular,
that at a singular point the energies and momenta of
all the virtual particles are determined uniquely. If
the singularity of the diagram does not accidentally
coincide with a singularity of some amplitude for the
virtual processes then these amplitudes can be regar-
ded as constants in the neighborhood of the singularity
of the diagram and taken outside the integral sign in
(2.20). This means that the variation of the differential
cross section near a singularity of the Feynman dia-
gram is determined directly and exclusively by the
mechanism of the process. An experimental study of
the cross sections in these domains of variation of the
kinematic invariants is of the highest interest.

As we have already noted, the singularities of the
Feynman diagrams with the exception of the normal
thresholds with respect to the energy variables lie in
the unphysical region. In connection with this it is
always desirable to design an experiment in such a
manner as to have the possibility to approach the
singular point extremely closely. In this respect the
use of high energy particles opens up, as can be seen

from what follows (cf., Sec. V), a number of new pos-
sibilities.

The singular points of the amplitude (2.20) have a
simple physical meaning: since at a singular point all
the virtual particles are on the mass shell, then ac-
cording to (2.15) this means that the duration of the
existence of a virtual state, i.e., the duration of the
reaction, is At = °°. Thus, as we approach the singu-
larity the duration of the reaction must increase.

The singularities of the Feynman diagrams are
divided according to their nature into simple poles,
and also into root and logarithmic branch points. The
poles correspond to all the diagrams with a single
internal line. Therefore, such diagrams are called
pole diagrams. In particular, the diagram of Fig. 6
corresponds, as can be seen from (2.17), to a pole with
respect to the variable t^-g. Diagrams containing two
or more internal lines correspond to branch points.
In particular, the diagram of Fig. 7 corresponds to
two branch points (a root and a logarithmic branch
point) with respect to the variable s g y and to a logar-
ithmic branch point with respect to the variable t ^ .
We note a useful relation between the singularities of
diagrams which can be converted into one another by
condensing into a point a single or several lines: a
given diagram contains within it all the singularities
of the diagrams obtained by "condensing" it.

We point out two important consequences of the
nonrelativistic approximation with respect to the vir-
tual particles. The first of them consists of the fact
that the amplitudes of the diagrams containing uni-
directional closed circuits are equal to zero. One such
diagram is shown in Fig. 8.

This rule is related to the fact that a nonrelativistic
propagator contains in the denominator the first power
of the energy, or, in other words, it has one pole and
not two (corresponding to a particle and an antiparti-
cle), as in the relativistic case.

The second consequence is also related to the
choice of diagrams. It consists of the fact that only
those diagrams must be utilized for which the numbers
n and I satisfy the inequality

n>~. (2.23)

The inequality (2.23) guarantees the convergence of the

A x
FIG. 8. Diagram with a unidirectional closed contour.
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integrals (2.20) even in the case when all the ampli-
tudes of the virtual processes can be regarded as con-
stants. In this case the effective domain of integration
is nonrelativistic: it is determined by the binding en-
ergies at the vertices or by the values of the nonrela-
tivistic kinematic invariants. If the inequality (2.23) is
not satisfied the convergence of the integral (2.20) can
be due only to the falling off of the form factors con-
tained in the amplitudes for the virtual processes.
This falling off must be sufficiently rapid in order to
make the effective domain of integration in (2.20) a
nonrelativistic one. Since the remainder of the inte-
grand at most does not fall off with an increase in the
four-momenta of the virtual particles, it follows that
the total integral as a whole will be small (of the order
Ve/m or less) compared with the diagrams satisfying
relation (2.23) (for greater details on this point see'-4-').

The impulse approximation in the theory of reac-
tions at high energies in fact reduces to an investiga-
tion of a pole (Fig. 6) and a triangular (Fig. 7) dia-
gram. The amplitudes corresponding to these diagrams
have different singularities and a number of other
characteristic features which can be utilized in order
to determine experimentally the relative contribution
that each of them makes to the total amplitude for the
reaction.

In subsequent sections we shall investigate the
properties of the diagrams of Fig. 6 and 7 and we
shall indicate certain experiments desirable from the
theoretical point of view.

HI. THE POLE APPROXIMATION

Domain of Applicability

The applicability of the pole approximation is r e -
stricted to small transferred momenta q. Specifically
we must have

0 < q2

where

= 2mBye.

(3.1)

(3.2)

The restriction (3.1) is associated with the fact that
for large q2 it becomes essential to take into account
diagrams with singularities further removed from the
physical region. The point is that as we move away
from the singular point the rate of variation of the
function and its absolute value cease to depend on the
position of the singular point, and, therefore, for
q2 » K2 the diagram with the nearest pole singularity
has no special features distinguishing it from the
others. The inequality (3.1) is not, of course, a suffi-
cient condition for the applicability of the pole approxi-
mation. It is hardly possible at the present time to
give a literal formulation of such a condition. There-
fore, it is extremely important to have a criterion
with the aid of which one might experimentally estab-
lish the correctness of the pole approximation in each
specific case.

The Treiman-Yang Criterion

The formula (2.17) for the pole diagram shown in
Fig. 6 is distinguished by two notable properties: the
amplitude of the reaction is first of all factorized, i.e.,
it can be separated into a product of two amplitudes
and a propagator and, secondly, it depends only on the
three variables, sXy, txx> and t^B- instead of five (cf.,
(1.19)) in the general case. The first of these proper-
ties enables us to express the differential cross sec-
tion for the reaction in terms of the differential cross
section for the virtual process at the right hand vertex
(elastic scattering in the present case), while the sec-
ond property enables us to indicate a simple, in prin-
ciple, method for experimentally separating out the
pole mechanism, which has been given the name of the
Treiman-Yang criterion^13].

The essence of this criterion consists of the follow-
ing. In the rest system of the incident particle x (i.e.,
in the system in which p x = 0) all three invariants
sXy, txx, and t ^ g do not vary as the (px, pQ plane is
rotated around the direction of the momentum of the
virtual particle:

Vy = PA — VB = pi + Vy (3-3)

where p^ and Py are the momenta of the final particles
x and y. From this it follows that the corresponding
differential cross section also will not vary under such
a rotation

In order to carry out a verification of the Treiman-
Yang criterion it is necessary to vary the direction of
emission of the final particles and the energy of one of
them (if the energy of the incident particle is known).
The relation between the differential cross section
d<7/dfixdft'd£x measured in the laboratory reference
system and the square of the modulus of the amplitude
for the reaction can be easily obtained by utilizing
formula (1.2):

I M I2 -
1 I ~

(2")5
Py — P'xz'xy + Px-xy

da (3.4)

Here $0 is the total energy of the colliding particles in
the laboratory reference system, d£2x, dfiy are the ele-
ments of the solid angles for the final particles

(3.5)
-" PxPy " PxPy

Formula (2.17) was obtained on the assumption that the
spins of all the particles participating in the reaction
are equal to zero. In this case we have

^ 7 , (3.6)

where F depends exclusively on the invariant varia-
bles. Substituting (3.6) into (3.4) and taking into ac-
count the fact that in the laboratory system g^. = m A
we obtain the quantity |F |2 which is invariant with
respect to the Treiman-Yang rotation:

PxPy Py + — pxzx
do (3.7)

dii'x y d%'x
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The fact that the particles have spins is essential
in two respects. Firstly, in this case the amplitudes of
the virtual reactions depend not only on the invariant
variables but also on the spin-tensors and the momenta
of the particles. Secondly, in formula (2.17) one must
carry out a summation over the components of the
spin of the virtual particle.

It can be shown that for particles with spin expres-
sion (3.6), averaged and summed over the components
of the spins of the initial and the final particles, which
we denote by the symbol |F |2 , also depends only on the
invariant variables. It is clear that the applicability of
the Treiman-Yang criterion in the case of particles
with spin depends on the factorizability of the quantity
|F|2 . Indeed, if factorization occurs then this means
that the virtual processes of decay and scattering can
be regarded as independent. In this case noninvariance
with respect to the Treiman-Yang rotation is equiva-
lent to an azimuthal asymmetry of the scattering
process in the system in which the incident particle x
is at rest . Such asymmetry can occur only if at least
one of the colliding particles is polarized. In the case
under consideration the beam of x particles is not
polarized. As regards the particles y, their source is
the virtual decay of the nucleus A. But if the nucleus
A is not polarized, and we do not observe a polariza-
tion of the nucleus B then the particle y also cannot be
polarized, since in the center of mass system of the
particles B and y there is no physically preferred
plane.

If the spin Jy of the virtual particle y is equal to
zero, then JF|2 will be invariant with respect to the
Treiman-Yang rotation, since in this case the ampli-
tude of the reaction is itself factorized. If Jy * 0, then,
generally speaking, |F |2 is not factorized, but for non-
relativistic virtual particles one can indicate a fairly
broad class of processes when factorization does oc-
cur * . In order to enumerate these cases we consider
the spin characteristics of the virtual reactions ap-
pearing in the diagram of Fig. 6.

The decay A —• B + y can be conveniently charac-
terized by the spin of the exit channel Jgy which takes
on the values

and by the number Lg y restricted to the range

(3.8)

(3.9)

The virtual scattering y(x, x)y can be described
with the aid of the spins of the entrance (JXy) and exit
(Jxy) channels and by their vector difference L™.
These quantities satisfy the inequalities

(3.10)" X " U

] J xy

: / * J xy ^ J x

(3.11)

torization of |F | 2 occurs if at least one of the following
conditions is satisfied:

(3.12)
Jy = 0, 1/2,

Bu--0, 1/2, (3.13)

(3.14)

If all the particles participating in the reaction are
nonrelativistic then invariance with respect to the
Treiman-Yang rotation will also occur in two other
cases:

/*„ = <), 1/2,
LXy = 0.

(3.15)

(3.16)

Everything stated above refers to the reaction
A(x, xy)B. However, the results obtained above can be
easily reformulated for any reaction of the type
A(x, yz)B in which the virtual particle does not coin-
cide with any of the final particles (cf., ). In ex-
actly the same manner one can obtain the conditions
analogous to (3.12)—(3.16) for pole reactions with an
arbitrary number of final particles .

The Treiman-Yang criterion is a necessary but not
a sufficient characteristic of a pole mechanism. How-
ever, an investigation of triangular diagrams shows
that invariance with respect to the Treiman-Yang
rotation in this case requires that certain conditions
should be satisfied which are rarely realized in prac-
tice. It should be emphasized that the Treiman-Yang
criterion is the only method of establishing the pole
mechanism which is independent of the specific form
of the amplitudes for the virtual processes. Unfor-
tunately, at the present time there are no published
experimental papers utilizing this criterion for the
identification of the pole mechanism of nuclear reac-
tions.

We note that for reactions which do not satisfy con-
ditions (3.10) —(3.16) the Treiman-Yang rotation can
nevertheless be utilized to identify a pole mechanism,
since in this case | F | 2 is a polynomial of the r- th de-
gree in cos cp, where <p is the angle of rotation, while
the number r is defined by the inequality^17^

r-.min(2LBlJ, [J By], [Jy], [Jxy], 2Lxy).

Here

[/] =
2/, if J is integer,

(3.17)

(3.18)
2/—1, if J is half-integer.

In the case of nonrelativistic virtual particles fac-

If the mechanism of the reaction is not a pole mech-
anism, then the dependence on cos <p will, generally
speaking, not be a polynomial (cf.J16^).

It should be noted that in certain recently published
papers devoted to the Treiman-Yang criterion there
are erroneous assertions regarding the applicability
of this criterion in the case of relativistic virtual par-
ticles with spin \ ([18,19]) alKj regarding the symmetry
IF '̂  ™ F WhiC^1 l̂l«O"£»HHr Vir*1Ha fr\T* all r-*rvlo

cp=0 cp=n
holds for all pole



526 I . S. S H A P I R O

reactions (actually |F | 2 contains both even and odd
powers of cos cp; cf.,^17^).

Differential Cross Section in the Pole Approximation

If any one of the conditions (3.10)—(3.16) is satis-
fied, then the differential cross section for the reac-
tions A(x, xy)B, averaged and summed over the com-
ponents of the spins of the initial and final particles,
can be expressed in terms of the differential cross
section for elastic scattering y(x, x)y. In the laboratory
reference system (p^ = 0, g^. = mA^ w e n a v e after
averaging and summing over the spin components:

da |Af |2
Px

where

• Py + PxZxy — PxZxy

( 3 . 1 9 )

( 3 . 2 0 )

Picking out the energy factors in |M2|2 we introduce
the invariant quantity

*)iv <£> ^?'5f'| \Jf 12 / n n i \
— u 0 » E i 0 i © i / • ' " 2 ' \*J• &X)

T h i s q u a n t i t y i s r e l a t e d i n t h e f o l l o w i n g m a n n e r t o t h e

d i f f e r e n t i a l c r o s s s e c t i o n f o r s c a t t e r i n g i n t h e c e n t e r

o f m a s s s y s t e m f o r t h e f i n a l p a r t i c l e s x a n d y :

daxy I P'x \ l
\ ~x ) sxy •

(3.22)

Here the quantities indicated by a tilde refer to the
center of mass system for the final particles x and y,
i.e.,

P i + P y = 0 .

f t h e v i r t u s

l a b o r a t o r y s y s t e m s a t i s f i e s t h e e q u a t i o n

(3.23)

The momentum of the virtual particle p in the

(3.24)

Since, moreover, in this system the virtual particle is
not relativistic, we have

Ey= ~EB-e= - ^ - - -

U t i l i z i n g t h e f o r m u l a s g i v e n a b o v e w e o b t a i n

sxyPx \Mt I 2 d°xy

(3.25)

| M |2 =
dQ

(3.26)

T h e q u a n t i t y | M t | 2 c a n b e r e p r e s e n t e d i n t h e f o r m

I H /T JO (3.27)

w h e r e f ( q ) i s t h e f o r m f a c t o r c h a r a c t e r i z i n g t h e m o -

m e n t u m d i s t r i b u t i o n o f t h e v i r t u a l p a r t i c l e s , a n d y 2 i s

t h e c o n s t a n t d e t e r m i n i n g t h e p r o b a b i l i t y o f t h e i r e m i s -

s i o n . S p e c i f i c a l l y , i f t h e d e c a y ( 2 . 1 ) i s a c t u a l l y p o s s i -

b l e , t h e n t h e d e c a y c o n s t a n t A i s r e l a t e d t o y 2 b y t h e

f o r m u l a [ 2 o : l

A, = v 2 O , Q ~ ^ A — W-B—'My ( 3 . 2 8 )

O n e c a n a l s o i n d i c a t e t h e r e l a t i o n o f y 2 t o t h e d i m e n -

s i o n l e s s r e d u c e d w i d t h 0 2 c o m m o n l y u t i l i z e d i n n u c l e a r

s p e c t r o s c o p y :

v 2 = 2 y2j " y l r 6

| ht (ixfl) |2 (3.29)

Here R is the channel radius, I is the orbital angular
momentum of the relative motion, h; is the spherical
Hankel function of the first kind (or the singular solu-
tion of the Coulomb problem if the particles are
charged).

Combining formulas (3.19), (3.26) and (3.27) we ob-
tain

, , ,
dQxdQydsx

~^~ axy ^~~
px dQ

We now consider in somewhat greater detail the
quantities f(q) and dcrXy/dfi appearing in (3.30).

The Form Factor f(q)

This function is determined by the structure of the
nucleus but to a lesser extent than is ordinarily as-
sumed. As has been already pointed out at the be-
ginning of this section, the domain of applicability of
the pole approximation, and consequently of formula
(3.30), is restricted to small transferred momenta.
For light nuclei the domain determined by the inequal-
ity (3.1) almost coincides with the range

0 < fl2 ^ J - (3.31)

T h e c h a n n e l r a d i u s R i s t h e m i n i m u m d i s t a n c e b e t w e e n

t h e p a r t i c l e s B a n d y s t a r t i n g w i t h w h i c h t h e i r r e l a t i v e

m o t i o n c a n b e r e g a r d e d a s f r e e , o r d e t e r m i n e d e x -

c l u s i v e l y b y t h e C o u l o m b i n t e r a c t i o n i f b o t h p a r t i c l e s

a r e c h a r g e d . I n o t h e r w o r d s , R i s t h e e f f e c t i v e r a n g e

o f t h e n u c l e a r i n t e r a c t i o n b e t w e e n t h e p a r t i c l e s B a n d

y . I f r i s t h e a v e r a g e d i s t a n c e b e t w e e n t h e m , t h e n

f r o m t h e u n c e r t a i n t y r e l a t i o n b e t w e e n t h e m o m e n t u m

a n d t h e c o o r d i n a t e i t f o l l o w s t h a t t h e i n t e r v a l ( 3 . 3 1 )

c o r r e s p o n d s t o t h e r a n g e

r ^ R . ( 3 . 3 2 )

T h u s , w h e r e t h e p o l e a p p r o x i m a t i o n i s a p p l i c a b l e f o r

t h e l i g h t n u c l e i , t h e p r i n c i p a l c o n t r i b u t i o n t o t h e f o r m

f a c t o r c o m e s f r o m t h e e x t e r n a l r e g i o n i n w h i c h t h e r e

i s n o n u c l e a r i n t e r a c t i o n b e t w e e n t h e p a r t i c l e s ( m o r e

a c c u r a t e l y , i n w h i c h t h e e n e r g y o f t h i s i n t e r a c t i o n i s

s m a l l c o m p a r e d t o t h e k i n e t i c e n e r g y ) . T h e s t r u c t u r e

o f t h e n u c l e u s a f f e c t s f ( q ) i n t h e r a n g e ( 3 . 3 1 ) p r i n c i -

p a l l y b y d e t e r m i n i n g t h e o r b i t a l a n g u l a r m o m e n t u m o f

t h e r e l a t i v e m o t i o n o f B a n d y . I f f o r s m a l l q t h e f o r m

f a c t o r i s m a i n l y d e t e r m i n e d b y t h e w a v e f u n c t i o n f o r

t h e r e l a t i v e m o t i o n i n t h e e x t e r i o r r e g i o n ( 3 . 3 2 ) t h e n

i n t h e a b s e n c e o f t h e C o u l o m b i n t e r a c t i o n ( o r w h e n i t

i s n o t s i g n i f i c a n t ) i t i s n o t d i f f i c u l t t o o b t a i n t h e f o l -

l o w i n g e x p r e s s i o n :

/ ; (q) •-- if] [r\jt (I) fe;_i (TJ) — £/Vt (?) h, (r\)\ { ^ h • (3.33)
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Here

?= 2 Y

qB, t] — i

(3.34)

(3.35)

jl and hi are respectively the spherical Bessel and
Hankel functions of the first kind, I is the orbital
angular momentum of the relative motion of the part i-
cles B and y determined by their spins and by the laws
of conservation of angular momentum and parity in the
decay (2.1). If these latter considerations do not de-
termine I uniquely then

(3.36)

The structure of the nucleus affects the quantities
yVy2 and, thus, also the relative importance of the
different I in the expression (3.36).

The form factor (3.33) can be said to be a Butler
form factor, since together with the pole denominator
(q2 + K2) it determines the angular distribution of the
products of the reaction in the Butler theory of deu-
teron stripping or pick up (in these reactions the vir-
tual particle y is a proton or a neutron). We note that
for I > 1 the form factor (3.33) is equal to zero for
q = 0 and behaves like (qR)^ for small qR. Therefore,
for I * 0 it can turn out that the form factor (3.33) is
small in the region determined by the inequality (3.1).
Then the pole approximation will be generally inap-
plicable. Another important circumstance is the fact
that the function (3.33) oscillates and, consequently,
the expression (3.36) has zeros for q > 0. It is clear
that in the neighborhood of these zeros the pole ap-
proximation also ceases to be valid since the differ-
ential cross section (3.30) will here be small and the
essential role will be played by contributions from
other diagrams.

Failure to take into account the limitations enumer-
ated above on the applicability of the pole approxima-
tion is encountered quite frequently (this is manifested
in the attempts to describe by means of formula (3.30)
the experimental data over the whole physical region
of variation of the variable q). Another common er ror
is the belief that the study of the reaction A(x, xy)B is
capable of yielding information concerning the momen-
tum distribution of "particle y inside the nucleus A."
From what we have stated above it is clear that in the
region where the pole approximation is applicable the
details of the nuclear model have only a small effect
on the distribution with respect to q determined by
formula (3 30). At the same time the reaction of quasi-
elastic scattering can be a source for obtaining in-
formation on the reduced widths of nuclear states. It
is essential to emphasize that the values of the quanti-
ties y2. obtained in this manner must agree with data
obtained from other direct reactions the Feynman
diagrams for which contain the same virtual decay

(2.1). In particular, the nucleon reduced widths ob-
tained from the reaction A(x, xN)B and the stripping
and pick-up reactions B(d, N)A, A(N, d)B must agree
if, as we think at present, at small transferred mo-,
menta the reactions indicated above have a pole char-
acter. At the same time the channel radii R must also
coincide.

Differential Cross Section for Virtual Elastic Scatter-
ing

The quantity d<xXy/d£2 which appears as a factor in
formula (3.30) differs from the differential cross sec-
tion for elastic scattering of free particles firstly by
the fact that it depends on q2, and not only on s x v and
t j ^ . The second difference consists of the fact that the
domains of the variables s x v and t ^ which are real-
ized in the scattering of free particles and in the r e -
action A(x, xy)B do not coincide.

The impulse approximation in the theory of nuclear
reactions is usually taken to mean the pole formula^
(3.30) into which instead of the true value of daXy/dn
one substitutes its value for the scattering of free
particles. In this case the particle y lies on the mass
shell, and this in accordance with (2.3) means that

qz =-. — x . (3.37)

Thus, in the impulse approximation it is assumed that
doXJl dox

Sx,j, In)dii dii
2, sxy, t'x), (3.38)

where s x v and t ^ correspond to a certain point on the
boundary of the physical region for elastic scattering
of free particles2 ' .

Equation (3.38) means that d<rXy/dfi is considered
to be a sufficiently slowly varying function of the var-
iables q2, sXy, t ^ . Naturally, this occurs by no means
always. A necessary condition for the validity of (3.38)
is that the scattering amplitude should have no singu-
larities close to the region under consideration with
respect to all three variables. This means that the ap-
plicability of the impulse approximation depends on
the scattering mechanism.

We consider some examples. Let the particles x
and y be nucleons If the one meson exchange would p
play the dominant role in nucleon scattering then
dcr /dfi would not depend at all on q2 since the corre-
sponding diagrams (cf., Fig. 9a) have no singularities
with respect to PL

In actual fact the essential contribution to the am-

*We want to make it clear that for a given energy Ex of the par-
ticles x in the laboratory system the values of sxy are different in
the cases of quasielastic scattering and of the scattering of free
particles. At the same time, however, sxy always lies within the
physical region for free scattering. The latter, generally speaking,
does not hold for txx due to the departure of particle y from the
mass shell.
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FIG. 9a. One meson exchange in nucleon-nucleon
scattering.
FIG. 9b. Diagram for two meson exchange.

plitude is made by the many meson diagrams. One of
the simplest of such diagrams is shown in Fig. 9b.
This diagram has a singularity with respect to P2 at
the point

Pl = (m |-[i)*, (3.39)

where m and \x are respectively the nucleon and the
pion masses. Since

x2 < m2 (3.40)

Eq. (3.39) means that the nearest singularity of the
amplitude for nucleon-nucleon scattering with respect
to q2 will occur at the point

i ) ] (3.41)

situated considerably further than the pole since
Z, 10. Within the framework of the pole approximation
taking into account such distant singularities of the
amplitudes for virtual processes would mean going
beyond the accuracy of the approximation. Therefore,
in the case of quasielastic scattering of nucleons sub-
stitution into formula (3.30) of the value of dCTxy/dfi
on the mass shell appears to be justified. If the virtual
particle y is a deuteron, a triton or an a-particle then,
generally speaking, the situation becomes more com-
plicated. An analysis of the simplest diagram shows,
however, that in this case also over a definite range
of values of the variables s x y and t ^ going outside the
mass shell turns out to be not significant.

The arguments given above are based on the as-
sumption that the nearest singularities of the scatter-
ing amplitude with respect to the variable q2 are deter-
mined by the simplest Feynman diagrams. This a s -
sertion, strictly speaking, until now has been proven
neither theoretically nor experimentally. In this con-
nection an experimental investigation of quasielastic
scattering in order to obtain information concerning
the quantity daxy/dfl outside the mass shell appears to
be particularly interesting.

The variation of da /dfi in going from the point
sXy or txx in the physical region for the reaction
A(x, xy)B to the point s x y or t ^ , lying in the physical
region for the elastic scattering of free particles can
be quite appreciable. Therefore, if formula (3.30) is
used in order to study the properties of nuclei, i.e.,
for an experimental determination of the quantities y2,
it is necessary to know the behaviour of dcr /dfi as a
function of the variables s x y and t ^ in the physical
region for the reaction A(x, xy)B. Unfortunately, such
information is available only in rare cases. One such

case is the elastic proton-proton scattering with
respect to which it is known experimentally that for
the scattering of free protons d(TXy/d£2 is practically
independent of sXy and t ^ over a comparatively broad
range of energies of colliding particles from 150 to
430 MeV and is equal to 4 Mb/sr (an exception is, of
course, provided by the region of very small angles
where the differential cross section is greater due to
the usual Coulomb scattering). For this reason in the
energy range indicated the reaction A(p, 2p)B is a good
means to study the properties of nuclei.

One of the few cases when dcrxv/dfi is known analy-
tically is resonance scattering. Then within the limits
of the width of the resonance the scattering cross sec-
tion will be given by the Breit-Wigner formula. The
broader the resonance, the greater will be the region
within which the functional dependence of the scatter-
ing cross section on the kinematic variables is known.
However, it is in this case essential that the resonance
should be well pronounced (i.e., that the nonresonance
part of the cross section should be sufficiently small).
Such comparatively broad (of the order of 100 MeV)
and at the same time sufficiently well pronounced
resonances are encountered, for example, in the scat-
tering of pions by nucleons.

IV. EXPERIMENTAL DATA AND THE POLE AP-
PROXIMATION

The Reaction A(p, 2p)B

Reactions involving light nuclei are of the greatest
interest since in this case the different states of the
residual nucleus B are resolved.

The experiments discussed below have been so de-
signed that final protons were recorded with equal
momenta and emitted at equal angles 8 with respect to
the primary beam, with the momenta of all three pro-
tons (the initial one and the final ones) were coplanar
(under these conditions a knowledge of the angle 9 de-
termines all the kinematic characteristics of the final
particles).

Figure 10 shows the dependence of the differential
cross section on the angle 8 for the reaction
Li8(p, 2p)He5* (16.69 MeV) for an initial proton energy
of 185 MeV in the laboratory reference system.

The ground state of Li6 has spin and parity 1+, while
the state He5* with an excitation energy of 16.69 MeV
has spin and parity of (3/2)\ Therefore, the orbital
angular momentum I for the relative motion of He5*
and the virtual proton can have the values 0 and 2.
The channel radius R = 5 F required for the calcula-
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4

i
40 X 60

FIG. 10. Angular distribution of protons in the reaction
Li6(p,2p)He5*(16.69 MeV). Solid curve - pole approximation.

3. deg
FIG. 12. Angular distribution of protons in the reaction

Li7(p,2p)He6. Solid curve — pole approximation.

tion of the form factor has been taken from the experi-
mental data on the pick-up reaction Lie(n, d)He5 '-21-',
since the pole diagrams for this reaction and for the
quasielastic scattering process contain the same ver-
tex (cf., Fig. 11).

The solid curve in Fig. 10 has been calculated with
the aid of formula (3.30) with the form factor (3.33)
for 1 = 0 (all the theoretical calculations concerning
the reaction A(p, 2p)B given below have been taken
from the paper of Kolybasov and SmorodinskayaC22]).
The differential cross section dffpp/dn has been taken
to be constant in agreement with what has been stated
in the preceding section. The same diagram also
shows the experimental data of Tibell and co- or

workers [23] The theoretical curve has been normal-
ized to one of the experimental points.

Figure 12 shows the same dependence for the r e -
action Li7(p, 2p)He6 for a kinetic energy of the incident
protons of 185 MeV. The ground state of Li7 has spin
and parity of (3/2)". The spins and parities of the
ground and of the first excited (1.71 MeV) states of
Hee which were not resolved in the experiment under
consideration are respectively equal to 0 and 2 . In
both cases 1 = 1. The channel radius is R = 5 F (from
data on the reaction Li7(p, d)Li6). The results of a
theoretical calculation^22 are shown in Fig. 12 by the
solid curve, the experimental data have been taken
from'-23-'. A characteristic feature of this diagram is
the smaller depth of the experimental minimum com-
pared to the theoretical one. As has already been noted
previously this circumstance appears to be natural
and is explained by the contribution of diagrams dif-
fering from the pole diagram.

He5

a) b)

FIG. 11. Pole diagrams for the reactions: a) Li6(n,d)Hes, b)
Li6(p,2p)Hes.

We note that the range of angles 30° < 9 < 60°
corresponds to relatively low transferred momenta q.
For example, for the reaction Li7(p, 2p)He6 q lies in
the interval 0 s q < 116 MeV/c corresponding to the
value K = 130 MeV/c, so that the condition (3.1) for the
applicability of the pole approximation is satisfied. As
can be seen from Figs. 10 and 12 the agreement be-
tween theory and experiment in these cases can be r e -
garded as satisfactory.

However, the picture is different when we go over
to large transferred momenta. This is demonstrated
by Fig. 13 which shows the experimental data from
the work of Yuasa and Hour any ̂ 2" on the reaction
C12(p, 2p)Bn for an initial proton energy of
90—110 MeV in the laboratory system. In this paper
the differential cross section d^/dqdz was measured
where

qp* (4.1)

For a given value of z the conservation laws limit the
upper value of q which must satisfy the condition

E q \Tfi ~\-tnA) I pq r* i A n\
2 4mmB ' 2 '

where E and p are the kinetic energy and the momen-
tum of the incident protons in the laboratory system.

The formula for the differential cross section
within the framework of the pole approximation for
nonrelativistic particles has the form

|/(9) |2 r mE a2(m + mA) pq 11/2da-—r = const-—-wdqdz (q>
q) I2 T mE
-x2)2 L ' 2 4mm B

(4.3)

The solid curve in Fig. 13 is obtained by integrating

, MeV/c

FIG. 13. Momentum spectrum of residual nuclei in the reaction
C12(p,2p)B". Solid curve — pole approximation.
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over z within the range 0 < z < 1. In carrying this out
it was assumed that Z = l , R = 4 . 6 F o n the basis of
the data on the reaction Bn(d, n)C12125]. The value of
K is in this case 166 MeV/c.

As can be seen from Fig. 13 one can speak of
agreement between theory and experiment only for
small transferred momenta q ~ K. However, from a
discrepancy between theory and experiment for
q > 200 MeV/c it is not yet possible to conclude that
the pole mechanism ceases to be dominant in this
region (perhaps the Butler expression for the form
factor is simply inapplicable in this region). At the
same time there are also no grounds for assuming
that the results shown in Fig. 13 give information on
the momentum distribution of protons in the C12 nuc-
leus. Such a conclusion could be made only after es -
tablishing the pole mechanism for the reaction under
consideration preferably with the aid of the Treiman-
Yang criterion which in this case is applicable (condi-
tion (3.12)). Not a bad method for establishing the
correctness of the pole approximation is a comparison
of the reduced proton widths obtained from the reac-
tion A(p, 2p)B and from the stripping B(d, n)A or
pick-up A(n, d)B processes. Such an analysis has been
carried out in the paper by Kolybasov and Smorodin-
skaya^22^ quoted above. Unfortunately the available
experimental data are too unreliable and incomplete
and, therefore, it is not possible as yet to make defin-
ite conclusions on their basis.

The Reaction C12(TT", w'rt)Cn

This process has been experimentally studied by
Reeder and Markowitz^26^ for an initial pion energy
from 53 to 423 MeV. In the work quoted above, carried
out by means of a radiochemical method, an investiga-
tion was made of the dependence of the total cross sec-
tion on the initial energy, i.e., the excitation curve for
the reaction was obtained. Although experimental in-
formation of this type is too all-inclusive and. in prin-
ciple, is far from sufficient to establish the mechanism
of the reaction, it is in the present case of interest
because the range of energy of the incident pions util-
ized by the authors contains the resonant region corre-
sponding to the nucleon isobar (3/2, 3/2) of mass
1236 MeV (to such a mass corresponds the resonance
in the scattering of pions by free nucleons at a kinetic
energy of 195 MeV in the laboratory system or at an
energy of 157 MeV in the center of mass system). If
the pole mechanism gives a significant contribution to
the amplitude of the reaction under consideration then
the (3/2, 3/2) resonance must show up in the excitation
curve.

We have emphasized above that the pole approxi-
mation is valid for small momentum transfers. In the
given case small momentum transfers were not spec-
ially picked out if we do not count the fact itself of the
formation of the C11 nucleus in the ground or in weakly

excited states (in the opposite case the nucleus would
decay within a short time with the emission of nuclear
particles and could not be recorded in terms of its
beta activity). This circumstance should be taken into
account since the probability of communicating to the
nucleus a large amount of momentum without t rans-
ferring energy to the internal degrees of freedom is
small.

In accordance with the above considerations a com-
parison of the results of the pole approximation with
the experimental data of Reeder and Markowitz^26-' is
of interest although, of course, it is hard to expect in
this case anything more than qualitative agreement.

We have already indicated above that the existence
of a broad and well pronounced resonance makes it
easier to obtain a theoretical formula since the depen-
dence of the Breit-Wigner scattering cross section on
the variables sXy and t x x is known, and a departure of
the virtual neutron off the mass shell appears in the
first approximation to be without significance. The
corresponding calculation has been carried out in^27^,
the results of which together with the experimental
data^26-' are given in Fig. 14. In this diagram the en-
ergy of the initial pion in the laboratory system has
been plotted along the horizontal axis, and the total
cross section for the reaction along the vertical axis.
The solid curve represents the result of integrating
the differential cross section (3.30) over the kinematic
variables of the final particles. The Breit-Wigner
formula was used here for the elastic scattering cross
section daxv/dU. The calculation was carried out on
the assumption that the Clf nucleus is formed as a r e -
sult of the reaction in its ground state. Actually, as is
shown by an experimental study of the reaction
C12(p, d)Cu , the reduced neutron widths corresponding
to the formation of C11 in the ground state (3/2)~ and
the three nearest excited states (1/2 , (3/2)", ?~) are
comparable. Nevertheless, taking into account the
excited states of C11 does not appreciably alter the
form of the solid curve in Fig. 14 (the excitation en-
ergies are not great and in all cases I = 1). In calcu-
lating the theoretical curve shown in Fig. 14, the only
unknown quantity is the effective value of y2 or the r e -
duced neutron width 9- associated with it. If the prin-

MeV
FIG. 14. Excitation curve for the reaction CI2(> ,n n)C". SoJici

curve — pole approximation.
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cipal contribution to the amplitude of the reaction is
given by the pole diagram, then the reduced neutron
widths 02 obtained from the data on the absolute values
of the cross sections for the processes

C12 (n- . .-I-/;) C11 and C12 (p, d) Cu.

must coincide. Assuming that the relative probability
of formation of the C11 nucleus in the excited states is
the same and is equal to approximately 0.7 (this num-
ber is known from experiments on the pick-up reac-
tion) one can obtain from the quasielastic scattering
cross section the following value for the reduced neu-
tron width corresponding to the formation of C11 in its
ground state:

0 2 _• U.3S :-_ 0.01. (4 .4 )

T h e e r r o r s h o w n h e r e i s m a d e u p of t h e e x p e r i m e n -

t a l e r r o r s in m e a s u r i n g t h e i n e l a s t i c s c a t t e r i n g c r o s s

s e c t i o n ( t h e v a l u e a t t h e m a x i m u m of t h e c u r v e i n

F i g . 1 4 w a s u t i l i z e d ) a n d of t h e r e l a t i v e p r o b a b i l i t y o f

t h e f o r m a t i o n o f C 1 1 i n t h e e x c i t e d s t a t e s . T h e v a l u e

of 0'1 o b t a i n e d f r o m t h e p i c k - u p r e a c t i o n t u r n s o u t t o

a g r e e w i t h ( 4 . 4 ) w i t h i n t h e l i m i t s o f e r r o r . S p e c i f i c -

a l l y , a c c o r d i n g t o t h e d a t a o f w e h a v e

02 (.)..'-SI. (4 .5 )

T h e s e r e s u l t s p r o v i d e e v i d e n c e in f a v o r of t h e

d o m i n a n t r o l e o f t h e p o l e m e c h a n i s m , a l t h o u g h f o r

f i n a l c o n c l u s i o n s e x p e r i m e n t s a r e r e q u i r e d o n t h e

m e a s u r e m e n t o f t h e d i f f e r e n t i a l c r o s s s e c t i o n a n d . i n

p a r t i c u l a r , t h e p e r f o r m a n c e of a c h e c k b y m e a n s o f t h e

T r e i m a n - Y a n g c r i t e r i o n .

E x p e r i m e n t a l P r o b l e m s o f t h e N e a r F u t u r e

A s c a n b e s e e n f r o m t h e p r e c e d i n g d i s c u s s i o n , , a t

t h e p r e s e n t t i m e t h e r e d o e s n o t i n f a c t e x i s t a s u f f i -

c i e n t l y c o m p l e t e e x p e r i m e n t a l p r o o f of t h e d o m i n a n t

c o n t r i b u t i o n of t h e p o l e d i a g r a m s t o t h e m e c h a n i s m of

r e a c t i o n s o f t h e t y p e A ( x . x y ) B f o r s m a l l q. O n e c a n

s a y t h a t o n l y t h e f i r s t s t e p s h a v e b e e n t a k e n i n t h e e x -

p e r i m e n t a l i n v e s t i g a t i o n of t h e r o l e a n d o f t h e d o m a i n

of a p p l i c a b i l i t y o f t h e p o l e a p p r o x i m a t i o n .

In t h i s c o n n e c t i o n i t i s u s e f u l t o f o r m u l a t e s o m e e x -

p e r i m e n t s d e s i r a b l e f r o m t h e t h e o r e t i c a l p o i n t o f v i e w .

S u c h e x p e r i m e n t s i n c l u d e :

1. T h e r e a l i z a t i o n o f t h e T r e i m a n - Y a n g c r i t e r i o n

f o r t h e r e a c t i o n A ( x . x N ) B f o r d i f f e r e n t v a l u e s o f t h e

t r a n s f e r r e d m o m e n t a q.

2 . T h e m e a s u r e m e n t of t h e v a r i a t i o n of t h e d i f f e r -

e n t i a l c r o s s s e c t i o n d a / d q a s a f u n c t i o n o f q w i t h a

m a n d a t o r y i d e n t i f i c a t i o n of t h e s t a t e o f t h e r e s i d u a l

n u c l e u s .

3 . T h e m e a s u r e m e n t o f t h e a b s o l u t e v a l u e s of t h e

d i f f e r e n t i a l c r o s s s e c t i o n s f o r t h e r e a c t i o n s A ( p , 2 p ) B

a n d A(7r, TTN) B f o r s m a l l t r a n s f e r r e d m o m e n t a q a n d

s u i t a b l e e n e r g i e s of t h e i n i t i a l p a r t i c l e s ( 1 0 0 — 4 0 0 M e V

f o r t h e r e a c t i o n A ( p . 2p) B a n d i n t h e n e i g h b o r h o o d o f

t h e 7rN r e s o n a n c e s f o r t h e p r o c e s s e s A(ir, 7 rN)B) . T h e

i d e n t i f i c a t i o n o f t h e s t a t e s o f t h e r e s i d u a l n u c l e u s B i s

a l s o n e c e s s a r y i n t h i s c a s e .

A n i m p o r t a n t p o i n t i n t h e c a r r y i n g o u t t h e p r o g r a m

i n d i c a t e d a b o v e i s t h e r e a l i z a t i o n o f a c o m p l e x i n v e s -

t i g a t i o n , i . e . , t h e a c c u m u l a t i o n of d a t a a c c o r d i n g t o

S e e s . 1—3 f o r t h e s a m e r e a c t i o n .

V. F I N A L S T A T E I N T E R A C T I O N A N D M O V I N G

S I N G U L A R I T I E S

T r i a n g u l a r D i a g r a m

T h e p o l e m e c h a n i s m y i e l d s s i n g u l a r i t i e s w i t h r e s -

p e c t t o q ° . b u t t h e r e a r e n o s i n g u l a r i t i e s w i t h r e s p e c t

t o t h e v a r i a b l e s s x v a n d t x x d u e t o t h e d i a g r a m i t s e l f .

T h e s i m p l e s t m e c h a n i s m l e a d i n g t o t h e a p p e a r a n c e of

s u c h s i n g u l a r i t i e s c o r r e s p o n d s t o t h e t r i a n g u l a r d i a -

g r a m s h o w n i n F i g . 7 . T h e w h o l e p r o c e s s A ( x . x y ) B

i n t h i s c a s e r e d u c e s t o t h r e e v i r t u a l r e a c t i o n s : t h e d e -

c a y of t h e n u c l e u s A i n t o v i r t u a l p a r t i c l e s B ' a n d y '

. 1 - • ; - , ' / . ( 5 . 1 )

t h e e l a s t i c s c a t t e r i n g o f t h e i n c i d e n t p a r t i c l e x b y t h e

v i r t u a l p a r t i c l e

if —> x • \l (5 .2 )

a n d t h e r e a c t i o n l e a d i n g t o t h e p r o d u c t i o n o f t h e f i n a l

p a r t i c l e s B a n d y :

/>" !/' .'/• (5 .3 )

W e d e n o t e t h e a m p l i t u d e s f o r t h e r e a c t i o n s ( 5 . 1 ) —

( 5 . 3 ) r e s p e c t i v e l y b y M , . M.,. a n d M 3 . T h e n i n a c c o r d -

a n c e w i t h t h e g e n e r a l f o r m u l a s ( 2 . 2 0 ) a n d ( 2 . 2 1 ) t h e

e x p r e s s i o n f o r t h e a m p l i t u d e of t h e p r o c e s s A ( x . x y ) B

c o r r e s p o n d i n g t o t h e t r i a n g u l a r d i a g r a m of F i g . 7 w i l l

h a v e t h e f o r m

M v

(5 .4 )

H e r e k'y> a n d E'vi a r e t h e m o m e n t u m a n d t h e e n e r g y

o f t h e v i r t u a l p a r t i c l e y ' a f t e r s c a t t e r i n g ( 5 . 2 ) , t h e

i n t e g r a l s i g n a l s o i n c l u d e s s u m m a t i o n o v e r t h e c o m -

p o n e n t s o f t h e s p i n s of t h e v i r t u a l p a r t i c l e s .

E a c h o f t h e a m p l i t u d e s M t . M 2 . a n d M : J d e p e n d s o n

t h e k i n e m a t i c v a r i a b l e s of t h e v i r t u a l p a r t i c l e s . H o w -

e v e r , s i n c e w e a r e i n t e r e s t e d i n t h e b e h a v i o r o f t h e

a m p l i t u d e M n e a r t h e s i n g u l a r i t y w e c a n a s s u m e M , ,

M.,, a n d M : l t o b e c o n s t a n t s ( c f . . S e c . I D . In t h i s a p -

p r o x i m a t i o n t h e i n t e g r a l c a n b e e v a l u a t e d . In f u t u r e

w e s h a l l f i n d i t c o n v e n i e n t t o u s e in p l a c e of t h e v a r i a -

b l e s s g y a n d t x x t h e d i m e n s i o n l e s s v a r i a b l e s £ a n d A

d e f i n e d in t h e f o l l o w i n g m a n n e r . L e t E b e t h e k i n e t i c

e n e r g y o f t h e f i n a l p a r t i c l e s B a n d y i n t h e i r c e n t e r of

m a s s s y s t e m , a n d Q b e t h e e n e r g y l i b e r a t e d i n t h e v i r -

t u a l r e a c t i o n ( 5 . 3 ) :

m,r — TO,,- ( 5 . 5 )
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Then we have

where

E-Q (5.6)

(5.7)

T h e v a r i a b l e A i s r e l a t e d t o t h e m o m e n t u m k t r a n s -

f e r r e d i n t h e s c a t t e r i n g p r o c e s s ( 5 . 2 ) :

( 5 . 8 )

X

P.v P:Ii

III),, /f2
(5.9)

(5.10)

In terms of the variables £ and A, the expression
for the amplitude of the reaction has the form

MA = Cf±(t,,X), (5.11)

where the factor C depends on the components of the
spins of the initial and the final particles, and

• III -
' C T ] T ] '

/ A ( E , X) •• "

(5.12)

-.0, ( 5 . 1 3 )

with

T h e f u n c t i o n

p o i n t

0 •:. arctg X < jt. (5.14)

h a s two s i n g u l a r i t i e s : a r o o t b r a n c h

, = 0 ( 5 . 1 5 )

( t h e s o - c a l l e d n o r m a l t h r e s h o l d ) a n d a l o g a r i t h m i c

s i n g u l a r i t y £^ t h e p o s i t i o n of w h i c h d e p e n d s o n t h e

v a l u e of t h e t r a n s f e r r e d m o m e n t u m k 2 , i . e . , o n t h e

v a r i a b l e A :

; a - i - i i - 2 i | / . , o.

If w e r e g a r d f^ a s a func t ion of A, t h e n wi th r e s p e c t

t o t h i s v a r i a b l e t h e r e e x i s t s on ly o n e s i n g u l a r i t y — t h e

l o g a r i t h m i c b r a n c h po in t

JlA = £ — H - 2 £ I / I - (5.17)

In a d d i t i o n t o t h e t r i a n g u l a r d i a g r a m o t h e r d i a g r a m s

(in p a r t i c u l a r t h e p o l e d i a g r a m d i s c u s s e d e a r l i e r ) a l s o

g i v e c o n t r i b u t i o n s t o t h e a m p l i t u d e of t h e r e a c t i o n

A(x, x y ) B . T h e r e f o r e , t h e t o t a l a m p l i t u d e fo r t h e r e -

a c t i o n M s h o u l d b e w r i t t e n in t h e f o r m

M M, -MB ( 5 . 1 8 )

w h e r e M R d e n o t e s t h e c o n t r i b u t i o n o f a l l t h e o t h e r d i a -

g r a m s . R e g a r d i n g t h e r e l a t i v e m a g n i t u d e o f | M ^ | a n d

| M R | i t i s . a s a r u l e , d i f f i c u l t t o m a k e a d e f i n i t e t h e o r -

e t i c a l s t a t e m e n t , b u t t h e p i c k i n g o u t o f t h e a m p l i t u d e

M ^ n e a r f^ c a n b e c a r r i e d o u t e x p e r i m e n t a l l y , b a s e d

o n t h e f a c t t h a t i n t h i s r e g i o n M R m u s t v a r y c o n s i d e r -

a b l y m o r e s l o w l y t h a n M ^ a n d , t h e r e f o r e , i t c a n b e

t r e a t e d a s a c o n s t a n t .

T h e d i f f e r e n t i a l c r o s s s e c t i o n a v e r a g e d a n d s u m m e d

o v e r t h e c o m p o n e n t s of t h e s p i n s o f t h e i n i t i a l a n d t h e

f i n a l p a r t i c l e s c a n b e w r i t t e n i n t h e f o r m

d"a
( 5 . 1 9 )

w h e r e N i s a c o n s t a n t i n d e p e n d e n t o f £ a n d A ( u n d e r t h e

c o n d i t i o n £ « n i g v / f i , A « m ^ / x 2 ) ,

| / (I, X) j 2 = | / A | 2 -I- 2a R e U ! 2b I m / A + c\ ( 5 . 2 0 )

a , b , a n d c 2 a r e r e a l c o n s t a n t s . If t h e a m p l i t u d e s M ^

a n d M p d o n o t d e p e n d o n t h e o r i e n t a t i o n o f t h e s p i n s of

t h e p a r t i c l e s p a r t i c i p a t i n g i n t h e r e a c t i o n , t h e n t h e

n u m b e r o f i n d e p e n d e n t c o n s t a n t s i s e q u a l t o t w o ( i n

t h i s c a s e c 2 = a 2 + b 2 ) .

O b s e r v a t i o n o f t h e C o m p l e x S i n g u l a r i t y

T h e c o n s t a n t s a , b , a n d c 2 m u s t b e d e t e r m i n e d f r o m

t h e e x p e r i m e n t a l d a t a o n t h e v a l u e o f t h e d i f f e r e n t i a l

c r o s s s e c t i o n a t t h r e e a r b i t r a r y p o i n t s o f t h e ( f , A)

p l a n e , a n d t h e s u r f a c e s o o b t a i n e d m u s t t h e n d e s c r i b e

t h e w h o l e s u r f a c e 3 2 c r / 9 f d A ( w e e m p h a s i z e t h a t t h i s

m e a n s a d e s c r i p t i o n w i t h t h e a i d of n o t m o r e t h a n

t h r e e p a r a m e t e r s o f a l l p o s s i b l e c u r v e s c o r r e s p o n d i n g

t o t h e d i f f e r e n t s e c t i o n s o f t h e s u r f a c e ) . In o r d e r t o

v i s u a l i z e t h e d e g r e e o f s h a r p n e s s o f t h e d e p e n d e n c e s

d e t e r m i n e d b y f o r m u l a ( 5 . 2 0 ) i t i s u s e f u l t o c o n s t r u c t

f o r e a c h o f t h e f i r s t t h r e e t e r m s i n ( 5 . 2 0 ) c o n t o u r

l i n e s ( h o r i z o n t a l s ) , i . e . , c u r v e s i n t h e ( f , A) p l a n e

a l o n g w h i c h t h e c o r r e s p o n d i n g f u n c t i o n o f £ a n d A r e -

m a i n s c o n s t a n t . T h e c o n t o u r l i n e s o f t h e s u r f a c e s

|f^|2 a n d R e f^ a r e s h o w n r e s p e c t i v e l y i n F i g s . 1 5 a n d

1 6 t a k e n f r o m f 2 9 ] .

T h e s u r f a c e I m f^ i s v e r y c l o s e i n i t s s t r u c t u r e t o

t h e s u r f a c e | f^ | ( t h i s i s r e l a t e d t o t h e f a c t t h a t i n t h e

d o m a i n o f v a l u e s of £. A u n d e r c o n s i d e r a t i o n t h e p r i n -

(5.16) c i p a l c o n t r i b u t i o n t o |f^| i s m a d e by Im f ^ ) . F r o m

F i g s . 1 5 a n d 16 i t c a n b e s e e n t h a t i n o r d e r t o d i s c o v e r

FIG. 15. Contour map of t h e su r face | fA(CA) :
2 .
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FIG. 16. Contour map of the surface Re (t\(C,^)- (The numbers
labelling the contour lines are equal to 100 Re f^,)

dependences due to the complex singularity the sec-
tions by the planes X = const or f = const are by no
means always the optimal ones. In particular, if the
dominant contribution to (5.20) is made by the terms
|f^|2 + 2b Im f̂ , then the most prominent irregularity
will manifest itself in taking the section by the vertical
plane along the line orthogonal to the line

1, (5.21)

which is the projection of the trajectory (5.16) of the
complex singularity £^ on the (f, X) plane. But if the
dominant contribution is made by the term 2a Re f̂
then the most rapid variation will be exhibited by the
curve obtained by taking the section by the vertical
plane along the straight line orthogonal to the projec-
tion of the trajectory (5.17) of the complex singularity

I. (5.22)

The dependence of the differential cross section on
the kinematic variables k2 and E will be the sharper
the smaller are K2 and £ . This circumstance is a
consequence of the approach of the complex singularity
k̂A or E^ to the (k2, E) plane which contains the phys-
ical region.

Another important factor facilitating the experimen-
tal discovery of the complex singularity is the greatest
possible size of the physical region. The size increa-
ses as the kinetic energy of the initial particle is in-
creased. In particular, for

the domain of the most rapid variation of Re
comes accessible, while for

Ks.i.v-m.1-"'.!' ."> 'in/-

(5.23)

be-

(5.24)

a segment of the straight line (5.21) falls in the phys-
ical region. We note that since for the majority of
nuclei e does not exceed 10 MeV kinetic energies of
the order of 100 MeV in the center of mass system for
the reaction are already sufficient for the experimen-

tal detection of the complex singularity corresponding
to the diagram of Fig. 7.

Observation of a "Cusp"

We now investigate the manner in which the exis-
tence of a root singularity (5.15) affects the behavior
of the cross section. This point lies within the phys-
ical region only in the case when Q > 0, i.e., when the
virtual reaction (5.3) is exothermic, or when it is
elastic scattering. An example of an exothermic vir-
tual reaction (5.3) can be provided by the process of
inelastic scattering with the -'quenching" of an exci-
tation, i.e., the case when the virtual particle B' (or y')
is an excited state of the residual nucleus B (or y).

In the range

%
(5.25)

the expression for f̂  is determined by formula (5.13).
As can be easily seen comparing (5.12) and (5.13), f̂
is continuous at the point £ ~ 0. while its first deriva-
tive undergoes a discontinuity at this point:

/ , ( £ - . - ; 0) - p j ; | _ - : - : j ^ ! , (5.26)

A (£-•• - 0 ) - (--.-^.- / :_^-. ( 5_2 ? )

The discontinuity in the derivative will manifest
itself in the differential cross section in the form of a
c h a r a c t e r i s t i c peak— a "cusp"'••"'•' (cf. also'-31 ' '), which
will be the s h a r p e r the s m a l l e r is X. Equations (5.26)
and (5.27) show how the shape of the peak will vary as
the t r a n s f e r r e d momentum va r i e s . The cu rves c o r r e -
sponding to sect ions of the sur faces Im f̂  and Re f̂
by the ver t ica l p lanes X ~ const , a r e shown in F igs .
17 and 18.

The Reaction d(p, p)X

At the p r e s e n t t ime the re ex is t s not a single r e -
liably es tabl ished c a s e of observing a moving complex
singular i ty cor responding to a t r i angu la r d iagram.
However, s eve ra l reac t ions a r e known which a r e
• ' s u s p i c i o u s " in th is r e spec t . Thus, Valuev^32-' and

-0.5

FIG. 17. Sections of the surface Im
planes A - const.
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FIG. 18. Sections of the surface Re fA(£,A) by the vertical
planes /V = const.

2
1
0
2.50 2A5 2.40 2.3d 2.30

independently Anisovich and Dakhno'-33-' have shown
that experimental data on the reaction N(7r, 2TT)N which
have been previously interpreted as proof of the exis-
tence of a two pion ABC-resonance can be explained
by a singularity of the triangular diagram. An exam-
ple of the same type belonging to the domain of nuclear
reactions has been investigated by Dal'karov^34-' who
has theoretically investigated the reaction

p + d—>p + X. (5.28)

Here the letter X denotes a combination of part i-
cles with total baryon charge 2 which were not recor-
ded in the experiment carried out by Belletini and co-
w o r k e r s ^ 3 . These authors had established the exis-
tence of a well pronounced maximum of width approxi-
mately 250 MeV in the missing mass spectrum for m x ,
i.e., in the dependence of the differential cross section
on the variable

VTX = yp% = l(Pp + P,, - i>p)s]1/2, (5.29)

which, as can be easily seen, coincides with the varia-
ble Vsgy which appeared in the preceding investiga-
tion. This experiment was carried out with small
transferred momenta k. In particular

10-3<<PP(GeV/c)2<10-1. (5.30)

Fig. 19 shows experimental data obtained in'-35-' for
t_p = 10~2 x (GeV/c)2 (the dotted curve has been drawn
through the experimental points). The solid curve
represents the result of a theoretical calculation for
Re f̂  for the triangular diagram shown in Fig. 20.

According to this diagram the mechanism of the
reaction under consideration consists of the fact that
the incident proton on colliding with one of the nucleons
of the deuteron forms the isobar N* which is subse-
quently inelastic ally scattered by the other nucleon.
The solid curve in Fig. 19 is obtained on the assump-
tion that N* is the isobar of mass (1.40 ± 0.01) GeV
and of width F = 200 MeV (this isobar was observed
by the same group of experimenters in the reaction
p + p — p + N* and the maximum corresponding to it
in the missing mass spectrum for small tpp was more

FIG. 19. The missing mass spectrum in the reaction p + d
• p + X. Solid curve — triangular diagram.

pronounced than other isobar peaks). We also note
that in the theoretical calculation shown by the solid
curve in Fig. 19 the amplitude for the virtual decay
d —- p + n was not treated as a constant—the form fac-
tor for the deuteron determined by the non-zero range
of nuclear forces between nucleons was taken into ac-
count. However, taking this correction into account
does not alter the principal result.

As can be seen from Fig. 19, the mechanism corre-
sponding to the triangular diagram of Fig. 20 can
indeed explain the observed experimental maximum.
However, the same maximum can also be explained by
a different hypothesis, viz., by the existence of a two-
nucleon resonance of mass (2.33 ± 0.01) GeV. The
choice between the two indicated possibilities must be
made with the aid of further experiments: in the case
of the mechanism corresponding to the triangular dia-
gram the maximum of the curve of Fig. 19 will shift as
tpp is varied, but if the hypothesis regarding the two-
nucleon resonance is valid then the position of the
maximum will not depend on the values of this variable
(we note that the accuracy of the data contained in'-35-'
obtained for different values of tpp is insufficient to
answer this question).

VL CONCLUDING REMARKS

In conclusion we consider the relation between the
approximations utilized above and the well known r e -
sults of Watson^36-1 and Migdalt37] on taking the final
state interaction into account.

As has already been noted above, the starting point
of our investigation was the assumption concerning
nearness to the singularity and the relatively slow
variation at this point of the amplitudes for the virtual
processes. Watson and Migdal, on the contrary, con-
sider the case when the dependence of the amplitude
on the kinematic variables determined by the mechan-
ism of the process itself is weak compared to the de-
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FIG. 20. Triangular diagram for the
reaction d(p,p)X.

pendence of the amplitude for the virtual reaction (5.3)
on the variable E.

From the whole above discussion one can conclude
that the prospects of identifying the mechanism of the
reaction and, in particular, of elucidating the role of
the so-called final state interaction by means of an ex-
perimental observation of a moving logarithmic and
root branch point of the amplitude corresponding to the
triangular diagram appear to be quite realistic for a
sufficiently high energy of the incident particles. At
the present time only the first tentative steps have been
taken in this direction.
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