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INTRODUCTION

J.HE ideas amassed in recent years about the phys-
ical nature of ferroelectricity are the consummation
of a rather important stage in the development of the
microscopic theory. The latter includes the model
theories of Mason and Matthias,1- ^ Ginzburg , m Dev-
onshire,C 3 ] S l a t e r , i a and other authors.C5"7:i

As applied initially to the simplest type of ferro-
electric materials having the BaTiO3 structure, the
cited phenomenological and model theories have es -
sentially amounted to formulating conditions equiva-
lent to a so-called "polarization catastrophe," which
results in an unbounded increase in the static dielec-
tric constant at the phase-transition point. However,
these theories have not considered in detail the dy-
namic processes in crystal structures. This has r e -
stricted the possibilities of analyzing and explaining
certain experimental data (in particular, the vibra-
tional spectra of ferroelectric crystals) that began to
appear in the literature rather frequently as early as
the middle fifties.

The fruitful ideas of Anderson , m Ginzburg,C2>9]

and Cochran c l 0 '1 1 ] have attained wide recognition in
recent years. According to these, a phase transition
to the ferroelectric state can be treated from the

standpoint of the stability of the crystal structure
with respect to certain normal vibrations. Evidently,
this approach can be applied only to phase t ransi-
tions accompanied by a rearrangement of the crystal
structure with a change in the elastic bonds in the
crystal. It rules out phase transitions of the relaxa-
tion type (e.g., of the "order-d isorder" type). These
ideas have since been developed in a series of other
articles,1-12"14 ' "-1 and have made it possible not only
to reconsider earlier theoretical ideas, but also di-
rectly to relate the theory of ferroelectricity to other
branches of crystal physics within the framework of
the dynamic theory of crystal structures.1 1 5 ] On the
other hand, they have powerfully stimulated the devel-
opment of goal-directed studies, which have subse-
quently confirmed the fundamental assumptions of the
dynamic theory, at least as applied to ferroelectric
materials of the BaTiO3 type.

We must emphasize that all of the most important
and characteristic features of the vibrational spectra
of ferroelectric crystals and their variations in the
phase-transition region are described by the phenom-
enological theory of ferroelectricity. However, this
does not exclude another approach to the problem of
ferroelectricity based on concrete analysis of the
microscopic interatomic bonds in the crystal, which
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determine the nature of the vibrations of the crystal-
line substructures.

This review is an attempt to present the current
progress of the theoretical approach to the problem
of ferroelectricity from the standpoint of crystal dy-
namics, and also to discuss on this level the corre-
sponding experimental data obtained by different
methods.

1. THE DYNAMIC APPROACH TO THE PROBLEM
OF FERROELECTRICITY

It is not hard to see that, in substances that under-
go a phase transition involving a rearrangement of
the crystal structure and a change in the elastic
bonds between the atoms, the vibrational spectrum
must also change substantially as we approach the
phase-transition point. This assumption is equally
true of a large number of ferroelectric crystals.

Ginzburgc 2] stated in 1949 the first theoretical
ideas on the features of the vibrational spectra of
ferroelectric crystals in the phase-transition region.
He established the relation between the dispersion
parameters of the oscillator describing the polariza-
tion of the ferroelectric substance and the parame-
ters of the phenomenological theory. He derived this
relation by comparing the equation of motion of the
oscillator in an external field

^ei"" (1)

(2)

should be a minimum. Consequently, in the terms of
the phenomenological theory, the well-known disper-
sion formula for such a vibration takes on the form

at w = 0 with the corresponding condition that the
thermodynamic potential

E (CO) = Boo + ; 2JI/H
(3)

Here we must first consider the fact that the reso-
nance frequency w^ of the oscillator is expressed in
terms of the coefficient a of the thermodynamic po-
tential series in the form coj = Va/|i, where \i
= m/2ee£{N, and m is the reduced mass of the vibra-
tion. Thus, the anomalous properties of this vibra-
tion are completely determined by the nature of the
temperature dependence of the parameter a =
= o;g(T — 6), where 6 is the phase-transition point,
and cx'n is a constant. In particular, this implies that
the frequency of the given vibration must be exceed-
ingly low in the phase-transition region, and that it
should approach zero as we approach the phase-
transition point according to the law

<0; = ]/ — (T — G)1/2 = const -(T — Q)1''*. (4)

The value of o^ estimated in these studies for BaTiO3

proved to be wj ^ 3 x 1OU cycles/sec, taking a ~ 10~3

and n = 10 ~26 (for a model in which Ba vibrates with
respect to TiO3). This corresponds to a wavelength Xj
= 271-C/GJJ = 6 mm. Ginzburg1-93 later developed these
ideas for the case of first-order phase transitions.
Here he showed that when T > 6, the following expres-
sion continues to hold:

®i=K - f (7 ' -7 ' c ) / 2 = const(r-7'c)Nl/2 (5)

with the difference that the Curie temperature (TQ)
differs in this case from the phase-transition tem-
perature (6). Hence, the frequency of the given vi-
bration approaches a finite value of the phase-
transition point:

= V ^-(9-Tc)1' (5':

In the tetragonal phase, the frequency of the corre-
sponding vibration at T = 6 has the different value:

ozl(9) = 2 V - H - ( 8 - (5")

For BaTiO3, which has a first-order phase transition,
the precise value of w^ right at the phase-transition
point proved to be of approximately the same order
of magnitude, namely, u ; ~ 6 x 1011 cycles/sec, and

3 mm, while for the tetragonal phase u>zi ~ 1.2
1.5 m m . " 1

xlO cycles/sec, and \ z i •
Thus, in accord with the phenomenological theory,

the fundamental features of the vibrational spectra of
ferroelectric crystals are the existence of a low-
frequency normal vibration closely involved in the
ferroelectric properties of the crystal, and a consid-
erable frequency decrease and a change in the other
parameters of this vibration as we approach the
phase-transition point.

On the other hand, it is evidently desirable to con-
cretize these parameters as applied to individual
ferroelectric materials of any given structural type.
Such a concretization presupposes the use of crystal-
chemical data on the packing and nature of the chem-
ical bonding of the atoms in the crystal structures of
the ferroelectric materials. It therefore becomes
possible to establish a relation between the features
of the vibrational spectra and various semi-empirical
crystal-chemical criteria and model theories of fer-
roelectricity.

In this case, the basis of analyzing the vibrational
spectra of the crystal is to solve the system of equa-
tions of motion of the atoms of different types in the
force field of all the other atoms of the crystal. How-
ever, the equations contain a large number of param-
eters describing the force interaction of the atoms
with one another, and many of these cannot be deter-
mined experimentally and have to be postulated.
Therefore, exact enough calculations can be made at
present only on crystals of very simple structures,



F E R R O E L E C T R I C I T Y AND CR YST AL - LA T T I C E DYNAMICS 455

perferably with ionic-type bonding. Nevertheless, as
Cochran has shown/ 1 0 ' 1 1 ] use of concrete model con-
ceptions of the structure and force interaction of the
atoms in crystals permits one to establish physically
pictorial relations for the balance of forces deter-
mining the dynamic stability of the structures of ionic
crystals and their dielectric properties. In view of the
pictorial character of the expressions derived by
Cochran for diatomic ionic crystals, as well as for
ferroelectric crystals of the BaTiC^ type, we shall
take up below the content of Cochran's theory without
overestimating its significance thereby.

1.1. Lattice Dynamics and Stability of Non-piezo-
electric Crystals

Kellermannc 24] obtained the first results describ-
ing the lattice dynamics of NaCl-type ionic crystals
by using a model of rigid non-polarizable ions. As it
turned out, the rigid-ion model is a rather poor ap-
proximation. Consequently, it has been necessary to
take the polarizability of the ions into account to get
satisfactory agreement with experiment, even for
classical ionic crystals.c 12>13] Evidently, a correct
account of the polarizability of the ions is an even
more important factor among the "ionic" ferroelec-
tr ic crystals of the BaTiC>3 type, since the polariza-
tion of the electron shells of the ions is responsible
for more than two-thirds of the spontaneous polariza-
tion of these c rys ta l s . " ' 49>62]

A systematic account of the polarizability of the
ions has been made in the series of alkali-halide
crystals ,0 1 2 '1 3 ] and also for SrTiO3 ,C U ] based on the
so-called shell model proposed by Dick and Overhau-
ser. t l 0 1 : l According to this model, the crystalline
substance is considered to consist of atomic cores
(nuclei + inner filled electron shells) distributed at
the sites of the structure. That is, it consists of ions
and outer electron shells. The cores and shell are
treated as independent substructures bound together
by short-range forces and also by long-range elec-
trostatic forces. This description of the properties
of the crystal takes into account the interactions be-
tween the different ions, between the ions and the
electrons of other ions, and also electron-electron
interactions.

Cochran [10 ' 11] has made a further analysis of the
possibilities of the shell model as applied to the prob-
lem of ferroelectricity, based on the concept of po-
larization of ionic crystals, as developed in the pa-
pers of Tolpygo and Mashkevich.cl6]

a) General vibration equations and the condition of
structural stability. Let the equilibrium position of
the k-th atom (k = 1, ... , n, where n is the number of
atoms in the unit cell) in the Z-th unit cell be defined
by the vector r(Zk) = r(Z) + r(k), and the displace-
ments of the ions from their equilibrium positions and
those of the electrons with respect to their ions be de-

noted respectively by u(Zk) and w(Jk). Then, in the
harmonic approximation, the increment of the lattice
energy involved in these displacements is a quadratic
function of the displacements u(Zk) and w(Zk), and has
the following form:

(1.1)

uh (Ik)] Ek (Ik) \ ,+ a,7 Va (lk)+\Pa

where the subscripts a and /3 refer to the different
components of the vector quantities, and Z^ and Y^
are numbers determining the effective electric
charges of the ions and electrons, respectively, of the
k-th type, in electronic-charge units. Here the ex-
pressions $*L , *^,o , and $S are the force con-
stants representing the short-range forces between
ions, between ions and electrons, and between elec-
trons, respectively. The term a^p2

a(lk) takes into
account the electrostatic interaction of the electrons
with their ions, while the coefficient of Ejc(Zk) in
square brackets is the total Coulomb interaction of
all the electrons and ions in the crystal. Here a^ is
the electronic polarizability of the k-th ion, p(Zk)
= Y^w(Zk) is the dipole moment produced when the
electron is displaced with respect to its core, and
Ejj(Zk) is the effective field acting on the k-th ion.

Let us consider the mass of an electron to be
negligibly small, i.e., concede that the electron will
move with the field without inertia at the frequencies
in question. Then the equations of motion are deter-
mined, as usual, from the condition of equilibrium of
forces. For the ions and electrons, respectively, this
is:

("0= —

o— —

d<D \
dua (Ik) ' I

(1.2)

where m^ is the mass of the k-th ion. Further, we
shall assume that the displacements u(Zk) of the ions
and w(Zk) of the electron and the other quantities a s -
sociated with them can be represented in the form of
normal vibrations of the type

u (Ik) = U (k) exp i — tat), (1.3)

where q is the wave vector (q = 2ir/\), and A and to
are the wavelength and frequency of the corresponding
normal vibration. If we assume that the force con-
stants are periodic functions of I, and depend on the
difference I — Z', rather than on their absolute values
values (see ), then, upon substituting expressions
like (1.3) into (1.2), we get the following system of 3n
equations:



456 M U R Z I N , P A S Y N K O V , a n d S O L O V ' E V

G>2mftE/a (ft) = V [i?ap (ftft') -)- ZhCaf, (ftft') Zk] £/p (ft')
hi

+ S [J«B (**') +ZftCap (ftft') yft,j Wp (ft'),

Co.ptftft'jy^jWptft').

(1.4)

Here we have introduced symbols for Rao(kk'),
Ta£(kk'), and S^ lck ' ) of the type

flap (ftft')= - ft, I'ft')expiq[r(J'ft') —r(Zft)], (1.5)

whereas

(D S^.aiVL (1.6)

The quantities CQ,o(kk') are the structure coeffi-
cients of the internal field acting in the polarized
crystal (see, e.g., c4> 5 ] ) . Here the field amplitudes
E a acting on the ion and the electron of the k-th type
are

Ea(ftft') = (1.7)

It is useful to note that the set of all possible quan-
tities occurring in (1.4) can be represented in the
form of corresponding matrices. Then Eqs. (1.4) can
be written in the more convenient matrix form

(1=
HT-r ZdCYd) Wc,

(CD :-Y,,CYd)Wc.
(1.8)

By eliminating Wc from these equations, we ob-
tain equations for the displacements of the ions alone:

Ml1,. (1.9)

where the matrix M defines the effective force con-
stants characterizing the interaction of the substruc-
tures, and has the form

M-R + ZdCZ,,-(T + ZrfCY(,)(a>-:-YtlCYd)-MTJ-VdCZd). (1.10)

The system of homogeneous equations (1.9) can be
solved if its principal determinant [M - oj2md] is
zero. That is,

[j1/»p (kk') — mkat2baK6hh-\ = 0. (1.11)

This so-called secular equation determines in the
general case the frequencies of all 3n normal vibra-
tions of the crystal structure for a fixed value of the
wave vector q. It also determines the relation
w = f(q) of the frequency of each normal vibration to
q, i.e., the dispersion law describing the 3n branches
of the lattice-vibration spectrum.

As is known, all the vibrations can be classified as
acoustic or optical. In the former case, the ions of the
unit cell move in phase (Fig. 1). That is, individual
macroscopic regions of the specimen move as a whole.
Naturally, in crystals showing no piezo-effect, such a
vibration does not involve the appearance of a t ime-
dependent electric moment. For q = 0, the acoustic
vibrations correspond to the trivial solution w = 0 of
the system of equations (1.11). In the latter case, the

•~&- • » o - • » o -
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FIG. 1. Acoustic vibrations of a one-dimensional chain of ions.
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FIG. 2. Optical vibrations of a one-dimensional chain of ions.

vibrations amount to an out-of-phase motion of the
oppositely charged ions of the unit cell (Fig. 2). These
vibrations in general give rise to an oscillating dipole
moment of the unit cell, and form running electromag-
netic waves. They are called optical because they can
interact with the electromagnetic field of optical radi-
ation. We note that the frequencies of the optical
branches do not approach zero as q — 0, and gener-
ally remain finite for infinitely long wavelengths.

One can distinguish between longitudinal and t rans-
verse vibrations, depending on the direction of the po-
larization vector of the vibrations with respect to the
wave-propagation direction (see (1.3)). In general,
there are twice as many transverse as longitudinal
vibrations. However, the transverse vibrations can
be doubly degenerate in special cases of crystals of
high enough symmetry. For illustration, Fig. 3 shows
the different vibrational branches of frequencies of
NaCl, as calculated in C24].

An important fact that will be of primary import-
ance later on in discussing situations favoring the ex-
istence of a ferroelectric transition is the difference
between the values of w(q) for transverse and longi-

FIG. 3. Calculated acoustic and optical branches of the lattice-
vibration spectrum of NaCl according to Kellermann.["]
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tudinal vibrations. This involves the fact that the
components of the effective field parallel and perpen-
dicular to the direction of propagation of the vibra-
tion differ substantially from one another. We can
see this clearly by analyzing the Coulombic terms
contained in M. This feature becomes more evident in
the more interesting case of long waves in simple
crystals of high symmetry. As we know, the field act-
ing on an ion in a polarized crystal structure is equal
to the sum of the average macroscopic field E m a c r

and the field Ej accounting for the action of the di-
poles distributed within the so-called Lorentz sphere:

Eeff = EmaCr f E,. (1.12)

Leaving aside the problem of the values of the field E t

(which, for example, is zero for diatomic cubic crys-
tals), according to c l 5 ] we have for q — 0:

|q|->o
(1.13)

where \i is the dipole moment of the unit cell, and v
is its volume. This implies that E m a c r ^ „ = 0,

h E ^0 In particular, for diatomicwhereas E ..
cubic crystals

v 4jXr, (1.14)

where P is the electric moment of the crystal. Thus,
the crystal structure is more rigid for longitudinal
vibrations, and their frequencies are always higher
than those of the corresponding transverse vibra-
tions.

A necessary condition for the stability of a vibra-
tional process occurring in a crystal is that all of its
characteristic frequencies should be real, as deter-
mined by the determinantal equation (1.11). If the
frequencies are not real, two paired complex conju-
gate roots should exist. One of these leads to an in-
crease in time of the vibrational amplitude in (1.3).
This is equivalent to breakdown of the structure or to
some change in it that makes the vibrations become
stable again. In line with a well-known theorem,1-1T]

the condition that only positive solutions should exist
is satisfied when all the principal minors of the de-
terminant composed of the elements of the matrix M
are positive. That is,

Det3<n- ' ) |M|>0. (1.15)

Hence, the vanishing of one of the principal minors of
(M) is equivalent to a non-trivial solution w = 0 of
the system (1.11), and indicates that the given crystal
structure is unstable.

Condition (1.15) is a general expression determin-
ing the stability of a crystal, upon which a theory of
the corresponding phase transitions could be based.

Evidently, if we want to obtain the temperature-
dependences of the parameters M which are respon-
sible for the breakdown in condition (1.15) at a cer-

tain temperature, we must not restrict the treatment
to the purely harmonic approximation of the original
equations (1.4). We should note that the introduction
of anharmonicity into these equations, even if treated
as a small perturbation, considerably complicates the
whole problem (see, e.g. c l 9 ] ) . This is because the
normal character (i.e., the independence) of the vibra-
tional modes proves to be violated, strictly speaking.
Cochran's theory avoids this difficulty either by pos-
tulating the temperature-dependences of the param-
eters M, or by introducing them in a non-rigorous
way, starting with a comparison with the expressions
arising from the phenomenological formulations.
This renders the condition of stability less "effec-
t ive" and limits the possibilities of analyzing the
microscopic mechanism responsible for the phase
transitions in terms of the dynamic theory. Further-
more, the application of the condition (1.15), even in
the harmonic approximation, is per se the only more
or less systematic attempt thus far to relate the vibra-
tional spectrum of crystals to features of the phase
transitions in cases where this relation can be made.

In determining phase-transition points involving a
change in the symmetry of a crystal, it proves useful
to find the point at which condition (1.15) breaks down
for any particular mode of vibration. In this case, one
can simplify the structure and reduce the order of the
minors of M. As we shall see below, another advan-
tage of treating the breakdown of the stability of crys-
tals for one particular mode is that one can make a
more definite interpretation of the physical mecha-
nism giving r ise to it.

Since the vibrations of the acoustic branch gener-
ally do not give r ise to electric fields in the crystal,
it is natural to relate instability of the electrical state
of the crystal (a ferroelectric transition) to instability
of the system of electric oscillators. That is , condi-
tion (1.15) fails for the frequencies of the optical
branch of the spectrum. Here the case of greatest in-
terest is when the frequencies of the optical branch
become anomalously low as q — 0, i.e., infinitely
long waves corresponding to in-phase vibrations of
ions of like sign in the crystal, or in other words, vi-
brations of the substructures as a whole. It is p re -
cisely to this type of vibration that we can ascribe an
oscillating macroscopic electric moment P. The rea-
son for this is that when X is comparable with the di-
mensions of the crystal, mutually compensating r e -
gions are formed in it, having oppositely directed
dipoles. Hence, P = 0. We must note that this state-
ment, which serves as the fundamental tenet in the
dynamic approach to the theory of ferroelectricity, is
at the same time a "zero-order approximation." As
will become clear later on, it holds true only for non-
piezoelectric crystals. Furthermore, it is assumed
here implicitly that the velocity of propagation of
electromagnetic waves is infinite, and that there are
no reflections from the crystal boundaries.
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b) Dielectric properties of crystals and their r e -
lation to the characteristic frequencies. Using the
equations derived above, it is not hard to write an ex-
pression for the dielectric constant e(w) in the pa-
rameters of the dynamic theory for the case q—• 0.
This is of especial interest, since the behavior of e(co)
in the vicinity of a phase transition is well known for
many ferroelectric crystals. First we shall derive
this expression and then comment on it as applied to
cubic non-piezoelectric crystals. With certain a s -
sumptions made, the results of this treatment can be
applied to ferroelectric materials of perovskite-type
structures, in particular, to BaTiC^. As will be shown
below, the difference between "ionic" ferroelectric
crystals like BaTiO3 and simple ionic crystals like
NaCl consists only in a differing quantitative balance
of attractive and repulsive forces. This is of no fun-
damental importance in the qualitative description of
ferroelectricity in terms of lattice dynamics. In e s -
sence, the expressions derived here determine the
conditions under which simple ionic crystals could
become ferroelectric.

The behavior of a crystal in an external alternating
field E = E exp ( — ipt) can be described by equations
similar to (1.8):

c = (R + ZdCZ,j) + ZdCYd) Wc-eEAZc (1.16)

The expression for e(p) can be derived by using
the well-known formula

e (p) = 1 -+• 4it -

where

(1.17)

(1.18)

If the field frequency p is so high that the ions
can't follow the variations in the field EA , then the
ionic displacements Uc = 0. Thus, we have the follow-
ing expression for the high-frequency dielectric con-
stant:

oo— ~T~ v
 T c \ • I

Analogous considerations presented in detail in [10:l

give an expression for the dielectric constant at an
arbitrary field frequency p. For the static dielectric
constant (p = 0), it takes on the form:

4n [z -i [Zc (1.20)

where [Z£] and [Z£] are numbers characterizing the
effective dynamic charges of the ions with account
taken of overlap of electron shells and interaction of
the corresponding ionic sublattices. They are the ele-
ments of the matrices Z r and Z c whose indices cor-
respond, respectively, with those of the columns and

rows deleted in deriving the principal minor of
[ Det M].

The fundamental conclusion from the derived ex-
pression (1.20) is that it shows directly that the di-
electric constant approaches infinity when [Det M]
— 0 (as we have noted, this is involved in a phase
transition), while the frequency w of the correspond-
ing vibration approaches zero. As we showed at the
beginning of this article, this result is implied in
principle by Ginzburg'sC2] phenomenological theory,
and has a very simple meaning. We recall that e0

and coj are connected by the simple relation e0

= ew + A^w? in the dispersion formula (2), if we neg-
lect damping. Then the condition a; —• 0 must imply
that e0 approaches infinity. The well-known Lyddane-
Sachs-Teller r2 l : l formula contains a direct relation
between the dielectric constant and the transverse and
longitudinal vibration frequencies wp and O>L for di-
atomic alkali halide crystals:

(1.21)

Cochranclo:i has generalized this formula to the case
of cubic crystals having an arbitrary number of sub-
lattices:

n , 2
i r = n - ^ 3 j p d- 2 2 )

where the term for j = 1, corresponding to acoustic
vibrations having o>i = 0, has been omitted from the
product.

If we assume that e0 varies with the temperature
according to the Curie-Weiss law, then the latter ex-
pression implies that the temperature-dependence of
O>T must have the form wj- ~ (T — T Q ) 1 ' 2 , since oi^
can vary only over a small range, as has been stated.
This oi'p(T) relation agrees with the data of Ginzburg's
phenomenological theory (see Eq. (4)).

c) The physical mechanism of the ferroelectric
transition in cubic crystals. The equations discussed
in the last section permit us to formulate in a rather
general form the conditions of stability of lattice vi-
brations and to establish relations connecting the di-
electric constants e0 and eM with the normal vibration
frequencies. However, we can define the physical
mechanism responsible for the phase transition only
to the extent that we concretize the initial model of
the crystal. Within the framework used in deriving
the fundamental relations of the shell model, the ques-
tion remains unanswered why condition (1.15) breaks
down at a particular temperature, i.e., why there is a
phase transition. In this regard, it is useful to apply
the theory developed in the last section to two crystals
of cubic symmetry: a non-ferroelectric one, i.e., any
of the alkali-halide crystals (e.g., NaCl), and the typi-
cal ferroelectric substance BaTiO3.

As applied to an NaCl-type crystal, the equations
(1.4) can be written in the form
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m2W7-f/2 —

0 -

R0(W2-Ul)

R(W2~U2)

R(U2-W2)-

in

{-Ro

-PZe,

PXe,

Ul-W2) + ~PYe,

(1.23)

Here we assume that only the negative ions are polar -
izable, and denote the displacements by U4, U2, and
W2, and the effective charges of the positive ions, the
cores, and outer shells of the negative ions, respec-
tively, by Ze, Xe, and Ye. Here R and Ro are the
short-range force constants, and the last term on the
right-hand side of the equations describes the electro-
static force. In the transverse-wave case under con-
sideration, the effective field is equal to the Lorentz
field (47r/3)P. We assume here, again for simplicity,
that the wave vector q « 0 and lies along the crystal-
lographic direction [100], while the sublattices are
displaced in the transverse direction [001], so that
q- r =0 in (1.3).

If we eliminate from (1.23) the displacements W2 of
the electron shells, taking into account the fact that
the polarization P =(e/v)(ZeU t +XeU2 + YeW2), we get
an equation resembling (1.9) for the relative displace-
ments of the ions:

- U2) -.-. [ B'o - | L (Z'ef (Eco -i- 2) ] (L\ -U2), (1.24)

where pi = m1m2/(m1 + m2), RQ = RRo/(R + Ro), a n d
Z '=Z +YRo/(R+Ro). In deriving this equation, we have
used the condition of electroneutrality of the crystal
and the fact that we can express certain constants
in terms of the polarizability e/v • (Ye)2/(R + Ro) = ».
using equations of motion like (1.23) in an external
high-frequency field for which Uj = U2 = 0. Then we
replace them by the simpler quantity £x, since ac-
cording to the Clausius-Mosotti formula
a = ( v / ^ X ^ - 1 ) / ^ +2).

The analogous equation for longitudinal waves is
derived in the same way, except that, as was shown
earlier (see (1.14)), the effective field here is
(4TT/3)P - 4TTP = - (8TT/3 )P :

t-UJ. (1.25)

Thus, the condition (1.15) that one of the principal
minors of M should vanish in the phase-transition
region, which is equivalent to the vanishing of the
frequency of a certain transverse vibration, takes on
the concrete form

ill (1.26)

As we see from (1.25), for longitudinal vibrations
the right-hand side of the equation consists of two
terms of the same sign, and cannot in principle vanish.
The physical meaning of the condition (1.26) is evident,
and corresponds to the results of the Ginzburg-Devon-
shire-Slater theory. According to the latter, the c r i -

terion of a phase transition is that the short-range
forces acting to restore a displaced ion to its original
position should equal the long-range electrostatic
forces acting to displace it. This relation is some-
times called the criterion of ferroelectric activ-
ity. [22, 23]

In order that Wrp should vanish, and should vary
with the temperature according to the Curie-Weiss
law in accord with Eqs. (4) and (1.22), it suffices to
assume that in the phase-transition region

(1.27)

where TQ is the Curie temperature. This relation
can be derived in various ways. We can assume that
any of the quantities occurring in the second term of
(1.26) varies as 1 + KT, where KT is small in com-
parison with unity. However, Slater14:i has shown that
the temperature coefficients for eM and for volume
expansion are too small, and that the only reasonable
explanation of the relation (1.27) can be obtained if we
assume that RQ depends on the amplitude of displace-
ment of the ion. Here the anharmonicity of the vibra-
tions, or at least of some of them, of the ions of the
ferroelectric material is reflected by a formula of the
type:

R'^- B0-\-niU
i+B2U

i. (1.28)

From this standpoint, the model used in the dy-
namic theory hardly differs from the anharmonic-
oscillatory model used in C 4 ] . However, the difficulty
consists in the fact that introduction of anharmonicity
directly into the workings of the dynamic theory, i.e.,
into (1.4), considerably complicates the problem, even
if we consider the non-linear terms of (1.1) to be a
small perturbation (see also [18>19) 1 2 0 ] ) .

Calculation of the constants occurring in Eq. (1.26)
using the atomic parameters of NaCl- and CsCl-type
crystal structures1-12 '24] shows that for alkali-halide
crystals both terms are of the same order of magni-
tude, but R̂  is about twice as large as the second
term. Thus, for example, according to cl2 ] for Nal, the
effective charge coefficient of the ions Z' = 0.69;
Ro' = 2.89 x 104 dynes/cm, and (47r/^v)(Ze)2(eoo + 2)
= 1.1 x 104 dynes/cm. In other words, the structure of
the discussed alkali-halide crystals proves to be too
rigid, the vibrations of the ions are not anharmonic
enough, while the polarizabilities are not high enough
for mutual compensation of the electric and restoring
forces to set in, as we discussed above.

This situation is substantially changed in BaTiO3

and other ferroelectric crystals. Unfortunately, for
BaTiO3 we cannot completely concretize all the quan-
tities occurring in (1.11) for lack of the necessary ex-
perimental and theoretical data. However, if we make
some simplifying assumptions, in particular, that all
the oxygen atoms are equivalent, and use numerical
values of the structure coefficients C and of the con-
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stants Ro', Z, Bj and B2 in (1.28), following Slater, we
can nevertheless obtain qualitatively the fundamental
relations e(T), P2(T), and others characterizing the
ferroelectric materials. Here it turns out that the
long-range and short-range forces compensate one an-
other considerably more fully in BaTiO3 than in the
alkali-halide crystals. Consequently, the frequency of
the corresponding transverse vibration becomes
anomalously low in the phase-transition region.

As was shown at the beginning of this section, an
estimate of o^ at the phase-transition point according
to Eq. (5) gives WJ = 6 x 1011 cycles/sec. If we as -
sume that the frequencies of the other normal frequen-
cies depend weakly on the temperature, Eq. (1.22) also
gives a low value of a^. Given a typical variation of
eo(T) from room temperature to the phase-transition
point, a>i must decrease by a factor of (eo(0)/eo(T))1/2

~ 50. That is, while the frequency of this vibration at
room temperature ~1013 cycles/sec, in the phase-
transition region it must drop to ~ 2 xlO11 cycles/sec.

In connection with what we have said, we should
note that it would be useful to examine a more exten-
sive set of NaCl-type diatomic crystals with the aim
of finding a more complete compensation of forces,
and related thereto, an anomalous temperature-
dependence of a transverse optical vibration frequency
responsible for a ferroelectric transition. In a study
of the series of semiconductor crystals PbS, PbTe,
GeTe, and SnTe,[102>121] they found an anomalous var i -
ation of a transverse optical vibration frequency with
decreasing temperature in SnTe. This fact indicates
that such attempts are not pointless.

The problem of how well the conclusions of the
theory described above agree with the experimental
data is discussed in Sec. 5.

d) The influence of electronic effects. In spite of
the general similarity of the concepts of the static
and dynamic theories, the shell model is a substantial
improvement over the atomic model of a ferroelectric
substance. Its advantage consists in enhancing and tak-
ing better account of the role of the electrons in the
phase-transition mechanism. In the theories of • > ,
the electronic polarizability was a sort of " m i r r o r "
magnifying the polarization due to the displacements
of the ions. In this case, the effect of the electronic
polarization on the potential function describing the
motion of the ions is taken into account only to the ex-
tent that the electronic polarization enters into the ex-
pression for the long-range forces.

In the shell model, furthermore, the motion of the
electrons (although showing no inertia) directly deter-
mines the short-range field. One of the features of the
shell model is that it takes into account the polariza-
tion of the ions due to the vibrations. The question
arises of how well the numerical estimates of the
phenomenological parameters based on the shell model
agree with the experimental data. In this regard, sev-
eral shell models have been analyzed in cl3> 14] for the

cubic crystals Nal and KBr, and the dielectric con-
stant, elastic constants, the heat capacity, and disper-
sion curves were calculated. The parameters of the
models were determined from the condition of mini-
mum deviation of the calculated macroscopic quanti-
ties from their experimental values. They proposed a
set of refinements to the ionic model of the alkali-
halide crystals described in Sec. 1.2a: a) they took
into account not only the short-range forces between
nearest neighbors, but also those with the layer of
next-nearest neighboring ions (model II); b) they
varied the effective charges of the ions (model III);
c) they introduced the polarizabilities not only of the
negative, but also of the positive ions, including also
the "mechanical" polarizabilities due to the asym-
metric action of the short-range forces exerted by the
vibrating ions (models IV, V, and VI). Each of the
models contains its predecessor and supplements it.
As we should expect, the later models give the best
agreement with experiment. The values of the charges
of the ions estimated in C14:l for the best model for
SrTiO3 (Z S r = 0.83; Zxi = 4.91; Zo = -1.91) showed
that the bonds in SrTiO3 are to a considerable extent
ionic rather than covalent.

Dvorak and Janovecc32:i have estimated the effect
of the electrons on the dynamic stability of BaTiO3 by
directly calculating the vibration frequencies of the
different atoms. They showed that introduction of the
electronic polarizability of the ions into the calcula-
tion leads to a decrease in the vibration frequency
with respect to that for rigid non-polarizable ions.

Some attempts undertaken in 1964 at a more sys-
tematic and rigorous account of the effect of the elec-
trons, based on analyzing the electronic band struc-
ture of perovskite-type crystals, are worthy of serious
attention. Silvermanc 18 ] has recently reviewed the r e -
sults of such an analysis, and hence we shall limit our-
selves here to listing briefly the qualitative conclu-
sions. The analysis of the electronic structure was
based on the hypothesis that, in the harmonic approx-
imation, the energy of the crystal is represented as
the sum of the energy of the ionic structure, the en-
ergy of the valence electrons in the field of the undis-
torted structure, and finally, a contribution caused by
the dependence of the energy of the electrons on the
displacements of the atoms and having a direct rela-
tion to the lattice dynamics.

According to the data of c l 0 9 ]
) in an ideal perov-

skite-type structure the nearest levels to the filled
2p levels of the O~2 ions are the free 3d levels for
Ti3+ ions. Here the size of the energy gap between the
2p levels of oxygen and the various levels of the other
ions depends greatly on the value of the ionic charge
on oxygen. The observed value of the 2p (O2")-3d(Ti3+)
gap is about 3 eV for SrTiO3 and BaTiO3 (this cor re -
sponds to 85% ionic character of bonding in
SrTiO3

[109:l). Considering that this is considerably
less than the energy difference between other combina-
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tions of levels (about 10-15 eV), we can restr ict con-
sideration to the interaction between only the stated p
and d levels.

In view of the symmetry of the wave functions of
these states, each valence p level can interact only
with d levels in the conduction band, and vice versa.
The energy of the valence p levels is lowered there-
by, while the energy of the d levels is increased.

The vibrations of the ions in the paraelectric phase
displace them from their equilibrium positions, and
thus lead to overlap of the valence wave functions of
oxygen with the 3d orbitals of titanium. This is
equivalent to the appearance of a covalent interaction,
and it adiabatically adjusts itself to the lattice vibra-
tions. Consequently, the electronic ground state of the
crystal is described by a system of interacting p and
d levels of titanium and oxygen. Here the density of
the electron cloud localized on oxygen is attracted to-
ward the titanium. The appearance of static displace-
ments of the ions in the phase transition makes a fur-
ther constant contribution to the interaction of the p
and d levels. Hence, it should enhance the covalent
character of the bonds, in accord with Megaw's con-
c lus ion ." 1 "

Analysis shows that the overall change in the en-
ergy of the electrons due to the lattice vibrations is
negative, in spite of the possibility that the energy of
certain d levels may be raised. As applied to the low-
frequency vibrations of the BaTiO3 structure discussed
here, this negative contribution to the energy of inter-
action of the atoms, depending on its size, implies a
decrease in the vibration frequencies or even a loss of
stability of the structure with respect to these vibra-
tions.

Thus, the treatment of the stability of a perovskite-
type crystal structure based on a sort of Jahn-Teller
effect leads to the same qualitative conclusions that
Cochran obtained by basing himself more on a model.
Thus, the former approach is no less promising.

1.2. Application of the Theory to Crystals Having
Piezoelectric Properties.

An attempt was made in [ 1 1 : to apply the concepts
of the dynamic theory of C1O:| to ferroelectric sub-
stances having more complex symmetry than cubic,
and showing a piezoeffect in the paramagnetic region.
One of the important features of this case is that one
has to consider vibrations of wave number q ^ 0. This
involves the interaction of waves belonging to the acou
acoustic and optical branches of the spectra, as is
typical of piezoelectric materials. We should also a s -
sign to this category (q ^ 0) crystals in which an anti-
ferroelectric configuration sets in at a certain tem-
perature. Thus, the problem is that of trying to treat
dielectric, elastic, and piezoelectric anomalies from
a unified standpoint, i.e., in terms of stability of the
crystal structure.

The theory of the electrostatic properties of c rys-

tals has been developed by Born and Kun Huangc 15] on
the basis of a rigid-ion model. Their theory has been
subsequently refined by Cowley,C33:i who included in the
treatment effects involving electronic polarization.
However, taking the electronic polarizability of the
ions into account mainly affects the results of quanti-
tative estimates, and does not affect the conclusions
on the properties of the crystals being discussed.

In this case the system of equations of motion
analogous to (1.9) has the form

= MUc-ZdEc, (1.29)

where E c is a column matrix whose elements repre-
sent the amplitude of the depolarizing macroscopic
field (which is 47rP for longitudinal waves in a diatomic
crystal). In this case we must write the matrix M as
a series expansion in q:

(1.30)

taking the interaction of the different vibrations into
account. Here a, p, and y are the subscripts denoting
the longitudinal and transverse vibrations.

Juast as for the alkali-halide crystals, we can a r -
rive at conditions under which a ferroelectric t ransi-
tion will be observed by a proper choice of the con-
stants characterizing the interaction of the lattice ele-
ments and the coefficients of the anharmonic terms.
The new feature here, as compared with the results of
Sec. 1.1, is that we have to take into account the piezo-
effect in the paraelectric phase, i.e., the interaction
between the optical and acoustic modes of vibrations.
In particular, this can have the result that the crystal
can become unstable with respect to a transverse
acoustic mode with decreasing temperature, even be-
fore it becomes unstable with respect to a transverse
optical mode.

In principle, by suitable choice of the crystal con-
stants one can also devise a transition in which crys-
tals (in particular, of the ZnS type) will show antifer-
roelectric properties. [ il>34] For this to happen, we
must assume that a transverse optical mode becomes
unstable when q = (0, IT/2). (This corresponds to mo-
tion toward one another of ions of the same type situ-
ated one lattice repeat apart.) This type of transition
can be realized whenever the temperature T^ atwhich
it should be observed proves to be considerably higher
than T c .

The ideas presented here on the mechanism of a
ferroelectric transition based on ion displacements can
naturally be applied to such well-known ferroelectric
materials showing a piezo-effect in the paraelectric
phase as Rochelle salt and KH2PO4. However, an order-
disorder phase transition is apparently more probable
for these hydro gen-bonded crystals.c 10° >104:l As we
have stated, the ideas presented above are inapplicable
to the latter type of transition. Nevertheless, experi-
mental attempts to study these substances from the
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described standpoints are undoubtedly of interest.
(That is, one might study the changes in the vibrational
spectra of these crystals in the vicinity of a phase
transition.) Hence, we shall discuss them briefly below
below.

2. THE ROLE OF ANHARMONIC EFFECTS AND
FLUCTUATIONS AND THEIR MANIFESTATION
IN RAMAN SPECTRA

One can explain the temperature variations ob-
served in ferroelectric materials only by taking an-
harmonic effects into account. As has been noted, it
is very hard to solve Eq. (1.2) with account taken of
terms of * containing powers higher than u2, even if
for no other reason than that normality (i.e., inde-
pendence) of the different modes of vibration is lost
thereby. If we consider that the non-linear terms in
(1.1) are small in comparison with the linear compo-
nents of the vibrations, it naturally becomes possible
to use perturbation theory. The assumption that the
anharmonic fraction of the energy is small is correct
enough in this case (at least, if we exclude the phase-
transition point itself). This is implied by the fact that
it takes a relatively slight variation of the quantity
Rj (T) in Eq. (1.26) to get the necessary variation of
eo(T) (as was shown in C4] and then in t l 0 : ! ) . Thus, this
problem can be solved by thermodynamic perturbation
theory combined with using the solutions of the differ-
ential equations of the ionic vibrations (i.e., the normal
coordinates). The problem of taking anharmonicity into
account in terms of the lattice-vibration equations and
the perturbation theory was first treated by Born c i 5 ]

and then by a number of authors. t l 9> 21] As applied to
the problem of ferroelectricity, this method was first
used by Anderson.C8:l

The essence of the method consists in the following:
the state of the crystal is determined by the potential
energy, which is expressed in terms of the wave am-
plitudes af (transverse and longitudinal) belonging to
both branches of the spectrum, i.e., in terms of the
entire set of solutions of equations of the type of (1.4)
in the harmonic approximation. Here the Hamiltonian
H is represented as the sum of two terms: H = Ho + H t.
Here

o = y, [Sa (q) U"_aU" + SO (q) V «£/?] (2.1)

is the unperturbed portion of the Hamiltonian, com-
posed of the normal amplitudes Uq, which are the so-
lutions of (1.4).

Vl- " ? - , '
qq'q" (2.2)

is the anharmonic portion of the Hamiltonian. The
summations in Eqs. (2.1) and (2.2) are performed over
all the transverse and longitudinal modes belonging to
both branches of the spectrum. In the first summation,
U2 and U | are the amplitudes, and S°(q) and Sa(q)

are the elastic moduli of the optical and acoustic vibra-
tions, respectively.

Further, we define the free energy as a power se-
r ies in Hi:

A=-kT\n ^ e x p ( - ""^j"' ) dT^A0 + H1 + ~ [ i / j - ( j ^ ) 2 ! •

( 2 . 3 )

H e r e , A Q i s t h e f r e e e n e r g y i n t h e a b s e n c e o f p e r -

t u r b a t i o n s , t h e f i r s t - o r d e r t e r m i n H t i s t h e q u a s i h a r -

m o n i c m e a n of t h e p e r t u r b a t i o n o f H o , a n d t h e s e c o n d -

o r d e r t e r m i s t h e e n e r g y f l u c t u a t i o n . W e m u s t e m p h a -

s i z e t h a t t h e a s s u m p t i o n t h a t t h e a n h a r m o n i c f r a c t i o n

o f t h e e n e r g y i s s m a l l , w i t h s u b s e q u e n t e x p a n s i o n o f

t h e f r e e e n e r g y i n a s e r i e s i n t h e p e r t u r b a t i o n H j , i s

a l s o u s e d i n t h e m o d e l t h e o r i e s o f D e v o n s h i r e a n d

S l a t e r c 3 > i i a n d o t h e r p a p e r s b a s e d o n t h e s o - c a l l e d

a n h a r m o n i c - o s c i l l a t o r m o d e l . T h e e s s e n t i a l p o i n t

h e r e i s t h a t t h e H a m i l t o n i a n H i s e x p r e s s e d i n t e r m s

o f t h e n o r m a l c o o r d i n a t e s . T h i s p e r m i t s o n e t o d e t e r -

m i n e t h e t e m p e r a t u r e - d e p e n d e n c e o f t h e f r e q u e n c i e s

o f t h e c h a r a c t e r i s t i c v i b r a t i o n s o f t h e s t r u c t u r e . E f -

f e c t s d u e t o t h e e l e c t r o n i c p o l a r i z a b i l i t y o f t h e i o n s

a r e n o t t a k e n i n t o a c c o u n t e x p l i c i t l y i n c 8 : i . C o n s t r u c -

t i o n o f t h e H a m i l t o n i a n w i t h a c c o u n t t a k e n o f e l e c t r o n i c

d i s p l a c e m e n t s i n v o l v e s n o d i f f i c u l t i e s i n p r i n c i p l e , a n d

f u r t h e r m o r e , m a k e s n o q u a l i t a t i v e c h a n g e s i n t h e c o n -

c l u s i o n s t h a t A n d e r s o n h a s d r a w n . If w e a p p l y t h e

m i n i m u m - f r e e - e n e r g y c o n d i t i o n ( 2 . 3 ) i n t h e p r e s e n c e

o f a n e l e c t r i c f i e l d , w e c a n d e t e r m i n e t h e v a l u e of t h e

d i e l e c t r i c c o n s t a n t e 0 = 1 + ( 4 7 r e 2 / v 2 S g f f ) . H e r e S ° f f i s

t h e e f f e c t i v e v a l u e ( i . e . , i t t a k e s i n t o a c c o u n t t h e C o u -

l o m b i c f o r c e s ) o f t h e o p t i c a l e l a s t i c m o d u l u s a s s o c i -

a t e d w i t h t h e v i b r a t i o n a l m o d e q = 0 . F i g u r e 4 s h o w s

t h e v a r i a t i o n o f S e f £ a s a f u n c t i o n o f t h e w a v e v e c t o r

q calculated in *• . We can easily see that when q = 0
in the region T = 6, Seff approaches zero, and hence,

does so also. Correspondingly, at this tempera-

ture, e0 —••».
Thus, it turns out that the physical mechanism r e -

sponsible for the appearance of ferroelectricity in ba-
rium titanate that Anderson used, and the one described
above (see Sec. 1.1) lead to the same results.

One of the very important conclusions drawn in C8]

on the basis of the estimate (2.2) is that the fluctuations
exert a relatively small influence on the nature of the
vibrations and the temperature-dependences of the

FIG. 4. Theoretical relation of the effective elastic modulus
Sef£ to the wave number q.[8]
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macroscopic parameters (e, P, etc.), even in the im-
mediate vicinity of the transition point. However, a
variation in the fluctuations near the phase-transition
point can lead to very interesting effects involving
light scattering.

Ginzburg and Levanyukc 9'28> 29] have treated in de-
tail the problem of the role of fluctuations in the
phase-transition region. For example, the fluctuations
in the polarization of the crystal are defined in this
case for the point r as AP(r) = P(r) - Po, where Po

is the polarization for the ordered homogeneous sys-
tem. The cited studies showed that the fluctuations in
P must increase sharply near phase-transition point.
This could considerably increase the integral inten-
sity of scattered light in the phase-transition region.
Since the fluctuations in BaTiO3 are determined by the
displacement of the crystalline substructures, or in
other words, by the vibrations, they concluded that this
effect should be manifested primarily in the form of
Raman scattering. Thus, as the temperature ap -
proaches the phase-transition point, besides observing
a decrease in the frequency of the ferroelectric vibra-
tion and a shift of the corresponding Raman line toward
that of the exciting light, we should also observe an
appreciable increase in its intensity.

However, we note that it is apparently not always
easy to observe this effect. The problem is that the
stated vibration is characterized by much damping due
to anharmonicity. Hence the Raman-scattering pattern
is considerably complicated. According to t2 8 .2 9^ the
spectral distribution of the Raman scattering intensity
is described by the formula

Red x Viol
satellite

3 («>) = ,
(2.4)

where w = w s c a t t e r e d - w i n c i d e n t , and I = J_°^ <r (w)

x dw is the integral intensity of the scattered light.
Thus we see that when v^ > wj, the Stokes and anti-
Stokes components of the Raman scattering merge to-
gether, and it becomes impossible to observe them
(Fig. 5).

In connection with the problem of the role of the
anharmonic terms and fluctuations, we can correlate
the data presented above with the equations determin-
ing the stability of ferroelectric materials in the terms
of the model theories of Mason and Matthias, Devon-
shire, and Slater.1-1' 3> 4 ] Without taking this point up
in detail, we shall only note that the condition for loss
of stability of the crystal in the statistical theories is
also equivalent to the condition (1.15).c3l:i

3. TYPES OF NORMAL VIBRATIONS OF
PEROVSKITE-TYPE CRYSTAL STRUCTURES

In particular, experimental study of the problems
of dynamic stability of ferroelectric crystals permits
one directly to test the conclusions of the microscopic
theory discussed above. It consists primarily in study-

et
satellite
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I
—'—u-202"

FIG. 5. Variation of the form of the Raman spectrum as a func-
tion of the relation between the damping constant and the resonance
frequency of the vibration.

ing the features of the vibrational spectra of ferroelec-
tric crystals. Hence, before we proceed to describe
the studies along this line, we should use symmetry
theory to analyze the form of the vibrational spectra
of these crystals, i.e., to determine the number and
symmetry type of the expected normal vibrations of
their crystal structures.

In line with the general trend of this article, we
shall go into more detail in discussing the form of the
normal vibrations of crystals having perovskite-type
structures. Figure 6 shows the perovskite-type crys-
tal structure. As we know, crystals having this struc-
ture can occur in three states, namely, cubic, tetrago-
nal, and orthorhombic. In particular, the BaTiO3

crystal passes through all of these three phases with
varying temperature. Last135-1 made the first attempt
to analyze the vibrational spectrum of this type of
crystals. However, this approach was very approxi-
mate, and subsequently led to a great variety in inter-
pretations of the experimental results. [36~40:l A more
correct treatment of the problem of the vibrations of
perovskite-type structures was carried out in C32'
41-44] ^ tjasec[ o n the systematic application of group
theory. We shall rely hereinafter on the data of these
studies.

According to the dynamic theory of crystal s truc-
tures (see Sec. 1.1), the total number of normal vibra-
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FIG. 6. Unit cell of the BaTiO, crystal.

tions for BaTiO3-type crystals should be 3n = 15. If we
exclude the acoustic vibrations, the 12 optical normal
vibrations remain.

We shall have to take the symmetry of the crystal
into account henceforth in determining the symmetry
types and degree of degeneracy of these vibrations.
We can do this by using the method proposed by Bha-
gavantam,145-1 which is based on applying group theory
to crystals for the case of long waves. A perovskite-
type crystal structure in the cubic, tetragonal, and
orthorhombic states belongs respectively to the space
groups O^—Pm3m, C^—P4mm, or C\y—Pmm2.cl00'
104:1 If we take separate account of the translation op-

erations, it is described by the set of symmetry oper-
ations appropriate to the groups O^, C4V, and C2v, r e -
spectively. Upon determining the characters of the
reducible representations appropriate to these groups
for all the symmetry operations by Bhagavantam's
method,1-45] we can easily calculate by the well-known
formula1-453 the number of normal vibrations of each
symmetry type possible for the given group. Table I
gives the results of such a calculation.

We note that, in accordance with the selection
rules, vibrations of symmetry types F2U and Bj (C4v)
are forbidden in infrared spectra, while those of sym-
metry types F l u and F 2 u are forbidden in Raman
spectra.

In order to understand how these vibrations t rans-
form as the crystal goes from the cubic to the tetrago-
nal and then to the orthorhombic state (e.g., as one ob-
serves in BaTiC>3 with varying temperature), we must
construct the corresponding symmetry coordinates.
Since a normal coordinate is made up only of symme-
try coordinates of the same symmetry type, one can
show by correlating the symmetry coordinates
corresponding to the analyzed types of normal vibra-
tions that the normal vibrations transform as follows
upon transition from the cubic to the tetragonal state:

Fiu (xyz) -*. lAi (z) + IE (xy) and F2a (xyz) - * \Bx (z) + IE (xy),

where z is the unique fourfold axis. Proceeding to the
case of the orthorhombic phase of the perovskite-type
crystal structure, we can easily show that the E(xy)

Table I. Characters of the reducible representations calculated for all the symmetry operations
of cubic, tetragonal, and orthorhombic perovskite crystals, and the number of normal

vibrations belonging to the possible symmetry types.

Symmetry groups

Symmetry oper

Characters of
reducible
representations

Symmetry types

Number of
normal vibra-
tions of the
given symmetry
types

ations

for optical
vibrations

for acoustic
vibrations

of vibrations.*

optical

acoustic

oh

E

12

3

Aig

0

0

8C3

0

0

0

0

6C2

-2

-1

A2g

0

0

6C4

2

1

2̂u

0

0

3C2

- 4

-1

ES

0

0

I

—12

—3

Eu

0

0

-2

—1

Fig

0

0

SS6

0

0

Flu

3

1

3oh

4

1

F2g

0

0

*Fiu and F2U vibrations are triply degenerate, E vibrations doubly degenerate.

6<Td

2

1

Flu

1

0

E

1.2

3

Ax

3

1

2C4

2

1

A2

0

0

c2

—4

—1

Bt

1

0

2cr0

4

1

B2

0

0

2

1

E

4

1

C2v

E

12

3

Ax

4

1

C2(2)

- 4

—1

A2

0

0

a(xz)

4

1

Bt

4

1

4

1

B2

4

1
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vibration degenerate in x and y must split into two
different vibrations.

Thus, the infrared absorption spectrum of perov-
skite-type crystals in the cubic state must consist of
three absorption bands corresponding to the vibra-
tions oil, w2, and w3 of the type F lu(xyz). The vibra-
tion u>n of the type F2u(xyz) is forbidden in the infra-
red spectra. After the crystal has transformed to the
tetragonal state (when measured in unpolarized light),
the three above-cited absorption bands should split
into doublets of the type wj and wj' (i = 1, 2, 3), and a
new band should appear, corresponding to one of the
splitting components of the w,j-type vibration. One of
the components of the a/-type doublets is polarized in
the z direction, while the other, to"', is polarized in
the plane perpendicular to this axis. We should expect
a further doublet splitting of the E-type vibrations in
the infrared absorption spectrum of crystals in the
orthorhombic phase, and as a whole, the spectrum
should consist of 12 absorption bands.

The Raman spectrum of perovskite-type crystals
in the cubic state should show no first-order lines.
They are all forbidden by the selection rules. How-
ever, after transition of the crystal to the tetragonal
phase, the Raman spectrum should manifest all eight
vibrations of the types 3Aj(z) + lB t(z) + 4E(xy). These
should apparently have the form of four bands split
into doublets, and should depend on the polarization of
the light. The Raman spectrum of these crystals in the
orthorhombic phase should show all twelve non-degen-
erate normal vibrations.

The treatment given above has been carried out for
q = 0. That is, we neglected the polarization and the
direction of propagation of the vibrational waves in the
crystal. As has been stated, in certain cases the latter
can be classified as transverse (E 1 q) and longitudi-
nal (E II q) waves. In other words, we have determined
essentially the symmetry types of the normal dis-
placements of the atomic substructures in the crystal.
If we take into account the direction of q (even when
| q | ~ 0 ) , the cited types of vibrations are divided into
transverse (2n) and longitudinal (n) types, depending on
the chosen direction of q. This does not alter the clas-
sification derived above of the normal vibrations of
perovskite-type crystals. However, since the frequen-
cies of the longitudinal and transverse vibrations dif-
fer considerably, we can expect the appearance of the
corresponding lines, e.g., in the Raman spectra.

A very important point in analyzing the phenomenon
of ferroelectricity from the standpoint of crystal-
lattice dynamics is the problem of the form of the nor-
mal vibrations. From the analysis that we have car-
ried out, we can state quite definitely only the form of
the normal vibrations of the types F 2 u and B t (in the
tetragonal phase). These vibrations involve the rela-
tive displacement of only the two crystalline sublat-
tices of the atoms O(3) and O(5) (Fig. 7).

In order to determine approximately the form of

FIG. 7. Form of the normal vibrations of types F2 u and Bi for
the perovskite-type crystal structure.

the other vibrations, some authors have introduced
certain assumptions corresponding in some degree to
reality. Thus, Last1-35-1 started with the differences
between the atomic weights and distances between the
atoms in the structure, and divided all the atoms of the
unit cell into two groups: the cation (e.g., Ba), and the
TiO3 group. As a result, he ascribed the two short-
wavelength F t u-type vibrations to internal vibrations
of the TiO6 octahedron, and the longest-wavelength F l u -
type vibration to motion of the cation with respect to
the TiO3 group. Other invest igators" 6 ' 3 7 ' 3 9 : have
adopted the same viewpoint. This hypothesis is also
favored by the similarity of the observed absorption
spectra in the near infrared, as contrasted with their
sharp differences in the far infrared, among crystals
of perovskite-type structures (SrTiO3, PbTiO3,
BaTiO3, etc.), and among crystals of differing s truc-
tures, but containing TiO6 octahedra (ilmenite and
spinel structures).c35> 44j 47>48] Hence, the longest-
wavelength vibration depends essentially on the mutual
displacements of the cations of the Ba and Ti types.
Some estimates made by studying the absorption spec-
tra of BaTiO3 in the far infrared also show that a cer-
tain relative displacement of the atoms Ti and O(4)
must occur in this vibration.[ 49] These are the ideas
on the fundamental features of the low-frequency vibra-
tion. As we shall see below, it is more closely related
than the other vibrations to the ferroelectric state of
BaTiO3-type crystals. We should add in connection
with the data from X-ray analysis that the oxygen octa-
hedron is apparently slightly deformed in this vibra-
t ion. c l 0 ]

We have paid major attention in our review to crys-
tals having a perovskite-type structure. However, we
shall also have to treat crystals of other structures,
e.g., Rochelle salt, KH2PO4, NH4H2PO4, NaNO2. In par-
ticular, we shall encounter these crystals in the sec-
tion concerned with studying Raman spectra. Here we
shall not consider the symmetry of the normal vibra-
tions of these crystals. It is determined by precisely
the same methods as were described above, and we
shall simply refer the reader respectively to the pa-
pers in which these calculations were performed (see,
e.g., [5°<51J).
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4. FEATURES OF THE EXPERIMENTAL STUDY
OF THE DYNAMICS OF FERROELECTRIC
CRYSTALS

The first experimental results on the dynamics of
BaTiO3 and a number of related compounds were ob-
tained by infrared (IR) spectroscopy and Raman scat-
tering (RS) of light135'36> 52] in the late Fifties, i.e.,
when the features presented above of the vibrational
spectra of these compounds were not yet known. These
results were incomplete, and the main point was that
they proved to be disillusioning in the sense that the
studied spectral region showed practically no changes
in the vibrational spectra that might be expected intu-
itively in the vicinity of the phase transition from the
paraelectric to the ferroelectric state. The theoreti-
cal studies that have appeared in recent years have
made possible a fresh approach to explaining the
previously-obtained experimental data, and have
stimulated a considerable development of spectro-
scopic studies of ferroelectric substances, but now
exactly aimed at their goals. These studies have also
predetermined some features of principle in studies
of the vibrational spectra of ferroelectric crystals
that should be considered in performing experiments.

First of all, the essential distinguishing feature of
ferroelectric crystals is that their vibrational spectra
should contain a normal vibration closely related to
the ferroelectric properties of the crystal (we shall
call it the "ferroelectr ic" vibration), and character-
ized by a very low frequency. As has been shown, the
frequency can attain a value of ~ 1011 Hz in the phase-
transition region. That is, it lies in the far infrared.
Experiments performed in recent years have con-
firmed this estimate.

Another peculiarity of ferroelectric crystals is the
fact that a region of extreme dispersion of the dielec-
tric constant must occur near the frequency of this
vibration. For example, the dielectric constant should
vary by almost two orders of magnitude for BaTiO3. In
other words, the absorption coefficient in this spectral
region must be very large, while the corresponding
absorption band must be very diffuse. This determines
another specific feature of experimental studies of
vibrational spectra of ferroelectric crystals. Namely,
it becomes practically impossible to measure the IR
absorption spectra, while the detection of such a band
in the Raman spectra is transformed into a problem of
extreme complexity.

The fundamental methods of studying vibrational
spectra of crystals, which have already been in use
for many years, are to measure the infrared absorp-
tion and Raman spectra of the crystals. Both of these
methods are commonly used, since they can substan-
tially supplement each other, in line with the fact that
certain normal vibrations can be forbidden by selection
rules in the infrared absorption spectra and allowed in
the Raman spectra, and vice versa. We should note

that by using optical methods we can study only the
optical branches of the normal vibrations, and only for
values of the wave number q ~ 0.

Methods based on inelastic scattering of slow neu-
trons have recently become more and more promising.
An important advantage of these methods is that they
involve no selection rules forbidding the manifestation
of particular normal vibrations of the crystals. In ad-
dition, neutron scattering permits one in principle to
study experimentally the complete dispersion rela-
tions, both for the optical and acoustic branches of vi-
brations, and in particular, to get data on the vibration
frequencies in the region q — 0. The possibilities of
these methods are not limited by considerations of
principle, but rather, by the necessity of using large
specimens and strong neutron fluxes to obtain the
maximum intensity. The problem of the nature of the
experimental data that one can get in the region q — 0
using neutron scattering and the optical methods and
the possibilities of interpreting them are discussed
in C53:l. We shall examine below the features of the
experimental methods applicable in studying the vibra-
tional spectra of ferroelectric crystals.

4.1. Methods of Infrared Spectroscopy and Raman
Scattering

The first systematic studies of the large group of
compounds having the perovskite structure were per-
formed by measuring the transmission spectra in the
near IR region at 300-1000 cm"1. They showed that
these crystals are characterized by high absorption in
the region of the normal vibrations, and that samples
1-3 microns thick are needed for practical measure-
ments.1-35'36:l Hence, the samples used have been thin
single crystals or powder samples obtained by p ress -
ing a ground crystal of particle dimensions 1-5 mi-
crons with KBr powder or with polyethylene pow-
der,C35> ui or also by repeated deposition of the powder
evaporated in air onto a KBr crystal substrate or onto
a polyethylene substrate.c 3G> 42]

The reflection method has been the fundamental
method in studies in the far infrared region, which is
of greatest interest.c37"39 ' 42> 54] This is due to the fact
that great dielectric dispersion is observed in this
frequency region, as has been stated, and the thinnest
specimens prove to be opaque. The specimen thick-
ness was not of primary importance in using this
method. The surfaces proved to be optically good
enough in measurements of reflection from a natural
face of a single crystal, and did not require prel imi-
nary polishing, as was necessary for polycrystalline
specimens.C39> 42] An important merit of this method
is that one can calculate the frequency-dependence of
the refractive index and the absorption coefficient by
mathematical treatment of the reflection-spectrum
data. Hence, one can calculate the real and imaginary
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parts of the dielectric constant over a large spectral
range.

This method has been described in detail in c37> 38>

42> 54]. In brief, it is based on measuring the spectral
variation of the coefficient of reflection R(w) over a
broad range of the spectrum, usually with normal inci-
dence of the light beam on the crystal. Thus, at any
point of the spectrum one finds the amplitude of the
reflected wave r(w) = VR(w). TO find the second
parameter, the phase <p(ca) of the reflected wave, one
uses the Kramers-Kronig relation, which relates these
two quantities by way of an integral. Using known r e -
lations, one can easily calculate the optical parameters
n(w) and k(w) for a given a> from the r(cj) and (p(oj)
data, and also the real and imaginary parts e'(aj)
and e"(co) of the dielectric constant. Since the dis-
persion theory indicates that the frequency of the
normal vibrations coincides with the maximum in
the conductivity <r(w), rather than in e"(w), it is
also useful to determine the variation of a(co). The
Kramers-Kronig integral and all the stated param-
eters are usually calculated by electronic compu-
t e r s ^ 3 7 ' 38'42> 54] In making this calculation, one
replaces the integral over an infinite range with an
integral over a fine range determined by the range
of frequencies over which the reflection coefficient
has been measured. In cases in which the region of
measurements is not broad enough, some authors
have extrapolated the experimental data. Here one
has to make a special analysis of the sensitivity of
the results of the calculation to the accuracy of
such an extrapolation.C37> 38> 54] Use of the Kramers-
Kronig analysis in the case of oblique incidence of
the light beam on the specimen is discussed in the
ar t ic led 5 5 ]

We should note that measurements in the far infra-
red (i.e., in the wavelength range from 50 to 1500 mi-
crons) have only recently been performed. This is ex-
plained by the fact that work in the far infrared is ex-
tremely difficult because of the low power of the radi-
ation sources (heated black bodies). The problem of
filtering the useful light from the much more intense
short-wavelength radiation is also very complex in
this spectral region. Laboratory spectrometers for
the far infrared have been specially designed for such
studies. They permit one to measure down to frequen-
cies of ~ 10 cm"1 (X = 1000;u). Use of radio generators
of microwave radiation (klystrons), together with the
cited spectrometers, has extended the range of study
to 1 cm *, using spatial separation of the higher har-
monics of the radiation. [37>47> 54]

Studies of the vibrational spectra of ferroelectric
crystals by measuring Raman spectra are very diffi-
cult because the Raman lines of the most interesting
"ferroelect r ic" vibrations should be very diffuse,
and lie in the immediate vicinity of the exciting line.
Hence, the studies of the Raman spectra of ferro-
electric materials performed thus far have not yet

given as successful results as have been obtained
by other methods. The method applied differs from
the usual only in the care taken to eliminate stray
light in the crystal and the instrument. In the given
case, the stray light strongly masks the Raman
spectrum, especially in the vicinity of the exciting
line. Besides, as a rule, the high refractive index
of ferroelectric crystals also greatly decreases the
intensity of the Raman lines.

4.2. Methods Based on Inelastic Scattering of Slow
Neutrons

As is known, the nature of the interaction of neu-
trons with matter depends essentially on their en-
ergy. Slow neutrons show great advantages in this
regard over other forms of radiation, e.g., light,
electrons, and x-rays, since the wavelength of such
neutrons is comparable with the interatomic dis-
tances, while their energies are of the order of
magnitude of the energies of the characteristic mo-
tions of atoms in solids and liquids (the vibrational
and rotational motions of atoms and groups of at-
oms, diffusion, etc.), i.e., 0.1-0.001 eV.

Hence, on the one hand, slow neutrons can r e -
veal the existence of order in the material being
studied, as manifested in the coherence of the neu-
tron scattering from different atoms. On the other
hand, they can respond to any changes in the posi-
tions of atoms occurring during the time of effec-
tive interaction of the neutron with the atoms. In
the latter case, in accordance with the uncertainty
principle, the participation of the atoms in vibra-
tional and diffusional motions must result in a
change in the energy of the neutrons by the amount
e ~ R/t, where t ~ 1O~13-1O~14 sec for optical vi-
brations in solids, and t ~10~12 sec for diffusion in
liquids like water. Hence, the change in the energy
of the neutrons e ~ lO^- lO" 1 eV is of the same or-
der of magnitude as the initial energy of the neu-
trons. Hence, it can easily be measured for each
individual scattering event.

It is precisely these processes of inelastic scat-
tering of slow neutrons accompanied by a change in
their energy that provide information on the dynam-
ics of the scattering medium. If we restrict our-
selves to the case at hand of crystal-lattice vibra-
tions of solids, it turns out, first, that neutrons are
"act ive" with respect to all the lattice vibrations,
in distinction from light and x-rays. These vibra-
tions include all those, both optical and acoustic,
with arbitrary q vectors, that can be represented
as plane waves of the type of (1, 3). Second, only
neutrons permit one to get experimentally complete
dispersion laws w = ws(q) for all s branches of the
vibrational spectrum of lattice frequencies.

The reader can find a systematic presentation of
all the problems of the theory of interaction of slow
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neutrons with matter and of the possibilities emerg-
ing from the theory of experimentally studying the
dynamics of condensed systems in the books of
Turchin [563 and of Gurevich and Tarasov.c 57 3 The
problems of methodology of the corresponding neu-
tron experiments are thoroughly treated in the r e -
view of Brockhouse et al.C58~e03 Here we shall sum-
marize with reference to these sources some in-
formation on inelastic scattering of slow neutrons,
as is necessary for understanding the results of the
studies presented below.

In a neutron experiment, one usually gets data on
the second-derivative scattering cross-section
82<r/8fi9e. This determines the probability that a
neutron scattered in the given range of solid angle
between Q, and Q, + d£2 will have an energy within
the range between E and E + de. The experimental
methods used for these purposes make it possible
to record in one or several directions the relation
between the intensity of the scattered neutrons and
their energy change, as compared with a fixed ini-
tial or final energy value assigned by the experi-
menter. Here one can get all the data necessary to
construct the dispersion curves w = ws(q) from the
experimental results on inelastic coherent scatter-
ing from single crystals. For simple enough crys-
tal structures, one can get the real frequency dis-
tribution function g(a>) (the phonon spectrum) from
experimental data on inelastic incoherent scatter-
ing of neutrons by polycrystals. One can then com-
pare the phonon spectrum with various theoretical
models of atomic interactions defining the features
of the dynamics of the material being studied.

The nature of the variation of the neutron energy
caused by interaction with lattice-vibration quanta
(phonons) depends substantially on the experimental
conditions. Depending on the initial energy of the
neutrons and the nature and temperature of the ma-
terial, a neutron can transfer part of its energy to
excite vibrations (one says that the neutron generates
phonons) or, conversely, it can gain extra energy from
the energy of the lattice vibrations (in this case one
says that the neutron absorbs phonons).

The laws of conservation of energy and momentum
of the neutrons hold true in the following form for in-
elastic coherent scattering of neutrons with absorp-
tion or generation of phonons:

m

k - k o = 2 n T T S * . (4-2)

Here Eo,ko, and E,k are the energy and momentum
values of the neutron before and after scattering, r e -
spectively, wj and qA are the frequency and wave
vector of the i-th phonon participating in the scatter-
ing process, r is an arbitrary reciprocal-lattice vec-

tor, and the — and + signs refer respectively to the
processes of generation and absorption of individual
phonons.

At not too high temperatures, not exceeding the
Debye temperature of the crystal being studied, scat-
tering with generation or absorption of a single phonon
(m = 1) predominates. The role of many-phonon proc-
esses increases greatly with rising temperature, and
the interpretation of them is very difficult. Without
discussing this problem further, we shall only mention
that the spectrum of the neutrons scattered in many-
phonon processes is continuous, in distinction from
single-phonon processes. This fact makes it possible
qualitatively to distinguish the interfering contribution
from many-phonon processes in interpreting the fea-
tures of single-phonon scattering.

The laws of conservation of momentum (4.2) in
single-phonon scattering imply that in scattering the
neutron transfers part of the momentum nq to the pho-
non, or receives it from the latter. The other fraction
K • 2TTT of the momentum defines the participation in
the scattering process of the crystal as a whole without
energy transfer. This case where k — kg = 2ITT is
shown schematically in Fig. 8a. It corresponds to
elastic coherent scattering, on which the classical
methods of neutron and x-ray diffraction are based.
Figs. 8b and c show on the same scale the vector dia-
grams corresponding to the cases of inelastic coher-
ent scattering with generation or absorption of a pho-
non.

For a given kg, let us bear in mind the fact that
k = kfi for scattering in the direction defined by the
unit vector 0. Then the conditions (4.1) and (4.2) are
two equations for the single unknown k, and they can
have only a finite number of solutions. Thus, the spec-
trum of the neutrons inelastically and coherently scat-
tered in a certain direction is discrete, and it has the
form of rather sharp maxima on the background of the
continuous contributions from incoherent and many-
phonon scattering.

Each of these maxima for a given ko and a given
scattering geometry (i.e., the scattering direction fi
is given) determines a pair of values of w and q. By
measuring the spectra under various conditions ensur-
ing the satisfaction of the conditions (4.1, 4.2) for
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tering, b) inelastic scattering producing phonons, c) inelastic co-
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various values of the energy and momentum transfers,
we can obtain a set of values of w and q adequate to
construct the complete dispersion curves w = ws(q).

In proceeding to consider the information that we
can get from inelastic incoherent neutron scattering,
we shall note first of all that the conditions of con-
servation of quasimomentum in the form (4.2) are not
fulfilled in this case. This is because the crystal as a
whole takes up the entire change in the neutron mo-
mentum fi(k — ko), in spite of the participation of ele-
mentary excitations (phonons) in the scattering proc-
ess . Consequently it turns out that the spectrum of
the inelastically and incoherently scattered neutrons
is continuous, in distinction from the coherent scat-
tering. However, certain features of the continuous
spectra of inelastic neutron scattering can be cor re -
lated with concrete lattice vibrations. The possibility
of such a correlation is based on the fact that maxi-
ma in the scattered-neutron intensity must occur in the
frequency region having greatest statistical weight in
the phonon spectrum of the substance being studied.
From this standpoint, those branches of the phonon
spectrum whose dispersion curves ws = ws(q) are
characterized by small values of dw/dq over a rather
broad range of q values should make a substantial
contribution to the neutron scattering. Evidently,
"f la t" optical branches satisfy these conditions, as
well as "f lat" regions of the acoustic branches in the
region of q values near a Brillouin zone boundary
(see Fig. 21 for SrTiO3). That is, the conditions are
fitted by all the regions of the acoustic and optical
branches within which a great enough number of vi-
brations having different q values occur within a nar-
row enough range of frequencies.

Here a fraction of the peaks in the neutron spec-
trum due to sufficiently flat transverse optical
branches of vibrations having different q values must
lie in the frequency region obtainable from infrared
and Raman spectra for q ~ 0. This also implies that
the contribution to the neutron spectrum from the
most interesting low-frequency optical branch must be
distributed over a larger range of frequencies, owing
to its anomalous behavior at small q. Hence, it is
harder to distinguish unequivocally in the total scat-
tering pattern. The correlation with infrared data for
this branch becomes correspondingly indefinite.

5. RESULTS OF EXPERIMENTAL STUDY OF
CRYSTAL LATTICE DYNAMICS OF FERRO-
ELECTRIC SUBSTANCES

The fundamental conclusions of the dynamic ap-
proach to the theory of ferroelectricity presented in
Sees. 1 and 2, which can be verified experimentally,
are:

1. The conclusion that dispersion expressions like
(3) and relations like (1.22), which were derived for
classical ionic crystals, can be applied to describe

the dielectric properties of ferroelectric substances
of the BaTiO3 type.

2. The conclusion that the vibrational spectrum of
ferroelectric crystals should contain a "soft ferro-
e lect r ic" vibration belonging to one of the transverse
optical branches, and characterized by a low reso-
nance frequency and high anharmonicity. This vibra-
tion must be mainly responsible for the high value of
the low-frequency dielectric constant of such crys-
tals.

3. The fundamental conclusion of the theory that
such a vibration in ferroelectric crystals should show
a high temperature-dependence, with a frequency
that declines anomalously according to the law u-p
~ (T — T Q ) 1 ' 2 as the temperature approaches a first-
order phase-transition point, and generally approaches
zero as the temperature approaches the phase-transi-
tion point in crystals possessing a second-order phase
transition.

4. The conclusion that fluctuations increase appre-
ciably under certain conditions in the phase-transition
region, and that they enhance the intensity of the
Raman line involved in the ferroelectric transition.

We considered in Sec. 3 which vibrations we should
expect in the spectrum of the ferroelectric crystals
of greatest interest to us, having the perovskite s t ruc-
ture (e.g., BaTiO3). Now we shall take up a detailed
analysis of the results of experimental study of the
crystal-lattice dynamics of ferroelectric materials,
i.e., study of the features of their vibrational spectra
and the temperature-dependence of the frequency and
form of the vibrational bands in the phase-transition
region.

5.1. Infrared Spectra

Studies of vibrational spectra of ferroelectric c rys-
tals by infrared spectroscopic methods began rather
long ago. However, at first they were individual and
disconnected in nature. In 1957, Last*-35-1 carried out
the first systematic study of a large group of com-
pounds having perovskite-type crystal structures, in-
cluding BaTiO3. Since suitable apparatus did not exist
at that time, the range of studies was restricted to the
near infrared (300-1000 cm"1). That is , it did not in-
clude the very interesting long-wavelength infrared
range. According to Last, the transmission spectra of
powdered samples (obtained by pressing in KBr) of a
large group of perovskite-type crystals showed two
bands having minima in the regions 500—600 cm"1 and
350—400 cm"1 (Fig. 9). Similar measurements on
single crystals were carried only to 400 cm"1, owing
to insufficient intensity of radiation in the longer-
wavelength region of the spectrum. Here he also found
a band at ~ 500 cm"1. However, it turned out that the
absorption rapidly increased with further increase in
wavelength, and hence, the second band at lower fre-
quency was not observed. Last ascribed the two ob-
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FIG. 9. Transmission spectra of powdered SrTiO3, PbTiOs, and
BaTiO3. 1 - ["], 2 - [42], 3 - [44].

served absorption bands respectively to the internal
stretching and deformation vibrations of type F l u of
the TiO6 octahedron. Naturally, Last could not observe
the most interesting third F l u-type infrared-active
vibration at lowest frequency. The transmission spec-
trum of tetragonal BaTiO3 showed no essential
changes when the temperature was dropped below the
phase-transition point 6 = 120° C. The orthorhombic
BaTiC>3 crystal showed a splitting of the high-frequency
band. In accord with the data of Sec. 3, this apparently
involves the change in the symmetry of the crystal
and partial removal of the degeneracy of the vibra-
tions (Fig. 10). Thus, no anomalous changes in the
vibrational spectrum were found in near-infrared
studies in the region of the phase transition of BaTiO3.
Other investigators have subsequently carried out
similar measurements. Together with the cited ab-
sorption bands, they observed some other absorption
bands at higher frequencies, e.g., near 1250 and
1000 cm"1 for BaTiO3. These should evidently be
interpreted as manifesting derived harmonics of the
fundamental vibrations.c 36' 44]

Research in the far infrared has contributed sub-
stantially to the study of the vibrational spectra of
perovskite-type crystals. The first measurements of
the transmission and reflection spectra over the broad
infrared range 10,000-10 cm"1 were performed by
Barker13T] and Ikegamic 39] on single crystals of
SrTiC>3 and BaTiO3, and on polycrystalline specimens
of SrTiO3, BaTiO3, and CaTiO3 by Ikegami, Murzin,
Demeshina, Stekhanov, et al.C39> 42"44] Spitzer et al.C38:l

have studied in detail single crystals of SrTiO3 and
BaTiO3 in the spectral range 10,000-70 cm"1.

In measuring the transmission spectra of powder
layers and the reflection spectra of the stated c rys -
tals, they observed in these studies a new vibration
occurring in the region 170—180 cm"1 (Figs. 9 and 12).

650 600 550 500 450
Frequency, cm"1

FIG. 10. Temperature-variation of the bands in the absorption
spectrum of BaTiO3 in the vicinity of 500 cm"'.["]

According to the data of C39) 4 2 ] , it underwent no sub-
stantial changes as the temperature approached the
ferroelectric phase-transition point of BaTiO3

(6 = 120°C). Therefore, it was not the "ferroelec-
t r i c " vibration. On the other hand, a special study of
the infrared absorption spectra in the vicinity of
400 cm"1, where all the BaTiO3-type crystals showed
a transmission minimum in the powder state, showed
that: first, this minimum strongly depends on the di-
mensions of the powder particles, and second, it is
not observed in the transmission spectra of even the
thinnest single crystals of SrTiO3 and BaTiO3.C37' 38>54]

In addition, estimates showed that the existence of a
vibration at ~400 cm"1 having an oscillator strength
even ten times as small as that of the 550-cm"1 vibra-
tion would produce a detectable trough in the reflec-
tion curve. This was not observed experimentally.161]

Hence, most investigators have concluded that the
transmission minimum of BaTiO3-type materials in
the powder state in the vicinity of ~400 cm"1 is not
due to any vibration, but must be explained by scat-
tering of the infrared radiation by the particles of the
powder, since the refractive index of the crystals in-
creases greatly in this region of the spectrum.*

The fundamental results in the study of the vibra-
tional spectra of the stated crystals have been obtained

*We should mention here the study [""], according to which the
transmission spectra of powder specimens of BaTiO3 and PbTiO3
pressed in polyethylene tablets also showed the three previously
noted bands in the frequency ranges 170, 300-400, and 500-600
cm"1. However, in this case, the two high-frequency bands had a
triplet structure. This feature of the absorption spectra of BaTiO3
and PbTiO3 crystals hardly agrees with the data of other investi-
gators. Apparently, it requires further measurements, above all, to
establish more exactly the effect of the matrix material of the
specimens, etc.
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FIG. 11. Temperature-variation of t\a) and f*(fc)) for monocrys-
talline SrTiO3.[

37]

by measuring reflection spectra over a broad range of
the infrared, with subsequent mathematical treatment
by the above-described method using the Kramers-
Kronig relation and numerical integration by compu-
ters . C 3 7 '3 8 '4 2 '5 4 ] One of the first of such studies was
that of Barker and Tinkham.c 37] They measured the
reflection spectrum of single crystals of SrTiO3 over
the range 2.5-3000 cm"1. After mathematical t reat-
ment, they found all three absorption bands expected
in the infrared spectra, corresponding to the three
F l u-type vibrations whose resonance frequencies at
room temperature proved to be 550, 175, and
100 cm'1 .*

Thus the vibration of lowest frequency was first
discovered in the infrared spectra of BaTiO3 crystals
in the vicinity of 100 cm"1. These vibrations were
correspondingly interpreted (following Last) the first
two as the internal vibrations of the TiO6 octahedron,
and the lowest-frequency vibration as the motion of
the Sr cation with respect to the TiO3 group. The most
essential result of [37:i was that they were the first to
detect the anomalous temperature-dependence of the
frequency of the low-frequency vibration of SrTiO3 by
analyzing the reflection spectra of SrTiO3 obtained at
300 °K and 93° K (Fig. 11). Upon going from 300 ° K to
93° K, the frequency of this vibration varied from
100 cm"1 to 50 cm"1, i.e., by a factor of two. Since
here the low-frequency dielectric constant increased
approximately by a factor of four, this also indicates
that relations like (3) and (1.22) hold for SrTiO3. Thus,

*The 175-cnf' vibration is not shown in the diagrams, since it
was noted only in supplementary measurements made after it had
been pointed out by Spitzer et al. [38] Barker ["] has remarked on
this in the form of a note added in proof.

,-1

the result of this study agrees qualitatively with the
conclusions of the dynamic theory of ferroelectric
crystals, and can be considered to be its first qualita-
tive confirmation.

Spitzer et a l . c 3 8 ] have made a detailed analysis of
the reflection spectra of single crystals of BaTiO3,
SrTiO3, and TiO2, both by using the Kramers-Kronig
relation and on the basis of the dispersion theory.
Fig. 12 shows the experimental relationships R(w)
over the frequency range from 5000 to 70 cm"1. The
e"((j) variations calculated on this basis for BaTiO3

and SrTiO3 (Fig. 13) are analogous in form, and also
indicate the existence of three resonances in the r e -
gions of 500, 180, and below 100 cm"1. They approxi-
mated the relation e" (u) and the variation of R(w) by
using three damped oscillators on the basis of disper-
sion theory. This made it possible to obtain the dis-
persion parameters of these oscillators given in
Table II best fitting the experimental data. The r e -
flection curves obtained from the dispersion theory
are shown in Fig. 12 by the solid lines. We see that
these curves generally agree very well with the ex-
perimental data, except in the region around 330 cm"
It was later shown that this discrepancy can be ex-
plained by the effect of phonon-phonon interaction.
Taking account of the latter gave good enough agree-
ment of the theoretical and experimental e'(co) and
e"(co) curves and the reflection spectra.C61] The pe-
culiarity of the e"(w) curve for BaTiO3 in this study
is the fact that the low-frequency resonance proved
to be outside the limits of the frequency range over
which the R(w) data were measured, i.e., in the region
of extrapolation of the R(o>) values to the value Ro

= 0.914, as calculated from e0 = 2000.

j n [42,43] ̂  they determined the reflection spectra
of BaTiO3, SrTiO3, and a number of other compounds
from polycrystalline specimens, and subjected them
to the described mathematical treatment. They meas-
ured them over the range 10-5000 cm"1, and at dis-
crete points down to 1.25 cm"1, i.e., in a spectral
range encompassing all three resonance vibrations of
perovskite crystals. The values of the resonance fre-
quencies, damping constants, and oscillator strengths
of the three resonances determined according to the
dispersion formulas from the calculated variations of
e'(co) and e"(w) generally agree with the analogous
data of other investigators (see Table II). We should
point out that the frequency of the lowest-frequency
vibration for polycrystalline BaTiO3 is approximately
two times that for a monocrystalline specimen. How-
ever, this does not involve a difference in the internal
properties of the crystals, but is a natural consequence
of the fact that the measured dielectric constant and
reflection coefficient for polycrystalline specimens
are always considerably lower in absolute magnitude.
This has a considerable effect in calculating e(o)), par-
ticularly in the low-frequency region.

The temperature-dependence of the reflection spec-
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FIG. 12. Reflection
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Table II. Parameters of the dispersion oscillators of SrTiO3 and BaTiO3 of the form

Yi

4*a2

Y2

*3

4na3

Y3

COj

(O2

CO3

SrTiOs
(monocryst.)L3 J

18.2 f,

56.3 n

114 ft

i 456 cM-i

1.9

0.049

178 c*-i

3,6

0,034

87.5 CK"1

299,3

0,3

SrTiO3
(polycryst.)[42]

17.9/1 558 e*-i

1.0

0.09

60 /i 167 CJ»-I

-

-

102 ft 98 e*"1

175

0.73

BaTiO3
(monocryst. )[38]

19,6 ii 510 CM~1

1,0

0.057

54,7 /x 183 c*"1

2.0

0.031

296 ii 33.8 c*-i

2000

2.5

19,

55

139

BaTiO3
(polycryst.)t43]

7 n 508 c*"1

1.0

0.095

Ii 182 c*-i

-

-

Ii 72 CJ»-I

455

2.2

t ra of SrTiO3 and BaTiO3 was studied in the range
45-140"C in the cited reference/ 4 2 3 While no appre-
ciable changes were observed for SrTiO3, as we
should expect, the spectra of BaTiO3 showed a marked
increase in the reflection at the long-wavelength limit
of the 10—30 cm"1 infrared region as the temperature
approached the phase-transition point (Fig. 14). The
frequency-dependence of the complex dielectric con-
stant of BaTiO3 calculated from these experimental
data for different temperatures is shown in Fig. 15.
It distinctly demonstrates the variation of the low-
frequency vibration of BaTiO3 (Table III). We see that
as the temperature approaches the phase-transition
point, the frequency of this vibration decreases con-
siderably, approximately following the theoretical law
o j | h e o r = A(T - T c ) 1 / 2 . This is accompanied by an in-

crease in its oscillator strength and degree of anhar-
monicity. We also see from Table III that the damping
constant, and hence also the degree of anharmonicity,
of this vibration increase hereby by a factor of more
than three. The lowest experimental value (~ 33cm"1)
of the frequency of the lowest-frequency vibration
near the phase-transition point was compared with the
theoretical value ~ 19 cm"1. The latter was estimated
by Ginzburg'sc 9] theory using Eq. (5), in which

= 9 xlO"5, 0 m e a s = H2°C, TC = 125°C,meas. ^meas"meas
and n is the reduced mass of this vibration, which
was handled approximately in the form Ba-TiO3 or
BaOj-TiO. We can consider the comparison quite
satisfactory.

Special attention was paid in c 37> 38> 42] to two fea-
tures of the vibrational spectrum of perovskite-type
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FIG. 13. Spectral variation of e"(co) for BaTiO3 and SrTiO3 calcu-
lated from the data of Fig. 12.[38]

crystals, in particular, the extremely large oscillator
strength and the high degree of anharmonicity of the
lowest-frequency vibration, which determines more
than 90% of the entire polarization of the BaTiO3

crystal. These features were analyzed in detail in
C42;l. Using Cochran's*-10-1 method, an explicit disper-
sion expression was derived for the complex dielec-
tric constant of perovskite-type crystals in the cubic
phase. By comparing this expression with the exper-
imentally-determined values of the dispersion param-
eters of the vibrations of BaTiO3 (see Table II) for a
concrete model of the normal vibrations, it was pos-
sible to estimate a number of the microscopic char-
acteristics of the BaTiO3 crystal: the displacements
of the ions in the different normal vibrations as a
function of the external fields; the total polarizability
of the unit cell and the component of it due directly to
displacement of the ions; the magnitude of the local
electric fields as a function of the external electric
field and the ionic charges; and the ionic polarizabil-
ity of the atoms of the crystal.

The obtained results qualitatively agree with inde-
pendent calculations of the internal fields and polari-
zation for the static model of BaTiO3.C62;l The very
interesting conclusion was drawn from these estimates
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FIG. 15. Temperature-variation of the f'(o)) and t"(co) curves for
polycrystalline BaTiO3.[

42] 1 - 45°C, 2 - 80°C, 3 - 110°C, 4 -
140°C.

that the electronic polarization of the ions makes the
major contribution to the overall polarization (65-
80%). As regards polarization, this indicates that the
highest-frequency "ferroelect r ic" vibration of
BaTiO3-type crystals has a complex electronic-ionic
nature (see Sec. l . ld) .

Similar measurements at different temperatures in
the range from 24° to 200° C, and in the range
1-1000 cm"1 were later performed also on single
crystals of BaTiO3.c 54> i05i The vibrational spectrum
of monocrystalline BaTiO3 was determined by using
the above-described mathematical treatment of the
reflection spectra of BaTiO3. It also consists of three
vibrations, at 491, 182, and 88 cm"1 (T = 200°C).
When the crystal transformed from the cubic to the
tetragonal phase, the reflection spectra showed a
splitting of the 182-cm"1 vibration into two, having
frequencies of 182 and 174 cm"1 at 100°C (Fig. 16).
This agrees with the conclusions from symmetry the-
ory (see Sec. 3). When the temperature was raised
above the phase-transition point, a spectral shift was
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Table III. Temperature-variation of the
dispersion parameters of the low-

frequency vibration of BaTiO3

T, °C

co3

4jta3

Y3
r theor

4 5° C

72 cm'1

455
2.2

72 cm'1

80° C

65 cm"1

900
4.2

52 cm*1

100° C

47 cm"1

1500
5,2

40 cm"1

110° C

33 cm
2500
7.0

31 cm"1

140° C

58 cm"1

1200
5,0

57 cm
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FIG. 16. Temperature-variation of the reflection spectra of
BaTiO, in the vicinity of 180 cm"'.[54]

observed in the frequency of the maximum of e"(w)
and the resonance frequency of the low-frequency vi-
bration of BaTiO3, as determined from the position of
the maximum of a(w)(Fig. 17 and Table IV). This
agrees qualitatively with the predictions of the dynam-
ic theory. The fact that the values of the frequency of
this vibration were lower than Cochran's estimates is
explained by noting that Cochran's theory does not
take into account the great anharmonicity of this vi-
bration.

Thus, most investigators think that the vibrational
spectrum of crystals having perovskite-type struc-
tures consists of three F l u- type vibrations having fre-
quencies wi ~ 550-600 cm"1, w-i ~ 170-180 cm"1, and
co3 ~ 30-90 cm"1. BaTiO3 shows a splitting of the 550
and 175"1 bands with decreasing temperature. This
apparently involves the change in symmetry of the
crystal. Here the 175-cm"1 vibration splits in the
tetragonal phase, but the 550-cm"1 vibration only in
the orthorhombic phase. Analysis of the experimental
data has shown that dispersion theory with account
taken of phonon-phonon interaction describes rather
well the frequency-dependence of the reflection coef-
ficient of crystals having perovskite-type structures
(SrTiO3, BaTiO3). Minor deviations can be explained
by noting that the damping constant was considered
to be frequency-independent in the applied dispersion
analysis. However, this is not true even for simple
alkali-halide crystals.C63] Another outcome of the de-
scribed infrared studies is that the vibrational spec-
trum of perovskite-type crystals shows a "soft" OJ3

vibration distinguished by low frequency and high an-
harmonicity, and giving r ise to a great dispersion in
the dielectric constant. This vibration is responsible

Table IV.

T, °C

Positionof thecorre-spondingmaximumof e\o),

24
100
127
145
200
115*)

491 ±1
491 + 1
491 ±1

491 ±1
491 + 1
491 ±1

182+1 174+1
182+1 174+1
182+1 —
182 + 1 —
182+1 —
182+1 174+1

41
—
13
26
88
—

1Z_2

22+10
*±]

13+4
39+20

•Crystal partially depolarized.

dO 100 120 140 ISO 180
Frequency, cm

FIG. 17. Temperature-variation of the f'(oj) and e"((o) curves for
a single crystal of BaTiO3.[

54]

for more than 90% of the polarization of crystals of
this type, and shows the most anomalous parameters
in the case of BaTiO3.

Finally, studies of the temperature-variation of the
infrared reflection spectra of SrTiO3 and BaTiO3

crystals have resulted in the first detection and analy-
sis of the phenomenon of variation of the frequency
and other parameters of the "soft ferroelectric" vi-
bration in the vicinity of the phase transition. The
experimental data proved to agree satisfactorily with
theoretical relationships of the type of (1.19). This
apparently indicates that the same expressions of the
dynamic theory can be applied to crystals of the
BaTiO3 type as are used in describing classical ionic
crystals. Thus, these studies were the first test and
confirmation of the dynamic theory of ferroelectricity
described in Sec. 1.

A number of studies have also recently appeared on
the vibrational spectra of certain ferroelectric c rys-
tals having more complex structures, in particular,
hydrogen-bonded ferroelectric substances like KH2PC>4
and triglycine sulfate, which show a piezoeffect in the
paraelectric region. Generally speaking, as was noted
in Sec. 1, Cochran's1-11] theory of these crystals is
fundamentally qualitative in nature, and at present is
not supported by experimental facts that could be in-
terpreted with sufficient definiteness.

Prior study had been made of the spectra of these
crystals.C64> 69] However, the measurements had been
limited to the near infrared alone. Hence, the inter-
esting low-frequency "ferroelectr ic" vibration was
omitted from consideration. Barker and Tinkhamc 70:l

and Bazhulin, Aref'ev et al.C71] have studied these
crystals over a broad range of the infrared, including
the far infrared. Barker measured the reflection
spectrum of both crystals over the range 2.5 —
1500 cm"1 at different temperatures, and then by
mathematical treatment determined the spectral var i -
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ation of e'(w) and e"(a>). As a result, in addition to a
series of lines corresponding to the normal vibra-
tions of the crystals, which varied slightly upon pass-
ing through the phase-transition point, KH2PO4

showed a highly diffuse band in e"(w) in the region
10-100 cm"1. The peak of the latter shifted appre-
ciably in the spectrum upon approaching the phase-
transition point. The frequency of the maximum of
e"(o;) in the phase-transition region (6 = 123° K) was
~ 2.5 cm . Thus, we can naturally consider this
particular vibration to be responsible for the ferro-
electric properties of KH2PO4. They couldn't find
such a band for the triglycine sulfate crystal, and the
authors assume from the shape of the e"(a>) curve
that the maximum of the band apparently lies at fre-
quencies below 14 cm"1. Since the absorption bands
of the cited crystals are very broadened, the authors
concluded that, in distinction from perovskite-type
crystals, the classical theory of damped oscillators
characterized by a resonance frequency and a damp-
ing constant can't be applied to hydrogen-bonded fer-
roelectric substances. Rather, the hypothesis was
advanced here that KH2PO4 and triglycine sulfate
crystals undergo an order-disorder phase transition
(see also [100>1(>«). Aref'ev et a l . t 7 1 ] studied the
transmission spectrum of powdered KH2PO4 pressed
in paraffin tablets. The measurements were made
over the spectral range 20-235 cm"1 at temperatures
150-300° K. Along with bands at higher frequencies,
the spectrum at room temperature showed a broad,
intense absorption band with a maximum at 52 cm"1.
As the temperature was lowered toward the phase-
transition point, it was appreciably shifted toward
lower frequencies (42 cm"1 at T = 150° K; we recall
that e = 123° K), and it broadened considerably. Thus,
these measurements made it possible to observe di-
rectly a "soft" vibration that could apparently be r e -
lated to the ferroelectric properties of KH2PO4. How-
ever, the nature of the ferroelectricity in this type of
crystals is very complex, and further studies are
needed in order to interpret the obtained results.1-72"74]

5.2. Raman Spectra

As was stated, Ginzburg and Levanyukc28~3o:l

showed that ferroelectric crystals near the phase-
transition point should show a change in the spectral
composition of the scattered light. In particular, the
Raman line corresponding to the "ferroelect r ic" vi-
bration should shift toward the exciting line as the
temperature approaches the phase-transition point,
and we should observe a considerable increase in its
intensity.

Apparently, experimental studies'- 75~76:l on the
Raman spectra of quartz on passing through the phase-
transition point at 575 ° C confirm this theory. One of
the low-frequency Raman lines in the spectrum of
quartz (207 cm"1) was strongly shifted with increasing

temperature toward the exciting line (by more than
40 c m " " " 5 1 ) , and became much more diffuse. It com-
pletely disappeared from the spectrum above the
phase-transition point. In addition, the marked in-
crease in the intensity of scattered light and the ap-
pearance of "critical opalescence" observed in the
phase-transition region in these crystals'-77] agree
well with the predictions of Ginzburg's theory.

The first attempts at directed study of the vibra-
tional spectra of ferroelectric materials by the Raman
method were made on the perovskite-type crystals
SrTiO3 and BaTiO3.

C40> 52 )78] However, owing to great
experimental difficulties, these measurements were
performed at only one temperature, 20°C. Under
these conditions SrTiC>3 has a cubic structure, while
BaTiC>3 is tetragonal. In essence, the vibrational
spectrum for SrTiO3 was observed over a wide range
of frequencies for the first time.1-40-1 The Raman
spectrum of SrTiO3 consisted of four lines with max-
ima at 620, 447, 335, and 90 cm"1. The bands found at
620, 336, and 90 cm"1 were assigned respectively to
the three F l u-type vibrations ojit OJ2, and o>3 dis-
cussed above. The 447-cm"1 band was erroneously
assigned to another F l u- type vibration, which was
interpreted as a rotational vibration of the oxygen
octahedron about the Sr -Ti axis. In general, as was
shown in Sec. 3, consideration of the symmetry prop-
erties of cubic crystals having perovskite-type struc-
tures (including SrTiO3) implies that in this case one
should not observe a first-order Raman spectrum at
all, since it is forbidden by the selection rules. The
very fact that it is observed led the authors to con-
clude that SrTiO3 shows considerable internal distor-
tions of the cubic structure, and the selection rules
are violated.

The studies of BaTiO3 have proved to be less suc-
cessful. The Raman spectrum showed only high-
frequency vibrations. According to the data of Bobo-
vich et al.,C52:l the Raman spectrum of monocrystal-
line BaTiO3 consisted of three lines with maxima at
695, 550, and 500 cm"1. They interpreted the obtained
results on the basis of a not very accurate analysis of
the symmetry properties of this crystal. Ikegami has
obtained a more complete Raman spectrum of single
crystals of BaTiO3 prepared by a cleaner method, us-
ing the relatively long-wavelength exciting line
(5461 A) from a mercury lamp.C78] The Raman spec-
trum of BaTiO3 showed seven lines at frequencies
1181, 823, 736, 513, 502, 416, and 359 cm"1. He made
a detailed comparison of these data with the results of
other studies, and interpreted them. According to the
theoretical analysis (Sec. 3), the Raman spectrum of
tetragonal BaTiO3 should consist of eight vibrations,
of symmetry types: 3 A + 1 B t + 4 E. Corresponding-
ly, the 513 and 502 cm" vibrations were considered
to be the two highest-frequency vibrations of the types
LO[ and co". The 359-cm"1 vibration was considered to
be one of the components of the lowest-frequency a;3
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vibration, and 416 cm"1 was assigned to one of the
components of the w4 vibration. The high-frequency
Raman lines at 736, 823, and 1181 cm"1 were inter-
preted simply as second harmonics of the cited vibra-
tions at 359, 416, and 513 cm"1. Thus, while not taking
time to interpret each Raman line concretely, which
undoubtedly would require further special studies, we
must acknowledge the agreement between the infra-
red and Raman spectra to be satisfactory.

Recently Perry and HallC9T:l have published a
note reporting a study of the Raman spectra of
single-crystal BaTiC>3 at various temperatures in
the range 4-475° K. The following lines were ob-
served in the study at 290° K, and taking their inter-
pretation into account, we can write them in the
form w^LO) = 722 cm"1, w^TO) = 518 cm"1,
w4(LO, TO) = 307 cm"1, and w3(LO) = 271 cm"1.
Here LO and TO denote, as usual, the longitudinal
and transverse optical vibrations. As the tempera-
ture was lowered and the specimen passed through
the orthorhombic and rhombohedral phases, a new
band was found to appear: co2(TO) = 195"1. Then
both it and the ct>i(TO) band split in two. However,
it seems that the most interesting fact was that the
frequency of the line o>3(LO) was found to be
strongly temperature-dependent. This line shifted
from 271 cm"1 (T = 290° K) to 230 cm"1 (T = 408°K).
This was the particular reason for interpreting it
as the longitudinal vibration of type w3(LO), which
has a certain relation to the "ferroelectr ic" vibra-
tion w3(TO) (see Sec. l . ic) .

As we have stated, it is very difficult to study
substances having perovskite-type structures by
the Raman method because of the complications of
preparing transparent enough crystals. Hence, the
Raman method has been applied more widely in
studying the vibrational spectra of certain other
crystals whose preparation involves less difficulty.

Bazhulin, Stekhanov.et al .C 7 9 '8 ( n have studied the
vibrational spectrum and its variation with temper-
ature for an entire series of ferroelectric sub-
stances: (NH4)2SO4, NH4HSO4, RbHSO4, LiH3(SeO3)2,
and NaH3(SeO3)2, at room temperature and at low
temperatures near the phase transition. However,
in spite of thorough experiments, they still did not
find low-frequency vibrations with frequencies that
declined at the Curie point. Subsequently, Zheludev,
Sushchinskii, et a l . t 5 1 > 8 1 ] have undertaken attempts
at similar studies on the classical hydrogen-bonded
ferroelectric substances, Rochelle salt and trigly-
cine sulfate, and also NaNO2. Although these stud-
ies revealed a number of interesting effects involv-
ing the deformation of certain lines and even the
appearance of new Raman lines, the authors had to
acknowledge that they did not note low-frequency
lines in the Raman spectra that changed apprecia-
bly in intensity and frequency in the phase-transi-

tion region. They advanced the hypothesis that the
reason for failure seems to be that the "ferroelec-
t r i c " vibration, e.g., for NaNO2, is a translational
type of vibration, which usually gives very weak
Raman lines. It is also an essential fact that the
frequency of such a vibration is too small, and may
simply lie outside the experimental region.

Aref'ev, Bazhulin, et al . [ 50 ] have obtained more
encouraging results in a study of similar effects in
the crystals KH2PO4 and NH4H2PO4. The spectra of
these crystals showed a low-frequency Raman line
with a maximum at 34 cm"1 (KH2PO4) or 34.5 cm"1

(NH4H2PO4) at room temperature. It shifted appre-
ciably toward the exciting line (Hg 5461 A) as the
temperature was lowered and approached the phase-
transition point (0 = 123° K for KH2PO4, and
0 = 147° K for NH4PO4). We note that the tempera-
ture variation of the frequency of this line is oppo-
site to what usually happens when a crystal is
cooled. These lines had the lowest frequencies at
the phase-transition point, respectively 32 and
31.5 cm"1. These data agree with the results of in-
frared studies performed by the same authors1"71-1

and by Barker.c 70 ] Unfortunately, these changes are
quite slight. However, this agrees with the very
small change in the dielectric constant of this c rys-
tal.C74:i They showed in the same study that the ex-
pected considerable change in the intensity of the
cited Raman line upon phase transition was not
observed.

While noting the evident failures in most cases
of detecting by the Raman method the effect p re -
dicted by theory that the frequency and intensity of
a Raman line involving a "ferroelectr ic" vibration
should vary, we can make the following remarks.
As we stated in the theoretical part of the review
(see Sec. 2), in the general case the enhancement of
the intensity of the Raman line in the vicinity of the
Curie point can be slight. In order to make this ef-
fect manifest, apparently we should select crystals
in which the phase transition is close to critical,
and the correlation between the fluctuations in
neighboring volumes is weakly marked, in particu-
lar, perhaps, crystals showing a weak piezoeffect.
Furthermore, if we take into account damping,

• which can be especially significant for a " fer ro-
e lect r ic" vibration, then the Raman components r e -
sulting from it on both sides of the exciting line can
simply merge together, and it may prove impossi-
ble in principle to detect them. Apparently, this
situation occurs in BaTiO3. According to the data
of infrared measurements (see Table II), the damp-
ing constant of the "ferroelectr ic" vibration of
BaTiO3 amounts to: y3 ~ 2-2.5. That is, in Ginz-
burg's formula (2.4) given above, vi = 730)3 exceeds
the resonance frequency w3 by a factor of about
two. Thus it is actually impossible to observe this
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vibration in the Raman spectra of BaTiO3.

On the other hand, it becomes an almost hope-
less task for the experimenter to measure the in-
tensity of these Raman lines, since they coincide
here with the central component of the scattered
light, whose intensity can itself vary at the phase-
transition point.

Finally, an order-disorder phase transition is
not ruled out for hydrogen-bonded ferroelectric
crystals, which have been studied primarily by the
Raman method. Such a transition rather resembles
in nature a relaxation than a resonance transition.
In such a case, the theory developed above is not at
all applicable.

Here we must note another study1-823 in which the
problem of the dynamics of ferroelectric crystals was
studied by observing the intensity of Rayleigh scatter-
ing in crystals of KH2PO4 and Rochelle salt. The auth-
ors relate the phenomenon of variation of the inten-
sity of the scattered light to the anomalous behavior
of the Mandel'shtam-Brillouin components. In e s -
sence, these components arise from scattering of
light by the acoustic vibrations, which produce spa-
tially periodic density inhomogeneities in the crystal.
The frequency of these components of the scattering
is determined by the velocity of propagation of sound
in the crystal, and correspondingly, it involves the
elastic parameters of the crystal structure. As we
know, the latter undergo great changes in the vicinity
of phase transitions. The possibility of anomalous
scattering of this type from ferroelectric crystals
was mentioned long ago.C83] Aref'ev, Bazhulin, et
al.C82:l observed an anomalous increase in the scat-

-150 -WO -50
Temperature, °C

FIG. 18. Temperature-dependence of the relative intensity of
scattered light in the region of the undisplaced line in an oriented
single crystal of KH2PO4.[

82] 1 - the Mandel'shtam-Brillouin scat-
tering is determined by the anomalous elastic constant C66, 2 — the
Mandel'shtam-Brillouin scattering is not related to the elastic con-
tent CM.

tering intensity in the region of the undisplaced fre-
quency in the stated crystals as the temperature was
lowered to the phase-transition point (Fig. 18). Upon
comparing these data with other results, the authors
concluded that the ferroelectric phase transition in the
studied crystals is due to instability of the crystals
with respect to both the optical and acoustic branches
of the lattice vibration, which are related by way of
the piezoeffect. This agrees with the theoretical data
for ferroelectric substances showing a strong piezo-
effect in the paraelectric phase (see Sec. 1, 2). An
analogous effect has been observed recently in SrTiO3

crystals.C122]

Since the Raman method gives direct information
on the frequencies of the normal vibrations of c rys -
tals, we may hope that it will make it possible to ob-
tain very interesting results, in spite of the great ex-
perimental difficulties.

5.3. Slow-neutron Inelastic-scattering Spectra

The first spectrum of inelastically-scattered cold
neutrons by ferroelectric substances having perov-
site-type structures was obtained in t84:1 from poly-
crystalline BaTiO3. Spectra were obtained in C85;l of
cold neutrons inelastically scattered by polycrystal-
line BaTiO3, PbTiO3, and SrTiO3 at room temperature.
In addition, spectra were obtained for PbTiO3 at 470°
and 520° C, i.e., below and above the Curie point. It
turned out that there were no substantial changes in
the spectra of PbTiO3 below and above the Curie point
shown in Fig. 19, just as for BaTiO3. [84] This is un-
derstandable, since changes in the spectra must in-
volve primarily changes in the low-frequency optical
branch. As we have stated, the contribution of the
latter is distributed over a rather wide range of fre-
quencies without any sharp maxima.

Figure 20 gives the results obtained in [ 8 5 ] and
for BaTiOj and PbTiO3. In the diagram, the experi-
mental points define the scattered-neutron intensity as
a function of the energy of the absorbed phonons. The
solid line gives the curve obtained from the experi-
mental data by taking the overall resolution function
of the apparatus into account (using computers). Apart
from some numerical discrepancies, the spectrum of
BaTiO3 given in Fig. 20 duplicates all the features of
the analogous spectrum obtained in [ 84 ] .

The low intensity of the neutrons in the spectra of
BaTiO3 and PbTiO3 (Fig. 20) in the frequency region
above 500 cm"1 is due to the low value of the occupa-
tion factor {exp [(e AT) - I]}"1, which determines the
equilibrium number of phonons of energy e ^ R w at
temperature T. In essence, this factor determines
the limit within which experiments based on inelastic
scattering of slow neutrons are possible. It makes it
impossible to observe frequencies above 700-800 cm"1

in BaTiO3-type materials. We can distinguish several
peaks in the neutron spectra of BaTiO3, and SrTiO3
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FIG. 19. Spectra of inelastically-scattered cold neutrons for
PbTiO3 at different temperatures!"]

obtained in C85]. The part of them in the frequency
range below 100 cm"1 evidently involves the acoustic
lattice vibrations. We call attention to the substantial
difference between the spectra of BaTiC>3 and PbTiO3

given in Fig. 20, and in particular, to the absence of
a maximum in the 100-cm"1 region in the spectrum
of PbTiO3. Apparently this difference is not simply
quantitative, and perhaps we should consider it in the
light of existing indications'-86] that the Ba and Pb
cations play differing roles in the origin of the ferro-
electric properties of BaTiO3 and PbTiO3.

Application of an analogous method based on ab-
sorption of phonons by neutrons to study hydrogen-
bonded ferroelectric substances has also shown a
lack of evident changes in the neutron spectra upon
passing from the paraelectric to the ferroelectric
state (possibly for methodological reasons, owing to
the low degree of occupation of the levels, and there-
fore, the low probability of absorbing phonons). This
applies to polycrystalline KH2PO4 and KD2PO4,

C111 >112]

and also to (NH4)2SO4, NH4HSO4, (NH4)2BeF4, and
K4Fe(CN)6- 3H2O.C113] However, in [ 114 ] a broad band
in the region 250—450 cm"1 in the infrared absorption
spectrum of KH2PO4 was transformed into two distinct
maxima in the vicinity of 350 and 420 cm"1 upon pass-
ing through the Curie point. Since the inelastic inco-

3/0

PbTiO,

£ 0

1 330 235

BaTiO,

700M 300 £,cm
/ Z 3 A,i

FIG. 20. Inelastically-scattered cold-neutron spectra for BaTiO3
and PbTiO3 at room temperature. The solid curves show the spectra
obtained from the experimental data with account taken of the re-
solving power of the apparatus.["]

herent neutron-scattering cross-section for hydrogen
is considerably greater than the scattering cross-
sections of the other atoms, we might expect that the
neutron spectra of the cited ferroelectric materials
should manifest various vibrations involving hydrogen
and hydrogen-containing groups like NH4 and H2O,
even when these vibrations are forbidden by the selec-
rules in infrared and Raman spectra.

Comparison of the neutron spectra of KH2PO4 and
KD2PO4,C111] as well as a study of the neutron and op-
tical spectra of KH2PO4, K2HPO4, and K3PO4,C114 '115:

has revealed a broad band in the region 600-200 cm"1

in the spectrum of KH2PO4. It is due to the low-fre-
quency vibrations of hydrogen, and apparently is di-
rectly related to the ferroelectric transition. The en-
ergy of these vibrations is several times lower than
the energy of the ground-state (zero-point) vibrations
of the hydrogen atoms (0.079 eV according to the data
of [ 1 1 6 3 ) . Hence, Palevsky et a l . c l l l ] have interpreted
the cited low-frequency hydrogen vibrations as being
vibrations of hydrogen correlated with stretching vi-
brations of the oxygen atoms as in Reid's1-117-1 model.
This gives an O —O vibration frequency of about
237 cm" , and does not presuppose an obligatory split-
ting of the vibrational ground state of the protons.
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However, the results of C114] more definitely favor a
splitting of the vibrational ground state of the protons
into two closely-spaced levels separated by about
400 cm"1. Then we can explain the low-frequency hy-
drogen vibrations on the basis of the idea that the
hydrogen lies along the O —H---O bond in the para-
electric phase of KH2PO4 in a weakly asymmetric po-
tential well having two minima, and it can jump quan-
tum-mechanically from one well to the other. The dy-
namics of the crystal is such that the positions of the
minima, whose frequencies are small in comparison
with the frequency of jumping of the protons, result
in a symmetrical distribution of the protons in the
O —H ••• O hydrogen bond. According to this system,
which agrees with the NMR data/1 1 8 3 ordering must
set in below the Curie point because of a considerable
increase in the asymmetry of the double-minimum po-
tential well. Consequently, the proton attaches itself
to one of the oxygen atoms.

Study of the neutron spectra of (NH4)2SO4, NH4HSO4,
(NH4)2BeF4, and K4Fe(CN)6- 3H2O[113] showed that the
ferroelectric phase transitions in these compounds do
not involve large changes in the freedom of rotation of
the ammonium ions and the water molecules, as NMR
measurements of spin-lattice relaxation would im-
ply [119] j j e n c e ) t0 judge from the existing neutron
data, the role of NH4 ions and water molecules in the
ferroelectric phase transitions of these compounds
remains in doubt.

We should note that the neutron data given for
KH2PO4, the ammonium sulfates and fluoberyllate,
etc., undoubtedly require further refinement, since
for various reasons the best modern methodological
possibilities were not used in obtaining them. Fur-
thermore, they came nowhere near to exhausting the
potential advantages of a complex study involving not
only the hydrogen-containing ferroelectric substances,
but also their deuterated derivatives.

Study of single crystals of the deuterated analogs of
ferroelectric substances having order-disorder phase
transitions by inelastic coherent scattering of slow
neutrons would make it possible to study the low-
frequency "ferroelectr ic" branches of the vibrations
without an interfering contribution from the other lat-
tice vibrations. The latter is organically present in
the inelastic incoherent scattering, both for hydrogen-
containing materials and for those like BaTiO3. Up to
now, measurements by the inelastic coherent scatter-
ing method have been performed only on single crys-
tals of SrTiO3.

Figure 21 gives the dispersion curves for various
normal vibrations of single crystals of SrTiO3 meas-
ured by Cowleycl4;l at different temperatures in the
triple-axis crystal spectrometer described in [87: l.
The diagram clearly shows a substantial change in
the dispersion curve for the low-frequency transverse
optical branch of vibrations as the temperature was

OSO 0.5 0 OS 0 0,5
Wave vector q

FIG. 21. Dispersion curves for SrTiO3 at two temperatures.[14]

varied from room temperature to 90°K. Figure 22
shows the shape and position of the inelastic coherent
neutron-scattering maxima due to the vibrations of
this branch having q— 0.

Figure 22 is a direct experimental proof that the
frequencies of the transverse vibrations having q ~ 0
decrease as we approach the ferroelectric transition
point. Here it turns out that the square of this fre-
quency (Fig. 23) varies with the temperature as the
reciprocal of the static dielectric constant e0, in ac -
cord with Eq. (1.22). Extrapolation to zero frequency
gives a Curie point of SrTiO3 near 32° K, in agreement
with some known data from dielectric measurements
made by a number of authors.

As we stated in Sec. l . ld, Cowley has correlated

0S W IS 211 2fi 3M 3J5
Frequency, 1012 Hz

FIG. 22. Temperature-variation of the shape and position of the
inelastically-scattered neutron peak for a single crystal of
SrTiO3.[

14]
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Temperature, °K
FIG. 23. Temperature-dependence of the square of the frequency

(a)2) of phonons of the low-frequency transverse optical branch of
vibrations of SrTiO3. ["] The dotted line gives the analogous relation
for the reciprocal of the dielectric constant (1/f).

the obtained results with the data from calculating
dispersion curves based on six different models of
the SrTiO3 crystal (including the rigid-ion model and
various shell models of polarizable ions having fixed
or variable charges on the ions). Here the rigid-ion
model involved eight adjustable parameters (the
charges on the Sr and Ti ions, and six short-range
force constants between the ions), while the shell
models involved 14 parameters (the same eight as in
the rigid-ion model, plus six parameters of electric
and "mechanical" polarizability).

The values of the dielectric constant and elastic
constants of SrTiO3 calculated for the different models
agree best with the experimental data for two models.
In varying the parameters in these latter models, the
effective charges of the ions proved to be close to their
total charges. Figure 21 shows as solid and dotted
lines the dispersion curves calculated for these two
models, together with Cowley's experimental data.

Another conclusion from the results of the calcu-
lations for the various models is that one only has to
make a small change in the short-range force param-
eters obtained to fit the room-temperature data in or-
der to fit the experimental data at 90 °K, the charges
and polarizabilities of the ions remaining constant.
This confirms the idea derived from the theory that
a slight temperature-dependence of the interaction
forces in the delicate balance of short- and long-range
forces gives rise to a strong temperature-dependence
of the low-frequency transverse optical vibrations.

Cowley's study of single crystals of SrTiO3 by slow-
neutron spectrometry has made it possible qualita-
tively to explain the features of the recently discov-
ered phase transition in SrTiO3 in the vicinity of
11O°K.C88] According to the data of C89], the small
structural distortions of SrTiO3 are pseudomono-
clinic in nature at liquid-nitrogen temperature (a = c
= 3.8870 kX, b = 3.8988 kX, b/a = 1.0030, £ = 90°06');
they are not accompanied by changes in the dielectric

SZ7-
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FIG. 24. Temperature-dependence of the dielectric constant e
and the velocity of ultrasound for a single crystal of SrTiO3.['°]

constant at the phase-transition point, but the elastic
constants vary sharply, as well as the velocity of ul-
trasound (see Fig. 24, taken from [ 9 0 ] ) .

We could assume with regard to the variation in the
velocity of ultrasound in the phase-transition region
that this transition results from instability of the cubic
SrTiO3 structure with respect to transverse acoustic
vibrations, in analogy to the above-discussed instabil-
ity of the cubic SrTiO3 structure with respect to
transverse acoustic vibrations, in analogy to the above-
discussed instability with respect to the optical vibra-
tions. However, Cowleycl4:l found no peculiarities by
direct measurement of the frequency of the transverse
acoustic vibrations at the phase-transition point.
Hence he assumed that one can consider the phase
transition in SrTiO3 from the standpoint of lattice dy-
namics as resulting from accidental degeneracy of two
branches of the frequency spectrum of SrTiO3 near
90 °K.

As we know (see, e.g., C 1 5 ] ) , the isothermal elastic
constants contain a term of the form

2B(», q) + l (5.1)

where n is the number of vibrations of the type (s, q).
The denominator of this term contains the difference of
the squares of vibration frequencies belonging to the
different branches s and s ' . If now we return to the
dispersion curves for SrTiO3 (see Fig. 21), we can note
that as the temperature is lowered from room temper-
ature to 90° K, the low-frequency optical branch is
superimposed on the longitudinal acoustic branch over
a certain range of q values. In Fig. 25, this superim-
position of the two different branches at 90 °K is d is -
tinctly visible over a considerable range of wave num-
bers q.

In line with Eq. (5.1), such a fortuitous degeneracy
at temperature T a must result in a relation agreeing
with the experimental data, of the type C ^ y S = A
+ BT + C/(T - Ta). Here the last term, which depends
on the frequencies and number of degenerate modes,
determines the behavior of the elastic constants and
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FIG. 25. Positions of the acoustic and transverse optical
branches of vibrations of SrTiO3 at two temperatures.["]

the velocity of ultrasound near T a . Strong absorption
of ultrasound occurs in the system being discussed
when the frequency of the ultrasound wave is wS )q

As for the temperature-dependence of the dielec-
tric constant, one can take simple account of the con-
tributions to the deformation of the SrTiO3 structure in
the phase transition made by the displacements of the
atoms as they take part in the longitudinal and t rans-
verse vibrations. In accord with Fig. 24, it indicates
that the e values for the cubic and deformed SrTiO3

structures are equal at the phase-transition point.

5.4. On the possibility of studying the dynamics
of ferroelectric substances by using the Moss-
bauer effect

It was shown above that as we approach the Curie
point, the behavior of BaTiO3-type materials increas-
ingly begins to be determined by the low-frequency
transverse optical branch of the lattice vibrations, the
frequency of which varies according to the law w
= A(T - T c ) 1 / 2 . Evidently, as the role of the low-
frequency optical branch is enhanced, the probability
must increase that phonons belonging to this branch
will participate in processes of inelastic interaction of
lattice vibrations with radiation. Therefore the prob-
ability of the Mossbauer effect in resonance scattering
of y quanta should decrease anomalously as we ap-
proach the Curie point.c 91) 98]

An anomalous decrease in the probability of the
Mossbauer effect has been observed in BaTiO3 for
F e t57, 92] n u c l e i a n d a l s o Snii9 n u c i e i i n Ba(Ti, Sn)O3

solid solutions on the BaTiO3 side.C93> 103> 106>107]

However, a negative result was obtained in C1O8].
Figure 26 shows the temperature-dependence of the

Mossbauer effect for the solid solution Ba(Ti, Sn)O3.
To illustrate the relation of the region of the anoma-
lous decline in the effect to the temperature of the
ferroelectric phase transition, this same diagram
shows the temperature-dependences of the dielectric
constant and the tangent of the dielectric loss angle.

Although it is not yet clear without making a direct
theoretical analysis what concrete information one can
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FIG. 26. Temperature-dependence of the probability f of the
Mossbauer effect (curve 1), the dielectric constant f (curve 2), and
tan 8 (curve 3) for the solid solution Ba(Ti0 gg, Sno.o i)C*3-[93]

get on the parameters of the low-frequency vibrations
from Mossbauer spectra of ferroelectric substances,
we can expect interesting results from studies of this
type.

CONCLUSION

Application of the ideas of the dynamic theory of
crystals to explain ferroelectric transitions is un-
doubtedly an important stage in the development of our
ideas on the nature of ferroelectricity.

The most substantial achievement of this theory is
that it becomes possible to explain (though indeed still
qualitatively) the features of the absorption spectra of
different ferroelectric substances, the values and tem-
perature-dependence of the frequencies involved in the
ferroelectric lattice vibration modes. This opens up
new possibilities of qualitatively determining the na-
ture of the relations between different elements of the
structure and the conditions favoring formation of
ferro- and antiferroelectric configurations in differ-
ent structures.

The experimental data obtained have already con-
firmed the fundamental assumptions of the dynamic
theory of ferroelectricity, and have made it possible
to discover a number of features requiring further the-
oretical and experimental study. However, these r e -
sults are far from sufficient. In spite of well-known
methodological difficulties, we need further experi-
mental studies in order to obtain more precise and
complete data on the positions and shapes of the spec-
tral bands, and on their temperature variation, espe-
cially in the phase-transition region. Special studies
are also needed to determine more exactly the forms
of the normal vibrations of ferroelectric crystals, and
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in particular, the form of the low-frequency vibration
directly involved in the ferroelectric state.

However, we should note that it would also be unjus-
tified at present to overestimate the possibilities of
the dynamic theory as a "general theory of ferroelec-
tric and piezoelectric c rys ta ls , " and to expect the the-
ory to agree completely with experiment for real fer-
roelectric substances.

In addition to the difficulties in principle, involving
the necessity of taking direct and more accurate ac -
count of the influence of anharmonic effects and fluctu-
ations, as well as a number of other factors (e.g., dis-
sipative losses and quadrupole moments) in the funda-
mental dynamic equations, the procedure of direct nu-
merical comparisons is also very complex. It is use-
ful to recall that this required the variation of five
atomic parameters even for simple alkali-halide
crystals. Evidently, in a rigorous approach the num-
ber of possible variations is incomparably greater for
perovskite-type crystals, not to mention more com-
plex compounds.

In this regard, we must not consider either the pos-
sibilities of the theory or the demand for experimental
data for the most varied ferroelectric materials to
have been exhausted.
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