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I NTEREST in gravitation theory with a cosmological
constant was revived in 1967. Three papers were
published, by Petrosian, Salpeter, and Szekeres in the
USA[1J and by Shklovskii[2] and Kardashev[3] in the
USSR, in which universe evolution models in such a
theory (the A models) are considered. The stimulus
for the revival of the theory was provided by new ob-
servational data on remote quasistellar sources
(quasars and quasags, QSR and QSG in the English -
language literature)* It turned out, first of all, that
for these objects the connection between the brightness
and the red shift does not fit the simple models without
a cosmological constant (and without assumptions con-
cerning the evolution of the quasars!). In addition, as
noted by the Burbidges , in ten quasars whose spectra
have revealed absorption lines the red shift of these
lines z = (A - Ao)/Ao lies in the narrow range 1.94
< z < 1.96 or even 1.945 < z < 1.955. This phenome-
non will henceforth be referred to briefly as a = 1.95.

The A models were introduced in[1J to explain the
observed relation between the red shift and the bright-
ness; the explanation of z = 1.95 in the absorption
spectrum was touched upon casually. References 2
and 3 are devoted entirely to the explanation of
z = 1.95: the absorption lines are ascribed to galaxies
lying along the path of the light ray arriving from the
quasar. The predominant appearance of one value of z
is attributed by the authors to the fact that in this case
the expansion of the universe was greatly slowed down
both compared with the preceding period (z > 1.95)
and compared with the succeeding period (z < 1.95 up
to z = 0, corresponding to the present time). The
slowed-down expansion leads to an increase of the path
traversed by the ray in the corresponding interval of z,
and takes into account the probability of encounter be-
tween the light ray from the quasar and the galaxy
since that absorption lines with precisely this value of
z, i.e., with z close to 1.95, are recorded.

An expansion law with a sharp deceleration at a
definite value of z is possible only for the A models;
it is necessary here to satisfy with great accuracy the
relation between the total amount of matter in the
universe and the value of the cosmological constant A.
The discussed model is closed in its three dimensional
geometrical structure. As shown by Kardashev^3-1, the
assumption of a decelerated expansion at a definite
value of z (together with the known value of the Hubble
constant) yields perfectly defined values of the density

*The term A model will henceforth be used to designate the solution
of the equations of an expanding universe, in which it is assumed that
the cosmological constant is A=£ 0 (see Appendices II and III). Quasars
are quasistellar (i.e., pointlike) radio sources, and quasags are quasistellar
galaxies, similar to quasars in their optical properties and in particular
having large z, but having no noticeable radio emission.

of matter and of the radius of the world at the present
time.

At first glance such an explanation is on the whole
unlikely. It must be borne in mind, however, that other
attempts at explaining the predominant absorption with
z = 1.95 are at present no less far-fetched and ar t i -
ficial. In a paper at the 13th Congress of the Inter-
nation Astronomical Union in Prague (August 1967),
Burbidge spoke of z = 1.95 as an argument in favor of
the local theory of quasars. According to the local
theory, the distance from us to the quasars is less than
100 Mpsec, and the red shift of the emission and ab-
sorption lines is of gravitational origin and is connected
with the work function of the quanta from the gravita-
tional field of the quasar [5 j*. However, no concrete
model which yields precisely z = 1.95, or at least an
equal value of z for the quasars with different masses
during different stages of evolution, was proposed by
Burbidge or anyone else.

Thus, the predominant appearance of z = 1.95 in the
absorption is really an argument in favor of the A
model of the universe. At the same time, it is still
impossible to regard this argument as final. The A
model proposed in[3j raises also unanswered questions
(pertaining to the formation of galaxies) and simply
difficulties connected with the observed distribution of
the quasars with respect to the red shift of the emis-
sion line z e m . This distribution does not reveal at
zem = 1-95 the concentration that could naturally be
expected in the A model. Nor does this A model
agree with the rather crude estimates obtained for the
law of expansion in the nearest region with z < 0.5
from Sandage's observations of various galaxies[7].
Even the initial statement itself concerning the pre-
dominant value z = 1.95 for the absorption lines
should be refined and verified for a large number of
quasars. Thus, the question of the concrete A model
with a perfectly defined value of A remains open at the

*The universally accepted assumption of the cosmological origin of
the red shift, connecting it with the over-all expansion of the universe,
yields R = cz/H = 4000z Mpsec for nearby quasars with small z; at large
values of z, the definition of R is not unique, but it is clear that we are
always dealing with distances larger by tens and hundreds of times than
in the local theory. A very recent sensational communication[29J con-
cerns a report by Matthews, that an appreciable change of the optical
picture of the quasar 3C-287 with z = 1.055 was observed over the period
of one year, from 1965 through 1966. This fact is interpreted by
Matthews as favoring of the local theory. The conclusion, however, is
ambiguous: in accordance with calculations by Rees [6], the particles
ejected with relativistic velocity by the explosion, can change of angular
dimension at a rate dg/dt = c/3/R-̂ /l -/32, corresponding to an apparent
linear velocity v/y' 1 - 01 > c, 0 = v/c; these considerations have been
further developed and analyzed recently by I. S. Shklovskii. Thus, when
1 - 0 = 10"s we can reconcile Matthews' observations with the
cosmological hypothesis concerning a large distance to the quasars.
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present time, and much work must be still done for its
solution.

However, we can already raise even now another
question: to what extent was the assumption A = 0 ,
which was frequently made recently, (for example, the
text book of Landau and Lifshitz[8^ or the authors r e -
views'-91 justified? In this connection, the arguments
advanced were either esthetic (the theory with A = 0
is more beautiful, simpler, the formulas are more com-
pact, there exists a particular solution—the flat empty
world of Minkowski) or else the arguments were rem-
iniscent of the principle of economy of thought (why
introduce an extra parameter A so long as it is not
really necessary?). Once papers in which the authors
(see 'l'3^) are strongly interested in A f- appear, the
arguments presented above lose their attraction and
conviction. It turns out that many authors^101 always
considered precisely the scheme with A f 0 as more
beautiful, by virtue of its greater generality.

The history of the question of the cosmological con-
stant is inseparably connected with the name of Ein-
stein. In the first paper on the application of the gen-
eral theory of relativity to cosmology, Einstein's aim
was to construct a static universe with a finite average
density of matter'-11, and reached the conclusion that to
this end it is necessary to introduce into the equations
an additional term, namely the cosmological constant.
Following the papers of A. A. Friedmann[12], who con-
sidered nonstationary solutions*, and particularly after
the red shift was observed, Einstein wrote: "Under
these circumstances, it is necessary to raise the ques-
tion: Is it possible to describe the experimental facts
without introducing the A term, which is clearly un-
satisfactory from the theoretical point of view? "[13^.
However, the "unsatisfactory" nature is not explained
further at all. Obviously, this question must be an-
swered on the basis of objective data.

This leads to a new formulation of the problem: What
is known reliably concerning the quantity A? What
limits can be assigned to this quantity with assurance
at the present time? What kind of experiments or ob-
servations can refine the value of A? The genie has
been let out of the bottle, and it is no longer easy to
force it back in. Even if A = 0 exactly, it is now
necessary to arrive at this answer with great difficulty,
slowly, gradually, by decreasing the limits: today per-
haps - 1CF35 cm"2 < A < 10"55 cm"2, in ten years per-
haps -10"56 < A < 10~56. Even if it is shown that the
value of A is sufficiently small and does not influence
noticeably the cosmological evolution (unlike the afore-
mentioned hypothesis'-1"3''), the question still remains
whether A actually does vanish exactly and identically.
In our opinion, a new field of activity arises, namely
the determination of A. But first let us answer the
following question: how is it possible to visualize the
meaning of the cosmological constant? Why is its defi-
nition interesting for physics as a whole? One ap-
proach to this quantity was already noted above, and is
suggested by the dimsionality of A, namely cm"2. This
is the curvature of empty space. But the theory of g

gravitation connects the curvature with energy, mo-
mentum, and pressure of matter. By transferring in
the gravitation equation the terms with A to the right

*In modern language these solutions are called self-similar: the world
expands and remains similar to itself. We note that Friedmann considered
equations both with A = 0 and

1 RTTO
hand side, we obtain Rik - ^gikR = ~zv T ik - gikA-

£i C
The assumption A f- 0 denotes that the empty space
produces the same gravitational field as when the space
contains matter with mass density PA = C2A/8TTG, en-
ergy density €A = c2A/8irG, and pressure P A = -£A-
In this sense we can speak of an energy density of the
vacuum and a pressure (stress tensor) of vacuum.

We note that the assumptions concerning £A and
P A were formulated in such a way that the relativistic
invariance of the theory is not violated: £A an(^ ^A a r e

the same for all coordinate systems (Lorentz-trans-
formed moving relative to one another). These quanti-
ties £A and P A never appear in experiments with
elementary particles, nor in atomic or molecular
physics: the vacuum energy of the vessel in which the
experiment is performed plays the role of the constant
term that cancels out in the energy-conservation law
(for details see Appendices I and n).

The only type of phenomena in which eA and P A
appear are gravitational phenomena. In this case f.\
and P A "work" not only in vacuum space: as seen
from the formula, they enter as full-fledged terms
also in the presence of ordinary matter. This means
that in principle it would be possible to determine and
measure €\ and the corresponding PA = £A/C 2 in the
Cavendish experiment: the attraction of a lead sphere
depends on the sum of the density of the lead
( l l g/cm3) and the density of vacuum ( | PA I smaller
than KT^g/cm3) in the investigated volume.

In practice it is impossible to measure the influence
of PA and ej\ in either a laboratory experiment or
even in observations of the motion of planets and the
solar system or the motion of stars in the galaxy: in
fact, the average density of matter in the solar system
is p = 10"7 in a sphere whose radius equals the dis-
tance from the earth to the sun. The average density in
the galaxy is of the order of 10"24 g/cm3. The influence
of PA is strong only in the largest scale—in the scale
of the entire universe, i.e., in cosmology. It is pre-
cisely from cosmological considerations that we can
now impose the limits | PA I < 5 x 10"28 g/cm3, corre-
sponding to | A | < 10"54 cm"2.

Scientific predictions are always risky; neverthe-
less we can propose that the concrete model[3] with
PA = 5 x 10"29 and with a halt at z = 1.95 will be ac-
cepted or rejected within 2—3 years. But if this model
is rejected, then further progress, namely proof that
| A | is smaller than a certain value, calls for much
more time. Actually, the same factors which limit the
maximum value of the density of any type of matterC2o:i

enter into consideration at large negative values of
PA"- we can write for the time elapsed from the instant
of the singularity p = °° to the present time the inequal-
ity T < V3TT/32G| PA I • But it is obvious that T > 3
x 109 years, since even the geological age of the earth
is of the order of 5 x io9 years. From this we get PA
< 5X 10'28g/cm3.

The situation is different in the case of positive
PA > 0. Given the density of ordinary matter at the
present time po and given the rate of expansion of the
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universe (the Hubble constant Ho), large positive PA
> 2 (3HO/8JTG) + p0 leads to cosmological solutions in
which the universe had never passed through a high-
density period (the presented expression is approxi-
mate; for details see Appendix VII). The presence in
the universe of thermal radiation corresponding to 3°
K makes such a solution unlikely (see, for example,f9j).

In principle, exact measurement of the brightness
and of the red shift of several remote bodies (not fewer
than two) with exactly known absolute luminosities
would be sufficient to determine both the Hubble con-
stant and the difference p0 - 2p\, in terms of which
the so-called parameter of acceleration of the cosmo-
logical model is expressed. In practice it is necessary
to perform a large statistical investigation of far
bodies, since their properties can be equated to the
properties of nearby bodies only in the mean. This
raises new kinds of difficulties connected with the need
for taking into account the evolution of galaxies and
quasars, i.e., the difference between the properties
(average, disregarding individual fluctuations) of far
objects which have emitted light long ago, and the
properties of nearby objects at the present time. It is
necessary furthermore to refine the magnitude of the
average density of all types of matter (stars, inter-
galactic gas, quanta, neutrinos, gravitons) in the uni-
verse.

We now turn to a different aspect of the situation,
namely to the close connection between the question of
A and the theory of elementary particles. The very
first attempts of quantizing the electromagnetic field
led to the paradoxical conclusion that vacuum energy
has infinite density. Vacuum was thus defined as the
lowest energy state of the considered system whose
characteristics are given by Maxwell's equations. The
particles—in this case photons—are elementary exci-
tations of the system. In the analogous problem of
quantum theory, concerning the motion of atomic nu-
clei in a crystal lattice, the situation is similar: there
exist elementary excitations—phonons (quanta of sound),
and there exists a zero-point energy of a state in
which there is not a single phonon, at absolute zero
temperature, i.e., a state that can be likened to vacuum.

In the case of a crystal, the zero-point energy has
a fully defined finite value and can be measured. In
particular, the difference between the zero-point en-
ergies of different isotopes of the same element leads
to a dependence of the heat of evaporation of the
crystal on the atomic weight of the isotope. In field
theory—in the simplest variant—the zero-point energy
is infinite. It is, however, possible to reformulate the
theory in such way that the zero-point energy of the
free field is exactly equal to zero. In Maxwell's classi-
cal theory, the energy density is (E 2+ H2)/8TT, where
E is the electric field and H the magnetic field. As
emphasized inI14j, there is no formulation _of quantum
electrodynamics in which the mean value E2 or H2 in
vacuum vanishes (far from charges or in the absence
of real quanta). Consequently, when formulating the
theory (with the aid of normal products of operators*)
in such a way that in vacuum we have identically

*The definition of the normal product is given in numerous books
on the theory of quantized fields ([14] and earlier).

e = 0, we pay for this by losing the classical relation
between e and the fields.

A second source of vacuum energy arose in the
electron theory developed by Dirac: the concept of
filled levels with negative energy leads literally to in-
finite negative energy density. In this case, too, the
theory was soon reformulated in such a way that e was
identically equal to zero for the "vacuum of noninter-
acting particles." This, however, did not guarantee at
all that the energy of vacuum remains equal to zero
when account is taken of particle interaction. A fea-
ture of modern theory is that the particle interaction
comes into play not only in the presence of the real
particles that should take part in the interaction.

It must be recalled first that the very term "inter-
action" is not used in the sense of classical physics.
In school we speak of interaction between two colliding
bodies, or of interaction (Coulomb) between a proton
and an electron. In quantum field theory we speak, in
particular, of four-fermion interaction when the neu-
tron decays and is transformed into a proton, electron,
and neutrino, or we speak of an interaction between an
electron and a quantum, when the electron emits
(produces) a quantum.

A free electron traveling by inertia cannot emit a
real quantum that can be seen or registered far from
the electron. But it can be said that a free electron
emits quanta and immediately absorbs them—and this
changes its properties (for example, mass, magnetic
moment). The change of mass cannot be observed, since
there is no experiment capable of given the mass of an
electron that does not juggle with quanta. However, the
change of the magnetic moment of the electron has
been confirmed with all the accuracy of modern ex-
periment. But in this very sense there can occur in
vacuum the processes of creation of the triplet e+, e",
y and annihilation of these particles, and many similar
processes. In modern theory, the question of the state
and properties of vacuum is not as simple or as obvi-
ous as in the pre-quantum times of Newton or Maxwell.

It is possible to distinguish here between several
possible points of view. The first consists in the as -
sumption that the energy of the vacuum is identically
equal to zero so long as we do not take into account
any fields or interactions. When these are taken into
account, the energy of the vacuum is not equal to
zero, but when we consider processes with real par-
ticles, the energy of vacuum enters as an additive
constant. The problem of particle theory is formu-
lated as a calculation of observable processes with
real particles, and the technique of calculation
should be such that the answer does not depend on the
unknown or undetermined or even infinite energy of
the vacuum. This is how the problem was formulated
by Feynman, who successfully performed this program.
During the course of the calculation there are per-
formed, for example, the following operations: the
amplitude Aiz of the transition (particles in the first
state + vacuum) — (particles in the second state
vacuum) is divided by the amplitude A v a c of the
transition (vacuum) -— (vacuum), and only the ratio
Ai2/AVac is a quantity that is real and pertains to the
particles.

This way of getting around the question of the energy
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of vacuum* is satisfactory everywhere except in the
theory of gravitation! The energy density of vacuum,
as already mentioned, appears in the gravitation prob-
lem as a real observable quantity that does not cancel
out. In the theory of elementary particles, there exists
another, so-called axiomatic trend.

It is assumed by the way of an axiom that the energy
density of vacuum is identically equal to zero in ac-
cordance with the definition of the vacuum C-28-1, Sec.
3.1). When such a statement is proclaimed openly as
one of the possibilities, there are no objections. How-
ever, frequently one encounters the statement that this
assumption is necessary, and that it is the only one
that agrees with the relativistic invariance of the
theory. Such a statement is simply in error. We have
already noted above that the characteristic relaxation
between the pressure and the energy density PJY
= - 1 \ is relativistically invariant. We shall demon-
state below with a concrete example how the theory of
particles, given a definite choice of formulation of the
theory, yields a nonzero €A> with relativistic invari-
ance strictly observed.

In[28^ they consider the energy and momentum of
the vacuum as a whole. We could, by specifying a
definite normalization volume V, speak roughly of an
energy E = Ve. The (three-dimensional) momentum p
of the vacuum, obviously vanishes, since there is no
preferred direction for it. The energy and momentum
form a four-dimensional vector {E, p }, in this case
|E, 0}. Obviously, such a combination is not invariant
and yields p f- 0 in another system of coordinates,
provided we do not put E = 0 (meaning also e = 0).

The error in this reasoning lies in the fact that a
definite volume was taken) thereby violating the invari-
ance. A medium of infinite extent, and particularly
vacuum, it is characterized by just an energy density,
which represents TOo, a component of a second-rank
tensor—the energy-momentum tensor. The entire
tensor includes components of the type TOQI = T a 0
(where a = 1, 2, 3 labels the spatial axes), character-
izing the energy fluxes and simultaneously the momen-
tum density in space.

Finally, the components T a £ determine the stress
tensor, in principle the same as in elasticity theory.
In the particular case of a gas or a liquid (without ac-
count of shear stresses) Ta@ = S Q ^ P .

These generally known facts are repeated here only
to emphasize that the question is not whether vacuum
has an energy-momentum vector, but whether vacuum
has an energy-momentum-stress tensor. A relativ-
istically-invariant vector does not exist (equals zero),
but a nonzero relativistically-invariant tensor is quite
possible; it has the form

const •

1 0 0 0
0 — 1 0 0
0 0 — 1 0
0 0 0 — 1

a n d t h i s i s p r e c i s e l y t h e t e n s o r r e f e r r e d t o i n t h e c a s e

A f 0 . It c a n n o t b e e x c l u d e d a p r i o r i . T h e f o l l o w i n g

q u e s t i o n s r e m a i n :

1) A r e t h e r e a n y o t h e r p r i n c i p l e s b y v i r t u e of w h i c h

i t i s n e c e s s a r y t o p u t A f 0 ?

2) I s i t n e c e s s a r y t o r e g a r d A f- 0 a s a n e w i n d e -

p e n d e n t w o r l d c o n s t a n t ?

3) I s i t p o s s i b l e t o c o n s t r u c t a l i k e l y v a l u e o f A

( a t l e a s t i n o r d e r of m a g n i t u d e ) f r o m t h e k n o w n w o r l d

c o n s t a n t s ?

W e s h a l l a t t e m p t b e l o w t o a n s w e r j u s t t h e t h i r d

q u e s t i o n , l e a v i n g t h e f i r s t t w o u n a n s w e r e d . If t h e o b -

s e r v a t i o n s c o n f i r m A f- 0 , t h e n t h i s a n s w e r ( b a s e d

o n l y o n d i m e n s i o n a l i t y t h e o r y a n d o n a c o m p a r i s o n of

o r d e r s o f m a g n i t u d e o f q u a n t i t i e s ) w i l l p e r h a p s b e u s e -

f u l i n t h e c o n s t r u c t i o n o f a g e n u i n e l o g i c a l l y - c o n s i s t e n t

t h e o r y .

W e u s e h e r e t h e r e m a r k s of Eddington'- 1 5 - ' , D i r a c ' 1 6 - 1 ,

a n d o t h e r a u t h o r s c o n c e r n i n g t h e c u r i o u s n u m e r i c a l

r e l a t i o n s i n c o s m o l o g y . A t t h e s a m e t i m e , i t i s p o s s i -

b l e t o i m p a r t t h e s e r e l a t i o n s a n e w m e a n i n g , a n d t o

e l i m i n a t e t h e c o n t r a d i c t i o n w i t h g e n e r a l t h e o r y of

r e l a t i v i t y . T h e r e l a t i o n s o f t h e a f o r e m e n t i o n e d a u t h o r s

a r e c o n s t r u c t e d i n t h e f o l l o w i n g m a n n e r . W e t a k e t h e

r a t i o o f t h e w o r l d ' s r a d i u s R t o t h e c h a r a c t e r i s t i c

l e n g t h f r o m t h e t h e o r y o f e l e m e n t a r y p a r t i c l e s n / m c

o r t h e r a t i o o f t h e a g e of t h e w o r l d ( f r o m t h e i n s t a n t o f

t h e s i n g u l a r i t y ) T = l / H = R / c t o t h e c h a r a c t e r i s t i c

t i m e h / m c 2 . T h e s e r a t i o s a r e of t h e o r d e r of 1 0 4 2 . O n

t h e o t h e r h a n d , t h e d i m e n s i o n l e s s q u a n t i t y c h a r a c t e r -

i z i n g t h e g r a v i t a t i o n a l i n t e r a c t i o n i s fic/Gm2 ~ 2

x 1 0 3 8 ( m — p r o t o n m a s s ) . T h e l o g a r i t h m s o f t h e t w o

d i m e n s i o n l e s s n u m b e r s c o i n c i d e w i t h i n l e s s t h a n 1 0 % . *

It i s a s s u m e d t h a t t h i s a g r e e m e n t i s n o t a n a c c i d e n t .

H o w e v e r , i n a n e v o l v i n g w o r l d , t h e f o r m e r r a t i o , w h i c h

c o n t a i n s t h e r a d i u s o r t h e a g e of t h e w o r l d , d o e s n o t

r e m a i n c o n s t a n t . It w a s c o n c l u d e d f r o m t h i s ' 1 6 - 1 t h a t

t h e s e c o n d r a t i o h c / G m 2 a l s o v a r i e s , o r s p e c i f i c a l l y

t h a t t h e g r a v i t a t i o n a l c o n s t a n t v a r i e s i n i n v e r s e p r o -

p o r t i o n t o t h e w o r l d t i m e T . D i r a c n o t e s c l e a r l y a n d

d i s t i n c t l y t h a t t h e v a r i a b i l i t y o f G d o e s n o t a g r e e w i t h

g e n e r a l r e l a t i v i t y t h e o r y ( G R T ) , b u t t h e p h y s i c a l s i g -

n i f i c a n c e of t h e a g r e e m e n t b e t w e e n t h e l a r g e n u m b e r s

a p p e a r s t o h i m m o r e s i g n i f i c a n t t h a n t h e l o g i c a l h a r -

m o n y of G R T .

H o w d o e s t h e s i t u a t i o n c h a n g e w i t h t h e c o i n c i d e n c e s

of t h e l a r g e n u m b e r s i n a t h e o r y w i t h a c o s m o l o g i c a l

c o n s t a n t , i . e . , i n t h e A m o d e l of t h e u n i v e r s e ?

L e t u s w r i t e d o w n t h e a n a l o g o u s r e l a t i o n , r e p l a c i n g

t h e w o r l d r a d i u s R b y t h e q u a n t i t y A " l / 2 , w h i c h h a s

t h e s a m e d i m e n s i o n a l i t y . T h i s y i e l d s t h e r a t i o 1 - 1 8 1

o r
( l )

O n t h e o t h e r h a n d , l e t u s a s s u m e t h a t t h e w o r l d r a d i u s

i s o f t h e o r d e r o f A ~ l / 2 :

(2)

T a k e n t o g e t h e r , t h e s e t w o p r e m i s e s c o n t a i n t h e s a m e

m a g i c f e a t u r e of l a r g e n u m b e r s , w h i c h s t r u c k D i r a c .

*See, for example, the good old text book[ 2 7 ] , p. 48: "H o is called
the zero-point energy of the field; it is infinite. . . , but as an additive
constant H o has no physical meaning."

*It is possible to consider the ratios e2 / G m 2 = 1.2 X 10 3 6 and T / T
3 X 103 7 , where T = e2 / m 0 c 3 , In this connection, Gamow[1 7] advanced
the hypothesis that the change e and the dimensionless quantity e2 /he
are variables. Soon after this hypothesis was advanced, concrete objec-
tions were raised( 2 4 ~ 2 6 ] .
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But let us consider these assumptions in greater detail,
each separately. The first assumption (l) has the
character of a "external" relation between the world
constants A, G, m, fi, and c. In principle it could be
verified by laboratory experiments and, what is most
important, it Agrees with the constancy of all the quan-
tities and with GRT.

The second hypothesis has an entirely different
character, and pertains to evolutional astronomy.

The world's radius Ro during the halt time (corre-
sponding to z = 1.95) is simply connected with A"I/2

in the A model. It can be assumed that it is precisely
in this period that the majority of the galaxies were
produced. In order for them not to evolve too far it is
necessary to have R/Ro

 = n not too large; in the con-
crete A model it is assumed that n = 1 + z = 2.95, but
it is not assumed that this number is constant! During
the course of the further expansion, n should increase,
for example to n = 3.3 after 10s years. The relations
in which the present-day R enters are treated as ap-
proximate, therefore the variability of R does not
contradict the constancy of G and of other world con-
stants.

We note, however, that the exact relation between
the total amount of matter and the cosmological con-
stant, which is necessary in order to realize a A
model with a prolonged halt, still remains a puzzle.
This puzzle has no bearing on the variability of the
constants. It concerns those initial conditions with
which it is necessary to supplement the equations of
cosmology in order to obtain a definite solution. It is
possible to search for an evolutional approach to the
resolution of the puzzle.

Let us dwell also briefly on the differences between
the theory with a cosmological constant A f- 0 and the
hypothesis[19j of the presence of a definite concentra-
tion of weakly interacting particles (neutrinos or gravi-
tons). Such particles, by virtue of their large pene-
trating ability, should fill space practically uniformly
and to produce an energy density c1 that does not de-
pend on the spatial coordinates. Thereby, however,
ends the similarity. The energy density ejy, by defini-
tion, does not depend on the time, and (.% decreases
like R~4 during the course of the expansion of the uni-
verse. The quantity £A corresponds to P A = - £A, but
£i corresponds to Pi = + e a / 3 . Thus, the particles
(neutrinos, gravitons) define a definite rest system in
which they move on the average chaotically. It is easy
to verify that when A = 0, by virtue of the connection
between Pi and eu the particles do not lead to cos-
mological solutions with a halt in the expansion (see
the Appendix below).

Finally, and most importantly, no matter how weak
the interaction between the particles and ordinary
matter, in principle the presence of particles in vacuum
can be observed.

Yet in the theory with the cosmological constant,
eA f 0 is ascribed precisely to the lower energy state —
vacuum. Thus, the indicated two hypotheses (£A and
£i) actually differ greatly.

In the foregoing review we considered in most gen-
eral form the phenomena that call for a review of the
Einstein equations with a cosmological term, as well

as the questions faced by observational astronomy and
theoretical physics in this connection.

In the Appendix we consider in greater detail, and
with a large number of formulas, individual questions
touched upon in this general exposition.

APPENDDC

I. VARIATIONAL PRINCIPLE AND GRT EQUATIONS

To take into account the cosmological term, formu-
las (93.1) and (95.5) of "Field Theory" by Landau and
Lifshitz* should be replaced by

C3 r n n "j /, -i

Rlh-±mR-AgihJ-^-Tik. (1.2)

In the local-Euclidean (Minkowski) metric with goo = 1,
gap = -5ap, introduction of A is equivalent to an ad-
dition to the material tensor Tj]j such that

o o o'>
0 -1 0

. 0 0 0 1
(1.3)

so that Too = Too + ^A
^A = -PA = C4A/8TTG.

a n d T'ai3
 = Ta/3 + <5a«PA, where

n. PROPERTIES OF e\ AND P A

We shall prove the relativistic invariance of the
combination £A and PA- For ordinary matter at rest
(a liquid with isotropic Pascal pressure P and density
p, e = pc2, Tap = 6Q;^P) , on going over to a coordinate
system in which the liquid moves with a velocity Vx
= /3c, we get

1 (ix — -

(II.l)

Substituting P A = -£A> w e verify that in the new
system £^ = £A, PA. = ^A = ~"€A> a n c ' ^0^ ' s diagonal
as before. The vacuum can be regarded as a "sub-
stance" with given £A and P A also in the sense that
the general relation

dE-=-PdV. (II.2)

is satisfied. In fact, if E = £A V and £A = const, then

dE = e.Adv = — pAdv when PA-—eA. (II.3)

HI. HOMOGENEOUS AND ISOTROPIC A MODEL.
EQUATIONS

Let us consider the cosmology of the A model,
which is determined by specifying the metric

ds2 = e2d*2 —«2(i) (i?x2 + siii2x(sin20*j>2-f-rf02)J; (iH.l)

we call a the radius of the world, and the volume of
the world is Vo = 2?r2a3. The equations for a ( t ) have

*} am citing the Fifth Edition (1967). The gravitational constant is
denoted G in place of k, and A is the cosmological constant; it must not
be confused with the Lagrangian of the physical system in formula (94.1).
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the following form (a dot denotes differentiation with
respect to time)

iaG 3i>\
)

4iiG= p«2 .

(m.2)

(III.3)

The distance between any pair of points moving
together with the surrounding matter (having no
"random" velocities) is proportional to a, i.e., r = ri2
= ka. The first equation can be regarded as a "New-
tonian" equation for the gravitational action of a
sphere of arbitrary radius ri2: point 1 is the center,
and point 2 is on the surface; the matter surrounding
the sphere on the outside is distributed symmetrically
and therefore makes no contribution to the accelera-
tion r = -GM/r2 . It turns out here that the role of the
mass is played by ( 4n/3)r3 [p + (3 P /c 2 ) ] ; the pres-
sure also has weight. Substituting r i2 = ka and can-
celling k, we obtain (m.2).

The second equation fixes the absolute value of the
radius of curvature of the world a, provided we know
the relative rate of expansion a/a = H (H—Hubble con-
stant) and the density of matter. When account is taken
of the cosmological constant, it is necessary to use in
place of p and P for the matter the quantities p ' and
P' , which include the density and the pressure of the
vacuum, i.e., PA and P A = ~p\cz. Thus, taking p
and P to mean the density and pressure of the matter,
we obtain

3P

— (

(HI. 4)

(m.5)

As is well-known, the GRT equations of the gravita-
tional field include also the equations of motion of the
matter that produces this field. The geometrical iden-
tities pertaining to the curvature of space lead to the
conservation laws. It was therefore not surprising that
the two GRT equations obtained from a consideration
of two different components of the tensor equation R^n
= VaginR = KTin contain also a thermodynamic identity
describing the energy and the pressure.

We denote by E the energy contained in a given co-
moving volume V; we put V = ha3. This volume, which
varies in proportion to the total volume of the universe,
contains a constant number of conserved particles n.
It is possible to choose n such as to make V the vol-
ume per nucleon, and then E is the energy per nucleon;
then

(III.6)l __
P~ c2 ~Vc2"ft

We substitute this equation in (HI, 3):

2 '
(IH.7)

We take the derivative with respect to a:
1 da2 1 Id • \ da •• 4nG E , inG 1 dE (TTT o\

Comparing with (IH.l) we get

^=—3/m2P, d£=— i> <j (/ia>») = — PdV. (III.9)

Thus, the thermodynamic equation (HI.3), i.e., the first

law of thermodynamics, the energy conservation law,
follows from two GRT equations, namely, (HI.l) and
(IH.2). This statement can be reversed: if we specify
one of the GRT equations and the energy conservation
law (III.9), then the second GRT equation is obtained
as a corollary. It need not be considered in explicit
form. As shown in Appendix H, PA, £A and P A
satisfy the thermodynamic equation (HI.9), and there-
fore everything stated above is valid also in the theory
with a cosmological constant.

We note, finally, that the equations are valid also
for an open, hyperbolic model. If the metric is

dSi = o^ dp — i>2 (() [dx2 + sh21 (sin2 6 &p2 + d82)l (ill.10)

then the GRT equations are obtained from (IH.l),
(IH.2) or (HI.3), (III.4) by replacing a with ib
( i = / - 1). In this case (HI.l) remains unchanged:

U, (HI.11)V 4JIG 3P

and the sign of c2 in Eq. (HI.3) is reversed:
62 4nC ,_ , „ , , . , , c2

(III. 12)

IV. CLASSIFICATION OF SOLUTIONS OF THE A
MODEL

A complete investigation and classification of the
equations of cosmology with the A term can be found
in a number of papers and reviews. We note, in par-
ticular, the article by A. L. Zel'manovt101. However,
from pedagogical considerations it is useful to present
simple and intuitive considerations that make it pos-
sible to understand the qualitative properties of the
solution with a minimum number of mathematical
transformations.

Let us consider the most interesting case PA > 0
and a closed (spherical) world. We take as the basis Eq.
(III.5). We start with the simplest case, when the
matter consists of resting non-interacting particles:

p=nro0, e=nm0c
2, P = 0, (IV.1)

where n—particle density and m0—their rest mass.
We denote by N the total number of particles in the

universe, n = N/Vo = N/2ir2a3. Substituting in (ill.5),
we get

a2 4nGJVm0 4nG
T ~ T 2 A + T f

/(«)

where

(IV.2)

(IV. 3)

The values of the constants a and (3 are clear from
the foregoing. The function f (a) goes off to infinity
both when a —» 0 and when a — °°. It has a minimum
at aN/a = 2/3a2; a m = ( aN/2/3)l/3.

The character of the solution depends essentially on
whether this minimum lies above or below c2 (Fig. 1).

Regarding not only G but also A (and consequently
also PA, 0, and a) as world constants, we are left
with one parameter N, on which the situation depends.
Thus, different curves on the figure correspond to dif-
ferent N. By increasing N, we obviously go over from
the lower curves to the upper ones. Since the square
of the velocity a2 is equal to f (a) - c2, obviously the
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c2 at a definite angle
a = 0, but in

FIG. 1.

only possible values of a are those for which f (a )
> c2. Intersection of f (a) corresponds to an instan-
taneous halt with a reversal of the sign of the rate of
expansion (or contraction) of the universe.

Consequently, the a ( t ) dependence for Ni (lower
curve of Fig. 1) can be of two types—Fig. 2a and
Fig. 2b, comparison of ai and a2 is shown on Figs. 1
and Figs. 2a, b. In this case there is no solution in
which a could move smoothly from 0 to QU. Such solu-
tions occur at large values of N, for example, N*
(cf. Fig. 1 and Figs. 2c, d). The square of the velocity
is specified; therefore either each solution separately
is symmetrical with respect to the replacement of t
by - t with change from compression to expansion, or
else the solution describing the expansion (Fig. 2c)
corresponds to another solution describing compres-
sion (Fig. 2d).

The intersection f (a) = c2

(f' ( a) ^ 0) corresponds to a halt, i.e.,
this case the acceleration a does not vanish.

In the degenerate case N = N2 (Fig. 1), when f (a)
is tangent to the horizontal c2, it is easy to verify that
a = 0, a = 0, . . . when a = a m . Thus, there exists a
formal solution a = a m = const ( t ) . In addition to this
solution there are solutions that approach a = a m
asymptotically from the left or from the right (Figs.
3a, b). In the solution of the type of Fig. 3b, the devia-
tion from the stationary solution (a = a m ) increases
exponentially with time: a = a m + const -ew^, where
w ~ Vd2f/da2. In this sense we can speak of instability
of the stationary solution with respect to small pertur-
bations that leave the universe homogeneous and iso-
tropic*

Finally, the A model proposed by Kardashevt3j

corresponds to a case close to the degenerate one
(N3 in Fig. 1). At a definite a = a m the rate of ex-
pansion, while not equal to zero, is still quite small
(Fig. 4). An equation for a m is shown in Fig. 4 near
the plateau.

Let N3 = N2 (1 + y), where y is a small quantity.
It is easy to see that at the critical value N = N2 we
have

af/2 2c'2 (IV.4)

Near the critical state, for N3, we get

The solution of this equation, in which we put t = t m

b)
"\

FIG. 2.
d)

FIG. 3.

FIG. 4.

and a = am> is

*We disregard the question of homogeneity perturbations.

t - ^ ^ a r c s h T / A f-i-_l) a ^ In j / ^ - f-1-4) , - i > 1. (IV.6)

In order to obtain a long stay (compared with the char-
acteristic time a m / c ) near am , it is necessary to
choose y exponentially small, i.e., it is necessary to
have ( - In y) large!

In the example considered in[3j ( a m = 5 x 109 light
years), it is assumed that the stay from a = 0.9am to
a = 1.1am lasts 6 x 1010 years; it is necessary to have
here y = 10"5.

It is precisely in connection with the smallness of
y, i.e., in connection with the fact that we assume that
N is quite close to the critical N2 but not equal to it,
that referred to the proposed solution as a puzzle at
the end of the main part of the article.

V. GEOMETRICAL PROPERTIES AND EVOLUTION
OF A MODELS

In cosmological models with A s 0 there was a
simple connection between the geometrical properties
of the model (closed or open space) and its evolution.

These properties can be readily understood from the
point of view of Fig. 1: Let us put A = 0 and f (a)
= aN/a - 0 as a - », meaning that in the case of a
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closed world there must be such an a for which f (a )
= c2 and f (a ) < c2 when a > am; a closed world
should go over from expansion to contraction in ac-
cordance with Fig. 2a. In exactly the same manner,
when A s 0 an open world must evolve monotonically
to a = °°, say expand without limits, in accordance
with Fig. 2c.

In the presence of the cosmological term A f- 0,
there is no longer such a simple connection: we have
seen in the preceding Appendix IV that when p^ > 0 a
closed world can either evolve in accordance with
Fig. 2a, or expand without limit, depending on the
number of nucleons N. If p ^ > 0, then the open world
evolves monotonically, as in Figs. 2c, d. But if p ^
< 0 (incidently, the astronomical data give no hint of
such a possibility), then the expansion must give way
to contraction in both open and closed worlds. Thus,
when A f- 0 the simple connection between the geo-
metrical and evolutional properties of the world dis-
appears.

In a closed model close to critical, during the time
of the slow expansion, at a radius close to critical,
light has time to traverse the entire universe several
times. The same remote astronomical object can be
seen several times. In the ideal case we shall see it
from the earth in one direction on the rays traversing*
the distances xo, 2ir + xo, 4TT + xo, • • •, and in the o p -
posite direction on the celes t ia l sphere in r ays
t ravers ing the paths 2ir - xo, 4TT - xo, • • • Different
paths correspond he re to different t imes of passage of
the rays , and consequently, we shall see the same ob-
ject at different ages, at different instants of i ts ex -
istence. For this reason, if the object glows brightly
for only a smal l fraction of the t ime, we shall see the
object in only one of the rays : this is probably the
situation with quasa r s . Therefore the absence of
quasar twins (visible from the opposite points on the
celest ia l sphere) cannot be regarded a s a contradic-
tion of the closed cosmological model with decelerated
expansion. The rat io of the visible br ightness of the
object to i ts absolute luminosity at the instant of the
emergence of the ray does not decrease with i n c r e a s -
ing path covered by the ray . This rat io is maximal for
bodies located in the " a n t i - c e n t e r " of our galaxy, i .e. ,
for xo = T- Pe t ros ian and Salpeter^21-1 p resen t a subtle
analysis of the question of defocusing of r a y s as a r e -
sult of the inhomogeneity of the universe, connected
with the existence of separate galaxies and their c lu s -
t e r s and with the gravitational deflection of light by
these inhomogeneities.

VI. EVOLUTION WITH PASSAGE THROUGH A
SINGULARITY WITH ACCUMULATION OF ENTROPY

The question of the possibility of the passage of the
cosmological solution through a singular state with
p = °° remains open at p resen t . We assume that it i s
possible to join the solutions in which contraction
takes place to the solutions with expansion. We can
imagine that cer ta in correct ions to the GRT equa-

*Here the distance is given by the coordinate x, the definition of
which is given by the metric (III, 1). Near the halting point, the unit of
Xisam= ao/(l + z0) units of length.

FIG. 5.

tions [ 2 3 ] , which a re insignificant under ordinary condi-
tions, l imit the maximum density and the minimum
radius (Fig. 5). In addition to the general physical laws
(baryon conservation, growth of entropy), it i s n e c e s -
sary to have one more assumption, namely the smooth-
ing of the inhomogeneities. This lat ter assumption can-
not be regarded a s convincing. If we d i s regard it, then
it is necessary to solve the usual asymmetr ica l and
inhomogeneous problem of motion, and fur thermore in
modified GRT equations. Bearing in mind the excep-
tional complexity of this problem, we shall d i s regard
the question of inhomogeneities. It i s known, that when
homogeneous mat ter goes through a singularity at an
observable entropy, mat ter of any composition is
t ransformed into a s tandard mixture of 70—7E% He
+ 30—25% He4 (by weight). The question of antibaryons
and of the excess of baryons near the singularity i s
solved in natural manner: formation of antibaryons i s
a consequence of the increase of the tempera ture upon
compression of the sys tem which initially contained
only baryons. Fo r more details concerning these
questions see the 1965 review [ 9 j . Let us turn to the
picture of the evolution as a whole. We assume that
the universe is closed, the total number of the b a r y -
ons i s smal ler than the cr i t ical value, and the en-
tropy i s smal l . According to Appendix IV, the evolu-
tion proceeds in this case cyclically. However, the
entropy increases from one cycle to the other. Taking
the entropy into account, it i s possible to show that

JVm0 , , ft JV*'»54/» (VI 1}
2n2a3 c a*

where 5 i s a number on the o rde r of unity and S is the
dimensionless specific entropy per baryon. Conse-
quently, buildup of system motion takes place with in-
creasing S; at a definite value of S, a transi t ion takes
place from the cyclic regime to the unbounded expan-
sion (Fig. 6).

F r o m this point of view, the system goes over into
the charac ter i s t ic regime of expansion with a delay
when N < N2 just the same .

In the general case, however, if N i s not specially
close to N2, the radiation density (corresponding to the
entropy t e r m 5frN S4 / 3 /ca4) i s small compared with
the density of the baryons . The puzzle re fe r red to
above assumes the following formulation: why is the

FIG. 6.
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FIG. 7.

number of baryons such that the transition to the un-
limited expansion occurs at a small ratio of the radia-
tion density to the density at rest?

The unlimited increase of the radiation energy dur-
ing the course of the cycles should not frighten anyone,
since it does not contradict the law of energy conserva-
tion: the mass and the energy of the entire closed
world as a whole are identically equal to zero! (See
Landau and Lifshitz[sj.).

It can be stated illustratively that the growing radia-
tion energy is exactly offset by the growing absolute
value of the negative energy of the gravitational inter-
action between the particles and masses of the universe.
At first glance such a remark seems promising: the
excess of density, necessary for a decelerated expan-
sion in the A models, is precisely of the order of
density of the radiation in our world. This coincidence
can be understood by referring to the evolution scheme
of Fig. 7.

At t = - » we take cold baryons in the critical
amount: S = 0, N = N2. Then, formation of stars takes
place in this system under the influence of the fluctua-
tions, and nuclear reactions begin, while the total en-
ergy remains unchanged. The nuclear energy is trans-
formed into the energy of the quanta and the neutrinos,
and a nonzero pressure arises. In the language of the
diagram of Fig. 8 (of the type of Fig. 1), we obtain in
place of the curve 1—1 the curve 2—2, which passes
through the same point, but with a finite slope. This
leads to contraction of the system. A similar conclu-
sion is arrived at also by a direct examination of the
equation for a: the appearance of the pressure P > 0
while the density is conserved leads to a < 0. Further
contraction and expansion lead to an increase of the
entropy, and after the singularity the characteristic
curve f (a ) is given by the line 3—3 of Fig. 8, which
thus leads to a right-hand branch of the type shown on
the top of Fig. 7 and postulated in modern A models.

What makes this scheme attractive is the fact that
it establishes a natural connection between the density
of the radiant energy in the critical state (at z = 1.95,
T r = 3°(1 + 1.95) = 9°, er = 6 x 1O"U erg/cm3, p r
= e r / c 2 = 6 . 5 X l(T32g/cm3 at p m = 5 x 10"29 g/cm3)
and the duration of the delay or the duration of the stay
near the critical state. Besides the general difficulties
involved in any model that includes a transition to a
singularity, this model has the following shortcomings:

1) it is necessary to have N = N2;
2) taking into account the finite fluctuations in any

state, it is impossible to assume that the state with
N = N2 and small S could have existed for an infinitely
long time (a remark made by A. D. Sakharov). The
time of development of the inhomogeneities is finite
albeit large, ~ 1 0 0 a m / c .

FIG. 8.

On the whole, it must be admitted that the A models,
while resolving one difficulty of modern astronomy
(z = 1.951) at the same time raise new unsolved funda-
mental questions. The rather rough considerations
advanced above, of course, cannot be regarded as any
"advance in the physical (astronomical) sciences" (I
am hinting at the name of the journal). They are more
readily aimed at attracting the reader's attention to an
unsatisfactory condition in an important branch of
physics.

VH. CLASSIFICATION OF A MODELS IN ACCORD-
ANCE WITH THE OBSERVABLE QUANTITIES

Observations in the vicinity of our galaxy (more ac-
curately, the cluster or supercluster in which it is
contained) make it possible to determine the Hubble
constant H = r / r , the acceleration parameter
q = - r / rH 2 and the average density of matter p .

The difficulties involved in the physical determina-
tion of these quantities are already indicated by the fact
that the quantity H was revised many times:
500 km/sec-Mpsec (l Mpsec = 3 x 1024 cm) in 1929,
~200 km/sec-Mpsec in 1950, 75 km/sec-Mpsec in
1957, ~ 100 Km/sec-Mp in 1962; at the present time it
is assumed that 75 < H < 125 in the same units. The
parameter q is expressed in terms of the relative ac-
celeration r of a remote object (at a distance r), in
other words, from v = r = Hr, r = v = Hr + Hr
= Hr + Hv = Hr + H2r we get q = - (H/H2) - 1. We
recall that when speaking of the Hubble constant, we
have in mind the dependence of H on the coordinates
(on the distance); this does not exclude variability of
H as a function of the time. The determination of q is
quite difficult. The latest published estimates by
Sandage[7j give q = + 1 ± 0.5, but the estimate of the
error can hardly be regarded as objective. As to the
density p, the part of the problem pertaining to the
density of matter in the galaxies was solved by Oort in
1958. These estimates give pg = 3 x 10"31 g/cm3 for
the distance scale corresponding to H = 75 km/sec-
H = 75 km/sec-Mpsec. The problem of determining
the density of the intergalactic gas has come to be
considered only in recent years (see, for example,[22j),
but so far there is only a rough upper limit p" < 3
x 10"29. Thus, with respect to q and p, one should
seek more readily not of "observable" quantities but
of "quantities principally accessible to observation."
But it is precisely to demonatrate the importance of
the actual performance of these observations that we
shall demonstrate below the dependence of the most
general properties of the universe on the quantities H,
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q, and p. The results that follow pertain to homogene-
ous isotropic solutions with a cosmological constant
A ^ 0. We note that the isotropy of the universe—the
equivalence of all directions—was confirmed recently
by measurements at centimeter wavelengths with ac-
curacy better than 0.1%.

The isotropy of the world is indirectly confirmed
also by its homogeneity: in an essentially inhomogene-
ous world, the radiation would be isotropic only for an
observer who occupies specially (accidentally) the
center of a spherically-symmetrical inhomogeneous
distribution of matter. Giordano Bruno was not burned
at the stake in 1600 in order that the idea that the earth
(our galaxy) occupies a central position be resurrected
in 1967!

Thus, we shall assume the following three quantities
to be known: H, q, and p. From p and H we make up
the dimensionless quantity

Q = p:pc = p;|̂ ==p:2-10-29 g/cm3 (VII.l)

(at H = 100 km/sec-Mpsec). All the properties of the
solution depend on two dimensionless quantities O, and
q, and it is known reliably that Si > 0. We shall not
consider all the possible solutions, but only those that
can be candidates for a description of reality, i.e., our
presently existing universe and its past and future.
We stipulate here that an expansion (and not a contrac-
tion) takes place at the present time, and that the radi-
ation density is many times smaller than the density of
ordinary matter. We can then neglect, back to a very
remote epoch, the pressure of matter (in particular, of
neutrinos and quanta) in the equations.

We shall consider the plane of the variables q
(abscissa) and O (ordinate) (Fig. 9). To each point in
this plane there corresponds one cosmological solution
satisfying the conditions formulated above. The prob-
lem consists of outlining the regions and lines charac-
terizing the different solutions on this plane (half-plane,
since O > 0).

Each point corresponds to a definite value of A.
The lines with constant dimensionless ratio

*.;

are* straight in the (q,
Pc
plane:

(VII.2)

(VII.3)

Several such lines (X = -0.5, 0, + 0.5, +1) are drawn
in Fig. 9. In particular, the line X = A = 0 (the Milne
model) and through the point A(£2 = 1, q = %) corre-
sponding to the Einstein—de Sitter flat model.

The topology of the universe as a whole also de-
pends on q and Ji:

world ordinate and infinite

«<-§-(!+9), (vn.4)

•We derive this on the basis of (III, 5):
inG I 3P 3P

world closed and finite* at

a>-|d+9). (VII. 5)

The separating line Si = 2 ( l + q) /3 passes through the
point B(q = - 1, Si=0, A. = 1) and through the point
A(q = +0.5, B = 1, X = 0); it corresponds to flat
worlds.^

Let us return to the question of the future of the
universe. It can be shown that the expansion will con-
tinue without limit in the region lying to the left of the
straight-line segment OA and the line AC specified by
the parametric equations ( a > 1)

(a-l)(2a-
(VE.6)

On the segment OA we deal with an open world; in such
a world, the expansion must give way to contraction
when X < 0, and when X > 0 the expansion continues
without limit, as can be seen from the fact that in the
equation

2 - 3 tfi PA)° + 2

all the terms are always positive when X > 0 and
PA > 0. The condition for the halt of the expansion of
an open world coincides with the condition X > 0, and
near this boundary, but on the right of it (i.e., at PA
< 0, X < 0,but | X 1 <§C 1), the halt takes place at very
large b, and in the limit on the line AC as b — ».

A closed world with X < 0 (region to the right of
the continuation of the line OA upward, segment AA')
will be halted all the more. But a closed world can be
halted also when X > 0, if the parameters correspond
to the region between AA' and AC. An asymptotic
halt occurs on the line AC, the parameter a has the
meaning of the ratio of the radius of the world at the
instant of the halt to the present-day radius,
a = ahalt/ao > 1. Slightly above AC, at a = aa0, a
sharp deceleration of the expansion occurs. In the
entire region to the left of the line OAC the future of
the universe constitutes an unbounded never-stopping
expansion.

*We derive this on the basis of (III, 5):
a2 4jtG

2 pc

The preceding formula is obtained analogously from (III, 10).
*A topologically flat world is similar to a hyperbolic one.
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Let us turn to the past. In the plane of Fig. 9 we can
draw a line BD, the equation of which is given by the
same parametric expressions (VII.6), but with a < 1.
To the right of the line BD, the cosmological solutions
would evolve without stopping, starting with the singu-
lar state p - °°.

The solutions to the left and below BD, between BD
and the abscissa axis (including the solutions that ex-
pand at the present time), were contracting at t = - °°
and changed over from contraction to expansion not
through a singularity, but at fully defined finite values
of the world radius and the maximum density*—in ac-
cordance with Fig. 2b.

Finally, the line BD itself corresponds to a uni-
verse that emerges asymptotically from the state of
rest and (in accordance with the conditions that all the
considered solutions must satisfy) expands at the pres-
ent time with given H, pi and A. The parameter
a < 1 has in this case the meaning of the ratio of the
radius of the world in the initial state of rest to the
radius of the world at the present time.

The existence of cosmic radio emission correspond-
ing to a temperature 3°K ("hot universe") apparently
signifies that the universe was in a singular super-
dense state—in a state such that thermodynamic equili-
brium was established at high density. This means
that we can expect that the world is actually in a state
above the line BD on Fig. 9 (and with respect to the
abscissa axis, to the right of BD). Near the line BD
(but above it) is situated a state in which a delay of the
expansion took place in the past at the corresponding
a. In particular, the concrete solution proposed by
Kardashevt3j lies quite close to the point E:

1 xx —- " — ~rr ~

s=°-105< (VH.8)

which is noted on Fig. 9.
It is also possible to indicate on the diagram other

lines: the line of constant age of the universe, and the
lines corresponding to single, double etc. survey of the
entire closed universe within the time elapsed from the
singularity. These lines condense near BD, since the
line BD itself corresponds to infinite delay of the ex-
pansion. In order not to clutter up the figure, we do
not show these lines.

VHI. COSMOLOGICAL CONSTANT IN ELEMENTARY
PARTICLE THEORY. REGULARIZATION OF THE
DENSITY AND PRESSURE

Let us take the expression for the energy density of
the vacuum of scalar particles, obtained with allowance
for the zero-point oscillations:

(VIH.2)

For fermions occupying the negative-energy states (or,
formally, performing anticommutation in the field-
theory expression prior to the transition to the formal
product), we obtain

(VIH.3)

with its own value of /J. The coefficient 4 is obtained
from a comparison of g = 2 for particles with spin l/
and the factor % in the zero-point energy of the
bosons; this coefficient does not play a role in what
follows.

Thus, from the consideration of the bosons and
fermions, we obtain the expressions

wh3re the coefficients Cj can have either sign. Gen-
eralizing further, we write

e = \i (c) / ((0 \i (;0 F (u (VIII. 5)

where I and F are diverging integrals.
The last expressions can be regarded as a result of

regularization, according to Pauli and Villars, of the
expressions for e and P, without considering so il-
lustratively such individual terms as the contributions
of the bosons and fermions.

We shall obtain below the conditions that must be
satisfied by the regularizing function f (M) in order
that e and P be finite. Inasmuch as the regularization
is carried out in a relativistically-invariant manner,
the result is also relativistically invariant. As noted
in Appendix II, we should have here P = - e; indeed,
it will be shown concretely that any f that gives finite
values of e and P satisfies this condition. To prove
this, we shall consider first the finite quantities

H. Po)= (VIII. 6)

and will take the limit as p0 -* °° only at the end. We
break up the integral

rji po
Kv, PO)= I +1- r>i- (VHI.7)

0 rv.
in order to expand in the second integral in terms of

< 1/r < 1:

r/u
p^K^yPi-t-n*p*dp=KH!t), (VIH.l) we then obtain after integration (CiH4 = f )

where /i = moc; the meanings of K and I follow from
the formula (VHI.l). The corresponding expression for
the pressure is

Analogously we obtain

*We note that all the solutions near BD (both to the left and to the
right of this line) correspond to a closed world. An open world had to
emerge from a singularity in the past.

\nl±. + O (J£) . (VIH.9)

We substitute these expressions in the regularized
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integrals

(vm.io)

+ [c2 + YlnPo) I/Wl"'*-^-^/(n)F1lnjid(l + -pi-+... (VHI.ll)

Let us consider now the limits of these expressions as
p0 — °°. The conditions e f- °° and P ^ « are satisfied
simultaneously if we impose of f the conditions

|i = o. (VIII. 12)

In this case the first three terms in e and P drop out.
On the other hand, when p0 —• °° all the terms with
Po2 and the succeeding ones drop out, too. As a result
we are left with*

e=+!T \ / (n)

(VIII. 13)

q.e.d.
Thus, we have presented with this example a con-

structive proof that the field theory with relativistically-
invariant regularization does not require at all a zero
vacuum energy and, to the contrary, it leads naturally
to the situation characterized by a cosmological con-
stant.

DC. NUMERICAL VALUE OF A

The reasoning of the preceding section leads to a
correct tensor form of the vacuum contribution to the
energy and the pressure. However, an estimate of the
order of magnitude of the obtained expression yields

pA^m(_^) 3_ 1 0ng / c^, A = 1O-iocm-2. (DC.l)

and in this case m is taken equal to the proton mass,
we have left out the dimensionless factors, and the
logarithms in (VIII.13) were replaced by 1.

It is clear that such an estimate has nothing in
common with reality. In essence, it is just this dis-
crepancy between the value of A (IX.1), which can be
obtained from elementary-particle theory, and the
value that is admissible from astronomical considera-

and | p A | < 5 x KT28 g/cm3,tions, | A | < 10~54 cm"2

which served as the reason why many physicists a s -
sumed A = 0, once it became impossible to assume the
value | A | = 10"10 that follows from dimensionality con-
siderations from the values of the constants c, R, and
m. Eddington and Dirac noted that the theory of gravi-
tation, together with particle theory, gives a dimen-
sionless quantity which differs very greatly from unity.
Eddington introduced the ratio of the gravitational in-
teraction of the electron with the proton to the elec-

*I. M. Khalatnikov notes that by integrating I (/i, Po) by parts we
obtain — F(ji, p0); however, in this case the function in the upper limit
is infinite, and therefore the longer procedure presented above seems to
be also more convincing.

trostatic interaction:
Gmpme e2 Gmr/tie= 5-10-4». (IX.2)

From the present-day point of view, the constants R
and c are more fundamental than the electron charge.
In addition, for uniformity, we shall take the proton
mass wherever a particle mass is involved. We there-
fore choose as the quantity characterizing the small-
ness of the gravitational interaction

In the note1-181 there was advanced the hypothesis that

pA~-Gm* Ghn'
Jl*

(IX. 4)

This quantity is still 107 times larger than the permis-
sible value ( P A = 2 x 10~38 x 1017 = 2 x 10"u in place
of 5 x 10"28). Numerical agreement could be obtained
by replacing nip with nip ml, or by choosing other
powers and replacing Re with e2; this is essentially
what Dirac and Eddington did*. However, even a dis-
crepancy of "only" 107 times is an accomplishment
compared with the discrepancy of the estimates by a
factor 1046.

The expression (IX.4) can be intuitively interpreted
as follows: virtual particles with mass m, the dis-
tance between which is A = fi/mc, are produced in the
vacuum; their self-energy is exactly equal to zero, but
the gravitational interaction of neighboring particles
causes the energy density of vacuum to be

(K. 5)Gwfl 1 (
ft* '

corresponding to (IX.4).
Recently A. D. Sakharov proposed a gravitational

theory, or more accurately, a justification of the equa-
tions of general relativity theory, based on the con-
sideration of vacuum fluctuation1-231.

An important role is played in this theory by the
hypothesis that there exists a certain elementary
length L or a corresponding limiting momentum po
= R/L. The theory is not applicable at smaller lengths
or at larger momenta. Sakharov obtains an expression
for the gravitational constant G in terms of L or po'.

This expression has been known from Planck's time,
but it was read "from right to left": the gravitation
determines the length L and the momentum po. Ac-
cording to Sakharov, L. and po are primary. We sub-
stitute (IX.6) in (IX.4) and obtain

m6c5 mPci (TV ri\

These are precisely the first discarded terms (as p0
— «) in formulas (VIII.10) and (vni . l l ) . Thus, we can
propose the following interpretations of the cosmologi-
cal constant: there exists a theory of elementary par-
ticles which would give (in accordance with a mecha-
nism which is still undisclosed at present) and iden-
tically vanishing energy, provided that this theory were

*A hypothesis is advanced in[8] that there enters also a small factor
— 10"s, which is characteristic of the weak interaction.
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applicable without limit, up to arbitrarily large mo-
menta; there exists a momentum po, beyond which the
theory is not valid*; besides other consequences, a
modification of the theory gives a nonzero vacuum
energy; general considerations make it probable that
the effect is proportional to po2.

A clarification of the question of the existence and
magnitude of the cosmological constant will be of
tremendous fundamental significance also for the theory
of elementary particles.
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