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THeie aim of the present paper is to discuss experi-
mental observations of an interesting phenomenon,
second sound in solid helium.'-1'2-'

It is well known that the heat motion in solids at low
temperatures reduces to the presence in the solid of
phonons - sound quanta. The energy of a quantum is
connected with the sound frequency by the relation

Moreover, each phonon is characterized by a quasi-
momentum - a vector with similar properties as the
momentum of a particle and equal to

where K is the wave vector of the sound wave. At low
temperatures there are only phonons with small u>.
Then

where c is the sound velocity.* In this respect phonons
are analogous to photons, for which the connection be-
tween energy and momentum is given by the same
formula (1) with c the light velocity. In equilibrium the
phonons are distributed over quasi-momenta according
to a Bose-Einstein distribution function

n (k) = [ec(">/:r I]"1 (2)

( T is the temperature in energy units).
Phonons can interact with one another - scatter and

decay. In such collisions the energy and also the total
quasi-momentum - with a restriction which we shall
discuss below (see Eq. (10)) - are conserved. In that
sense the system of phonons is analogous to a normal
gas of particles. In particular, it turns out that a
peculiar sound can propagate in such a gas. This
"second order" sound propagating in the gas of normal
sound quanta is called second sound. Since the phonon
gas by its own character is a carrier of thermal mo-
tion, the quantity that oscillates in a second sound wave
is the temperature, and not the density as in normal
sound. One can say that second sound is an undamped
thermal wave.

The existence of second sound was predicted theo-
retically for superfluid liquid helium by L. D.
Landau.*-3-1 V. P. Peshkov^ observed second sound
experimentally in liquid helium and he mentioned that
such a phenomenon could also exist in solids.

We shall not give here Landau's general theory (it
is given in the review'-5-') but restrict ourselves to

inexact but simple considerations which are convenient
for our case of phonons in a solid.

First of all, we note that the phonon gas has an
energy E and pressure p which, as in the case of
isotropic radiation, i.e., a photon gas, are connected by
the relation

£ = 3P (3)

(E is the energy per unit volume).
The phonon gas may move as a whole with respect

to the crystal lattice. If the velocity of this motion is
v the distribution function of such a gas is obtained
from (2) by replacing n ( e) by n ( e - k • v). If we use
such a distribution function to calculate the total quasi-
momentum K of the gas, we find easily for small
velocities v

The coefficient of proportionality between K and v,

*. = •£ (4)
has the meaning of the "effective mass" density of the
phonons just as the mass density of a normal gas is
the coefficient of proportionality between its momentum
and velocity.

We now introduce a set of equations describing the
propagation of second sound. As a first equation we
take the equation for the velocity of motion of the
phonons which expresses in final reckoning the quasi-
momentum conservation law. It must have the form of
the usual hydrodynamic equation:

(we assume the velocity v to be small).
As the second equation we choose, in accordance with

the physical meaning of second sound as an undamped
temperature oscillation, the equation expressing con-
servation of energy. It has the form

f v = 0. (6)

"There are in a solid three acoustic branches with different veloci-
ties. We shall, however, forget about this, as it has no importance as far
as principles are concerned.

The second term in the brackets describes as in normal
hydrodynamics the change in energy connected with the
work done by the pressure forces of the phonon gas.

Expressing pn and p in terms of E through (3) and
(4) and eliminating v we get a wave equation for E

from which it is clear that the second sound velocity is
equal to

C2=="W' _ (8)
In an anisotropic solid some averaged velocity c must
occur in this formula.
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Let us now consider the conditions under which
second sound may be observed in a solids6-1

It is, first of all, clear that the crystal must be of
sufficiently good quality. The mean free path of thermal
phonons connected with scattering by crystal defects or
by impurities must be large compared with the second
sound wavelength:

^~-g-«*«mp (9)

In actual fact it turns out that the most favorable object
in this respect is a crystal of solid 4He. This is con-
nected with the fact that there are already hardly any
impurities in liquid He: at low temperatures the solu-
bility of all substances is very small. The only possi-
ble impurities are atoms of the other helium isotope,
3He, and they can relatively easily be separated. On
the other hand, defects such as vacancies which are
formed when helium crystallizes relatively quickly go
to the surface of the crystal. This is connected with
the large amplitude of the zero-point vibrations of the
atoms in solid and liquid helium. It is just the large
magnitude of these oscillations which leads to the fact
that under normal pressure helium remains liquid
down to the absolute zero and solidifies only under
pressures larger than 25 atm.

The second necessary requirement is of more im-
portance as a matter of principle and is connected with
the difference between the conservation laws for phonon
quasi-momentum and for ordinary momentum. It is
well known that in any process where the phonous in-
teract with one another the conservation law has the
form

2kj = 2k / + 2jtSbw (TO = 0. 1, 2, ...); (10)

here Ski is the sum of the phonon quasi-momentum
before the interaction, Skf the sum of the quasi-mo-
menta after the interaction, and b a so-called recipro-
cal lattice vector which is characteristic for a given
crystal.

If m = 0 (such interaction processes are called
"normal") quasi-momentum is conserved. In those
processes, however, in which m f- 0 (such processes
are called "Umklapp processes") the total quasi-
momentum of the phonon gas is not conserved. This
leads to a violation of Eq. (5): in it a "friction force"
of the phonons on the crystalline lattice appears and
this leads to damping of second sound. For the propa-
gation of second sound the following condition is thus
also necessary*

^«'umk (11)
where ^Umk i s 'he phonon mean free path referring to
Umklapp processes. Fortunately ^Umk increases
steeply at low temperatures. In fact, combining (10)
with the energy conservation law we understand easily
that when m f- 0 at least one of the initial phonons
must have a quasi-momentum ~fib. Bearing in mind
that

a a
where a is the interatomic distance, ® the Debye
temperature, we see that the energy of the phonon

~®. The number of such phonons is for T
portional to

This means that

® pro-

(12)

i.e., it increases exponentially with decreasing temper-
ature.

To derive the third condition we note that in Eqs. (5)
and (6) we assumed that the phonon gas was in thermo-
dynamic equilibrium. This equilibrium is secured by
the "normal processes" of interactions of phonons
with one another. In order that equilibrium can be
established during a period of the sound vibrations it is
thus necessary that

where /n is the phonon mean free path with respect to
"normal" interaction processes. Conditions (11) and
(13) are compatible only when

*Phenomena occurring when the number of Umklapp processes is
small are discussed in detail in the survey ['].

At low temperatures "three-phonon processes" occur
the most often. These are the decay of one phonon into
two others or the inverse process. A theoretical esti-
mate shows that in that case1-8-

This means that at low temperatures condition (14)
must in all cases be satisfied. We note also that (13)
means that Zn must be small compared with the
characteristic crystal dimensions R. The first condi-
tions when

'Umk»-S»'n (15)

where realized in Mezhov-Delgin's experiments .^
The results of"-9-1 are thus an important stage along the
path to observing second sound in solids.

Let us still emphasize that, for a given wavelength
A2, condition (11) limits the temperature from above,
and condition (13) from below.

Let us now immediately turn to a description of the
experiments.1^1J In these experiments they did not study
the propagation of sinusoidal vibrations but thermal
pulses of length T ~ 0.1 to 5.0 Msec. The experimental
setup is illustrated in Fig. 1. The space which is not
hatched is filled with a single crystal of solid helium
of dimensions 9X8 mm grown under a pressure of
54.2 atm. The authors studied 13 samples, of which
four turned out to be sufficiently good to observe sec-
ond sound. The number 1 in the figure indicates the
position of the emitter of thermal pulses - a carbon
resistance which is heated by pulses of an electrical
current. The number 2 shows the position of the re -
ceiver (detector) of the vibrations - a carbon ther-
mometer. The change in temperature of the detector
was of the order of 10 2. The copper bar 3 served to
remove the heat when the crystal was grown.

In Fig. 2 we show typical experimental curves.
Curves a) and c) show the time-dependence of the de-
tector temperature and the curves b) and d) the time-
dependence of the rate of change in temperature
d(5T)/dt .
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Curves a) and b) refer to T = 0.71°K. At this tem-
perature, condition (11) is not satisfied. (For a
thermal pulse this condition must be rewritten in the
form C 2 /T <S. /umk- The pulse in a point of the ap-
paratus has a smearedout character.

When T = 0.51°K (curves c) and d)), the conditions

for the propagation of second sound are satisfied. In a
point inside the apparatus there is a sharp pulse. Its
speed of propagation c2 ~ 160 m/sec corresponds to
the estimate (8). Moreover, one sees clearly on the
curve a second pulse of smaller intensity. This "echo"
is the pulse reflected from the plane of the receiver
and from the plane of the emitter, and again reaching
the receiver. The existence of such an echo is a con-
clusive indication of the wave character of the process
of the propagation of heat under the given circum-
stances.

Afterwards the authors repeated the experiments
for different pressures. The distance between the
emitter and the receiver was 0.77 cm, while the thick-
ness of the crystal was approximately 2.5 cmJ-2-1 This
enabled them to reduce the scattering of the thermal
pulses by the boundary of the sample. Under those
conditions they succeeded in observing not one, but two
reflected pulses (Fig. 3). The table of the dependence
of the second sound velocity on pressure has the form

It is of interest to note that at temperatures below
0.5°K one can no longer satisfy condition (13). In
that case heat begins to be transferred by the phonon
current from the emitter to the receiver without col-
lisions. The pulse broadens again and its velocity ap-
proaches the ordinary sound velocity.

The author is grateful to A. I. Shal'nikov for dis-
cussions of the problems treated in this paper.
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