
SOVIET PHYSICS USPEKHI VOLUME 11, NUMBER 3 NOVEMBER-DECEMBER 1968

533.9 LANDAU DAMPING AND ECHO IN A PLASMA

B. B. KADOMTSEV

Usp. Fiz. Nauk 95, 111-129 (May, 1968)

1. INTRODUCTION

I N 1946, L. D. Landau has shown that waves in a
plasma should be damped even in the absence of colli-
sions'^. The effect of the Landau damping, as it was
subsequently called, plays a fundamental role in plasma;
it serves as the basis for the theory of collective phe-
nomena in a rarefied plasma. However, for a long time
this interesting physical effect remained outside the
scope of experimental research. Only most recently
were direct laboratory experiments performed on
Landau damping, and have shown good agreement be-
tween the measurement results and the theory.

The Landau damping is not connected directly with
dissipation, so that it cannot be regarded as a com-
pletely irreversible process, inasmuch as even a
damped wave in a collisionless plasma retains the
"memory" of the preceding oscillatory motion. This
memory can become manifest in effect of the echo type.
Echo in a plasma was observed only recently. The
present article is devoted to a review of work on
Landau damping and echo in a plasma and to a discus-
sion of the connection between these two effects.

2. LANDAU DAMPING

We recall first the history of the problem. In 1938,
A. A. Vlasov proposed to describe wave processes in a
rarefied plasma by means of a kinetic equation with a
self-consistent field1-2-1. For Langmuir oscillations,
which represent waves propagating along the x axis,
the Vlasov equation is of the form

Here F is the electron distribution function with re-
spect to the velocity component along the x axis,
which we designate simply by v, m is the electron
mass, - e its charge, and <p the electric field poten-
tial, which, according to A. A. Vlasov, should be deter-
mined from the equation

^Ane^Fdv-n,} (2.2)

(here n0 is the ion density, which can be regarded con-
stant in high-frequency Langmuir oscillations).

For oscillations of very small amplitude, Eqs. (2.1)
and (2.2) can be linearized. To this end it is sufficient
to put F = f0 + f, where f0—equilibrium function at
f — deviation from equilibrium, and neglect the quad-

e 9c? 9f
ratic term — -r1- — in (2.1). We shall assume that in

m oz ov
the equilibrium state the plasma is homogeneous and
neutral, so that /fodv = n0. By virtue of the homogen-
eity, Eqs. (2.1) and (2.2) can be written out for each
component of the expansion of f and <p in a Fourier
integral series with respect to the variable x, so that
it is sufficient to consider only the evolution of an in-
dividual harmonic. Assuming that the functions f and

(p are of the form f (v, O e ^ and <p(t)eikx, we write
the linearized equations in the form

iL + jfo/ + jfapJL̂ !L = o, (2.3)
dt T m dv

k\ = -4ne *\ f dv. (2.4)

It is natural to attempt, as Vlasov did, to find the
natural oscillations of a plasma with certain frequency
w. To this end we put

f(v, 0 = / , e - i m ( , <p(i!) = cp1e-iM'.

Then it might seem that we get from (2.3)

(2.5)11 w — kv m dv Y 1 -

Substituting this expression in (2.4), we get a disper-
sion equation connecting the natural frequency w with
the wave number k:

t(k, U,)S1 + _ J _ _ = O. (2.6)

We have introduced here the symbol € for the quantity
(2.6), which represents the dielectric constant of the
plasma.

We see that (2.6) has a singularity under the integral
sign, so that this expression cannot be used until we
determine how to remove these singularities. A. A.
Vlasovt3] proposed to carry out the integration in (2.6)
in the sense of the principal value, but there are not
sufficient grounds for this procedure.

A correct approach to the solution of the problem of
small plasma oscillations which simultaneously re-
solved the difficulty with the divergence in (2.6), was
pointed out by L. D. Landau[li. He called attention to
the fact that in a real formulation of the problem of
small oscillations of a plasma it is necessary to deal
either with specified initial data or with specified
boundary conditions, and he showed how to solve the
two problems.

Let us consider, for example, the initial-value
problem. In this case it must be assumed that when
t < 0 there is no perturbation, and only at an instant
t = 0 is an external action applied, and produces a
certain initial perturbation of the distribution function
g(v). The problem consists of determining the tem-
poral evolution of the perturbation. To this end, it is
necessary to use Eqs. (2.3) and (2.4) with an external
source g(v) 6(t), added to the right side of (2.3). To
solve this system of equations we can use the Laplace -
transformation method, putting

0 e'pi dt, (2.7)

and accordingly for (p ( t ) .
Multiplying (2.3) with a source g ( v ) 6 ( t ) in the

right side by e'P* and integrating with respect to t,
we get

ip— kv ip—kv (2.8)
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We see that this expression differs from (2.5) in that a
term with g has been added and that to has been re-
placed by ip. Substitution of (2.8) in (2.4) allows us to
find (fpi

q?p=,,,_^., ? 1 M £ . (2.9)
^p~ kH(k, ip) i ip-kv • v '

From the known value of <pp we can now easily find

Equating (2.14) to zero, we can find the real and imag-
inary parts of the complex frequency. At small values
of k <$C a"1, where a = vrT/4)7ei!no is the Debye radius,
the expression for the real part of the frequency is

tf^ul + E-k*, (2.16)

and its imaginary part (i.e., the damping decrement y)
equals

tM = *a i ^e" dP- (2.10)

It is convenient here to use in lieu of p the variable
<x> = ip, and since the integration with respect to the
variable p takes place in the right half-plane, the in-
tegration with respect to the complex u should be
carried out in the upper half plane:

e - M P g{v)du

e (k, (o) J o) — kv
(2.11)

This expression solves completely the problem of the
plasma oscillations produced by the initial perturba-
tion g(v). We see therefore, that, generally speaking,
there is no definite dependence of to on k: for a speci-
fied k, the integration in (2.11) is carried out over all
to. However, if g(v) has no singularity, then the
asymptotic form of the integral (2.11) will be deter-
mined at large values of t by the zeroes of e(k, u),
i.e., <p (t) ~ exp( -iwkt), where e(k, <ok) = 0. Thus,
at very large values of t there is separated from the
solution (2.11) a branch of plasma oscillations with
natural frequency a%, determined by the relation

e(k, «*) = ()• (2.12)

Since the integration in (2.11) is carried out along a
horizontal line in the upper half-plane, in the calcula-
tion of e by (2.6) it is necessary to assume that the
frequency w is in the upper half plane, i.e., for to
close to the real axis it is necessary to put

(a — fa-)-1 —> ((o + iv — kv)-1 —> —^iv — in8 (to — ku),

where P denotes the principal value. This rule for
going around the pole is customarily called the Landau
rule. With allowance for the rule for going around the
pole, the dielectric constant (2.6) is complex:

(2.13)
km ^ ij) — ku ttu km | k | lu

The presence of an imaginary part in e corresponds to
the Landau damping. Its magnitude is proportional to

at the point v = to/k, where
v=to/k

the derivative -rr
dv

the velocity of the particles coincides with the phase
velocity of the wave. It can be said that the Landau
damping is connected with the absorption of the wave
by the resonant particles. If the electrons have a Max-
wellian distribution with temperature T, then the die-
lectric constant (2.3) can be represented in the form

VHzW(z)), (2.14)

where top- V47re2no/m— Langmuir frequency, z = to/kve,
ve = V 2T/m— average thermal velocity, and

l/.-i (2.15)

We see that at small ka the damping increment is
exponentially small.

At not very large values of t, a definite contribution
to the integral (2.11) is made also by the pole u> - kv
= 0, corresponding to the free spreading of the parti-
cles of the initial perturbation, so that the dependence
of the potential on the time can be quite complicated.

3. VAN KAMPEN WAVES

Thus, Langmuir oscillations excited by a certain
initial perturbations g(v) 6 (t) with a smooth function
g(v) should attenuate in time. This does not mean,
however, that it is impossible to have undamped natural
oscillations of the plasma. In fact, let us return again
to Eq. (2.5), which connects the disturbance of the dis-
tribution function fi with the potential <Pi. According
to the Landau rule, it is necessary to add to the fre-
quency to in the denominator a small imaginary part
w —• to + iv, so that we can rewrite (2.5) in the form

P ke din • c / 7 \ ke din in t \
/, = : — Ti — J.t8((o — kv) f̂ fpi- (3.1)
" CD — kv m * ' ' v ' m dv 4 1 v '

Here P means that in the calculation of the different
integrals containing ii the singularity must be inte-
grated in the sense of the principal value. Expression
(3.1) describes the perturbation of the distribution
function by the potential cpi of the electric field of the
wave. We see that the closer the velocity is to the
phase velocity w/k of the wave, the larger this per-
turbation. In the immediate vicinity of this point, the
main contribution is made by the second term, which
is a result of the imaginary part

Im I

as v — 0.
We note that allowance for the damping of the per-

turbations due to collisions, which in the simplest
variant can be carried out by introducing a small term
-i/f in the left side of Eq. (2.3), will also lead to the
Landau rule for going around the pole, and consequently,
to exactly the same expression (3.1). This is perfectly
understandable, for both effects—collisions and the
finite growth time of the perturbation—lead to quali-
tatively the same limitation on the perturbation at the
resonant point.

If we substitute (3.1) in the Poisson equation (2.4),
then we obtain directly the Landau dispersion equation.
In other words, the only perturbation of the distribution
function (3.1) remaining in the Langmuir oscillations
at large values of t is the one produced by the wave
potential.

Let us assume now that at the initial instant of time
there is introduced, besides the smooth perturbation
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g (v), also a certain modulated beam with a velocity
precisely equal to the phase velocity of the wave. If we
choose the magnitude and phase of this beam in suitable
manner, then we can exactly cancel out the resonant-
electron perturbation described by the second term of
(3.1). But in this case we get expression (2.5) without
the 6 function, and consequently we arrive at the
Vlasov dispersion equation with an integral in the sense
of the principal value, describing the Langmuir waves
without attenuation. Thus, the Vlasov solution also has
a definite physical meaning: it describes a wave with
addition of a group of resonant particles.

However, this solution is quite particular—it corre-
sponds to a certain fully defined choice of the density
of the additional particles. As shown by Van Kampent4\
Eqs. (2.3) and (2.4) have a much broader class of
natural oscillations. In order to find these oscillations,
it is necessary to eliminate the inaccuracy admitted in
the derivation of (2.5) for the perturbation of the distri-
bution function. In fact, if co is a real quantity, then
the homogeneous equation for fi (co - kv) fi = 0 has a
nontrivial solution of the form X6 (co - kv) (pi, where
A is an arbitrary constant (more accurately; a function
of to and k). This solution of the homogeneous equa-
tion should be added to (2.5). Assuming for concrete-
ness (without loss of generality) that the integral of
l/(co - kv) is taken in the sense of the principal value,
we should write for the natural oscillations in place of
(2.5)

*I')«I>I- ( 3 - 2 )

Substituting this expression in the Poisson equation,
we determine the dispersion equation

mk J co —ft" dv
(3.3)

Since this equation contains two unknown quantities A
and co, it does not yield a unique connection between co
and the wave number k. It should be more readily re -
garded as an equation for the determination of X if OJ
is given. This means that at a given k the frequency
can be quite arbitrary. In other words, for any fre-
quency w we can choose a value A, i.e., the density of
the resonant particles, such that the solution has the
form of an undamped wave with given frequency co.
This is the Van Kampen wave. Each of the Van Kampen
waves represents a modulated beam of particles mov-
ing with a velocity equal to the phase velocity of the
wave Vph = co/k (this beam is described by the second
term of (3.2)), accompanied by a polarization cloud
resulting from the action of the beam on the plasma
electrons. The perturbation fi in this cloud is de-
scribed by the first term of (3.2).

If the wavelength of the perturbation is sufficiently
large, ka <£L 1, and the frequency co is close to the
plasma frequency (2.14), then the quantity A, defined
by expression (3.3), is very small, for in this case the
sum of the first two terms in (3.3) is close to zero. We
then deal with a plasma wave with a small addition of
resonant particles. The van Kampen waves proper are
best taken to be solutions that differ noticeably from
the Langmuir waves when the second term of (3.2) is
larger than or comparable with the first. Thus, we can
state roughly that the natural oscillations of an electron

plasma consist of Van Kampen waves—modulated
beams—and Langmuir waves.

Van Kampen has shown that the system of functions
(3.2) is complete, i.e., any initial perturbation g(v)
can be expanded in terms of these functions and con-
sequently, the waves excited in the plasma can be re -
garded as a superposition of natural oscillations. The
corresponding solution coincides exactly with the
Landau solution (2.11).

4. DAMPING OF FINITE-AMPLITUDE WAVES

Landau solved completely the problem of small
oscillations of a plasma and revealed a new physical
effect—damping of waves even in the absence of colli-
sions. However, the physical meaning of the Landau
damping is not yet physically clear. In particular, it
has not been completely explained how a fully reversi-
ble kinetic equation leads to irreversibility, under
which physical conditions can the undamped waves be
realized, what happens if the wave amplitude is not
infinitesimally small, etc. All these questions were
subsequently clarified in studies of the damping of
waves of finite amplitude, made by Bohm and Gross'-25'1,
Vedenov, Velikhov, and Sagdeev[ , and later by
Al'tshul and Karpman[6] and O'Neilt7j. We present here
only the qualitative results of their analysis.

Following the authors of t5"7], we assume that a
wave of small but finite amplitudes <p0 has been ex-
cited in the plasma. We assume that the wavelength is
sufficiently large, so that the phase velocity v p n
= wo/k 3> V2T/m. Then the fraction of the resonant
electrons will be very small, so that during the course
of a long time interval the amplitude of the wave can
be regarded as constant, i.e., (p = co0cos(co0t - kx).
This means that we can first consider approximately
the behavior of the resonant particles in a wave of
constant amplitude, and take into account the effect of
their reaction on the wave.

Since by assumption the amplitude of the wave is
small, the interaction with the field of the wave is
small for all particles, except the resonant ones, i.e.,
we can use the linear approximation. Let us consider
now the resonant particles. To this end, it is conven-
ient to change over to a coordinate system moving to-
gether with the wave. In this system of coordinates,
the wave is a stationary perturbation of the electric
field: (p - <p0cos kx. The electrons in such a field can
be broken up into two classes: captured electrons
oscillating near points with maximum potential cp0, and
transit electrons, whose energy is sufficiently large to
overcome the potential barrier.

It is convenient to consider the particle motion on
the phase plane (x, v). Fig. la shows the dependence
of <p on x, and Fig. lb shows the phase trajectories of
the electrons as they move in the wave. The electrons
with low velocities are captured by the waves. The
electron captured, say, near x = 0 is acted upon by a
force

— eE = e ~ = — etfok sin kx sa — e(f0k
2x,

so that it will execute oscillations with frequency

ii = /c 1/ —— .
(4.1)
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FIG. 1. Phase trajectories of elec-
trons in a wave.

With increasing electron-oscillation amplitude, the
frequency decreases and it vanishes on the separatrix
between the captured particles and the transit parti-
cles, shown dashed in Fig. lb, since the corresponding
electrons can be located for an infinitely long time on
the "vertex" A of the potential energy -ecp. The
average velocity of the transit particles near the
separatrix is also low and increases with increasing
distance from the separatrix.

Since the total electron energy is

m(v — v
eif = const,2

and at the point A the velocity is v - Vph = 0, the
half-width of the separatrix at x = 0 obviously equals
Av = Jecpo/m, i.e., it decreases with the wave ampli-
tude much more slowly than linearly. This indicates
that even if the wave amplitude is very small the num-
ber of captured particles can be relatively large.

Let us trace now the time evolution of the distribu-
tion function of the resonant particles. Since the width
of the interaction region Av is large, the small linear
perturbation f can be neglected in this region, i.e., it
can be assumed that the initial distribution function of
the resonant particles coincides with the unperturbed
function. We shall assume that it decreases with in-
creasing v as shown by the solid line in Fig. 2a.

We now take into account the fact that the Vlasov
equation

dF dF a dw OF i\ {A C\\1- V j 1 — U l*t.£)
dt dx m ox fJv

can be regarded as the continuity equation for flow on
the phase plane of a certain substance with density F.
Since

dv d / e dq> \ ^.
dx du \ m dx ) '

this flow is incompressible, i.e., F is conserved along
the streamlines. Knowing these lines and the initial
functions, it is easy to visualize the variation of F.
Let us consider first the captured particles. We shall
shade the region with smaller values of v, where the
function F is larger (Fig. 3a). Since the capture parti-
cles execute oscillations with frequency ~fi, the in-
ternal part of the phase region of the captured particles
will rotate, so that after a half cycle the picture a s -
sumes the form of Fig. 3b. The particles lying on the
separatrix do not rotate, therefore these lines remain
in place, and for the majority of the particles a rear-
rangement takes place—the density of the fast electrons
becomes larger than the density of the slow ones, i.e.,
the derivative 3F/9v reverses sign for the captured
particles. Then this change of sign will occur through

0 2Av v O ZAv zr
a) b)

FIG. 2. Formation of a "plateau" on the distribution function.

each half cycle, and with increasing t the picture will
assume the form of shallower and shallower oscilla-
tions (see Fig. 3c and the dashed line in Fig. 2a). A
similar "mixing" takes place also for the transit
"resonant" particles that are close to the separatrix.
Owing to the "mixing" effect, a state F that oscillates
so rapidly on the phase plane, that Coulomb collisions
can come into play, should be reached quite rapidly
(compared with the average collision frequency). We
recall that Coulomb collisions lead to diffusion in
velocity space, and therefore the effective relaxation
time of the small oscillations in phase space is much
smaller than the average collision time for a smooth
distribution function. Owing to the joint action of the
"mixing" and the Coulomb collisions, the distribution
function in the region of resonant particles should be-
come "smoothed out" near a certain average value, i.e.,
a "plateau" should appear on it (Fig. 2b). During the
course of the sufficiently long time interval, the damp-
ing of the wave due to collision can then still be r e -
garded as small, so that the wave will stay purely
periodic for a long time. This is the wave correspond-
ing to the Vlasov stationary solution. In such a wave,
the singularity at the point w - kv = 0 is eliminated
as a result of formation of a " s tep" on the distribution
function with 3fo/9v = 0 at the resonant point, leading
automatically to integration of the singularity in the
sense of the principal value.

Thus, the stationary wave can be realized physically
as the result of evolution of a wave with finite ampli-
tude, Of course, if we neglect the small amplitude
oscillations, we can regard the wave as being prac-
tically stationary long before the "roughnesses" of the
distribution function become smoothed out by the colli-
sions. For the wave to be stationary it is sufficient
that the distribution function be constant, at the as -
sumed degree of accuracy, along the stream lines in
phase space.

We can mentally visualize also the possibility of
formation of a wave which is undamped from the very
beginning: to this end, it is sufficient to have simul-
taneously with the potential perturbation produced by
the nonresonant particles also such a perturbation of
the distribution function of the resonant particles, that
at the succeeding instants of time this function remains
constant (in the coordinate system moving with the
wave). For example, if the distribution function of the
particles locked inside the separatrix in Fig. 3 is con-
stant, motion of the locked particles will no longer lead
to oscillations of the wave amplitude (and analogously
for the transit particles near the separatrix). We see
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V

FIG. 3. Motion of resonant particles in a wave.

therefore that the stationary Langmuir waves corre-
spond to such an addition of resonant particles, that
something like a plateau is produced immediately. If
the number of the additional resonant particles is in-
creased, then we obtain, as it were, a wave with a
modulated beam, corresponding to a transition to the
Van Kampen wave. The Van Kampen waves proper
correspond to stationary modulated beams penetrating
through the plasma.

Let us turn now to the initial stage of the damping
of a wave of finite amplitude, corresponding precisely
to the Landau damping. If the wave amplitude tends to
zero, then the first half-cycle of the damping (Fig. 4)
stretches out to infinity, so that in the linear approxi-
mation there are no oscillations at all and the ampli-
tude decreases monotonically. Here, of course, we
can no longer regard the amplitude as constant, as we
have done in consideration of the motion of captured
particles in a wave of finite amplitude. Incidentally,
even the captured particles themselves do not have
time to execute even a single oscillation—they only be-
gin their motion in the wave, as shown in Fig. 3a
dashed, and their contribution to the charge density
turns out to be already so appreciable, that the ampli-
tude of the wave decreases noticeably. It can be stated
that the resonant particles have too large a weight of
a small-amplitude wave.

It is easy to estimate the amplitude at which the
wave can be regarded as linear. To this end it is
sufficient to compare the wave energy density

with the density of that energy which is transferred to
the captured particles when the plateau is produced.
The width of the plateau is of the order of Av
~ Ve<po/m, and the change of the electron energy due
to an increase of its velocity by Av near the phase
velocity o>/k is ~mu>(Av)/k. Since the distribution
function changes upon formation of the plateau by an
amount

10 do \e=a/h

the change of the energy density of the captured parti-
cles is of the order of

S ' ! i k (4.3)

n/a t
FIG. 4. Damping of waves of finite amplitude.

Comparing this value with the energy density in the
wave, we find the condition for the linearity of the
Langmuir wave in a plasma with a Maxwellian electron
velocity distribution:

We see therefore that at very small ka a wave of even
very small amplitude cannot be regarded as linear.
This is connected with the fact that for such waves the
number of resonant electrons is exponentially small
and accordingly their damping decreases very rapidly.
Conversely, when ka ^ 1 the wave can be regarded as
linear even at moderate values of ecpa/T.

An analysis of the damping of a wave of finite am-
plitude clarifies also the question of the reversibility
in time. The question is as follows. On the one hand,
in the absence of collisions the kinetic equation with a
self-consistent field is fully reversible in time, namely,
it remains its form when t is replaced by - t and when
the particle velocities are reversed. Therefore all the
processes described by this equation should be rever-
sible. Yet the presence of exponential wave damping
in the linear approximation would apparently indicate a
patent irreversibility, and after the lapse of a suffic-
iently long time interval, the system of charged parti-
cles can "forget" completely that a wave propagated in
it. To clarify this question, let us turn again to Fig. 3.

If there are no collisions, then the picture of the
evolution of the distribution function of the resonant
particles is fully reversible. When the velocities of the
captured particles are reversed, the "coil" on Fig. 3c
should start to unwind, after which it goes through the
state t = 0 and begins to wind again. Accordingly,
oscillations first appear on the amplitude <p0, then <p0
reaches a maximum value corresponding to t = 0, and
the entire picture of damping with oscillations is r e -
peated.

A similar picture should take place also in the case
of a small-amplitude wave, i.e., in the case of a large
number of resonant particles. Of course, in this case
there is no capture of particles: the wave is damped
long before even one oscillation of the locked particles
takes place. There takes place, so to speak, a spread-
ing out of the individual groups of the resonant particles,
which is accompanied by drawing of energy from the
wave, so that ultimately the entire oscillation energy
is transferred to the resonant particles. But this
process is also reversible. Even after the wave is
damped to an extremely low amplitude, the medium can
retain the "memory" of the initial perturbation for a
long time (until collisions begin to assume a role), and
if the particle velocities were reversed the entire
process would go in the opposite direction. In practice,
of course, it is impossible to reverse the velocities of
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FIG. 5. Dependence of the
damping decrement on the square
of the ratio of the phase velocity
of the average thermal velocity.
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all the particles, but the "memory" of the oscillations
can appear in oscillations of the echo type.

5. EXPERIMENTS ON LANDAU DAMPING

Although recently some indications appeared that
Landau damping is present in wave propagations in the
ionosphere, and the experiments of Wong, d'Angelo, and
Motley[ might seem to offer quite convincing evidence
of the collisionless mechanism of damping of ion-
acoustic oscillations, the first most detailed and direct
investigation of the Landau damping in longitudinal
oscillations should still be regarded to be the experi-
ment of Malmberg, Wharton, and Drummond1^. In this
experiment they measured the spatial damping of a
longitudinal electron wave of the form exp( -iwt
+ ik rx + kix), excited with the aid of high frequency
oscillations applied to a Langmuir probe. A plasma
of density 10s—109 cm"3 and temperature from 5 to
20 eV was produced with the aid of a plasmatron. A
second Langmuir probe was used to record to oscilla-
tions. Figure 5 shows the results of measurements of
the damping (ratio of the imaginary part of the wave
number lq to the real part k r ) as a function of the
ratio of the phase velocity vph = w/k to the average
thermal velocity Ve = V 2T/ m. Since k[ is proportional
to the damping decrement, the quantity k j /k r should
decrease exponentially with (a>/kve)

2.

As seen from Fig. 5, such a dependence does indeed
take place, and the experimental points fit well the
theoretical curve.

In order to verify that this damping is actually con-
nected with the resonant electrons, the authors of[9-1

changed the potential of the end electrode and by the
same token "cut off the tail" of the Maxwellian distri-
bution, i.e., they eliminated the fastest electrons. As
soon as the cut off boundary reached a certain definite
value v*, a sharp decrease of the damping was ob-
served. Figure 6 shows the dependence of the electron
velocity v* at which a jump of damping was observed,
on the phase velocity of the wave Vph = w/k. This plot
demonstrates convincingly that the damping is indeed
connected with the resonant electrons.

In subsequent experiments by Malmberg and
Wharton[10J, Van-Hoven[u:l, and Derfler and
Simonen'12'13-1, a more detailed investigation was made
of the dispersion relation for plasma waves. Figure 7
shows the results of Derfler and Simonen for the de-
pendence of the oscillation frequency a> and of the

FIG. 6. Dependence of the
velocity of the resonant electrons
on the phase velocity of the wave.

s s
Vf 70'f cm/sec

FIG. 7. Dispersion curves for
Langmuir waves. The experimental
points pertain to different values
of the density and Langmuir fre-
quency f0 = COQ/2: O - f0 = 75
MHz, D - 60 MHz, A - 51 MHz,
X - 35 MHz. The points are
plotted while varying the density
at a specified generator frequency
f=80MHz.

damping (imaginary part of the wave number kj) on
k r , which are compared with the exact dispersion r e -
lation e = 0 (see (2.14)) at arbitrary values of ka. (The
plot in Fig. 7 should be regarded more like a depend-
ence of k r and k a on a>.) We see that the experimental
points fit the theoretical curves quite well. Thus, not
only the magnitude of the damping, but also the com-
plete dispersion relation e(k, w) = 0 can be regarded
at present as reliably established experimental facts.

Quite recently, Malmberg and Wharton[14j investi-
gated the damping of waves of finite amplitude. Their
results are shown in Figs. 8 and 9. Figure 8 shows the
experimentally measured dependence of the oscillation
amplitude on the distance between the emitting probe
and the receiving probe. The amplitude is given in
relative units. Curve 1 pertains to a small-amplitude
wave. If we disregard the region of distances smaller
than 5 cm, where a plane wave has not yet been estab-
lished, we see that the wave is monotonically damped
in exponential fashion. With increasing wave amplitude,
oscillations appear on the dependence of the amplitude

FIG. 8. Damping of
waves of large amplitude. 1 —
0.9 V, 2 - 2.85 V, 3 - 9 V of
the alternating field on the
wave-emitting and probe unit.

FIG. 9. Dependence of the wave number
k of the wave-amplitude oscillations on the
potential V on the probe-emitter unit.
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on the distance, with a period that decreases with in-
creasing amplitude. Figure 9 shows the dependence of
the wave number k of the oscillations of the amplitude
as a function of the potential V applied to the emitting
probe.

We see that this dependence agrees with the theo-
retical one (see (4.1)), according to which the frequency
of the oscillations U, and consequently also k, should
increase like the square root of the amplitude.

The Landau damping, of course, not only pertains
to the Langmuir waves, but also plays an essential
role in many other collective processes in the plasma.
In particular, Landau damping by ions determines the
possibility or impossibility of propagation of sound,
more accurately ion sound, in a plasma. If the ion
temperature Tj is small compared with the electron
temperature T e , then there can propagate in the
plasma sound waves with phase velocity Vp^ = c s
= VTe/M, where M is the ion mass. With increasing
temperature Tj, the number of resonant ions increases,
leading to a damping of the waves, and when Tj ~ Te,
when the mean thermal velocity of the ions VJ
= V2Ti/M becomes of the order of cs, the propagation
of ion sound waves becomes completely impossible.
This conclusion was confirmed experimentally[a].

It pertains to a certain degree also to nonlinear
phenomena. In [15i, for example, a study was made of
the question of propagation of nonlinear waves in a non-
isothermal plasma. The experiment was carried out in
an alkali plasma, which was produced by ionizing
cesium vapor on a heated plate. By varying the pres-
sure of the neutral gas in the chamber, the authors
were able to vary the ion temperature Ti in a suf-
ficiently wide range, so that it was possible to go over
continuously from a strongly non-isothermal plasma
( T i < S T e ) to an isothermal one (Ti = T e ) .

By placing a charged negative grid absorbing an
appreciable fraction of the ions incident on it in front
of the heated plate on which the plasma was produced,
the authors were able to produce an initial density drop
of sufficiently large magnitude. When the grid potential
was removed, a wave of increased density began to
propagate. As seen from Fig. 10, in an isothermal
plasma this wave smears out rapidly as a result of the
"spreading" of the hot ions, connected with the Landau
damping. To the contrary, in a nonisothermal plasma
(Fig. 11), the front becomes steeper and a discontinuity
in the density takes place, as it should in the propaga-
tion of a nonlinear acoustic (simple) wave. This experi-
ment shows that the Landau damping by ions at Ti
= Te is effective for waves of not only small but also
finite amplitudes.

Thus, the Landau-damping effect can be regarded by
now as sufficiently well confirmed experimentally.
There is still the question whether it is possible to
check experimentally that the Landau damping does not
lead directly to irreversibility, and that a collisionless

FIG. 10. Splitting of the in-
homogeneities of the density in an
isothermal plasma. The numbers
next to the curves denote the time
in microseconds.

FIG. 11. Formation of a
shock wave in a non-isothermal
plasma. The numbers next to the
curves indicate the distance from
the grid producing the initial
density drop.

FIG. 12. Spin echo. Echo

plasma retains the "memory" of the damped oscilla-
tions. Such a verification can be made by experiments
with echoes.

6. SPIN ECHO

Let us recall first what an echo is. The echo effect
was observed by Hahn in nuclear-magnetic resonance
experiments. It has the following outward appearance.
If two short pulses, separated by an interval T (Fig. 12)
are applied at a frequency close to resonance, then the
second pulse is followed, after a time T by a pulse
corresponding to spontaneous emission of nuclear
spins at the resonant frequency. This effect, which is
called spin echo, was explained by Hahn himself[16].

Let us consider a system of nuclear spins in a
strong magnetic field and let us assume that at the
initial instant all the magnetic moments are directed
along the field (z axis in Fig. 13). As is well known,
application of resonant high frequency oscillations
causes the spins to begin to deviate from the z axis.
Let us assume for simplicity that the first pulse is a
90° pulse, i.e., its amplitude is chosen such that the
spins are deflected 90° and go over to the x axis. After
the termination of the pulse, precession of the magnetic
moment should give rise to radiation at the resonant
frequency. However, by virtue of the small inhomo-
geneity of the external magnetic field, this radiation
stops rapidly. Since the precession frequency w
changes little from point to point, soon the phases of
the different spins "diverge" and on the average they
can be regarded as uniformly distributed over the
sample (see Fig. 13a).

Let us assume now that at the instant t = T there is
applied a second identical high frequency pulse, which
can be called a 180° pulse. This pulse turns the entire
"fan" of spins through 90° (see Fig. 13b), and now the
initial angle <p = 0 corresponds to an angle tf = WT.

SB

a) b) c)
FIG. 13. Rotation and precession of spins in the presence of echo.
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Three-pulse echo

FIG. 14. Cyclotron echo.

During the subsequent instants of time the spins will
process with respect to cp, each with its own frequency
u>, and very soon they become distributed over the
sphere of Fig. 13b. However, at a time interval T fol-
lowing the second pulse, the spin will again produce a
nonzero macroscopic magnetic moment. In fact, at that
instant of time $ = U>T, and the phase for each spin is
also equal to cp = U>T, i.e., <p -1? for all spins, and
consequently the ends of the spins will be uniformly
distributed over the <p = J curve, which has the form
of a figure-eight (see Fig. 13c), where the angle ti>
should be regarded as varying from zero to 2TT). The
radiation at that instant of time is the echo. The echo
effect was later observed in many physical objects
(see the review'-17-').

It is easy to see that the effect of vanishing of the
macroscopic moment due to the scatter of the preces-
sion frequencies, connected with the inhomogeneity of
the magnetic field, has much in common with Landau
damping. In the former case, the magnetic moment
vanishes as a result of the scatter of the phases in
space, so that the resultant distribution of the magnetic
moment over the volume is rapidly oscillating, while
in the latter case the average electric field vanishes,
owing to the velocity "smearing" of the resonant-
particle beams. Naturally, one can expect an echo-
type effect in plasma oscillations'^8 . But let us first
become acquainted with cyclotron echo in a plasma.

7. CYCLOTRON ECHO IN A PLASMA

The cyclotron echo in a plasma was observed by
Hill and Kaplan119-1. The experiment was performed in
the following mannerfl9~2aJ. Two high frequency-oscil-
lation pulses separated by an interval r were passed
transversely to a column of a decaying plasma pro-
duced by a high frequency discharge at a time when
there was practically no current in the plasma and the
plasma was sufficiently quiescent. The plasma was
located in a magnetic field of approximately 3 kG, and
the generator frequency was close to the cyclotron fre-
quency of the electrons. The amplitude of the high fre-
quency pulses was sufficiently high, so that the elec-
trons could acquire at cyclotron resonance an energy
much higher than thermal. After the passage of the
two pulses from the external generator, pulses from
the plasma were observed at the cyclotron frequency,
with interval r between them (Fig. 14).

In addition of such a two-pulse echo, the authors
observed a three-pulse echo when a third pulse was
applied with a large time delay T, greatly exceeding
the time of collision of the electrons with the neutral
gas atoms, but shorter than the electron-energy relax-
ation time. As shown schematically in Fig. 14, a
series of pulses from a plasma was again observed
following the third pulse.

The cyclotron-echo mechanism and its main fea-
tures was explained by Crawford and Houp[22] on the
basis of an idea by Gould^-1. Cyclotron echo is fun-
damentally close to spin echo. Whereas in nuclear
magnetic resonance the effect of a high frequency
field leads to a rotation of the spins away from the z
axis, in cyclotron resonance the energy is acquired by
the electrons. If the duration of the pulse is not too
large, then it contains a sufficiently large number of
harmonics, so that even in the presence of a certain
inhomogeneity with a magnetic field it is possible to
assume that all the electrons (initially cold) acquire
the same energy.-Assume that in velocity space
(vx, Vy), i.e., in the plane perpendicular to the mag-
netic field, the position of the electrons immediately
after the first pulse corresponds to the point (vp, 0)
(Fig. 15a). In the succeeding instants of time the elec-
trons will rotate with cyclotron frequency, and in the
presence of a small magnetic-field inhomogeneity they
can rapidly reach a homogeneous distribution with r e -
spect to the phases on the average over the sample.

Let us consider now a certain group of electrons A
having the same phase for the second pulse (Fig. 15b).
More accurately, this group includes all the electrons
with phases £ + 27m, where n is an integer. During
the time of the second pulse, the electrons acquire or
lose energy, depending on their phase, and the action
of the pulse can be taken into account by simply shift-
ing the entire distribution function by the same amount
Vp as in the first pulse. The group A of the electrons
singled out by us will have in this case a velocity (in
absolute magnitude) 2vpcos (£/2), as can be seen from
Fig. 15c. Since this group includes electrons from
different points of space, corresponding to different
cyclotron frequency, the particles of this group will
start to diverge in velocity space in the course of
time. However, inasmuch as the electrons rotate with
the same angular velocity as before, they will be again
grouped at time intervals T. For example, after a
time t = T following the second pulse, i.e., at the first
echo signal, the particles of this group will gather at
point A of Fig. 15d, with phase 34/2, and the entire
electron velocity distribution will assume the form of
the curve shown in Fig. 15d.

This means that the electrons executing cyclotron
oscillations contain potentially the echo effect. Ac-
tually, however, the distribution of Fig. 15d will pro-

FIG. 15. Electron velocity distribution in the presence of a two-
pulse echo, a) Immediately after pulse 1. b) Before pulse 2. c) Immedi-
ately after pulse 2. d) At the instant of the first echo.
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FIG. 16. Electron velocity distribution in the presence of a three-
pulse echo, a) Ahead of pulse 3. b) Immediately after pulse 3; c) At the
instant of the first echo; d) at the instant of the second echo.

duce no echo whatever, for it is easy to verify that at
such a distribution the total current, which is expressed
in terms of the mean values ( v x ) and ( v v ) vanishes.
This is not surprising, after all, the system considered
by us is linear—we have simply added up effects from
two pulses. The echo, on the other hand, is an essen-
tially nonlinear effect: in this case the total signal is
not a superposition of responses to each pulse, but is
determined by two pulses simultaneously.

In order for cyclotron echo actually to appear, there
should come into play some nonlinear mechanism
violating somehow the picture of Fig. 15d, and leading
to the absence of exact cancellation of all the currents.
Such nonlinear mechanism may be, for example, the
dependence of the mass on the velocity (relativistic
effect), the nonlinearity of the wave, etc. However, the
simplest and natural mechanism is simply a velocity-
dependent collision frequency v(v). The collisions be-
tween the electrons and the atoms of the neutral gas,
or between the electrons themselves causes the frac-
tion of the electrons to be knocked out from the co-
herent motion. If the frequency of the collisions depends
on the velocity, then the number of the electrons
knocked out from the curve of Fig. 15d will differ at
different points, and consequently, a macroscopic
current at the cyclotron frequency will appear, i.e.,
echo is produced. The experimental data are in good
agreement with the mechanism1^1'24]. This mechanism
explains also the three-pulse echo.

As already noted above, for a three-pulse echo, the
electrons have time to lose completely the directional
pulse by the instant of the third pulse but still do not
have time to lose the energy (in elastic collisions with
the atoms of a neutral gas, the energy relaxation time
is larger by a factor M/m than the momentum relaxa-
tion time). This means that the electrons of group A
of Fig. 15 will be distributed before the third pulse
uniformly on a sphere of radius 2v p cos ( | / 2 ) (Fig. 16a).
Immediately after the third pulse, this sphere turns out
to be shifted by an amount Vp (Fig. 16b), and then the
electrons of this group "spread out" in phase. How-
ever, bunching will take place in velocity space at time
intervals T, with a phase shift £ from pulse to pulse
(Figs. 16c and d). But then again, in order for the total
current to be different to zero, there should be an ef-
fective mechanism causing the collision frequency to
depend on the velocity. The effect itself, as can be
readily seen, also reaches a maximum when the colli-

sion frequency becomes of the order of the reciprocal
time between the pulses T"1. These conclusions are
also in satisfactory agreement with the experimental
data.

Cyclotron echo is of great interest in itself, being
a new nonlinear effect in a plasma, and furthermore
it can be used for diagnostic purposes, especially for
the investigation of relaxation processes in a plasma.

8. PLASMA-WAVE ECHO

We now turn to plasma waves. As shown by Malm-
berg and Wharton'14-', an echo effect can appear in
them, too. Let us consider first the simplest case of
modulated Van Kampen beams, propagating in the form
of plane waves along the x axis. Such waves can be
excited in a plasma with the aid of a grid, on which a
periodic signal is applied. Let the frequency of such a
signal be much larger than the plasma frequency CD0.
Then the dielectric constant of the plasma can be r e -
garded as equal to unity, i.e., the polarization of the
medium in the waves can be neglected. Under such
conditions, the perturbation of the distribution function
of the electrons passing through the grid is simply
equal to

fi(x, v, «) =/i (") exp ( — i (8.1)

where fi(v) is the amplitude of the perturbation of the
distribution function near the grid. The form of the
perturbation (8.1) follows from the fact that, far from
the grid, fi(v) should satisfy the equation of free mo-
tion of the particles

The distribution function (8.1) can be regarded as a set
of modulated beams. Near the grid, all these beams
oscillate in phase, but as the distance from the grid
increases, the phases of the beams with different v
begin to differ strongly, and therefore the charge
density

P =-«§/ l ( fo (8.3)

should decrease rapidly with decreasing x (fi becomes
a rapidly-oscillating function of v). This means that
the oscillations of the electric potential should decrease
rapidly with increasing distance from the grid, and this
effect is fully analogous to dephasing of the magnetic
moments before the second pulse when spin-echo is
observed.

Let us assume now that at a distance d from the
first grid there is located a second grid, to which an
alternating potential with frequency w', also larger
than wo, is applied. Van Kampen waves resulting from
the perturbation of f0 also travel from the second grid.
But in addition, the second grid will modulate the func-
tion (8.1), so that a nonlinear response iz will appear
at the combination frequency:

- i < D ( t - £ ) ± « B ' ( t - ^ ) ) • (8.4)x. v, O =
When x = cu'd/(u>' - u>) the exponential corresponding
to the frequency cu" = a; - w' ceases to depend on v.
This means that at the point

* = ̂ d = d + ̂ r f (8.5)
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there should be observed noticeable fluctuations of the
charge density at the frequency w" = w - w'. In other
words, an electric probe placed at this point should
detect an echo at combination frequency.

A similar analysis can be presented also for the
more general case of plasma oscillations[14j. It would
be most interesting, of course, to observe echo in the
case when one of the frequencies, w, w', or u>" is close
to the plasma frequency. Experiments with echo were
carried out most recently in both electronic and ionic
plasma waves'-26'27J; in particular, relation (8.5) for
the position of the echo-signal maximum was verified.

CONCLUSION

Twenty years have elapsed since the time when
L. D. Landau has shown how to solve correctly the
kinetic equation for small plasma oscillations at speci-
fied initial and boundary conditions. The new effect of
collisionless damping of waves, observed by him, be-
came an undisputed accomplishment of plasma physics.
But the deep physical meaning and the value of the
Landau damping for collective processes in a plasma
have become clear only in related investigations, and
mainly in recent years.

An analysis of the damping of nonlinear waves has
shown that the linear stage of absorption of wave en -
ergy by the resonant electrons continues for only a
limited time interval, and if the number of resonant
particles is small, the amplitude of the wave decreases
insignificantly. This investigation has demonstrated
the limitations of the linear approach. A changeover to
the investigation of nonlinear phenomena in the plasma
has made it possible, in addition, to establish a new
approach to plasma physics, which makes it possible
to clarify the question of the reversibility of Landau
damping. This approach is connected with the echo
phenomena. The cyclotron echo, which was observed
not so recently, was the first step towards an investi-
gation of this interesting field of nonlinear phenomena.
It should be assumed that in the nearest time experi-
ments will be performed on the echo effect and on the
associated collective phenomena for a wider class of
plasma oscillations.

Summarizing, we can state that at the present time
Landau damping is a fundamental effect that has been
reliably confirmed experimentally. Landau damping
and the associated set of physical phenomena produce
the ground work for the understanding of many collec-
tive processes in a plasma.
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