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1. INTRODUCTION

THE physical significance of quantum mechanics can-
not be understood without a deep analysis of the meas-
urement problem. This important circumstance already
became clear in the very earliest time of development
of quantum mechanics. The classical papers of

N. Bohr!?, W. Heisenberg'®’, and J. Von Neumann!®]
laid the groundwork for the understanding of the inter-
action between the instrument and the measured object.

These papers, however, far from covered the entire
problem. Later, different points of view were advanced,
and the problem itself became the subject of various and
frequently heated discussions. It suffices to recall the
famous discussion following the publication of the well-
known paper by A. Einstein, N. Rosen, and
B. Podolsky!*!, or the later disputes caused by the
paper of D. Bohm!®!. The commemorative character of
this issue makes it appropriate to recall that this jour-
nal has extensively and thoroughly discussed problems
of quantum mechanics and allowed representatives of
different points of view to advance their opinions.

“Different’’ ... Frequently we prefer to say ‘‘contra-
dictory,’”’ ‘‘exclusive,’”’ etc. Now, however, when much
has already been thought and much written, many of
these ‘‘alternative’’ points of view are more reasonably
regarded only as different aspects of the same scien-
tific problem.

A story is told of a certain rabbi, who had a reputa-
tion for great cleverness. Somehow, two Jews, holding
in their opinion, opposite views, appealed to him to re-
solve who is right.

After hearing them out, the rabbi said: ‘‘You Isaac,
are right, and you Abraham, are also right.”’ When the
unsatisfied Jews complained to the rabbi’s wife and
asked her to use her influence and resolve the dispute,
she told the rabbi: ‘I do not understand how you, being
so clever, could admit that both were right, although
they hold opposite views ?’’ After thinking for awhile,
the rabbi answered: ‘‘You, too, are also right.”’ Thus,
the problem consists apparently not so much of con-
trasting different points of view as in a successive de-
velopment and deepening of the understanding of the
problem.

It is not my purpose to describe in this review the
history of the development of quantum mechanics. I
wish to show that much progress has been made re-
cently in the understanding of the measurement problem
in quantum mechanics, and the purpose of the present
article is to popularize this progress.

2. INFLUENCE OF MICROSYSTEM ON THE MEASUR-
ING INSTRUMENT

The very idea underlying this progress is not new.
Many, many years ago the present author discussed

with Professor A. A. Vlasov the advisability and the
possibility of including in a quantum-mechanical analy-
sis not only the measured object but also the measuring
instrument, in order to be able to describe the entire
measurement process by methods of mathematical
physics as an objective physical process.

At that time, however, we could find no example of
such a description clear enough to serve as a starting
point for a new point of view. Furthermore, a highly
influential concept of that time was that the instrument
must not be included in the system described by quan-
tum-mechanical methods.

It was assumed that this would call for the use of a
new macroscopic instrument, which would again be des-
cribed classically, and which would be necessary for
the study of the situation in the complicated ‘‘micro-
system plus instrument’’ system. Thus, the problem of
the interaction of the microsystem and the instrument
would be merely shifted elsewhere. We shall show be-
low that in this lies the error of this widespread view
of the relation between the instrument and the micro-
system. The other side of the story was that the
natural tendency was to emphasize the fact that the
measurement influences the state of the measured
macroscopic object, and the trivial but most important
circumstance, that the micro-object is bound to influ-
ence the state of the measuring instrument, was left
obscure. Otherwise, obviously, the instrument cer-
tainly does not perform its function. This influence of
the macroscopic object on the measuring instrument can
be investigated only if we combine the macroscopic ob-
jectand the measuring apparatus into a single system and
decide to consider it by methods of quantum mechanics.
Before we proceed to discuss methods of such a unifica-
tion, we recall the usual description of the measurement
process in quantum mechanics.

From the purely formal point of view, measurement
is described in quantum mechanics as a process of
“‘reduction’’ of a wave function. Namely, if prior to the
measurement the state of the microsystem was des-
cribed by a wave function ¥, which in the general case
is a superposition of states &1, having definite dynamic
variables:

‘P:ZL]CLCDL (1)

(here Cy,~—amplitudes of the partial states), then the
wave function ¥ ‘‘contracts’’ after the measurement of
the dynamic variables L to one of the terms of the
superposition (1), for example to &y :

Y — @ (2)

This process is not described by any equation, and
simply represents the results of the measurement:

from a state of ¥ with an indefinite (in the general case)
value of the dynamic variable L. (so that the mean square
value in this state is ALZ = 0) there arises after the
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measurement a state &y, with a definite value of this
variable (in this state ALZ = 0). In the earlier stages of
the development of quantum mechanics, the ‘‘reduction
of the wave packet’’ was considered as a natural conse-
quence of the interference of the measuring instrument
with the state of the object.

However, in the already mentioned discussion be-
tween Einstein et al., on the one hand, and N. Bohr on
the other, it became clear that the state of the micro-
scopic object can change also in the case if the instru-
ment does not interfere explicitly with its state. An
explanation of the resultant paradox was presented from
different points of view by N. Bohr!*! and by L. L
Mandel’shtam®®? (see also!™)).

What matters to us is that this discussion has paved
the way to the interpretation of the wave function as the
‘‘log book’’ of the observer—a mathematical symbol
containing the complete information on the possible re-
sults of any particular experiment and on the relative
probability of these results.

From this point of view, the reduction of the wave
packet is simply the mathematical notation for the
measurement information obtained by the observer.

In this formulation of quantum-mechanical measure-
ments, Einstein’s paradox automatically disappears.

However, another problem is raised, noticed long ago
by E. Schrodinger, and furthermore in a form that can
jar the nerves of many of the readers. Namely, Schr&-
dinger presents an example of an atomic system having
two quantum states ¢; and ¥.. In the general case its
state is described by the wave packet

Y=y Py -+ ca1ps. (3)

The first of these states causes operation of a Geiger
counter; the second leaves the counter alone. Operation
of the Geiger counter causes, by means of an auxiliary
force, to break an ampoule with prussic acid in a cham-
ber containing a cat®,

Thus, an observer looking in his ‘‘log book’ in order
to predict the result of a future experiment, finds among
the possible results the ‘‘fact” that interference can be
produced between the states of a live and dead cat! In-
deed, it follows from (3) that

4

[ar |2 =] ey |2+ ] eop [+ 2Re i eapyipa;

the last term indicating this strange possibility.

After observing the actual event (¢, or %,), criminal
medicine demonstrates either the death of the unfortun-
ate cat or its good health, and the wave function ‘‘con-
tracts’’ in the court record to ¥, or to ¥,!

It is easy to see that this terrible example can be
made even more exciting, if we replace the cat by the
observer himself together with the medical officers.
Then in case ¢, there will no longer be anyone to ‘‘con-
tract’’ the wave function.

Let us turn, however, to more realistic examples.
Let us imagine that we are dealing with the decay of a
radioactive atom. Let the state ¥, be the state of the
atom before decay, and the state ¢, of the atom after
decay. Theory predicts that ¢, = exp(~xt), where t is
the time and T = 1/A is the half-life; [c.|® =1 — [c4], sO
that the coefficient ¢, increases with time, and the co-
efficient c¢; decreases. Let us imagine that we are deal-
ing with the distant past, when no possible observer
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could transmit to us information on the actual fate of
the radioactive atom. Let this be the time of the
ichthyosauri! If the period t separating us from that
time greatly exceeds the half-life T of the atom, then
we can state with a high degree of probability that the
atom has decayed. However, the instant when the atom
has actually decayed is not at all immaterial to the en-
vironment of the atom.

It is appropriate to recall a story by science fiction
writer R. Bradbury, who describes how travelers in
prehistoric time carelessly crushed a butterfly, and this
small event influenced the outcome of the presidential
elections in the USA in the year 2000!

The decay of the atom could cause some chain of
events, the course of which could greatly depend on the
instant of time when this decay took place. Yet an ob-
server who is our contemporary still did not have the
opportunity to ‘‘contract’’ the wave function into a func-
tion ¥ containing the superposition of two possibilities:
the atom has decayed—y¢,, or the other possibility ¢,—it
is still in the initial state.

If the contemporary observer still takes the trouble
to measure the state of the atom, he is most likely to
find that the atom has decayed and is in the state y..
However, if t > T, our contemporary is seriously late
in his conclusions, since any other observer could arrive
at the same conclusion much sooner. Thus, we wish to
express in the language of quantum mechanic the state-
ment that ‘‘the atom has decayed’ independently of the
observer. Actually, this event leads to different conse-
quences, depending on the instant of decay of the atom,
and cannot therefore be connected with changes occurr-
ing in the information received by the observer.

The observer does not take part in the events re-
ferred to, and therefore should be excluded from con-
sideration.

If we imagine a succession of observers, one of whom
is our contemporary and the rest precede one another,
then one of this succession of observers will be dis-
tinguished by the fact that he was the first to note the
decay of the atom. This instant should have an objective
value and should find its reflection in the formalism of
quantum mechanics without involving the observer. The
presently described paradoxes, which are inherent in
the understanding of the wave function as a collection of
information, as a ‘‘log book’’ of an observer, become
clear if one subjects to analysis not only the action of
the measuring instrument on the macroscopic system,
but also the action of the microsystem on the instrument.

The idea that this aspect of the problem is significant
was the basis of a monograph by the author® and was
developed independently, in somewhat different form in
a paper by the Italian physicists A. Daneri, A. Loinger,
and G. Prosperil?®7*,

3.

We start with a simple example, which illustrates
the possibility of mathematically describing the evolu-
tion of a combined system consisting of a macrosystem
(M) and a measuring instrument (I).

* See also [!!].



322 D. 1.

We note two important circumstances:

a) Each measuring instrument consists of two func-
tionally different parts: an analyzer (A) and a detector
(D): 1= A + D. The first part of the instrument ensures
separation of the partial states &1, contained in the
super position (1), into individual channels (L); in other
words, it effects in practice the spectral decomposition
of the complicated initial state ¥ of the microsystem
into partial states &j,.

The second part, the detector, produces a macro-
scopic signal, which indicates in which channel the
microparticle is actually situated. The first function of
the measuring instrument as an analyzer of the quantum
ensemble has been discussed in sufficient detail in the
literature (see, for example,'™). To the contrary, the
second function, the detection D, was either left in the
shadow, or was considered quite superficially. Yet it is
precisely the investigation of the operation of the de-
tector which eliminates the paradoxes that are inherent
in the information aspect of the measurement process.

b) The detector must be a macroscopically unstable
system. Indeed, otherwise the microsystem will not
have enough momentum-energy resources to produce a
macroscopic phenomenon—the operation of the detector.

This circumstance, which is obvious to the experi-
mental physicists, has not been subjected to a sufficient
theoretical analysis in the discussion of the measure-
ment problem.

We now turn to simplest examples.

A. Determination of the Momentum of a Microparticle
from its Interaction with a Macroscopic Body

We consider now a simple but somewhat formal ex-
ample of the determination of the momentum k of a
microparticle y from its interaction with a macroscopic
body M.*

It is obvious from the very outset that this body
should be in an unstable (or in an almost unstable)
equilibrium, otherwise the microparticle will not be
able to ‘‘budge’’ it from its position.

We propose as such a body a small sphere with mass
M; let the coordinate of its center of gravity be Q, and
let the potential energy U(Q) be of the form shown in the
figure. We consequently propose that the sphere is at
the maximum of the potential energy U. Its relative
stability is due to a small relative minimum of the en-
ergy U(Q). It is sufficient fo impart to this sphere a
slight energy AE > U, — Eo, to make the sphere roil

Potential energy U(Q) of
heavy sphere M. E, - energy of
its initial state. The figure shows
also the wave functions ¥, (Q),
®+(Q), and P, (£). The regions
marked by the symbol Q)
are the regions of quantum
motion of the sphere; the sym-
bol ¥, (Q) denotes the region
- of classical macroscopic motion

of the sphere.

*This example was first published in [!?] (see also [°}).
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down the slope. Thus, the potential energy U(Q) has the
form of a high volcano with a shallow crater (see the
figure). The sphere serves as the detector determining
the direction of the momentum of the microparticle (it
can nudge this sphere to the right or fo the left).

In view of the fact that we assign to the sphere, for
the sake of maximum simplicity, only one degree of
freedom Q, it will be more convenient to describe the
entire problem not by means of a density matrix but by
means of wave functions.

We assume that at the initial instant of time t = O the
micro-particle . is described by the wave function

Yo (8)= Atretk® - 4e—i%, (5)

where £ is the coordinate of the microparticle and k its
momentum. Thus, it is assumed that there is a pure
state, but with uncertain momentum + k. The task of our
instrument is to determine the sign of the momentum
(the direction of motion of the particle).

We denote the wave function of the macroscopic
instrument (the sphere M) at t = 0 by

¥, (Q) = V’ a2, (6)

t

where a = vi/Mw, and w, is the frequency of oscillations
of the sphere inside the crater. Thus, when t = 0 the
wave function of the entire system ‘‘microparticle p
plus sphere M”’ will be

D (Q, & 0)=Do(Q, &) =¥, (Q) %0 (B) 7)

The Hamiltonian describing this system will obvi-
ously be
(0 H= 55 507 +U (@ —

WD, (8)

where W(Q, &) is the energy of interaction between the
sphere and the microparticle. The microparticle y is
regarded as free, and the sphere M has a potential en-
ergy U(Q). For simplicity we assume that W(Q, £) is of
the form

W0, 5)=g8(@—8) ©)

and the wave function &(Q, £, t) for any instant of time t
satisfies the equation

ih G- =38 (0, D ©. (10)
We seek this function in the form
D(Q, & =D (Q, +D*(Q, & )+ D (Q. & ). (11)

Assuming that the coupling constant g is small, we find
the functions @' and & in first approximation of pertur-
bation theory. In this approximation

o6 o S Uhne (8) ¥y (Q) pik'EgiOpTopt dp’ di’

— H@gtag) S Ul (£) W (Q) ei'8e—10t gy g, (12)

Q:mo+mkA(op»~mkv:;—; (13)
here wo = Eo/h~energy of the sphere in the initial state,
wp’ = Ep'/ﬁ, Ep’—energy of sphere in the final state,
p'—momentum of sphere after going over into the exci-
ted state, and hwy = € and Hwy = €, —energies of the
particle before and after the interaction with the sphere.
The function ®(Q, &, t) has a similar form.
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Further, integration of (10) after substitution of the
function (11) with allowance of (12) yields
iQt

ow (z):% : 9’1 Uprwons (14)
where the matrix element Uf)’k’ok is given by
Uwon=g4" { W3 (Q) e *30 (0~ ¥o (@) e dQas.  (15)

The function of the sphere in the excited state zpp,(Q)
can be written in the quasiclassical approximation
in the form

1
W (0) ~ Nye T sp»«z), (186)
where Ny is a normalizing factor and Sp,(Q) is the ac-
tion function, approximately given by 8,/(Q) =p'Q. For
this reason, the integral in (15) is equal to the Fourier
transform ¥o(e) of ¥o(Q) at @ = p’ + k' — k. Therefore

i t gAt
D (Q, & 1) = et £

(17

1he—i91 L, , s
¥, (Q) eiFt dp dk'.

o § W3 Bo (b + k' — ) =

Let now & be the value of the sphere momentum which
corresponds to the conservation of energy during the
interaction. It follows from (15) that this will occur at
z/t = 0 and

E P2
m,;:—hp—:mo-}-mk——mho, EP:W—}—const;

therefore
gor2 ge2
M M
From this we get that & — & = —z/vt and 49" = —dz/vt,
where v = &/M is the velocity of the sphere. Further,
when z = 0 we have

z. (18)

B'E k2
o T T e

P2
i (19)
or

(k' — k) (k' — k) = 2p0, — £ 2. (20)
if the function ¥,(Q) is not too sharp (the amplitude is
not very small, as is the case when the crater is not
very deep!), then its Fourier transform ¥, (p’ + k' — k)
will differ noticeably from zero only when

PR —k=0. (21)

From (20) and (21) it follows that ags M — «
k= —k, (22)
& =2k, (23)

as expected when a light particle collides with a heavy
weakly-bound sphere, namely, an elastic reflection of
the light microparticle took place, with a small energy
transfer (vanishingly small when M — «),

Wenowputp’ +k'—~k= ¢ +k' — k- z/vt = q, so that
vk’ =dg, k' =g— & +k + z/vt. Introducing in the integ-
ral (17) the new integration variables q and z, we get
from (17)

(0, & t):_gh_fi_*‘_ei(mo-kmk)tl_wwo(g) i FQilh—PYers (LU—Z‘E_) . (24)

where
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o

F -

vt

iz —a-b
e T s, (25)

If we write down the well-known discontinuous integral

o0

J@=

—c0

etaz

dz ::{
2z

I (958) oy (B50) -y (21520)

n, a>0,
—mi, a<<0,

(26)

then

vt vt ot (27)
We note that vt > 0 for ', since ® = 2k > 0 in this
case. It follows therefore from (27) that I" = — 27i for
vt > Q- £ and Q— £ > 0; otherwise I' = 0. We recall
that owing to the presence of the factor ¥(¢) in &°, only
small values || < a are important. Therefore the re-
sult denotes that & (Q, ¢, t) differs from zero when
t — « only in the region 0 <« Q< +=, i.e., to the right
of the vertex of the crater, corresponding to a positive
momentum ¢ = 2k acquired from the microparticle.
The function 7 (Q, £, t) is calculated in exactly the
same manner. In this case & « 0 and v « 0, and in place
of the factor I we obtain the factor

) = () = ()

which differs from zero only when vt « Q- ¢ « 0. In
this case the sphere rolls out of the crater to the left.
We now construct the density matrix for our case:

P(Q. 5 QL E) =0, & QW (0" §, )=DF(Q, & ) D (0", &, 1)
+@F (@, & NOHQL E, )~ DF (0,8 D (Q, E, )
FO(Q, & D7, &L )+ D*Q B Do (Q E, 1)
TOQE DO, EL - OO, 8, D (Q, E, )
FOQ G PO E, )+ D (Q, 5 ) DHQL E, )

+ O (Q, & ) D (Q, &, 1)

(27)

(28)

When t — « and {Q}, |Q'| > a, all but the last two
terms of this matrix vanish. Namely, the terms con-
taining ®; vanish when Q, Q — += like exp(—Q*/a® or
(-Q’?/a%), and the interference terms, which contain
products of the type ®™* &, vanish when t — =, owing to
the properties of the function I* (Q — £ /vt). Therefore,
when t — « and |Q|, |Q’] > a we get

9(07 &; 0’1 g, z):(D‘H (0! Ev Z) o* (0’7 Eli l)
+OQE QD@ L )yt o0, [Q QD a (29)

We see that the macroscopic instrument destroys the
interference of the states of the microparticle Atelld

and Ae” ¥ ; further, when Q and Q' — += we have
PR & QL E, 1) = D™ (Q, & ) D (Q, &, 1) (30)
and when Q, Q' — —= we have
p(Q, & Q5 8. ) > @ (Q E B (QL E, o). (30)

These two cases correspond to observation of the sphere
either on the right of the crater (30) or on the left (30).
When Q — +< and Q' — —w or Q —~—« and Q' — +%
(this is a case of interference of the results of the ob-
servations from the right and from the left) we have
p(Q, &; Q', £',t) — 0. This is to be expected from a
“‘good’’ instrument: its ‘‘pointer’’ should occupy one of
the possible definite positions. In our example the
““‘pointer’’ is the heavy macroscopic sphere. It is
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clearly seen how a quantum phenomenon—the scattering
of a quantum by the sphere M— changes by itself, owing
to the weak stability of the sphere located on the top of
the potential mountain, into a macroscopic classical
phenomenon—motion of a heavy sphere to the right or
to the left of the crater. The macroscopic nature of the
phenomenon is ensured by the sufficient height of the
potential mountain, on the top of which the sphere was
initially at rest.

B. Thermodynamically Unstable Detector

Let us consider schematically an example of a
thermodynamically unstable microparticle detector®.
The microparticle is an atom having one valence elec-
tron, so that the entire atom has a magnetic moment
Mpo equal to the magnetic moment of this electron,
where Mp is the Bohr magneton, and ¢ (0, ay, o) is
the Pauli spin matrix. The wave function ¥ of the atom
can be written in the form

Y (Q, 2)="Y(Q) 1 (2) + ¥ {Q) 2 (2), (31)

where ¥,(Q) and ¥»(Q) are functions describing the mo-
tion of the atom as a whole; ¥,(x) and ¥,(x) are functions
describing the internal states of the atom and corre-
sponding to the two possible orientations of the magnetic
moment of the atomic electron.

For concreteness we shall assume that the magnetic
field is parallel to the Oz axis, so that the function ¥,
corresponds to the orientation of the moment along the
Oz axis, and the function ¢, corresponds to the opposite
orientation. We assume that an external magnetic field
H, which we assume to be inhomogeneous, has already
been to separate spatially beams of atoms having differ-
ent magnetic-moment orientations, so that

¥y (Q) Y2 (Q)=0.

Thus, we shall assume that the first task of the meas-
uring instrument is to destroy the interference of the
states ¥.(x) and ¥.(x) corresponding to different spin
orientations of the valence electron, and has already
been performed. In other words, once the beams have
passed through the inhomogeneous magnetic fields, it
remains for us only to ‘‘install’’ under each of the beams
a separate detector, which registers the arrival of a
particle belonging to the corresponding beam, i.e., which
actually registers one of the two states of the particle
(‘‘state’’ in the sense of its spin orientation).

We use as such a detector a system consisting of a
large number of oscillators s =1, 2, ..., N, N — =,
which, to avoid the use of additional symbols, will be
assumed to be two-dimensional, oscillating in the (x, y)
plane. Further, we assume that oscillations of type ‘‘x”’
and oscillations of type ‘‘y’’ do not interact in practice
with each other.

This allows us to assign different temperatures 6 to
the “‘x’’ oscillations and to the ‘‘y’’ oscillations.
Namely, we assume that in the initial state of the detec-
tor (‘‘initial’’ in the sense of the interaction with the
microparticle ;) the ‘“x”’ oscillations are connected
with a Gibbs thermostat having a temperature ¢; there-
fore the ‘‘x’’ oscillations themselves also have att = 0
the same temperature; as to the ‘‘y’’ oscillations, we
assume that at t = 0 they are at absolute zero tempera-

(32)
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ture. Thus, the detector is in a thermodynamically
unstable state: any action, even small, coupling the ‘‘x’’
and ‘‘y’’ oscillations, immediately leads to intense en-
ergy transfer from the ‘“x’’ oscillations to the “‘y”’
oscillations.

The ‘‘heating’’ the ‘‘y’’ oscillations is just that
macroscopic phenomenon which identifies the state of
the given individual microparticle, in our example the
atom.

Let us consider now mathematically the operation of
such a detector. The Hamiltonian of the unperturbed
system of our oscillators is written in the form

N
0%0:321 FHo (x5ys)— Eo, (33)

h? a2 22
Ho (BeYs) = — 51 (712—+0—y§) -+

2
Mo (224 )

(34)

here E, is the zero-point energy, Eo = Fwo/2N, M is the
oscillator mass, and w, is the oscillator natural fre-
quency.

The interaction energy W of these oscillators with
the beam microparticle incident on the detector is as-
sumed to be in the form

N N
W= 3 M0, = —ito ) 0, 'Z )
1

= (35)

s=1 8=
where Mg is the mechanical moment of the oscillator
and 0, is the spin matrix of the optical electron of the
atom. Since we have proposed that the atoms in the
beam are oriented along the z axis, we have written
Mgoy in lieu of M- o, where

M, = —ih (xs ? ?

Era A

[
) ops
Cs . 1 0 .
and in lieu of ¢ simply ¢, = 0 _1). Obviously, for one

detector it is necessary to take gz = +1 and for the
other —1. We note that
Ts=TrsCO8GQs Ys=TsSin Qs

(36)

re=+V i+ (36)

The detector D will be described by a density matrix
p, which we take in the ‘‘x, y’’ representation.

Taking ‘‘x’’ to mean the entire aggregate of x coor-
dinates of the oscillators (xi, Xz, ..., Xg, ..., XN), and by
“‘y’’ analogously all the coordinates (yi, Vs, ..., ¥g; .-
YN), we can write the matrix p in the form p = (x, y;
x,y,t).

The matrix p satisfies the equation

.

20 +1580+ W, p]=0. (37)

It will be more convenient for us to use in place of the
matrix p the matrix

o (38)

we note that [W, %, | = 0, and therefore W = W, and,
substituting in place of p its expression in terms of p,
we obtain

—gf——lr(W. pl=0. (39)



INTERACTION OF A MICROSYSTEM

When substituting the operator W from (35), it is neces-
sary to adhere to the rules for the multiplication of
matrices with continuous rows and columns. To employ
this rule, W must be written in matrix form. For exam-
ple, it is necessary to write in lieu of the operator

-5
P = ih 5o 817 — 1) (40)
The multiplication ¢p denotes
(@)wan—§ Frop (" @) de" = —in Tmp(d' ) (40)

etc. If we use these simple rules, then the substitution
of W in (39) will lead, in expanded form, to the simple
partial differential equation

~ N ~ ~

9 9p %\ _

%+QE(’$;+W)“O' (41)

a=1

This equation can be solved in elementary fashion. Its
general integral is

Ezg(mt—;—(,ci, O -+ QPay o ooy OLF Qg oo
O+ Gy OF @5y ooy OFF sy vy OF G, Ty, Tgy o

Ol Qy, Ty Tgy ey T
s TR,

(42)

S Tey

in which ry, rs, ...
eters.

We now turn to the initial data for this matrix. In
order not to clutter up the formulas with factors, we
introduce as the unit length the quantity ! = v§/2E wo,
and we use in place of the temperature 8 the reciprocal
quantity 8 = Hwe/6. In these units, all our quantities be-
come dimensionless. Whent = 0 we have p'(x, y; X', y',0)
= pg(x, X)po(y, y'). In accordance with the assumptions
made concerning the absolute zero temperature of the
“‘y’’ oscillations, we have

, ry and Tl Thy eeey ri\l enter as param-

fra=

1
)

et )
sz

43
Po (¥, y') = Coe ‘ ’ (43)

where Cp is a certain constant normalization factor and
exp(~y%/2) is a wave function describing the angular
oscillation of the s-th oscillator along the Oy axis.

The situation is much more complicated in the case
of calculation of the matrix py(x, x’), since the ‘‘x”’
oscillations are at a temperature 6. In this case the
state is mixed and the weights of the individual states
Yn(x) with energy E, will be exp(—Ep/8) = exp(—BEp);
therefore the matrix pg(x, x), which describes the en-
semble in equilibrium with the Gibbs thermostat at tem-
perature 6, is written in the form

o (x, ') BT Y e—ﬁE"w,”; (x) Pn (27) == eBFBZg (2, z'), (44)

where

Za(es )= LT @) ¥ (@) (45)
The sum extends here first over all the states n having
the energy Ep, and then over all states with different
energies E,. Even in the case of oscillators, the direct
calculation of such a sum is very difficult. We shall
therefore use a round-about way, based on the fact that
if %(x) is the Hamiltonian of the system under considera-
tion and ¥x(x) is its eigenfunction, then
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# (z) ¥r () = Eqi (2) (46)
and therefore
) n (z) = § (Ep) $5 (2).
Therefore (45) can be written in the form
Zo (@, &) = e~ PFE (@) n () (457)

and, differentiating with respect to 8, we find that the
sum Zg(x, x'} satisfies the differential equation

9z
—d_ﬁi - HZy=0.

In place of #(x) we should substitute here the unper-

turbed Hamiltonian operator for the ‘‘x’’ oscillations,

i.e.,

(47)

N

Holx)=3

s=1

which we take from (33) and (34), taking into account the

new units in which the length x is measured.

The variables in (47) separate, by virtue of the addi-
tivity of the Hamiltonian (48), and we can solve (48) in
explicit form for one variable x; in this case we have

R

0Zg(x, z) 1 3PZg (z, z°)
B 2 0z?

(49)

+ (—%zz~%) Z(z, 2)=0.

We shall seek the solution of this equation in the form

Zg (x, z'y =exp {a + ba® - czz’ + bx'?) (50)
and with boundary condition
1 s
Zale, #) e BT 0w, g, (51)

corresponding to evaporation of the oscillators as
§ — «. Equation (51) has the form of a sum for ideal-
gas particles.

Substitution of (40’) in (49) leads to the equations

e 2
‘;_;—, 2be, jg e (52")

This system is compatible and has a solution
Y &
a:,S(bh%)dﬁj_%ﬂbdﬁ—w%lgﬁ, (53')
(it —1), c-—VIF_T; (53)

we introduce also

ngb,:_';/if-—_,‘%_>~1. (53"

From these data for a, b, and ¢ we see that the initial
condition (51) is satisfied.

On the basis of (50), (53) and (53"), (53"), and (53™)
we can write the matrix pg(x, x’) in explicit form:

b % (x:—Zszxéﬁ-x;z)
pe (I, I’):Coe s=1 ; (54)
here Cy is a certain normalizing factor, namely
Cg = exp[BF(p)], where F(B) is the free energy of the
oscillator. Taking now (43) into account, we obtain the
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total density matrix 5 describing the state of the detec-
toratt = 0:

(85)

N N
, - 1 -
~ b Y -2vmidah- 5 3 ud
p(z, y 2’y ¢, 0)=Colee *=1 =t .

In order to find now the matrix 5" at the instant of
time t, we must take (36) and (36’) into account and re-
place everywhere in (55), in accordance with (42), the
angles ¢g by ¢g + wt and the angles qp’s by go’s +wt. As
a result we get

~

o (17 v; x/7 y»v t) _ COC9€A+A cos 2wt4-B sin 2a)t’

(56)

where

N
A :% D Iri rit— 2yryr cos (@ — (p;)]—'% (), (57)

gumi s=1

b ’ , B .
= ) [r2cos 20, + 1 cos? gy — 2yr,r; cos (95 + §3)]

a=1
N

——-;— > (ricos 2, -+ ri? cos 2qu), (58)
L
B= — % Z [r}sin 2@, + r¢® sin 2¢¢ — 2yrsr, sin (@s + @5)]
=
+ % ) (risin 29, +ri?sin 2 ;). (59)

a=1

This somewhat cumbersome result must be averaged
over the period w/2, if we assume that the frequency
characterizing the coupling of the atom with the detector
is sufficiently large.
Therefore the observed results will be determined
by the matrix
+7/2

ol oy Z):CoceeA—:; S £l 4 cos 2014 B sin 2at] js, (60)
—T/2
The last integral reduces to a Bessel function:
1 +m/2
- S el A cos 20t-+B sin 20t] Jz :[O (R), (61)

—n/2

where R = (A2 + B®)"2. Therefore the time-averaged
matrix p(x,y; X', y', t) is equal to

p (2 yi 7', s 1) =CoCoetly (R); (62)
L(R)=1+5FR+..., |RI<1, (63)
i (63')
IO(R):vm-i-..., [R[»1,
so that at small values of R we have
D ys 7y ¢y 1) =Coloe® (64)
and at large R
- A+R /
= U ) et 64
oz, y; 2, ¥, 1)=CoCo Vg ( )

If we recall that

b= —gp=—o
then the appearance of the factor e® with A from (58)
indicates that the energy has been distributed among the
‘%’ oscillations and ‘‘y’’, and the temperature has
dropped from 0 to 6/2.

At large values of R, the result also offers evidence
of a redistribution of the energy among the *‘y’’ and ‘‘x’’

BLOKHINTSEYV

oscillations, but is not as clear as in the case of small
R.

We see thus that a microparticle penetrating into a
thermodynamically unstable detector has produced there
a complete redistribution of the energy, i.e., a macro-
scopic phenomenon. It is seen from the foregoing ex-
ample that the macroscopic measuring instrument must
be an unstable system (more accurately, almost unsta-
ble).

By virtue of this instability, the initial quantum
phenomenon changes automatically into a macroscopic
phenomenon, with the aid of which the microsystems
announce their appearance in the various channels.

Bearing in mind the tremendous scale of such a
macroscopic phenomenon as compared with the micro-
scopic initial phenomenon inducing it, we can regard
the former as an explosion.

Thus, the microparticle announces its states by
means of an explosion in the microworld.

CONCLUSION

From the point of view developed here, the reduction
of the wave packet (2) reflects an objective process,
consisting in the fact that the micromanifestation gives
rise to a macrophenomenon,

This transformation of a quantum phenomenon into a
macroscopic phenomenon can be traced mathematically.
When the measurement is regarded from this point

of view, the paradoxes connected with the seemingly
direct influence of the change of the observer’s informa-
tion on the course of real events drop out automatically,
and the entire physical picture of the phenomena inves-
tigated by quantum mechanics can now be summarized
as follows:

Quantum mechanics studies microsystems y ina
definite macroscopic setup M, or symbolically—it stud-
ies the sum y + M. The macroscopic setup can be re-
solved into two parts:

M=m+1.

The first part dictates the conditions of motion of the
microsystem y, in other words, it determines the state
of the microsystem. The second part I of the macro-
setup is macroscopically unstable, and the microparticle
is capable of producing macroscopic phenomena in it*.
This part can be used by the observer as a measuring
instrument, provided the presence of I, if possible, does
not influence that part of the macrosetup M which organ-
izes the initial state of the microparticle. The repeti-
tion (or in other words, the reproduction) of identical
aggregates M + p forms a quantum ensemble. This en-
semble can be characterized by a wave function ¥ (or
in the general case by a density matrix ppg).

The repetition of the aggregates 9 (or in other words,
their reproduction) also forms a quantum ensemble,
which can be described by a density matrix pgy. At the
initial instant of time this density matrix can be written
in the form of a product of two density matrices:

0
Pan = P40

* It is clear that 9% does not always contain L.
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where p(}’ is the density matrix describing the macro-

scopically unstable part of the macrosetup I at the ini-
tial instant of time.

The ensemble described by the density matrix pyy
has that distinguishing feature that a macroscopic
phenomenon initiated by the microsystem develops in it
in the course of time.

The development of this phenomenon is indeed the
physical mechanism causing the reduction of the wave
function (2).

It is clear that a different organization of the macro-
scopically unstable part of the macrosetup I will lead to
different types of reduction and will correspond, in the
customary sense, to different measuring devices.
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