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1. INTRODUCTION

1 HE physical significance of quantum mechanics can-
not be understood without a deep analysis of the meas-
urement problem. This important circumstance already
became clear in the very earliest time of development
of quantum mechanics. The classical papers of
N. Bohrc l ], W. Heisenberg[2:, and J. Von Neumann[3]

laid the groundwork for the understanding of the inter-
action between the instrument and the measured object.

These papers, however, far from covered the entire
problem. Later, different points of view were advanced,
and the problem itself became the subject of various and
frequently heated discussions. It suffices to recall the
famous discussion following the publication of the well-
known paper by A. Einstein, N. Rosen, and
B. Podolsky[4], or the later disputes caused by the
paper of D. Bohm[5:i. The commemorative character of
this issue makes it appropriate to recall that this jour-
nal has extensively and thoroughly discussed problems
of quantum mechanics and allowed representatives of
different points of view to advance their opinions.

"Different" ... Frequently we prefer to say "contra-
dictory," "exclusive," etc. Now, however, when much
has already been thought and much written, many of
these "alternative" points of view are more reasonably
regarded only as different aspects of the same scien-
tific problem.

A story is told of a certain rabbi, who had a reputa-
tion for great cleverness. Somehow, two Jews, holding
in their opinion, opposite views, appealed to him to re-
solve who is right.

After hearing them out, the rabbi said: "You Isaac,
are right, and you Abraham, are also right." When the
unsatisfied Jews complained to the rabbi's wife and
asked her to use her influence and resolve the dispute,
she told the rabbi: " I do not understand how you, being
so clever, could admit that both were right, although
they hold opposite views ?" After thinking for awhile,
the rabbi answered: "You, too, are also right." Thus,
the problem consists apparently not so much of con-
trasting different points of view as in a successive de-
velopment and deepening of the understanding of the
problem.

It is not my purpose to describe in this review the
history of the development of quantum mechanics. I
wish to show that much progress has been made re-
cently in the understanding of the measurement problem
in quantum mechanics, and the purpose of the present
article is to popularize this progress.

2. INFLUENCE OF MICROSYSTEM ON THE MEASUR-
ING INSTRUMENT

The very idea underlying this progress is not new.
Many, many years ago the present author discussed

with Professor A. A. Vlasov the advisability and the
possibility of including in a quantum-mechanical analy-
sis not only the measured object but also the measuring
instrument, in order to be able to describe the entire
measurement process by methods of mathematical
physics as an objective physical process.

At that time, however, we could find no example of
such a description clear enough to serve as a starting
point for a new point of view. Furthermore, a highly
influential concept of that time was that the instrument
must not be included in the system described by quan-
tum-mechanical methods.

It was assumed that this would call for the use of a
new macroscopic instrument, which would again be des-
cribed classically, and which would be necessary for
the study of the situation in the complicated "micro-
system plus instrument" system. Thus, the problem of
the interaction of the microsystem and the instrument
would be merely shifted elsewhere. We shall show be-
low that in this lies the error of this widespread view
of the relation between the instrument and the micro-
system. The other side of the story was that the
natural tendency was to emphasize the fact that the
measurement influences the state of the measured
macroscopic object, and the trivial but most important
circumstance, that the micro-object is bound to influ-
ence the state of the measuring instrument, was left
obscure. Otherwise, obviously, the instrument cer-
tainly does not perform its function. This influence of
the macroscopic object on the measuring instrument can
be investigated only if we combine the macroscopic ob-
ject and the measuring apparatus into a single system and
decide to consider it by methods of quantum mechanics.
Before we proceed to discuss methods of such a unifica-
tion, we recall the usual description of the measurement
process in quantum mechanics.

From the purely formal point of view, measurement
is described in quantum mechanics as a process of
"reduction" of a wave function. Namely, if prior to the
measurement the state of the microsystem was des-
cribed by a wave function <&, which in the general case
is a superposition of states *j_, having definite dynamic
variables:

f - 2 c A (i)

(here CL—amplitudes of the partial states), then the
wave function * "contracts" after the measurement of
the dynamic variables L to one of the terms of the
superposition (1), for example to <£>L:

V -»<DL. (2)
This process is not described by any equation, and
simply represents the results of the measurement:
from a state of * with an indefinite (in the general case)
value of the dynamic variable L (so that the mean square
value in this state is AL2 * 0) there arises after the
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measurement a state $]_, ŵ ith a definite value of this
variable (in this state AL2 = 0). In the earlier stages of
the development of quantum mechanics, the "reduction
of the wave packet" was considered as a natural conse-
quence of the interference of the measuring instrument
with the state of the object.

However, in the already mentioned discussion be-
tween Einstein et al., on the one hand, and N. Bohr on
the other, it became clear that the state of the micro-
scopic object can change also in the case if the instru-
ment does not interfere explicitly with its state. An
explanation of the resultant paradox was presented from
different points of view by N. Bohr'1-1 and by L. I.
Mandel'shtam£6:l (see a l s o m ) .

What matters to us is that this discussion has paved
the way to the interpretation of the wave function as the
"log book" of the observer—a mathematical symbol
containing the complete information on the possible re-
sults of any particular experiment and on the relative
probability of these results.

From this point of view, the reduction of the wave
packet is simply the mathematical notation for the
measurement information obtained by the observer.

In this formulation of quantum-mechanical measure-
ments, Einstein's paradox automatically disappears.

However, another problem is raised, noticed long ago
by E. Schrodinger, and furthermore in a form that can
jar the nerves of many of the readers. Namely, SchrS-
dinger presents an example of an atomic system having
two quantum states ipi and >p2. In the general case its
state is described by the wave packet

^---c^^c^. (3)

The first of these states causes operation of a Geiger
counter; the second leaves the counter alone. Operation
of the Geiger counter causes, by means of an auxiliary
force, to break an ampoule with prussic acid in a cham-
ber containing a cat [8 ] .

Thus, an observer looking in his "log book" in order
to predict the result of a future experiment, finds among
the possible results the "fact" that interference can be
produced between the states of a live and dead cat! In-
deed, it follows from (3) that

2 -~ 2Re ejc^ (4)

the last term indicating this strange possibility.
After observing the actual event (ipi or ip2), criminal

medicine demonstrates either the death of the unfortun-
ate cat or its good health, and the wave function "con-
tracts" in the court record to ipi or to 4>2\

It is easy to see that this terrible example can be
made even more exciting, if we replace the cat by the
observer himself together with the medical officers.
Then in case 4>i there will no longer be anyone to "con-
tract" the wave function.

Let us turn, however, to more realistic examples.
Let us imagine that we are dealing with the decay of a
radioactive atom. Let the state tpi be the state of the
atom before decay, and the state I)J2 of the atom after
decay. Theory predicts that Ci = exp(— At), where t is
the time and T = 1/X is the half-life; |c2|2 = 1 - IcJ , so
that the coefficient c2 increases with time, and the co-
efficient Ci decreases. Let us imagine that we are deal-
ing with the distant past, when no possible observer

could transmit to us information on the actual fate of
the radioactive atom. Let this be the time of the
ichthyosauri! If the period t separating us from that
time greatly exceeds the half-life T of the atom, then
we can state with a high degree of probability that the
atom has decayed. However, the instant when the atom
has actually decayed is not at all immaterial to the en-
vironment of the atom.

It is appropriate to recall a story by science fiction
writer R. Bradbury, who describes how travelers in
prehistoric time carelessly crushed a butterfly, and this
small event influenced the outcome of the presidential
elections in the USA in the year 2000!

The decay of the atom could cause some chain of
events, the course of which could greatly depend on the
instant of time when this decay took place. Yet an ob-
server who is our contemporary still did not have the
opportunity to "contract" the wave function into a func-
tion ip containing the superposition of two possibilities:
the atom has decayed—tjj2, or the other possibility ipL— it
is still in the initial state.

If the contemporary observer still takes the trouble
to measure the state of the atom, he is most likely to
find that the atom has decayed and is in the state 4>2-
However, if t ^> T, our contemporary is seriously late
in his conclusions, since any other observer could arrive
at the same conclusion much sooner. Thus, we wish to
express in the language of quantum mechanic the state-
ment that "the atom has decayed" independently of the
observer. Actually, this event leads to different conse-
quences, depending on the instant of decay of the atom,
and cannot therefore be connected with changes occurr-
ing in the information received by the observer.

The observer does not take part in the events re-
ferred to, and therefore should be excluded from con-
sideration.

If we imagine a succession of observers, one of whom
is our contemporary and the rest precede one another,
then one of this succession of observers will be dis-
tinguished by the fact that he was the first to note the
decay of the atom. This instant should have an objective
value and should find its reflection in the formalism of
quantum mechanics without involving the observer. The
presently described paradoxes, which are inherent in
the understanding of the wave function as a collection of
information, as a "log book" of an observer, become
clear if one subjects to analysis not only the action of
the measuring instrument on the macroscopic system,
but also the action of the microsystem on the instrument.

The idea that this aspect of the problem is significant
was the basis of a monograph by the authorc9] and was
developed independently, in somewhat different form in
a paper by the Italian physicists A. Daneri, A. Loinger,
and G. Prosperi£1°3 *.

3.

We start with a simple example, which illustrates
the possibility of mathematically describing the evolu-
tion of a combined system consisting of a macrosystem
(M) and a measuring instrument (I).

See also ["].
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We note two important circumstances:
a) Each measuring instrument consists of two func-

tionally different parts: an analyzer (A) and a detector
(D): I = A + D. The first part of me instrument ensures
separation of the partial states * L , contained in the
super position (1), into individual channels (L); in other
words, it effects in practice the spectral decomposition
of the complicated initial state * of the microsystem
into partial states * L -

The second part, the detector, produces a macro-
scopic signal, which indicates in which channel the
microparticle is actually situated. The first function of
the measuring instrument as an analyzer of the quantum
ensemble has been discussed in sufficient detail in the
literature (see, for example/7-1). To the contrary, the
second function, the detection D, was either left in the
shadow, or was considered quite superficially. Yet it is
precisely the investigation of the operation of the de-
tector which eliminates the paradoxes that are inherent
in the information aspect of the measurement process.

b) The detector must be a macroscopically unstable
system. Indeed, otherwise the microsystem will not
have enough momentum-energy resources to produce a
macroscopic phenomenon—the operation of the detector.

This circumstance, which is obvious to the experi-
mental physicists, has not been subjected to a sufficient
theoretical analysis in the discussion of the measure-
ment problem.

We now turn to simplest examples.

A. Determination of the Momentum of a Microparticle
from its Interaction with a Macroscopic Body

We consider now a simple but somewhat formal ex-
ample of the determination of the momentum k of a
microparticle n from its interaction with a macroscopic
body M.*

It is obvious from the very outset that this body
should be in an unstable (or in an almost unstable)
equilibrium, otherwise the microparticle will not be
able to "budge" it from its position.

We propose as such a body a small sphere with mass
M; let the coordinate of its center of gravity be Q, and
let the potential energy U(Q) be of the form shown in the
figure. We consequently propose that the sphere is at
the maximum of the potential energy U. Its relative
stability is due to a small relative minimum of the en-
ergy U(Q). It is sufficient to impart to this sphere a
slight energy AE > Uo — Eo, to make the sphere roll

Potential energy U(Q) of
heavy sphere M. Eo - energy of
its initial state. The figure shows
also the wave functions *0(Q).
"^(Q), and î 0(S)- The regions
marked by the symbol 4>±(Q)
are the regions of quantum
motion of the sphere; the sym-
bol *0(Q) denotes the region
of classical macroscopic motion
of the sphere.

down the slope. Thus, the potential energy U(Q) has the
form of a high volcano with a shallow crater (see the
figure). The sphere serves as the detector determining
the direction of the momentum of the microparticle (it
can nudge this sphere to the right or to the left).

In view of the fact that we assign to the sphere, for
the sake of maximum simplicity, only one degree of
freedom Q, it will be more convenient to describe the
entire problem not by means of a density matrix but by
means of wave functions.

We assume that at the initial instant of time t = 0 the
micro-particle /j. is described by the wave function

where | is the coordinate of the microparticle and k its
momentum. Thus, it is assumed that there is a pure
state, but with uncertain momentum ±k. The task of our
instrument is to determine the sign of the momentum
(the direction of motion of the particle).

We denote the wave function of the macroscopic
instrument (the sphere M) at t = 0 by

where a = VK/Mcoo and w0 is the frequency of oscillations
of the sphere inside the crater. Thus, when t = 0 the
wave function of the entire system "microparticle /j.
plus sphere M" will be

<D(<?, 1, 0) = a>0«?, 5) = Vc,(<?)-to(5)- (7)

The Hamiltonian describing this system will obvi-
ously be

where W(Q, ?) is the energy of interaction between the
sphere and the microparticle. The microparticle ju. is
regarded as free, and the sphere M has a potential en-
ergy U(Q). For simplicity we assume that W(Q, 4) is of
the form

W(Q, I) = g8 (<?-
and the wave function *(Q,
satisfies the equation

(9)
, t) for any instant of time t

(<?. 5)0). (10)

We seek this function in the form

, 1, 0- (11)

Assuming that the coupling constant g is small, we find
the functions *+ and *~ in first approximation of pertur-
bation theory. In this approximation

. (t) ' dk>

™ dp' dk', (12)

(13)

""This example was first published in [n] (see also [']).

here o>0 = Eo/K—energy of the sphere in the initial state,
ojp' = Ep'/R, Ep' —energy of sphere in the final state,
p' —momentum of sphere after going over into the exci-
ted state, and Ku>k = ek and Rwk = ek— energies of the
particle before and after the interaction with the sphere.
The function *(Q, £ , t) has a similar form.
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Further, integration of (10) after substitution of the
function (11) with allowance of (12) yields

is given bywhere the matrix element

The function of the sphere in the excited state ip
can be written in the quasiclassical approximation
in the form

(15)

(16)

where Np/ is a normalizing factor and Sp/(Q) is the ac-
tion function, approximately given by Sp/(Q) = p'Q. For
this reason, the integral in (15) is equal to the Fourier
transform *0(a) of *o(Q) at a = p' + k' — k. Therefore

(17)

Let now 3' be the value of the sphere momentum which
corresponds to the conservation of energy during the
interaction. It follows from (15) that this will occur at
z/t = 0 and

J -const;

therefore

2Af
£_

' 2M
(18)

From this we get that &' — $• = - z / v t and d^' = — dz/vt ,
where v = &/M is the velocity of the sphere . Fur ther ,
when z s 0 we have

(19)
2M

or
£'-A;)(/fc'-A:) = 2,ia>0--iLB< (20)

if the function *0(Q) is not too sharp (the amplitude is
not very small, as is the case when the crater is not
very deep!), then its Fourier transform $0 (p' + k' — k)
will differ noticeably from zero only when

p' + k' — k^O.

From (20) and (21) it follows that a s M - « =

k'=~k.

(21)

(22)

(23)

as expected when a light particle collides with a heavy
weakly-bound sphere, namely, an elastic reflection of
the light microparticle took place, with a small energy
transfer (vanishingly small when M -» °°).

We now put p' + k' — k = & +k' — k — z/vt = q, so that
vk' = dq, k' = q—cP+k + z/vt. Introducing in the integ-
ral (17) the new integration variables q and z, we get
from (17)

(24)

' M ^ ) ^ ^ " " *• (25)

If we write down the well-known discontinuous integral

J (a)= \ dz == ^ (26)

then

/ + ( KT "̂) = / ("^ir") ~J ^Cot~ ) • (^^

We note that vt > 0 for t , s ince 51 = 2k > 0 in this
2ase. It follows therefore from (27) that T = -2;ri for
vt > Q - k and Q - | > 0; otherwise I* = 0. We recal l
that owing to the presence of the factor * 0 ( | ) in **, only
smal l values |£ | •£ a a r e important. Therefore the r e -
sult denotes that *+ (Q, £, t) differs from zero when
t — °° only in the region 0 < Q < +°°, i .e. , to the right
of the vertex of the c ra t e r , corresponding to a positive
momentum 3' = 2k acquired from the micropar t ic le .

The function $" (Q, B,, t) is calculated in exactly the
same manner. In this case & <f 0 and v < 0, and in place
of the factor I+ we obtain the factor

which differs from zero only when vt < Q— £ < 0. In
this case the sphere rolls out of the c ra te r to the left.

We now construct the density matr ix for our case:

t)

*((?, I, t)%(Q', 5', t)+Cr*(Q, I, t)O0(Q', I',

+ <&-*((?, I, 0 a-«?', £'•*)• (28)

When t — °° and | Q | , |Q' | > a, all but the last two
t e r m s of this mat r ix vanish. Namely, the t e r m s con-
taining *o vanish when Q, Q' —• ±°° like exp(-Q 2 /a 2 ) or
(—Q'2/a2), and the interference t e r m s , which contain
products of the type *+**~, vanish when t — °°, owing to
the proper t ies of the function I*(Q— £/vt) . Therefore,
when t —- °° and |Q[, | Q ' | 3> a we get

p«?, 5; (?', I', t) =W(Q, I, t) <&+((?, I', t)

', 1), t~>oc, \Q\, | (29)

where

We see that the macroscopic instrument destroys the
interference of the s ta tes of the micropart ic le A*e^
and A " e ~ ^ ; further, when Q and Q ' —• +°° we have

p «?, I; <?'. r . t) -* fK"* (<?, i, 01>+ (<?', I', t) (30)

and when Q, Q ' — — °° we have

P((?, i; <?', r . o -» f f -«? , s, «)<»-«?'. i ', o- (so')

These two cases correspond to observation of the sphere
ei ther on the right of the c r a t e r (30) or on the left (30').

When Q - * +°o and Q' — — °° or Q —— °° and Q' — +°°
(this is a case of interference of the resul ts of the ob-
servations from the right and from the left) we have
p(Q, 4; Q'> i', t) —• 0. This is to be expected from a
"good" instrument: i ts "po in t e r " should occupy one of
the possible definite posit ions. In our example the
" p o i n t e r " is the heavy macroscopic sphere . It is
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clearly seen how a quantum phenomenon—the scattering
of a quantum by the sphere M—changes by itself, owing
to the weak stability of the sphere located on the top of
the potential mountain, into a macroscopic classical
phenomenon—motion of a heavy sphere to the right or
to the left of the crater. The macroscopic nature of the
phenomenon is ensured by the sufficient height of the
potential mountain, on the top of which the sphere was
initially at rest.

B. Thermodynamically Unstable Detector

Let us consider schematically an example of a
thermodynamically unstable microparticle detector[9].
The microparticle is an atom having one valence elec-
tron, so that the entire atom has a magnetic moment
Mga equal to the magnetic moment of this electron,
where Mg is the Bohr magneton, and a (ax, ov, <7Z) is
the Pauli spin matrix. The wave function * of the atom
can be written in the form

Y «?, x) = Y, (<?) i|), (x) + T2 (<?) ifc (x), (31)

where *i(Q) and ^(Q) are functions describing the mo-
tion of the atom as a whole; i/)i(x) and f/>2(x) are functions
describing the internal states of the atom and corre-
sponding to the two possible orientations of the magnetic
moment of the atomic electron.

For concreteness we shall assume that the magnetic
field is parallel to the Oz axis, so that the function ipi
corresponds to the orientation of the moment along the
Oz axis, and the function fp2 corresponds to the opposite
orientation. We assume that an external magnetic field
H, which we assume to be inhomogeneous, has already
been to separate spatially beams of atoms having differ-
ent magnetic-moment orientations, so that

?) = 0. (32)

Thus, we shall assume that the first task of the meas-
uring instrument is to destroy the interference of the
states i/)i(x) and i/)2(x) corresponding to different spin
orientations of the valence electron, and has already
been performed. In other words, once the beams have
passed through the inhomogeneous magnetic fields, it
remains for us only to "install" under each of the beams
a separate detector, which registers the arrival of a
particle belonging to the corresponding beam, i.e., which
actually registers one of the two states of the particle
("state" in the sense of its spin orientation).

We use as such a detector a system consisting of a
large number of oscillators s = l , 2 , . . . , N , N — °°,
which, to avoid the use of additional symbols, will be
assumed to be two-dimensional, oscillating in the (x, y)
plane. Further, we assume that oscillations of type " x "
and oscillations of type " y " do not interact in practice
with each other.

This allows us to assign different temperatures 9 to
the " x " oscillations and to the " y " oscillations.
Namely, we assume that in the initial state of the detec-
tor ("initial" in the sense of the interaction with the
microparticle fi) the " x " oscillations are connected
with a Gibbs thermostat having a temperature 9; there-
fore the " x " oscillations themselves also have at t = 0
the same temperature; as to the " y " oscillations, we
assume that at t = 0 they are at absolute zero tempera-

ture. Thus, the detector is in a thermodynamically
unstable state: any action, even small, coupling the " x "
and " y " oscillations, immediately leads to intense en-
ergy transfer from the " x " oscillations to the " y "
oscillations.

The "heating" the " y " oscillations is just that
macroscopic phenomenon which identifies the state of
the given individual microparticle, in our example the
atom.

Let us consider now mathematically the operation of
such a detector. The Hamiltonian of the unperturbed
system of our oscillators is written in the form

i?o=2 Sea(xay,)~E0,

v I a2 , a2 \ . Mi

(33)

(34)

here Eo is the zero-point energy, Eo = fiwo/2N, M is the
oscillator mass, and w0 is the oscillator natural fre-
quency.

The interaction energy W of these oscillators with
the beam microparticle incident on the detector is as-
sumed to be in the form

N N
Ĵ SZ SZ /j Z Qy^ * \^^)

S=l 9—i
where Ms is the mechanical moment of the oscillator
and az is the spin matrix of the optical electron of the
atom. Since we have proposed that the atoms in the
beam are oriented along the z axis, we have written
Mzaz in lieu of M -a, where

„ . / 3 _ a \ __ _ d

and in lieu of a simply a z = (. _,)• Obviously, for one

detector it is necessary to take a z = +1 and for the
other — 1. We note that

xs = r, cos q>, y, = rs sin <ps, (36)

(36')

The detector D will be described by a density matr ix
p , which we take in the " x , y " representat ion.

Taking " x " to mean the ent ire aggregate of x coor-
dinates of the osci l la tors (xi, x2, . . . , x s , ..., x^ ) , and by
" y " analogously all the coordinates (yi, y2, . . . , y s , . . . ,
yjj), we can write the matr ix p in the form p = (x, y;
x ' . y ' . t ) .

The matr ix p satisfies the equation

,1 = 0. (37)

It will be more convenient for us to use in place of the
matr ix p the matr ix

~ ~S~ £~~ (38)
p = e h pe " . v '

we note that [W, Xo\ = 0, and therefore W = W, and,
substituting in place of p its expression in t e rms of p~,
we obtain

rj=o. (39)
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When substituting the operator W from (35), it is neces-
sary to adhere to the rules for the multiplication of
matrices with continuous rows and columns. To employ
this rule, W must be written in matrix form. For exam-
ple, it is necessary to write in lieu of the operator

The multiplication &p denotes

(40)

etc. If we use these simple rules, then the substitution
of W in (39) will lead, in expanded form, to the simple
partial differential equation

(41)

This equation can be solved in elementary fashion. Its
general integral is

p = p (at ~-<p,, at-'- ft, • • •, at + tps> ..., at-*-cp.v, rt, r2, . .., rs;
at + <f'v at-•-<f j , . . . , at + <p's, ,.., at + cp.v, r[, r'2< .. ., r's, .. ., r'N),

and ri, r'2,

(42)

enter as param-in which r 1 ; r2, ... ^ ^
eters.

We now turn to the initial data for this matrix. In
order not to clutter up the formulas with factors, we
introduce as the unit length the quantity I = Vfi/^Hwo,
and we use in place of the temperature 8 the reciprocal
quantity /3 = h~ojo/#. In these units, all our quantities be-
come dimensionless. When t = 0 we have p(x, y; x', y', 0)
= pg(x, x')po(y, y'). In accordance with the assumptions
made concerning the absolute zero temperature of the
" y " oscillations, we have

y')--Coe

A'
-4- v ( (43)

w h e r e Co i s a c e r t a i n c o n s t a n t n o r m a l i z a t i o n f a c t o r a n d

e x p ( - y s / 2 ) i s a w a v e funct ion d e s c r i b i n g t h e a n g u l a r

o s c i l l a t i o n of t h e s - t h o s c i l l a t o r a l o n g t h e Oy a x i s .

T h e s i t u a t i o n i s m u c h m o r e c o m p l i c a t e d in t h e c a s e

of c a l c u l a t i o n of t h e m a t r i x pg(x, x'), s i n c e t h e " x "

o s c i l l a t i o n s a r e a t a t e m p e r a t u r e 8. In t h i s c a s e t h e

s t a t e i s m i x e d and t h e w e i g h t s of t h e i n d i v i d u a l s t a t e s

i/jn(x) wi th e n e r g y E n wi l l b e e x p ( - E n / 0 ) = e x p ( - / 3 E n ) ;

t h e r e f o r e t h e m a t r i x pg(x, x ' ) , w h i c h d e s c r i b e s t h e e n -

s e m b l e i n e q u i l i b r i u m w i t h t h e G i b b s t h e r m o s t a t a t t e m -

p e r a t u r e 8, i s w r i t t e n i n t h e f o r m

po (x, x') ef>F<f> tS (x) t» ( (x, x).

w h e r e

Ze (x, x') ==;

(44)

(45)

T h e s u m e x t e n d s h e r e f i r s t o v e r a l l t h e s t a t e s n h a v i n g

t h e e n e r g y E n , a n d t h e n o v e r a l l s t a t e s wi th d i f f e r e n t

e n e r g i e s E n . E v e n i n t h e c a s e of o s c i l l a t o r s , t h e d i r e c t

c a l c u l a t i o n of s u c h a s u m i s v e r y di f f icult . We s h a l l

t h e r e f o r e u s e a r o u n d - a b o u t way, b a s e d on t h e fact t h a t

if 3l(x) i s t h e H a m i l t o n i a n of t h e s y s t e m u n d e r c o n s i d e r a -

t ion a n d i ^ ( x ) i s i t s e i g e n f u n c t i o n , t h e n

(46)

and therefore

Therefore (45) can be written in the form

U (x, x') = 2 e~№(*m (x) ^n (x') (45')

and, differentiating with respect to /3, we find that the
sum Zg(x, x') satisfies the differential equation

^ 0. (47)

In place of X(x) we should substitute here the unper-
turbed Hamiltonian operator for the " x " oscillations,

) = 2 ( - T ^ - + T * 0 - T
(48)

w h i c h we t a k e f r o m (33) a n d (34), t a k i n g in to a c c o u n t t h e

n e w u n i t s in w h i c h t h e l e n g t h x i s m e a s u r e d .

T h e v a r i a b l e s in (47) s e p a r a t e , by v i r t u e of t h e a d d i -

t i v i t y of t h e H a m i l t o n i a n (48), a n d we c a n s o l v e (48) in

e x p l i c i t f o r m f o r one v a r i a b l e x; i n t h i s c a s e we h a v e

_ .
(49)

We s h a l l s e e k t h e s o l u t i o n of t h i s e q u a t i o n i n t h e f o r m

Ze (x, x') = exp {a + bx2 + cxx' + bx'2} (50)

a n d wi th b o u n d a r y c o n d i t i o n

Ze (x, x') - 1 --!-<*-*')!
e 2P

•o, (51)

c o r r e s p o n d i n g to e v a p o r a t i o n of t h e o s c i l l a t o r s a s

8 — °°. E q u a t i o n (51) h a s t h e f o r m of a s u m for i d e a l -

g a s p a r t i c l e s .

S u b s t i t u t i o n of (40') in (49) l e a d s t o t h e e q u a t i o n s

db

fib-jp- —26c, ^jT = ~2~

T h i s s y s t e m i s c o m p a t i b l e and h a s a s o l u t i o n

<z=- \ b

c — — y 4b2 — 1;

w e i n t r o d u c e a l s o

(52)

(52 ')

(53)

(53')

(53")

(53"0

F r o m t h e s e d a t a for a, b , a n d c we s e e t h a t t h e i n i t i a l

c o n d i t i o n (51) i s s a t i s f i e d .

On t h e b a s i s of (50), (53) a n d (53 ' ) , ( 5 3 " ) , a n d (53'")

w e c a n w r i t e t h e m a t r i x pg(x, x ' ) in e x p l i c i t f o r m :

N

(x, x) = Coe (54)

h e r e Cg i s a c e r t a i n n o r m a l i z i n g f a c t o r , n a m e l y

CQ = expf/3F(/3)], w h e r e F(/3) i s t h e f r e e e n e r g y of t h e

o s c i l l a t o r . T a k i n g now (43) in to a c c o u n t , we o b t a i n t h e
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total density matrix p" describing the state of the detec-
tor at t = 0:

N N

p(x, y;x', (/', 9) = C0C6e •=» • - ' ' . y '

In o r d e r to find now t h e m a t r i x p" a t t h e i n s t a n t of
t i m e t , we m u s t t a k e (36) and (36') in to a c c o u n t and r e -
p l a c e e v e r y w h e r e in (55), in a c c o r d a n c e wi th (42), t h e
a n g l e s cps by cps + wt a n d t h e a n g l e s <p's by cp's + wt . A s
a r e s u l t we get

p(x, y; x', y', t) — C0Cse
A+A c o s 2UI+B sin 2 ^ (56)

w h e r e

A = T 2 I [ r ' + ^ - 2 v 8 ' - ; c o s ( c P s - ( P ; ) ] — ^ 2 (r\ + r?), (57)
»-l s=l

N
A = Y 2 [r! c°s 2(P» + r? cos2 (pi — 2yrsr; cos (<ps + q>;)]

»=i
N

— 4" 2 (r» C0S 2(P» + r«2 C0S 2(Pi)' ( 5 8 )
s=l

N

B = - -|- 2 [»•! sin 2<p, + r;2 sin 2q>; - 2yr5r; sin (cp, + q>;)]

N

+ { 2 ( r - s i n 2<s>>+r-2 s i n 2 <*)• ( 5 9 )
a=l

T h i s s o m e w h a t c u m b e r s o m e r e s u l t m u s t b e a v e r a g e d
o v e r t h e p e r i o d w / 2 , if we a s s u m e t h a t t h e f r e q u e n c y
c h a r a c t e r i z i n g t h e coup l ing of t h e a t o m wi th t h e d e t e c t o r
i s su f f i c ien t ly l a r g e .

T h e r e f o r e t h e o b s e r v e d r e s u l t s w i l l b e d e t e r m i n e d
by t h e m a t r i x

p ( l 1 j ; i ' , j ' , ! ) = C , V - i § gtA co. 2a>!+B Bin 2M!],fc. (60)

T h e l a s t i n t e g r a l r e d u c e s t o a B e s s e l funct ion:

JL ? [A cos 2BI+B sin 2(01] dl = (61)

w h e r e R = (A2 + B 2 ) l / a . T h e r e f o r e t h e t i m e - a v e r a g e d
m a t r i x p ( x , y ; x ' , y ' , t ) i s e q u a l t o

p(x, y; x', y',t) =,

s o t h a t a t s m a l l v a l u e s of R we h a v e

p(x, y; x', y', t) = C0C^

and a t l a r g e R

p (x, y\ x , y , t) ~ I

If we r e c a l l t h a t

(62)

(63)

(63')

(64)

(64')

2 '

t h e n t h e a p p e a r a n c e of t h e f a c t o r e A wi th A f r o m (58)
i n d i c a t e s t h a t t h e e n e r g y h a s b e e n d i s t r i b u t e d a m o n g t h e
" x " o s c i l l a t i o n s and " y " , and t h e t e m p e r a t u r e h a s
d r o p p e d f r o m 6 t o 9/2.

At l a r g e v a l u e s of R, t h e r e s u l t a l s o o f f e r s e v i d e n c e
of a r e d i s t r i b u t i o n of t h e e n e r g y a m o n g t h e " y " and " x "

o s c i l l a t i o n s , bu t i s not a s c l e a r a s in t h e c a s e of s m a l l
R.

We s e e t h u s t h a t a m i c r o p a r t i c l e p e n e t r a t i n g in to a
t h e r m o d y n a m i c a l l y u n s t a b l e d e t e c t o r h a s p r o d u c e d t h e r e
a c o m p l e t e r e d i s t r i b u t i o n of t he e n e r g y , i . e . , a m a c r o -
s c o p i c p h e n o m e n o n . It i s s e e n f r o m the f o r e g o i n g e x -
a m p l e t h a t t h e m a c r o s c o p i c m e a s u r i n g i n s t r u m e n t m u s t
be an u n s t a b l e s y s t e m ( m o r e a c c u r a t e l y , a l m o s t u n s t a -
b l e ) .

By v i r t u e of t h i s i n s t a b i l i t y , t he i n i t i a l q u a n t u m
p h e n o m e n o n c h a n g e s a u t o m a t i c a l l y i n to a m a c r o s c o p i c
p h e n o m e n o n , wi th t h e a i d of wh ich t h e m i c r o s y s t e m s
a n n o u n c e t h e i r a p p e a r a n c e in t he v a r i o u s c h a n n e l s .

B e a r i n g i n m i n d t h e t r e m e n d o u s s c a l e of s u c h a
m a c r o s c o p i c p h e n o m e n o n a s c o m p a r e d wi th t h e m i c r o -
s c o p i c i n i t i a l p h e n o m e n o n induc ing i t , we c a n r e g a r d
the f o r m e r a s a n e x p l o s i o n .

T h u s , t h e m i c r o p a r t i c l e a n n o u n c e s i t s s t a t e s by
m e a n s of a n e x p l o s i o n in t h e m i c r o w o r l d .

CONCLUSION

F r o m t h e po in t of v i ew d e v e l o p e d h e r e , t h e r e d u c t i o n
of t he wave p a c k e t (2) r e f l e c t s an o b j e c t i v e p r o c e s s ,
c o n s i s t i n g in t he fact t ha t t he m i c r o m a n i f e s t a t i o n g ive s
r i s e t o a m a c r o p h e n o m e n o n .

T h i s t r a n s f o r m a t i o n of a q u a n t u m p h e n o m e n o n in to a
m a c r o s c o p i c p h e n o m e n o n c a n be t r a c e d m a t h e m a t i c a l l y .

When t h e m e a s u r e m e n t i s r e g a r d e d f r o m t h i s po in t
of v i e w , t h e p a r a d o x e s c o n n e c t e d w i t h t h e s e e m i n g l y
d i r e c t in f luence of t h e c h a n g e of t h e o b s e r v e r ' s i n f o r m a -
t i on on t h e c o u r s e of r e a l e v e n t s d r o p out a u t o m a t i c a l l y ,
a n d t h e e n t i r e p h y s i c a l p i c t u r e of t h e p h e n o m e n a i n v e s -
t i g a t e d by q u a n t u m m e c h a n i c s c a n now b e s u m m a r i z e d
a s fo l lows :

Q u a n t u m m e c h a n i c s s t u d i e s m i c r o s y s t e m s /i i n a
def in i te m a c r o s c o p i c s e t u p 2ft, o r s y m b o l i c a l l y — i t s t u d -
i e s t he s u m JU + 5DJ. T h e m a c r o s c o p i c s e t u p c a n be r e -
s o l v e d in to two p a r t s :

m=M+i.

T h e f i r s t p a r t d i c t a t e s t h e cond i t i ons of mo t ion of t h e
m i c r o s y s t e m jj., in o t h e r w o r d s , i t d e t e r m i n e s t h e s t a t e
of t h e m i c r o s y s t e m . T h e s e c o n d p a r t I of t h e m a c r o -
s e t u p i s m a c r o s c o p i c a l l y u n s t a b l e , and t h e m i c r o p a r t i c l e
i s c a p a b l e of p r o d u c i n g m a c r o s c o p i c p h e n o m e n a in i t* .
T h i s p a r t c a n be u s e d by t h e o b s e r v e r a s a m e a s u r i n g
i n s t r u m e n t , p r o v i d e d t h e p r e s e n c e of I, if p o s s i b l e , d o e s
not in f luence t h a t p a r t of t h e m a c r o s e t u p M which o r g a n -
i z e s t he i n i t i a l s t a t e of t h e m i c r o p a r t i c l e . T h e r e p e t i -
t i on (or in o t h e r w o r d s , t he r e p r o d u c t i o n ) of i d e n t i c a l
a g g r e g a t e s 331 + ji f o r m s a q u a n t u m e n s e m b l e . T h i s e n -

s e m b l e c a n b e c h a r a c t e r i z e d by a w a v e funct ion * (or
in t h e g e n e r a l c a s e by a d e n s i t y m a t r i x P M ) -

T h e r e p e t i t i o n of t h e a g g r e g a t e s Sft (or in o t h e r w o r d s ,
t h e i r r e p r o d u c t i o n ) a l s o f o r m s a q u a n t u m e n s e m b l e ,
which c a n be d e s c r i b e d by a d e n s i t y m a t r i x p 5 K . At t he
i n i t i a l i n s t a n t of t i m e t h i s d e n s i t y m a t r i x c a n be w r i t t e n
in t h e f o r m of a p r o d u c t of two d e n s i t y m a t r i c e s :

* It is clear that m does not always contain I.
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where p£ is the density matrix describing the macro-
scopically unstable part of the macrosetup I at the ini-
tial instant of time.

The ensemble described by the density matrix pj^
has that distinguishing feature that a macroscopic
phenomenon initiated by the microsystem develops in it
in the course of time.

The development of this phenomenon is indeed the
physical mechanism causing the reduction of the wave
function (2).

It is clear that a different organization of the macro-
scopically unstable part of the macrosetup I will lead to
different types of reduction and will correspond, in the
customary sense, to different measuring devices.
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