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INTRODUCTION

( J N E of the most important achievements of the quan-
tum theory of solids was the explanation of the basic
regularities of the electrical conductivity of metals
and of the thermal conductivity of dielectrics. As for
the whole of the physics of the solid state, the main
role in this was played by the fundamental papers of
Bloch and Peierls. The results obtained in that period
were found to be in good agreement with the available
experimental data (at least qualitatively). It is probable
that this was just the reason why the further more de-
tailed development of the general aspects of the theory
was relatively slow. Recently the direction of investi-
gations has changed from the explanation of general
laws to a study of the properties of actual substances,
taking their particular properties into account. In the
meantime, up to the present, there remain in the theory
of transfer processes a whole number of unexplained or
badly based problems of a general nature. The problem
of longitudinal long-wavelength phonons in the consid-
eration of the thermal conductivity of dielectrics, or the
problem of the electrical conductivity of a number of
pure metals in the low-temperature region, are exam-
ples of such unexplained problems.

Another problem of general character is connected
with taking the normal collisions, i.e., collisions where
the total quasi-momentum of the quasi-particles is con-
served, into account. We are dealing here with the fact
that the phenomena of thermal conductivity of dielec-
trics and the electrical conductivity of metals have spe-
cific properties: in both cases the total quasi-particle
current turns out to be non-vanishing. (We note that,
e.g., the heat transfer by molecules of a normal gas or
by the electrons in a metal these peculiar circum-
stances do not occur.) Hence it follows that when only
normal collisions occur in the system there could exist

an undamped (electrical or thermal) current in the ab-
sence of an external field which could sustain it. This
situation can be made to look more obvious by noting
that the normal collisions lead only to internal equilib-
rium in the quasi-particle system which can as a whole
move in relation to the crystal lattice with an arbitrary
velocity. In other words, the thermal resistance of di-
electrics or the electrical resistance of metals occurs
when we take into account processes where the quasi-
momentum is not conserved (Umklapp processes, scat-
tering by defects in the crystal lattice, etc.). Because
of this the problem of the normal collisions is usually
not taken into account for a quantitative consideration.

It is natural to expect that such a procedure leads to
a qualitatively correct result for the cases when the
probabilities for normal collisions and for collisions
with loss of quasi-momentum are of the same order of
magnitude. However, in sufficiently pure and large
samples at low temperatures the normal collisions may
dominate. Such a position is typical for dielectrics,
since in that case the probability for Umklapp proc-
esses in collisions between quasi-particles is exponen-
tially small. The same is also true for a number of
metals—it is sufficient, for example that the Fermi
surface is closed and that the number of electrons is
not equal to that of holes. It is clear that under such
conditions the usually applied method of discussion is
unsuitable.

The present survey is devoted to the development
of a theory of transfer processes for the case where
normal collisions between quasi-particles have the
largest probability. It turns out that although normal
collisions by themselves do not lead to a finite resist-
ance, they can all the same appreciably influence the
result of the action of other scattering processes. As a
result the order of magnitude of the kinetic coefficients
and their dependence on temperature and other param-
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256 R. N. GURZHI

eters is changed. The nature of the influence of the
normal collisions depends essentially both on the kind
of quasi-particles (electrons, phonons, spin waves) and
on the nature of the mechanisms which lead to a loss of
quasi-momentum (Umklapp processes, collisions with
impurity atoms, with the boundaries of the sample,
etc.).

From a formal point of view the dominance of nor-
mal collisions shows that the state of the system of
quasi-particles is in first approximation characterized
by an equilibrium function with drift fo(c — p • u). The
problem thus consists in determining the velocity of the
ordered motion u as a function of the coordinates,
time, temperature, and other parameters. In certain
cases the problem then reduces to solving the hydro-
dynamical Navier-Stokes equations (Sees. 2, 4, 6, 8)
and in other cases the quantity u can be determined
directly from the kinetic equations (Sees. 3 and 7).

I. KINETIC PHENOMENA IN DIELECTRICS

1. Statement of the Problem

In a perfect single crystal of infinite dimensions
thermal resistivity occurs only when we take into ac-
count those collisions between quasi-particles which
are accompanied by Umklapp processes. In the low
temperature region the corresponding mean free path
Zu increases exponentially when the temperature is
lowered: ZU~exp (y0/T) where 0 is the Debye tem-
perature, T the absolute temperature, and y a numer-
ical constant of order unity. It is clear that when the
temperature is lowered for a sufficiently pure sample
the main role begins to be played by collisions with the
boundaries and the effective mean free path le^ will
turn out to be of the order of the dimensions d of the
cross section of the sample.

For a rough estimate of the thermal conductivity we
can use the following formula known from the kinetic
theory of gases:

KHSCI^VT, (1.1)

where C is the specific heat and v^ the average ve-
locity of the quasi-particles.

In the very low temperature region Z e f f « d, and K
increases with increasing temperature. At very high
temperatures (but T « 6) K decreases exponentially.
The temperature dependence of the thermal conductivity
has thus a bell-shaped form (see Fig. 1 below). If we
disregard details, the qualitative considerations given
here are experimentally confirmed.

However, doubt was cast by Pomeranchuk on the
validity of these statements from a theoretical point of
view.1-13 He noted that if we restrict ourselves to three-
phonon processes it follows from the appropriate con-
servation laws that the longitudinal long-wavelength
phonons can collide only with phonons of comparable
wavelength. As a result the probability for scattering
so steeply tends to zero when the momenta of the longi-
tudinal phonons is decreased that the thermal conduc-
tivity coefficient diverges.* However, this difficulty
turns out to be connected to an appreciable extent with

*We note that in the case of spin waves which have a quadratic
dispersion law such a difficulty does not arise.

FIG. 1.

Pomeranchuk's assumption of isotropic phonon spectra.
Herring t 2 ] has shown that if we take the anisotropy and
the degeneracy of the phonon spectra into account, for
many crystals the divergence either is not present or
leads to size effects which for real samples are of
little importance. (Simons'-33 has recently proposed an
interesting solution of the problem.)

Another difficulty of the theory of the thermal con-
ductivity of dielectrics is connected with the fact that
the kinetic equation in this case cannot be solved. To
obtain qualitative results it is usual to introduce in one
way or another a relaxation time (see, e.g., t l ] ) . The
normal collisions between quasi-particles (N-proc-
esses) which are not accompanied by Umklapp proc-
esses are as a rule not taken into account. Such a pro-
cedure is possibly reasonable at not too low tempera-
tures when the probabilities for normal collisions and
for collisions with Umklapp (U-processes) are of the
same order of magnitude (i.e., № ~ ft) since N-proc-
esses by themselves do not lead to thermal resistivity.
However, in the region of rather low temperatures
where № « № N-processes may be very important.
However, just in that case it is possible to solve the
kinetic equation consistently starting essentially from
an expansion in the small parameter /N/jU (see, e.g.,

Under actual conditions the thermal resistivity is
connected both with Umklapp processes and with scat-
tering of quasi-particles by defects in the crystal lat-
tice and by the boundaries of the sample. Calculations
show that taking N-processes into account does not
lead to a qualitative change in the results connected
with volume collisions at low temperatures (U-proc-
esses in a system of spin waves and phonons, t5] scat-
tering by impurities: phonons,№l spin w a v e s m ) .

The situation may be different in the case where the
thermal conductivity is due to the scattering of quasi-
particles by the sample boundaries or by some macro-
scopic lattice defects. The mechanism for thermal con-
ductivity occurring then reminds us of the Poisseuille
flow of a viscous liquid. As a result, the order of mag-
nitude of the thermal conductivity coefficient changes
and also its dependence on temperature and sample
thickness.1 8 ' 9 J This problem is considered in Sec. 2.

The next section is devoted to the role of Umklapp
processes in collisions between quasi-particles, of
course, under conditions when normal collisions domi-
nate.

One usually assumes that at low temperatures those
collisions in which the smallest number of quasi-parti-
cles takes place have the largest probability. From a
formal point of view this corresponds to taking into ac-
count only the first non-vanishing anharmonicity in the
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c o r r e s p o n d i n g i n t e r a c t i o n H a m i l t o n i a n . H o w e v e r , w e

s h a l l s h o w b e l o w t h a t t r a n s f e r p h e n o m e n a i n s o l i d s a t

s u f f i c i e n t l y l o w t e m p e r a t u r e s c a n b e d e t e r m i n e d b y a n -

h a r m o n i c t e r m s o f a r b i t r a r i l y l a r g e o r d e r . F o r t h i s i t

i s n e c e s s a r y t h a t t h e q u a s i - p a r t i c l e e n e r g y a s f u n c t i o n

o f t h e m o d u l u s o f t h e q u a s i - m o m e n t u m c h a n g e s f a s t e r

t h a n l i n e a r l y . 1 1 0 3 A s a n e x a m p l e w e c o n s i d e r t h e s p i n -

w a v e - c o n n e c t e d t h e r m a l c o n d u c t i v i t y o f a f e r r o d i e l e c -

t r i c .

U n d e r c o n d i t i o n s w h e n n o r m a l c o l l i s i o n s d o m i n a t e ,

m a c r o s c o p i c o s c i l l a t i o n s m a y p r o p a g a t e i n t h e s y s t e m

o f q u a s i - p a r t i c l e s w h i c h a r e s i m i l a r t o s e c o n d s o u n d i n

l i q u i d h e l i u m . W e c o n s i d e r s o m e f e a t u r e s o f t h i s p h e -

n o m e n o n i n d i e l e c t r i c s a n d f e r r o d i e l e c t r i c s i n S e c . 4 .

a n d s o o n i s t h u s c h a n g e d a p p r e c i a b l y t h a n k s t o t h e

n o r m a l c o l l i s i o n s .

T h e m e c h a n i s m o f t h e r m a l c o n d u c t i v i t y c o n s i d e r e d

h e r e i s i n n o w a y d i f f e r e n t f r o m t h e f l o w o f a v i s c o u s

l i q u i d o r g a s ( t h e t e m p e r a t u r e g r a d i e n t p l a y s t h e r o l e o f

t h e e x t e r n a l f o r c e ) . F o r a q u a n t i t a t i v e d e s c r i p t i o n o f

t h i s m e c h a n i s m i t i s t h u s n a t u r a l t o u s e a h y d r o d y n a m -

i c a p p r o a c h . W e a r e d e a l i n g h e r e w i t h t h e f a c t t h a t t h e

n o r m a l c o l l i s i o n s l e a d o n l y t o i n t e r n a l e q u i l i b r i u m i n

e a c h v o l u m e e l e m e n t ( l a r g e c o m p a r e d t o l ^ ) w h i c h

c a n , f o r i n s t a n c e , m o v e a s a w h o l e w i t h a n a r b i t r a r y

v e l o c i t y u . I t i s t h u s c l e a r a p r i o r i t h a t i n t h e c o n d i -

t i o n s o f i n t e r e s t t o u s t h e d i s t r i b u t i o n f u n c t i o n w i l l h a v e

t h e f o r m

2. Hydrodynamic Mechanism of Thermal Conductivity

1. At sufficiently low temperatures, the cause of
thermal conductivity of dielectrics is usually the scat-
tering of quasi-particles at the boundaries of the sam-
ple. Indeed, when the temperature is lowered the vol-
ume collisions become less and less effective. It is
clear that in the final analysis, a Knudsen situation
arises, i.e., the quasi-particles will move from bound-
ary to boundary without colliding in the volume.

The practical influence of boundaries may turn out
to be important under conditions when the mean free
path for Umklapp collisions Zu is comparable to the
diameter of the sample d. On the other hand, at low
temperatures normal collisions are appreciably more
probable than Umklapp collisions. For a sufficiently
large sample, therefore, a situation occurs where one
can neglect Umklapp processes while normal collisions
still occur more frequently than collisions with the
boundaries. For this it is necessary that for some
range of temperatures the following inequality hold:

f«d«f. (2.1)

The result obtained when we take normal collisions
into account can be easily understood from the follow-
ing simple considerations. When d « ZN a quasi-parti-
cle moving rectilinearly traverses a path of order d
between two collisions with the boundaries. Corre-
spondingly the effective mean free path Z e f f m d, and ac -
cording to Eq. (1.1) the coefficient of thermal conduc-
tivity « ~ C(T)d v T .

However, when d » Z^ a quasi-particle inside the
sample will, on the other hand, undergo many normal
collisions before it reaches the boundary. It is clear
that as a result the path traversed between two colli-
sions with the boundaries will be appreciably increased.
The fact that for normal collisions there is an exchange
of quasi-momentum with other quasi-particles is clearly
unimportant.

Using the well-known formulae of Brownian motion
one shows easily that the length of the trajectory be-
tween two collisions with the boundaries will be of the
order of d2/l^. Since this quantity has the meaning of
an effective mean free path, we have according to (1.1)

• • „ C (T) vTd2

where e(p) is the quasi-particle energy and p its
quasi-momentum.

The velocity of the ordered motion must as a func-
tion of the coordinates, u(r), satisfy a hydrodynamic
equation of the Navier-Stokes type. In the following
such an equation is derived which afterwards will be
applied to a consideration of the thermal conductivity of
dielectrics and ferrites.

2. We can obtain the hydrodynamic equation, starting
from the kinetic equation in a manner analogous to what
is done for normal gases. In the case of interest to us
the linearized kinetic equation for the quasi-particle
distribution function N(p, r) can conveniently be writ-
ten in the form

dr ^ dT '
where v = ae/9p; the first term on the right-hand side
describes N-processes and the second one collisions
accompanied by a loss of quasi-momentum (U-proc-
esses, scattering by impurity atoms, etc.).

To solve this equation approximately it is natural to
use the fact that the term INN is large compared with
the terms v d/dr N and IVN. More exactly, we shall
write the solution as a series expansion in the small
parameters № /d and /N//V one can easily show that
the method of successive approximations leads to the
following set of equations:

IF

From the first equation follows that № = No (z - p- u).
The second equation which now becomes

c a n i n g e n e r a l n o t b e s o l v e d . O n e c a n o n l y s t a t e t h a t

N ( 1 ) c o n t a i n s dui/dx^ l i n e a r l y .

S i n c e w e a r e i n t e r e s t e d i n t h e v e r y l o w t e m p e r a t u r e

r e g i o n a n d s i n c e i n t h e e q u a t i o n s c o n s i d e r e d c l e a r l y

o n l y e n e r g i e s E S T a r e i m p o r t a n t w e m a y a s s u m e t h a t

t h e d i s p e r s i o n l a w f o r t h e q u a s i - p a r t i c l e s i s a p o w e r -

l a w : e ( p ) = p n f ( n ) , n = p / p . W e c a n t h e n e a s i l y p r o v e

t h a t

The order of magnitude of the thermal conductivity co-
efficient and its dependence on the parameters T, d,

T h e f u n c t i o n s ip^ o f d i m e n s i o n l e s s v a r i a b l e s s a t i s f y

e q u a t i o n s w h i c h d o n o t c o n t a i n s m a l l p a r a m e t e r s ; i n t h e
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case of an isotropic dispersion law ifa = ninjji/)(e/T).
The temperature-dependent constant A can easily be
found in each actual case.

We multiply further the third equation by p and in-
tegrate. Since the integral of the right-hand side van-
ishes exactly, as a result we get the equation for u(r)
we are looking for. In the isotropic case it is convenient
to write this equation in the form*

where
a as pr"1 \ pvtN'o (e) dp, v = vTl « $A \ pyi|J dp,

- i -«p \ P /v [(up) iv; (e)i dp, p-* = ? pw; (E) dp.

(2.2)

(2.3)

By analogy with a normal gas the kinematic viscosity v
is written as the product of the average quasi-particle
thermal velocity v^ and the quantity /N which has the
meaning of a mean free path for N-processes. We must
add to this equation the boundary condition u = 0 at the
boundaries of the sample which corresponds to diffuse
scattering.

It is clear from the derivation that for an anisotropic
dispersion law the hydrodynamic equation retains the
same structure. However, all coefficients will now, of
course, be tensors. For instance, the term v V2u^ takes
the form ^ikZm32uk/3x/3xm; however, it is important
that all ^ikZm ~ v- We shall therefore start in the fol-
lowing from Eq. (2.2), claiming only correct orders of
magnitude for the various quantities and their depend-
ence on the main parameters.

The thermal current density

depends on the coordinates and to find the thermal con-
ductivity coefficient K we must average_the vector Q
over the cross-section of the sample: Q = - K V T .

We give as an example the result of solving Eq. (2.2)
for two simple cases: a plate and a circular cylinder.

We write the thermal conductivity coefficient in the
form K = C/e f fvT where C = -h" 3 T" 1 / e 2 Ni(e ) dp is
the specific heat. We then get for a plate

and for a cylinder

eff -Av\\ h W -I
rfwJ'

Here Zv = T V V T , Z = d/2 | / z N Z v , Ii and Io are Bessel
functions of an imaginary argument, d is the thickness
of the plate or the diameter of the cylinder.

In the limiting cases both formulae lead apart from
an unimportant numerical factor to the same result:
when z » 1, Zeff = ZV, while for z « 1, Zeff « Z v z 2

f» d2/ZN. This is natural as z 2 ^ d2/zNz V while we have
seen that the quantity dz/l^ has the meaning of an ef-

*The equation obtained is valid under the additional condition div
u = 0 which follows from the equation for NO) (one shows easily that

for any dispersion law) and which is equivalent to the absence of vol-
ume heat sources.

fective mean free path for collisions with the bound-
aries.

It is clear that the small difference between the r e -
sults for a plate and for a cylinder in the hydrodynamic
region is not accidental. We shall understand by d in
the following a characteristic cross-sectional length of
the sample (or the distance between macroscopic de-
formations of the lattice).

3. Let us now turn to concrete results for the pho-
non thermal conductivity of dielectrics. At low temper-
atures the phonons interact, as is well known, through
ternary collisions. Starting from the appropriate col-
lision integral (see, e.g., l41) and Eqs. (2.3) one can
show that, in order of magnitude

(2.4)

,Nwhere Zpp(®) =s a Ms/®, a the lattice constant, M the
mass of an atom, s the sound velocity, and ® as hs/a
the Debye temperature.

For ternary TJ-processes one can show easily, by a
method similar to the one used in C5], that

The numerical value of the parameter y depends on the
behavior of the phonon spectrum at the limits of the
whole Brillouin zone.* It is interesting that otherwise
the results obtained, including the multiplying factor
(T/0)5^2, do not depend on the nature of the dispersion
law.

We have given in Fig. 1 the typical temperature de-
pendence of the thermal conductivity coefficient of a di-
electric. In the very low temperature region it is clear
that while Z^» d, Zeff « d and K « Cpds~ dT3. Later,
starting from a temperature Tx for which I" wd up to
a temperature T2 for which d2/Zpp « ZV, the diffusion
mechanism plays the main role and

i Cps- - d"Ts.

Further on, the usual decrease of the thermal conduc-
tivity starts either exponentially (if U-processes domi-
nate) or as a power law (if scattering by impurities
plays the main role). For comparison we have also
drawn (dashed curve) in Fig. 1 the usual temperature
dependence «(T).

It follows from inequality (21) that the diffusion
mechanism can occur only in a sufficiently large dielec-
tric sample. It is difficult to obtain any reliable esti-
mate for the thickness d but, it is apparently sufficient
that d is of the order of 1 cm.

We note that the behavior given above was recently
confirmed experimentally in a study of the thermal con-
ductivity of crystalline 4He. : u : For the thickest sam-
ples studied (d « 2.5 mm) the mean free path in the
maximum of the K(T) curve turned out to be almost of
the order of the large thickness d of the sample de-
creasing to the left of the maximum according to ap-
proximately a T8 law.

*We denote by y@ the smallest possible value of the sum of the
energies of the colliding phonons allowed by the energy and momentum
conservation laws (see Sec. 3); In the case of a linear isotropic dispersion
law 7=1.
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4. At low temperatures the heat transfer in ferrites
occurs predominantly through spin waves. This is con-
nected with the fact that the specific heat of the spin
waves decreases with a lowering of the temperature ap-
preciably more slowly than the phonon specific heat (as
to order of magnitude Cp « (l/a3)(T/0)3 and C s « ( l / a ) 3

x(T/6>c)3/2) ®C the Curie temperature). Moreover,
normal collisions between spin waves are appreciably
more probable than N-collisions of spin waves and pho-
nons.[12] We may thus neglect the presence of phonons
when considering the temperature region where the hy-
drodynamic mechanism of thermal conductivity is pos-
sible.

Collisions between spin waves are connected with
exchange and relativistic interactions. The mean free
paths for the corresponding N-processes are as to or-
der of magnitude equal to : 12 ]

where |Ug is the Bohr magneton, Mo the nominal mag-
netization, /3 the anisotropy constant; we assume the
external magnetic field to be weak (fJ.gH « T).

From the expressions given here it follows that the
hydrodynamic mechanism must occur in relatively thin
ferrite specimens. In particular, it is sufficient that

If this inequality is satisfied the thermal conductivity
coefficient behaves as follows (Fig. 2). At very low
temperatures when d « liFJ

d toLater, in the range from T1

7 ® ' V
L t , n t e nge f o m T1 (l^(Tx) to
T2 (d7Zg®'(T2) ~ I V(T2)) the thermal conductivity is de-
termined by the diffusion mechanism and

I , Tt€T €

№Mo\«

1 < T2.

The way in which K(T) decreases when T >T2 de-
pends on the dimensions and purity of the ferrite. In
sufficiently large and pure specimens Umklapp proc-
esses play the main role. Some higher-order anhar-
monics may then manifest themselves (see Sec. 3). The
impurity thermal resistivity of a ferrite depends in an
essential way on the magnetic properties of the impur-
ity a t o m s . m

3. Influence of Higher-order Anharmonicity on Trans-
fer Processes in Solids at Low Temperatures

1. As we already noted, finite values for the ther-
mal and electrical conductivity coefficients of an ideal
infinite single crystal can be obtained only when we take
Umklapp processes into account. If the quasi-particles
obey Bose statistics (for instance, phonons or spin
waves) the probability for collisions accompanied by
Umklapp processes is exponentially small
(~exp (— yO/T) where y is a numerical coefficient of
order unity, © the Debye temperature in the case of

phonons and the Curie temperature in the case of spin
waves, T « ©). To elucidate the occurrence of this ex-
ponent we consider as an example the case when there
are two quasi-particles both before and after the colli-
sion.

From the energy and momentum conservation laws

<=i-i-e2-e,-e4 = 0. k4 fk 2 -k 3 -k 4 = b (3.1)

(b is a reciprocal lattice vector) it is clear that at
least two of the four wave vectors k must be of the or-
der of b. Corresponding to those large k we have en-
ergies £ ~ 0 » T. The probability for the collision will
be proportional to

exp ( - = exp ( - (3.2)

T h e q u a n t i t y o c c u r r i n g i n t h e e x p o n e n t i s i n g e n e r a l a

c o m p l e x f u n c t i o n of t h e w a v e v e c t o r s k . Of p h y s i c a l i n -

t e r e s t i s t h e p r o b a b i l i t y f o r a n U m k l a p p p r o c e s s f o r a

w e l l - d e f i n e d q u a s i - p a r t i c l e , s a y , i n t h e s t a t e k r W e

m u s t t h e n t a k e f o r t h e s u m of e n e r g i e s i n t h e e x p o n e n t

( 3 . 2 ) t h e s m a l l e s t v a l u e a l l o w e d b y t h e c o n s e r v a t i o n

l a w s ( 3 . 1 ) f o r f i x e d k j . A s a r e s u l t t h e p r o b a b i l i t y f o r

U m k l a p p t u r n s o u t t o b e a p p r e c i a b l y d i f f e r e n t e v e n f o r

s t a t e s w i t h t h e s a m e v a l u e of t h e e n e r g y ( i t i s , f o r i n -

s t a n c e , c l e a r t h a t t h e l a r g e s t p r o b a b i l i t y c o r r e s p o n d s

t o t h e s e c t i o n of t h e e n e r g y s u r f a c e w h i c h i s l e a s t f a r

r e m o v e d f r o m t h e B r i l l o u i n z o n e b o u n d a r i e s ) . H e a t

t r a n s f e r w o u l d t h e n a p p e a r t o b e c a u s e d b y t h o s e q u a s i -

p a r t i c l e s w h i c h a r e l e a s t d e c e l e r a t e d b y U m k l a p p p r o c -

e s s e s .

H o w e v e r , t h e a r g u m e n t s g i v e n h e r e h a v e o n e i m p o r t -

a n t d e f i c i e n c y , v i z . , t h e r o l e of t h e n o r m a l c o l l i s i o n s ,

w h i c h a t l o w t e m p e r a t u r e s p r o c e e d c o n s i d e r a b l y m o r e

f r e q u e n t l y t h a n U m k l a p p c o l l i s i o n s , h a s n o t a t a l l b e e n

t a k e n i n t o a c c o u n t . O w i n g t o t h e n o r m a l c o l l i s i o n s t h e

m o m e n t u m a c q u i r e d b y o n e of t h e q u a s i - p a r t i c l e s a s

t h e r e s u l t of U m k l a p p w i l l f a s t b e r e d i s t r i b u t e d a m o n g

a l l o t h e r q u a s i - p a r t i c l e s . T h e t h e r m a l r e s i s t i v i t y i s

t h e n d e t e r m i n e d b y t h e t o t a l n u m b e r of U - p r o c e s s e s i n -

d e p e n d e n t l y of w h e t h e r t h e s e p r o c e s s e s a r e p o s s i b l e f o r

a l l q u a s i - p a r t i c l e s . I n o t h e r w o r d s , w e m u s t t a k e i n t h e

e x p o n e n t ( 3 . 2 ) t h e s m a l l e s t v a l u e of t h e s u m of e n e r g i e s

c o m p a t i b l e w i t h t h e c o n s e r v a t i o n l a w s ( 3 . 1 ) . C 4 ) 5 ]

T h e p r o b a b i l i t y f o r t h e a n a l o g o u s p r o c e s s i n w h i c h

n o t n e c e s s a r i l y t w o b u t s o m e a r b i t r a r y n u m b e r ^ o f p a r -

t i c l e s n t a k e p a r t i s p r o p o r t i o n a l t o e x p ( — T

w h e r e w e m u s t t a k e f o r 2

b y t h e c o n s e r v a t i o n l a w s
the smallest value allowed

Moreover when the order of the process increases,
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the power of the small parameter T/0 in the multiply-
ing factor increases as (T/©)^1 (the constant /3 depends
on the nature of the dispersion law). One understands,
however, easily that the multiplying factors which bas-
ically determine the smallness of the probability for
collisions accompanied by Umklapp may increase when
the order n of the process increases. For this it is
necessary that the quasi-particle energy as function of
the absolute magnitude of the quasi-momentum changes
faster than linearly.

For concreteness, we consider spin waves in a cubic
crystal. At not too low temperatures e(k) = ©^(ak)2 and
the smallest non-vanishing value of | b | is | b | = 277/a
and one shows easily that /3 = 3; here &Q is of the or-
der of the Curie temperature and a the lattice constant.
If we assume that the quadratic dispersion law is valid
up to k «b/2n, the smallest value of Z/Ei is reached

at the point k^ = b/2n (i < n), k̂  = -b/2n (i > n) and is
equal to ne(b/2n) = v2&Q/n. We can thus expect that
the total probability for the loss of momentum of the
system of spin waves will, when we take anharmonics
of all orders into account, be proportional to an expres-
sion of the form

where the B n are numerical coefficients.
It follows from this equation that when the tempera-

ture is lowered the kinetic processes will be determined
by all higher-order anharmonics. We note that this
statement is based essentially on only two assumptions:
"non-linearity" of the dispersion law and the presence
of different orders of anharmonicity in the Hamiltonian
of the quasi-particle interaction.

2. As an illustration we give the result of a calcula-
tion of the spin-wave-connected thermal conductivity of
a ferrodielectric:1-10-1 *

2

where S = a3M0/MB i s t n e s P i n o f a n atom; the summa-
tion is from n = 2 to n ~ &Q/T.

The last limitation is important, for owing to the
presence of factors (n!)2 in the coefficients B n the
terms in the series begin to increase when n ~ BQ/T.
This is not surprising as we assumed in the calcula-
tions that ©c/nT » 1. The exact value of the upper
limit for the summation over n is unimportant as for
n ~ ®Q/T the terms in the series are negligibly small.

At relatively high temperatures (but exp (0C /T) » 1)
the first term in the sum plays the main role and, in

*As we noted already at low temperatures heat transfer in fer-
rodielectrics occurs predominantly through spin waves. At the same time
Umklapp processes can serve as the cause of thermal resistivity both for
collisions between spin waves and for spin-phonon and phonon-phonon
collisions.[12] However, since the dispersion law for the phonons is
linear, the probability for multiple particle collisions in which they take
part is relatively small. More exactly, this will be the case at sufficiently
low temperatures when higher-order anharmonics play the main role.
Up to very low temperatures collisions between spin waves are deter-
mined by exchange interactions which were the only ones to be taken
into account when the calculation was made.

FIG. 3.

accordance with [5],

2T (3.3)
Starting at a temperature T x « ©c/10 the second term
in the sum (n = 3) dominates and the temperature de-
pendence becomes flatter:

* ~'~ha~ \~f~) exP [ 3T ) '

Finally at sufficiently low temperatures a small group
of terms in the sum with n « ( T / © c In (0C /T))~1 / 2 (we
assume that In (0Q/T) » 1) plays the main role and one
shows easily that

The temperature dependence of the thermal conductivity
coefficients has thus a wavy character (see Fig. 3; the
dotted curve corresponds to the usual behavior (3.3)).

To clarify the possibility of finding such a depend-
ence, we find the effective mean free path in the region
where deviations from the law (3.3) begin, i.e., at
T ss Tx. Comparing the results given above with Eq.
(1.1) (in the present case C « a"3(T/© c)3 / 2 , v T

ssafi'VTOc)), w e show easily that ^ ^ ( T ^ « 1 cm. It is
thus necessary to have pure specimens with a trans-
verse dimension d > 1 cm. In the opposite case it would
appear that for T £ Ti the scattering of the spin waves
by the boundaries will play the main role. However, we
showed in Sec. 2 that Ze*f must be compared not with
the diameter d of the specimen but with the appreciably
larger diffusion length d2/ZN (e.g., d2/ZN « 1 cm when
d « 10"2 cm and zN« 10~4 cm).

4. Second Sound in Dielectrics

1. It is well known that macroscopic oscillations of
essentially different nature—first and second sound-
can propagate in superfluid helium. i u : In the approxi-
mation in which thermal expansion is neglected the first
kind of waves are the usual sound oscillations which
are possible in any liquid or gas while the second kind
of waves reduces to pure temperature oscillations.

From the microscopic point of view second sound is
the vibrations of the density of thermal excitations in
helium and it can thus be treated as ordinary sound in
a gas of quasi-particles. It is then, of course, assumed
that collisions between quasi-particles occur suffi-
ciently often (the period of the oscillations and the
wavelength of the sound must be large compared with
the mean free flight time and the mean free path, re -
spectively).
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From what we said it is clear that second sound is
not connected with any specific properties of superfluid
helium and is , generally speaking, possible in any gas
of quasi-particles. For this it is, however, necessary
that when quasi-particles collide the total quasi-mo-
mentum be conserved, as well as the total energy. In
other words, second sound is only possible in solids
under conditions when the normal collisions between
quasi-particles are appreciably more probable than
Umklapp collisions (in liquids U-processes are clearly
impossible as a matter of principle). We saw that when
the temperature is lowered such a situation unavoidably
occurs and is, moreover, realized experimentally (see
Sec. 2).

The problem of the possibility of second sound in
solids has been often discussed in the literature (see,
e.g., t14"161 Recently this interesting phenomenon has
been observed experimentally.1171

2. We can describe the properties of second sound
most naturally by starting from the hydrodynamic equa-
tions, which we shall now derive. The Navier-Stokes
kind of equation obtained in Sec. 2 is in the present
case unsuitable (in its derivation we assumed that the
temperature was given and the process was stationary).

We shall start from the kinetic equation

- k - r ) ]

In the zeroth approximation

/*W°> = o

and thus N<0) = N0(e - u - p — Ei> + fi), where u(r, t) is
the velocity of the ordered motion, £ the relative cor-
rection to the temperature: T(r, t) = T(l + ̂ (r, t)), /i
the non-equilibrium chemical potential.

We first of all consider the case when the number of
quasi-particles is not conserved in normal collisions so
that (i = 0. We saw that in fact this equation can also be
satisfied when the number of particles is conserved.

In first approximation

(4.1)

or

We can write the conditions that this equation can be
solved for N a ) (which is a consequence of the conser-
vation of energy and momentum in normal collisions) in
the form .

(e2) # + -j (E (pv)> div u = 0,

= 3 (PiP

We have used here the notation

- - I 1 (P) ^-° <

and used the fact that for any dispersion law the tensor
(epiVfc) is diagonal and therefore, for instance
(e(W)(u-p)> = 1/3<e(p> v)> div u. Eliminating u we get

<«-%*<*»•

H e n c e , t h e v e l o c i t y o f s e c o n d s o u n d i s

( 4 . 3 )

w h e r e x i s t h e d i r e c t i o n i n w h i c h t h e w a v e p r o p a g a t e s .

I n t h e i s o t r o p i c c a s e

~ ~ ~ i 7 s ( e ! v < D 5 r ' ( 4 . 4 )

W h e n e = s p , t h e w e l l - k n o w n r e l a t i o n V = s / - / 3 ~ f o l -

l o w s f r o m t h i s .

W e c a n c o n s i d e r i n a s i m i l a r w a y t h e c a s e w h e n t h e

n u m b e r o f q u a s i - p a r t i c l e s i s c o n s e r v e d i n n o r m a l c o l -

l i s i o n s . S t a r t i n g f r o m t h e s e t o f e q u a t i o n s

( e 2 ) 0 + ( e ) j i - { - — ( e ( p v ) > d i v u - - 0 ,

( 4 . 5 )

w e f i n d a s t h e r e s u l t o f s i m p l e c a l c u l a t i o n s

V2--li~-i\ 2 <e (pv)> (Pv> <f> — (e (pv)>2 <1) — <pv)'2 •
( 4 . 6 )

T h e s e c o n d s o u n d v e l o c i t y d e p e n d s t h u s o n w h e t h e r o r

n o t t h e n u m b e r o f q u a s i - p a r t i c l e s i s c o n s e r v e d i n t h e

c o l l i s i o n s .

W e m u s t , h o w e v e r , b e a r i n m i n d t h a t a t l o w t e m p e r -

a t u r e s t h e q u a s i - p a r t i c l e d i s p e r s i o n l a w m a y a s a r u l e

b e a s s u m e d t o b e a p o w e r l a w : e ( p ) = p
n

f ( p / p ) . T h e n

p - v = n e ( p ) a n d

0 . ( 4 . 7 )

U s i n g t h i s r e l a t i o n w e s h o w e a s i l y t h a t E q s . ( 4 . 3 ) a n d

( 4 . 6 ) f o r t h e s e c o n d s o u n d v e l o c i t y a r e t h e s a m e a n d i t

f o l l o w s f r o m t h e f i r s t t w o E q s . ( 4 . 5 ) t h a t p . = 0 .

T o e l u c i d a t e t h e s e r e s u l t s w e n o t e t h a t b y v i r t u e o f

( 4 . 7 ) t h e e q u a t i o n o f c o n t i n u i t y f o r t h e n u m b e r o f p a r t i -

c l e s

< e > b ~ 7 7 ( p v ) d i v u — 0

i s a c o n s e q u e n c e o f t h e e n e r g y c o n s e r v a t i o n ( f i r s t o f

E q s . ( 4 . 2 ) ) . I t i s n a t u r a l t h a t t h e n i t i s c o m p l e t e l y i m -

m a t e r i a l w h e t h e r o r n o t t h e n u m b e r o f p a r t i c l e s i s c o n -

s e r v e d i n c o l l i s i o n s .

W e c a n e a s i l y g e n e r a l i z e t h e c o n s i d e r a t i o n s g i v e n t o

t h e c a s e o f a s y s t e m c o n s i s t i n g o f s e v e r a l d i f f e r e n t

k i n d s o f i n t e r a c t i n g q u a s i - p a r t i c l e s . A s u s u a l t h e p r o b -

l e m i s r e d u c e d t o a s e t o f e q u a t i o n s s u c h a s ( 4 . 2 ) o r

( 4 . 5 ) w i t h t h e d i f f e r e n c e t h a t n o w t h e c o e f f i c i e n t s w i l l

b e s u m s o v e r d i f f e r e n t k i n d s o f q u a s i - p a r t i c l e s ( s i n c e

t h e e n e r g y a n d m o m e n t u m i s o n l y c o n s e r v e d f o r t h e

s y s t e m a s a w h o l e ) . T h e r e f o r e

The dispersion equation has thus the form [i>~ exp i(wt

I n t h e c a s e o f a n o r m a l d i e l e c t r i c a t a k e s o n t h r e e v a l -

u e s c o r r e s p o n d i n g t o o n e l o n g i t u d i n a l a n d t w o t r a n s -

v e r s e b r a n c h e s o f t h e p h o n o n s p e c t r u m .
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The damping of second sound in dielectrics is con-
nected with two facts: 1) finiteness of the mean free
flight time and of the mean free path of the quasi-parti-
cles in relation to normal collisions; 2) the presence of
collisions in which the quasi-momentum is not con-
served (Umklapp processes, scattering by lattice de-
fects, etc.). Since the second sound velocity V and the
average thermal velocity are of the same order of mag-
nitude the contribution from the first mechanism will
be proportional to the small parameter ZN/A (A = 2^/k
is the sound wavelength) while the contribution from the
second mechanism is proportional to the small param-
eter X/lv. In other words (see c15a>16bJ)

Im k lN I

In principle one can obtain an exact result in the frame-
work of the approach developed above. To do this we
must, in the derivation of the hydrodynamic equations,
cut off the chain of coupled equations not in the second
but in the third stage and look for the quantities u and
t? in the form of expansions in the small parameters
/ N A and X/r (Eqs. (4.2) and (4.5) correspond to the
zeroth approximation in these parameters). However,
the situation is complicated by the fact that the function
N a ) satisfies the integral equation (4.1) which cannot be
solved in its general form (cf. Sec. 2).

3. Second sound in ferrodielectrics has some inter-
esting properties.cl6] Oscillations of the spin wave den-
sity are accompanied by magnetic-moment oscillations
and lead thus to the appearance of a variable magnetic
field. It turns out that this field has a relatively small
absolute value (so that second sound remains mainly a
temperature wave) but at the same time it is completely
accessible to experimental observation. The propaga-
tion velocity of second sound is determined by the usual
formula (4.3) but now, of course, it depends on the tem-
perature:

Relativistic interactions which do not conserve the
number of spin waves may considerably affect the
damping of second sound on top of the mechanisms
enumerated above in subsection 2. We noted already
that normal collisions between spin waves at not too
low temperatures are connected with exchange interac-
tions which conserve the number of spin waves. At the
same time the spin wave dispersion law is not strictly
a power law (due to the anisotropy energy or the pres-
ence of an external magnetic field). Under such condi-
tions normal collisions connected with relativistic in-
teractions lead to a relaxation of the chemical poten-
tial n (just as collisions which do not conserve quasi-
momentum lead to a relaxation of the velocity of the
ordered motion u).

II. KINETIC PHENOMENA IN METALS

5. Electrical Conductivity of Metals at Low
Temperatures

In this section we discuss some basic mechanisms
for the scattering of electrons and their influence on
the low-temperature electrical conductivity of metals.

The discussion has no pretension at being complete; our
aim is to make clear the conditions under which normal
collisions between electrons and phonons may turn out
to be important.

It is well known that at sufficiently low temperatures
the electrical resistivity is as a rule constant and is de-
termined by the scattering of the electrons by impurity
atoms and other structural lattice defects and also by
the boundaries of the sample. The temperature depend-
ence is due to different interactions in the electron-
phonon system. One usually employs the equation

(5.1)

where p0 is the residual resistance, the second term is
connected with electron-electron collisions and the
third one with electron-phonon collisions. In the fol-
lowing we shall be dealing with sufficiently pure and
large single crystal specimens for which the residual
resistance occurs only at helium temperatures.

1. Electron-electron collisions. A calculation based
upon the Born approximation shows that in the helium
temperature region the resistivity must be determined
by the second term in Eq. (5.1), i.e., p(T) - p 0 ~T2 . : 18J

From the point of view of principle the existence of such
a dependence causes, apparently no doubts. However, if
we exclude transition metals this behavior is not ob-
served experimentally. The problem reduces to an esti-
mate of the numerical factor of T2.

We note first of all that the Born approximation
gives an overestimate for the electron-electron scat-
tering cross section.11193 We must, moreover, take into
account that a direct contribution to the resistivity
comes only from collisions accompanied by Umklapp
(U-processes). Such collisions are clearly possible
only between electrons which lie in well-defined regions
which are cut from the Fermi surface by planes perpen-
dicular to the Umklapp vector and bisecting the distance
between the center of the Brillouin zone and its bound-
aries. It is probable that the fact that the matrix ele-
ment for a U-process contains an interference factor
which apparently is small compared with unity (see
C20], pp. 165, 371) is more important. We note, however,
that N-processes (i.e., collisions without Umklapp) can
also lead to a correction proportional to T2 for any
non-spherical Fermi surface (see below, Sec. 7).

From what has been said it is clear that theoretical
considerations at the moment do not allow us to make a
sufficiently reliable estimate of the order of magnitude
of the coefficient a in Eq. (5.1) and to indicate with
what accuracy the quadratic dependence of the res is -
tivity must be observed experimentally in this or that
metal. In this connection it is of interest to make a
comparison with experimental data on infrared absorp-
tion in metals. According to c2: : the effective frequency
of electron-electron collisions can be written in the
following form which is useful both in the static and in
the high-frequency case:

T"=T»1 [(•£)*+(w)2] (5.2)

(u> is the frequency of the electromagnetic field, eF the
Fermi energy). The electron-electron collisions are
thus in the near infrared region (A = 2?rc/a) as 1 to 20 n,



HYDRODYNAMIC E F F E C T S IN SOLIDS AT LOW T E M P E R A T U R E 263

Rto « 103 to 104oK) 103 to 105 times more probable than
in the static case at helium temperatures.

For a not too impure metal the infrared absorption
coefficient can be written in the form

r = r 0 + - ^ - , (5-3)

where the quantity F o , which does not depend on w or
T, is connected with the collisions of the electrons with
the phonons or with the boundaries of the specimen,
w0 = (47rne2/m)1/2 is the plasma frequency.

Recently it has been ascertained that a quadratic
frequency dependence of the infrared absorption occurs
for many metals. Most trustworthy are here the results
obtained for noble metals, [22~24] for which the limit of
the internal photoeffect lies in the optical region of the
spectrum so that the behavior of interest to us can be
separated reliably. Comparison of these data with Eqs.
(5.2), (5.3), and (5.1) shows that the term proportional
to T2 may at helium temperatures be only a few per-
cents of the residual resistivity even in the purest sam-
ples where the impurity mean free path Z6^R;0,1 cm.

2. Interaction with phonons. The T5 law for the r e -
sistivity is well known to have been obtained by Bloch
under the assumption that the phonons were in equilib-
rium. In other words, one assumes that there exists
some mechanism for the dissipation of the momentum
which flows continuously from the electrons into the
phonon system. Peierls showed that phonon-phonon
Umklapp collisions are such a mechanism. However,
we have seen that when the temperatures is lowered
the probability for these U-processes decreases expo-
nentially as exp ( -ye /T) . It is difficult to estimate the
magnitude of the numerical factor y, since it is deter-
mined by the behavior of the acoustic branches of the
phonon spectrum at large values of the quasi-momen-
tum (2y0 is equal to the least value of the sum of en-
ergies of all phonons taking part in the collision taking
the appropriate energy and momentum conservation
laws into account, see Sec. 3). It is in any case clear
that there exists for every metal some well-defined
temperature starting from which U-processes can no
longer provide equilibrium of the phonons and the cor-
responding contribution to the resistivity must decrease
exponentially. Comparison with data on the thermal
conductivity of dielectrics shows that such a situation
must apparently occur in a rather wide range of low
temperatures, say when T /0 ~ 1/10.

In principle there is yet another possibility to which
Peierls also drew attention. This is electron-phonon
Umklapp collisions. From the momentum conservation
law p — p' — q = fib it follows that at low temperatures
when the phonon momentum q is small compared to the
electron momentum on the Fermi surface (as to order
of magnitude q/p ~ T/©) the difference p — p' is ap-
proximately equal to fib. This means that the initial
and final states of the electron p and p' must be close
to equivalent points on opposite boundaries of the Bril-
louin zone. Umklapp processes are thus only possible
with an appreciable probability when the Fermi surface
intersects the zone boundary or comes very close to it.
We must, however, remember that the elementary cell
in p-space can be chosen arbitrarily and the separation
of electron-phonon collisions into N- and U-processes
is to a large extent arbitrary. In particular, one can a l -

ways achieve that a given N-process should be consid-
ered as a U-process, and vice versa. To elucidate the
physical situation in a given case it is thus convenient
not to restrict ourselves to one cell but to consider the
whole of p-space (the so-called "repeated zone" meth-
od). When this is done all collisions are "normal"
(since momentum is conserved) and we ascertain chief-
ly the connection between the electrical resistivity and
the topology of the Fermi surface.

Let us assume that the electrical field E is non-
vanishing only during a short time interval At which is
small compared to the relaxation time. As a result of
the action of the field the electron distribution in p-
space is clearly shifted as a whole by the amount Ap
= eE At. One can verify that the resistivity is non-
vanishing if the electron system tends to equilibrium
under the action of collisions with phonons.

In the case of a closed Fermi surface the non-equi-
librium electrons will predominantly absorb phonons of
a single direction. As a result there will appear an ex-
cess phonon current in the opposite direction. The sta-
tionary state in which the drift velocities of the elec-
trons and of the phonons are the same will clearly be a
non-equilibrium one. All we have said refers also to
the hole surface—only the drift direction of the phonons
will be the reverse.

Equilibrium is possible in the case when there are
both electron and hole surfaces while the number of
electrons must necessarily be equal to that of holes.
This condition means that the total momentum obtained
by the system from the external field vanishes. The
role of the phonons reduces to redistributing momentum
between electrons and holes.

Equilibrium can apparently be established in the case
of an open Fermi surface, for then a shift in the elec-
tron distribution can be reduced by means of phonons in
both directions (one can easily understand that electron
transitions which in the usual terminology correspond
to N- and U-processes, generate phonon currents in
opposite directions).

3. Statement of the problem. The considerations
given above show that in typical metals electron-elec-
tron collisions are unimportant. On the other hand, we
saw that at low temperatures electron-phonon interac-
tions can by far not always lead to an appreciable elec-
trical resistivity. This is, for instance, the case for
closed Fermi surfaces (provided the number of elec-
trons is not equal to that of holes) or for surfaces which
are open, but not in all directions. Moreover, in a num-
ber of cases the Fermi surfaces although open contain
relatively narrow connecting pieces.

From what has been said it is clear that in many
metals at sufficiently low temperatures only normal
collisions between electrons and phonons take place,
apart from the scattering of electrons by different kinds
of static objects (localized defects, specimen bounda-
ries, etc.). A study of the electrical conductivity of
metals in such a situation is the topic of the further
discussion.

We denote by Zep and Zpe the mean free paths for
electron-phonon and phonon-electron scattering, r e -
spectively. For a typical metal in which the number of
conduction electrons is of the order of the number of
atoms
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\ T / T \ * f

where Zep(©) « aejp/s (see, e.g., [ 4 ] ) . Thus, although
the two mean free paths are connected with the same
collision processes we have at low temperatures always
1 ep >;> ^pe- A phonon emitted by an electron will thus
after a very short trajectory and correspondingly after
a very short time be absorbed by some other electron.
In fact, we are thus dealing with effective electron-
electron collisions which are characterized by a mean
free path ZN « Zep(T).

Since for the collisions considered the quasi-momen-
tum is conserved they do not by themselves lead to an
electrical resistivity. It turns out, however, that these
collisions may affect very considerably the process of
transfer of momentum from the electron gas to static
objects and thus change the resistivity. The mechanism
of this influence is determined by the nature of the r e -
sidual resistance. More precisely, everything depends
on the fact that the mean free path ZN and the charac-
teristic distance d between static objects are connected
at those temperatures when the probabilities for "e lec-
tron-electron" collisions and for collisions with static
objects are the same.

If the cause of the residual resistance is macro-
scopic objects (boundaries of the specimen, disloca-
tions, etc.) the inequality № « d may be satisfied. A
peculiar mechanism of electrical resistivity may then
occur, which reminds us of the flow of a viscous liquid
(cf. Sec. 2). The resistivity depends in an unusual fash-
ion on T and d and in particular there must be a mini-
mum in the temperature dependence p(T) (see Sec. 6).

If, however, the residual resistance is connected
with the scattering of electrons by microscopic lattice
defects (such as impurity atoms) in the temperature re-
gion of interest to us we have always № » d. The in -
fluence of N-processes occurs then only in the case of
an anisotropic dispersion law. The resistivity initially
increases with increasing temperature, later reaches
saturation which again changes to an increase (see
Sec. 7).

In the next section we consider the high-frequency
electrical conductivity of metals. We show that taking
the normal collisions into account may lead to an ap-
preciable change in the nature of the skin effect; in par-
ticular, there appears a rather wide range of frequen-
cies in which the surface impedance of the metal de -
pends in an unusual way on the frequency of the electro-
magnetic field and on the temperature (Sec. 8).

In the first two sections we follow mainly t 2 5 J , and in
the last one we follow [ 2 6 3.

6. Electrical Conductivity of Thin Samples

In this section we shall consider for concreteness the
case when the residual resistance occurs due to the
scattering of electrons at the boundaries of the sample
although it should be clear from what follows that the
results obtained are qualitatively valid for any macro-
scopic deformations. We noted already that under the
conditions of interest to us the electron-phonon inter-
action in fact reduces to electron-electron collisions
characterized by a mean free path ZN « Zep(T).

To explain the physical cause of the influence of the

normal collisions on the electrical conductivity we con-
sider the limiting cases ZN » d and ZN « d. In the first
case the electron travels between two collisions with
the walls along a path of order d without practically
any collisions inside the volume. Hence the resistivity
p ~ d"1 and is practically temperature independent. If,
however, ZN « d an electron inside the sample will, on
the other hand, before reaching the wall undergo many
normal collisions. It is clear that by this the path tra-
versed by the electron between two collisions with the
boundaries (and also the corresponding time) is consid-
erably increased. All the time the electron is acceler-
erated in the external field. The fact that as a result of
collisions there is an exchange of momentum between
the electrons does clearly not change the situation. Us-
ing the well-known formulas for Brownian motion we
can easily show that the length of the trajectory between
two collisions with the boundaries is of the order dyzN.
Since this quantity has the meaning of an effective mean
free path it is natural to expect that p ~ Z^/d2. In con-
trast to the Knudsen case the resistivity thus contains
the square of the thickness of the sample and mainly
depends on the temperature in an unusual manner: at
the same time as the mean free path Z^ « Zep(T) it de-
creases with increasing temperature.

Starting from these intuitive considerations we can
now easily establish the behavior of the resistivity
qualitatively (Fig. 4). At very low temperatures while
ft » d the resistivity is roughly speaking independent
of the temperature and proportional to d"\ Then,
starting with the temperature for which № a* d the r e -
sistivity decreases with increasing T as p ~ T~5d~2

(when zN« d). This decrease will go on until the quan-
tity d2/zN is no longer comparable with one of the
mean free paths characterizing the volume collisions
with loss of momentum. If this is the impurity mean
free path the resistivity remains further constant and
equal to the resistivity of a sample of infinite dimen-
sions (with the same concentration of impurity atoms).
Later an increase of the resistivity with temperature
must begin which is, for instance, connected with pho-
non-phonon U-processes. The corresponding mean
free path Z^ changes basically as exp (—y@/T) and
will be estimated in the following.

We formulate the conditions under which a diffusion
mechanism must occur for the electrical conductivity:

a) The transverse dimensions of the sample must be
small compared with the electron-impurity mean free
path: d « Zei-

b) It is necessary that the phonon-phonon U-proc-
esses still be ineffective when Zep(T) as d. More pre-
cisely, in some temperature range the following in-
equality must hold:

teP(T)«d«lu(T). ( 6.i)

c) Electron-phonon U-processes are unimportant
(see Sec. 5).

For a rough orientation we note that when Zej
* 0.1 cm and d » 10~2 to 10"3 cm condition (6.1) must
be satisfied in the interval between helium and hydro-
gen temperatures although the situation in reality de-
pends essentially on the properties of the metal.

For a quantitative description of the mechanism con-
sidered it is natural to use the hydrodynamic approach
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FIG. 4.

(cf. Sec. 2). This method is part icularly convenient in
the present case since it allows us to take into account
together with the influence of the boundaries the volume
collisions with loss of quasi-momentum (under condi-
tions where they a r e considerably less probable than
N-processes ) .

The hydrodynamic equation for the electron-phonon
gas can be obtained in the usual way from the appropr i -
ate kinetic equations. We wri te these equations in the
form

(6.2)

Here f(p, r) and N(q, r) are the electron and phonon
distribution functions, v = dt/dp, s = 3hfq/3q,

fep is the electron-phonon collision operator, I e i the
electron-impurity operator, and so on. We neglect
phonon-impurity scattering, since at low temperatures
the probability of this process is roughly speaking
(0/T)4 times smaller than the probability for electron-
impurity scattering.* Moreover, it will become clear
from what follows that the contribution from the phonon-
impurity scattering is underestimated in the hydrody-
namic equation by another additional factor of order
v F / s ( T / 0 ) \

It is natural to use for an approximate solution of
Eqs. (6.2) the fact that N-processes have the largest
probability. The actual solution will be written as ser-
ies in the small parameters Zep/d. fep/'ei, and Zep/Zu.
The method of successive approximations leads to the
following chain of equations (cf. Sec. 2):

3r
(6.3)

(6.4)f = /"" + / '" -r /"' + • • •> N = Nm + A1'" + A<2> + . .

F r o m t h e f i r s t p a i r of e q u a t i o n s fo l lows t h a t

/"" = /o(e — P"). Nm = N0(hvq-qu),

w h e r e N o i s t he B o s e d i s t r i b u t i o n funct ion and u ( r ) h a s
the m e a n i n g of a d r i f t v e l o c i t y of t he e l e c t r o n - p h o n o n
s y s t e m a s a w h o l e .

T o s o l v e t h e s e c o n d p a i r of e q u a t i o n s , w h i c h now t a k e
t h e f o r m

*A different situation may arise when the metal contains an appreci-
able amount of isotopes. However, the probability for phonon scattering
contains in this case an additional small factor (AM/M)2 (AM is the dif-
ference in mass between the isotope and the main atom).

(6.5)
it is necessa ry to use the explicit form of the collision
integrals .

We wri te the Hamiltonian of the electron-phonon in-
teract ion in the form

H= 2 A (p, q)ajap+qi>5+ C.C.
P. Q

where ap and bq a re F e r m i and Bose opera tors . It is
important for what follows that we have I A(p, q) 12

~ |q | for smal l | q | . One shows easi ly that in the a p -
proximation which is l inear in f(1> and N ( 1 )

I* if" • A"11} = 2 I XV"•" (<Pp-q - «Pp + W dp,

l^ = ^r -^r IA (p, q) |2 8 (6p+q - eP - hvq) /„ (ep) A'o (fevq) [1 - /„ (ep+q)l,

- /o (eP-q)l [1 "f
r = - T ^ t , N<»^-T^q. ( 6 > 6 )

We have not written down the phonon-phonon collision
integral since we can neglect the term IppN(1) in com-
parison with ipe{f(1), N(1)}. Analysis shows that the ra-
tio of these terms is of the order (T/0)4, a result which
could have been expected beforehand from the ratio of
the mean free paths (see Eqs. (2.4) and (5.4)).

We can now solve the second of Eqs. (6.5) for ^q
(see (6.6)) and substitute the result into the first equa-
tion. The equation obtained for the function <pn can in
principle be solved for any electron and phonon disper-
sion laws. We shall, however, restrict ourselves to the
isotropic case as the result of a general discussion all
the same contains undetermined numerical coefficients
of order unity. The angular dependence then clearly can
be eliminated and it is convenient to look for a solution
in the form

Afte r r a t h e r c o m p l i c a t e d t r a n s f o r m a t i o n s t h e equa t ion
for t he funct ion x can b e w r i t t e n in t h e f o r m

\ Kxx.x(x')dx'+[-L.j I Qxx-X(x')dx'=exfl(x), (6.7)

w h e r e

Iixx. = (x - x'f /„ (x) /„ (x1) \e~

/0 (x) = (1 + e1)"1, x = (ep-ep) ,T.

We have d r o p p e d u n i m p o r t a n t n u m e r i c a l coe f f i c i en t s of
o r d e r un i t y . F o r w h a t fo l lows i t i s i m p o r t a n t t h a t a l l
k e r n e l s K, Q, R , a n d S ( n ) a r e s y m m e t r i c a n d

I Kxx.dx'--=0, ? S[n
xldx' --. 0. (6.8)

P r o c e e d i n g t o an a p p r o x i m a t e s o l u t i o n of E q . (6.7) ,
w e no t e t h a t if w e d r o p in i t t h e t e r m w i t h ( T / © ) 2 the
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equation obtained is insoluble. In fact, owing to the
symmetry of the kernel Kxx, and the first of Eqs. (6.8)
the corresponding homogeneous transposed equation
has a solution x = const which is not orthogonal to the

x jright-hand side exfj;(x). We must thus develop the
method of successive approximations as follows:

Kxx,t
a> (x') dx' = exfl (x) -(^ x1) dx',...

From the first equation it follows that x (0> = const. A ~.10 5 c m ^Zei.

7. Electrical Conductivity of Bulk Samples

The residual resistance of sufficiently large single
crystal samples is as a rule connected with the scat-
tering of the electrons by the microscopic defects in the
crystalline lattice such as impurity atoms. We noted
already that in that case the hydrodynamic situation is
impossible as the mean free path Zep is always appre-
ciably larger than the average distance A between at-
oms. Indeed, even in the purest metals where the elec-
tron-impurity mean free path Ze j~ 1 cm, the quantity

£ 10"5 ( ~1 1 / 3a?? ~1/3, rj is the concen-

The condition that we can solve the second equation for
X(1) gives

where

a'1=\ [ <?«• dx dx'^l {{x-x'f Rxx. dx dx' « 240£(5) ss 250.

Finally, we multiply Eq. (6.3) by p, Eq. (6.4) by q,
integrate, and add. Terms containing f(2)and N<2) can-
cel one another and as a result we get the required hy
drodynamic equation for u(r). Up to terms of higher -
order in T/& we get*

(6.9)

where

' T \ 5/2
."5"/ e

(see Eq. (2.5)).
The quantity Zep(T) coincides exactly with the mean

free path occurring in Bloch's theory of electrical con-
ductivity. As we should have expected from intuitive
considerations, the kinematic viscosity v is in first ap-
proximation determined solely by the electron-phonon
mean free path Zep. One shows easily that the correc-
tion connected with the finiteness of Zpe is of order
u(T/&)8. The influence of phonon-phonon U-processes
is underestimated by the factor vjr/s(T/©)4 which
clearly refers to all collisions occurring in the phonon
system.

The solution of Eq. (6.9) must satisfy the boundary
condition u(r) = 0 on the boundaries of the specimen
which corresponds to diffuse scattering of the elec-
trons. One verifies easily that the electrical current
density is j(r) = ne u(r), where n = (87r/3)(pp/h)3 is the
electron density. To evaluate the resistivity we must
average this expression over the cross-section of the
sample. It is convenient to write the result in the usual
form: p~l = ne2pp1 / e^ where Ze^ is the effective mean
free path. It is clear that the function Zeff(T, d) is not
very sensitive to the shape of the sample (see Sec. 2)
and has the form predicted earlier from intuitive con-
siderations. We must then understand by d a charac-
teristic transverse dimension of the sample or the dis-
tance between macroscopic deformations.

tration of impurity atoms). The presence of normal
collisions does therefore not influence at all the proba-
bility for the collision of an electron with an impurity
atom, even in the case where the first collisions occur
appreciably more often than the second. However, we
have seen that it does not follow at all from this that
the normal collisions do not affect the resistivity al-
though it is not possible to interpret the result of this
influence as intuitively as in the case of thin speci-
mens.

Turning to calculations, we note that in the case con-
sidered the electron dispersion law cannot be assumed
to be isotropic. Indeed, when e = e( |p | ) , p = mv and it
follows from the momentum conservation law that nor-
mal collisions do not influence the electrical current
j = e Z/v at all.

We write the set of kinetic equations in the form

In contrast to the preceding section, we have denoted
the operator for the collisions with impurities by W.
We assume as usual that these collisions are elastic.
Any function of the energy can then be taken through the
operator W, in particular,

Moreover, it follows from the Hermiticity of the corre-
sponding interaction Hamiltonian that the operator W is
symmetric and real:

WV = WVp = ^ pp' ( ̂ <PP = \ ww'Vv' dP') •

Using the second of Eqs. (7.1) we eliminate î q and
write the equation for (pn in the comprehensive form
(see (6.6)):

Since this equation cannot be solved in its general
form, we consider limiting cases.

1. We start with the very low temperature region,
where N-processes can be considered as a small cor-
rection (Zei « Zep(T)). In the zeroth approximation the
solution of Eq. (7.2) has the form

"This equation is valid under the condition div u = 0, which follows
from (6.5) and is equivalent to the requirement of electrical neutrality.
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coordinates along the principal directions of the sym-
metric tensor

is clearly independent of the temperature. In the next
approximation

~

and the corresponding current density

can be readily shown to be proportional to T5.
To make clear the signs of the corresponding cor-

rections to the main value of the electrical resistivity
tensor we study the scalar j ^ E . Starting from the

symmetry of the quantity £ ( £ ? + 5 = £ p+q) w e check
easily that for any function g(p)

Using this relation and the Hermiticity of the operator
W"1 we can show that

F (P. dq,

where
F (p, q) = W^Ev,,.̂  - W ÊVp.

Finally it is convenient to write this result in the form

j,E= —-^- ^ l(F, F) — (F, G)2)dq.

Here G"2 = / £n+<? dP a n d t h e brackets indicate the

scalar product with the positive weight £ •:
, q '

(F, G) = \ F(p, q) G (p, q) £p+q dp,

so that, for instance, (G, G) = 1. By virtue of the
Schwarz inequality the quantity — J j / E is non-negative
and one can show that it vanishes only for an isotropic
electron dispersion law. (In the lat ter case the action
of the operator W"1 reduces to multiplication by a r e -
laxation t ime and the difference v p + q ~~ v p i-s independ-
ent of p.) Thus the main values of the resis t ivi ty ten-
sor change according to p = p0 + |3T5 where /3 is pos i -
tive and non-vanishing for any anisotropic F e r m i s u r -
face.

2. It is clear from general considerations that such
an increase in the res is t iv i ty with tempera ture cannot
continue a rb i t ra r i ly far. Indeed, when the tempera ture
is increased the normal collisions become more prob-
able, but they do not lead by themselves to a finite r e -
sistivity. We find the approximate solution of Eq. (7.2)
for this limiting case .

In zeroth approximation cp'o = u • p / T where u has
the meaning of a drift velocity of the electron-phonon
system as a whole (in this approximation f(p)
= f0 (£p - u • p) » f0 (ep) - u • p d/dc f0 (ep)). The vector
u can be found from the condition that the f i rs t approx-
imation equation

e 1 p (Ev) — dp = ? p - i i W (up) dp.

can be solved. If we choose the axes of the Car tes ian

then

The corresponding current density

does not depend on the temperature but at the same
time it differs from j 0 (see (7.3)). We can write the
difference j 0 * E - Jo* E in the form

l i GO2], (7.4)

where

<D(p) = Evp, Gi{p) = {Wpi, Wpiy^'Wpi

and the scalar product is defined as follows:

One checks easily that this definition satisfies all
necessary properties. In particular, commutativity fol-
lows from the symmetry and "elasticity" of the opera-
tor W. We can directly check that the scalar square of
any function is positive by using the fact that

where the symmetric and positive quantities Bp p ' are
proportional to the square of the matrix elements of the
electron-impurity interaction. One then shows easily
that

((D, (D)= ^ fip 5 5

Since the functions Ĝ  are orthonormalized, i.e.,
(Gi, Gk) = 5i, k the difference (7.4) is non-negative and
vanishes only for an isotropic dispersion law. In the
latter case Gj~ pi and the function *(p) = EjPi/m can
be expanded in the Gi. In the temperature range con-
sidered the resistivity is thus constant in first approx-
imation and larger than the residual resistivity. One
can show that in the next approximation a correction
proportional to T~5 occurs.

For the sake of convenience we introduce a temper-
ature To for which the probabilities for electron-pho-
non and electron-impurity collisions are the same (i.e.,
^gp(T0) ~ ^ei)- T n e results obtained in the present sec-
tion can then be written in the form

where y, 5 > 0 and p'0> p0 for any anisotropic electron
dispersion law.

It is clear that when the temperature is further in-
creased phonon-phonon Umklapp collisions are turned
on and the resistivity again begins to increase (Fig. 5).
It is difficult to expect that experimentally the res is -
tivity will be constant in the intermediate temperature
range. For instance, electron-electron collisions may
occur here. We note that the recently performed meas-
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The solution of this equation must satisfy the boundary
conditions

FIG. 5.

urements of the electrical conductivity of very pure
aluminum in the region of helium temperatures led to a
very similar dependence p(T).lZ!1

8. High-frequency Properties

We considered in Sec. 6 the case where the charac-
teristic dimensions of the system did not exceed the
mean free path with loss of quasi-momentum simply
because of the presence of the boundaries of the sam-
ple. Such a situation can, however, arise also in an in-
finite sample under conditions when the electrical field
and the current connected with it are non-zero only in a
narrow layer. This just occurs for the skin effect in
metals, which we shall treat in the present section.

The nature of the skin effect is determined by the
ratio between the skin depth 6 and the mean free paths
ZN and /V (describing the normal collisions and colli-
sions with loss of quasi-momentum). It is clear that
the inequalities 6 » /V and 6 « i^, № correspond to
the well-known cases of the normal and the anomalous
skin effect. There is yet another possibility, /N « 5
« ft which we shall now study.

We start with a formal solution of the problem, al-
though it will become clear from what follows that the
basic qualitative results could be obtained from intui-
tive considerations. It is natural to use, as in Sec. 6,
the hydrodynamic description of the electrons in the
metal. The complete set of equations has the form

â>u h = vAu — (8.1)
AE = 4JT jexr2 j , j = neu.

Here E(r) e i w t is the intensity of the electric field,
u(r) e ^ the velocity of the ordered motion of the elec-
trons, v = ZNvp, №& Zep(T). For the sake of simplic-
ity we assume the electron dispersion law to be iso-
tropic.

The hydrodynamic approach requires apart from the
condition Z^ « / V which we shall assume to be satis -
fied that the following inequality holds:

<OTV«1, C « 5 . (8-2)

We consider as usual the problem of a normal inci-
dence of a plane electromagnetic wave on a metal half-
space. Let the z axis be directed into the metal per-
pendicularly to its boundary. After eliminating u from
the set (8.1) we are led to the following equation for
E(z):

where

where E o is the amplitude of the field at the surface;
the condition on the second derivative follows from the
requirement that the velocity u(z) vanish on the bound-
ary of the specimen and at infinity.

One shows easily that

E(z) = -

where s x and s 2 are the roots of the equation s 4 - a s 2

+ i/3 = 0 with a negative real part. The surface imped-
ance is hence equal to

Turning to a study of these expressions, we assume
first of all that w r v « 1. It will become clear from
what follows that the opposite inequality is practically
impossible in the frequency region considered. We note
that then we need not worry about the first of conditions
(8.2) as by assumption T N « T V .

We consider possible limiting cases:
a) When az« p one of the roots, say s 2 , is much

larger than the other and can thus be neglected. Then
we have

6n is the skin depth for the normal skin effect. This
result can easily be understood, since the inequality
az» /3 when written in the form Z v « 6n/ZN means that
an electron diffusing within the limits of the skin layer
proceeds to collide many times with loss of momentum.
We note that the second of conditions (8.2) is satisfied
since when Z^ « lV it follows from the given inequality
that ZN « 6n.

b) When o>2» /3 one shows easily that

s, = _ is2 = - pv^-ws, E(Z) = Y Eo (e'i' + eu*).

The electrical field thus damps into the metal, roughly
speaking as exp (-z/6*) where the effective skin-depth
is

We can obtain this last equation by an intuitive rea-
soning similar to the one given by Pippard : 2 8 : l for the
interpretation of the results of the anomalous skin ef-
fect. We note that the skin-depth can always be written
as

60 ^ /

as far as order of magnitude is concerned provided we
understand by n* the density of those electrons which
appreciably interact with the field and by I* the smal-
lest of the following two quantities: path of the electrons
in the skin layer and the mean free path with loss of
momentum №. In the limits of the hydrodynamic ap-
proach № « 6 and therefore all electrons play approx-
imately the same role, i.e., n*ss n. However, it fol-
lows from the inequality a2 » fi that the path traversed
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b y a n e l e c t r o n i n t h e s k i n l a y e r ( 5 * ) 2 / Z N « Z v a n d w e

m u s t t h u s t a k e I* » S 2 / Z N . U l t i m a t e l y w e a r r i v e a t t h e

e q u a t i o n

from which the required result 6 « 6* follows.
The inequalities ZN « 6* and a2 « /3 lead to the fol-

lowing restrictions on the magnitude of I":

• ^ « I" « «an,

w h e r e 6 a n R j ( 6 i v p / w ) 1 / 3 i s t h e s k i n d e p t h f o r t h e a n o m -

a l o u s s k i n e f f e c t .

One verifies easily that ( Z N / 8 a n ) 1 / 4 , i.e.,
6* < 6 a n . However, when the frequency increases 6 a n

decreases faster than 6* and when № » 6 a n these
quantities are the same. The region considered joins
thus directly the anomalous skin-effect region (where
the hydrodynamic description is clearly unsuitable).

We finally write down an expression for the surface
impedance in different frequency ranges. We denote by
cox = 1 / T V ( 6 0 / Z V ) 2 the frequency where the transition
from the normal to the anomalous skin effect usually
takes place: ^ » 6n(w1)as 6 a n(a) 1).

When w/a)1« I* /I the skin effect remains normal:

F I G . 6 .

o f t e n t h a n c o l l i s i o n s w i t h l o s s o f m o m e n t u m , v i z :

1 . T h e s k i n e f f e c t r e m a i n s n o r m a l u p t o h i g h e r f r e -

q u e n c i e s t h a n u s u a l . O n t h e o t h e r h a n d , t h e r e g i o n o f

t h e a n o m a l o u s s k i n e f f e c t i f c o n s i d e r a b l y r e d u c e d o n

t h e l o w f r e q u e n c y s i d e ( b y a f a c t o r (l^/l^)3).

2 . T h e r e e x i s t s a r a t h e r w i d e i n t e r m e d i a t e r a n g e o f

f r e q u e n c i e s i n w h i c h t h e s u r f a c e i m p e d a n c e d e p e n d s i n

a n u n u s u a l m a n n e r o n t h e f r e q u e n c y a n d i s m a i n l y a

f u n c t i o n o f t e m p e r a t u r e : £ * ~ w 3 / 4 T ~ 4 / 5 .

3 . T h e b e h a v i o r o f £ ( T ) h a s t h e f o r m s h o w n i n

F i g . 6 . A t v e r y l o w t e m p e r a t u r e s £ = £ a n a n d c o n -

s t a n t . A f t e r p a s s i n g i n t o t h e i n t e r m e d i a t e r a n g e t h e

i m p e d a n c e d e c r e a s e s p r o p o r t i o n a l t o T " 5 / 4 . W h e n t h e

t e m p e r a t u r e i n c r e a s e s f u r t h e r t h e s k i n e f f e c t b e c o m e s

n o r m a l . I n t h a t r e g i o n t h e i m p e d a n c e i s i n i t i a l l y c o n -

s t a n t a n d t h e n , a f t e r t h e p h o n o n - p h o n o n U - p r o c e s s e s

a r e i n c l u d e d , i n c r e a s e s w i t h t e m p e r a t u r e .

F u r t h e r , i n t h e r e g i o n * Z V / Z N « w / o ) 1 «

h a v e

„ 3ni/8 ( 8 . 3 )

F i n a l l y , w h e n O J / W J . » ( Z V / Z N ) 3 ( o r Z N » 6 a n ) t h e

a n o m a l o u s s k i n e f f e c t o c c u r s :

W e h a v e d r o p p e d i n t h e s e f o r m u l a e n u m e r i c a l c o e f -

f i c i e n t s o f o r d e r u n i t y s i n c e t h e i r v a l u e s a r e c o n n e c t e d

w i t h a s s u m p t i o n s a b o u t t h e i s o t r o p y o f t h e e l e c t r o n a n d

p h o n o n d i s p e r s i o n l a w s . I t i s c l e a r t h a t t h e o r d e r o f

m a g n i t u d e o f t h e i m p e d a n c e a n d i t s d e p e n d e n c e o n t h e

b a s i c p h y s i c a l p a r a m e t e r s r e m a i n v a l i d f o r a n y d i s p e r -

s i o n l a w . T h i s s t a t e m e n t r e f e r s a l s o t o t h e r a t i o b e -

t w e e n t h e r e a l a n d t h e i m a g i n a r y p a r t s o f t h e i m p e d -

a n c e i n t h e c a s e s o f t h e n o r m a l a n d t h e a n o m a l o u s s k i n

e f f e c t . U n f o r t u n a t e l y , i n t h e m o s t i n t e r e s t i n g c a s e ( 8 . 3 )

t h e r a t i o o f R e f * t o I m £ * d e p e n d s i n a v e r y c o m p l i -

c a t e d w a y o n t h e f o r m o f t h e e l e c t r o n a n d p h o n o n d i s -

p e r s i o n l a w s a n d t h e p h a s e f a c t o r e x p ( 3 7 r i / 8 ) h a s a p -

p a r e n t l y n o p h y s i c a l m e a n i n g . W e n o t e t h a t i n t h e g e n -

e r a l c a s e t h e v i s c o s i t y v i s a f o u r t h r a n k t e n s o r a n d

t h e r e f o r e e v e n i n t h e c u b i c l a t t i c e t h e s u r f a c e i m p e d -

a n c e m u s t h a v e t e n s o r p r o p e r t i e s .

F r o m w h a t h a s b e e n s a i d i t i s c l e a r t h a t n o r m a l

e l e c t r o n - p h o n o n c o l l i s i o n s a p p r e c i a b l y c h a n g e t h e n a -

t u r e o f t h e s k i n e f f e c t i n t h e c a s e w h e n t h e y o c c u r m o r e

* W e n o t e t h a t t h i s r e g i o n c a n b e r a t h e r w i d e . F o r i n s t a n c e , w h e n

8 0 = 3 . 1 0 " 6 c m , / v = 0 .1 c m , / N = 1 0 " 3 c m a n d v F = 1 0 s c m / s e c w e

h a v e 1 0 2 *^ OJ < 1 0 6 s e c " 1 . F r o m t h i s e s t i m a t e i t i s i n c i d e n t a l l y c l e a r

t h a t t h e i n e q u a l i t y COT * < 1 is p r a c t i c a l l y a l w a y s sa t i s f i ed .

* J . J a . P o m e r a n c h u k , J . P h y s . ( U S S R ) 4 , 2 5 9 ( 1 9 4 1 ) ;

P h y s . R e v . 6 0 , 8 2 0 ( 1 9 4 1 ) .
w e 2 C . H e r r i n g , P h y s . R e v . 9 5 , 9 5 4 ( 1 9 5 4 ) .

3 S . S i m o n s , P r o c . P h y s . S o c . 8 2 , 4 0 1 ( 1 9 6 4 ) .
4 R . E . P e i e r l s , Q u a n t u m T h e o r y o f S o l i d s , O x f o r d

U n i v e r s i t y P r e s s , 1 9 5 5 .

5 A . I . A k h i e z e r a n d V . G . B a r ' y a k h t a r , F i z . T v e r d .

T e l a 2 , 2 4 4 6 ( 1 9 6 0 ) [ S o v . P h y s . - S o l i d S t a t e 2 , 2 1 7 8

( 1 9 6 1 ) ] .

6 J . M . Z i m a n , C a n . J . P h y s . 3 4 , 1 2 5 6 ( 1 9 5 6 ) .
7 V . G . B a r ' y a k h t a r a n d G . I . U r u s h a d z e , Z h . E k s p .

T e o r . F i z . 3 9 , 3 5 5 ( 1 9 6 0 ) [ S o v . P h y s . - J E T P 1 2 , 2 5 1

( 1 9 6 1 ) ] .
8 J . A . S u s s m a n n a n d A . T h e l l u n g , P r o c . P h y s . S o c .

8 1 , 1 1 2 2 ( 1 9 6 3 ) .

9 R . N . G u r z h i , Z h . E k s p . T e o r . F i z . 4 6 , 7 1 9 ( 1 9 6 4 )

[ S o v . P h y s . - J E T P 1 9 , 4 9 0 ( 1 9 6 4 ) ] .

1 0 R . N . G u r z h i , Z h . E k s p . T e o r . F i z . 4 5 , 7 5 0 ( 1 9 6 3 )

[ S o v . P h y s . - J E T P 1 8 , 5 1 5 ( 1 9 6 4 ) ] .

1 1 L . P . M e z h o v - D e l g i n , Z h . E k s p . T e o r . F i z . 4 6 ,

1 9 2 6 ( 1 9 6 4 ) ; 4 9 , 6 6 ( 1 9 6 5 ) [ S o v . P h y s . - J E T P 1 9 , 1 2 9 7

( 1 9 6 4 ) ; 2 2 , 4 7 ( 1 9 6 6 ) ] .

1 2 A . I . A k h i e z e r , V . G . B a r ' y a k h t a r , a n d M . I . K a -

g a n o v , U s p . F i z . N a u k 7 1 , 5 3 5 ; 7 2 , 3 ( 1 9 6 0 ) [ S o v . P h y s . -

U s p . 3 , 5 6 7 , 6 6 1 ( 1 9 6 1 ) ] .
1 3 L . D . L a n d a u , Z h . E k s p . T e o r . F i z . 1 1 , 5 9 2 ( 1 9 4 1 )

[ J . P h y s . ( U S S R ) 5 , 7 1 ( 1 9 4 1 ) ] .
1 4 J . C . W a r d a n d J . W i l k s , P h i l . M a g . 4 2 , 3 1 4 ( 1 9 5 1 ) ;

4 3 , 4 8 ( 1 9 5 2 ) .
1 5 R . B . D i n g l e , P r o c . P h y s . S o c . A 6 5 , 3 7 4 ( 1 9 5 2 ) .

1 5 a E . W . P r o h o f s k y a n d J . A . K r u m h a n s l , P h y s . R e v .

1 3 3 , A 1 4 0 3 ( 1 9 6 4 ) .
1 5 b R . A . G u y e r a n d J . A . K r u m h a n s l , P h y s . R e v . 1 3 3 ,

A 1 4 1 1 ( 1 9 6 4 ) .

1 6 R . N . G u r z h i , F i z . T v e r d . T e l a 7 , 3 5 1 5 ( 1 9 6 5 )

[ S o v . P h y s . - S o l i d S t a t e 7 , 2 8 3 8 ( 1 9 6 6 ) ] .
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