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INTRODUCTION

we know, motion of charged particles in an optic-
ally inhomogeneous medium is accompanied by emission
of electromagnetic waves. A typical example is transi-
tion radiation, which arises when a charged particle in
uniform motion passes through the boundary between two
homogeneous media having different optical proper-
ties. [J Another example is diffraction emission, which
appears when electromagnetic-field sources pass close
to ideally-conductive bodies.[2)3:l. The emission from a
charged particle passing alongside periodically-re-
peated inhomogeneities shows a number of specific
physical characteristics. This article is devoted to dis-
cussing this particular case. Study of emission from
charged particles in periodic structures is of interest
in connection with a number of possible physical appli-
cations. One of them is generation of electromagnetic
radiation by a beam of charged particles interacting
with a periodic structure. Another possible application
is to determine the characteristics of the emitting par-
ticle (velocity, charge, and trajectory) from the proper-
ties of the field that it emits. Study of the interaction of
charged particles with periodic structures is also of
interest because the design of many instruments in
modern electronics (e.g., linear accelerators) is based
on it. The cited reasons explain at least partly the fact
that many experimental and theoretical studies have
appeared in recent years on the interaction of charged
particles with periodically inhomogeneous media. The
published studies have discussed mainly two sets of
problems: the possibility of generating radiation in a
given region of the optical range by interaction of
charged particles with a periodic system (a diffraction
grating), and the possibility of detecting relativistic
charged particles by the emission from them in a
periodic medium. Both of these possibilities have

already been realized experimentally. While we must
consider the obtained results as being preliminary in
many ways, it is a propos to discuss the status of the
theory and experiment in this field in order to envision
the possible directions of development more clearly.

The first part of this review will discuss emission
from charged particles moving in the vicinity of a dif-
fraction grating. Here we shall pay attention not to
studying concrete models, but rather to elucidating the
general characteristics of emission in periodic struc-
tures.

The second section will deal mainly with discussing
models that permit an exact solution of the problem.
While one must sometimes have recourse to a highly
idealized model to obtain an exact solution, nevertheless
the obtained results are of some practical value in per-
mitting one to make quantitative estimates.

The discussion deals with open structures. In dis-
tinction from closed resonators, the radiation field in
these can propagate freely to arbitrarily large distan-
ces from the trajectory of the source.

I. EMISSION FROM A SOURCE PASSING OVER A
PLANE DIFFRACTION GRATING

Insofar as we know, I. M. Frank"3 was the first to
indicate in 1942 that electromagnetic waves could be
emitted by a source moving near a diffraction grating.
E. Purcell independently came to analogous conclusions;
he and S. Smith were the first to detect such an emis-
sion, and they performed the first experimental
studies. t5J

In the experiments of Smith and Purcell, a well-
focused beam of electrons of energy of the order of
300 keV passed over a flat optical reflective diffraction
grating of period d = 1.67 ju. The beam lay parallel to
the plane of the grating and perpendicular to the ruling;
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FIG. 1.

the distance of the beam from the plane of the grating
was made as small as possible. As the authors note,
the electron beam almost touched the grating.

Under these conditions, radiation appeared that was
visible to the naked eye. The region where the beam
passed over the grating had the appearance of a sharp
glowing colored line on the surface of the grating when
observed at an angle of 20—30° to the travel of the beam.
Here the "color" of the visible radiation varied with
varying electron velocity or angle of observation.

In order to analyze the spectral composition of the
radiation emitted at a given angle, they used a trans-
parent diffraction grating. The radiation traveling at
the given angle was isolated with a special collimating
apparatus. After passing through an analyzing grating,
the radiation entered the objective of a camera focused
at infinity, and was recorded on film. Figure 1 gives
the spectrograms from1"5'1 for the emission angle
9 = 20°. The bright vertical line at the left, which oc-
curs on all the spectrograms, corresponds to rays
normally incident on the analyzing grating and passing
through it without deviation. The bright line at the right
corresponds to the first-order diffraction peak. The
wavelength of the radiation for the first peak is indica-
ted on the spectrogram. The figure shows several
spectrograms for different electron energies in the
beam. We see that the wavelength of the emission de-
creases with increasing energy. The intensity of the
emission was not measured in15"1.

We can analyze the results of Purcell and Smith's
experiment in terms of simple qualitative considera-
tions. Let us imagine a charged particle in uniform
motion close to a flat diffraction grating (Fig. 2). As
will be shown, the emission spectrum is determined
only by the period of the grating, and does not depend
on other features of it (e.g., the profile of the grating,
or whether it is transparent or reflective). Hence, we
shall carry out the treatment for a flat, transparent
grating of period d. Let a plane wave of radiation
exp {ik • r — iwt} be produced as the charge passes by
one of the lines of the grating. Here k is the wave vec-
tor, which lies at the angle 6 to the velocity of the
charge. Then, when the charge passes by the next line
of the grating, the wave exp {ik • (r — d) — iu>(t — At)} is
emitted. Here At = d/u is the time of flight of the charge
through one period of the structure. Evidently the emis-
sion from adjacent lines of the grating will not be ex-

FIG. 2.

tinguished if the phase difference of the corresponding
waves is a multiple of 2TT:

«- kd = (o 1 — kd cos 9 = -1 - p cos 6) = 2rai. (1)

where we have used the relation k = w/c. Of course,
this treatment is valid for a reflecting diffraction grat-
ing, as well as for any other periodic structure. As Eq.
(1) implies, waves of different frequencies are emitted
at a given angle of observation 8:

(2)

Equations (1) and (2) give the relation of the emission
frequency to the velocity of the source, the angle of ob-
servation, and the period of the structure. The emission
spectrograms obtained by Smith and Purcell quantita-
tively verify these formulas. In fact, if we assume, as
was the case in the experiment, that d = 1.67 x 10~4 cm,
9 = 20°, and 0 = 0.8 (corresponding to an electron en-
ergy of 300 keV), we get from Eq. (2) for n = 1 (the
fundamental emission frequency) a wavelength of radia-
tion close to 5000 A (see Fig. 1). The authors also ob-
served frequencies that were multiples of the fundamen-
tal, corresponding to values of n from one to five.

Almost ten years after Purcell and Smith's experi-
ments, statements have appeared that a generator of
electromagnetic radiation based on the same principle
has been built.[6] This instrument was developed in the
laboratories of the Varo company, and was called the
varotron. The radiation source in it was electrons
passing close to a flat optical diffraction grating. The
varotron permitted easy variation of the emitted fre-
quency over the wavelength range from 10~4 to 0.5
x 10~4 cm, i.e., in the infrared to the limits of the visi-
ble. Along with the fundamental, the varotron also
emitted higher harmonics up to the ultraviolet. Human
speech has been transmitted with the varotron, both with
frequency and amplitude modulation.

Recently a description of another device has ap-
peared. It is based on interaction of an electron beam
with a periodic diffraction structure. [7 : A diagram of
the device, which the authors called the orotron (a de-
vice with an open resonator and a reflecting grating), is
shown in Fig. 3. The open resonator is formed by a flat
and a spherical mirror whose distance can be varied
continuously. Teeth were cut in the surface of the flat
mirror. The power generated in the resonator emerged
through an aperture in the spherical mirror. A flat
electron beam was generated by a diode gun, was shaped
by a diaphragm, and accelerated by a d.c. or pulsed
voltage. The beam was focused by a strong longitudinal
magnetic field. Generation of waves in the millimeter
range was observed in the device. Here the frequency
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FIG. 3. Diagram of the orotron.
1 — electron gun; 2 — electron beam;
3 - spherical mirror; 4 - waveguide;
5 — caustic limiting the field;
6 — toothed retarding structure.

depended on the distance between the m i r r o r s and on the
accelerat ing voltage. The output power depended p r ac -
tically l inearly on the beam curren t . The pulsed output
power was quite considerable. Thus, for a current
~ 1 A, the pulsed output power at a wavelength of 8.1 mm
amounted to about 4 wat ts .

The described device is an autogenerator of u l t ra -
high-frequency oscillations using an electron beam. The
feedback that can be realized with an open resonator
pe rmi t s one to t ransform the incoherent radiation of the
electron beam pass ing over a periodic s t ruc ture into
coherent monochromatic radiation.

A Qualitative Treatment of the Features of the Emission

Equations (1) and (2), which give the spectrum of the
radiation produced when a charge moves in the vicinity
of a periodic s t ruc ture , can be derived from the laws
of conservation of energy and momentum. In addition
to them, we use only the fact that the s t ructure is
per iodic .

Let u s consider the features of a field in a l inear
periodic s t ruc ture . As we know from the theory of equa-
tions having periodic coefficients, the field component
corresponding to a given frequency u> can be represen-
ted in a periodic s t ruc ture a s a superposition of fields:

Effl(r) = A (r) <*««»>*, (3)

Here K(W) is defined by solving the boundary problem in
electrodynamics, and A(r) is a periodic function of the
variable z having the period d of the s t ruc ture (we a s -
sume that the system being t reated i s periodic along the
z axis) . If we expand A(r) in a Four ier s e r i e s in the
variable z, we get

E.(r)= 2 (4)

As we see from Eq. (4), the field for a given frequency
w is a sum of waves. The values of their longitudinal
components of the wave vector,

d

differ by a quantity which is a multiple of

k ~ Zlx

(5)

(6)

Considering the well-known quantum-mechanical re la -
tion between the momentum and the wave vector:

p = hk, (7)

we can state that the longitudinal component of the mo-

mentum of a photon in a l inear periodic medium can
vary only by an amount which is a multiple of the e le-
mentary momentum

,, 2nhPo = nk0z0 = —r- (8)

Here z0 is a unit vector lying along the axis of per iodic-
ity of the system. This is equivalent to stating that a
linear periodic system can acquire an integral multiple
of the elementary momentum p 0 .

Now we shall let the charge moving in the periodic
system emit a quantum of light of momentum hk and en-
ergy hcd. We shall wri te down the laws of conservation
of energy and momentum. If we denote the energy E and
momentum p of the charge before emission with the sub-
scr ipt 1, and after emission by the subscript 2, we get

p, —p2 = Ap = ftk +
£i — E2 = AE = ha. (9)

Let us form the sca la r product of the first equation by
the velocity u of the charge. Using the relation u • Ap
= AE, which holds for small variations in the energy of
the par t ic le , we get

u • Ap = AE = h(jo = hk • u + nhk0 • u. (10)

H e n c e , t a k i n g in to a c c o u n t t he r e l a t i o n k = o ) / c , we get

co = «(k0 • u)/[l — (u/c) cos 6], (11)

w h e r e 8 i s t he ang l e b e t w e e n t h e v e l o c i t y of t h e c h a r g e
a n d t h e d i r e c t i o n of e m i s s i o n .

In t h e s p e c i a l c a s e in which t h e v e l o c i t y u of t h e
p a r t i c l e i s p a r a l l e l t o t he v e c t o r ko (or e q u i v a l e n t l y , the
v e l o c i t y of t h e p a r t i c l e i s p a r a l l e l to t he a x i s of p e r i o d -
i c i t y of t he s y s t e m ) , we ob ta in f r o m (11) t he r e l a t i o n (2)
g iven p r e v i o u s l y . In c o n n e c t i o n wi th t h e d e r i v e d f o r m u -
l a s , we no t e f i r s t of a l l t ha t t h e f o r m u l a s for the e m i s -
s i o n s p e c t r u m p r o v e to b e p u r e l y c l a s s i c a l ( they do not
c o n t a i n P l a n c k ' s c o n s t a n t h ) , in s p i t e of t h e i r q u a n t u m
d e r i v a t i o n . The r e a s o n f o r t h i s l i e s in t he a b o v e - m e n -
t ioned a s s u m p t i o n t h a t the v a r i a t i o n in the e n e r g y of
t h e c h a r g e in t h e e m i s s i o n p r o c e s s i s s m a l l . It i s e v i -
den t f r o m the d e r i v a t i o n t h a t t h e e m i s s i o n s p e c t r u m i s
i n d e p e n d e n t of t h e c o n c r e t e f o r m of t he s y s t e m , and i s
d e t e r m i n e d by i t s p e r i o d a l o n e .

E q u a t i o n (11) a d m i t s of a s i m p l e p h y s i c a l i n t e r p r e t a -
t i on . In fac t , t he n u m e r a t o r of E q . (11) c o n t a i n s t h e
quantity n(ko • u), which is an integral multiple of the
"frequency of p a s s a g e " of the charge through one period
of the s t ruc ture . On the other hand, the denominator
contains a charac te r i s t ic Doppler factor accounting for
the motion of the par t ic le . Motion of a par t ic le in a
periodic s t ruc ture involves inducing a charge on the
surfaces of the s t ruc ture . The induced charge per iodic-
ally var ies in t ime with the fundamental period T = d/u,
which i s equal to the t ime of passage of the par t ic le
through one unit of the s t ruc ture . This periodically-
varying induced charge, which moves along with the
uniformly-moving charged par t ic le , is the source of the
emission.

We see from Eqs . (2) and (11) that several emission
waves can exist at the given frequency o>. They differ in
the values of the emission angle 8 and the order n of the
spectra l line. The number of emitted waves is de ter -
mined by the obvious requirement
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'4-"TT"O<+1. ( 1 2 ) S> e2

(13)

The minimum number of emitted lines Am is determined
by the integral part of the quantity

i i = 2 - (14)

(X is the emission wavelength). We see that the number
of harmonics emitted at a given frequency does not de-
pend on the velocity of the source.

If we fix the order m of the spectral line, then Eqs.
(11)—(13) imply an inequality determining the frequency
band of emission of a charge moving at the fixed veloc-
ity /3 = u/c :

kd. (15)

We shall return below to the derived relations in dis-
cussing concrete models of periodic structures.

The cited general characteristics of the emission
spectrum do not depend on the concrete form of the
periodic structure. We can also state some general
considerations on the intensity of emission, based on
the properties of the field of a uniformly-moving charge.
Since the field of the charge declines with increasing
distance from its trajectory, the amplitude of the in-
duced currents declines with increasing impact parame-
ter b (the distance from the trajectory to the structure).
Consequently, the emission intensity also declines. The
relation of the spectral components of the field of a
uniformly-moving source to the impact parameter has
the form

E, H*

where

(16)

(17)

The reduced currents show the same dependence on the
impact parameter. Evidently the intensity of emission
is proportional to the square of the factor in (16). As we
see, the intensity of emission at a given frequency de-
clines rapidly with increasing impact parameter. Hence
the distance of the passing charge from the structure
must be as small as possible. We note that the parame-
ter y declines with increasing energy of the particles,
and the permissible value of the impact parameter b
increases.

n. PHYSICAL MODELS OF DIFFRACTION GRATINGS
AND METHODS OF CALCULATION

The properties of the emission that we have dis-
cussed thus far are general for all periodic structures,
and do not depend on the concrete model of the struc-
ture. The emission spectrum is determined only by the
fact that the structure is periodic; the relation of the
intensity to the impact parameter stems from the law
of decline of the field of a uniformly-moving source. In
order to determine the remaining properties of the
emission, e.g., the angular or spectral distribution, we
must deal with a concrete physical model of the periodic
structure.

FIG. 4.

The first estimate of the emission intensity was made
in the above-discussed study by Smith and Purcell.151

We shall give here only the gist of their discussions.
Let the reflective diffraction grating be an ideally

reflective corrugated surface (Fig. 4). As the charge
moves above such a surface, currents are induced in it.
If the surface doesn't differ greatly from a plane (i.e.,
the corrugation is of small depth and long period), and
if the charge passes close to the surface, then the in-
duced currents can be reduced to the motion of a point
image charge, i.e., a charge of the same magnitude and
opposite sign situated symmetrically opposite the source
with respect to the grating surface. We see from Fig. 4
that when the source is over a crest of the grating, the
distance between the source and its image is smaller
than when the source is over a trough. Thus, the moving
source and its image form a dipole whose magnitude
varies periodically in time. Then we identify the emis-
sion from this variable dipole with the emission from
the source moving above the grating. This scheme gives
the formula (2) derived above for the emission spec-
trum. We can estimate the emission intensity by using
the expression for the energy emitted from an oscillator
of moment p at the wavelength \: [8]

dW 16n4c (18)

(Here we have used the formula for the energy emitted
from an oscillator at rest, i.e., its motion is thus far
neglected). In Eq. (18), p denotes the amplitude of varia-
tion of the dipole moment, as determined by the distance
from the charge to the grating. Now let the electrons
pass close to the grating, so that their distance from the
grating is a tenth of the period (this estimate was adop-
ted in t 5 ]). Then p = ed/10, where e is the magnitude of
the charge passing above the grating. Substitution of
parameters corresponding to the experiments of Smith
and Purcell into Eq. (18) gives a value of the order of
several hundred for the number of photons emitted per
cm of path above the grating. The same number of pho-
tons in order of magnitude is emitted in the Cerenkov
effect.

The simple model of the diffraction grating adopted
by Smith and Purcell for estimating the emission inten-
sity was also used by Ishiguro and Tako.t9] Here they
tried to construct a more exact image of the source
with respect to a curvilinear ideally-conductive surface,
and to estimate the effect of the shape of the reflective
grating on the size and orientation of the dipole moment
of the effective emission source. As we can see from
Fig. 5, the effective dipole has components along both
the z and y axes. Let the charge be situated at the point
having coordinates (z, s). We can easily see that the
line joining the charge with its image intersects the
surface of the grating at the point (z + 4 , y(z + £)),
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FIG. 5.

where y = y(z) is the equation of the surface of the
grating. The quantity i is proportional to the component
of the dipole along the z axis, and is determined from
the equation I = f (s — y)y']z +£ • If the grating is smooth
enough (y' <C l), the depth of modulation being much less
than the period, then the longitudinal component of the
effective dipole, which is proportional to the small quan-
tity i, can be neglected in comparison with its vertical
component (at least in estimating the total emission in-
tensity) .

Thus far, in estimating the emission intensity, we
have not taken into account the Doppler shift of the fre-
quency of the effective oscillator formed by the moving
charge and its image in the grating. We can do this by
using the expression for the angular distribution of the
emission from a moving system of charges.C8] If we
describe the emission under discussion by the model of
a moving oscillator oriented normal to the plane of the
diffraction grating, then we get the following for the
angular distribution of emission: [10]

dl p2/m3 I u \ ̂  (cos
~~^~\-d) w=

(COS9 — ft
COS 9)5

(19)

Here the angle of observation 9 is measured from the
plane of the grating, and p is the moment of the effective
dipole. Let us determine the moment of the effective
dipole for a reflective grating of rectangular profile (of
period d, groove width a, and groove depth I) shown in
Fig. 6. Evidently, if the charge moves so that it almost
touches the peaks of the grating, then the effective dipole
moment is 2 el during the time a/u (while passing over
a groove), and zero during the time (d — a)/u (while
passing over a peak). If we expand the dipole moment in
a Fourier series:

P(t) = ̂ PJ^nt, (2°)

and calculate the amplitude of the first harmonic, we get

(21)2eZ

We must substitute this quantity as p into (19) in order
to estimate the intensity of the first-order spectrum. As
we see, the effective dipole moment is of the order of
magnitude of d (if we consider that sin wa/d « 1).

We note that the effective-dipole model does not give
an exponential dependence of the emission intensity on
the impact parameter b. Hence, it can be applied only
for small values of b.

When the diffraction grating is a slightly corrugated
metal surface, we can use perturbation theory to cal-
culate the field excited by the moving source. Let us
assume that we know the solutions of the field equations
satisfying the boundary conditions for the given ideally-
conductive surfaces. Then, if the surfaces are slightly
deformed, it turns out that we can express the variations
in the field thus arising in terms of the displacement of
the surface at each point. The corresponding formula

FIG. 6.

has the form [11,12]

AH = I F ) h (S) dS. (22)

Here AH is the variation in the field that arises when
the surface So is displaced by the amount h(S); E° and H°
are the fields satisfying the boundary conditions for the
undistorted surface So; E' and H' are the fields of an
auxiliary unit dipole situated at the point of observation.
The subscripts n and t denote the components of the field
respectively normal and tangential to the undistorted
surface So. V. N. Parygin has calculated the emis-
sion intensity by using perturbation theory. Conven-
iently, one chooses a plane as the surface So- Let a
planar modulated electron flux pass above an ideally
conductive plane situated at y = 0, the current density
being given by the formula

/ = ftfi (y~b)ei-S <;_„(, (23)

(b is the distance from the current of particles to the
surface of the metal). In this problem, the field satisfy-
ing the assigned boundary conditions at the plane y = 0
can be found without trouble. Now let us deform the sur-
face So by a harmonic law. That is, we shall displace
the surface at each given point z by the amount

(24)h (z) = h sin —r- z.

Then we can find by Eq. (22) the fraction of the field ex-
cited as the planar modulated beam moves above the
corrugated surface:

io / at 2n \
c2

2n \
/rs—2M2 to2 exp t V * *b

V ( u d

+ ' [ / H r W » + ( T - T ) ' - - ] } • (25)

The first term in the obtained expression for the excited
field defines a surface wave propagated along the corru-
gated surface at a somewhat slower speed than the wave
in the source current. This term cannot describe a
propagated field, since it declines exponentially with
increasing y. Under certain conditions, the second term
can describe a propagated wave. Radiation is possible
if the velocity of the current wave and the period of the
structure satisfy the inequalities (15), where we must
take m = 1. Thus, Eq. (25) describes the first-order
emission spectrum. The higher orders in the emission
spectrum cannot be described in this approximate cal-
culation (which is linear in the perturbation of the sur-
face). As we see from the expression for the excited
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field, the emission intensity sharply (exponentially) de-
clines with increasing impact parameter. When
k ~ ±[(w/u) - (2ir/d)] (i.e., near the limits of the region
of emission of the first space harmonic of the field), the
amplitude of the field determined from Eq. (25) increa-
ses greatly, and thus the limits of applicability of the
perturbation theory are exceeded.

A recently-published study1143 has also discussed on
the basis of perturbation theory the problem of emis-
sion from sources moving close to an open periodic
structure having a profile of very general form.

The Kirchhoff Approximation

In deriving Eq. (2) for the emission spectrum of a
charge above a diffraction grating, we used simple
thinking based on Huyghen's principle. It is natural to
try to apply the same thinking also to calculate the
emission intensity. This has been done in'151 for the
case of a plane transparent diffraction grating. In dis-
tinction from a reflecting grating, this grating consists
of parallel metal strips lying in one plane and separated
by slits (see Fig. 2). Let the slit width of the grating be
a. Then the width of a strip is d - a, where d is the per-
iod of the grating. According to Huyghens' principle,
when the charge moves above the grating, the field in
the space below the grating is determined by the values
of the field at the slits in the plane of the grating. If we
neglect the vector nature of the electromagnetic field,
then the values of the field below the grating are related
to its values at the slits by the well-known Huyghens—
Kirchhoff relation, which is widely used in the scalar
theory of diffraction:

(26)

Here k = w/c; go and g are the spectral components of
the field functions corresponding to the frequency w;
R is the distance between the observation point and the
integration point; dSn is the product of the element of
area dS and the cosine of the angle between the ray of
incident light and the normal to the surface:

,M irrf k \ /O7\

where k is the wave vector of the wave incident on the
aperture. The integration is performed over the gaps
(slits) in the plane of the grating. Here we assume that
the field g in the apertures in the screen is given by the
same expression as in the absence of a screen. Let a
particle of charge e move at constant velocity u at a
distance I above the grating in a direction parallel to
the z axis. We shall describe the field of the freely-
moving charge by the scalar function

(27')
o(x, y, z) = y, z),

where Azu) is the Fourier coefficient of the component
of the vector potential along the z axis. Az w has the
following form in the plane of the grating (y = 0):

where
o (kx, oi) = y V - 1 ) ^ - *•! = K (29)

is the projection of the wave vector of the incident wave

on the y axis. Let us substitute the expression (28) for
go (x, 0, z) into Eq. (26). Then the vector potential of
the diffracted field will have the following form (in the
region of the wave at great distances Ro from the grat-
ing):

g(x, y, z)
9inT (lT-*

" u ' (30)
The presence of the 6 function in Eq. (30) corre-

sponds to the previously-discussed relation (2) that the
emission from the charge passing above the grating
must satisfy. In fact, since kz = (a>/c)cos 9, the condi-
tion that the argument of the 6 function should vanish is
equivalent to Eq. (2). The given frequency is missing in
other directions of emission.

If we know the vector potential of the emission field,
we can calculate the emission energy occurring in the
frequency interval from w to w +dw for the solid angle

M = ck' (31)

(<p is the angle between the negative y axis and the pro-
jection of the wave vector on the xy plane). In this
formula g is determined by Eq. (30). After simple
transformations, we get

uT —2b— Yi- p2(l-sin26siu2<p)

(32)

where the summation is performed over the values of
the order n corresponding to the emitted spectral lines
(see the inequality (13)), and T is the time of flight of
the charge above the grating.

We can obtain the spectral distribution of the emis-
sion energy corresponding to the n-th line in the angular
interval d <p by integrating Eq. (32) over the angle 8:

<iWn „ = -

(33)

Here L is the length of the diffraction grating.
If we integrate (32) over the frequency, we get the

angular distribution of losses for the n-th spectral line:

uT
~~d~ 31 fl

^-$~R—^~s
1 -sm- 8 sm-

(34)

We see from the derived formulas that the emission in-
tensity declines exponentially with increasing distance
of the source from the plane of the grating. Here the
exponent of decline of intensity is proportional to the
order of harmonic of the emission.

One can also calculate the emission for the discussed
model of a plane transparent grating by the following
visually-obvious method. An observer located above the
grating can see a charge moving below the grating only
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in the intervals of time when it is alongside the slits.
Hence the motion of the charge will seem non-uniform
to the observer: for the observer, the charge appears
at the edge of a slit and disappears at its other edge
after the time a/u, and then it appears at the next slit
after the time (d - a)/u. The current associated with the
charge will then differ from zero for values of the time
t defined by the inequality

(35)md md-\-a

where m is any integer, positive or negative. The emis-
sion from a charge moving according to such a law
in vacuo can be determined by using the well-known
formula:18-1

(36)

where Aw is the Fourier component of the vector poten-
tial, r = r(t) is the law defining the motion of the point
charge, and u(t) = dr/dt.

If we integrate (36) over the intervals determined by
the inequality (35), and use the obtained expression to
determine the emission intensity, we arrive at expres-
sions that differ from Eqs. (32)—(35) only in lacking the
exponential factor. Thus, if the impact parameter b is
small in comparison with the absolute value of 1/CT
(see Eq. (29)), then both methods give the same results
(the quantity a defines the distance at which the field of
the source declines by a factor of e). However, if the
impact parameter b is large, Eq. (36) cannot be applied,
since it takes no account of diffraction effects at the
edges of the strips. These effects have the result that
the charge seems to become visible to the observer at
an earlier instant of time than md/u, and passes from
the field of view at an instant of time later than
(md + a)/u. Thus, diffraction at the edges of the strips
makes the choice of limits of integration in (36) indefin-
ite. As the trajectory of the charge becomes more dis-
tant from the grating, this indefiniteness increases, and
use of Eq. (36) to calculate the characteristics of the
emission is ruled out.

From the results obtained for a point charge, we can
easily derive the solution for the two-dimensional prob-
lem in which the field source is an infinite uniformly-
charged filament or a modulated plane electron wave.
In this case, the radiation field is defined by the form-
ula

where

g(y, z)--^

K =

(37)

As the function g(0, z) we must take

Ala(x, 0, Z) = -£r «-**+< IT* , (38)

where e is the linear charge density of the linear source.
Equations (37) and (38) are derived from (26) and (28),
respectively, by integrating over the transverse coor-
dinate x.

The vector potential of the diffracted field in the two-
dimensional problem takes on the form

y, z)=ea i / i i

_ , ~2nn] • ( 3 9 )

Using this expression for the emission losses per unit
length as the charged filament passes close to the plane
grating, we get

dWa,„ = ck"| \-sini
2wRdw = e?ka — 4 7" sir* c d

(1 — |3cosf
ka(1 — (5 cos 6)

(40)

The cited formulas have been derived by means of
the scalar theory of diffraction, in which the field is
described by a single scalar function. However, the
scalar function does not completely describe the vector
electromagnetic field. In particular, the scalar diffrac-
tion theory proves inadequate to determine the polariza-
tion of the emission field of a charge moving above a
diffraction grating. We can generalize the above ap-
proximate treatment by using the vector electrodynamic
formulation of the Huyghens—Kirchhoff principle to cal-
culate the field emitted by the charge. According to this
formulation, the scattered field is described by two
vector functions Ae and A m determined by the electric
and magnetic fields E° and H° incident at the aperture e
of the screen:

^ - ^ y ^ t n E o ] * ? , (4i)

where n is the normal to the plane of the aperture, and
2 is the area of the aperture. In this case, Eq. (41)
supplants the corresponding scalar relation (26).

The fields E and H are defined in terms of Ae and A m

by the well-known formulas

E = — ~ (grad div Ae + AM') — rot A"1,

H= rot A" -̂(grad divAm-f- k-Am). (42)

If we substitute into (41) the values of the field of a
uniformly-moving charge and take the slits of the grating
as the surface over which the integration is performed,
we obtain the radiation field from (42). V. I. Gafduk and
B. M. Bolotovskif have undertaken such calculations.

The calculations give the following formulas for the
non-zero components of the vectors Ae and A m :

Am kx_ p

where cr is determined by Eq. (29), and

sin — (1 — p cos 0) --

(43)

— (1— p
(44)

*[nH°] =nXH°.
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Equations (43) and (44) determine the spectral compon-
ents of the vectors Ae and A m corresponding to the fre-
quency w. The fields E and H are expressed in terms
of Ae and A m by the formulas of (42). We get the follow-
ing expression for the emitted energy:

d

ad) .. o rsin -g— (1 — p cos t
-2b — V l-p2(l-sln2 9 Sin2

2sin26cos2<p+(1 — ft2) — sin2 8 cos2 q) IP cos 8 — (1 — pg)]2\
i_p«(i_siB»8cos«q>) }

[ v d (4 - P
 cas e) -

As we see from eqs. (43)—(45), the vector formulation
of Huyghens' principle indicates that the polarization
and angular distribution of the emission are more com-
plex in nature. However, the emission intensity given
by the scalar theory proves to be of the same order of
magnitude as in the vector theory over a considerable
angular range.

Similar assumptions were used in[16] to calculate
the emission intensity of a charged particle moving over
a diffraction grating.

HI. EXACT SOLUTIONS OF THE PROBLEM OF EMIS-
SION FROM A SOURCE IN THE VICINITY OF A
GRATING

The models of diffraction gratings studied above
resembled actual configurations, but did not admit of
exact treatment. Hence, in each case we had to base the
solution on various physical assumptions that simplified
calculation. It is of great interest to seek exact solu-
tions of the problem that permit us more completely to
discern the pattern of the phenomenon and to estimate
the limits of applicability of the derived approximate
results. We can derive such solutions only in rare
cases, usually with extremely idealized models of the
diffraction grating.

1. Emission from a Modulated Electron Current Close
to an Impedance Plane

Hessel[17: has discussed a very simple problem of
the type cited above. The diffraction grating is a sur-
face whose optical properties vary from point to point.
We can characterize the properties of this surface by
fixing at each point the ratio of the tangential compon-
ents of the electric and magnetic fields:

(46)Et

created by a plane modulated electron beam having a
charge density distribution defined by

p(r, 0 = Po[l + ocosj(2-uO]fi(!/-6),

lying parallel to the described impedance plane can be
expressed as a superposition of space harmonics:

The quantity £ is called the impedance of the surface.
Assignment of a surface impedance is appropriate both
for good conductors and for approximating the proper-
ties of rough surfaces, provided that the characteristic
period of the roughness is small in comparison with the
wavelength of the electromagnetic field. In t l7 ] the dif-
fraction grating was approximated by a plane y = 0
having a periodically-varying purely reactive impedance

£(z)=-*X,(l + McoSi2-z),. (47)

where M and a are respectively the degree of modula-
tion and the period, and Xs is the value of the constant
component of the impedance. The electromagnetic field

„. . i"S"zV / * ~~a~ nZ i V ft2~ \~R ~^~ ~aTn) V • (48^

Each of the partial plane waves either behaves as a sur-
face wave declining exponentially as we go away from
the y = 0 plane, or it propagates without decay, depend-
ing on the relation between the phase velocity (3 = u/c of
the modulation wave and the period of the impedance
variation. In the latter case, the direction of propaga-
tion of a plane harmonic is related to the grating period,
the frequency, and the velocity of the beam by the
previously-derived Eqs. (1) and (12). If we require that
the overall field should satisfy the impedance boundary
conditions (46) and (47) at the surface of the "grating,"
we obtain a system of recurrent equations for the am-
plitudes of the plane space harmonics In. We can derive
expressions in the form of continuous fractions amena-
ble to numerical analysis from this system of equations
for the amplitudes In. Study shows that the variation of
In as a function of the variable k/|3 for a given value of
the parameter ka shows sharply marked resonance
maxima. Figure 7 shows a typical example of a reson-
ance variation of the In coefficients, as taken from1173.
The diagram shows two amplitudes In corresponding to
n = — 1 and n = — 2. With the chosen values of the
parameters (ka = 1.67T, M = 0.2, Xs = 1, ka/4.647r < /3
< ka/3.52jr), the amplitude I-i corresponds to a damped
wave, while the amplitude I-2 defines an undamped
emission wave. We see that both amplitudes have a
sharp maximum at kd//3 = 4.267T.

The characteristic behavior of the In (k//3) curves
near the maxima is analogous to the breaks in the spec-
tral variations of the reflectivity of a periodic strip
grating for a plane homogeneous wave (see, e.g., Sec. 52
in1183). Wood was the first to observe such sharp con-
trasts in the intensity distribution in a diffraction spec-
trum, and they are sometimes called "Wood anomalies."
This effect has been treated qualitatively in [39 : , where

iOit 4.16K A32rc 4,48it 4Mii
ka

FIG. 7.
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the sharp variation of intensity in the diffraction spec-
trum was related to the appearance of new diffraction
spectrum lines. Analogously, the point in the relation
of the wave number k to the source velocity P at which
the emission intensity of the observed space harmonic
drops sharply (the break in the In (k//3) curve) corre-
sponds to the condition of appearance of a new propaga-
ted space harmonic.

2. The Emission from a Charged Filament and from a
Point Charge Passing Close to a Periodic Structure
Consisting of Ideally-conductive Half-planes

Another simple model of a diffraction grating per-
mitting exact analytical study is a periodic system of
uniformly-spaced ideally conductive thin half-planes
(Fig. 8). The electromagnetic field of an emission
source in passing near such a structure can be deter-
mined by the Wiener-Hopf-Fock method. U8>191 The re-

.[2]
- [20-23 ]\(see also ). The same review describes the deter-

mination of a solution for the case in which the emission
source is a uniformly charged filament moving past the
structure. An analytic solution of the problem was also
derived inC22j for the case in which the emission source
is a point charge. We shall be concerned below mainly
with analyzing the obtained quantitative results.*

1) When the source is a uniformly-charged filament
(or a plane modulated electron beam), the electromag-
netic field is completely described by a single non-zero
component of the magnetic field defined by the following
expressions:

//*,.=
-̂ ize""™" if

"*) J+™m!- if „ « ) . (49)

The field in each of the plane waveguides forming the
structure (y > 0, an :£ z s a(n + 1)) consists of a set of
waveguide harmonics propagated inward from the open
end. The excitation coefficients Rm of these normal
modes of the waveguide are determined by the formulas

where — 1/2 where m = 0,
1 where

Y =

*The quantitative results described in this and in following sections
were obtained by E. V. Avdeev and G. V. Voskresenskii1.

are the propagation constants of the waveguide harmon-
ics.

The functions Li(w) occurring in (50) and the assoc-
iated functions L2(w) are expressed explicitly as infinite
products by the formulas*

2 ka sin ka
; /
COS ka — cos -

-.(51)

The upper sign in the factors corresponds to the sub-
script 1 in the function being defined, and the lower sign
to the subscript 2.

The field in free space is represented as the sum of
the intrinsic field H^, of the source moving in vacuo
and a surface wave of amplitude Qo propagated along the
structure synchronously with the source, and also as a
superposition of harmonics of amplitudes Qjn and wave
vectors

(50a)

The amplitudes of the harmonics of the field in free
space are expressed by the formulas

n — tce~kyb L, ( — iky)
2(l + iY)2

±2, ±3). (50b)

Depending on the value of the projection of the wave vec-
tor kym = w m , the harmonics can behave as surface
waves (exponentially decaying as we go away from the
edge of the structure) or may represent emitted plane
waves (for real wm) . The requirement that w m should
be real coincides with the conditions (12) and (15) der-
ived above.

We can determine the overall energy losses by emis-
sion from a charged filament in uniform motion by cal-
culating the reaction of the radiation, i.e., the work done
on the source by the emitted field per unit path*:

= -2Re >(z = ut,y=-b) = j^f da, (52)

where e is the linear charge density of the filament.
According to (49), (51), and (52), we obtain the following
expression for the spectral density of losses as the
source passes over one period of the structure
(0 s z s a):

i
iy)2 Li (iky)

»a (1—ft (53)

where the quantity A is expressed in terms of the finite
products:

. T-r ky-\-iwn -pi- Ay—iwm
~ 11 ky—iwn 11 ky + iw,n '

(54)

*Here we take the opportunity to correct an error made in defining
the functions Lj 3 (w) in [20~23]. Introduction of the exponential factor
exp [+ i (wa/7r) In 2] ensures correct asymptotic behavior of the func-
tions. Furthermore, writing the functions Li i (w) in the more symmetric
form of (51) is more convenient for making calculations.

tThe expressions (52) and (53) for a two-dimensional source define
the losses per unit length of filament.
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FIG. 9.

where the factors contain only the wave numbers wn and
wm , which are purely real (for the given values of the
frequency and velocity). Equation (53) can be greatly
simplified in various special cases. Thus, when only a
TEM wave (ka s ir) can be propagated in a waveguide
cell, and the emission into free space involves only the
first space harmonic, the spectral density of losses per
period acquires the form

wtot _ &a (w\ - ft V) - (1 - y2) *""
i (iky) |2

(53')

A quantitative analysis was performed of the spectral
density of losses as a function of the velocity j3 of the
filament and the emission frequency for various values
of the impact parameter. For illustration, Fig. 9 shows
curves of Wt°V(4€2a/c) as a function of the dimension-
less frequency q = ka/2ir = aA for three values of the
velocity /3 (0.2, 0.6, and 0.95) for b/a = 0 and 0.1. We
note that the radiation reaction vanishes when q = n/3.
This corresponds to the absence of losses by emission
at frequencies that are multiples of the "frequency of
passage" of a period of the structure (see also123 ,
p. 244).

When the parameters of the problem satisfy the re-
lation 27rqyb/a > 1, we can describe the spectral distri-
bution of losses rather precisely by the exponential fac-
tor in (53) alone. Here, by integrating over the frequen-
cies, we can derive a very simple approximate expres-
sion for the overall losses of energy from the charged
filament:

(55)

The derived approximate estimate holds in two limiting
cases. For low velocities of the filament (y» 1//3), the
emission is mainly concentrated in the low-frequency

at as as
FIG. 10.

w -/>

region; then the overall losses are proportional to the
velocity of the source. For ultrarelativistic velocities
of the filament (/3 « 1), the emission covers a wide range
reaching up to very high frequencies; then the overall
losses are inversely proportional to the energy of the
source. In both cited cases, the overall losses are in-
versely proportional to the impact parameter of the
source (bre^/a). Figure 10 shows the overall losses of
the source as a function of the velocity for two values of
the impact parameter, b r e ( j /a = 1/3 and 2/3 (bre(j is the
reduced value of b). These curves were obtained by
integrating the exact expression (53) for the losses over
the frequency. We see that the initial and final portions
of the curves in Fig. 10 are well described by the ap-
proximate expression (55).

Let us determine the emission losses into the free
half-space from the flux of energy through a plane
parallel to the edge of the structure (x, z), and lying
below the trajectory of the source (y < —b). If we cal-
culate the flux of the Poynting vector through a strip of
width a in this plane, we obtain the sought spectral den-
sity of losses per period of the structure:

«>m + "'n v>m —»
(56)

The summation in (56) is extended only over values of
the subscript m corresponding to emitted space harmon-
ics, while the function Am(q, (3) is analogous in nature to
the quantity A in Eq. (53). We shall also give a simple
expression for the losses in the case in which only the
first harmonic can be emitted 0 / (1 + /3) s q s 1/2):

wfiee. 1 _ c-2ftYt. .a 2ix \ * / it i
a ) \ a

(56')

We can illustrate the characteristics of the emission
into the free half-space by the spectral distributions of
the first-harmonic intensity shown in Fig. 11 for differ-
ent velocities of the source (j3 = 0.15, 0.3, 0.4, 0.6, and
0.8). As we see, the emission is concentrated into two
frequency ranges. Here the intensity of the high-fre-
quency Lobe declines considerably with increasing
velocity. In addition, the emission region is shifted to
higher frequencies with increasing velocity of the source
(the high-frequency Lobe is especially greatly shifted).
Here the fore-and-aft asymmetry of emission becomes
even more evident. Figure 12 shows in polar coordinates
the curves of the angular distribution of the emission
intensity of the first space harmonic. At low source
velocity, the angular distribution of the emission inten-
sity is described by a smooth two-lobed directional dia-
gram. With increasing filament velocity, in accordance
with the increasing complexity of the emission field, the
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lobes of the directional diagram begin to be separated,
each gap corresponding to the onset of excitation of the
next waveguide harmonic.

In analogy to the determination of the emission into
the free half-space, we can calculate the energy flux
emitted into a waveguide cell of the periodic structure.
As we can verify, the total losses by emission and the
work done by the radiation field on the source satisfy a
balance equation here. This serves to confirm the cor-
rectness of the derived analytical expressions for the
losses.

2) If the emission source is a point charge rather
than a charged filament, all the components of the vec-
tors of the electromagnetic field are non-zero. In this
case, one canC22] reduce the mathematical formulation
of the problem to solving a system of four "paired"
integral equations for the unknown current distributions
on the plates of the retarding structure:

Y'inr

1
isin2 9) "

Lz (wm cos 9)

\wm cos 9— \

where w m = —

![K'*:Zcosz<f 4-̂ msin29 + f Vk'y* + win sin291
(57)

v m = (k//3) — (27r/a)m, and r and
tp are the polar coordinates in the xy plane (<p is meas-
ured from the negative y axis). The expressions of (57)
were derived under the assumption that the charge is
moving in the yz plane at a distance b from the edge of
the structure. As we see from (57), the radiation field in
free space is formed by superposition of conical waves
diverging from the z axis. Here the wave vector of the
m-th space harmonic makes an angle of

0 a r c c o s ( )

c)

d)

40°
FIG. 12. Directional diagrams of emission of the first space harmonic

for two values of the impact parameter: b/a = 0 - solid curve; b/a = 0.1 —
dotted curve. The direction of motion of the source is shown by the arrow
arrow, a) 0 = 0.08; b) (3 = 0.6; c) |3 = 0.4; d) (3 = 0.15.

with the z axis. As in the case of a line source, the re-
lation between the emission frequency and the observa-
tion angle 9 m is determined by the Doppler formula (2)
for any value of the angle <p. The radiation field is sym-
metrical with respect to the yz plane. In this plane
(<p = 0), apart from a constant factor, the expressions
of (57) go over into the corresponding field formulas in
the planar problem (the Exw component hereby vanish-
ing).

The energy losses by emission into the free half-
space can be determined from the energy flux through
the surface of a circular cylinder of large radius des-
cribed about the z axis. The spectral density of the
emission losses per period of the structure in the angu-
lar interval from tp to ip + d<p proves to be

W (9 n,) = -i!^l V e-2
4nc -;—

4- ii4,sinz < COS2<f + i%, sin2 9 + wm cos 9
= :

|£4(i K*2V2 + №sin29) I | L2 (im cos 9) |2 (i2 cos2 (p + Dm sinS9)

where the summation extends only over the emitted
harmonics. To illustrate the directional properties of
the emission, we show the graph (Fig. 13) of the angular
distribution of emission in the first space harmonic for
various particle velocities (/3 = 0.15, 0.4, 0.6, and 0.8).
Figures 13a—d show the curves of the emission intensity
as a function of the angle 0(WW = Ww(0)) in planes corre-
sponding to fixed values of the angle cp. One can readily
visualize the three-dimensional emission distribution
surfaces. We see that intense emission occurs in a
narrow sector of angles near the normal to the particle
trajectory. At low velocities (/3 £ 0.5), the emission in
the transverse direction can exceed by a factor of
several-fold the maximum emission in the direction of
motion. At relativistic velocities the forward emission
is largely cut off, while the emission in the transverse
direction remains very intense. Equation (58) is simpli-
fied considerably for two principal planes: <p = 0° and
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0°; 2 — <p = 10°; s — <9 ~ 20°; 4 — ip = 40°; s —
0 m = 90° . In the plane passing through the trajectory of
the charge and normal to the edges of the plates (<p = 0°),
the directional diagram of the emission differs from the
corresponding angular distribution in the two-dimen-
sional case only in the factor sin 9. In the plane normal
to the trajectory of the source (9 = 90°), a harmonic of
number m is emitted only at the frequency w = 2irmu/a,
which is a multiple of the frequency of passage of the
source through a period of the structure. The angular
distribution of the emission in this plane for various
source velocities is shown in Fig. 14.

3. Emission from a Line Source Passing Close to a
Comb-like Structure

In deriving an exact solution in the last section, we
adopted as the periodic structure a highly idealized
model consisting of a set of half-planes. It is of more
practical interest to treat comb-like retarding struc-
tures in which the dimensions (the depth) of the resona-
tor regions are finite. Studying such structures makes
it possible to elucidate the relation of the emission in-
tensity to the depth of the cells. This proves to be a
resonance relationship in a number of cases.

Figure 15a shows a two-dimensional comb-like re-
tarding structure. It consists of infinitely long (along the

30°

FIG. 14.

x axis), parallel, thin, ideally-conductive strips of
width I. The strips are attached to a metallic plane
(y = 0), or base, and are separated by the distance a.
Let us take as the source of the field a uniformly-
charged filament parallel to the x axis and moving at
the constant velocity u at the "impact parameter" b
from the edge of the structure.

It is convenient to use the image method in formulat-
ing the problem. The sought field of the moving filament
evidently coincides for y £ 0 with the field of the source
plus its image relative to the plane y = 0 (a filament of
linear charge density— e situated at y = b + I) moving
close to a periodic array of parallel, ideally-conductive
strips of width 11 (Fig. 15b). We can formulate the
problem as a system of integral equations for the un-
known current distributions induced by the source in the
plates of the structure. The method of deriving these
equations has been discussed in detail in the review t2

and we shall give the equations here without deriving
them:

t2 ]

F(w)L(w)coswydw = —

F(w)coswydw = 0 when|y|>/.

ch kyy When \y\<l,

(59)

Here F(w) is the Fourier amplitude of the current-den-
sity distribution on the plate of number m = 0:

Hv{y)~ \ F(w)coswydw. (60)

The representation (60) reflects the fact that the distri-

9
0V

a)

1

FIG. 15.
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bution of the induced c u r r e n t and i ts image with respect
to the base plane (on a s t r ip of width 21) i s an even func-
tion. The induced current joy(y) determines the radia-
tion field. The overal l field equals the sum of the radia-
tion field and the field of the source and its image moving
in free space. The kernel L(w) is defined by Eq. (6, 10)
of the review [2] .

L(w) = -
cosav — cos a -

(61)

The system of equations (59) can be solved by the fac-
toring m e t h o d . [ 1 8 ] It is found in the form

(62)

where W(- is determined by Eq. (50), and Li(w) and L2(w)
by Eq. (51). The constant coefficients K and Kt must be
defined such that the equations (59) a r e satisfied.

The chosen form of solution for F(w) is equivalent to
represent ing the current in the s t r ips bounding a cell of
the s t ructure as a superposition of current waves
(corresponding to the fields of the normal modes of the
waveguide for this region). These waves run both toward
the inter ior of the cell and toward i ts open end. As we
can easily verify, when the s e r i e s 4-/Kt converges, the

solution (62) satisfies the known conditions at the edges
of the plates (y + ±1): F(w) ~ w 3 / 2 a s w —• °°. We also
note that when w —• 0, the function F(w) defined by Eq.
(62) behaves completely analogously to the solution of
the problem of a system of half-infinite p lates . This in-
dicates an identical law of decline of the e lectromag-
netic field with distance in the remote region in both
problems.

Substituting Eq. (62) into the system of integral equa-
tions (59) gives a l inear inhomogeneous system of alge-
braic equations for the coefficients K and Kt:

2,

iky 4n.Hu ( , (i*v)
e-kV>. (63)

Here we have introduced the quantity

where a2wi (wi + k'y*)

f -1 when t = 0,

1 when t>i.
(64)

We note that at any frequency the wave numbers W|- be-
come purely imaginary above a certain value of the sub-
scr ipt t close to ka/V. Here the corresponding waveguide
harmonics cease to propagate in the waveguide formed
by two adjoining plates . For purely-imaginary values of
w t , the coefficients r t contain the exponentially smal l
factors (~ exp{-27r(e/a)t} for large t ) . Hence we can ap-
proximately replace the infinite system (63) by a sys-
tem having a finite number of unknowns by dropping the
exponentially smal l coefficients K .̂ Solving the abbrevi-
ated system gives approximate values of the coefficients
K and Kt. Each t ime that we increase the number of un-

knowns by unity (i.e., take into account one of the
damped waveguide harmonics in the resonator region),
we increase the accuracy of the approximation.

Let us discuss several successive approximations.
For very deep cel ls, in which the cell depth I i s consid-
erably g rea ter than thei r period a, al l the Kt coefficients
a r e exponentially smal l . The approximate solution in
this case has the form

K=--, EOiyae = B. (65)

We can take this solution a s the z e r o - o r d e r approxima-
tion. It coincides with the solution t reated above in the
problem of emiss ion from a source moving near a sys-
tem of half-infinite p lates . We note that we have to as-
sume that there is no wave reflected from the base in
o r d e r to get the limiting transit ion I — °°. We can do
this by assuming an infinitesimal attenuation.

In the frequency range

0 < | = ^ - < i (66)

only a TEM wave can propagate in the cell. For this
wave, Wo = k (the propagation constants of all the other
waveguide harmonics a r e purely imaginary). Hence, in
the f i r s t-order approximation, the infinite system (63)
i s reduced to two equations for the coefficients K and
Ko:

KU-K = 0. (67)

Thus the solution in the f i r s t-order approximation has
the form

= rotf, (68)

where

The second-order approximation for the frequency
range of (66), i .e., the solution taking account of the
exponentially-small Ki and T 1 ; i s defined by the expres-
sions

(69)

where

iy + i
iky-w, T „ -w, iy-l\

t-w, + iy + l)

For numerical calculations, it i s convenient to use
an explicit express ion for the coefficients Tt in the form
of an infinite product:

T e

2№t-A"~lu2) r r '»"•+"'<, I T C - m - ^ ) (w+m-*t) / 7 0 )

m = 0 Wm~Wt mi l ("'— + "'') &+™+'°t) K '

A s t h e r e p r e s e n t a t i o n ( 7 0 ) i m p l i e s , t h e c i t e d a p p r o x i m a -

t i o n s c o n v e r g e o n l y u n d e r t h e c o n d i t i o n

i .e., for sufficiently closely-spaced or deep s t r u c t u r e s .
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When the condition (71) is violated, the choice of a solu-
tion in the form of a superposition of waveguide harmon-
ics is evidently inappropriate.

In treating emission at higher frequencies, we must
take a system of higher order as the first-order approxi-
mation. Thus, we should naturally begin to find an ap-
proximate solution in the frequency range

kas —1

with a system of order s + 1, since the coefficients K̂
become exponentially small only when t > s + 1.

Determining the coefficients K and Kt solves the
problem of finding the spectral component F(w) of the
current in (62). Using F(w), we can easily write down
the only non-zero component Hw x of the magnetic field:

k
= Hx + — e 0 \ F(w)

cos v [z — a (n + l)l — e' " OS viz — an) ,- '-coswydw
cos av — cos -

(72)

where H£,X is the field of the charged filament and its
image in the metallic plane y = 0. The integration is
performed by means of residues. The physical features
of the field depend on whether it is calculated in a reson-
ator cell (— I < y < 0) or in free space (y < — I). In a cell
of the structure, the overall field is a superposition of
standing waves made of waveguide harmonics propaga-
ted into the cell and reflected from the base:

culating the radiation reaction, i.e., the work done by
the excited field on the source. When the source passes
over one period of the structure (0 s z £ a), the emis-
sion losses have the form

a oo oo
W= — \dz-2Re\eEza(z = ut, y= —l-b)e-i"ldu>=t\Wad(1i. (75)

0 0 0
The spectral density of losses W^ by emission is

w;> = - - ... ,, (iky) (76)

We should note that only a retarded space harmonic
moving synchronously with the source contributes to the
expression for the radiation reaction at the frequency w.
The phase of the field of the rest of the space harmonics
at the same frequency at the site of the source varies
periodically because of the velocity difference between
these harmonics and the charged filament. Hence, the
work done by the field of these space harmonics on the
source is zero when averaged over a period.

The expression for the emission losses from the
moving source can also be derived directly by calculat-
ing the energy flux through a plane parallel to x and z,
remote from the comb structure. The flux of the
Poynting vector through a strip of width a in this plane
determines the sought spectral density of emission
losses per period of the structure:

rr i ,
Hax(V, *) =

2J Km

(73)

The magnetic field of the charged filament excited in
the free half-space has the form

H«,x (y, z) = — 4 sgn (y + b +1) e

2
^

2rt (74)

Here the first term defines the intrinsic field of the
moving charged filament. The second term in (74) des-
cribes a superposition of plane electromagnetic waves
excited by the source. The term of the summation
corresponding to the subscript t = 0 gives a surface
wave propagated along the structure synchronously with
the source. The rest of the terms in the summation are
space harmonics of the same frequency as the surface
wave. Real values of the wave numbers w^ correspond
to electromagnetic waves emitted by the moving source.
Imaginary values of ŵ . correspond to inhomogeneous
plane waves running over the structure at a velocity

differing from the velocity of the source.
Now we shall discuss the energy characteristics of

the emission that appears when the charged filament
moves near the comb-like structure. We can determine
the overall energy losses of the moving source by cal-

where the summation over t covers all the space harm-
onics that can be emitted (wj- being real at the frequency
in question).

We can determine approximate values of the coeffi-
cients K and Kj- by Eqs. (68) or (69). Then we can use
them in Eqs. (76) and (77) to calculate the emission
losses at the different desired degrees of accuracy. The
amount of emission losses depends on the emission fre-
quency to, the period of the structure a, the depth of the
cell I, the velocity of motion of the source u, and the
impact parameter b. For convenience we can introduce
three dimensionless parameters:

ka I o u /nn\

For a fixed value of the impact parameter b, the size of
the losses depends only on these three parameters. We
shall give below the results of numerical calculations
for the case b = 0. In the calculations, we have fixed two
of the three quantities of (78), and have studied the de-
pendence of W on the third variable. Figure 16 shows
the overall emission losses w° j V e r a ^ as a function of the
dimensionless cell depth r for various fixed values of the
parameters q and 13. We see that the relation of w£°t to
r is nearly periodic. The graphs show for comparison
the results obtained in the first-, second-, and third-
order approximations. All the graphs of Fig. 16 are
drawn for the value (3 = 0.9 (relativistic motion of the
source) and q values of 0.80, 0.60, and 0.48. The sharp
resonance relation to r calls for attention. Thus, at
q = 0.80, the emission losses at resonance (r = 1.85)
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exceed the losses at the same frequency for an infinitely
deep structure by a factor of thirty.* We see that the
first-order approximation is inapplicable for q > 0.5,
while for q < 0.5 the results in the first- and second-
order approximations agree satisfactorily. In the trea-
ted cases, the second- and third-order approximations
give similar results. The agreement between the differ-
ent orders of approximation improves with increasing r.
We should note that at small r (r < 0.22) the method of
calculation used here is inapplicable. Figure 17 shows
for comparison the analogous Ww(r) relations for /3 = 0.4
(non-relativistic motion of the source) and q values of
0.570 and 0.480.

We shall now proceed to discuss the spectral com-
position of the losses, i.e., the relation of W to q for
fixed values of /3 and r . Figure 18 shows graphs of the
Ww(q) relation ( 0 < q < 1) for j3 = 0.9 for two values of
the dimensionless cell depth r (r = 1 and r = 5). The re-
sult was obtained in the third-order approximation,
which agrees very well with the second-order approxi-
mation. The graphs show a clearly marked resonance
relation between the emission intensity and the fre-
quency. The emission is concentrated in narrow reson-
ance frequency bands where the intensity takes on high
values. It is of interest to compare the curves of Fig. 18
with the spectral distribution of emission losses depic-
ted in Fig. 9, when the source was passing close to the
periodic structure made of half-planes (r — °°). We see
that the emission for the structure with r = 1 at /3 = 0.9
at the frequency q = 0.82 exceeds that in the same spec-
tral region for the infinitely deep structure by a factor
of about twenty. As we increase the depth of the struc-
ture, the number of lines in the emission spectrum
(i.e., the number of resonance maxima) increases, and
the spectral lines become narrower. Figure 19 shows
the corresponding spectral dependences of the intensity

for non-relativistic motion of the source (0 = 0.2). The
emission in this case is also of resonance type, although
the maximum intensities are not so large.

Figures 20a and b aid in getting a picture of the re-
lief of the function W(q, /3) in the q/3 plane at the chosen
depths r of the structure (r = 1 in Fig. 20a and r = 5 in
Fig. 20b). These diagrams show the positions and
heights of the resonance maxima. As the cited numer-
ical values indicate, the relief of the W(q, /3) function is
reminiscent of mountain ranges almost parallel to the /3
axis. The solid lines drawn on the graph show how the
peaks of these mountain ranges are arranged. The
dashed lines indicate the boundaries of the regions of
emission of the space harmonics, as determined by the
inequalities (15). A more detailed analysis of the quan-
titative results and also a number of graphic qualitative
explanations of the characteristics of the diffraction
emission in this case can be found in [ 2 5 ] . We also note
that one can derive in a quite analogous way a solution
of the problem of emission from sources passing near a
transparent grating made of thin strips of finite height,
as shown in Fig. 15b. In the latter case, one has to solve
the problem of finding both the even and odd current
distributions in the plates of the periodic structure.

*The size of the resonance maximum for q = 0.874 and r = 1.6
exceeds the losses for an infinitely deep structure under the same condi-
tions by a factor of approximately 200 (!).

0.2 04
FIG. 18. j) = 0.9.



158 B. M. BOLOTOVSKII and G. V. VOSKRESENSKII

0 01 0.4 0.6

FIG. 19. p = o.2.

4. OTHER METHODS OF CALCULATING THE EMIS-
SION FROM SOURCES MOVING CLOSE TO PERIODIC
STRUCTURES

Use of the factoring method discussed above leads to
a solution in the form of successive approximations that
converge very rapidly to the exact solution. However,
this method can be applied only to study periodic struc-
tures of the discussed type. The methods of analysis
developed in C26-30] provide broader potentialities. In
these studies the authors were able to find an exact solu-
tion of the problem of emission from a plane modulated
electron beam in the vicinity of a plane diffraction grat-
ing made of thin strips. The relation between the strip
width and the period of the structure was arbitrary.
They also found the quantitative characteristics of the
emission for a grating made of thick bars and for an
open comb-like structure having teeth of finite thick-
ness. Following126'273, we shall discuss in more detail
the derivation of the solution and quantitative results for
the case of a plane diffraction grating made of thin strips
(see Fig. 2). We shall take the field source to be a plane

modulated electron beam parallel to the grating and
passing at a distance b from it:

p(z,t) = Po6(y-b)ei&-'°<). (79)

The field corresponding to such a current distribution
in free space has a single component of the magnetic
vector:

ffx (y, z) = -2p0TtPe-ftvl!/-b|sgn (j,_ b) e (u z~°"). (80)

The rest of the components of the electromagnetic field
can be easily derived from (80) by the Maxwell equa-
tions. The radiation field generated by interaction of
the source with the diffraction grating can be represen-
ted as a superposition of space harmonics:

* (y> «) = sg (81)

The coefficients Bn are proportional to the coefficients
of the Fourier-series expansion of the current induced
in the strips of the grating.

We can derive an equation for the coefficients Bn by
requiring that the tangential component of the overall
electric field should vanish at the plates of the grating
(for nd + a < z < (n + l)d), and that the tangential com-
ponent of the magnetic field should vanish at the gaps
in the grating (i.e., for y = 0, nd < z < nd + a). These
two conditions give the following system of equations:

iomd + a<z<(n + i)d (at the strips of the grating),

5 , e ' ' ' = 0 for nd<z<nd + a
(at the gaps of the grating). (82)

By making a formal substitution of variable Bn

= An /vnp0 , we can t27] transform the system (82) into

$5 HB 0.7 0.8 US Iff
H

b)
FIG. 20.
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the form

^-e^=-s + V

(83)

where we have introduced the dimensionless variable
ip = 2J7z/d (correspondingly, 6 = 27ra/d). The quantities
e and Xn a r e defined by the equations

Xn = l + j i i i l ^ i | / 4 L _ l , (84)

while the quantity vn, which is the projection of the wave
vector on the z axis, is defined by Eq. (50a). It is im-
portant to note for later reference that the quantity Xn
approaches zero (~ 1/n2) with increasing |n|.

Let us note here briefly the way to solve the system
(83). Those interested in the details will find them
in ' 2 6 j , which we are following in our treatment. If the
right-hand side of the first of the equations (83) con-
tained an assigned function of ip, then the system (83)
would be equivalent to the Riemann-Hilbert problem, in
which an analytic function is determined by conditions
assigned at the boundary of a certain region. In fact, let
us consider the auxiliary system of equations

2 Ane
in* = 0, 6 < if < 2JT. (85)

We shall introduce a function of the complex variable z
by defining its expansion in powers of z = |z je1 ̂  :

(x+(z)=2;
n>0 (86)

Then the left-hand sides of the equations contained in
the system (85) are respectively the sum and difference
of the limiting values of the function X(z) inside and out-
side the unit circle:

) -\- X- (e"t) = 0 < ijj < 6, (87)

The first condition indicates a discontinuity in the func-
tion X(z) in passing along the arc of the circle having
0 < ip < 6 • The second condition indicates that the func-
tion X(z) is continuous in z over the rest of the circle.
The problem of determining the function X(z) according
to these conditions is precisely the Riemann-Hilbert
problem.

Let us make a cut in the plane of the complex varia-
ble z along the arc Li (Fig. 21). Then let us form the
function X(z) V(z - a)(z - 'a), where a and ~a are the end
points of the arc Li (a = 1, a = e*^). This function is
holomorphic, single-valued, and bounded at infinity.
Consequently, it can be represented as a Cauchy integ-
ral

(88)

where the contour r surrounds the cut Li, and the con-
stant C has been obtained by reference to an infinitely
distant point.

FIG. 21.

Now let us make the contour r approach the arc Li.
Taking into account the fact that the limiting values of
the square root on the different sides of the cut differ in
sign, while the limiting values of the function X(f) along
the different sides of the cut are X*(z) and X"(z), we get

X"(z) Y(z - a) (z - a) = ~ § JlGktLj
Ll ' (89)

Upon substituting the values of X+(f) + X~(£) from (87)
into this formula, we obtain the solution of the Riemann-
Hilbert problem.

Equation (89) permits one to find a relation between
the values of X(z) on the circle of unit radius. If the
point z approaches the arc Li, the limiting value of the
integral in (89) is determined by the formula of Sokhot-
skii t 3 1 J | , and it depends on whether the point z approa-
ches the arc from inside or outside the circle. Taking
the average of these two limiting values, we get

X- (

where

R(t)=
0

-a>&~«) dZ + 2CR&

on the arc L,

on the arc L2,

(90)

and the integral is understood to have its principal
value. The point £0 is taken on the circle of unit radius.
Equation (90) implies that An is the coefficient in the
Fourier-series expansion of the right-hand side.

Now let

as is the case in the real system of equations (83). Sub-
stitution of this expression into (90) and calculation of
the Fourier coefficients for both sides of the equation
leads to an infinite system of algebraic equations for
the coefficients An. This system of equations can be
solved to the required accuracy, since it contains the
small parameter Xn (we recall that the definition (84)
implies that Xn becomes small for large n). Adopting a
given degree of accuracy of solving the infinite system
of equations for the coefficients An, we can replace the
system with a finite number of equations. The required
number n of equations is equal in order of magnitude to
the ratio of the period a of the structure to the wave-
length A (more exactly, n > a/A/3). Since there are
standard programs for solving systems of linear alge-
braic equations, it is convenient to use computers to
find the numerical values of the coefficients An.

We can determine the amount of emission losses per
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FIG. 22.

period of the structure by calculating the flux of the
Poynting vector across a plane y = const. Here we have
to bear in mind that the emission is distributed symme-
trically with respect to the plane of the diffraction grat-
ing. The intensity Sn of the losses in the space harmonic
of order n is proportional to |An|2. The relation between
the frequency and the propagation direction of the emit-
ted wave is given by the Doppler relations (2) and (11),
which are general for all linear periodic systems.

Graphs are given in1273 of the relation between the
size of the Poynting vector Sn corresponding to different
space harmonics and the parameters of the problem (the
beam velocity /3, the dimensionless grating period d/A,
and the filling coefficient a/d of the grating). They were
obtained on a computer by the method described above.
Figure 22, which is taken fromU9] , shows the relation
of Sn (for n = - 1 , - 2, - 3) to the variable q = Z/A for
various velocities of the electron current (/3 = 0.5, 0.6,
and 0.7). The grating filling coefficient is a/d = 0.5, i.e.,
the width of the strips in the grating was equal to the
spaces between the strips. We see from the graphs that
the emission intensity shows a resonance relation to q.
For the chosen range of variation of the parameters, the
most intense emission occurs in the first space
harmonic. The relation of Sn to the grating filling co-
efficient for a given source velocity and fixed frequency
is of interest. Figure 23 gives examples of such rela-
tions for the first space harmonic. As is quite evident,
there is no emission in the limiting cases a/d = 0 and
a/d = 1. There are maxima of emission at certain in-
termediate values of a/d.

The above-discussed method of finding the fields,
which is based on solving the boundary Riemann-Hilbert
problem, is applicable only to studying plane gratings
made of infinitesimally thin strips. Structures consist-

p
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ing of bulk elements are of greater practical interest,
e.g., diffraction gratings consisting of thick bars of
comb-like structures having teeth of finite thickness
(see Figs. 24 and 6). V. P. Shestopalov, O. A.
Tret'yakov, and E. I. Chernyakov[28'29] have made a
study of emission from charged sources moving past
such structures, based on numerical methods. Here they
reduced the diffraction-emission problem to a finite
system of linear algebraic equations for the Fourier
coefficients, the field being represented as a superposi-
tion of space harmonics analogous to the systems of
(82). in

[28>29] they developed procedures for effective
quantitative study of the obtained infinite algebraic sys-
tems using computers. A rather detailed presentation of
the method of calculation and also of the mathematical
study of the obtained solutions whenever possible is
given in U o : . We note that problems of excitation by a
moving source of the cited periodic structures can easily
be interrelated by the image method: the emission from
a charge above a comb-like structure (of depth I, see
Fig. 6) is equivalent to that excited by the symmetrical
passage of two charges of opposite sign past both sides
of a structure made of bars (of thickness 21). In com-
parison with a plane strip grating, a structure of the
type shown in Figs. 6 and 24 is characterized by an ad-
ditional parameter, the depth (or thickness) / of the ele-
ments of the structure. Hence it is of interest to study
the relation of the emission characteristics to this
parameter. Figure 25 shows the relation, as taken
fromC28], of the size of the Poynting vector S in the
n = — 1 harmonic to the source velocity for three differ-
ent values of the thickness of the grating. For compari-
son, the dot-dash line gives the value of the Poynting
vector for a plane strip grating. We note here that for a
thick grating the emission is no longer symmetric with
respect to the plane of symmetry of the grating, y = 0.
The graph gives the values of the energy flux into the
half-space (y > 1/1) containing the source. Figure 26

FIG. 23. u = cos 0ra/d).

0.20 025 S30
FIG. 25. dla = 0.2, q = 0.25.

I — I/a — 0; 2 — I/a = 0,9; 3 — I/a — :FIG. 26. alX = 0.25, p = 0.249.
1 — d/a = 0.5; 2 — d/a = 0.2.
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shows the Poynting vector S-i as a function of the grating
thickness I. The solid lines show the characteristics of
the emission above the grating, and the dotted lines give
the emission below the grating (y < -1/2). The reson-
ance nature of the variation is clearly visible.

There is a large number of graphs in£28>29] permitting
one to get an idea of some of the features of the emis-
sion. However, the values of the parameters chosen for
calculation apply only to the case of emission along the
normal to the plane of the grating. Thus the contribution
to the emission from currents parallel to the y axis (see
Fig. 24) is not taken into account. At the same time, as
was shown in Sec. 3, such currents can give rise to
strong resonance peaks of emission intensity at angles
differing from the normal to the structure.

In addition to the rigorous methods of study based on
numerical analysis of the derived equations with compu-
ters, as developed in t28 '29:l, one can find an approximate
analytic solution in dealing with gratings in which the
slit width is considerably smaller than the period. It
describes the characteristic features of the emission
rather fully. This approximate approach is based on
formulating the problem in the form of infinite systems
of linear algebraic equations of the second kind. For ex-
ample, an analysis of a derived approximate solution is
found inC41].

One can find a number of generalizations of the prob-
lems discussed in this section in the collected vol-
ume1 3^.

CONCLUSION

We have discussed above the diffraction emission that
arises when charged sources move alongside open
periodic structures. The discussed problems greatly
resemble problems of emission from charged particles
in layered periodic media. In particular, the emission
spectrum is described by analogous Doppler relations.
The essential difference between the cited problems is
the fact that, in studying diffraction emission, the source
moves in a vacuum, while in the latter case optical in-
homogeneities along the trajectory of the source are
directly due to the periodic variation of the properties
of the medium in which the source is moving. This phys-
ical distinction gives rise to a difference in the methods
of mathematical analysis of the problem. We are not
discussing emission in layered periodic media, but shall
cite only the references to the fundamental studies132~361

on this problem and the review'373.
Above, we have treated the emission in an approxi-

mation involving uniform motion of the source: the re-
verse effect of the emission on the source has not been
taken into account. However, if the path of the charge
near the grating is long enough, and the emitting char-
ges or currents are large enough, it becomes unjustified
to neglect the radiation reaction. The radiation reaction
can cause an additional modulation of the original charge
distribution in the beam, and thus considerably alter the
characteristics of the emission. Preliminary results
are given in of calculations of the growth of space-
charge waves in an initially homogeneous beam moving
in the space between two plane diffraction gratings. The
results obtained int38:l indicate the importance of study-
ing self-consistent problems for each concrete case.

We should mention the interesting study undertaken by
I. L. Verbitskif of the induction of oscillations in an ini-
tially single-velocity plane electron beam moving above
a comb-like structure in a waveguide.

Note added in proof. Since this review was submitted for publica-
tion, several studies have appeared, and should be mentioned at least
briefly. In [42] emission was studied from a charged particle passing
by an assemblage of ideally-conductive half-planes. The results match
those of the studies cited above. In [41 >43] emission was studied from a
charged particle moving in the helical waveguide. In [**], the theory is
discussed of the Wood anomalies, which were referred to on pp. 150-
151 of this review.
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