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1. INTRODUCTION

I T i s we l l known tha t u n d e r o r d i n a r y cond i t i ons t h e
e l e c t r o m a g n e t i c f ie ld d o e s not p e n e t r a t e d e e p in to a
m e t a l and i s l o c a l i z e d in a th in l a y e r n e a r i t s s u r f a c e .
T h i s p h e n o m e n o n i s c a l l e d the s k i n e f fec t . It i s d u e t o
t h e l a r g e e l e c t r i c conduc t iv i ty of m e t a l l i c b o d i e s : t h e
e x t e r n a l wave i n d u c e s a high f r e q u e n c y e l e c t r i c c u r r e n t
t h a t p r e v e n t s p e n e t r a t i o n of t he f ie ld into the s a m p l e .
The sk in effect i s c h a r a c t e r i z e d by a p e n e t r a t i o n dep th
and by a d i s t r i b u t i o n of t he f ie ld in t h e c o n d u c t o r . The
p e n e t r a t i o n dep th c a n b e i n t r o d u c e d in d i f fe ren t m a n n e r s ,
d e p e n d i n g on the c h a r a c t e r i s t i c of the sk in effect . In t he
c l a s s i c a l (or n o r m a l ) sk in effect , wh ich t a k e s p l a c e a t
r o o m t e m p e r a t u r e s , the f ie ld d e c r e a s e s e x p o n e n t i a l l y .
The p e n e t r a t i o n dep th (the t h i c k n e s s of t he s k i n l a y e r )
i s u s u a l l y def ined a s the d i s t a n c e 6 n in wh ich t h e f ie ld
d e c r e a s e s by a f a c t o r e . T h e r e i s a we l l known f o r m u l a
fo r 6 n ,

w h e r e c i s the s p e e d of l igh t , w the c i r c u l a r f r equency
of t h e w a v e , and a0 t h e s t a t i c conduc t iv i ty of t h e m e t a l .
The c h a n g e in t h e p h a s e of the w a v e in t h e m e t a l i s
c h a r a c t e r i z e d by the s a m e quant i ty 6 n .

The def in i t ion (1.1) i s d i r e c t l y c o n n e c t e d wi th t he
l a w of d i s t r i b u t i o n of t he f ie ld i n s i d e t he m e t a l . It i s
p o s s i b l e to p r e s e n t a d i f fe ren t de f in i t ion of t he t h i c k -
n e s s of t he sk in l a y e r , wh ich m a k e s u s e of the e x t e r n a l
c h a r a c t e r i s t i c of t he m e t a l — i t s s u r f a c e i m p e d a n c e
Z = R - iX :

•(X+IR). (1.2)

H e r e H(z) i s one of t he t a n g e n t i a l c o m p o n e n t s of t he
a l t e r n a t i n g m a g n e t i c f i e ld , and the z a x i s i s d i r e c t e d
a long t h e i n w a r d n o r m a l to t h e s u r f a c e of t he s a m p l e .
Such a de f in i t ion of t h e p e n e t r a t i o n dep th i s m o r e gen -
e r a l , s i n c e i t d o e s no t p r e s u p p o s e a n exponen t i a l a t t e n u -
a t i o n of t he f ie ld in t h e sk in l a y e r . The e x p o n e n t i a l d i s -
t r i b u t i o n t a k e s p l a c e on ly in the c a s e of t he n o r m a l sk in
effec t , when t h e m e a n f r e e p a t h I of t he e l e c t r o n in t he
m e t a l i s m u c h s m a l l e r t h a n 6 n . Under t h e s e c o n d i t i o n s ,
the quan t i t y 6 ^ def ined by (1.2) i s c o n n e c t e d wi th t he 6 n

by t h e r e l a t i o n 2 6 h = 6 n ( l + i ) .
In p u r e s i n g l e c r y s t a l s of m e t a l s a t low t e m p e r a -

t u r e s , t he m e a n f r e e p a t h I c a n r e a c h v a l u e s on the o r -
d e r of s e v e r a l m i l l i m e t e r s . It i s t h e r e f o r e e a s y to
r e a l i z e t he o p p o s i t e c a s e , c o r r e s p o n d i n g to t h e a n o m -
a l o u s sk in ef fec t . In t h e a n o m a l o u s s k i n effect , O h m ' s
law in i t s u s u a l f o r m j = oE no l o n g e r h o l d s , s i n c e t he
c u r r e n t d e n s i t y j ( r ) a t a g iven po in t r i s d e t e r m i n e d by

the e l e c t r i c f ie ld E not only a t t ha t po in t , but a l s o in a
r e g i o n wi th d i m e n s i o n on t h e o r d e r of I a r o u n d i t .
C o n s e q u e n t l y , t h e conduc t iv i ty a i s not a c o n s t a n t of t he
m e t a l , but d e p e n d s on t h e f o r m of t he s a m p l e and on the
field d i s t r i b u t i o n in i t , i . e . , it i s an i n t e g r a l o p e r a t o r .
T h i s o p e r a t o r shou ld be d e t e r m i n e d f r o m a m i c r o s c o p i c
t h e o r y . Such a t h e o r y w a s c o n s t r u c t e d by R e u t e r and
S o n d h e i m e r [ 1 ) on t he b a s i s of a s i m u l t a n e o u s so lu t ion
of t h e k i n e t i c e q u a t i o n fo r t h e d i s t r i b u t i o n funct ion of
t h e e l e c t r o n s and of M a x w e l l ' s e q u a t i o n s . It i s shown
in t he c i t e d p a p e r tha t when 6 n <C I t h e l a w g o v e r n i n g
the v a r i a t i o n of t h e m e t a l in t h e f ie ld i s m u c h m o r e
c o m p l i c a t e d t h a n in t he n o r m a l s k i n e f fec t . F o r the
a n o m a l o u s sk in ef fec t , R e 6 ^ and Im 6 ^ d e t e r m i n e only
the o r d e r of m a g n i t u d e of the r a t e of d e c r e a s e of the
a m p l i t u d e and of t he c h a n g e of t h e p h a s e of t h e e l e c t r o -
m a g n e t i c f ield in t h e m e t a l .

T h e d e p e n d e n c e of 6 ̂  on t h e f r e q u e n c y and on o t h e r
q u a n t i t i e s c a n b e ob t a ined with t h e a id of s i m p l e q u a l i -
t a t i v e c o n s i d e r a t i o n s , a d v a n c e d to P i p p a r d t 2 ] and c a l l e d
in t h e l i t e r a t u r e the i n e f f e c t i v e n e s s c o n c e p t . In t h e
a n o m a l o u s sk in effect , not a l l t h e e l e c t r o n s a r e e q u i v a -
l e n t f r o m t h e poin t of v iew of t h e i r r o l e in t h e c r e a t i o n
of t h e h igh f r e q u e n c y f ie ld . T h o s e e l e c t r o n s which m o v e
a t n o t i c e a b l e a n g l e s to the s u r f a c e of t h e m e t a l spend a
r e l a t i v e l y s h o r t t i m e in t h e sk in l a y e r , and a r e then
e i t h e r s c a t t e r e d on t h e s u r f a c e , o r p e n e t r a t e d e e p in to
the m e t a l , w h e r e t h e e l e c t r o m a g n e t i c f ield a m p l i t u d e i s
s m a l l . T h e r e f o r e the c o n t r i b u t i o n of such e l e c t r o n s to
t h e s u r f a c e c u r r e n t i s i n s ign i f i can t , and they a r e c a l l e d
" i n e f f e c t i v e " e l e c t r o n s . The s c r e e n i n g c u r r e n t i s
f o r m e d e s s e n t i a l l y by t h e " e f f e c t i v e " e l e c t r o n s , which
m o v e a t s m a l l a n g l e s to t he s u r f a c e and n e g o t i a t e in t he
sk in l a y e r a d i s t a n c e on t h e o r d e r of t he m e a n f r e e
p a t h / . The e f fec t ive e l e c t r o n s c o n s t i t u t e a s m a l l f r a c -
t ion (on t h e o r d e r of \6^\/l) of t he t o t a l n u m b e r of e l e c -
t r o n s , and t h e r e f o r e t he conduc t iv i ty p r o d u c e d by t h e m
i s e q u a l to a e f f = gpod^/l, w h e r e g i s a n u m b e r on t h e
o r d e r of un i ty . Subs t i t u t i ng creff fo r a0 in t he f o r m u l a
fo r t h e i m p e d a n c e in t h e n o r m a l s k i n effect

and u s i n g t h e def in i t ion (1 .2) , w e ge t

(1.3)

(1.4)

F r o m a c o m p a r i s o n wi th t he e x a c t f o r m u l a s o f a : i t fol-
l o w s tha t in t h e c a s e of diffuse r e f l e c t i o n g = 2n//3.

E x p r e s s i o n s (1.1) and (1.4) r e f l e c t the d i f f e r e n c e b e -
t w e e n the n o r m a l and a n o m a l o u s s k i n ef fec t . W h e r e a s
6 n ~ ctT1 2 , the f r e q u e n c y d e p e n d e n c e of 5jj i s w e a k e r ,
n a m e l y 6jj ~ w" . In t he a n o m a l o u s s k i n effect , t h e

81



82 E\ A. KANER and V. F . GANTMAKHER

depth of the skin layer 6 n does not depend on the mean
free path (and consequently on the temperature), since
the ratio ajl does not depend on I. Under the conditions
of the normal skin effect we have 6 n ~ T l / 2 . We shall
henceforth make frequent use of the real quantity 6,
which is of the same order as | 5 n | . The exact expres-
sions for 6 will be given later in each individual case.

The dynamics of the conduction electrons in metals
and the character of their interaction with the electro-
magnetic waves changes significantly in a constant mag-
netic field H. It has become clear in recent years that
a metal in a magnetic field may turn out to be trans-
parent to electromagnetic radiation, and in a number of
cases it behaves in general like a dielectric.

All the presently known effects of anomalous pene-
tration (AP) of the electromagnetic field into a metal
can be subdivided into two groups. The first can be
arbitrarily called the group of plasma or collective
phenomena. They are due to the resonant excitation of
collective motions of the electrons in the metal by an
external wave. These collective oscillations represent
weakly damped electromagnetic waves in the electron-
hole plasma of the metal. From the point of view of the
quasiparticle concept, such waves can be treated as
secondary elementary excitations of the Bose type, oc-
curring in a Fermi gas (or Fermi liquid) of primary
excitations—electrons and holes. A detailed exposition
of the properties of weakly damped waves in metals is
contained in the review[3 ] .

In the present review we consider AP effects of a
different kind, those due to individual motion of charged
quasiparticles in a magnetic field. The penetration of
the electromagnetic field inside the metal is due to the
electrons that "carry away" the high frequency field
from the skin layers and then "reproduce" it within the
volume of the metal. Such effects can be called penetra-
tion of the trajectory type. Unlike the case of excitation
of collective oscillations, the frequency of the external
field is no longer connected by the resonance conditions.
The magnetic field intensity determines the scale of the
picture of the distribution of the electromagnetic fields
inside the metal. These effects were first pointed out
by Azbel' u l , who considered one of the cases of AP of
the trajectory type, namely, the occurrence of field
peaks deep in a metal under cyclotron resonance con-
ditions.

For the existence of AP effects of the trajectory type
it is necessary to satisfy the conditions

6<D<1, (1.5)

where D is the characteristic dimension of the electron
trajectories in the magnetic field. The right side of the
inequality (1.5) is the criterion defining a strong mag-
netic field. The left side denotes that the skin effect
should remain anomalous with respect to the character-
istic dimension of the electron trajectory. The meaning
of this condition is particularly easy to explain in terms
of the ineffectiveness concept. The electron interacts
most intensely with the electromagnetic field on those
sections of the trajectory where it moves along the wave
front, i.e., parallel to the surface of the metal: vz = 0.
The retardation of the field can be neglected, since the
velocity of the electron v is usually much larger than the
characteristic "phase velocity" o>5 of the wave. The

points vz = 0 on the electron trajectory and the corre-
sponding points on the orbits in p-space* will be called
"effective". In view of the fact that in a magnetic field
the velocity vector v changes on the trajectory, there
exist, generally speaking, an infinite number of effective
points. Satisfaction of the left side of inequality (1.5)
signifies that some of these points are certainly located
outside the skin layer. This is precisely the cause of the
AP of the high-frequency field in the metal. When the
electron moves along the effective section of the trajec-
tory in the skin layer, it acquires a velocity increment
Av. Consequently, it is the carrier of part of the skin
current Aj = - eAv (e—absolute value of the electron
charge). The vector Av varies along the trajectory. At
the next effective point, which is located deep inside the
metal, the electron again moves parallel to the surface
of the metal and produces increments to the velocity Av
and the current Aj. The occurrence of a current paral-
lel to the surface deep inside the sample is indeed a
manifestation of the AP of the field in the metal, namely,
current and field peaks are produced inside the metal,
and the distances between them are determined by the
dimensions of the electron trajectories.

The mechanism of the AP of the field depends on the
type of trajectory. If the trajectory is closed, then the
appearance of a peak can be expected in the plane z = D,
where D is the dimension of the trajectory in the z-axis
direction (Fig. 1). The peak is the "skin layer" for
electrons whose trajectory is displaced a distance D
into the metal. These electrons produce in turn the next
peak at a depth 2D, etc. As a result, a unique "chain of
trajectories" is produced, along which the electromag-
netic field penetrates to large depths inside the metal.

In the case of an open trajectory with a non-zero
average velocity component vz, a different mechanism
of AP of the field is possible. The system of peaks is
determined not by a chain of trajectories of different
electrons, but by the trajectory of the electrons that
drift deep into the metal directly from its surface
(Fig. 2). The high-frequency current is localized near
the planes z = un, where un is the depth of the n-th effec-
tive point (we assume that one of them is located on the
surface z = 0).

FIG. 1.

*To avoid confusion we point out that we are using the term "trajec-
tory" when we are dealing with a motion of an electron in r-space, and
"orbit" when we describe motions in momentum space.
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FIG. 2.

So far we have considered the motion of an individual
electron. Actually there exist in the metal electrons that
move along different trajectories with different values
of D or un, which are functions of PJJ— the projection of
the momentum on the direction of the magnetic field H.
For this reason, the secondary current is distributed,
generally speaking, over a large depth. As a result of
the averaging over all the electrons, the trajectories that
are singled out are those for which the density of states
with given values of D or un becomes infinite, i.e., elec-
trons with extremal values D(pjj) = De x t or un(pjj)
= Uext- A relatively large number of effective electrons
are focused at corresponding distances from the surface
of the metal, and this ensures the occurrence of the
peaks. The widths of the peaks are determined by the
thickness of the skin layer, and to a much lesser degree
by the distances between them. The field in the interval
between the peaks is much weaker, although it differs
from zero.

The AP of the field in a metal can be due also to in-
effective trajectories. Then the spatial distribution of
the field in the metal has a harmonic character.

We shall discuss below different mechanisms of
focusing of effective electrons, and we shall present a
classification of all the presently known cases of trajec-
tory-type AP of the electromagnetic field in a metal.
The first part of the present review is devoted to an ex-
position of the results of the theoretical investigation of
field AP in a semi-infinite metal. A discussion of
methods and results of the experimental study of AP is
given in the second part. These methods are directly
connected with a group of phenomena known as the radio
frequency size effects [5]

2. Classification of Electron Trajectories

An important role in AP phenomena of the trajectory
type is played by the shape of the electron trajectory. It
is therefore, useful to recall the main features of the
motion of a charged quasiparticle with an arbitrary dis-
persion law in a constant magnetic field (see t6 ]), and
also to classify the different types of trajectories.

From the equations of motion

• U - i - . v H l . r s v = 4 i (2-1)*

»c follows that the orbits of an electron are determined
in momentum space by the integrals of motion

(2.2); = const, pH = -E=- = const.

Geometrically, these orbits are the intersections of the

*[vH] s

equal-energy surface e(p) = const and the planes pjj
= const. Depending on the topology of the Fermi surface
e(p) = ep, the direction of the field H, and the values of
PJJ, the orbits can be either closed or open, i.e., they
can pass continuously through the entire reciprocal
lattice.

Since p is the velocity of the electron in momentum
space and v is the velocity in r space, it follows from
(2.1) that the orbit in p-space and the projection of the
trajectory of the electron on the plane perpendicular to
H in r-space are similar, with a similarity coefficient
eH/c, and are turned by ir/2 relative to each other. The
mean values of the electron velocity component along
the magnetic field is determined by the formula

SS (s, pH) 1 as (s, PH) (2.3)

where m is the effective mass of the electron and
S(€, pH) is the area bounded by the plane curve (2.2).
Using these data, we can easily classify the possible
types of trajectories in r-space.

1. Closed trajectories. Inasmuch as VJJ should van-
ish on these trajectories, it follows from (2.3) that these
trajectories correspond to the intersections of (2.2) with
the extremal surface SeX£. From symmetry considera-
tions it is clear that on the open Fermi surface the
trajectories of the central section pjj = 0 are always
closed. We note that closed trajectories, generally
speaking, are not plane curves.

2. Helical trajectories. These are obtained from
non-central sections of the Fermi surface and are
strictly periodic in r-space. The average electron
velocity v is parallel to H and depends on pjj.

3. Trajectories of the vicinity of the elliptical limit-
ing point. The limiting point is defined as the point p0
on the Fermi surface e(p) = ejr at which the plane per-
pendicular to H is tangent to the surface and the orbit
degenerates into a point. For all pjj close to p0, the
electron trajectories have the form of strongly elonga-
ted helical lines with practically equal pitch. On these
orbits the cyclotron frequency Q, = eH/mc and the effec-
tive mass m are also practically the same.*

4. Open trajectories. These exist only in a metal
with an open Fermi surface. The motion of the electron
is infinite in a plane perpendicular to H. The average
velocity v, generally speaking, has an arbitrary direction
relative to the vector H.

I. THEORY

3. System of Equations

To develop the theory of AP of an electromagnetic
field in a metal, it is necessary to solve Maxwell's
equations. For a monochromatic wave (~exp(—iwt)) in a
half-space, these equations are of the form (we neglect
the displacement current)

(z) — —ini 7c (z), a — x, y, (3.1)
(3.2)

There can exist also hyperbolic and parabolic limiting points, but
in such points the effective mass m and the cyclotron period 2jr/I2 be-
come infinite. Therefore the corresponding trajectories do not lead to
AP of the field in a metal.
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The z axis is directed along the inward normal to the
surface of the metal, and the y axis coincides with the
projection of the vector H on the plane z = 0; E(z) and
j(z) are the vectors of the electric field intensity and
the current density, and the primes denote derivatives
with respect to z. Equation (3.2) is the consequence of
the continuity equation and is identical with the condition
for electric quasineutrality of the metal.

To obtain the connection between j and E, we shall
use the kinetic equation. In the approximation linear in
the electric field, we have

(3.3)

(3.4)

here f is the non-equilibrium addition to the Fermi dis-
tribution function

/0(e) = [ e x p ( ^ ) + l ] " 1 , (3.5)

T = fit is the dimensionless time (phase) of the motion
of the electron along the orbit (2.2) in p-space, T is the
temperature in energy units, and 2irh is Planck's con-
stant. In (3.3) we replaced the collision integral by the
constant v, which represents the frequency of the colli-
sions of the electrons with the scatterers. The validity
of introducing the collision frequency Kp) in the anomO
alous skin effect is proved i n m .

The system (3.1)—(3.4) must be supplemented by the
boundary conditions. When z —• «°, all the functions van-
ish. On the surface z = 0 the tangential components of
the electric and magnetic fields are continuous. For the
function f we assume the diffuse-scattering condition

(3.6). =0.

[8,9]As shown in ' , the solution of (3.3) is of the form

•(z,t,e,pH)

E (Z + Q(e/pH) >")]• (3.7)

The function s(z, T, e, pH) takes into account the fact
that the trajectory on which the electron has entered
into the phase-space point (z, T, e, pjj) can start on the
surface z = 0. In this case the function s is defined as
the root of the equation

Qz+ (3.8)

lying closest to T and satisfying the condition S < T . If
there is no such root (the electron "arr ives" from in-
side the metal), then s(z, T, e, pH) should be set equal
t o - 0 0 (for details see'8 '91).

Substituting (3.7) in (3.4), we get

(3.9)

An analysis shows that in all the cases discussed
below the field component Ez in (3.9) can be neglected,
and Eq. (3.2) can be completely disregarded. The prob-

lem thus reduces to a simultaneous solution of (3.1) and
(3.9). This system of equations is particularly compli-
cated in those cases when it is necessary to take into
account the collisions of the electrons with the surface.
In particular, collisions with the surface play an impor-
tant role in field AP phenomena in the presence of drift
motion of the effective electrons to the interior of the
metal. The method of solving the system of equations
(3.1) and (3.9) in such cases is discussed in Sec. 5.2.

On the other hand, it is shown in a number of papers
that in AP phenomena due to the motion of effective
electrons on closed trajectories (cyclotron reson-
ance[7>4] , field AP along a chain of trajectories14 '103,
etc) it is possible to neglect the contribution of the
electrons that collide with the surface. This means that
in expressions (3.7) and (3.9) we can put s = — °° for all
z, T, £, and pjj, i.e., we can use the electron distribution
function for an unbounded metal. In this case, the elec-
trodynamic problem in a half-space can be replaced by
the simpler problem of finding the distribution of the
high-frequency field in an unbounded medium.

We continue the functions Ea(z) in even fashion to
the region z < 0 and change over to Fourier components

ga(fc) = 2 § dzEa{z) cosfe, £«(z) = -i- § dk%a(k)mskz. (3.10)
0 0

Substituting (3.10) in (3.9), we obtain a linear connection
between the Fourier components j a(k) and ^(k)
(a, |3 = x, y):

JaW = <raB(%6(£), (3.11)

where oap(yL) are the Fourier components of the two-
dimensional conductivity tensor

(3.12)

Equations (3.1) have in the Fourier representation
the form

(A) + 2Ei (0) = 4iti(oc-aOa

Hence

Ta 6 (2) = \ dk cos kz [A;2/ — inUacr

(3.13)

(3.14)

(3.15)

where I is a unit matrix and a(k) is the conductivity
tensor (3.12). Formulas (3.14) and (3.15) yield the gen-
eral solution of the problem of the distribution of the
field in a metal in the case under consideration.

The physical meaning of such a method of solution
lies in the fact that we represent the highly inhomogene-
ous field near the surface of the metal in the form of a
superposition of plane monochromatic waves (expansion
in a Fourier integral). The Fourier component of the
connectivity tensor a(k) describes the interaction of the
conduction electrons with one of the harmonics of the
wave packet. The integral effect of the interaction of
the electrons with all the harmonics is determined by
the inverse Fourier transformation (3.14) and (3.15). It
is thus sufficient to limit oneself to an investigation of
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the propagation of plane monochromatic waves
^(kjcoskzexpf-iu>t) in a metal. For this purpose it
is necessary to determine the components of the ten-
sor aa/3(k).

One of the most important characteristics of a metal
is the high-frequency surface-impedance tensor

Zae = RaB-iXae, (3.16)

which is a generalization of the definition (1.2). The
tensor Zafi connects the values of the electric field on
the surface with the tangential components of the total

oo
current Ja = Jdzja(x):

0
£»(0) = Za8/B. (3.17)

From (3.1) and from (3.14) and (3.15) it follows that

(0), (3.18)

so that the field distribution and the impedance tensor
are fully defined by the quantities Ta^(z).

We shall henceforth consider essentially the case of
low frequencies

co<v, (3.19)

when the quantity w in (3.12) can be neglected. This
means that the alternating field can be regarded as
quasistatic, and its time variation produces only a skin
layer in a metal.

4. Anomalous Penetration of a Field in a Metal Along a
Chain of Traj ectories

4.1. Chain of trajectories in a magnetic field paral-
lel to the surface of the metal. In Sec. 1 we already
mentioned the mechanism of field AP along a chain of
trajectories. It is now necessary for us to ascertain the
conditions for the occurrence of the peaks, the law
governing the decrease of their intensity with increasing
depth, and the factors that determine the widths of the
individual peaks. We start with the simplest model,
with which it is possible to illustrate the features of
AP along a chain of trajectories'10-1. We assume that the
metal has a cylindrical Fermi surface p2

x + p y = p2

= const, and that the magnetic field H is parallel to the
y axis (the z axis is directed as before along the inward
normal to the surface of the metal). This model is the
simplest because all the electron trajectories are the
same and represent circles of diameter D = 2pc/eH.

Let us calculate the elements of the transverse con-
ductivity tensor oap(k). It is obvious from symmetry
considerations that only the element <7xx(k) = cr(k) differs
from zero. Assuming that VX(T) = v cos T, we obtain
from (3.9)

<J (k) = a0 {| j \ + i y (kR) | - Re Jl+h (kB) /.1+/v (kR)}, (4.1)

(4 .2)

here a0 is the static conductivity, dN/d£ is the density
of the electron states per unit energy interval, N(e) is
the electron density, R = D/2 is the radius of the elec-
tron trajectory in the magnetic field, and J^(z) is a
Bessel function. In the model employed by us, the quan-

tities v, R, and ft do not depend on pjj. Using the symp-
totic expression for the Bessel function at large values
of the argument, we obtain

(4.3)4tfo ch Jty — sin kD
S. kD

It is seen from this formula that the quantity cr(k)
can have deep minima when y < 1: if kD = 2?r(n + 1/4)
(n—integer), then a ~ o0-f/HD and is much smaller than
the mean value. The sharp decrease of cr(k) is due to
the fact that there are only two effective points, A and
B, on the electron trajectories (see Fig. 1). When the
diameter D spans an integer number of wavelengths, the
resultant interaction of the electron with a given wave
is small as a result of interference, for in one of these
points the electron moves along the field, and in the
other against the field. If the diameter spans an odd
number of half-waves, the interaction is a maximum.
The sharp decrease of a(k) when k = 2(n + l/4)/D de-
notes a decrease of the absorption, as a result of which
the wave penetrates deep into the metal to a large dis-
tance. Since the spectrum of the wave numbers of such
penetrating waves is discrete and equidistant, a periodic
system of narrow peaks is produced inside the volume
of the metal. Their spatial width is determined by the
number of the interfering components, i.e., in final
analysis, by the depth 6 of the skin layer. These argu-
ments are confirmed by a rigorous calculation.

Let us investigate the function T(z), which describes
the field distribution in the metal. Substituting (4.3) in
(3.15), we get

T(z) = dqq cos qzD~
3 (chny — sing) ' (4.4)

(4.5)

Let us transform (4.4) in the following manner:
=o 2it(a+l) oo 2it

y,, > /) V f rf D V (*'fy'(2-̂ s r<7') cos (2JIS ~g') zZ)-i
•<—J ^ -^ J (2xs^-q')3 — iM3(chnv — sin«') ' (^'^/
8=0 2m 8!=0 0

We consider first the case z = nD. An important role
in the sum over s is played by large values of s, on the
order of M/27T. Therefore the quantity q' in the terms
of the type 2TTS + q' can be neglected, and the sum over
s can be replaced by an integral. Calculating this inte-
gral, we get ) = a ex

The function

dq' cos nq'
(chny — smq')1'3

(4.7)

(4.8)

determines the decrease of the amplitude of the singu-
larities with increasing number n. An analysis shows
that for the first peaks (n < 1/ny, i.e., z < I), the quan-
tity y in (4.8) can be set equal to zero and

(4.9)

Thus, owing to the presence of the peaks, the surface
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impedance Z turns out to be larger by a factor ty(0)
= 1.85 than the value of Z which would be obtained with
that allowance for the AP of the field in the metal.

The more remote peaks (at depths z > I) decrease
exponentially:

2 exp( —TOY) (4.10)

It is easy to show that the field has a much smaller
value far from the points z = nD. To this end we repre-
sent (4.6) in the form

ds2ns cos
(2its)3 —iM3 (chre-y —sing')

q'\
(4.11)

We have replaced summation over s by integration, and
neglected terms of the type q'/2tfs. Here £ = (z/D) — n,
where n is the integer nearest to z/D. The main contri-
bution to the integral with respect to q' is made by the
integration in the vicinity of q' = ir/2. Therefore when

1 formula (4.11) can be rewritten in the form

^expfi^-)
T(z) = D\ ds2nscos (2ns£ + -2-~) \ iM3 • (4.12)

An analysis of this formula shows that when

the relative magnitude of the field between the peaks is
small:

» r . (4.i3)
T(nD)

The field distribution in the metal is shown schematic-
ally in Fig. 1. At z - nD there are sharp singularities
(peaks), the width of which is of the order of several
times 5.

The model considered by us, with a cylindrical Fermi
surface, is not realized in any of the metals. In the best
case the Fermi surface has individual sections that are
nearly cylindrical (for example, in tin). This means
that besides trajectories with nearly equal diameters
there exist also trajectories with other values of D. If
the diameter D depends significantly on PH, then expres-
sion (4.3) must be averaged over pji- In averaging the
rapidly oscillating function sin(kD(pH)), the regions of
values of py for which D(pH) = D e x t become singled out.
The character of the singularities of cr(k) is altered in
this case, namely, the amplitude of the oscillating term
in CT(k) become small, on the order of (kDe x tr l / 2

~ (6/Dext) l / z . For example, in the case of a Fermi
sphere1101 with radius pp we have

(4.14)

(4.15)
/ 2 \l/2 / ia= I—Jn~] — I —

and <x0 = Ne2/mi^ is the static conductivity of the metal
and Do = 2pFc/eH. Substituting (4.14) in (3.15) and ex-
panding Txx(z) in powers of the small parameter a, we
get

|r«(n/)o)|«an|r«(O)|. (4.16)

The intensity of the peaks decreases exponentially with
increasing number.

The difference between formulas (4.7)—(4.9) and
(4.16) is of fundamental character. If all the electrons
producing the skin layer are "focused" on a single
plane, then a slowly damped system of bursts is pro-
duced. In the opposite case the damping is rapid:
T((n + 1)D)/T (nD) ~ a < 1.

4.2. Chain of trajectories in an inclined magnetic
field. A slowly damped system of peaks from chains of
trajectories is possible not only in the case of a cylin-
drical Fermi surface. It should arise whenever the skin
layer is determined, for some reason or another, not
by all the effective trajectories, but only by a small
fraction of them, for which the scatter AD of the diame-
ters is small compared with the thickness of the skin
layer 6:

AC < 8. (4.17)

Let us ascertain the causes of the nonequivalence of
the effective electrons. One of the possible mechanisms
of such a selection was pointed out by Azbel' in l 4 : . In a
metal with a complicated dispersion, the only electrons
that take part in the cyclotron resonance are those hav-
ing fi(pjj) = ̂ ext- The extremum of O(PH) is reached,
in particular, on the central section pjj = 0 of the Fermi
surface. The fraction of the resonant electrons is of the
order of (^/Bext) • On the other hand, the diameter of
the electron trajectory D(pjj) also has an extremum at
Pjj = 0. For resonant trajectories, the scatter of the
diameters is AD ~ D0(ApH/p)2 ~ DQv/a. If AD -C 6,
then the contribution made to the current by the all the
nonresonant electrons can be neglected. Consequently,
the high-frequency current is determined only by a
small group of electrons near the section pjj = 0.

Another mechanism of selection of the effective elec-
trons, proposed in [ l o : , consists in the following. If we
incline the vector H relative to the surface of the metal
by a small angle cp, then the natural drift of the electrons
along H, and consequently inside the metal, separates
the electrons of the central section. These are pre-
cisely the electrons that have a small drift velocity and
return many times to the skin layer. The remaining
electrons can fall into the skin layer only once, after
which they go either into the metal or collide with the
surface of the sample. Therefore electrons with pjj ~ 0
play the dominant role in the creation of the skin cur-
rent, and the mechanism of the "slowly damped chain
of trajectories" is again in operation.

From the mathematical point of view, the mechanism
of the AP of the field along a chain of trajectories is
always due to the fact that the Fourier component of the
conductivity crxx(k) has minima at the points kn ~ 2im/D
that are located near the real axis of the complex varia-
ble k. This fact is illustrated by the cases (4.3) and
(4.14) considered in the preceding section. In an in-
clined field, when the inequalities

<P € (4.18)

are satisfied, the asymptotic expression for Oxx(k) has
a similar form:

3o0
kl<f (4.19)

where <p is the angle of inclination of the vector H rela-
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tive to the surface of the metal. The parameter

IkD^ynj. I Dpi
[ n ) My — \ n(a«

Do& \l/2 (4.20)

c h a r a c t e r i z e s the s c a t t e r of the d i a m e t e r s of the e l e c -
trons which return many t i m e s to the skin l a y e r .

The inequal i t i e s (4.18) have a s i m p l e phys i ca l m e a n -
ing. The r e l a t i v e number of e l e c t r o n s that have no t ime
to go d e e p e r into the meta l during the mean f r e e path
t i m e i s 6/ltp. The s c a t t e r of the d i a m e t e r s i s AD
~ D O ( A P H / P O ) 2 ~ D O 6 2 / / 2 ^ 2 . The condition (4.17) leads to
the l e f t - s i d e inequality of (4 .18) . The r i g h t - s i d e inequal-
i ty of (4.18) s t a t e s the requ irement that jus t t h e s e e l e c -
trons must make up the skin l a y e r , i . e . , that the s m a l l
number of th i s group be compensated for by the ir r e -
peated re turn to the skin l a y e r : (6/l<p)(l/D0) 3> 1. Thus ,
the natural drift of the e l e c t r o n s a long the magnet ic field
p lays the r o l e of the s e l e c t i o n m e c h a n i s m that l e a d s to
weak damping of the peaks .

Since the Four ier component of the conductivity
CTxx(k) has the s a m e o s c i l l a t i n g c h a r a c t e r a s in the c a s e
of a cy l indr ica l F e r m i sur face ( s e e (4 .3) , the coeff i -
c ient a of s in kD0 i s equal to unity, unlike in (4.14)) , we
p r e s e n t without a der ivat ion the corresponding formu-
l a s for the function T x x ( z ) (for de ta i l s s e e a o 3 ) :

Txx (nD0) = 6exp (•£•) /2 ntw (n), (4.21)

where

'•uy ( " / — o _

W h e n n < ( 2 w ) ~ l / 2 w e h a v e

t w ( « ) = -

/ Mi \

A - l / 2
W h e n n > ( 2 w ) t h e p e a k s a r e d a m p e d e x p o n e n t i a l l y :

/ 3 \ / rrn \

U ) c o s ( T ) xp( ( 4 . 2 4 )

T h e d a m p i n g o f t h e p e a k s i s d u e t o t h e s m a l l y e t f i n i t e

s c a t t e r o f t h e e l e c t r o n d i a m e t e r s r e l a t i v e t o t h e c e n t r a l

s e c t i o n . T h e d i s t r i b u t i o n o f t h e f i e l d i n t h e m e t a l i n t h i s

c a s e i s i l l u s t r a t e d i n F i g . 1 .

I t m u s t b e e m p h a s i z e d t h a t w e a k d a m p i n g o f t h e p e a k s

i n a n i n c l i n e d f i e l d i s p o s s i b l e o n l y i f t h e r e i s o n l y o n e

e x t r e m a l d i a m e t e r a t a g i v e n o r i e n t a t i o n o f t h e v e c t o r

H . I f t h e F e r m i s u r f a c e i s n o n - c o n v e x o r m u l t i p l y c o n -

n e c t e d , t h e n t h e c o n d u c t i v i t y c r x x ( k ) i s p r o p o r t i o n a l t o a

s u m o f t e r m s o f t h e t y p e o f ( 4 . 1 9 ) :

°xx ( * ) = 2 A , ( 1 — s i n kDj).

I n t h e g e n e r a l c a s e w h e n t h e q u a n t i t i e s A j a r e o f t h e

s a m e o r d e r , a n d t h e d i a m e t e r s D j a r e n o t c o m m e n s u r -

a t e , c r x x ( k ) c a n n o t v a n i s h f o r a n y r e a l v a l u e o f k . T h e r e -

f o r e t h e p e a k s o f t h e f i e l d w i l l a t t e n u a t e e x p o n e n t i a l l y

j u s t t h e s a m e .

5 . A n o m a l o u s P e n e t r a t i o n d u e t o D r i f t o f E l e c t r o n s

I n s i d e t h e M e t a l

5 . 1 . K i n e m a t i c s o f o p e n e l e c t r o n t r a j e c t o r i e s . A s -

s u m e t h a t o n s o m e p e r i o d i c o p e n t r a j e c t o r y w i t h v z s * 0

FIG. 3.

there i s one e f fect ive point per per iod 2ir/to. For the
e lec tron to interact with the a l ternat ing f ie ld it i s n e c e s -
s a r y that one ef fect ive point of the t ra jec tory be s i tuated
in the sk in l a y e r . Then the remain ing points a r e s i tua-
ted at d i s t a n c e s

1, 2, 3, . . . ) , (5.1)

where u i s the d i s p l a c e m e n t of the e l e c t r o n along the z
a x i s during the per iod 2ir/Q. If the t ra jec tory has two
effect ive points per per iod , then there a p p e a r s , b e s i d e s
(5 .1) , one m o r e s e q u e n c e of depths

(«<"<«, n = 0, 1, 2, . . . ) , (5.2)

w h e r e u i s t h e p r o j e c t i o n o f t h e d i s t a n c e b e t w e e n t w o

n e i g h b o r i n g e f f e c t i v e p o i n t s o n t h e z a x i s ( F i g . 3 ) .

I n a c c o r d a n c e w i t h t h e g e n e r a l c o n c e p t s m e n t i o n e d

( 4 - 2 2 ) i n ^ g i n t r o d u c t i o n , i n o r d e r f o r a p e a k t o o c c u r i t i s

n e c e s s a r y t h a t t h e f u n c t i o n s u n ( p j j ) a n d u n
u p j j h a v e a n

e x t r e m u m o n t h e F e r m i s u r f a c e . I t f o l l o w s f r o m ( 5 . 1 )

t h a t a l l t h e u n r e a c h t h e e x t r e m u m s i m u l t a n e o u s l y .

C o n s e q u e n t l y , o n e g r o u p o f e l e c t r o n s i s s u c c e s s i v e l y

f o c u s e d a n d p r o d u c e s p e a k s a t t h e d e p t h s z = n u e x t -

( 4 . 2 3 ) t h e s e q u e n c e u ^ 1 ' , t h i s s t a t e m e n t i s g e n e r a l l y s p e a k i n g

i n c o r r e c t , s i n c e u and u ( 1 ) a r e two different functions of
PH- However , for suff ic ient ly l a r g e n (n > ( u u ) ) 2 / | u " | S ) ,
both s y s t e m s of peaks a r e produced prac t i ca l l y by the
s a m e group of e l e c t r o n s with e x t r e m a l v a l u e s of u(pjj).
Therefore in m o s t c a s e s the s i n g u l a r i t i e s of the f ield
A P due to the drift mot ion of the e l e c t r o n s a r e d e t e r -
mined by the p r o p e r t i e s of the function u(pjj). The
p r e s e n c e of three and m o r e e f f e c t i v e n e s s points in one
per iod d o e s not introduce anything new into th i s genera l
p ic ture .

Let u s a s c e r t a i n the condit ions under which the e l e c -
trons can drift deep into the m e t a l . If the magnet ic f ie ld
i s d i rec t ed at an angle tp to the s u r f a c e , then v z d i f fers
f rom z e r o for a l l he l i ca l t r a j e c t o r i e s . The d i s p l a c e -
ment u of the e l e c t r o n a long the z a x i s within one per iod
i s de termined by the formula

_ 2nmc . — . _ _ c s i n cp I dS (sp, p # )

eH °PH
(5.3)

Let u s cons ider in grea ter deta i l , by way of an e x a m -
p l e , the k i n e m a t i c s of the e l e c t r o n s in an incl ined f ield
on a s p h e r i c a l F e r m i s u r f a c e . We def ine the pos i t ion of
the orbit with the aid of the po lar angle x (Fig . 4 ) . The
v a l u e s x - 0 and it co rre s po nd to the l imi t ing points , and
X = it/2 to the central s e c t i o n . On the orbi t s for which
s in x > s in cp there a r e two e f fect ive points each . The
t r a j e c t o r i e s with x = <P a n d n ~ f have one ef fect ive
point per per iod each ( s e e F ig . 2) . The s e c t i o n s of the
F e r m i s u r f a c e corresponding to s i n x - s in cp wi l l be
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tories and is determined by the formula

FIG. 4. Location of effec-
tive orbits on the Fermi sphere
in an inclined magnetic field.

Q and Q' — boundary sections
corresponding to the trajectory
shown in Fig. 2.

called boundary sections. The remaining trajectories
(with sinx < sin cp) are ineffective. The exact formula
for u(x) and un

1((x) are of the form t s :

u (x) = nD0 sin cp cos %, 0 = 2pFc/eH,

. (5.4)

un

Figure 5 shows the functions Ui(x), Uo1J(x)> and Uixl(x)
at different values of <p. It is seen from the figure that
the curve ul"(x) has two extrema at <p < 25°. The û ,
with n > 1 behave in similar fashion.

At a small angle of inclination q>, the boundary sec-
tions tanxkourid = c o t <P a r e located near elliptic limit-
ing points, where

i*- =2nK^'\ un=
2*CSiaZK°m . (5-5)

and Ko is the absolute value of the Gaussian curvature at
the limiting point. On the Fermi sphere we have Ki
= pp. On a non-convex Fermi surface, extrema of u(pjj)
can occur also on other sections, where 92S/9p|j = 0 and
as/3pH * 0.

The focusing effect is possible also when <p = 0 in the
presence of open Fermi surfaces. If the vector H lies
in the plane of the sample and is orthogonal to the direc-
tion along which the Fermi surface is open, then the
displacement u is the same on all open periodic trajec-

n

i
//

30'/ ///'F3
/ / /

uCOSf»
!.5

/j
/ '

/ /®
/

Is'W

\
so

j

^ \ /

/

-̂~ sw-so-- m

-w -as
FIG. 5. Functions u / ! ) (solid lines, û 1^ (dashed), and u, (dash-dot)

for different inclination angles ip.
Abscissas — the quantity tan ip cot x- The values of the angle TT/2 — x

are indicated along the ui curves. The angle ip and tan >p are indicated
on the right.

—HJ-en
(5.6)

where b is the period of the open orbit and •» is the angle
between the surface of the metal and the direction of the
open part of the Fermi surface in p-space (see Sec. 2).

5.2. Focusing of electrons from the vicinity of the
limiting point at small angles of inclination of the mag-
netic field. As shown in t l l ] , the field AP produced when
the electrons drift into the metal can be analyzed by the
method of Fourier transformation of the conductivity
tensor, as described in Sec. 3. In the present section
we describe another method of calculating the distribu-
tion of the field in the metal, which takes into account
more consistently the collisions of the electrons with
the surface of the metal[1Z1.

Let us consider the field AP along the trajectories
of the electrons from the vicinity of the limiting point.
All are displaced equally along the vector H within the
period 2fl/O. This phenomenon is well known in elec-
tron optics as "focusing of monochromatic electrons by
a longitudinal magnetic field." At large inclination
angles <p there are no effective points on the orbits of
the focusing electrons, since the limiting point is loca-
ted far from the line vz = 0. The electrons can be effec-
tive only in the case when the angle <p is sufficiently
small. To this end it is necessary that the inclination
angle <p, which is simultaneously the angular distance
from the limiting points to the line vz = 0, be smaller
than the characteristic angular dimensions ip of the
region occupied on the Fermi surface by the focusing
electrons. The value of ty is determined from the con-
dition that the spatial focusing of the electrons during
the free-path time must not exceed 5 , i.e.,

(5.7)

From this it follows that*

( ) 3 . (5.8)

On the other hand, the obvious condition 8 « U o leads to
the inequality (u0 ~ D sin <p):

4 (5.9)

In calculating the field distribution we shall start di-
rectly from formula (3.9) for the current density. This
formula contains the function s(z, T, e, pjj), which should
be found from expression (3.8). The trajectories of the
electrons from the vicinity of the limiting points are
strongly elongated helices; in the zeroth approximation
they can be replaced by straight lines. Then

.(«,T,e,pH) = T-(2ji) (F2>0) (5-10)

and s = — °° for negative v z . Inasmuch as for all the re-
maining electrons the form of the function s does not
play any important role, we shall use expression (5.10)
at all values of pjj in the calculation of the asymptotic

A more accurate criterion on the side of larger <p is presented in the
next section (formula (5.30)).
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value of the y-component of the current density (3.9).
We use the saddle-point method in the integral over

T and T' in (3.9). The saddle-points ra are the solutions
of the equation vz (ra) = 0, and coincide with the effec-
tive points. Using the saddle-point method in the inte-
gral with respect to T, we get

x'
T ~ T a ) J r + 'sfj 2 ( T )~~2?r )

width of the region of integration with respect to X is of
the order of (6/z) l /2. This small parameter determines
the relative magnitude of the current Ajy in the peak
compared with j ' 0 ) . It is clear already from (5.17) that
Ajy(z) is an almost periodic function of z with a period
Uo, and attenuates exponentially over a length l0 sin <p.

In view of the smallness of Ajy(z), Eq. (3.1) can be
solved by perturbation theory. We use an even continua-
tion of Ey(z) for jy(z) and go over to the Fourier com-
ponents (3.10). Equation (3.13) and the function Tyy(z)
are rewritten in the form

The summation is over all the ra in the interval from 0
to 2JT. In the integral with respect to T' , one saddle-
point coincides with the upper limit Ta, and all the re-
maining ones are smaller than Ta. Accordingly, we
represent (5.11) in the form

jy(z) = j'£'(z) + Ajy(z), (5.12)

where Jv
0)(z) represents the contribution from the point

T' = Ta, and Ajy(z) represents the sum of all the re-
maining terms. After simple transformations we get

where

TT2

(5.13)

(5.14)

Going over to integration over the spherical image of
the Fermi surface, we obtain

dl cos2 X (5.15)

X is the azimuthal angle in velocity space (vz = v cos i>,
Vy = v sin t> cos X), i> is the polar angle, and the polar
axis is parallel to Oz. For the Fermi sphere we have
Ay = 3Ne2/8pF-

All the remaining saddle-points T ' = ra — 27m make
a contribution to Ajy(z). Out of the entire sum, we re-
tain in Ajy(z) only one singular term, for which the
value of nu is close to z. This is precisely the term
responsible for the occurrence of the current peak

dlcos2l e ( z ~" u ) e x p (~2nn

k^'gu (k) + 2£i(0) = tote"2 [CT0 (k) tv (k) + My (k)), (5.18)

ao{k)=TiT< (5.19)

where

7 , ( ^ 1 k^ZZX^k) s i °dqqCOS •£-

2l"'M \l/3

(5.20)

(5.21)

Figure 6 shows plots of the functions Re 2/6 T0(z)
and Im 2/6 T0(z). These functions describe also the dis-
tribution of the field in the skin layer at H = 0 in the
case of specular reflection of the electrons from the
surface of the metal t l ] . From (5.21) and (5.17) we get[12]

where

COS2*. (5.23)

For a Fermi sphere a = 1.
The function >h(x) is of the form

™dqqi/2cos (qi+^-) . ~rfgs3/2s

(5.24)

Were we to disregard collisions between the electrons
and the surface, and were we to use the distribution

where 0(x) is the unit step function: 9(x) = l(x > 0) and
8(x) = 0 (x < 0); n = [z/u] is the integer part of z/u.

An important role in the integral with respect to X is
played by the small vicinity of the limiting point X = 0,
where u(X) has a maximum. Near this point, all the
smooth functions of X can be expanded in a series. As
a result we obtain

/B (z) =-- -
2e2 exp

- ( ' - • £ )
lp sin ip

(5.17)

where Zo is the mean free path of the electron at the
limiting point, and Uo = 32u0/9X2. The characteristic
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function in an unbounded metal, then there would be no
9-function in (5.16) and (5.17). Then (5.22) would contain
in lieu of *i(x) the function [in

COfl(?Z + i )
(5.25)

This expression would be obtained also if the field dis-
tribution were to be calculated by the Fourier expansion
method (see Sec. 3). Figure 7 shows plots of Re *i,2
and Im *i j 2 and of their derivatives. It is seen from
these curves that allowance for collisions of the elec-
trons with the surface of the metal leads to a decrease
of the field on the left edge of the peak (z < nu0) and
hardly affects its shape when z > nu0. (We shall return
to a discussion of this fact in Sec. 11.) We see also that
the real and imaginary parts of <fri)2 (or *i,2) change in
such a manner that the extremum of one of them coin-
cides with the position of the sharpest variation of the
other. The characteristic spatial width of the burst is
of the order of (6—7)6 and coincides approximately with
the width of the function T0(z). The amplitude of the
burst does not depend on H and decreases with increas-
ing distance like z"l/2.

The formulas presented in this section are valid in
the case of focusing of electrons with an extremal dis-
placement per period at large inclination angles <p of
the vector H relative to the surface of the metal. The
corresponding criterion for the applicability of the
formulas is

/ — > 1. (5.26)

Under ordinary experimental conditions this inequality
is well satisfied. If it is replaced by the opposite inequal-
ity, then formula (5.22) describes directly the distribu-

F1G. 7. Plots of the functions *, and * 2 (a) and of their deriva-
tives *\ and *i (b). The indices of the functions are indicated near the
curves.

tion of the field in the metal for the first peaks with
numbers n < u/6.

5.3. Focusing of electrons on the boundary section.
"Quantization" of electron states in resonant interac-
tion. When the angles of inclination of the magnetic
field to the surface of the metal exceed (6/7) , the
electrons are no longer effective in the vicinity of the
limiting points. The projection of their velocity vz does
not vanish. Here, however, a different focusing mech-
anism of the effective electrons is possible1133. The
only effective electrons that resonate with the given
harmonic of the wave packet are those for which the
condition ku = 2Trn is satisfied. The current density in
a metal with a given wave vector k is therefore deter-
mined only by the orbits corresponding to discrete val-
ues of the angle x from the interval q> < x < ' — <P (see
Fig. 4). The number of resonant states (i.e., the num-
ber of different groups of electrons) is determined by
the wavelength 2ir/k, and by the magnitude and direction
of the magnetic field. When any one of these parameters
changes, the number of states also changes. In other
words, a group of resonant particles can appear on the
Fermi surface (or disappear). Because of this, the con-
ductivity o(k) experiences finite increments (jumps). It
is obvious that this effect is due to electrons situated
in the vicinity of the boundary section of the Fermi sur-
face, which separates the effective and ineffective elec-
trons. The jumps of the conductivity a(k) lead to AP of
the field in the metal as a result of the focusing of the
electrons on the boundary section. Jumps of this kind,
as is well known, are experienced by the density of the
states and become manifest in all the macroscopic
characteristics of the metals in a quantizing magnetic
field when the number of Landau levels on the Fermi
surface changes. In the case under consideration, the
"quantization" of the states occurs under the classical
conditions tifi 3> T. This unique "quantization" of the
states is due to the resonant interaction of the electrons
with the variable field.

Let us investigate this AP mechanism, using as an
example an alkali metal with a spherical Fermi surface.
Since the velocity of the electron on the boundary sec-
tion at the point vz = 0 is directed along the y axis, it
is necessary to calculate the conductivity fyy(k) and the
corresponding field distribution function Tyy(z).

In this and following sections we shall disregard the
collisions between the electrons and the metal surface,
and we shall use the Fourier-transformation method
described in Sec. 3. In addition, we confine ourselves
to the low-frequency case (3.19). From the general
formula (3.12) we get

1 in t
(Sm (k) == c (k) = im^Q \ d\i \ dx nu (x, (t) \ dx'nv (x', n) exp [y (x' — x)]

-1 0 -=°
X cos [fcify sin <p (x'— x) + W?costp(1 — n2)"2 (cosx'—COST)]. (5.27)

We have introduced here the following notation:
M = cos x, X~ a n gl e between v and H, and

ny = Vylv = n cos q> + (1 — H.2)1'2 sin <( sin x, Y = v/Q.

Expanding the cosine in (5.27) in a double Fourier series
in T and T ' , and calculating the integrals, we get

/7, 3iVc2 x1 P du.yJn (kRcos<p 1/1 — (l2) , ,, . n, ,.„
P W = 2mQcos2<p 2 J I • yi + {n~ kRfx sin <p)2 & c o s f + " 3 1 n <P ( ^ r 1 ) 2 -

(5.28)
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If we let the mean free path I go to infinity, then y — 0,
and

£>(*) = - (5.29)

In order to obtain the condition for the validity of such a
substitution at finite values of y, it is necessary to com-
pare the relative rate of change of the two rapidly vary-
ing functions D(n - kRfiSin^?) and Jn(kRcos <£>Vl — jn2 ).
It will be seen from the exposition that follows that an
important role in the sum over n is played by the terms
with

When |n| = n0, the D-function has a maximum at
|p. | = cos tp, the width of the maximum being A/J.
~ y/kR sin <p. The Bessel function Jn(kR cos
changes near the maximum of the D- function over the
interval A/x ~ (sin2 <p/kR)2/3. This estimate follows
from the well-known asymptotic expression for the
Bessel function Jn(x) when n ~ x 3> 1. Therefore the
condition for the replacement of the D-function by a
6-function in (5.28) is

kR sinq
o r

The quantity <pc ~ (R23/73) (and not (6//)1/3) plays the
role of the critical inclination angle: when ip < q>c the
electrons of the limiting point can still be regarded as
effective, but in the region <p > cpc they are ineffective.
When condition (5.30) is satisfied, formula (5.28) can be
represented in the form

3HPQ y I -ff sincpcosq)/ ™"

The summation is over all the n (positive and negative)
for which the radical in the argument of the Bessel
function is real.

Expression (5.31), in which the integral over the
states is replaced by the sum over the discrete values
of n, illustrates the statement made above concerning
the "quantization" of the electron states as a result of
the resonant interaction of the electrons with the elec-
tromagnetic field. Formula (5.31) is asymptotically ex-
act when y —- 0 and takes into account the contribution
of both the effective and ineffective electrons. The dif-
ference between their interactions with the wave is con-
nected with the change of the character of the asymptotic
form of the Bessel function Jn(x) when n ~ x » 1 (the
Stokes phenomenon^14-). For the effective electrons
( x > n > > l ) , the asymptotic form of Jn(x) is oscillating
and for the ineffective particles (n > x) the function Jn(x)
decreases exponentially. The "turning point" x = n
corresponds in our case to the boundary section, and
with this |n| = n0. The condition under which all the in-
effective electrons with |n| > n0 make an exponentially
small contribution is determined by the inequality
n2 — x2 3> n4 . In particular, it should be satisfied also
for |n| = n0 + 1. From this we get the criterion for cp on
the side of large angles

sin2<() C no'/3 or sin <p< (kH cos<p)~1/?. (5.32)

It follows from (5.30) and (5.32) that the angle region in
which the electrons should become focused on the boun-

dary section is bounded by the inequalities

Y3" {kBTlp C sin <p< (kR)~ln. (5.33)

In the sum over n it is possible to disregard here the
exponentially small terms with |n| > no.

For large values of kR sin cp, many values of n are
important in the sum over n. Using the asymptotic form
of the Bessel functions and replacing the sum over n by
an integral, we get

3ffo dnrfi = 4 ^ . (5.34)

The "quantum effect," which is manifest in the dif-
ference between the sum over n and the integral, is due
to terms with |n| = no. When the inequality (5.32) is
satisfied, these terms decrease exponentially in a reg-
ion where the argument of the corresponding Bessel
function is smaller than the index. Therefore

ACT (*)
a"" (k) - J% (n0) 8 (kB sin <p cos tp — n0) ~ ;

(12n)2 ' ( T ) ~2.75 (5.35)

where u = 2;rR sin cp cos <p is the displacement of the
electron on the boundary section along the z axis. The
region of "smearing" of the 0-function is of the order
of (2jrku)1/3 sin2<p and is small as a result of the inequal-
ity (5.32). The dependence of Aaik) on

2n L 2n J

when A < 0 is described by the function

(5.36)

Thus, the Fourier component of the conductivity o(k) ex-
periences jumps when k is varied in the angle region
(5.33).

The distribution of the electromagnetic field in the
metal is described by the function (3.15). Integrating
this expression by parts and omitting certain indices,
we obtain

j f * * " - (5-37)

In the differentiation of the smooth functions k, we ob-
tain the function T0(z) (5.20), which decreases sharply
near the surface and has no singularities in the volume
of the metal. The field peaks are due to the derivative
of the 9 function in (5.35) and are described by the
formula

z)ssT(z)~T0(z)= -l^Mly !

(5.38)

The sum (5.38) represents a periodic function of z with
a period u. At large values of M it has singularities
whose form is determined by the expression

AT iz) ='2nz sin c
sin gx (5.39)

In the derivation of these formulas we disregarded the
"smearing" of the 0-function (5.36), which leads to an
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FIG. 8

exponential decrease of the peaks over distances
L ~ (u26)1/3/sin2<p. Because of inequality (5.32), we get
L ^ u . The amplitudes of the first few singularities de-
crease with depth like z'1. Figure 8 shows the field dis-
tribution near the singularity.

5.4. Focusing of effective electrons on open periodic
trajectories. Let us consider the AP of the field in a
metal with an open Fermi surface in the case when the
vector H is parallel to the boundary of the sample. If
we disregard the collisions of the electrons with the
surface of the metal, then it is convenient to use in the
calculation of the field distribution the Fourier expan-
sion method (Sec. 3). Calculating the integrals with
respect to T and T' in (3.12) for the elements of the con-
ductivity tensor cr^^k) with the aid of the stationary-
phase method, we bti1^11^

oaS(k)= '1*1
(5.40)

The integration is along the line vz = 0 (i» = TT/2) on the
Fermi surface, n a = v a / v are the components of the
unit velocity vector, and *» and A are the polar and azi-
muthal angles in velocity space. The first term repre-
sents the contribution of the closed orbits, where the
displacement u = 0, and the second is due to the open
orbits in p-space, on which u is constant and is given by
(5.6). Inasmuch as y changes smoothly within the open-
orbit layer, the resonant factor can be taken outside the
integral with respect to A, replacing y by certain char-
acteristic value y0.

In (5.40) we neglected the contribution of the station-
ary-phase points that lead to a sequence of peaks at
depths z = u n

n (see Sec. 5.1). Following'-11-1, we assume
that the relative "number" of open orbits is small, i.e.,
the second term in (5.40) is a small correction. The
basis for such an assumption is the fact that the role of
the open orbits is significant only in a small interval of
values of ku, where |ku — 2im| ^ y. At all other values
of ku, the second term of (5.40) is of relative order of

smallness y% <^ 1. Since the field distribution in the
metal is determined by the integral with respect to k,
the singularity in the field distribution has a relative
amplitude of the order of yo.

We refer the first term in (5.40) to the principal
axes. In terms of these axes

,M 3jt n

closed
where fi^^ is the relative "number" of open orbits. We
shall henceforth omit the vector indices. Let us inves-
tigate the field distribution function in the metal (3.15).
The field near the surface is described by formula
(5.20), in which the depth 6 of the skin layer is of the
form

(5.42)

The form of the peaks and their decrease with depth are
determined by the function

(z) = i
dxx cos I Yo (5.43)

where M = u/6 3> 1. The main contribution to the inte-
gral in (5.43) is made by integration near the points
x = ku = 2;rs (s—integer). Therefore

(z) =

The function AT(z) is an almost periodic function of z
with a period u. At large values of z, the field in the
metal is an aggregate of narrow and slowly-decreasing
peaks. The form of the singularity near z = nu is

AT (z) = - nPYo8 exp ( - dqq COS qx

(5.45)

FIG. 9
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Plots of Re *4(x) and Im *4(x) are shown in Fig. 9. Just
as in the case of the limiting point, the extremum of one
of the curves coincides approximately with the position
of the sharpest variation of the other. The width of the
peak is (5—7)6, the relative height of the peak is of the
order of /3y0 and is small compared with the field on the
surface even when /3 ~ 1. The exponential decrease of
the bursts occurs over a characteristic length / of the
mean free path of the electrons on the open orbits.
From the mathematical point of view, the AP of the field
into a metal as a result of focusing of effective electrons
on open periodic orbits is connected with the delta-like
singularities of the Fourier components of the conduc-
tivity tensor (5.40).

6. Focusing of Ineffective Electrons

The ineffective electrons move over trajectories such
that their velocity component vz normal to the surface
of the metal never vanishes. The interaction with the
electromagnetic field is resonant only for that wave-
packet harmonic, whose length is equal to the displace-
ment of the electron u within one period. Because of
this, a field AP having a harmonic character is pro-
duced in the metal1-15-1. The spatial period of the oscilla-
tions is determined by the extremal values of the dis-
placement u e x t (Sec. 5.1). From the mathematical point
of view the difference between the ineffective electrons
and the effective ones is manifest in the fact that the
Fourier component of the conductivity cr(k) has a single
singular point, located near the real axis on the complex
k-plane.

The considered mechanism of AP of the electromag-
netic field has an analogy in static conductivity. Sond-
heimer'-16-1 and later V. L. Gurevich'-17-' have shown that
the resistance of metal plates in a normal magnetic
field oscillates with variation of H. The oscillations are
connected with the change of the number of revolutions
of the electron on the path from one surface of the plate
to the other. This phenomenon was first observed by
Babiskin and Siebenmann1-18-1 and by a number of other
workers^19'20^

Let us consider the simplest case, when the vector H
is perpendicular to the boundary of the metal, and the
Fermi surface is singly-connected and is actually sym-
metrical with respect to the z axis. It is known1-21-1 that
in this case it is convenient to introduce circularly
polarized quantities

E± (z) = £, (z) ± lEy (z) = n-W± (0) T± (z),

xp( — ikz)]
a± (k)

(6.1)

(6.2)

The Fourier components of the conductivity cr^k) are
given by

,,. 2ne2 P , mI'2t , . , , , . , , ,, / , kulp.) , la Q\<r± (k) = ,-7T^-j3 \ "Pz-77= [Y + l* =f (ft)]~ i J± (ft) =—^^±1 ' iD.O^

where v± = (v^ + v2)1/2 is the transverse velocity. The
symbols ± in (6.3) correspond to electrons, and should
be interchanged in the case of holes. Formula (6.3) can
be easily obtained from (3.12) if it is assumed that
projection of the velocity v z does not depend on r and if
we put vx = V_L cos T and vv = v± sin T.

It is known f r o m ^ that in the anomalous skin effect

the electromagnetic field at large distances from the
surface of the metal consists of two components. One
represents the contribution from the poles of the inte-
grand of (6.2) and describes the sharp decrease of the
field near the surface of the metal. This part of the
field is due to the effective electrons. The second is
connected with the presence of a single branch point in
the Fourier component of the conductivity a±(k). The
singular points of cr+(k) are due to the contribution of
the electrons from the vicinity of the limiting point of
the Fermi surface, or else from the section where
u(pz) = uext- In a strong magnetic field these points are
located near the real k axis. At large distances from the
surface of the metal, the contribution of the effective
electrons (poles) can be neglected, and the behavior of
the field is determined by the form of the functions a+(k)
in the vicinity of the singular points.

6.1. Limiting point. The contribution to the connec-
tivity from the electrons of the limiting point is deter-
mined by the expression

- [(Y* (/>„) - iy) In (Y* (pj-iy)

+ (-iy~Y± (/,„)) In ( - iy- Y± (/>„)]. (6.4)

The integration is near the limiting points p z = ±p0,
Y'± = 3Y±/9pz. It follows from (6.4) that near Re k > 0
the function Aov(k) has a singularity of the type x In x at
k+u0 = 27r(l + iy), and the function Aa-(k) has a singu-
larity at k-u0 = 2?r(l - iy). Let us calculate, for exam-
ple, the asymptotic expression for T+(z) at large values
of z. We make a cut in the complex k plane from k+ to
k+ + i°°. In the term with exp(ikz) of formula (6.2) we
turn the contour to Im k > 0, and in the term with
exp(—ikz) we make the turn to Im k < 0. The integral
(6.2) can be represented in the form of a sum of resi-
dues and an integral along the edges of the cut, since
the sum of the integrals along the imaginary axis van-
ishes identically. The sum of residues, as indicated
above, decreases rapidly, since the roots of the equa-
tion k2c2 = 4j7iwa+(k) are complex: kj = 6~l£:, e? = i.

The quantity 6 is the depth of penetration of the field
into the metal at H = 0 and is determined by the formula
(5.21). Therefore in the asymptotic expression T+(z)
there remains only the integral along the edges of the
cut. The calculations carried out in1^5-1 lead to the fol-
lowing result:

n<z) = Aoz-*cxP(ik+z-^), (6.5)

where

4, = 7

For a spherical Fermi surface we get

v6.6)

(6.7)

In the presence of several limiting points, the os-
cillations can have different phases, owing to the com-
plex nature of the quantities cT+(2n/u0). From (6.5) it
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follows that in the case of linear polarization the field
in the metal is a standing wave (~ COS(2TTZ/UO)).

6.2. Helical trajectories with extremal displacement
over the period. In the vicinity of the corresponding
branch point a+(k) is given by

(6.8)

+ [ Y - i

14

The values of all the quantities are taken at |p z | = p y ,
where the function u(pz) has an extremum, u"

Unlike the case of the limiting point, in
1/2(6.8) there appears a singularity of the type x~1/2 at

k+ — 2TT/UI. Calculations similar to those given above
yield the following field distribution:

(6.9)

(6.10)

All the formulas presented above are valid when the
conditions 6 C u < !, z are satisfied. From a compari-
son of (6.9) and (6.5) it is seen that the amplitude of the
oscillations is larger by a factor (z/u)1/2 in the case of
extremal helical trajectories than in the case of a limit-
ing point. The amplitude of the oscillations due to the
electrons near the limiting point is independent of H in
this case.

6.3. Open orbits. Drift of the ineffective electrons
into the metal is possible also when the magnetic field
is parallel to the surface1-22-1. To this end it is neces-
sary that the Fermi surface be open and the vector H
be orthogonal to the mean direction of the opening. It
can be shown if the electrons on the open periodic orbits
are ineffective, and the corresponding tangential com-
ponent of the velocity contains only the first harmonic
in T, then the following formula is valid for ff(k)

y .+ ( i - | r ) T } - ( 6 - n )

Expression (6.11) is obtained from (5.41) if account is
taken in the latter of the resonant interaction with only
one component of the wave packet. The field AP is des-
cribed in this case by the function

dxx cos I Vo
[ - - (T

^ , (6.12)

where 6 is determined by (5.42).
The amplitude of the harmonic oscillations (6.12) de-

creases slowly over the characteristic length I of the
mean free path of the electrons on the open trajectories.
The quantity A2 does not depend on the magnetic field
and is of the order of p&ll, where 60 is the depth of the
skin layer at H = 0.

We have considered above only the simplest cases,
when the normal component of the velocity v z does not
depend on T, and the tangential components of the veloc-
ity contain only the first harmonics in T. In the general

case when vz depends on T and higher components are
present in the Fourier expansions of VX(T) and vy(r),
higher harmonics of the type cos(2imz/u) appear also
in the distribution of the field E(z). When vz is strongly
dependent on T, effective points VZ(T) = 0 can occur on
the trajectories of the drifting electrons. In this case
the AP can be interpreted as propagation in the metal
of a large number of weakly-damped harmonic plane
waves, the interference of which causes the appearance
of the narrow peaks. The dependence of vz on T should
also lead to a dependence of the amplitude of the har-
monic oscillations on the polarization of the external
field. For an elliptic limiting point the degree of ellip-
ticity of the standing wave coincides with the ellipticity
of the limiting point.

7. Singularities of Anomalous Penetration of the Field
Into a Metal at High Frequencies. New Mechanisms of
Cyclotron Resonance

So far we have considered the AP of a field into a
metal at low frequencies (3.19). Obviously, the AP
mechanisms described above are effective also at high
frequencies w S> v. A characteristic property of metals
in this region of frequencies is the resonant dependence
of the surface impedance on the magnetic field. The
cyclotron resonance (CR) connected with multiple return
of the effective electrons to the skin layer is most
sharply manifest when the vector H is parallel to the
surface of the metal. At large inclination angles
<p 3> 6/Z, most electrons fall into the skin layer only
once, after which they go off into the metal or else
collide with its surface. In this case the CR due to
multiple return of the effective electrons to the skin
layer becomes impossible. The existence and the singu-
larities of CR in an inclined magnetic field'-23-' are con-
nected with the AP of electromagnetic waves in the
metal.

7.1. Chain of trajectories in an inclined magnetic
field and cyclotron resonance. Let us consider a metal
with a spherical Fermi surface. Under the conditions of
strict resonance w = nH, the field distribution in the
metal will be practically the same as at low frequencies
(see Sec. 4.2). With increasing "detuning" of the reson-
ance, an increase takes place in the "dephasing" of the
electrons that produce the peaks, and the amplitude of
the peaks decreases [10]. Accordingly, the impedance
increment Azres due to the field AP in the metal along
the trajectory chain should experience resonance os-
cillations. In a parallel field, this addition is a small
correction to the main effect. In an inclined field, it
plays a decisive role in determining the form and the
amplitude of the CR.

According to , the Fourier component of the con-
ductivity Oxxdd is of the form (we omit the vector in-
dices)

n=—oo —1
u — nQ — kvy.s\n cp)

This formula can be obtained directly from the general
expression (3.12), by calculating the integrals with
respect to r and T' . The effect considered by us takes
place in the region of small inclination angles
q> < (6/D)1/2 <C 1. Therefore all the functions <p in (7.1)
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can be expanded in series, retaining the first nonvanish-
ing terms of the expansion. The region of small <p
breaks up in turn into several regions, depending on the
efficiency of the mechanism by which the electrons are
selected by diameters as a result of their drift motion.

In the angle interval

the scatter of the diameters of electrons with small |/u |
is much larger than the depth 6 (see Sec. 4.2). There-
fore the field peaks attenuate rapidly with increasing
distance, and the amplitude of A z r e s is small. The con-
ductivity o{k) has in this region the form

—̂w J

The parameter

1/2 v — i
kvtp

(7.3)

(7.4)

characterizes the scatter of the diameters of the elec-
trons that return many times to the skin layer (cf. (4.20))
and in the region (7.2) we have |w| 2> 1.

Owing to the smallness of the oscillating term in
(7.3), the field peaks decrease exponentially (see (4.14)
and (4.16)):

T (nD0) ~ (nw)-n T (0), (7.5)

but their amplitude has a resonant dependence on the
magnetic field. The resonant addition to the impedance
of the half-space is due to the first peak, which is loca-
ted at the depth z = Do. As they move along the trajec-
tory, the electrons return to the surface of the metal
z = 0 a part of the field (~ w"1) of the first peak, which
is weaker by a factor w"1 than the field on the surface
itself. Indeed, if we substitute (7.3) in (3.18) and expand
T(0) in powers of the small parameter l/w, we get

(7.6)

(7.7)

where 6 is given by (4.22). The relative amplitude of
the resonance, obviously, is of the order of (lcp/^2irD05)2-
Figure 10 shows the dependence of the real and imagin-
ary parts of the resonant addition to the impedance on

In the region (4.18), the selection of electrons by
diameters is quite effective, and the field peaks along

the trajectory chain attenuate slowly. The distribution
of the field in the metal is described by formulas
(4.21)—(4.24), in which cos(n?r/2) must be replaced by
[cos(n7r/2)](l + 2cu/Cl). The form of the surface-imped-
ance resonance curve is determined near the maximum
by the formula

dq (7.8)

which is valid when |w| < 1. The nonresonant factor Zo
is determined by (7.7). When |Au>| «C <pn(Do/6)a/2, the
quantity |w| is small, and the impedance Z is larger
than Zo by a factor 1.4. Figure 11 shows the schematic
form of the resonance curves. Their characteristic
width AH/H ~ <p(Do/S)1/2 is due to the scatter of the
diameters, and not to the electron collisions.

Finally, in the angle interval

4 - r (v.9)

the oscillating part of the conductivity aik) is deter-
mined as before by one resonant term with u =* nfi, and
the part of o(k) that depends smoothly on k is given by
(5.34). In other words, the skin layer is formed by all
the electrons (which are mostly nonresonant), and the
bursts are produced by a small group of resonant parti-
cles with small pjj. The addition to the impedance is
due to the partial return of the field from the first burst
to the surface on the metal, and is of the form

7 2' '[-$5-fr -R-j
v 1/3

(7.10)

(7.11)

The function

describes the form of the resonant peaks. Near reson-
ance |w| <§C 1 and F(w) — ln(l/w), i.e., the CR is logar-
ithmic. When <p > (6O/DO)1/2, the width of the maxima
becomes larger than the distance between them and the
CR vanishes (Fig. 12).

A A A

FIG. 11.

a)/v = 50

FIG. 10.

Z\ ff

ff/f,

i (if

FIG. 12. Schematic form of the dependence of the relative ampli-
tude of the resonance on the inclination angle <p.

Estimates of the amplitude in the corresponding region of angles are
marked near the curves.
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Inasmuch as in an inclined field the CR is due to AP
of electromagnetic waves in the metal, the resonant
values of the impedance have a maximum and not a
minimum, corresponding to a larger transparency of
the metal. The width and the form of the resonance
curves is determined not by the dissipative processes
(collision frequency v), but by the scatter of the diam-
eters of the electrons that produce the "chain" of
trajectories.

If the electron dispersion is nonquadratic, the cyclo-
tron frequency Q. depends on pjj. Near the central
(extremal) cross section of the Fermi surface, the
resonance condition

(P») (7.13)

is satisfied by two groups of electrons, and not by one
as in the case when fi(pn) = const (the prime denotes
here differentiation with respect to pjj). It is shown
in'-23-1 that this leads to an appreciable decrease of the
maximum amplitude of the peaks and of the resonant
value of the impedance. In particular, in the angle reg-
ion (4.18), the maximum value of AZ r e s is only 3% of
Zo. This decrease of A Z r e s compared with the case of
quadratic dispersion is due to the fact that the skin layer
is formed by both groups of the resonant electrons
(7.13), whereas the peaks of the field and A Z r e s are
determined by one group in which the scatter of the
diameters AD is small compared with 6. In all the r e -
maining cases the deviation of the electron dispersion
from quadratic does not play an important role.

It is of interest to compare the considered AP mech-
anism with the mechanism whereby a chain of trajec-
tories is produced when cp = 0 in metals with nonquad-
ratic dispersion law'-4-'. In the case investigated by
Azbel', the selection of electrons by diameters is as a
result of the CR itself. This selection mechanism is
effective if (see Sec. 4.2) R/6 <S. u/v. The theory de-
veloped above for CR in an inclined magnetic field is
valid under the opposite condition, R/6 3> u/u. Conse-
quently, the mechanism proposed in1-23-1 for AP and CR
in an inclined field is to a certain degree an alternative
and a complement to the mechanism considered in'-4-'.

Inversion of the CR peaks on the central sections of
the Fermi surface following inclination of the magnetic
field was observed in potassium[24], copper[25:i,
silver [26], bismuth[27], and apparently in cadmiumC28].
Figure 13a shows the experimental curves for copper.

7.2. Focusing of electrons from the vicinity of the
limiting point and doubling of cyclotron resonances. The
field peaks produced in a metal by the electrons of the
limiting point also lead to interesting features of CR.
This effect was first observed and correctly interpreted
qualitative by Grimes et al.1-29-1 in an investigation of
CR in aluminum (Fig. 13b). It was later observed also
in indium[30].

The phase of the field in the r-th peak at the instant
t i s

(at — (r-1,2,...),

where cot—phase of the field on the surface. The elec-
trons moving from inside the metal negotiate the dis-
tance from r-th peak to the surface within the same
time 2T!T/U0. The phase difference between the external

field and the peak field "returning" to the surface is
obviously 45rrw/fJ0. If 4Trco/fio

 = 27m, i.e., w = nfic/2, then
the external field and the fields from all the peaks (with
arbitrary r) are in phase. Consequently, a "doubling"
of the resonant frequencies takes place (n0 = 2o>/n).

The formulas obtained in Sec. 5.2 for the field dis-
tribution in the metal are valid also in the region of high
frequencies w 3> v, but, unlike the low-frequency case,
they contain an additional phase factor exp(27rinw/ft).
To determine the change of the surface impedance AZ
of the half-space due to the AP in a metal, it is neces-
sary to calculate AT(0) (see (5.21)). To this end it is
necessary to take into account in (5.16) all the peaks in
the volume of the metal. Since the diffuse scattering of
the electrons by the surface of the metal does not play
an important role and changes only a numerical factor
on the order of unity in AZ, it is possible to neglect the
0-function in (5.16), and write Ajy(z) in the form

[Ev (z-nuo~-Ln

(7.14)

Let us change to Fourier components. For Sy(k) we ob-
tain Eq. (3.13), in which

d/f
dH

- l i t

i n ™ "

I A - A -

1 . . . , ! i
ff S Iff IS H,Ot

12 13,% kG

FIG. 13. a) CR in copper; E i H || [ 100]. The angle of inclination <p
is indicated on the curves (from P5]). b) CR at the limiting point in al-
uminum; Oz || [100], H || [111] (from ["]).
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Oyy (*) =•• <Jo (*) [ 1 + « ^~TT72 P (*"») (7.15)

The function ao(k) is given by formula (5.19) and a is
given by (5.23). Substituting (7.15) in (3.18) we get

= Z= —8ia>u0c-'- (7.17)

(6 is determined by formula (5.21)). In the integral with
respect to q, at large values of UQ/6, the principal role
is played by large q ~ Uo/6. Therefore the change of the
impedance AZ can be obtained with the aid of a formal
expansion of the integrand in (7.17) in powers of ap(q).
The term linear in a (and in p(q)) is small, owing to the
rapid oscillations of the function p(q) at large values of
q. Therefore

- 7 7 -i
2 (?)

where Zo is given by (7.11). The main contribution to
AZ is made by the nonoscillating part of the function
p2(q), which is equal to

[l-exp ( -

Consequently,

Thus, the field peaks produced in a metal by the drift
of electrons from the vicinity of the limiting point, lead
to a logarithmic CR at frequencies a> = nfio/2. Formula
(7.19) describes the form of the resonance lines. Just
as in the case of CR on central sections, the resonance
lines are inverted. At resonance, the amplitudes of
SR/ 3H and 9X/ 9H do not depend on the number. The
width of the resonances is determined by the electron
collisions.

In the presence of effective electrons with extremal
displacement during the period, such a CR should also
be observed at inclination angles on the order of unity.

8. Connection Between the Trajectory Type of Anom-
alous Penetration of the Field Into a Metal and Weakly
Damped Electromagnetic Waves

The phenomena of field AP of the trajectory type and
of weakly damped electromagnetic waves in metals are
closely related and are transformed into each other
when the frequency or the magnetic field H is changed.
This connection is most clearly manifest in those cases
when the natural oscillations in the metal have a dis-
crete frequency spectrum. The skin layer can be re-
garded as a source generating oscillations with all
wave numbers, but of a single frequency w. In the case
of AP of the trajectory type, an in-phase excitation of
all the proper wavelengths takes place, and the interfer-
ence between them leads to the peaks. This is nonreson-
ant excitation. On the other hand, if the frequencies of
the external field and one of the natural frequencies co-
incide, then resonance occurs and a traveling weakly-
damped wave is excited in the metal in addition to the
peaks.

Such a picture can take place, for example, in the

presence of a chain of trajectories in an inclined mag-
netic field. As shown in t31], in alkali metals there
should exist waves with discrete spectra of the frequen-
cies

,|l/2
(8.1)

a n d of t h e w a v e n u m b e r s k n , w h i c h a r e d e t e r m i n e d f r o m

t h e e q u a t i o n o - x x ( k n ) ~ 1 - s i n k n D 0 = 0 (cf. ( 4 . 1 9 ) ) .

A s i m i l a r s i t u a t i o n s h o u l d o c c u r a l s o i n C R . I n m e -

t a l s w i t h a n o n q u a d r a t i c e l e c t r o n d i s p e r s i o n i n t h e d i r e c t

v i c i n i t y of t h e C R , w h e n | ( w / n ) — Qo\ < ^ v, t h e r e i s a

s y s t e m of p e a k s 1 4 1 ( s e e S e c . 4 . 2 ) , a n d if | ( a> /n) - f l o l

^ > v t h e s e p e a k s a r e t r a n s f o r m e d i n t o w e a k l y d a m p e d

w a v e s [ 3 2 ] .

N o t i c e s h o u l d a l s o b e t a k e n of t h e c o n n e c t i o n b e t w e e n

t h e f i e l d A P d u e t o t h e f o c u s i n g of t h e i n e f f e c t i v e e l e c -

t r o n s ( s e e S e c . 6) w i t h h e l i c a l o r m a g n e t o h y d r o d y n a m i c

w a v e s . T h e s e w a v e s e x i s t i n s t r o n g m a g n e t i c f i e l d s ,

w h e n R < 8 . W i t h d e c r e a s i n g m a g n e t i c f i e l d , a t a c e r -

t a i n v a l u e of H = H e , t h e r e a p p e a r s a g r o u p of r e s o n a n t

e l e c t r o n s t h a t a b s o r b s t r o n g l y t h e e n e r g y of t h e w a v e

( L a n d a u d a m p i n g ) . T h e f i e l d H e i s d e t e r m i n e d b y t h e

e q u a t i o n ( H If O z )

£*- = kv(H.)vaaa-», ( 8 . 2 )
me

w h e r e v j r m a x — m a x i m u m v e l o c i t y of t h e e l e c t r o n s a l o n g

t h e f i e l d o n t h e F e r m i s u r f a c e , a n d k w — w a v e v e c t o r of

w e a k l y d a m p e d w a v e . W h e n H > H e , t h e e l e c t r o n s

r e s p o n s i b l e f o r t h e a b s o r p t i o n a r e m i s s i n g a n d t h e

d a m p i n g of t h e w a v e i s s m a l l , w h e r e a s i n t h e r e g i o n

H <C H e t h e c o l l e c t i v e o s c i l l a t i o n s b e c o m e s t r o n g l y

d a m p e d . * O n t h e o t h e r h a n d , w h e n H - C H e t h e m o t i o n of

t h e i n e f f e c t i v e e l e c t r o n s l e a d s t o A P of t h e t r a j e c t o r y

t y p e ( s e e S e c . 6 ) . C o n s e q u e n t l y , t h e f i e l d H e s e r v e s a s

t h e b o u n d a r y b e t w e e n t h e r e g i o n s of e x i s t e n c e of f i e l d

A P of t h e t r a j e c t o r y t y p e a n d of w e a k l y d a m p e d e l e c t r o -

m a g n e t i c w a v e s .

II . E X P E R I M E N T ( R A D I O - F R E Q U E N C Y S I Z E E F F E C T S )

9 . M e t h o d s of E x p e r i m e n t a l O b s e r v a t i o n o f F i e l d A n o m -

a l o u s P e n e t r a t i o n of t h e T r a j e c t o r y T y p e i n a M e t a l

9 . 1 . N a t u r e of r a d i o - f r e q u e n c y s i z e e f f e c t s . T h e

p o s s i b i l i t i e s a n d m e t h o d s of e x p e r i m e n t a l l y o b s e r v i n g

f i e l d A P i n a m e t a l a r e d e t e r m i n e d b y t h e r e l a t i o n b e -

t w e e n t h e f r e q u e n c y a> o f t h e e x t e r n a l f i e l d a n d t h e c o l l i -

s i o n f r e q u e n c y v. A t h i g h f r e q u e n c i e s t h e f i e l d A P i n a

m e t a l c a n b e o b s e r v e d b y m e a s u r i n g t h e i m p e d a n c e of

t h e h a l f - s p a c e , s i n c e i t l e a d s t o C R . A t l o w f r e q u e n c i e s

( 3 . 1 9 ) , t h e f i e l d A P g i v e s o n l y t h e h a l f - s p a c e i m p e d a n c e

c o m p o n e n t t h a t v a r i e s m o n o t o n i c a l l y w i t h H , a n d t h i s

c o m p o n e n t c a n n o t b e s e p a r a t e d i n p r a c t i c e . C o n s e -

q u e n t l y , t h e o n l y p r e s e n t l y a v a i l a b l e e x p e r i m e n t a l p o s s i -

b i l i t y of s t u d y i n g A P a t l o w f r e q u e n c i e s i s c o n n e c t e d

w i t h t h e r a d i o - f r e q u e n c y s i z e e f f e c t s , w h i c h w e s h a l l

n o w d i s c u s s .

A s s u m e t h a t a n e l e c t r o m a g n e t i c w a v e i s i n c i d e n t o n

o n e s i d e of a p l a n e - p a r a l l e l m e t a l l i c p l a t e of t h i c k n e s s

*The presence of an "absorption edge" is also called "cyclotron re-
sonance shifted as a result of the Doppler effect"[33].
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d > 5 . Only part of the system of peaks is contained in
the plate. Their number depends on the thickness d and
on the magnetic field H. By varying H, we can satisfy
the relation

d = nDeit or <? = «ne: (9.1)

and by the same token "extract" one of the peaks through
the opposite side of the plate. The electromagnetic field
which appears there is radiated in space and can be ob-
served. With further variation of H, the conditions (9.1)
are violated and the plate ceases to be transparent to
the electromagnetic field. Thus, the electric character-
istics of the plate vary periodically as a function of the
magnetic field. This is precisely the radio-frequency
size effect (SE).

Generally speaking, the SE may or may not be con-
nected with the field AP. In a sufficiently strong mag-
netic field parallel to the surface of the metal, the elec-
trons return many times to the skin layer. When H is
decreased, the maximum diameter of the trajectories
increases and at a certain value H = Hi it coincides with
the thickness of the plate. Owing to the diffuse scatter-
ing of the electrons from the boundaries of the sample,
such trajectories are "cut off": their contribution to
the current turns out to be small compared with the
contribution from the electrons that are not scattered
by the surface of the plate and do not return many times
to the skin layer. When H = Hi, a singularity appears on
the plot of the impedance against the field; the character
of this singularity depends on the form of the extremal
electron trajectories.

This phenomenon was first predicted by one of the
authorst341 and observed experimentally by Khaikint351

in experiments on CR in single-crystal plates of tin
1 mm thick (Fig. 14). On going over to higher CR num-
bers, the dimensions of the trajectories D increase. At
H < Hi (equal to 70 Oe) the resonant trajectories are no
longer contained in the plate and the CR vanishes. The

ro'/H ,C

FIG. 14. Plots of CR cutoff in tin.
Oz || [100], E || [010], H || [001], frequency f ~ 1010 Hz, T = 3.75°K.

Curves 1 and 2 - d = 2 mm, curve 3 — d = 1 mm. Curve 2 - part of curve
1 plotted with a larger magnification. The figures along the curves denote
the number of the CR (from [3S]).

CR cutoff was observed subsequently also in other me-
tals'36 '371.

The same cutoff effect is obviously possible also in
the region of low frequencies (3.19)C38'391. The phase of
the alternating field in the skin layer remains unchanged
for each passage of the electron through the skin layer.
The cutoff SE in the case of low frequencies has the form
of an isolated peak on the plot of the impedance of the
plate against H (see Figs. 15 and 16 below). Recently
this SE became an important method of investigating the
Fermi surfaces of conduction electrons in metals'5 '391.

9.2. Methods of exciting the electromagnetic field in
the plate. The metallic plate can be oriented in different
manners relative to the source and the receiver of the
electromagnetic field. This governs the character of the
measured quantities. The plate can be oriented such that
the wave is incident on it only on one side, and the re-
flected signal is measured. At high frequencies, such an
experimental scheme can be realized by letting the sam-
ple serve as the wall of a resonator, and at low frequen-
cies, by locating the sample near the end of an induc-
tance coil perpendicular to its axis. In such experiments
one measures the quantity

f a . . (9.2)

When the experiment is so performed, it is most con-
venient to observe the cutoff SE, since the second side
of the plate, z = d, serves only as a "barr ier" for the
electron trajectories. Indeed, as shown inC34], the
change of the plate impedance Z^H) due to the "cutoff"
of the electrons with extremal diameter Dext, is given
by the formula

(9.3)

« /?, Oe
FIG. 15. Plots of the SE in

bismuth at different directions of
the magnetic field in the plane of
the sample.

Oz II C3, d = 1 mm, frequency
f= 12MHz,T= 1.8°K. The upper
figure shows the arrangement of
the electron ellipsoids and the
polarization of the electric field.
The indices of the vector H and
of the extremal sections S and S'
correspond to the numbers of the
curves.

FIG. 16. Plots of the SE
in rubidium.

d = 0.19 mm, frequency
19.5 MHz, T=1.4°K,E1H.
The peaks near 4.5 kOe re-
present a partly saturated
NMR signal from protons and
fluorine nuclei (from [**])



ANOMALOUS P E N E T R A T I O N OF E L E C T R O M A G N E T I C F I E L D IN A METAL 99

where ai is a constant on the order of unity (for a Fermi
sphere, a! = 4/3ff). The derivative of the impedance
with respect to H (all the experiments described below
consisted of measurements of the derivative) has a
singularity of the type (1 - d2/D|xf-) . The reason why
3Z/9H becomes infinite at d = Dext is that no account
was taken in (9.3) of the smearing of the singularity as
a result of the inhomogeneity of the field in the skin
layer. It is quite obvious (as is also confirmed by exact
calculation'401) that the smearing of the singularity as a
result of the finite skin-layer thickness 6 leads to the
estimate

H dZ ld\
~zT~dir max IT/

1/2 (9.4)

On the other hand, the impedance (9.2) changes as a
result of the AP of the field in the metal. In order to
estimate the contribution made to Zj by the field AP
effects, we write down Maxwell's equations
k*% (k) + 2£" (0) — 2E Id) k sin kd — 2E' (d) cos kd = 4nfortr {k) % (k).

(9.5)
(Continuation of the field E(-z) = E(z), E(z) = 0 when
|z| > d.) We neglect the influence of the finite thickness
of the plate on the conductivity <r(k). The term with E'(d)
in (9.5) can be disregarded, since it follows from the
boundary condition at z = d that cE'(d) = —iwE(d).
Consequently

(9.6)
2 £' (0) E' (0)

Substituting here in lieu of E(d)/E'(0) the quantity
-2T(d)A, we obtain

Zrf-Zoo 1 (9.7)

Thus, the change of the impedance of the plate due to
the field AP is proportional, in the case of unilateral
excitation, to T2(d) and not to T(d) in the first power.
This is connected with the fact that the field peak emer-
ges to the surface z = 0 after "reflection" from the
second side of the plate. Therefore the change of the
derivative of the impedance from even the first peak is
smaller by a factor (d/6) than from the cutoff SE.

The experiment can be performed differently, namely,
by irradiating the plate on one side and measuring the
electromagnetic field on the other t41'42:i. The measured
signal is proportional to

E(d)
£'(0) ~~2n-1T(d), (9.8)

i.e., to the first power of the function T(d). In this case
the SE is due to the field AP in the sample, and the cut-
off effect plays no role.

Finally, if the sample is placed inside a resonant
cavityt43] or else inside an inductance coilC38], two-
sided symmetrical excitation of the plate is possible,
with H(0) = H(d) and E(d) = -E(0). In this case each side
of the plate is simultaneously a transmitter and a re-
ceiver, thus ensuring the possibility of observing all the
known SE, including the cutoff effect. At low frequen-
cies, this is precisely the excitation method employed.
The coil with the sample serve as part of the tank cir-
cuit of a radio-frequency oscillator. The measured
quantities—the change of the natural frequency of the
tank circuit f = u/2ir and of its Q—depend on the depth
of penetration of the alternating magnetic field in the
plate

*< = imlHW* = -4wlHS'Mdz' (9.9)

where H^J'(z) is that part of the alternating magnetic
field inside the metal, which is due to excitation of the
plate from one side. Using Maxwell's equation
c curl E11' = , we can rewrite (9.9) in the form

' (0)
(9.10)

Here E (d) is the electric field on the second side of
the plate, due to the AP of the field in the metal. On the
other hand, the term with Eu)(0) describes the cutoff
SE. From a comparison of (9.3) with (9.8) it follows that
for closed orbits and for d = Dext the contributions to
fid from the cutoff effects and from AP are of the same
order of magnitude.

Let us define the impedance Z of the plate, in the
case of two-sided excitation, by means of a formula
similar to (1.2):

Z= -4niox:-»Sd. (9.11)

Using (3.14) and (9.10) we can finally rewrite (9.11) in
the form (we omit the vector indices)

Z = i§iac-*[T (d) — T(0)}. (9.12)

We have tacitly assumed above that the field distri-
bution in the plate coincides with the field distribution
in the half-space. This is true only when the amplitude
of the peak is much smaller than the field in the skin
layer and the multiple reflection and interference of the
waves in the plate can be neglected. In all the presently
known experiments this condition is satisfied.

10. Experimental Investigation of Anomalous Penetra-
tion in a Metal with the Aid of Size Effects

All the experiments described below were performed
in the frequency range 1 — 20 MHz with two-sided exci-
tation of the plates. We discuss only those SE which are
connected with the trajectory type field AP in the metal.

The amplitude of the SE lines is maximal when the
incident-wave electric vector is polarized along the
direction of the electron velocity in the effective point
of the extremal trajectory. This makes it possible to
separate experimentally certain SE from others.

10.1. Size effect on trajectory chains. Figures 15
and 16 show plots of the quantities 9w/8H 9X/9H and
9R/9H as functions of H for bismuthCs: and rubidium t44"\
(The experimental conditions are indicated in the figure
captions.) To identify the SE it is sufficient to verify
that the position of the observed lines does not depend
on the frequency and changes in inverse proportion to d.
Indeed, the lines are located in those places where the
condition (9.1) is satisfied. The formula for the position
of the lines of SE from a chain of trajectories consisting
of n links is

H -n2pc
(10.1)

where 2p is the extremal dimension of the orbit in the
z x H direction. As seen from the figures, the interval
of fields in which the SE lines are observed is not the
same in rubidium and bismuth, thus reflecting the dif-
ference in the dimensions of the Fermi surfaces of these
metals.
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From the point of view of theory, the chain of trajec-
tories in bismuth gives a "rapidly damped" system of
peaks. The damping coefficient a (see (4.16)) is differ-
ent for the two curves of Fig. 15. As is well known, the
Fermi surface of bismuth consists of three electron
"ellipsoids" and one "hole" surface. At a field direc-
tion Hi (curve 1), the production of the system of peaks
is due to two electron Fermi surfaces, and its "spread-
ing" is due to the hole surface and the third electron
"ellipsoid." At the field direction H2 (curve 2), only
one electron ellipsoid takes part in the formation of the
system of peaks, whereas all the remaining carriers
are responsible for the "spreading" of the peaks.
Therefore at the field direction H2 the value of a is
smaller and the lines decrease more rapidly.

When investigating the intensities of the SE lines, it
must also be borne in mind that D changes from number
to number: D(n) = d/n and an ~ (n6/d)n/z. In addition,
as already noted in Sec. 9.2, the intensity of the first
line is determined not only by the AP, but also by the
cutoff effect. Therefore a comparison with theory should
be carried out using lines with n > 2, but their low in-
tensity usually raises difficulties.

As indicated in Sec. 4.2, the attenuation of the peaks
should decrease when the vector H is inclined, owing to
the more effective selection of electrons with a definite
diameter Do. This theoretical conclusion is confirmed
by the curves of Fig. 16. They demonstrate the pres-
ence of a weakly damped chain of trajectories in a metal
with a spherical Fermi surface. From the relative
width of the line on the upper curve it is possible to
estimate that 6/d & 0.1. The inequalities (4.19), which
represent the condition for weak damping of the peaks
in the metal, are transformed into

0.1 (-±)i/2«cp«0.1n (n=l, 2, 3 ,..)•

For the lower curve (<p = 5° — 0.1), these conditions are
apparently satisfied for lines with numbers n > 3. It is
precisely these lines which increase rapidly compared
with the lines of the upper curve (<p = 0). It is interest-
ing to note that the efficiency of the selection is retained
also when 6 ~ D(n > 7), when individual peaks merge
together and go over into a harmonic distribution of the
alternating field in space.

The presence of several extremal diameters Dj in-
creases the damping of the bursts and at the same time
leads to the appearance of ' ' secondary'' peaks at depths
z = SnjDi, i.e., the chain consists of "l inks" of different
diameter. An example of a line due to such a chain is
found in Fig. 21 below.

It is of interest to trace the variations of the posi-
tions of the SE lines from close trajectories when the
magnetic field is inclinedt45:l. Their shift reflects the

A
FIG. 17. Shift of SE lines in

potassium with increasing inclina-
tion of the magnetic field.

Dashed - the function H(ip) =
H(0)/cos2<p(from[46]).

change of the depth of the location of the peaks with in-
creasing angle <p: the line shift in the direction of the
stronger fields denotes that the peak shifts deeper into
the metal, and a line shift in the direction of weaker
fields is evidence of a shift of the peak to the surface.

In metals with nonspherical Fermi surface, the
closed trajectory usually does not lie in a plane perpen-
dicular to H. Therefore the displacement of the electron
along the field during the half-cycle when it moves from
the surface of the metal to the peak can be different
from zero. When <p * 0 there appears a projection of
this displacement along the z axis. In calculating the
position of the peak (or of the SE line), it is necessary
to take into account the velocity component VJJ, which
does not enter in the vector equation (2.1). Let us con-
sider, for example, a cylindrical Fermi surface with an
axis P 1 Oz. Let the vector H be inclined in the (z, P)
plane. The plane of the trajectory does not rotate when
the field is inclined, and the dimension of the traj ectory
increases and is determined by the projection of the
vector H on the cylinder axis. It is easy to show that the
depth at which the burst is located is equal to

ZM0) = n ( i £ ) . (10.2)

The dependence of the position of the SE line on <p is
given by

Hn (q>) = Hn (0) sec tp, (10.3)

where Hn(0) is determined by formula (10.1). At small
values of ip the line shift is AH ~ <p2.

A linear dependence of the shift on the angle cp is also
possible. For example, in the case of a cylinder, the
axis P of which is inclined to the surface at an angle K ,
we have following inclination of the field in the (z, P)
plane

cos(x — cp)
:#*(()) (1-cptgx). (10.4)

0 !ff' £0" 30°

The quadratic (10.3) and linear (10.4) SE line shifts
were observed experimentally in tin and in indium.

10.2. Size effect in inclined field in a metal with a
spherical Fermi surface. In the study of the SE in
potassium, Koch and WagnerC46: observed that the SE
lines of the electrons of the central section of the Fermi
surface shift towards stronger fields with increasing
angle <p (Fig. 17). At the same time, z (the projection of
the central diameter) decreases like cos <p in the cutoff
field Hi. An explanation of this apparent contradiction
can be found in Fig. 5. Owing to the presence of an ex-
tremum on the u}1>(pjj) curve, the peaks of the field and
the SE are due to electrons with u{ ext; and n°t with
Pjj = 0. Using formula (5.4), we can show that the in-
equality u j 1 ^ <=* Do is always satisfied. In the case of
small cp we have u^ext ~ D0(l + 0.75<p2). From the plots
of ufu it follows also that the SE should have a maximum
intensity at <p = 25°. This conclusion was also confirmed
by experiment1461.

In146"1 they observed also SE lines connected with ex-
trema of the displacement ul1' near the boundary section
of the Fermi surface. They confirm the conclusions of
Sec. 5.3 that field peaks exist in a metal at large in-
clination angles ip.

10.3. Size effect due to the drift motion of the elec-
trons inside the metal. We start with a discussion of
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M.
0H

/ 2 3 4 H, kOe
FIG. 18. Plot of SE at the limiting point in indium
Oz || [Oil], E || [lll],¥>=7°15',d = 0.3mm, frequency f= 1.6

MHz. The upper curve was plotted with the gain increased 16 times.

the experimental data on the SE from elliptic limiting
points. The velocity of the electrons at these points is
parallel to the vector H and therefore the amplitude of
the SE is maximal when the current j is polarized along
the projection of the vector H on the surface of the me-
tal (the y axis). A sample plot of this SE in indium is
shown in Fig. 18[47:l. It is easily distinguished from the
other SE by the strong dependence of the period of AH
on the inclination angle <p

(10.5)

According to formulas (9.12), (5.19), and (5.22) we have

Co = 16aoxra (8ir (10.6)

The decrease of the amplitude of 3Z/9H with increasing
number (~ 1/H) is due to the increase of the absolute
line width AJJ- The amplitude of the field E in the peaks
at z = d does not depend on the number, since the path
length d/tp remains unchanged (see (5.22)).

The dependence of the line amplitude for indium
agrees well with (10.6). No such agreement was ob-
served in the experiments with t i n t u ] . It is possible
that the observed difference is connected with the field
dependence of the effective frequency ^6jph of the
electron-phonon collisions1481.

With increasing angle <p, the SE due to the limiting
point goes over smoothly into the SE due to the electrons
at the boundary section (see Sec. 5.3). The formula
(10.5) for the period of AH then goes over smoothly into

A// = —r imVuLmSmZw. llU.l)
eti i " mm T \ /

The SE from the boundary section was observed in t461,

but so far the transition from (10.5) to (10.7) has not
been traced directly.

All the SE considered above could actually be inter-
preted in terms of the model of a metal with a spherical
Fermi surface. In a metal with a complex Fermi sur-
face, there appear a number of specific possibilities for
field AP and for SE (Sees. 5.2 and 5.4).

The anomalous penetration of the field as a result of
the drift of the effective electrons on open orbits at
cp = 0 [ U 1 is illustrated by the plots of Fig. 19. The pres-
ence of intermediate lines offers evidence of the com-
plicated shape of the trajectories and of the existence
of an additional sequence of points un

u (5.2). The funda-
mental period is determined, in accordance with (5.6),
by the formula

A# = £*£2?-». (10.8)

Characteristically, the lines were observed at all polar-
izations of the current j . This is connected with the
presence of an entire layer of open orbits with identical
period, which are equivalent from the point of view of
the contribution to the effect. The directions of the elec-
tron velocities at the effective points depend in this
case, probably, on pjj, forming a unique "fan" in the
x, y plane.

Other interesting possibilities of the appearance of
SE are connected with the existence of extremal helical
trajectories of the type shown in Fig. 3. As indicated in
Sec. 5.1, such a trajectory in an inclined magnetic field
should lead to the appearance, generally speaking, of
two sequences of peaks z = un and z = un

lJ in a semi-
infinite metal. Each of the peaks can serve in turn as
an initial skin layer for a secondary sequence at depths
u n ' + u n f ' e*c- These peaks result from a unique com-
bination of two mechanisms of the field AP—along a
chain of trajectories and as a result of the drift motion
of the electrons. The amplitude of the primary sequen-
ces decreases with increasing number like exp(—An/Z),
where An is the length of the section of the trajectory
from the surface of the metal to the corresponding burst
(Fig. 20). The amplitude of the secondary sequence con-
tains, besides the product of the amplitudes of the initial
bursts, also a small "transfer coefficient" a (see Sec.
4.1).

In a parallel field we have un = 0, un
lf = D, u^1' + û V

= 2D, ..., i.e., there exists the same system of peaks as
that due to a chain of closed trajectories. Figure 20
shows schematically the location and the relative ampli-
tudes of the peaks in a half-space in an inclined field.
The same figure serves as a scheme for the arrange-
ment of the SE lines as a function of the magnetic field,
the only difference being that in a plate it is impossible

Sf

25P WO

, ^ | rJ r^ | /VwVv^^

FIG. 19. Plot of SE on open trajectories in tin.
Oz || [001], H || [110], T = 2°K, frequency f= 3.2 MHz. Upper

curve for E 1 H, lower - for E || H (from ["]).

7Sff ta/0 J250 !500 '7S0 Z/XX/ 2250 Z7M sm'/toe



102 E. A. KANER and V. F . GANTMAKHER

Peaks from drift motion Peaks from chains
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FIG. 20. Schematic
distribution of the ampli-
tudes of the peaks in an
inclined field H in the pre-
sence of an extremal non-
central trajectory. The
amplitude of the electric
field at the surface is taken
as unity.

it

to observe the SE due to peaks at a depth un, owing to
the collisions between the electrons with the surface of
the plate.

A similar picture was observed experimentally in
indium[45], in which there exists a helical trajectory
with extremal diameter D ̂ > u (because of this all the
quantities un

u reach the extremum simultaneously).
Figure 21 shows the splitting of the line D into the lines
Uo1 and u[1} when the field is inclined (the remaining
lines are not seen, owing to the relatively small mean
free path); the line at the depth 2D was split into three
79l,(1' 11(U -L 11U) 9llU)\
(Z\Xo , Uo + Ui , &1\ ).

10.4. Size effect from electron trajectories with
kinks. In experiments on SE it was established that in
polyvalent metals (e.g., indium1491 and tin1503) there ex-
ist trajectories with "kinks." We shall say that a
trajectory has a "kink" if the electron velocity changes
at a distance Az <§C 6 by an amount of the order of the
velocity itself. Such a singularity leads to an anomaly
in the distribution of the alternating field in the metal,
and to corresponding SE lines which do not differ out-

OH

FIG. 21. Plots of SE in indium.
Oz || [001], E |1 [100], HIE, frequency f= 5 MHz, d = 0.3 mm.

Curve 1 — <f> = 0, curve 2 — <f = 2.5°. The right sides of the curves were
plotted also with a gain increased by a factor of 5. The line marked with
the asterisk is the SE from chains made of different links (from [4S]).

FIG. 22. Plot of SE in tin at <p = 80°.
Oz || [100], E|| [010], T= 1.3°K, frequency f= 5.2 MHz.

wardly from other lines. The singularities in the dis-
tribution of the field due to the kinks on the trajectories
lie between the peaks and are determined by the field
amplitude at these points. According to (4.13), the rela-
tive magnitude of the observed singularity of the imped-
ance is smaller by a factor (D/6)1'2 than the amplitude of
the succeeding peak. This is precisely the ratio ob-
served in experiment1491.

10.5. Ineffective electrons. The harmonic component
of the field distribution inside the metal, due to the drift
of the ineffective electrons (Sec. 6), naturally leads to
the appearance of a sinusoidal component of the surface
impedance of the plate. The first two of the cases con-
sidered in Sec. 6 are realized when the magnetic field
directions are close to the normal Oz. Experiments in
a normal field were made on tin'151 (Fig. 22) and cad-
mium [51]. It is difficult to distinguish on these curves
the oscillations due to the electrons of the limiting
points and helical trajectories, because actually the only
criterion is the relatively weak difference in the depen-
dence of the amplitude of the oscillations on H. An
analysis of this dependence is also made difficult by the
fact that in the region of weak fields the modulating
field may not penetrate fully into the sample.

It is therefore necessary to resort to indirect con-
siderations: the shape of the Fermi surface, values ob-
tained in other experiments for the curvature of the
surface at the limiting points, the dependence of the
period on the direction of H, etc. Such considerations
indicate that all the hitherto observed oscillations in a
normal field are connected with helical trajectories and
not with limiting points. A role is possibly played here
by the difference in the amplitudes by a factor (d/u) ,
which is noted in the theory.

Field AP into the metal was also observed in cad-
miumt22] as a result of the drift motion of the ineffective
electrons on open periodic orbits, when the vector H is

WOO 2000
FIG. 23. Plot of SE in cadmium.
Oz || [1120],H || [10T0], d = 0.4mm,T= 1.7°K(from ["]).
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parallel to the surface of the metal (see Sec. 6.3). Fig-
ure 23 shows a plot of the SE, illustrating this case
of AP.

11. Line Shape of the Radio-frequency Size Effect

In the preceding section we actually discussed the
experimental proof of the very existence of field AP in
a metal of the trajectory type. The arrangements of the
lines as a function of the magnetic field, which made it
possible to classify the different types of SE, is a re-
flection of the "coarse" structure of the distribution of
the field in a metal. To explain these "coarse" charac-
teristics of AP and SE, it is actually sufficient to use the
simple qualitative considerations based on the concept
of "effectiveness" of the electrons and on the "ex-
tremum" principle.

The structure of the electromagnetic field inside the
peaks, and the SE line shape, are more subtle charac-
teristics of the AP phenomena, and their analysis re-
quires the use of the rigorous theory developed in the
first part of the present review. As shown in'12'403, the
SE line shape is determined completely by the distribu-
tion of the electromagnetic field in the skin layer at the
surface of the metal and by the shape of the electron
trajectories near the effective points. Therefore a study
of the line shape makes it possible to obtain direct in-
formation on the structure of the field in the skin layer
and on the conduction-electron dispersion in metals. It
must be emphasized that prior to the discovery of the
SE there existed no direct method of investigating the
distribution of the electromagnetic field in a metal. We
note, first of all, that the SE line shape is not connected
with any extraneous factors whatever. First, it is not
affected by the degree of smoothness of the metal sur-
face: when the samples are etched the line shape re-
mains completely unchanged'395. Consequently, the
theoretical assumption that the boundary of the metal is
a geometrically ideal plane is perfectly admissible from
the point of view of a real experiment. Second, the
wedgelike nature of the sample (the inhomogeneity of
its thickness) leads to a splitting of the SE lines, and
not to their smearing (Fig. 24). This is a unique mani-
festation of the "extremum" principle, but with respect

f

-ma

FIG. 24. Splitting of SE lines for
a wedge-shaped indium sample.

1 - plane-parallel plate, d = 0.4
mm; 2 - wedge, Ad/d = 7%.

to the thickness of the plate and not with respect to the
electron trajectories.

The formulas obtained in Ch. I, in principle, describe
correctly the distribution of the fields inside the peak
and the law governing their decrease with increasing
depth in the metal. However, owing to computational
difficulties, the calculation was carried through to con-
clusion only in the case of field AP due to the electrons
of the limiting point[12]. Using formula (10.6), it is
possible to compare theory with experiment directly.
Figure 25 shows the results of such a comparison for
indium. The scale was chosen such as to ensure the
best agreement between the theoretical and experimen-
tal curves on the right wings of the lines. As indicated
in Sec. 5.2, the result of the calculations of the form of
the burst and of the SE lines on the left edge depend
strongly on the collisions of the electrons with the sur-
face of the metal. The discrepancy between the theory
and experiment in this region is due apparently to the
fact that an approximate boundary condition (5.10) was
used in the calculations (the trajectories of the focusing
electrons were replaced by straight lines). It is probable
that a more accurate analysis would decrease the value
of the function *i(x) at negative values of the argument.

It can thus be stated that the point corresponding to
the condition d = nu0 is located near the left edge of the
SE line. This conclusion is confirmed by all the experi-
mental data on the SE. It is valid not only for the SE
from limiting points, but also for all the remaining types
of SE. In a large number of cases, the arrangement of
the lines was determined by the values of the parame-
ters of the metal, which are well known from the theory
or from other experiments (the period of the reciprocal
lattice in t in t l l ] , the dimension of the smallest semi-
axis of the electron ellipsoid in bismuth15"1, the diameter
of the Fermi sphere in potassium t46], the Gaussian
curvature at the limiting points in the [111] direction in
indiumC47] and aluminumt5Z]). In all these cases the
points (9.1) corresponded to the left edge of the lines.

Consequently, in comparing experiment with theory
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FIG. 25. Comparison of the experimental plots (solid) and theoreti-
cal (dashed) for SE lines of limiting points.

The ordinate scale pertains to the function * (see Fig. 7). The ex-
perimental curves were obtained for indium, Oz || [001], d = 0.3 mm, H
|| [lll],<p = 7°, n= l,T= 1.5°K, frequency f=3 MHz.
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it is possible to use the results of the calculations of
the SE line shape without taking into account the colli-
sions of the electrons with the surface of the metal (e.g.,
formulas (5.39) and (5.45)), discarding the part of the
theoretical curve for d < nu.

Let us define the characteristic width AJJ of the SE
lines as the distance between two neighboring extrema
of like sign. As seen from Figs. 7—9 and 25, the calcu-
lated width AJJ is approximately equal to

&H~(66/d)H,

where

JL J?i (11.2)

The experimentally obtained frequency dependence
of the SE line width in indium1471, bismutht51, and potas-
sium[4el , namely AJJ ~ aT , agrees with the theory of
the anomalous skin effect. It is appropriate to mention
here that the width AJJ does not depend on the tempera-
ture (Fig. 18). This is due to the fact that in the anom-
alous skin effect the depth 6 does not depend on the
mean free path.

The absolute value of the characteristic depth of the
skin layer 6 can be obtained from the measured width
of the SE lines with the aid of (11.1) and from indepen-
dent measurements of the surface impedance by means
of formula (11.2). The corresponding data for the three
metals at 7.5 MHz are listed in the table together with
the data on the mean free path1501. The discrepancy, by
a factor of 3, in the case of bismuth may be due to the
insufficiently large value of the ratio Z/66.

fl-from Z,
iG-i cm

6fromAH,10-* cm
I, mm

Sn

2,0

1,8
2,0

In

1,6

2,2
0,5

Bi

10

30
0,5

The SE lines can be observed with either the imagin-
ary or the real part of Z. It is shown experimentally
in that the functions 8R/8H and 8X/8H vary within
the limits of the SE lines always in such a manner that
the extrema of one of the functions approximately coin-
cide with one of the positions of the fastest variation of
the other. This regularity is a result of the structure of
the field in the skin layer1 0 1

parts of To (Fig. 6), * i ,
(Fig. 9)).

The distribution of the field in the skin layer is the
fundamental but not the only factor of determining the
SE line shape. Under the same conditions, lines of dif-
ferent shape are observed experimentally1391. In the
case of SE from the limiting point, an important role is
played by a small section of the Fermi surface, which
is well approximated by a second-order surface. There-
fore the shape of the corresponding lines is accordingly
well duplicated in different metals. On the other hand,
when the closed trajectories are cut off, both the
parameters of the extremal trajectory itself (8V Z /8T in
the effective points) and the character of the extremum
(82D/8p|j) can change within a wide rangeC401. Indeed,

y
1401 (cf. the imaginary and real

(Fig. 7), *3 (Fig. 8), and *4

the line shape of the SE from closed trajectories is dif-
ferent for different extremal orbits. The entire aggre-
gate of the experimental data offers evidence that the
most significant factor governing the line shape is the
time spent in the skin layer, characterized by the
parameter 8 V Z / 8 T [ 5 0 ] .

Thus, the distribution of the field in the skin layer
determines the main general features of the SE lines—
the asymmetry with respect to the points (9.1), their
width, the ratio of Re Z to Im Z, the character of the
electron dispersion law determines the concrete line
shape.

12. Applications of Size Effects

Radio-frequency size effects by now turned from
being an object of study into a method of metal research.
They are used most extensively to determine the form
of the Fermi surface. The variety of information that
can be obtained with their aid15"1 is connected with the
fact that the AP of the field in the metal is produced
along electron trajectories of a great variety of types.

The cutoff of the closed trajectories determines the
extremal dimensions of the Fermi surfaces and their
anisotropy. A study of the behavior of the lines when
the magnetic field is inclined can clarify the locations
of the individual sections of the Fermi surface (see
(10.3) and (10.4)). The limiting-point SE makes it possi-
ble to measure local values of the Gaussian curvature
at elliptic limiting points. A study of the SE at large
inclinations of the field to the surface makes it possible
to observe trajectories with extremal displacement per
period and to measure the values of (8S/8pH)ext- It is
possible to prove with the aid of the SE the presence of
orbits with kinks and of open orbits, and also to draw
certain conclusions concerning their forms.

The most detailed studies made with the aid of the
SE were those of the Fermi surfaces of tin139'543,
indium"7 '493, and cadmium [22>51'561, and also galliumt57:l,
tungsten1411, and molybdenum'581. In particular, it is
precisely the data on the SE which made it possible to
determine the numerical values of the coefficients of
the Fourier expansion of the pseudopotential in tin t551.

Another important application of the SE is the meas-
urement of the mean free path I of individual groups of
electrons on the Fermi surface. The possibility of
measuring I is connected with the fact that the amplitude
of the lines depends in most cases on I exponentially
(~ exp(-A/Z), where A is the length of the path from one
side of the plate of the other along the corresponding
trajectory). In this respect, the limiting-point SE is
particularly convenient, since variation of the angle cp
results in a change in the path length A = d/sin <p. The
first such measurements were made in tinCl11 for two
limiting points. The mean free paths of two groups of
electrons differ by a factor of 4, although the measure-
ments were performed on a single sample. This method
was used to measure also the dependence of the mean
free path on the temperature in tin1481 and indium1471. It
turned out that l/l(T) = l//(0) + CT3. The cubic tem-
perature dependence offers evidence that the collision
of electrons with even one phonon removes the electron
from the focusing group. Therefore the quantity CT3 is
simply the probability of electron-phonon collision per
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unit path. This fact agrees with the conclusions of the
theory of the anomalous skin effect173.

We note also one interesting radiospectroscopy appli-
cation of the field AP in metals. Peercy and Walsh
succeeded in observing nuclear magnetic resonance in a
bulky single crystal of rubidium, owing to the fact that
the radio-frequency field penetrated along a trajectory
chain through practically the entire sample. The variety
of the already feasible applications gives grounds for
hoping that the anomalous penetration of the field in a
metal and the size effects will find wide applications in
metal physics.
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